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Abstract

This dissertation presents a novel approach to the model-based development
and simulation-based validation of Internet of Things (IoT) infrastructures
within the context of Cyber-Physical Energy Systems (CPES). CPES repre-
sents an evolution in energy management, seamlessly blending physical and
cyber components for efficient, secure, and dependable energy distribution.
However, the intricate interplay of these components demands innovative mod-
eling and simulation strategies. The work begins by establishing a robust
foundation, exploring essential background elements such as requirements en-
gineering, model-based systems engineering, digitalization approaches, and the
intricacies of IoT platforms. It introduces the novel concept of homomorphic
encryption, a critical enabler for securing IoT data within CPES. In the explo-
ration of the state of the art, the dissertation delves into the multifaceted land-
scape of IoT simulation, emphasizing the significance of versatility, community
support, scalability, and synchronization. The core contribution emerges in the
chapter on simulating IoT networks. It introduces a sophisticated framework
that encompasses hardware-in-the-loop, software-in-the-loop, and human-in-
the-loop simulation. This innovative framework extends the boundaries of
conventional simulation, enabling holistic evaluations of IoT systems. A prac-
tical case study on smart energy usage showcases the application of the frame-
work. Detailed SysML models, including requirements, package diagrams,
block definition diagrams, internal block diagrams, state machine diagrams,
and activity diagrams, are meticulously examined. The performance evalua-
tion encompasses diverse aspects, from hardware and software validation to
human interaction. In conclusion, this dissertation represents a significant
leap forward in the integration of IoT infrastructures within CPES. Its contri-
butions extend from a comprehensive understanding of foundational elements
to the practical implementation of a holistic simulation framework. This work
not only addresses the current challenges but also outlines a path for future
research, shaping the landscape of IoT integration within the dynamic realm of
CPES. It offers invaluable insights for researchers, engineers, and stakeholders
working towards resilient, secure, and energy-efficient infrastructures.
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Kurzfassung

Die vorliegende Dissertation präsentiert einen innovativen Ansatz für die Mo-
dellierung und Simulation von Internet der Dinge (IoT)-Infrastrukturen in
Cyber-Physische Energiesysteme (CPES). CPES verbinden physische und cy-
berbasierte Komponenten zur effizienten Energieverteilung und sind ein zen-
traler Baustein für die Energieversorgung der Zukunft. Die Arbeit beginnt
mit einer gründlichen Untersuchung des Anforderungsmanagements und des
modellbasierten Systems Engineering, um eine solide Grundlage zu schaffen.
Sie hebt die wachsende Bedeutung von IoT-Simulationen hervor und stellt
die Herausforderungen bei der Modellierung und Simulation von komplexen
und skalierbaren IoT-Systemen heraus. Das Forschungsprojekt entwickelt ein
neuartiges Framework, das Hardware-in-the-Loop-, Software-in-the-Loop- und
Mensch-in-the-Loop-Simulationen ermöglicht. Dieses Framework erlaubt eine
umfassende Bewertung von IoT-Systemen, einschließlich Hardwarekomponen-
ten, Softwareintegration und menschlicher Interaktion. Ein zentrales Highlight
dieser Arbeit ist eine tiefgehende Fallstudie zur intelligenten Energieverwen-
dung. Diese Fallstudie umfasst umfangreiche SysML-Modelle, die detailliert
evaluiert werden. Dabei werden Leistungstests für Hardware und Software
durchgeführt und menschliche Interaktionen in die Simulation integriert. Die
Dissertation trägt nicht nur zur nahtlosen Integration von IoT-Infrastrukturen
in CPES bei, sondern bietet auch wertvolle Erkenntnisse für Forscher und
Ingenieure, die an sicheren und energieeffizienten Infrastrukturen arbeiten.
Die entwickelten Modelle und das Framework haben das Potenzial, die Ent-
wicklung und Integration von IoT-Systemen erheblich zu verbessern und die
Entstehung der nächsten Generation von CPES zu fördern. Dieser Forschungs-
beitrag ebnet den Weg für zukünftige Innovationen im Bereich der Energie-
versorgung und des Internet der Dinge.
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1.1. Starting Situation
The realm of Cyber-Physical Systems design and simulation is confronted with
a dynamic landscape characterized by an array of challenges stemming from
the rapid evolution of products, their utilization, and development method-
ologies. This ongoing evolution, spurred by the ever-changing demands of
consumers and market conditions, engenders a considerable augmentation in
the intricacy of products. Such intricacy is manifest in the proliferation of com-
ponents, product variants, and interconnections within these systems. These
intricate products are not confined to the domain of the Internet of Things
(IoT) but radiate into various sectors, including but not limited to automotive
and electric grid applications.

Additionally, the deployment of Internet of Things (IoT) networks has wit-
nessed exponential growth in recent times, as portrayed in Figure 1.1. These
IoT networks span various domains, such as smart cities, energy, eHealth, and
transportation, often operating as isolated entities within the broader IoT
landscape [2] (see Figure 1.2). The challenge emerges in seamlessly connect-
ing these devices and isolated networks to establish a coherent network that
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Figure 1.1.: Number of Internet of Things (IoT) connected devices worldwide from
2019 to 2023, with forecasts from 2024 to 2030[1]

collectively pursues common objectives. This endeavor extends further into
harnessing these technological advancements to construct innovative business
models within this context.

A striking demonstration of the profound influence of Cyber-Physical Sys-
tems within a specific domain can be found in the industrial sector. Over
the past two centuries, the industrial landscape has undergone four pivotal
revolutions that have left indelible imprints on its trajectory. The first in-
dustrial revolution emerged in the late 18th century with the advent of the
steam engine, dramatically revolutionizing manufacturing processes. Subse-
quently, in the early 20th century, the integration of electrical assembly lines
catalyzed the era of mass production, further reshaping the industrial land-
scape. The third industrial revolution materialized in the early 1970s with the
onset of actual automation, marked by the deployment of advanced technolo-
gies within manufacturing processes. Presently, we are entrenched within the
fourth industrial revolution, where Cyber-Physical Systems and information
technology have taken center stage in redefining the industrial domain (see
Figure 1.3). The fourth industrial revolution represents a paradigm shift in
the way industries operate, harnessing interconnected systems and advanced
technologies to spur innovation and enhance the efficiency of manufacturing
processes. This paradigm shift aligns with the overarching trajectory of the
Cyber-Physical Systems landscape, shaping its course with unprecedented in-
fluence and multifaceted implications.
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Figure 1.2.: Connected Services and Devices in the Internet of Things[3]

1.2. Motivation

The rapid advancement and integration of software and electronics in contem-
porary goods have given rise to unprecedented complexity in product devel-
opment. As these products become more sophisticated and interconnected,
effectively managing their complexity becomes paramount. Various factors
contribute to this complexity, including the proliferation of components, ex-
tensive variations, the emergence of intricate systems of systems, and uncer-
tainties surrounding system boundaries and communication partners. In the
face of evolving consumer demands, organizations must possess the agility to
develop innovative products to maintain their competitiveness in the global
marketplace. However, this necessitates a comprehensive understanding of the
underlying product complexity and the intricacies of the development pro-
cesses involved (refer to Figure 1.4).

