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Abstract
Continuous-time regime-switching models are a very popular class of models for
financial applications. In this work the so-called signal-to-noise matrix is introduced
for hidden Markov models where the switching is driven by an unobservable Markov
chain. Its relations to filtering, i.e. state estimation of the chain given the available
observations, and portfolio optimization are investigated. A convergence result for the
filter is derived: The filter converges to its invariant distribution if the eigenvalues of
the signal-to-noise matrix converge to zero. This matrix is then also used to prove a
mutual fund representation for regime-switching models and a corresponding market
reduction which is consistent with filtering and portfolio optimization. Two canonical
cases for the reduction are analyzed inmore detail, the first based on themarket regimes
and the second depending on the eigenvalues. These considerations are presented
both for observable and unobservable Markov chains. The results are illustrated by
numerical simulations.
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1 Introduction

Regime-switching models are a very popular class of models in the field of mathe-
matical finance. They describe return processes with time-changing drift or volatility
parameters. Thus, they are a possible way to generalize the classical Black-Scholes
lognormal stock price model by making the parameters dependent on a Markov chain
with finitely many states. The switching parameters allow for flexible and realistic fits
to observed market data. In the continuous-time model with switching volatility, the
underlying Markov chain is observable (in theory) due to this stochastic volatility and
no estimation (filtering) of it is needed.Wecall thismodel theMarkov-switchingmodel
(MSM). In themodel with constant volatility one has to filter for the underlying hidden
Markov chain, i.e. to compute the conditional probability for the underlying state given
the observed stock returns. Therefore, this model is called the hidden Markov model
(HMM). The filtering problem was solved in the continuous-time model in Wonham
(1965) and Elliott (1993). It was discretized and robustified in James et al. (1996) in the
sense of Clark (1978), being consistent with filtering in discrete time as in Hamilton
(1989). Portfolio optimization in the continuous-time HMM covering logarithmic and
power utility was solved e.g. by Sass and Haussmann (2004) using Malliavin calculus
and by Bäuerle and Rieder (2005) following an HJB approach. Also BSDE methods
can be applied to portfolio optimization under partial information, see Papanicolaou
(2019).

In portfolio optimization, estimating parameters or the true value of a system using
“noisy” real-world observations can lead to poor portfolio performance already in the
one-period model, when e.g. constructing a minimum-variance portfolio or applying
mean-variance optimization. This is especially true for markets with a large number
of assets (DeMiguel et al. 2007). There is an extensive literature available on how to
approach such estimation problems, mainly in the one-period model. One may cluster
according to the correlations and invest, in the spirit of DeMiguel et al. (2007), with
equal weights in the representatives (e.g. Sass and Thös 2022). Or, as in Zhao et al.
(2019), tackle such a problem by splitting the eigenvectors of the covariance matrix
into well-estimated and poorly-estimated ones and use these to construct portfolios.
Chen and Yuan (2016) restrict the investment in the mean-variance analysis on a
subspace, using e.g. the leading eigenvectors of the covariance matrix to span this
subspace. Avellaneda et al. (2021), Avellaneda and Lee (2010), Boyle (2014) also
use a principal component analysis of the correlation matrix, leading to so-called
eigenportfolios (see Remark 5.12 for how this relates to our setting).

Mutual funds are a well-known and famous concept from classical finance and
financial mathematics which have been studied for a long time.Mutual fund separation
theorems imply that it is optimal to trade in a portfolio that is a linear combination
of single assets. The separation can e.g. be studied in the context of mean-variance
analysis (Tobin 1958; Merton 1972) or using an expected utility setting (Cass and
Stiglitz 1970; Schachermayer et al. 2009). The approach of Chamberlain (1988) uses
martingale representation theory. General applicability of the Mutual Fund Theorem
was discussed in Schachermayer et al. (2009) for classes of utility functions under
some completeness condition. There, the mutual fund depends on time and there is
only one fund of risky assets next to the riskfree bond.
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In this work we bring both concepts, regime-switching models and mutual funds,
together by introducing a reduced market model where one can trade in several mutual
funds. In this reduced market we derive a result which provides a representation by
as many mutual funds as we have market regimes. Each of these mutual funds would
correspond to the classical mutual separation theorem, if we are in a model with static
parameters corresponding to that regime. The reduced and the original model are
connected by what we call the signal-to-noise matrix. It depends on the parameters
of the HMM, namely it relates the states of the drift to the volatility. We prove that
this matrix plays a central role in both portfolio optimization and filtering. Its name
is motivated by the expression “signal-to-noise ratio” known from classical filtering
theory and signal analysis. As an indicator of how much information about the signal
can be present in the observation, the signal-to-noise matrix is also connected to the
possible performance of the filter. The invariant distribution of the underlying Markov
chain is always of significance for the filter as well, since it is approximately its
expected value and also often chosen as the starting value.

We prove that for vanishing signal-to-noise matrix in terms of its eigenvalues, the
filter indeed converges to this invariant distribution. The convergence result implies
that in this case, the observations do not contain significant information about the
signal anymore. We then derive a market reduction from the signal-to-noise matrix
that depends on a condition on its eigenvalues. We establish the equivalence of the
reduced market to the original model and the equivalence of the filters, depending
on this condition. The funds are a linear combination of the original assets and do
not change their composition over time. We also provide an explicit calculation for
the composition of the funds. We show that portfolio optimization in the reduced
market leads to an optimal wealth process that is identical to the optimal wealth in
the original model. Furthermore, we consider two canonical cases for the reduced
model: First the so-called “reduced regime representation model” (RRRM), where it
turns out to be log-optimal to invest portions of wealth into the funds according to the
filtered state probabilities. The second case is the “eigenvalue representation” (REVM)
which is based on a principal component analysis of the signal-to-noise matrix. In this
setting, the log-optimal strategy not only depends on the filter, but is also scaled by
the eigenvalues of the signal-to-noise matrix. If the signal-to-noise matrix is singular,
the market reduction looks differently. Then, we still arrive at an optimal terminal
wealth that is identical to the original model, but the optimal strategy depends on the
original observations. The theoretical results are underlined by a numerical evaluation
of the optimization problem. The simulations suggest that the investor finds herself in
the classical dilemma of risk versus gain. Again the signal-to-noise matrix assigning
the funds is of great importance: controlling its values decides in which direction the
portfolio is lead.

To summarize, in this work we prove a mutual fund representation and market
reduction that is derived from the so-called signal-to-noise matrix. We investigate the
relation of this matrix to filtering and portfolio optimization and prove convergence
of the filter to the invariant distribution for vanishing eigenvalues. We present two
canonical cases for the market reduction, the regime representation and the eigenvalue
representation. For the latter case, a distinction is made depending on the number of
non-zero eigenvalues of the signal-to-noisematrix. Furthermore, we present numerical
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simulations to illustrate our results. The main innovation is to base our analysis on
the signal-to-noise matrix which is more informative in the filtering setting than the
correlation matrix. This allows for new and more explicit results than focusing on the
risk premium (cf. our discussion at the end of Sect. 4.1).

Thiswork is organized as follows: In Sects. 2 and 3we collectwell-known results on
filtering and portfolio optimization in regime-switchingmodels. In Sect. 4 we formally
introduce the signal-to-noise matrix and prove that a vanishing signal-to-noise matrix
leads to convergence of the filter to the invariant distribution. In Sect. 5 we use a
decomposition of the signal-to-noise matrix to obtain one of the main results of this
work: Amutual fund theorem and correspondingmodel reduction. The effects of these
model reductions on both portfolio optimization and filtering are investigated. As it
turns out, the case of a singular signal-to-noise matrix has to be handled separately,
which we do in Sect. 5.4. In Sect. 5.5 we then discuss corresponding results for the
MSM and an HMMwith non-constant volatility which can be seen as a model that lies
between MSM and HMM. The conclusion in Sect. 6 summarizes our contributions.

In the following, we will use some abbreviations and acronyms. We summarize
them here:

MSM Markov-switching model
HMM Hidden Markov model
RRRM Reduced regime representation model
REVM Reduced eigenvalue model
CRRA Constant relative risk aversion
FB-HMM Filter-based hidden Markov model

2 Financial market model and filtering

2.1 Regime-switchingmodel

We consider a multivariate continuous-time regime switching model for asset returns,
consisting of an n-dimensional observation process R = (Rt )t∈[0,T ], which models
the returns of n stocks,

Rt =
∫ t

0
μs ds +

∫ t

0
σs dWs . (2.1)

While the n-dimensional Brownian motion W = (Wt )t∈[0,T ] models the noise as
usual, the regime changes, i.e. the switching of the drift and volatility parameters, are
driven by a time-homogeneous, continuous-timeMarkov chain Y = (Yt )t∈[0,T ) which
is independent of W . The Markov chain Y has d states and for convenience we use as
states {e1, . . . , ed}, the unit vectors in Rd . We write

μt = BYt and σt = σ(Yt ),
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where B ∈ R
n×d is any matrix while the matrices σ(ek) ∈ R

n×n
>0 are supposed to be

non-singular. A popular intuition behind Y is that it reflects the current underlying state
of the economy. To describe its dynamics we additionally need the rate matrix Q ∈
R
d×d for which the negative of the diagonal element −Qkk provides the exponential

rate for leaving state ek , k = 1, . . . , d, and the ratio −Qkl/Qkk is the transition
probability from ek to el , l �= k, if the chain jumps at all. We assume that the chain
is irreducible. Therefore, under our condition of having finitely many states, a unique
stationary distribution ν exists and is given by ν�Q = 0, ν�1 = 1.