In the software and electronics industries, where complexity has surged ex-
ponentially, there is an urgent need to adopt new development processes and
methodologies. These approaches must effectively support the entire lifecycle
of a product, encompassing its inception, requirement definition, and eventual
disposal and recycling. Moreover, successful collaboration across disciplinary
boundaries, transcending the conventional domains of mechanics, electronics,
software, and services, is vital for interdisciplinary teams to thrive. Despite
the increasing significance of these challenges, there exists a notable research
gap in leveraging innovative development methods and concepts to overcome
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Figure 1.3.: The four industrial revolutions in context[4]

these limitations.
Thus, the primary objective of this dissertation is to address this research

gap and contribute to the scientific understanding and practice of managing
complexity in contemporary product development. This research endeavors to
explore and propose novel approaches that facilitate the construction of robust
development processes and innovative concepts, enabling effective complexity
management and fostering seamless collaboration across disciplines. Special
emphasis will be placed on designing methods and frameworks that stream-
line the efficient creation of cutting-edge products, accounting for the intricate
interplay between software, electronics, and other relevant domains. Through
empirical investigations, theoretical analysis, and practical demonstrations,
this dissertation aims to provide valuable insights and evidence-based solu-
tions to empower organizations in successfully navigating the multifaceted
challenges of modern product development.

By disseminating the findings of this research within the scientific commu-
nity, it is anticipated that industry practitioners, researchers, and policymak-
ers will benefit from the gained knowledge and practical implications, leading
to enhanced product development practices and innovation in a wide range of
domains.

1.3. Thesis Structure

This dissertation is structured to systematically address the research objectives
and provide a comprehensive understanding of the modeling and simulation of
Internet of Things (IoT) infrastructures for Cyber-Physical Energy Systems
(CPES). The following subchapters outline the structure and content of this
thesis:
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Figure 1.4.: System types[5]

Introduction This subchapter provides an overview of the starting situation
and sets the context for the research. It highlights the motivation behind the
study and presents the thesis’s target and progress over the state of the art.
The subchapter concludes by outlining the overall structure of the dissertation.

Background and Fundamentals This chapter delves into the fundamental
concepts and background knowledge required to comprehend the research.
It covers essential topics such as the development process, requirements engi-
neering, model-based systems engineering, and digitalization approaches. Fur-
thermore, it explores the realm of Cyber-Physical Systems and the Internet
of Things, including IoT reference architecture. The chapter also includes an
examination of IoT platforms, focusing on their role in sensing the real world,
IoT gateway platforms, IoT middleware, and IoT cloud platforms. Lastly, it
provides an overview of the VICINITY project and introduces the concept of
homomorphic encryption. State of the Art: This chapter presents an in-depth
analysis of the existing literature and research pertaining to the simulation of
the Internet of Things and Cyber-Physical Systems. It includes a specification
of discrete event systems and provides an overview of various IoT simulators.
A comparison of these simulators is also presented.

Simulation of IoT Networks This chapter focuses on the simulation of IoT
networks. It introduces the concept and requirements of IoT network sim-
ulation, followed by the approach employed in this research. The chapter
discusses the level hierarchy and structure, model reuse, and synchronization
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techniques utilized. Additionally, it explores hardware in the loop simulation,
software in the loop simulation with a focus on homomorphic encryption, and
human in the loop simulation.

Case Study: Smart Energy Use Case This chapter presents a detailed case
study that demonstrates the application of the developed methodology and
simulator. It describes the scenario model, the scenario itself, and the cor-
responding system model. The chapter then delves into the implementation
details of the case study, including the house network, house security, house
health, electronics, and house energy calculation. An exemplary system ar-
chitecture is provided, showcasing the integration of homomorphic encryption
micro-service. Finally, an evaluation of the case study is presented, highlight-
ing the experimental setup and results.

Conclusions and Outlook This concluding chapter summarizes the key find-
ings and contributions of the research. It offers a comprehensive conclusion
and provides a summary of the thesis. The chapter concludes with an outlook
on potential future work and research directions.

Bibliography The bibliography section lists all the references cited through-
out the dissertation, enabling readers to explore the relevant sources for further
study.

By following this structured approach, this dissertation aims to provide a
thorough examination of the modeling and simulation of IoT infrastructures
for CPES. It systematically builds upon foundational concepts, explores the
state of the art, introduces novel methodologies and approaches, and showcases
the practical application through a detailed case study. The subsequent chap-
ters offer a comprehensive journey through the research process, ultimately
leading to valuable insights and contributions in the field.

1.4. Thesis Target and Progress over State of the Art
The aim of this dissertation is to advance the modeling and simulation of In-
ternet of Things (IoT) infrastructures in the context of Cyber-Physical Energy
Systems (CPES). The overall objective is to enable the model-based develop-
ment, verification, and validation of IoT infrastructures, facilitating earlier
validation of system integration. This subchapter outlines the specific targets
set for this research and highlights the progress made over the state of the art
in the field.

1.4.1. Target Setting

Model-Based Development for IoT Systems The primary target is to de-
velop a model-based approach for the early conceptual design phase of IoT
systems within CPES. The approach must be capable of handling the high
complexity of IoT systems, incorporating intricate interactions between cyber
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and physical components. The goal is to provide engineers with a methodol-
ogy that supports the effective modeling of IoT systems while considering the
power and energy usage of future intelligent Cyber-Physical Energy Systems.

Question 1:
How can processes, methods, and tools of IoT development
be integrated into CPES Development Processes in order to
improve energy consumer models?

Question 2:
How can IoT systems be described model-based in the
conceptual design phase in order to fully understand
their complexity?

Simulation and Emulation Framework The research aims to define a simu-
lation and emulation framework specifically tailored to IoT infrastructures in
CPES. The framework must address the unique requirements associated with
power and energy usage in future intelligent systems. It should enable rapid
prototyping of simulatable models during the early stages of system analysis
and conceptual design, providing support for engineers working in the IoT
domain.

Question 3: How can IoT infrastructures be efficiently simulated in
order to address their power and energy usage?

Integration with Real-World Scenarios The dissertation targets the integra-
tion and application of the developed methodology and simulator in realistic
scenarios, particularly within the VICINITY project. The goal is to demon-
strate the effectiveness of the proposed approach in developing specialized IoT
infrastructures required by the project. This includes scenarios involving en-
ergy and power aspects, contributing to the dimensioning of energy networks
in future smart neighborhoods.

Question 4:
How can the concepts resulting from this research be
integrated and applied in realistic IoT scenarios arising
from the research project VICINITY?

1.4.2. Progress over State of the Art

Model-Based Development Approach The research proposes a model-based
development approach for IoT systems within CPES. This approach addresses
the high complexity of IoT systems and offers a methodology for the early con-
ceptual design phase. It leverages SysML models to accurately represent sys-
tem structure and behavior, providing engineers with a mechanism to handle
the intricacies of IoT systems during development. This progress represents
a substantial advancement over existing approaches, which often struggle to
adequately capture the complexities of IoT systems.
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Simulation and Emulation Framework The research has defined a simula-
tion and emulation framework tailored to IoT infrastructures in CPES. This
framework incorporates the specific requirements related to power and energy
usage in future intelligent systems. It enables engineers to rapidly prototype
simulatable models during the early stages of system analysis and conceptual
design. This progress represents a significant step forward in the development
of simulation tools and techniques that address the unique challenges posed
by IoT infrastructures.

Integration with Real-World Scenarios This dissertation demonstrates the
integration and application of the developed methodology and simulator within
the context of the VICINITY project. By applying the approach to realis-
tic scenarios, particularly those involving energy and power aspects, the re-
search has showcased the practical relevance and effectiveness of the proposed
methodology. This progress contributes to the development of specialized
IoT infrastructures required by the project, fostering advancements in energy
management within future smart neighborhoods.

In summary, this dissertation sets specific targets for advancing the model-
ing and simulation of IoT infrastructures in CPES. Notably, progress has been
made in developing a model-based approach for the early conceptual design
phase, defining a simulation and emulation framework tailored to IoT systems,
and integrating the developed methodology and simulator with real-world sce-
narios within the VICINITY project. These achievements represent advance-
ments over the state of the art in the field, providing engineers with enhanced
tools and techniques for the development of IoT infrastructures while consid-
ering the power and energy requirements of future intelligent Cyber-Physical
Energy Systems.

1.4.3. Foundational Publications: Building Blocks of this
Dissertation

As part of the groundwork for this dissertation, I have had the privilege of
contributing to various publications that have shaped the trajectory of my
research journey. These publications serve as foundational pillars upon which
this dissertation is built, reflecting the evolution and culmination of my aca-
demic pursuits during my doctoral studies. In this subchapter, I present a
comprehensive list of these publications, each representing a significant mile-
stone in my exploration of Modeling and Simulation of Internet of Things
Infrastructures for Cyber-Physical Energy Systems:

• Dalecke Š, Rafique KA, Ratzke A, Grimm C, Koch J (2022) SysMD:
Towards “Inclusive” Systems Engineering. In: 2022 IEEE 5th Interna-
tional Conference on Industrial Cyber-Physical Systems (ICPS). IEEE,
pp 1–6

• Grimm C, Wawrzik F, Jung AL-F, Luebeck K, Post S, Koch J, Bring-
mann O (2021) APPEL-AGILA ProPErty and Dependency Description
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Language. In: MBMV 2021; 24th Workshop. VDE, pp 1–11

• Hellenthal B, Grimm C, Koch J, Breckel A, Tichy M (2021) An Eco-
System for the Development of Automotive Innovation Roadmaps. VDI-
Berichte 2384:285–294

• Koch J, Grimm C (2022) Cyber-Physikalische Systeme. In: Corsten H,
Roth S (eds) Handbuch Digitalisierung. Vahlen, p 315

• Koch J, Wansch A, Grimm C (2022) Knowledge modeling of power grids
with SysMD. In: 2022 10th Workshop on Modelling and Simulation of
Cyber-Physical Energy Systems (MSCPES). IEEE, pp 1–6

• Kölsch J, Guan Y, Grimm C (2020a) Methods and Tools for Valida-
tion and Testing. In: IoT Platforms, Use Cases, Privacy, and Business
Models. Springer, Cham, pp 81–98

• Kölsch J, Heinz C, Ratzke A, Grimm C (2019a) Simulation-Based Per-
formance Validation of Homomorphic Encryption Algorithms in the In-
ternet of Things. Future Internet 11:218

• Kölsch J, Heinz C, Schumb S, Grimm C (2018) Hardware-in-the-loop
simulation for Internet of Things scenarios. In: 2018 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES).
IEEE, pp 1–6

• Kölsch J, Post S, Zivkovic C, Ratzke A, Grimm C (2020b) Model-based
development of smart home scenarios for IoT simulation. In: 2020 8th
Workshop on Modeling and Simulation of Cyber-Physical Energy Sys-
tems. IEEE, pp 1–6

• Kölsch J, Ratzke A, Grimm C (2019b) Co-Simulating the Internet of
Things in a Smart Grid use case scenario. In: 2019 7th Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES).
IEEE, pp 1–6

• Kölsch J, Ratzke A, Grimm C, Heinz C, Nandagopal G (2019c) Sim-
ulation based validation of a Smart Energy Use Case with Homomor-
phic Encryption. In: 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS). IEEE, pp 255–262

• Kölsch J, Zivkovic C, Guan Y, Grimm C (2020c) An Introduction to the
Internet of Things. In: IoT Platforms, Use Cases, Privacy, and Business
Models. Springer, Cham, pp 1–19

• Mynzhasova A, Radojicic C, Heinz C, Kölsch J, Grimm C, Rico J, Dick-
erson K, Garcia-Castro R, Oravec V (2017) Drivers, standards and plat-
forms for the IoT: Towards a digital VICINITY. In: 2017 Intelligent
Systems Conference (IntelliSys). IEEE, pp 170–176
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• Prautsch B, Dornelas H, Wittmann R, Henkel F, Schenkel F, Kölsch
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In: ANALOG 2020; 17th ITG/GMM-Symposium. VDE, pp 1–6
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Chapter 2: Background and Fundamentals

In the realm of IoT and Cyber-Physical Systems, where the intricacies of
technology and connectivity continue to evolve, a solid foundation in funda-
mentals is imperative. This chapter delves into the essential building blocks
that underpin the development process, beginning with a comprehensive ex-
ploration of requirements engineering. It then ventures into the realm of
model-based systems engineering, with a focus on SysML as a critical mod-
eling language. The chapter proceeds to dissect digitalization approaches,
encompassing the ever-expanding domains of Cyber-Physical Systems and the
Internet of Things (IoT). Within this context, the IoT reference architecture
serves as a guiding beacon for structuring complexity in IoT ecosystems. As
the IoT landscape unfolds, the pivotal role of IoT platforms emerges, orches-
trating this intricate web of interconnected devices. The chapter scrutinizes
the components of IoT platforms, from sensors to cloud infrastructure, and
culminates in an exploration of the VICINITY project, which showcases the
practical implications of IoT innovation. Additionally, the chapter delves into
the realm of homomorphic encryption, a vital element in ensuring data se-
curity and privacy in IoT systems. These foundational elements collectively
pave the way for a comprehensive understanding of the IoT landscape and its
implications for the future of technology.