The prices of the n stocks are then given by

dSt = Diag(St ) dRt = Diag(St ) (BYt dt + σ(Yt )dWt )

where Diag(y) denotes the diagonal matrix with diagonal y. Further, there is a money
market account for which we assume interest rate r = 0 to keep notation simple. The
results for filtering and for portfolio optimization below can be adapted to non-zero r
easily.

2.2 MSM and HMM

In a suitable probability space (�,A, P) for the model above we shall distinguish
two filtrations. On the one hand we have F = (Ft )t∈[0,T ], which is generated by
Y and W , and augmented by the null sets. This corresponds to full information. For
convenience we assume A = FT . On the other hand, in real-world applications an
investor typically can only rely on the observed stock prices or stock returns (this is
equivalent in this model). Her information thus is given by F R = (F R

t )t∈[0,T ], which
is the filtration generated by R, again augmented by the null sets. We say that an
investor with information F R has partial information.

Let us denote �(ei ) = σ(ei )σ (ei )�. In the continuous-time regime switching
model, �(Yt ) can in theory be observed from the quadratic covariation of the stock
returns and thus one can observe the jumps of the underlying chain if the matrices
�(ei ), i = 1, . . . , d are pairwise different. Then—in theory—an investor with partial
information has in fact full information, since Yt can be obtained from�(Yt ). For a full
discussion andmore details, see Elliott et al. (2008), Krishnamurthy et al. (2018). Note
that in reality with discrete-time observations of the continuous process this would not
be true. Nevertheless, in the theory we have to distinguish the following cases.

Definition 2.1 Wecall themodel outlined in Sect. 2.1Markov switchingmodel (MSM),
if �(ei ) �= �(e j ) for all i �= j . If �(e1) = · · · = �(ed), then we call the model a
hidden Markov model (HMM).

MSM and HMM are the extreme cases. For settings for which only some of the
�(ei ) agree, the subsequent results can be adapted.

As discussed before, in theMSMan investor has full observation and thus she knows
Yt and hence μt = BYt and �t = �(Yt ) at t . An investor with partial information has
to estimate the underlying drift. The usual approach is to use the L2-optimal estimate
for μt at t . This quantity is called the filter and is defined by
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μ̂t := E[μt |F R
t ] = B E[Yt |F R

t ] = BŶt , (2.2)

where Ŷt := E[Yt |F R
t ] is thewell-known continuous-timeWonhamfilter forYt (Won-

ham 1965), see Sect. 2.3 below. Up to the beginning of Sect. 5.5 we shall concentrate
on the HMM since filtering issues play an important role in our considerations.

2.3 Filtering in the HMM

We consider the HMMdRt = μt dt+σ dWt ,μt = BYt , i.e.� = σσ� is constant and
the filtering problem is non-trivial. To find the filter Ŷt = E[Yt |F R

t ] which yields μ̂t

by (2.2), we can use a change of measure to P̃ ∼ P with Radon-Nikodym derivative

d P̃

dP
= ZT , dZt = −ZtY

�
t (σ−1B)� dWt . (2.3)

Under P̃ , W̃t = σ−1Rt is a Brownian motion independent of Y . P̃ is called reference
measure in filtering and for interest rate 0 it corresponds to the risk neutral or equivalent
martingale measure in finance, see e.g. Elliott (1993). By Ẽ we denote the expectation
under P̃ . This reference measure is used to introduce the unnormalized filter ρt :=
Ẽ[Z−1

T Yt |F R
t ], which satisfies the Zakai-equation (Elliott 1993)

dρt = Q�ρt dt + Diag(ρt )B
� �−1dRt , ρ0 = E[Y0]. (2.4)

TheZakai-equation is linear inρt anddrivenby the observations.UsingBayes’ formula
for Ẑt := E[Zt |F R

t ] yields

Ẑt = 1

Ẽ[Z−1
T |F R

t ] .

By the definition of ρt this implies

Ẑ−1
t = Ẽ[Z−1

T |F R
t ] = Ẽ[Z−1

T 1�Yt |F R
t ] = 1�ρt (2.5)

and thus by (2.4) and by Q1 = 0 we get

d Ẑ−1
t = ρ�

t B
��−1dRt . (2.6)

Using (2.5), Bayes’ formula for conditional expectations, also called Kallianpur-
Striebel formula in this context, reads

Ŷt = ρt

1�ρt
. (2.7)

This implies that knowing ρt , the filter Ŷt can be calculated directly. Thus, in filtering,
one typically tries to compute ρt . By (2.4) and (2.6) and applying Itô’s formula to
(2.7) we get the Kushner–Stratonovich equation
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dŶt = Q�Ŷtdt +
(
Diag(Ŷt ) − Ŷt Ŷ

�
t

)
(σ−1B)�

(
σ−1dRt − σ−1BŶtdt

)
. (2.8)

3 Trading and portfolio optimization

Remember that we consider one money market account with interest rate 0 and n
stocks with returns

dRt = μt dt + σt dWt , μt = BYt ,

where σt is switching with Yt in the MSM, constant in the HMM. We may also
allow for suitable F R-adapted volatility processes as we use them in Sect. 5.5. We
set �t = σtσ

�
t . In all cases, the trading strategy of an investor can be described by

her initial capital x0 > 0 and the risky fraction process π = (πt )t∈[0,T ] if the wealth
stays strictly positive (which is the case for the utility functions we will consider). The
wealth process (Xπ

t )t∈[0,T ] then follows

dXπ
t = Xπ

t π�
t dRt , X0 = x0. (3.1)

So π i
t denotes the fraction of wealth Xt invested in stock i . For given x0 > 0 the

admissible π are

A(x0) =
{
π = (πt )t∈[0,T ] : π progressively measurable,F R-adapted,

Xπ
t > 0 for all t a.s.,

∫ T

0
(‖B�πt‖ + ‖σ�

t πt‖2)dt < ∞ a.s.

}
,

in particular an investor can at time t only use the information F R
t obtained from

observing the stock returns. However, for the MSM this is equivalent to having full
information while for the HMM this is a case with strictly partial information, cf. the
discussion in Sect. 2.2.

Note that (3.1) has the explicit solution

Xπ
t = x0 exp

{∫ t

0

(
π�
s μs − 1

2
π�
s �sπs

)
ds +

∫ t

0
π�
s σs dWs

}
, t ∈ [0, T ].

We evaluate the terminal wealth by a utility function U : [0,∞) → R ∪ {−∞}
which is strictly increasing, strictly concave, twice continuously differentiable on
(0,∞) with limx↘0U ′(x) = ∞ and limx→∞ U ′(x) = 0. We further denote by
I : (0,∞) → (0,∞) the inverse of U ′.

We will focus on power and logarithmic utility functions,

Uα(x) = xα

α
, α < 1, α �= 1 and U0(x) = log(x)

which are utility functions with constant relative risk aversion (CRRA).
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The problem of maximizing expected utility of terminal wealth then is: Maximize
for x0 > 0

E[U (Xπ
T )] over π ∈ AU (x0), (3.2)

where AU (x0) = {π ∈ A(x0) : E[U−(Xπ
T )] < ∞} is the set of risky fraction

processes admissible for U , with U− its negative part. The problem (3.2) has been
solved in Sass and Haussmann (2004) for the HMM with partial information. For
general U , it is quite straightforward to show

X∗
T = I (λẐT ), where λ > 0 is determined by Ẽ[X∗

T ] = x0. (3.3)

The difficulty lies then in finding the strategy as explicitly as possible. We cite the
following result.

Theorem 3.1 In the HMM for U = Uα , α < 1,

π∗
t = 1

(1 − α)E

[
Ẑ

α
α−1
t,T | ρt

]
{
�−1BŶtE

[
Ẑ

2α−1
α−1
t,T | ρt

]

+ (σ�)−1E
[
Ẑ

2α−1
α−1
t,T

∫ T

t
(Dtρt,s)B

��−1dRs

∣∣∣ ρt

]}
,

where for t ∈ [0, T ] the Malliavin deriviative Dtρt,s , s ∈ [t, T ], follows

Dtρt,s = σ−1BDiag(Ŷt ) +
∫ s

t
(Dtρt,u)Q du +

∫ s

t
(Dtρt,u)Diag(B

��−1dRu),

and where ρt,s = ρs/1�ρt , Ẑt,s = Ẑs/Ẑt .
In particular π∗

t = �−1BŶt for U = U0 = log.