2.1. Development Process

In the context of designing and implementing complex systems, a well-defined
development process is crucial to ensure the successful realization of desired
outcomes. This subchapter explores the fundamentals of the development
process, providing a foundation for understanding the subsequent research
on modeling and simulation of Internet of Things (IoT) infrastructures for
Cyber-Physical Energy Systems (CPES). The development process encom-
passes a series of systematic steps, from initial requirements gathering to final
deployment and maintenance of a system. It provides a structured framework
for guiding engineers and stakeholders through the various stages of system
development, ensuring that all essential aspects are considered and addressed.
In the domain of IoT and CPES, the development process plays a vital role
in enabling the creation of efficient, reliable, and secure systems. It allows for
the integration of cyber and physical components, leading to the distribution
of energy in a coordinated manner. Additionally, a well-defined development
process ensures that energy generation, transmission, distribution, and con-
sumption are seamlessly integrated using digital communication and control
technologies. The development process for IoT systems within CPES typically
encompasses several key phases. These phases often include requirements engi-
neering, design, implementation, testing, and deployment. Each phase requires
careful consideration of various factors, including system functionality, perfor-
mance, reliability, security, and scalability. Eliciting, assessing, documenting,
and validating the system’s needs are all part of the crucial initial phase known
as requirements engineering. In this phase, operational, functional, and non-
functional requirements for the IoT system within the CPES framework must
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be identified together with stakeholder needs and expectations. It lays the
groundwork for later design and implementation processes. The design phase
focuses on translating the requirements into a system architecture that out-
lines the structure, components, and interfaces of the IoT system. It involves
the selection of suitable hardware and software components, as well as the
specification of communication protocols, data models, and interfaces. The
design phase is essential for ensuring that the system is capable of meeting the
specified requirements and can be effectively implemented. The implementa-
tion phase involves the actual development and coding of the IoT system. It
includes tasks such as software development, hardware integration, and con-
figuration of communication protocols and interfaces. This phase requires ad-
herence to coding standards, best practices, and quality assurance measures
to ensure the robustness and reliability of the system. Testing is a critical
phase in the development process, aimed at verifying and validating the func-
tionality, performance, and reliability of the IoT system. It involves various
testing techniques, such as unit testing, integration testing, system testing,
and acceptance testing. Rigorous testing helps identify and rectify any de-
fects or issues before the system is deployed. Finally, the deployment phase
involves the installation, configuration, and commissioning of the IoT system
within the CPES environment. It includes activities such as system integra-
tion, data migration, user training, and system documentation. Deployment
requires careful planning and coordination to ensure a smooth transition from
the development environment to the operational setting. Throughout the de-
velopment process, proper project management techniques, such as scheduling,
resource allocation, risk management, and stakeholder communication, are es-
sential for successful project execution. The IoT system will be delivered on
schedule, within budget, and in compliance with all requirements if there is
effective project management. By understanding the fundamentals of the de-
velopment process, engineers and stakeholders involved in IoT systems within
CPES can navigate the complexities of system development and ensure the
successful realization of their objectives. This research builds upon this fun-
damental understanding, aiming to enhance the development process through
the application of model-based systems engineering and simulation techniques
tailored for IoT infrastructures in CPES.

In the subsequent subchapters, we will explore further fundamentals and
concepts that underpin the development of IoT infrastructures, including re-
quirements engineering, model-based systems engineering, and digitalization
approaches such as Cyber-Physical Systems and the Internet of Things. This
comprehensive exploration will provide the necessary background knowledge
to delve into the specific challenges and solutions proposed in this research for
the modeling and simulation of IoT infrastructures for CPES.

2.2. Requirements engineering

Requirements engineering is a critical process within system development that
focuses on eliciting, analyzing, documenting, and validating the requirements
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of a system. This subchapter delves into the key concepts and techniques of
requirements engineering, laying the foundation for understanding its signifi-
cance in the context of modeling and simulation of Internet of Things (IoT)
infrastructures for Cyber-Physical Energy Systems (CPES).

The primary objective of requirements engineering is to capture and un-
derstand the needs and expectations of stakeholders and transform them into
precise and unambiguous requirements. These requirements serve as the basis
for system design, implementation, and testing, ensuring that the developed
system meets the desired objectives and satisfies stakeholder expectations.

In the domain of IoT infrastructures for CPES, requirements engineering
plays a crucial role in defining the functionality, performance, reliability, secu-
rity, and other essential aspects of the system. It involves understanding the
unique challenges and considerations associated with IoT systems, such as the
integration of cyber and physical components, data interoperability, real-time
communication, and energy efficiency.

The requirements engineering process typically involves the following key
activities:

1. Requirements Elicitation: Engaging with stakeholders, such as end
users, subject matter experts, system architects, and developers, is re-
quired for this activity to collect and establish the requirements. Tech-
niques such as interviews, questionnaires, workshops, and observations
are employed to capture the stakeholders’ needs, expectations, and con-
straints.

2. Requirements Analysis: The elicited needs are examined in this ex-
ercise to make sure they are consistent, exhaustive, and feasible. The
requirements are refined, prioritized, and categorized into functional and
non-functional requirements. Conflicting or unclear requirements are
clarified and resolved through discussion with the stakeholders.

3. Requirements Documentation: The needs under study are coher-
ently laid out. In-depth descriptions of the requirements, use cases,
system interfaces, and any pertinent diagrams or models are all included
in the documentation. All parties concerned in the system development
process can refer to the requirements documents.

4. Requirements Validation: This action makes certain that the spec-
ified requirements appropriately reflect the needs and expectations of
the stakeholders. Validation techniques, such as reviews, walkthroughs,
and prototypes, are employed to assess the quality, correctness, and
completeness of the requirements. Any inconsistencies or gaps in the
requirements are identified and addressed.

5. Requirements Management: Maintaining and monitoring require-
ments across the course of the system development lifecycle is known
as requirements management. Changes to requirements are carefully
managed, and their impact on the system design, implementation, and
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testing is assessed. Proper version control and configuration manage-
ment techniques are employed to ensure traceability and accountability.