Proof This is a special case of Theorem 4.5 in Sass and Haussmann (2004) which uses
the linearity of the Zakai equation (2.4) in order to show existence of the Malliavin
derivative of X∗

T , cf. Corollaries 4.8, 4.9 and Proposition 4.10 in Sass and Haussmann
(2004). �

Note that the result also states that ρt is a sufficient statistic to compute the condi-
tional expectations. This is due to the fact that ρt satisfies the stochastic differential
equation (2.4) which is driven by the observations and allows to derive the corre-
sponding Markov property and thus to simplify the initial conditional expectation
given F R

t . Practically it means that the strategy can be computed efficiently from the
unnormalized filter ρt .

For the MSM, [Bäuerle and Rieder (2004), Theorems 2 and 3] provide optimal
policies for CRRA utility functions:

Theorem 3.2 In the MSM, for U = Uα ,

π∗
t = 1

1 − α
�(Yt )

−1BYt ,
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in particular π∗
t = �(Yt )−1BYt for U = log.

In the following we concentrate on the HMM since it involves the filtering problem,
and discuss the MSM afterwards in Sect. 5.5 again.

4 Signal-to-noise matrix and convergence

The main idea for the model reduction in Sect. 5 is the observation that filter and
portfolio optimization essentially depend on a lower-dimensional matrix which we
introduce in Sect. 4.1 and whose influence we illustrate by a convergence result in
Sect. 4.2.

4.1 Signal-to-noise matrix

In the fundamental results on filtering and portfolio optimization as presented in
Sects. 2.3 and 3, for the n-dimensional HMM dRt = BYt dt + σ dWt , the depen-
dency on σ and B is only via the signal-to-noise matrix A or its “root” 
,

A := B��−1B = 
�
, where 
 := σ−1B.

E.g., by (2.4) for the unnormalized filter

dρt = Q�ρt dt + Diag(ρt )B
� �−1dRt , B� �−1dRt = 
�dW̃t ,

and forU = log, π∗
t = �−1BŶt , dX∗

t = X∗
t (π

∗
t )�dRt = X∗

t Ŷ
�
t 
�dW̃t . By Theorem

3.1 we also have

E[log(X∗
T )] = log(x0) + 1

2
E

[∫ T

0
Ŷ�
t AŶt dt

]
. (4.1)

But the signal-to-noise matrix A is d × d-dimensional! This allows for a reduction of
the model dimension in case d < n. Before we introduce this in Sect. 5, we first show
in the following section that by decreasing the signal-to-noise matrix, we end up with
a trivial filter which corresponds to having no information at all. This motivates our
name for A and underlines the intuition that the relation between drift and volatility
parameters is decisive for the performance of the filter. However, note that 
Yt is the
market price of risk or the risk premium and Y�

t AYt (or their counterparts using the
filter Ŷ instead of Y ) may be called the risk premium function. This quantity plays a
prominent role in financial applications, e.g. in the analysis of robust continuous-time
mean-variance problems, cf. Pham et al. (2022). However, since the filter Ŷ depends on
A, we can get more explicit structural results in our filtering setting by concentrating
on A instead of the risk premium.
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4.2 Convergence of the filter

As pointed out in Sect. 4.1, in (2.4) the dependence of the filter on σ and B is only
indirectly through the matrix A. In the following we want to study the influence of
changes in A on the behaviour of thefilter. Intuitively, A describes a proportion between
volatility and drift in the observations, and indirectly between volatility and Markov
chain Y . This relation can also be seen as an indicator for how much information is
present in the observation. Thus, in the following numerical example we consider a
setting where the eigenvalues of A tend to zero and see how the average performance
of the filter changes.

Example 4.1 We consider a sequence of 1-dimensional HMMs, where the eigenvalues
of A decrease. For all iterations of the model, we choose the same rate matrix Q with
invariant distribution ν and the same state matrix B as later on in Example 5.19.

The decrease in A is achieved by increasing the volatility, i.e. we choose a sequence
of volatilities σn = 0.2 · n. The expected squared distance between the filter and the
invariant distribution integrated over time, E[∫ T

0 ||Ŷt − ν||2dt], is plotted in Fig. 1.
We clearly see that for parameter choices where the largest eigenvalue of A is close

to 0, the filter Ŷt is close to the vector ν of the invariant distribution, where closeness
to ν is not in a distribution sense but in L2(Rd)-distance. Since E[Ŷt ] = ν this means
the filter does not contain much information about the true state of Y .

If the eigenvalues of A tend to 0, we can imagine that the volatility dominates the
drifts, so the information about Y encoded in the returns is overlaid by too much noise.
We have less information compared to a model where the ratio of drift to volatility is
higher. Note that on the one hand, in the filtering equations we need σ to move away
from the non-informative starting value of the invariant distribution in the first place
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to learn dynamically. On the other hand, as we see it here, “too much” σ compared to
B means of course losing information.

Wewill formalize this intuition by proving that the distances between the filters and
ν in a sequence of models converge to 0 if the eigenvalues of the corresponding A con-
verge to 0.We first prove a stability result for SDEs usingDoob’smartingale inequality
and Gronwall’s lemma and then apply this result for the SDE of the normalized filter
Ŷ . For the detailed proof see Appendix A.1.

Theorem 4.2 Let Xn, X be d-dimensional processes bounded by 1 and satisfying

dXn
t = a(Xn

t )dt + bn(Xn
t )dW

n
t , Xn

0 = x0

and

dXt = a(Xt )dt, X0 = x0

with Wn m-dimensional Brownian motions, a : Rd �→ R
d Lipschitz-continuous and

bn : Rd �→ R
d×m bounded for Xn, i.e.

∥∥bn(Xn
t )

∥∥2
dm = ∑

i, j b
n
i j (X

n
t )

2 is bounded.
Further assume that bn converges to 0 along Xn in the sense that

∥∥bn(Xn)
∥∥
L2([0,t]) =

(∫ t

0

∥∥bn(Xn
s )

∥∥2
dm ds

) 1
2 (n→∞)−→ 0

a.s. for all t. Then

E

[
sup
s≤t

∥∥Xn
s − Xs

∥∥2
]

(n→∞)−→ 0.

Now we consider a series of parameters σm, Bm giving rise to a series of HMMs
Rm with respect to the same Markov chain and Brownian motion

dRm
t = BmYdt + σmdWt .

Recall that the corresponding normalized filters Ŷ m are then given by

dŶ m
t = QT dt +

n∑
i=1

(diag(gmi )Ŷ m
t − (gmi )T Ŷ m

t Ŷ m
t d(Vm

t )i ,

where gmi is the i th column of (σ−1
m Bm)T and Vmare the innovation processes. For all

m we can define the matrix Am := σ−1
m Bm(σ−1

m Bm)T of the HMM with parameters
σm, Bm .

Our aim is to prove the convergence of Ŷ m
t for "too much" volatility. Using The-

orem 4.2 we can show that this "too much" is governed by the behaviour of the
eigenvalues of Am . This is exactly what we have seen in Example 4.1. For the proof
see Appendix A.2.
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Theorem 4.3 Consider the series of HMMs Rm as above and let λm = (λmax (Am))1/2

be the sequence of square roots of the largest eigenvalue of Am. Assume that
limm→∞ λm = 0. Then we have for all t that

lim
m→∞E

[
sup
s≤t

∥∥Ŷ m
s − ν

∥∥2
]

= 0,

that is for all t > 0 the sequence of normalized filters converges in L2 to the probability
vector of the invariant distribution.

5 Model reduction in the HMM

For a model reduction, we want to arrive at a d-dimensional model with the same
performance and filter dynamics as the original n-dimensional model. To achieve
this we should aim for a model with the same signal-to-noise matrix, as pointed out
in Sect. 4.1. This observation inspires the definition of the model reduction that we
discuss in the following.

5.1 HMMwith non-singular signal-to-noise matrix

We consider the HMM

dRt = BYt dt + σ dWt , � = σσ�, (5.1)

and first look in this section at the main case that the signal-to-noise matrix A =
B��−1B has full rank. This is the typical case if n ≥ d, e.g. if wemodel a market with
n risky assets for high n by an underlying Markov chain with d states corresponding
to a few market regimes.

The idea is to find a d-dimensional return process

d R̆t = CYt dt + δ dW̆t , (5.2)

where W̆ and δ−1 R̆ are d-dimensional Brownian motions under P and P̃ ,
respectively. Let us denote by F̆ = (F̆t )t∈[0,T ] the filtration generated by Y and
W̆ , and by F̆ R = (F̆ R

t )t∈[0,T ] the one generated by R̆, both augmented by the null
sets. Since the dimension of R̆ is d ≤ n, we define:

Definition 5.1 We call a model with returns satisfying (5.2), where C and D = δδ�
are non-singular matrices in Rd×d with

C�D−1C = A, C�D−1d R̆t = B��−1dRt (5.3)

a reduced model of the model with signal-to-noise matrix A = B��−1B.
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Theorem 5.2 (i) In a reduced model for C and δ, the Brownian motion W̆ in (5.2) is
given by

W̆t = δ�(C−1)�B�(σ−1)�Wt , t ∈ [0, T ].

Then, F̆t ⊆ Ft , t ∈ [0, T ].
(ii) The reference measure ˘̃P in the reduced model has the same Radon–Nikodym

derivative ZT as P̃ and thus P̃ agrees on F̆T with ˘̃P.
(iii) The filter for Y in a reduced model is indistinguishable from the filter Ŷ in the

original model, in particular

E[Yt |F R̆
t ] = Ŷt for all t ∈ [0, T ] a.s..

The same is true for the unnormalized filter.

Proof (i) Solving C�D−1d R̆t = B��−1dRt for W̆ using (5.1), (5.2), we see that

W̆t := δ�(C−1)�B�(σ−1)�Wt

provides the only possible candidate for W̆ . Then, by Lévy’s characterization of Brow-
nian motion, W̆ is a Wiener process, since it is a continuous martingale with

[W̆ , W̆ ]t = δ�(C−1)�B�(σ−1)�[W ,W ]t (δ�(C−1)�B�(σ−1)�)�

= δ�(C−1)�B�(σ−1)� Id t σ
−1BC−1δ

= δ�(C−1)�Aσ−1BC−1δ t = Id t .

Vice versa, for dRt = BYt dt + σ dWt and d R̆t = CYt dt + δ dW̆t we then have

B��−1dRt = B��−1BYt dt + B��−1σ dWt

= AYt dt + C�(δ�)−1dW̆t

= C�D−1CYt dt + C�D−1δ dW̆t = C�D−1d R̆t .

Sowe have a reducedmodel in the sense ofDefinition 5.1. In thismodel, F̆ is generated
by Y and W̆ , augmented by the null sets. Since W̆s is a function of W̃s for all s ≤ t
we have F̆t ⊆ Ft .

(ii) The reference measure ˘̃P in the reduced model is given by, cf. (2.3),

d ˘̃P
dP

= Z̆T , d Z̆t = −Z̆t Y
�
t (d−1C)� dW̆t .

Since (δ−1C)�W̆t = (σ−1B)�Wt , we have by strong uniqueness or directly by the

explicit representations of ZT and Z̆T that ZT = Z̆T . Therefore, P̃ and ˘̃P coincide
on F̆T .
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(iii) By the Zakai equation (2.4), the unnormalized filter ρ̆ in the reduced model
satisfies ρ̆0 = E[Y0] and

dρ̆t = Q�ρ̆t dt + Diag(ρ̆t )C
�D−1d R̆t

= Q�ρ̆t dt + Diag(ρ̆t )B
��−1dRt .

Therefore, we have the same dynamics (under P̃ in the original model) and by strong
uniqueness of this linear SDE we have that the continuous processes ρ and ρ̆ are

indistinguishable. Here we use that the corresponding reference measures P̃ and ˘̃P
are equivalent by (ii). By (2.7), also the corresponding normalized filters are indistin-
guishable. �

For C and δ as given in Definition 5.1 we now choose W̆ as in Theorem 5.2 (i), i.e.,

W̆t := δ�(C−1)�B�(σ−1)�Wt , t ∈ [0, T ],

and define R̆t := ∫ t
0 CYs ds + δW̆t . Then the equivalence (5.3) holds pathwise.

Corollary 5.3 We have F R̆
t ⊆ F R

t and F R̆
t = F B��−1R

t for t ∈ [0, T ]. Further, the
reference measures P̃ in the original model and ˘̃P in the reduced model agree onF R̆

T .

Proof The inclusion F R̆
t ⊆ F R

t follows from R̆s = D(C�)−1B��−1Rs , s ≤ t .

The equality of F R̆
t and F B��−1R

t follows, since D(C�)−1 is non-singular. The last

statement is a consequence of Theorem 5.2 (ii) since F R̆
T ⊆ F̆T . �

Remark 5.4 In the case d < n we clearly have strictly less information from observing
R̆ than from observing R: When observing R̆t only, we can not distinguish between
original returns Rt and Rt + Kt , where Kt lies in the kernel ker(B��−1) ⊆ R

n . This
kernel is at least 1-dimensional and since A is assumed to have full rank in this section,
it is in fact (n−d)-dimensional here. This is true for any choice of C and D according
to Definition 5.1.

For example, in the simple case n = 2, d = 1, with diagonal σ and assuming
B21 �= 0, we would have that

ker(B��−1) = {(x,−B11σ
2
22x/(B21σ

2
11))

� : x ∈ R},

i.e. in the reduced model we cannot distinguish between original returns whose dif-
ference lies on the line x �→ −B11σ

2
22x/(B21σ

2
11).

Theorem 5.2 shows that interestingly the loss of information pointed out in
Remark 5.4 does not affect the filter. Theorem 5.5 will show that this is also true
for the optimal portfolio value.

By Theorem 5.2 and Corollary 5.3 we can from now on use the same notation for
the filters Ŷ and the unnormalized filters ρ in the original and the reduced models. We
will also use the same notation P̃ for the reference measures, but have to keep in mind
that these only agree on F̆T (and thus on F R̆

T ).
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Theorem 5.5 The optimal risky fraction process π̆∗ for maximizing expected utility of
terminal wealth for utility functions U = Uα , α < 1, leads to the same optimal wealth
process as obtained in the original model, i.e.,

X̆∗
t = X∗

t , t ∈ [0, T ],

where X̆∗ is the wealth process for π̆∗ in the reduced model and X∗ is the wealth
process in the original model when following the optimal strategy π∗ for maximizing
expected utility of terminal wealth.

Proof Following the martingale approach, in the original model we have

X∗
T = I (λE[ZT |F R

T ]),

where I = (U ′
α)−1 and λ > 0 is uniquely determined by E[ZT X∗

T ] = x0, cf. Sass
and Haussmann (2004) and Theorem 3.1. Analogously, we obtain in the reduced
model, since the Radon-Nikodym derivatives of the reference measures agree on F R̆

t
by Theorem 5.2 (ii),

X̆∗
T = I (λ̆E[ZT |F R̆

T ]),

where λ̆ is uniquely determined by E[ZT X̆∗
T ] = x0.

By (2.5) we have E[ZT |F R
T ] = (1�ρt )

−1 and would get the analogous result in

the reduced model, i.e., E[ZT |F R̆
T ] = (1�ρ̆t )

−1. But by Theorem 5.2 (iii), ρ and ρ̆

are the same, thus λ and λ̆ are given uniquely by the same equation and hence agree.
Therefore, X̆∗

T = X∗
T .

This implies that also X∗
T is F R̆

T -measurable and thus we get the same replicating
strategies π̆∗ and π∗ by martingale representation. �

As outlined in the introduction there is a long history on mutual fund separation
theorems. In continuous time, we could adapt Definition 2.4 for the more general
model in Schachermayer et al. (2009) to our setting as follows: We say that themutual
fund theorem holds for a class of utility functions U , if there exists a traded portfolio
with values M = (Mt )t∈[0,T ] and corresponding return process RM such that for
the optimal terminal wealth XU

T under U there exists an F R-adapted, progressively
measurable process ηU satisfying (for interest rate r = 0)

XU
t = x0 +

∫ t

0
ηUs XU

s dRM
s , t ∈ [0, T ]. (5.4)

For example, in the Black-Scholes model, i.e. having constant parameters μ, σ in
(2.1), � = σσ�, we would get in the class of CRRA utility functions Uα the optimal
π
Uα
t = 1

1−α
�−1μ and

dXUα
t = XUα

t (π
Uα
t )�dRt = 1

1 − α
XUα
t μ��−1dRt .
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Therefore, the portfolio given by returns dRM
t = μ��−1dRt is the mutual fund, using

η
Uα
t = 1

1−α
here. So the mutual fund theorem holds in the Black-Scholes model in the

class of CRRA functions. This was shown in Merton (1971) already. While we will
refer to a representation like (5.4) in Remark 5.16 below, we want to point out here
that in the following we think of building portfolios of mutual funds in the following
sense: By (3.1) and Theorem 3.1 we have for logarithmic utility

dX∗
t = X∗

t Ŷ
�
t B��−1dRt = X∗

t

d∑
i=1

Ŷ i
t

(
B��−1dRt

)i
, (5.5)

i.e. we can think of the optimal terminal wealth coming from investing in d mutual

funds
(
B��−1dRt

)i
. These are chosen with the weights Ŷ i

t which are the conditional
probabilities for being in state i . So instead of using one mutual fund given by returns
dRM

t = Ŷ�
t B��−1dRt , here we rather think of a representation as in (5.5) with d

funds that have some correspondence to the states. In particular, in case of Ŷ = ek
this would boil down to investing in fund b��−1Rt , where b is row k of B. But the
latter is the mutual fund in the Black-Scholes model with μ = b. This way, we may
think of (5.5) as a representations of mutual funds that would satisfy the mutual fund
theorem in the degenerate cases that Ŷt = ei for all t .