Effective requirements engineering is essential for the success of IoT sys-
tems within CPES. It enables the development team to understand the sys-
tem’s functional and non-functional requirements, align them with stakeholder
expectations, and establish a clear roadmap for system design and implemen-
tation. In-depth requirements engineering also makes it easier for stakeholders
to communicate and work together, reducing risks and ensuring the success
and overall quality of the system.

In the context of this research, requirements engineering serves as a cru-
cial component in the model-based development and simulation-based ver-
ification and validation of IoT infrastructures for CPES. It ensures that the
developed models accurately capture the system’s requirements and align with
stakeholder expectations. By integrating requirements engineering techniques
within the proposed methodology, this research aims to enhance the accuracy,
traceability, and efficiency of the development process for IoT systems within
CPES.

2.3. Model-based Systems Engineering

Model-Based Systems Engineering (MBSE) is an approach that leverages mod-
eling techniques and tools to support the development and management of
complex systems. This subchapter delves into the key concepts and principles
of MBSE, laying the foundation for understanding its significance in the con-
text of modeling and simulation of Internet of Things (IoT) infrastructures for
Cyber-Physical Energy Systems (CPES).

MBSE provides a structured and systematic approach to system develop-
ment by utilizing models to capture, analyze, communicate, and validate sys-
tem requirements, architecture, behavior, and other essential aspects. It allows
engineers to represent complex systems in a visual and intuitive manner, pro-
moting better understanding, collaboration, and decision-making throughout
the development process.

In the context of IoT infrastructures for CPES, MBSE offers several ben-
efits. It enables engineers to model the integration of cyber and physical
components, capture system behavior and dynamics, and assess the system’s
overall performance and reliability. Additionally, MBSE makes it easier to
analyze trade-offs, recognize dependencies, and spot potential problems or
conflicts early in the development process.

The key concepts and principles of MBSE include:

1. Models: Models are the central artifacts in MBSE. They represent
various aspects of the system, including its requirements, architecture,
behavior, interfaces, and relationships. Models provide a visual repre-
sentation of the system, allowing stakeholders to better understand and
communicate system concepts and characteristics.
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2. Modeling Languages: Modeling languages, such as Unified Modeling
Language (UML) or Systems Modeling Language (SysML), provide a
standardized notation for representing system models. These languages
offer a rich set of graphical symbols and constructs that enable engineers
to express system concepts, relationships, and behaviors.

3. Model-Based Development Process: MBSE promotes a model-
centric approach to system development, emphasizing the use of mod-
els throughout the entire development lifecycle. This includes activities
such as requirements modeling, architectural design, behavior modeling,
verification and validation, and system integration. The use of models
ensures consistency, traceability, and coherence across different develop-
ment phases.

4. Model Integration: MBSE facilitates the integration of various models
to create a holistic view of the system. This involves linking and relat-
ing different models, such as requirements models, architectural models,
and behavior models, to establish traceability and coherence. Model
integration enables engineers to assess the impact of changes, analyze
trade-offs, and ensure the overall system consistency.

5. Model-Based Analysis: MBSE enables the analysis of system models
to assess system behavior, performance, and reliability. Through simula-
tions, analyses, and validations, engineers can evaluate different design
alternatives, detect potential issues or conflicts, and optimize system
performance. Model-based analysis helps in making informed decisions
and improving the system’s overall quality.

By adopting MBSE principles and techniques, engineers can enhance the
development process for IoT systems within CPES. The use of models enables
better understanding, communication, and collaboration among stakeholders.
It facilitates the exploration of design alternatives, the identification of po-
tential risks, and the early detection of issues, leading to improved system
development outcomes.

In the context of this research, MBSE serves as a fundamental pillar in
the proposed approach for modeling and simulation of IoT infrastructures for
CPES. It provides the framework for capturing and representing the system’s
requirements, architecture, behavior, and other critical aspects. By integrat-
ing MBSE techniques with simulation-based verification and validation, this
research aims to enhance the accuracy, efficiency, and effectiveness of the de-
velopment process for IoT systems within CPES.

2.4. SysML - The Systems Modeling Language
SysML (Systems Modeling Language) emerges as a prominent framework
within the domain of system engineering, offering a comprehensive approach
to model intricate and multifaceted systems. It extends the foundational con-
structs of the Unified Modeling Language (UML) to cater specifically to the
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exigencies of system engineers. SysML provides a standardized and graphical
modality for representing systems, thus facilitating the encapsulation, analy-
sis, and effective communication of intricate system designs.

2.4.1. Blocks

At the heart of SysML are blocks, which are fundamental to modeling sys-
tems. Blocks are akin to containers that encapsulate the essential elements
or components of a system. They are used to represent physical entities (like
hardware components) or abstract entities (like software modules) within the
system. Blocks can be used to model subsystems, systems, or even the entire
system architecture.

Attributes and Properties Blocks can have attributes and properties that
define their characteristics. These attributes can be used to capture informa-
tion about the block, such as its size, weight, or capacity. Properties can be
used to specify the values of these attributes.

Behaviors Blocks can also have behaviors associated with them. These be-
haviors describe how the block responds to various inputs and stimuli. For
example, a block representing a sensor might have behaviors that describe how
it senses and reports data.

2.4.2. Ports and Interfaces

Ports and interfaces play a pivotal role in defining how blocks interact within
a system. They provide a structured way to specify how data and control
signals flow between blocks.

Ports Ports are used to model the points of connection between blocks. They
define the interfaces through which blocks can communicate with each other.
Ports can be classified into different types, such as input ports (for receiving
data), output ports (for sending data), and in-out ports (for bidirectional
communication). Ports are crucial for modeling the connectivity of a system.

Interfaces Interfaces define the contractual obligations for blocks that use
a port. An interface specifies the set of operations and signals that a block
must support when connected to a port. Interfaces help ensure that blocks
can work together seamlessly when integrated into a system.

2.4.3. Activities

SysML includes constructs for modeling the dynamic behavior of a system.
Activities are used to represent the flow of actions and control processes within
a system. They are instrumental in capturing how a system responds to various
stimuli and events.
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Actions Actions represent individual steps or operations within an activity.
They can include tasks like calculations, decisions, or data processing. Actions
define the discrete units of work within an activity.

Control Flow Control flow elements, such as decision nodes and control
edges, are used to specify the order in which actions are executed. They define
the flow of control within an activity, ensuring that actions are executed in a
logical sequence.

Object Flow Object flow represents the flow of data or objects between ac-
tions. It models how data is produced by one action and consumed by another.
Object flow is essential for understanding how information moves through a
system.