Our model reduction argument allows to introduce different decompositions into
mutual funds R̆1, . . . , R̆d as discussed in the following remark. In Sect. 5.2 we intro-
duce two canonical cases, one corresponding to (5.5) above.

Remark 5.6 (Interpretation of components of R̆ as mutual funds) By (5.2) we can
interpret the components of R̆ as d ≤ n asset returns which yield the same filters by
Theorem 5.2 and lead to the same optimal portfolio value when building a portfolio
only of these funds. Theorem 5.5 shows that it is sufficient to invest in risky assets
R̆1, . . . , R̆d . Note that these funds are given by

R̆t = D(C�)−1B��−1Rt

which shows that the composition of fund i in terms of the original n assets is given
by row i of D(C�)−1B��−1. In particular, it is time-independent. This makes its
interpretation more straightforward than a single mutual fund as in (5.4) with an (in
our case) time-dependent composition.

ForU = log, we get from Theorem 3.1, replacing R,W , B, �, by R̆, W̆ ,C, D the
optimal risky fraction

π̆∗
t = D−1CŶt .

Since in the original model the optimal risky fraction is π̂∗
t = �−1BŶt and since

B�π̂∗
t = AŶt = C�π̆∗

t , we also have the representation

π̆∗
t = (C�)−1B�π̂∗

t
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which allows to compute the optimal fund investment directly from the optimal port-
folio in the original model. Note that this does not work in the opposite direction,
since B is not a square matrix for d < n. Clearly, several models can lead to the same
reduced model but not vice versa.

Finally note that we have as many risky mutual funds as we have market regimes
(states of the Markov chain), where the remainder is put in the riskfree asset. In
particular, in case of d = 1 we obtain the classical mutual fund theorem in the Black–
Scholes model.

5.2 Canonical cases of reducedmodels in the HMM

There are two canonical cases for choosing C and δ (or D = δδ�) in (5.2). By its
definition, according to (5.3) any choice has to satisfy

C�D−1C = A = B��−1B, (5.6)

and C�D−1d R̆t = B��−1dRt . (5.7)

Definition 5.7 The reduced model is a reduced regime representation model (RRRM),
if the matrices C , D in Definition 5.1 are

C = A and D = A.

This RRRM yields returns

d R̆t = B��−1dRt .

For U = log the optimal strategy π̆ in the lower-dimensional model is

π̆t = D−1CŶt = Ŷt .

Note that indeed (as proved in Theorem 5.5) the corresponding optimal wealth X̆ is
pathwise the same as in the original n-dimensional model, since

d X̆∗
t /X̆

∗
t = π̆�

t d R̆t = Ŷ�
t B��−1dRt = dX∗

t /X
∗
t .

The interpretation of the RRRM is according to Remark 5.6 that we invest in d funds,
where fund k has returns evolving as R̆k

t and a proportion Ŷ k
t = P(Yt = ek |F R

t ) of
our money is invested in fund k. So in the degenerate case Ŷt = ek we would invest
everything in fund k. This extreme case cannot happen for t > 0, due to the dynamics
of Ŷ . However, we see that the component R̆k corresponds to the mutual fund k that
would be optimal if we knew with certainty we were in state ek .

The more involved case is the second one which is based on a principal component
analysis of the signal-to-noise matrix A.

123



E. Leoff et al.

Definition 5.8 The reducedmodel is a reduced eigenvaluemodel (REVM), ifwe choose
C and D in Definition 5.1 as follows: Since A is non-singular and positive definite,
we can decompose A as follows:

A = V V�, where  = Diag(λ1, . . . , λd), V = (v1 . . . vd) (5.8)

and V is orthogonal, λ1 ≥ · · · ≥ λd > 0, Avk = λkvk . So λk is the kth eigenvalue of
A and vk a corresponding eigenvector. Then we choose C = V� and D = −1.

In the REVM we get returns

d R̆t = −1V�B��−1dRt and π̆t = V�Ŷt for U = log . (5.9)

Now the interpretation of the mutual funds represented by R̆ is that we would invest
optimally in the kth fund only if Ŷt = vk . But the filter does not stay constant. In
general, we invest π̆ i

t = λiv
�
i Ŷt in R̆i

t , i = 1, . . . , d. In the following, we will consider
this setting in more detail.

5.3 Mutual funds in the REVM

While the RRRM has a straightforward interpretation, the REVM is more sophis-
ticated. In the following, we shall therefore have a more detailed look at this
decomposition. The results in the next section provide a more fundamental inter-
pretation on the structure of the mutual funds in the REVM.

Example 5.9 (REVM for n = 4, d = 3) In this example we consider an HMM where
the chain has 3 states. For the continuous-time model, returns from real-world appli-
cations are still sampled in discrete time. For discretizing the filters, as presented in
Sect. 2.3, we use a robust scheme as introduced in James et al. (1996) (see also Sass
and Haussmann (2004) for a multivariate version). We use the following rate matrix
Q of the chain, which yields invariant distribution ν,

Q =
⎛
⎝−7 4 3

2 −4 2
3 5 −8

⎞
⎠ , ν =

⎛
⎝ 0.247
0.528
0.225

⎞
⎠ .

For a 4-dim. return process we consider further

B =

⎛
⎜⎜⎝
1.2 0.1 −1.0
1.0 0.1 −0.8
0.5 0.01 −0.4
0.6 −0.01 −0.3

⎞
⎟⎟⎠ , σ =

⎛
⎜⎜⎝

0.2 0.12 0.1 0.11
0.08 0.21 0.1 0.12
0.1 0.11 0.22 0.09
0.11 0.09 0.1 0.2

⎞
⎟⎟⎠ .

Note that the average values for the drift are Bν = (0.12, 0.12, 0.04, 0.08)� which lie
in the range of market data, as does the volatility matrix σ . The values for Q are chosen
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Fig. 2 Filters and strategy in full model in Example 5.9
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Fig. 3 Strategy in reduced model (left hand: all three components, right hand: zoom in to second and third
component) in Example 5.9

such that we see a suitable number of jumps in the graphs, but Q has no influence on
the signal-to-noise matrix and thus is irrelevant for the subsequent results.

An example path of the filters and the log-optimal strategy in the full model is
given in Fig. 2. In Fig. 3 we see the optimal strategies in the reduced model. It can
be seen that investment in the first fund fluctuates much more than in the other funds,
contrary to the strategy in the full model. There, the wealth invested in the single assets
fluctuates for all assets.

Proposition 5.10 Consider the returns R̆ in the REVM.

(i) We have E[R̆i
t ] = ν�vi t ,

Var(R̆i
t ) = λ−1

i t + 2
d∑

k,l=1

(vki − ν�vi )(v
l
i − ν�vi )νk

∫ t

0

∫ s

0

(
eQ(s−u)

)
kl
du ds,

and R̆1
t , . . . , R̆

d
t are independent conditionally on Y .

(ii) For the optimal strategy π̆ = π̆∗ for U = log we have π̆∗
t = V�Ŷt and thus

π̆ i
t ∈ [−λi , λi ], i = 1, . . . , d.
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(iii) For U = log the optimal value is

E[log(X̆∗
T )] = log(x0) + 1

2

d∑
i=1

λiv
�
i

(∫ T

0
E

[
Ŷt Ŷ

�
t

]
dt

)
vi .

Proof In the reduced eigenvalue model we have

d R̆t = V�Yt dt + −1/2 dW̆t

for the diagonal matrix  of the eigenvalues λk > 0 and for the matrix V of eigen-
vectors V = (v1 . . . vd). Therefore

d R̆k
t = v�

k Yt dt + λ
−1/2
k dW̆ k

t .

Using the independence of Y and W̆ , which follows from the independence of Y and
W , and that E[Yt ] = ν by starting with the invariant distribution ν, the claims in (i)
can be derived straightforwardly (cf. Elliott et al. 2008). For (ii) note that by (5.9) we
have π̆t = V�Ŷt and thus π̆k

t = λkv
�
k Ŷt . This yields

|π̆k
t | = λk |v�

k Ŷt | ≤ λk

√
‖vk‖2‖Ŷt‖2 ≤ λk (5.10)

since ‖vk‖ = 1 and ‖Ŷt‖ ≤ 1.
(iii) By Theorem 5.5 we have X̆∗

T = X∗
T and thus by (4.1)

E[log(X̆∗
T )] = log(x0) + 1

2
E

[∫ T

0
Ŷ�
t AŶtdt

]
.

Computing

Ŷ�
t AŶt = Ŷ�

t VV�Ŷt =
d∑

i=1

λi

(
v�
i Ŷt

)2

and applying the Tonelli theorem yields the result. �
Using Proposition 5.10 (iii), one can compute directly (using e.g. the Cauchy-

Schwarz inequality)

Corollary 5.11 The optimal wealth under U = log satisfies

log(x0) + 1

2
T

d∑
i=1

νi Aii ≥ E[log(X̆∗
T )] ≥ log(x0) + 1

2
T ν�Aν.
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The bounds in Corollary 5.11 have the following interpretation. Remember that
X̆∗
T corresponds to investing according to the optimal π̆∗

t = V�Ŷt under partial
information in the reduced model. The upper bound corresponds to the optimal value
for an investor with full information who uses π̆ full

t = V�Yt in the reduced model,
and the lower bound to an investor which uses no further information and just invests
according to the strategy based on the mean of the trend, i.e. π̆no-info

t = V�ν.
In the originalmodel,wewould obtain the sameoptimal value byTheorem5.5 using

the optimal strategy π∗
t = (σσ�)−1BŶt for partial information and the same bounds

corresponding to full information byπ full
t = (σσ�)−1BŶt andπno-info

t = (σσ�)−1Bν

for assuming constant parameters.

Remark 5.12 In case of the REVM, we can now be more specific on the structure
of the d mutual funds than in Remark 5.6. Remember that λ1 ≥ · · · ≥ λd are the
eigenvalues of the signal-to-noise matrix A. The funds are ordered according to the
sizes of the eigenvalues. Proposition 5.10 (i) shows that the variances are decreasing
of order t (the second term is of order t2). By part (ii) this leads to a possibly higher
investment in fund i than in fund j if i < j , since the invested fraction in fund i is
bounded by λi . So a fund with lower index may lead to a higher investment and thus
is more attractive. From the estimate (5.10) we see that this happens in particular if
‖Ŷt‖ is close to 1, which is the case if and only if Ŷt ≈ ek for some k, i.e. if the
filter is quite informative. Because the funds are conditionally independent by part (i),
for diversification we should still invest in all funds. This will always happen, since
Ŷt = ek is not possible due to the dynamics of the filters.
These relations also imply that using an approximate strategy by investing only
π1
t = π̆1

t and π i
t = 0 for i = 2, . . . , d, i.e. investing in fund 1 only, we can get

a quite good approximation to the optimal value as long as λ1 � λ2. This is rather
the typical case since the eigenvalues result from a principal component analysis pro-
viding the most influential investment direction.
The approach in the REVM is similar to the idea of eigenportfolios. While we decom-
pose the signal-to-noise matrix, these are based on a decomposition of the correlation
matrix and choosing the portfolio corresponding to the principal eigenvector, see e.g.
Avellaneda et al. (2021), Avellaneda and Lee (2010), Boyle (2014), Chen and Yuan
(2016) and the references therein.

Example 5.13 Let us illustrate the preceding remark. In the setting of Example 5.9, the
signal-to-noise matrix is

A =
⎛
⎝ 42.13709 6.211840 −40.350279

6.21184 1.128064 −6.501476
−40.35028 −6.501476 40.879834

⎞
⎠ ,

with eigenvalues λ1 = 82.85, λ2 = 1.22, λ3 = 0.07.
So λ1 is clearly dominant, which leads to the strong investment into the first fund

as seen in Fig. 3. λ2 is much smaller than λ1, but still of higher order than λ3, thus we
see more investment into the second fund compared to the third.

Let us point out one relation to the convergence result Theorem 4.3. Note first that
trivially, when the largest eigenvalue λ1 of the signal-to-noise matrix A converges to
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0 we have by (4.1) that the optimal expected utility converges to log(x0), i.e., there is
approximately no gain from investing in the stocks. However, based on the results of
this section, we can utilize Theorem 4.3 for a more subtle argument on the relation of
the funds in the reduced model as we outline in the following remark.

Remark 5.14 Let us consider a sequence of models with signal-to-noise matrices
A(n) = 1

n A = B��−1B. Then the eigenvalues satisfy λ
(n)
i = 1

nλi but the eigen-
vectors remain unchanged, i.e., n = 1

n, V (n) = V in the decomposition (5.8) of
A(n).

As discussed in Remark 5.12 the REVM decomposition may be used to invest only
in the first k, k < d, portfolios of the decomposition. Analogously to Proposition
5.10 (ii) this would yield an expected utility of

log(x0) + 1

2n

k∑
i=1

λiv
�
i

(∫ T

0
E

[
Ŷ (n)
t (Ŷ (n)

t )�
]
dt

)
vi , (5.11)

where Ŷ (n) are the filters computed in the model with A(n) and where we used
λ

(n)
i = 1

nλi . We can compare this with the performance of the portfolio not tak-
ing the information into account, i.e. using the strategy π̆no-info

t = V�ν as discussed
after Corollary 5.11, leading to expected utility

log(x0)+ T

2
ν�A(n)ν = log(x0)+ T

2n
ν�Aν = log(x0)+ T

2n

d∑
i=1

λiv
�
i νν�vi (5.12)

as stated in that corollary. Example 5.13 shows that often the performance in (5.11)
for k < d can be expected to be better than in (5.12). Formally, by taking derivatives
in (5.11) and (5.12) we see that this is true if

k∑
i=1

λiv
�
i E

[
Ŷ (n)
T (Ŷ (n)

T )�
]
vi >

d∑
i=1

λiv
�
i νν�vi

which is equivalent to

k∑
i=1

λiv
�
i

(
E

[
Ŷ (n)
T (Ŷ (n)

T )�
]

− νν�)
vi >

d∑
j=k+1

λ jv
�
j νν�v j . (5.13)

Now the left-hand side converges to 0 due to the L2-convergence in Theorem 4.3
while the right-hand side is strictly positive and constant in n. This means that, if the
eigenvalues become too low, then a portfolio of a strict subset of the mutual funds can
no longer dominate the constant portfolio which takes no information via filtering into
account.
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5.4 Singular signal-to-noise matrix in HMM

Let A now be singular. A typical example is when d > n, i.e., we have aMarkov chain
with more states than risky assets. This already occurs when we have only one risky
asset and consider d ≥ 2 market regimes.

The RRRM as in Definition 5.7 does not work in this case since it requires A to be
non-singular for computing its inverse. Also using the REVM directly as in Definition
5.8 does not work since it uses that the diagonal matrix  of the eigenvalues is non-
singular – but now at least one eigenvalue is 0.

Utilizing the same idea, we now try to reduce the model to a dimension correspond-
ing to the number of strictly positive eigenvalues. More precisely, having p strictly
positive eigenvalues, 1 ≤ p < d, we can order the eigenvalues of A as follows (A is
at least positive semi-definite)

λ1 ≥ . . . ≥ λp > λp+1 = . . . = λd = 0 for some p < d,

i.e., we assume that A has rank 1 ≤ p < d. We denote as in Definition 5.8

 = Diag(λ1, . . . , λd), V = (v1 . . . vd),

where vi is a normalized eigenvector for λi and V is orthogonal. Then, we have A =
VV� as in Definition 5.8 again, but we can not proceed as we did in Theorem 5.2.
 is singular, so we can not define δδ� by −1 in order to introduce W̆ as we did in
that theorem.

Instead, reducing the dimension even further to p, we set

(p) := Diag(λ1, . . . , λp) ∈ R
p×p, V (p) = (v1 . . . vp) ∈ R

d×p.

Then we have

A = VV� = V (p)(p)(V (p))�.

Now we can define a Brownian motion

W̆ (p)
t =

(
(p)

)−1/2 (
V (p)

)�
B� (

σ�)−1
Wt , t ∈ [0, T ].

The same arguments as in the proof of Theorem 5.2 show that W̆ (p) is a p-dimensional
Brownian motion. For the p-dimensional model with returns

d R̆(p)
t = (V (p))�Ytdt + ((p))−1/2dW̆ (p)

t

we then have

B��−1dRt = V (p)(p)d R̆(p)
t + (Id − V (p)(V (p))�)B�(σ�)−1dWt . (5.14)
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Theorem 5.15 For maximizing power or logarithmic utility we get the same optimal
terminal wealth as in the original model from investing in only p mutual funds with
returns R(p), where the optimal strategy for U = log is

π̆
(p)
t = (p)

(
V (p)

)�
Ŷt .

But to compute the filters and thus the optimal strategy π̆ (p) we need the observation
from all d assets on the right-hand side of (5.14). In particular, π̆ (p) is in general not
F R(p)

-adapted.

Proof Adapting the argument in the proof of Theorem 5.2, by (5.14) we get the same
filters when we use the whole information from the right-hand side. Then we can also
use the arguments in the proof of Theorem 5.5 to conclude that the optimal wealth
processes agree. �

Note that the second term in (5.14) really adds information. We can see this by
rewriting (5.14) as

B��−1dRt = AYtdt + V (p)(V (p))�B�(σ�)−1dWt

+(Id − V (p)(V (p))�)B�(σ�)−1dWt

and noting that V (p)(V (p))� and Id − V (p)(V (p))� are orthogonal.