2.4.4. Requirements

Requirements management is a critical aspect of system engineering. SysML
provides constructs for capturing and managing system requirements. Re-
quirements are statements that specify what a system must do or achieve to
meet its intended purpose.

Requirement Elements SysML includes dedicated elements for representing
requirements, including Requirement and Requirement Block. These elements
allow you to define requirements, assign unique identifiers, and capture details
such as descriptions, verification methods, and traceability links.

Traceability SysML emphasizes the importance of traceability, ensuring that
requirements are linked to system components and design decisions. Traceabil-
ity helps in verifying that system elements align with specified requirements
throughout the development process.

2.4.5. Diagram Types

Diagrams in SysML serve as powerful tools for visualizing and communicating
various aspects of a system model. They provide graphical representations
that offer different perspectives on the system’s architecture, behavior, and
relationships. SysML supports several types of diagrams, each tailored to
convey specific information about the system. Here, we explore the key SysML
diagrams:

Block Definition Diagram (BDD) BDDs are fundamental for modeling the
structural aspects of a system. They help in defining the composition of the
system by illustrating the blocks that make up the system and how they are
interconnected.
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Components
• Blocks: These are central to BDDs. Each block represents a system

component, whether it’s a physical entity like a sensor or an abstract
concept like a control algorithm.

• Ports: Ports are depicted on blocks to show how they interact with other
blocks. Ports represent the interfaces through which data and control
signals flow.

• Connectors: Connectors establish relationships between blocks. They
represent the connections or associations between blocks, indicating how
they collaborate.

Use Cases
• System Architecture: BDDs are like architectural blueprints, providing

a high-level view of the system’s structure. They are useful for stake-
holders to understand how various components fit together.

• Interface Design: BDDs help in specifying interfaces (ports) and their
connections, ensuring that blocks can communicate effectively.

• Hierarchy: BDDs can illustrate the hierarchical structure of a system,
showing how blocks are organized into subsystems.

Internal Block Diagram (IBD) IBDs offer an inside look at the internal
structure of a block. They detail the components and their relationships within
a block, allowing for a deeper understanding of its composition.

Components
• Parts: Parts represent the internal components of a block. They could

be other blocks, connectors, or value types.

• Connectors: Connectors in IBDs illustrate the relationships and inter-
actions between parts within a block.

• Ports: If a block in an IBD has ports, they can be shown along with
their connections to external blocks.

Use Cases
• Component Detail: IBDs provide a detailed view of a block’s internal

composition. This is valuable when examining how a complex block is
constructed from smaller parts.

• Subsystem Exploration: IBDs are useful for diving into the structure
of subsystems defined within blocks, helping engineers understand how
these subsystems interact.

• Signal Flow: IBDs can illustrate how data and signals flow between parts
within a block, aiding in the analysis of internal data exchange.
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Activity Diagram Activity diagrams are used to model the dynamic behavior
of a system, showcasing how actions and processes are performed over time.

Components
• Actions: Actions represent individual steps or tasks within the activity.

They could be anything from calculations to decision-making processes.

• Control Flow: Control flow elements like decision nodes and control
edges define the order in which actions are executed, creating a flowchart-
like representation of the process.

• Object Flow: Object flow depicts how data or objects move between
actions, demonstrating how information is processed.

Use Cases
• Process Modeling: Activity diagrams are excellent for modeling and un-

derstanding complex processes and workflows within a system.

• Behavior Analysis: They aid in analyzing how actions interact and in-
fluence each other during system operation.

• User Interaction: Activity diagrams can also represent user interactions
with the system, making them valuable for designing user interfaces.

Sequence Diagram Sequence diagrams focus on the temporal aspects of sys-
tem behavior, illustrating how objects (blocks) interact over time through
message exchanges.

Components
• Lifelines: Lifelines represent objects involved in the interaction. Each

lifeline corresponds to a block or entity, showing its existence over a
period.

• Messages: Messages are used to depict interactions between lifelines.
They can represent method calls, data exchanges, or control signals.

• Activation Bars: Activation bars indicate the time during which an ob-
ject is active and processing messages.

Use Cases
• Interaction Modeling: Sequence diagrams are ideal for modeling the

sequence of interactions between system components, aiding in under-
standing message exchanges.

• Timing Analysis: They help in analyzing the timing and ordering of
events during system operation.

• System Integration: Sequence diagrams can show how different blocks
collaborate in complex systems, highlighting communication patterns.
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Requirement Diagram Requirement diagrams provide a structured view of
system requirements and their relationships. They help manage and trace
requirements throughout the development process.

Components

• Requirements: Requirements are represented as individual elements in
the diagram. Each requirement may have attributes like a unique iden-
tifier, a description, and verification methods.

• Relationships: Relationships between requirements are depicted to show
how they depend on or relate to each other. Common relationships
include satisfy, derive, and verify.

Use Cases

• Requirement Management: Requirement diagrams serve as a central
repository for system requirements, ensuring that they are well docu-
mented and traceable.

• Impact Analysis: They help in understanding how changes in require-
ments can affect other parts of the system.

• Verification and Validation: Requirement diagrams assist in planning
and executing verification and validation activities to ensure that the
system meets its requirements.

Understanding and effectively utilizing these SysML diagrams is crucial for
system engineers to communicate system designs, behaviors, and requirements
clearly and comprehensively. Each diagram type offers a unique perspective
on the system, facilitating the modeling and analysis of complex systems in a
structured manner.

2.5. Digitalization Approaches
This chapter explores digitalization approaches that underpin the development
of Internet of Things (IoT) infrastructures for Cyber-Physical Energy Systems
(CPES). It examines key concepts such as Cyber-Physical Systems, the Inter-
net of Things, and the IoT reference architecture. Through this exploration,
we gain a comprehensive understanding of the digitalization landscape, pro-
viding valuable insights for the modeling and simulation of IoT infrastructures
within the CPES context.

2.5.1. Cyber-Physical Systems

Cyber-Physical Systems (CPS) represent a paradigm that integrates physical
entities with computational and communication systems. CPS enable seam-
less interaction and collaboration between the physical and digital realms,
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bridging the gap between them. In the context of Internet of Things (IoT) in-
frastructures for Cyber-Physical Energy Systems (CPES), CPS play a crucial
role.

At the core of CPS is the tight integration of physical processes, computa-
tional elements, and communication networks. They combine real-time sens-
ing, actuation, and computation to enable intelligent decision-making and
advanced functionalities. CPS facilitate the integration of energy generation,
transmission, distribution, and consumption processes with computational and
communication systems within CPES.