5.5 Model reduction in MSM and filter-based HMM

Consider the MSM as we introduced it in Sect. 2.2,

dRt = BYt dt + σ(Yt )dWt ,

where σ(e1), . . . , σ (ed) are pairwise different. As discussed there, Yt then is observ-
able from the returns, i.e. it isF R

t -measurable, and thusweknow the current parameters
Bek , σ(ek) if Yt = ek , cf. Krishnamurthy et al. (2018). For optimization problem (3.2)
with U = Uα , the optimal strategies are of the form π∗

t = 1
1−α

�(Yt )−1BYt , see
Theorem 3.2.

The signal-to-noise matrix then depends on time via Yt ,

A(Yt ) = B��−1(Yt )B for �(Yt ) = σ(Yt )(σ (Yt ))
�.

We can apply the same decompositions as in the HMM, but now depending on Y .
Since Y is observable, this can be calculated based on the available information. We
discuss the details in the following two remarks.

Remark 5.16 (Mutual funds and RRRM in the MSM) In analogy to the RRRM in
Definition 5.7 we can introduce a d-dimensional reduced MSM by

d R̆t = A(Yt )Ytdt + δ(Yt )dW̆t = B��(Yt )
−1dRt ,
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where δ(Yt ) is some square root of A(Yt ) and W̆t = δ(Yt )−1B�(σ (Yt )−1)�. Applying
Theorem 3.2 to the reduced MSM, we have

π̆t = (δ(Yt )δ(Yt )
�)−1A(Yt )Yt = Yt .

Therefore, just as in the RRRM for the HMM, fund R̆k
t will be chosen for Yt = ek .

While we speak here of d funds, note that theMSM allows for the two-fund separation
in the sense of Schachermayer et al. (2009, Definition 2.4) in the class of CRRA utility
functions, cf. (5.4) above. Indeed, according to Theorem 3.2

π∗
t = 1

1 − α
�−1(Yt )BYt , dX∗

t = X∗
t π

∗
t dRt = 1

1 − α
X∗
t Y

�
t B��−1(Yt )dRt ,

where the latter part Y�
t B��−1(Yt )dRt would correspond to the risky portfolio in

which the fraction η = 1
1−α

of the current wealth would be invested.

Remark 5.17 (REVM in the MSM) In the MSM, in analogy to the REVM in Defini-
tion 5.8, we can also introduce for each value ek of Yt , k = 1, . . . , d, an eigenvalue
decomposition

A(ek) = V (ek)(ek)V (ek)
�,

where

(ek) = Diag(λ(k)
1 , . . . , λ

(k)
d ), V (ek) = (v

(k)
1 . . . v

(k)
d )

and V (ek) is orthogonal, λ
(k)
1 ≥ · · · ≥ λ

(k)
d > 0, Av

(k)
i = λ

(k)
i v

(k)
i . Then we have

d R̆t = (Yt )
−1V (Yt )

�B��−1dRt = V (Yt )
�Ytdt + (Yt )

−1/2dW̆t

for a suitable Brownian motion. By Theorem 3.2 we then have optimal

π̆t = (Yt )V (Yt )
� Yt (5.15)

for logarithmic utility. But in fact, in the MSM we can simplify (5.15) considerably
since Yt is a unit vector and (ek) is diagonal, yielding

π̆t = M Yt , where Mik = λ
(k)
i (v

(k)
k )i .

In terms of mutual funds, we can look at this result as setting up, for each state of Yt , d
funds ordered according to the eigenvalues of A(Yt ). Then Mik provides the fraction
to be invested in fund i if the chain is in state Yt = ek , of the d funds for this state.

So in both cases we have a decomposition independent of time t , choosing the
corresponding funds based on the observable state of Yt .
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Typically a continuous-timeMSMhas better econometric properties than theHMM,
e.g. it allows for volatility clustering. The reason for considering a continuous-time
MSM (orHMM) is that we obtainmore explicit results than in discrete time, e.g. like in
Theorems 3.1 and 3.2, where corresponding discrete-time results are not explicit. But
a continuous-timeMSMmay be a poor approximation for a discrete-timeMSM in the
sense that in continuous time no filtering problem exists. But in the discrete-timeMSM
the underlying Markov chain cannot be observed and its states have to be estimated
by the corresponding filters. Therefore, solving e.g. portfolio optimization problems
in the continuous-time MSM as in Theorem 3.2 provides a poor approximation for
the discrete-time model. This is not the case for the HMM, where the discretization
of continuous-time filters yields the filters which are optimal in the corresponding
discrete-time HMM, see James et al. (1996).

This motivates to introduce a HMM with non-constant volatility as approximation
for the MSM,

dRt = BYtdt + σt dWt , σt = f (Ŷt ).

This yields consistent approximations since the filtering problem is non-trivial. Filters
can be computed similar as in Sect. 2.3. A choice of f which satisfies f (ek) = σ(ek)
for k = 1, . . . , d is possible, cf. Krishnamurthy et al. (2018) for details in the one-
dimensional case.

The best model in an MSE-sense is

f (Ŷt ) =
d∑

k=1

σ(ek)Ŷ
k
t . (5.16)

Using this parametrization, we speak of the filter-based hidden Markov model (FB-
HMM).

Remark 5.18 (Optimization andmutual funds in the FB-HMM) Portfolio optimization
also works for the FB-HMM (5.16), cf. Haussmann and Sass (2004), where filtering
would have to be addressed as in Krishnamurthy et al. (2018). A reduced model
can be introduced, but due to the relation (5.16) we have a signal-to-noise matrix
At = B�( f (Ŷt ) f (Ŷt )�)−1B depending on the filter Ŷt . Thus, in the reduced model
the composition of the mutual funds would then also depend on time and state via the
filter. This could still be used to define an RRRM similar as in Definition 5.7, yielding
optimal π̆t = Ŷt , but, as pointed out above, the composition of the funds would depend
on the filter value via

d R̆t = B�( f (Ŷt ) f (Ŷt )
�)−1dRt .

For the FB-HMM also other decompositions of At are reasonable, but they would also
be filter-dependent.

In summary, we have seen that for the HMMwe have a very good interpretation of
the reduced models in terms of d funds which have a time-independent composition,

123



Signal-to-noise matrix and model reduction in continuous...

FB
H

M
M

M
S

M

0.00 0.25 0.50 0.75 1.00

-0.010

-0.005

0.000

0.005

-0.010

-0.005

0.000

0.005

-0.010

-0.005

0.000

0.005

grid

va
l

var FB HMM MSM

FB
H

M
M

M
S

M

0.00 0.25 0.50 0.75 1.00

-2

-1

0

1

-2

-1

0

1

-2

-1

0

1

Time

D
rif

t

Estimates FB HMM MSM

Estimated and True Drift for all models

Fig. 4 HMM, FB-HMM and MSM: Returns and Filters in Example 5.19

while for the MSM this composition depends on the state of Yt and for the FB-HMM
on the filter Ŷt .We shall close this sectionwith a comparison of the threemodels which
makes in particular evident why there is no reasonable other choice for the MSM than
the one in Remark 5.16.

Example 5.19 (Filters in HMM, discrete-time MSM and FB-HMM) For all three
models, HMM, FB-HMM, MSM, we use d = 3 states and the rate matrix Q
from Example 5.9. But we look at n = 1 only, using as state matrix for the drift
B = (1, 0,−2). The vector of volatilities for the MSM and the FB-HMM are
σ MSM (e1) = 0.1,σ MSM (e2) = 0.15,σ MSM (e3) = 0.25, andσ FB(ek) = σ MSM (ek),
while as constant volatility in the HMM we use the average over the invariant distri-
bution, i.e. σ HMM = ∑3

k=1 σ MSM (ek)νk = 0.16.
Also in the continuous-time model the returns are sampled in discrete time, as is

typical for real-world applications. For filtering in the MSM in discrete time we refer
to Elliott et al. (1995), for the HMM to Sect. 2.3 and for filters in the FB-HMM see
Krishnamurthy et al. (2018).

The returns, the drift and the filter for the drift, BŶt , are plotted in Fig. 4 for one
simulation of Y and W . We see clearly, that the filter in the MSM provides the true
state quite exactly as we expected since in continuous time the chain is observable.
Therefore, the only reasonable decomposition into funds is the regime parametrization
as discussed in Remark 5.16 since by π̆t = Yt it leads to choosing the best portfolio in
the current state. One also sees that the FB-HMM lies regarding filtering and volatility
clustering between both models and just provides a good compromise between the
more realistic filtering in the HMM and the more realistic econometric properties of
the MSM.

6 Conclusion

In the context of hidden Markov models we showed that the signal-to-noise matrix
plays a prominent role for portfolio optimization as well as for filtering. The conver-
gence result in Chapter 4 gives an exact formulation of the intuition that we can retrieve
less information on the underlying chain from observing the stock prices when the
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signal (drift) is small compared to the noise (volatility). This is shown by proving that
for decreasing eigenvalues of the signal-to-noise matrix, the filters converge uniformly
in L2 to the invariant distribution of the chain. Since the latter is the distribution of
the chain, we gain no additional information in the limit.

The important role of the signal-to-noise matrix, which is of dimension d, and of
its d eigenvalues then motivated us to reduce the dimension (if d ≤ n) of the model
by decomposing the signal-to-noise matrix and setting up a d-dimensional model
based on this decomposition in (5.3). The returns in the reduced model can be seen
as d mutual funds. We proved that portfolio optimization and filtering in the reduced
model yields pathwise the same optimal wealth and filter processes.

Two special cases were introduced, using in the RRRM a decomposition which
yields the optimal portfolios in the single states as funds, and in the REVM an
eigenvalue decomposition which leads to funds which contribute according to the
corresponding eigenvalues more or less to the optimal portfolio.

To complete the survey we looked at the case of a singular signal-to-noise matrix
(e.g. when d > n) and at model reduction in related models as the MSM and the
filter-based HMM.

Our analysis showed that in the standard case of a non-singular signal-to-noise
matrix in the HMM, while there is less information in the reduced model from observ-
ing the funds only, the filters and the optimization based on this observation still yield
the same results. For future research it would be interesting to analyze further if this
reduction helps to identify relevant model parameters better. Also the effect of includ-
ing expert opinions, see e.g. Frey et al. (2012), on the model reduction would be of
interest.
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A Appendix: proofs of convergence results

A.1 Proof of Theorem 4.2

For t > 0

∥∥Xn
t − Xt

∥∥ = ∥∥
∫ t

0
a(Xn

s ) − a(Xs)ds +
∫ t

0
bn(Xn

s )dW
n
s

∥∥

≤ ∥∥∫ t

0
a(Xn

s ) − a(Xs)ds
∥∥ + ∥∥∫ t

0
bn(Xn

s )dW
n
s

∥∥

≤
∫ t

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds + ∥∥
∫ t

0
bn(Xn

s )dW
n
s

∥∥
=: Mn

t .

Since bn is bounded
∫ t
0 b

n(Xn
s )dW

n
s is a true martingale and we can show that Mn is

a submartingale: For t > u

E
[
Mn

t |Fu
] =

∫ u

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds + E
[ ∫ t

u

∥∥a(Xn
s ) − a(Xs)

∥∥ ds|Fu
]

+E
[∥∥

∫ t

0
bn(Xn

s )dW
n
s

∥∥|Fu
]

≥
∫ u

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds + E
[∥∥∫ t

0
bn(Xn

s )dW
n
s

∥∥|Fu
]

≥
∫ u

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds + ∥∥E[ ∫ t

0
bn(Xn

s )dW
n
s |Fu

]∥∥

=
∫ u

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds + ∥∥
∫ u

0
bn(Xn

s )dW
n
s

∥∥ = Mn
u .

By Doob’s inequality for Mn and p = 2 it follows that

E[sup
s≤t

∥∥Xn
s − Xs

∥∥2] ≤ E[(sup
s≤t

∥∥Mn
s

∥∥)2] ≤ 4E[(Mn
t )2].
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Let L be the Lipschitz constant of a, then

E[(Mn
t )2] = E

[( ∫ t

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds + ∥∥
∫ t

0
bn(Xn

s )dW
n
s

∥∥)2]

≤ 4E
[( ∫ t

0

∥∥a(Xn
s ) − a(Xs)

∥∥ ds)2 + ∥∥
∫ t

0
bn(Xn

s )dW
n
s

∥∥2]

≤ 4E
[ ∫ t

0

∥∥a(Xn
s ) − a(Xs)

∥∥2 ds + ∥∥
∫ t

0
bn(Xn

s )dW
n
s

∥∥2]

≤ 4E
[ ∫ t

0
L2

∥∥Xn
s − Xs

∥∥2 ds + ∥∥
∫ t

0
bn(Xn

s )dW
n
s

∥∥2]

≤ 4E
[ ∫ t

0
L2 sup

u≤s

∥∥Xn
u − Xu

∥∥2 ds + ∥∥
∫ t

0
bn(Xn

s )dW
n
s

∥∥2]

= 4
∫ t

0
L2E[sup

u≤s

∥∥Xn
u − Xu

∥∥2]ds + 4E
[∥∥

∫ t

0
bn(Xn

s )dW
n
s

∥∥2].

Using the Ito-isometry componentwise we see that

E
[∥∥

∫ t

0
bn(Xn

s )dW
n
s

∥∥2] = E
[ ∫ t

0

∥∥bn(Xn
s )

∥∥2
dm ds

]

which implies

E[sup
s≤t

∥∥Xn
s − Xs

∥∥2] ≤ 16
∫ t

0
L2E[sup

u≤s

∥∥Xn
u − Xu

∥∥2]ds + 16E
[ ∫ t

0

∥∥bn(Xn
s )

∥∥2
dm ds

]
.

SinceE
[ ∫ t

0

∥∥bn(Xn
s )

∥∥2
dm ds

]
is non-decresaing in t wecan applyGronwall’s inequality

to see that

E[sup
s≤t

∥∥Xn
s − Xs

∥∥2] ≤ exp
(
16L2t

)
16E

[ ∫ t

0

∥∥bn(Xn
s )

∥∥2
dm ds

]
.

Now
∫ t
0

∥∥bn(Xn
s )

∥∥2
dm ds converges to 0 a.s. and bn(Xn

s ) is bounded, so by dominated
convergence we can conclude that

lim
n→∞E

[ ∫ t

0

∥∥bn(Xn
s )

∥∥2
dm ds

] = 0

and thus

lim
n→∞E[sup

s≤t

∥∥Xn
s − Xs

∥∥2] = 0.
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A.2 Appendix: Proof of Theorem 4.3

We want to apply Theorem 4.2 for

Xm
t := Ŷ m

t and Xt := ν

satisfying dXt = QT νdt = QT Xtdt . Lipschitz-continuity of the drift is fulfilled since
it is linear and what is left to check are the assumptions on the functions bm .

Set Pm := σ−1
m Bm ∈ R

n×d , so (gmi )T = (pmi1, . . . , p
m
id), i.e. (gmi ) j = pmi j . Then

‖Pm‖ = λm with ‖·‖ the norm on R
d×n induced by the euclidean norms on R

d and
R
n . By assumption limm→∞ λm = 0, thus also

lim
m→∞max

i, j

∣∣∣pmi j
∣∣∣2 = 0

since all matrix norms are equivalent.
Consider for i = 1, . . . , d the i th component of the diffusion part

n∑
j=1

(
(gmj )i (X

m
t )i −

d∑
k=1

(gmj )k(X
m
t )k(X

m
t )i

)
d(Vm

t ) j

=
n∑
j=1

(
pmji (X

m
t )i −

d∑
k=1

pmjk(X
m
t )k(X

m
t )i

)
d(Vm

t ) j

=
n∑
j=1

bi j (X
m
t )d(Vm

t ) j = (
bm(Xm

t )dVm
t

)
i

with

bmi j (x) := pmji xi −
d∑

k=1

pmjk xk xi

for x ∈ R
d . Using the matrix valued function bm we can reformulate the SDE as

dXm
t = QT Xm

t dt + bm(Xm
t )dVm

t .
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Now for x ∈ R
d with ‖x‖ ≤ 1

∥∥bm(x)
∥∥2
dn =

d∑
i=1

n∑
j=1

bmi j (x)
2 =

d∑
i=1

n∑
j=1

(
pmji xi −

d∑
k=1

pmjk xk xi
)2

≤ 4
d∑

i=1

n∑
j=1

(pmji xi )
2 + (−

d∑
k=1

pmjk xk xi )
2

= 4
d∑

i=1

n∑
j=1

(pmji xi )
2 + ( d∑

k=1

pmjk xk
)2
x2i

≤ 4
d∑

i=1

n∑
j=1

(pmji )
2 + ( d∑

k=1

pmjk xk
)2

CSI≤ 4
d∑

i=1

n∑
j=1

(pmji )
2 + ( d∑

k=1

pmjk
)2 ‖x‖2

≤ 4
d∑

i=1

n∑
j=1

(pmji )
2 + ( d∑

k=1

pmjk
)2

.

Xm
t is the filter and satisfies

∥∥Xm
t

∥∥ ≤ 1, so bm is bounded for Xm
t . Also due to

limm→∞ maxi, j
∣∣∣pmi j

∣∣∣2 = 0 it follows that

∥∥bm(Xm
t )

∥∥2
dn ≤ cm

for some sequence cm converging to 0. Thus

∥∥bm(Xm)
∥∥2
L2([0,t]) =

∫ t

0

∥∥bm(Xm
s )

∥∥2
dn ds ≤

∫ t

0
cmds = tcm

m→∞−→ 0

and we can apply Theorem 4.2 to conclude that

lim
m→∞E

[
sup
s≤t

∥∥Ŷ m
s − ν

∥∥2] = 0.
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