CPS enable real-time monitoring, control, and optimization of energy flows,
leading to enhanced energy efficiency, reliability, and sustainability. They
leverage computational elements such as sensors, actuators, embedded sys-
tems, and control algorithms to acquire, process, analyze, and actuate data
from physical processes. Communication networks enable the exchange of in-
formation between the physical and digital components, enabling coordination
and collaboration.

The integration and interaction between the physical and digital components
of CPS create a dynamic feedback loop. The physical processes influence the
computational elements, while the computational elements affect the physical
processes through actuation and control. This integration allows for real-time
monitoring, analysis, and control of CPES.

By embracing CPS principles, engineers can design and develop IoT in-
frastructures that effectively integrate cyber and physical components within
CPES. CPS form the foundation for advanced functionalities such as real-
time monitoring, predictive maintenance, energy optimization, and intelligent
decision-making. The seamless interaction between the cyber and physical
realms fosters enhanced energy management, reliability, and sustainability in
CPES.

2.5.2. Internet of Things
This chapter provides a comprehensive introduction and overview of the In-
ternet of Things (IoT). It is essential to comprehend the evolution of the
IoT concept, which has transformed from the World Wide Web to a network
primarily connecting machines and objects, rather than humans. This trans-
formation reflects the changing landscape of connectivity and highlights the
expanding role of automated communication.

To facilitate a clear understanding of IoT, we offer an introductory discus-
sion on the technologies and standards relevant to machine-to-machine (M2M)
communication within the IoT framework. This discussion serves as a foun-
dation for comprehending the technical underpinnings of IoT systems.

A fundamental aspect of the chapter explores the architecture of IoT sys-
tems. This architecture delineates the key components of IoT and elucidates
how they interact to form a cohesive and functional system. Understanding
this structure is pivotal to grasping the inner workings of IoT technology.

Moreover, the chapter delves into various use cases where IoT systems ex-
cel. It elucidates how IoT contributes to enhanced efficiency, automation,
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and decision-making capabilities across different domains. These real-world
scenarios underscore the practical advantages of IoT implementation.

However, the chapter also recognizes the challenges entailed in the develop-
ment and deployment of IoT systems. While IoT holds significant promise, it
is not without its complexities and obstacles. By acknowledging these chal-
lenges, we prepare the groundwork for a comprehensive exploration of IoT’s
significance and its potential impact, particularly in the context of Cyber-
Physical Energy Systems. Through this introductory chapter, readers will
gain a solid foundation for the subsequent in-depth analysis of IoT in the
energy sector. Please note that certain portions of the content and findings
presented in this chapter have been previously disseminated in [6] and [7],
and have been thoughtfully incorporated into this dissertation to provide a
comprehensive and coherent perspective on the subject matter.

From the World Wide Web to the Internet of Things

The inception of the internet can be traced back to the 1980s, a pivotal period
when computer networks began gaining widespread popularity. During this
era, the primary function of these networks was to facilitate user access to
documents stored on computers located around the world. Users typically
utilized protocols like File Transfer Protocol (FTP), particularly in academic
settings. In parallel, proprietary networks such as America Online (AOL) and
the German Bildschirmtext (BTX) system emerged, catering to private users’
communication needs. However, these proprietary networks faced challenges
related to standardization, content heterogeneity, and limited accessibility.

To address these limitations, an early solution named Gopher surfaced as
a popular approach. Gopher introduced innovative features like generated
menus, formatted text, and document cross-references [8]. Although Gopher
offered a more organized and user-friendly way to access information, it even-
tually gave way to a more transformative vision.

Concurrently, Tim Berners-Lee was formulating a visionary concept – a
”World Wide Web” characterized by interconnected documents. In April 1993,
this vision became a reality when the World Wide Web, offering hypertext
capabilities enabled through the Hypertext Markup Language (HTML), was
made accessible to the public at no cost. This historic milestone marked the
birth of the internet and the World Wide Web as they exist today.

From a technical standpoint, it’s crucial to distinguish between the terms
”internet” and ”WWW.” The term ”internet” pertains to the underlying com-
munication protocols that facilitate global connectivity. These protocols in-
clude technologies like Ethernet and Wireless Local Area Network (WLAN)
for establishing physical connections, as well as Internet Protocol version 4
(IPv4) and Internet Protocol version 6 (IPv6), Transmission Control Protocol
(TCP), and Internet Control Message Protocol (ICMP) for efficiently trans-
porting data across the network [9].

In contrast, ”WWW” refers to the application layer protocols that facil-
itate the exchange of documents in HTML format within the World Wide
Web. Notable protocols in this context include the Hypertext Transfer Pro-
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tocol (HTTP) and its secure counterpart, Hypertext Transfer Protocol Secure
(HTTPS) [10]. These protocols are fundamental to the seamless retrieval and
display of HTML documents, and they have played a pivotal role in shaping
the user experience on the World Wide Web.

This historical evolution from early computer networks to the birth of the
World Wide Web lays the groundwork for understanding the subsequent trans-
formation of the internet into the Internet of Things (IoT). In the following
sections, we will delve deeper into the IoT’s emergence, architecture, and
transformative impact on diverse sectors.

Rise of the Internet of Things With the advent of the World Wide Web,
it quickly became apparent that computers were no longer exclusively tools
for human interaction with information. Machines of various types also began
utilizing the internet to exchange data and offer services. A notable early
example of this trend can be traced back to 1982 when a Coca Cola machine,
connected to a refrigerator via the internet, could report on the availability
of cold drinks [11]. This seemingly mundane event foreshadowed a profound
transformation.

In 1991, Mark Weiser articulated the concept of ”ubiquitous computing,”
envisioning a future where computers seamlessly integrated into everyday de-
vices would function imperceptibly, without being recognized as standalone
computing devices [12]. This vision laid the groundwork for a paradigm shift
in computing.

The term ”Internet of Things” (IoT) has since gained prominence as a de-
scriptor for the networking of smart objects via the internet. The IoT fa-
cilitates communication and service provision among these objects without
direct human involvement. Coined by Kevin Ashton in 1999, initially within
the context of Radio-frequency identification (RFID) tags, the IoT has been
officially defined by the International Telecommunication Union (ITU) as ”a
global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving
interoperable information and communication technologies.” [13, 14].

The proliferation of connected devices within the IoT has grown at an as-
tonishing rate, with projections indicating that this number will reach 41.6 bil-
lion devices by 2025, according to the International Data Corporation (IDC)
[15]. As these devices within the complex IoT ecosystem employ diverse tech-
nologies, a fundamental question emerges: how can these devices effectively
communicate and interact with each other? Addressing this challenge has led
to the development of numerous IoT platforms available in the market, each
offering its own set of solutions.

However, the process of selecting the right IoT platform introduces another
critical question: how can we ensure that the chosen platform aligns with our
specific needs and objectives? One valuable approach to addressing this issue
is through the examination of IoT reference architectures. These architectures
serve as comprehensive frameworks for assessing the capabilities of existing IoT
solutions and guiding the development of new products and services in this
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Figure 2.1.: Example of a connection between client and server including the route

dynamic and ever-expanding landscape. In the subsequent sections, we will
delve deeper into the intricacies of IoT architectures and their role in shaping
the future of interconnected devices.

Communication in the IoT: Standards and Protocols The Evolution of
Internet Connectivity

The transformational power of the internet began to unfold approximately
two decades ago when personal computers and internet connectivity became
ubiquitous. This widespread adoption marked a profound shift in the field
of computer science. It ushered in an era where information was globally
accessible to people at any time with minimal latency. The internet oper-
ates on a set of foundational principles, including the critical concept of data
transport through node-to-node connections, which requires intricate routing
mechanisms to ensure the efficient delivery of data to its intended destination.

One remarkable characteristic of the internet is its decentralized architec-
ture, allowing every internet-ready device to establish connections with one
another. This decentralized structure is exemplified in Figure 2.1, where any
node can seamlessly switch roles, acting as both a service provider (server)
and a service consumer (client). This peer-to-peer communication underpins
the internet’s robustness. Another fundamental principle of the internet is its
commitment to treating all transmitted data equally, regardless of its source
or content.

To enable smooth internet usage, a suite of standard protocols has been
established, including the well-known TCP/IP (Transmission Control Proto-
col/Internet Protocol) and UDP (User Datagram Protocol). These protocols
are the backbone of reliable and efficient communication between devices con-
nected to the internet.

However, the direct application of these internet standards to the context
of the Internet of Things (IoT) and Machine-to-Machine (M2M) communi-
cations poses specific challenges. Interconnected IoT devices often operate
with constrained resources, requiring specialized protocols that support low-
power communication. In the forthcoming sections, we will provide a concise
overview of some of the widely adopted protocols used in M2M/IoT commu-
nication. These protocols have been tailored to address the unique require-
ments of IoT and M2M systems, ensuring efficient and effective communication
within the context of the interconnected world of devices.
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M2M/IoT Communication Protocols The domains Machine-to-Machine
(M2M) and Internet of Things (IoT) communication have given rise to a suite
of specialized protocols, each meticulously crafted to meet the distinct de-
mands of interconnected devices. One such protocol is MQTT (Message Queue
Telemetry Transport), which operates on a publish/subscribe model. MQTT
has been engineered to streamline communication among devices, especially
those with power constraints, making it exceptionally well-suited for IoT de-
vices.

Within the realm of MQTT-based communication, devices adopt the roles
of clients, connecting to an MQTT broker functioning as a server. The bro-
ker’s primary responsibility is to route messages efficiently between clients.
MQTT leverages the publish/subscribe paradigm, enabling devices to publish
messages to the broker, which subsequently delivers these messages solely to
subscribed clients with an interest in the respective topic. This decoupling of
publishers and subscribers based on message topics eliminates the necessity for
direct awareness of each other’s existence. MQTT shines in scenarios involv-
ing low-bandwidth and high-latency networks, typical characteristics of IoT
networks. It frequently finds application in centralized IoT networks, where a
central server governs communications between various devices. A prominent
use case for MQTT is in the communication between IoT gateways and the
devices connected to them.

Another notable player in the M2M/IoT communication arena is CoAP
(Constrained Application Protocol). CoAP is a specialized web transfer pro-
tocol meticulously designed to cater to resource-constrained devices on the
internet. It operates as a service layer protocol and is formally defined in
RFC 7252. CoAP’s versatility is further enhanced by the contributions of
the ETF CoRE (Constrained RESTful Environments) working group, which
has extended the protocol to better accommodate the nuances of M2M/IoT
communications.

CoAP typically operates over UDP (User Datagram Protocol) at the trans-
port layer, although it can optionally be bound to DTLS (Datagram Transport
Layer Security) to bolster security for M2M communications. CoAP adopts
a RESTful model akin to HTTP, wherein servers assign a Unique Resource
Identifier (URI) to each resource. Clients can subsequently employ HTTP
methods like GET, PUT, POST, and DELETE to access and interact with
these resources [16]. Similar to HTTP, CoAP offers support for various data
formats such as XML (Extensible Markup Language) and JSON (JavaScript
Object Notation) for data representation and exchange. This adaptability
makes CoAP a versatile choice for diverse M2M/IoT communication scenar-
ios.

TCP/IP At the very core of modern internet communication lies the syn-
ergistic partnership between TCP (Transmission Control Protocol) and IP (In-
ternet Protocol). These two protocols are instrumental in facilitating packet-
oriented data transfer, forming the bedrock of the internet by addressing fun-
damental communication requirements. In the early 1980s, the Defense Ad-
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Task Standard
Logical Addressing IP [17]

Fragmentation IP [17]
Routing IP [17]

Error Control TCP [9]
Flow Control TCP [9]

Application Support TCP [9]

Table 2.1.: Differentation of tasks of TCP and IP

vanced Research Projects Agency (DARPA) assumed a pivotal role in crafting
the standards for TCP/IP. This endeavor was primarily geared toward the
development of a prototype network, known as ARPANET. DARPA’s pio-
neering efforts culminated in the creation of RFC 760 [17], which meticulously
outlines the specifications for IP, and RFC 793 [9], the defining document for
TCP.

The process of internet communication unfolds as data embarks on a jour-
ney, traversing myriad network nodes to ultimately reach its intended des-
tination. Along this arduous path, data must undergo fragmentation into
fixed-size data packets to ensure successful transmission (see Fig. 2.1). To
guarantee reliable message exchange among interconnected systems, mecha-
nisms for detecting packet loss, duplicates, and reordering are indispensable.
These critical facets of internet communication are exhaustively addressed and
standardized within the ambit of the RFC standards, as summarized in Table
2.1.

A TCP/IP connection epitomizes a lossless communication channel, en-
abling the seamless transmission of data from a client endpoint to a server
endpoint, even as it traverses an intricate network of nodes. This attribute ren-
ders TCP/IP particularly well-suited for centralized networks where a server
plays a pivotal role in orchestrating communications between clients. The
endpoints themselves, referred to as sockets, are provided by the respective
operating systems and are accessible through a socket application program-
ming interface (API) (for a more in-depth discussion, see Section 2.5.2).

One of the hallmark features of TCP is its unwavering commitment to ensur-
ing the reliable stream of data. It achieves this feat through the employment
of a unique three-way handshake mechanism, an essential component in the
establishment and maintenance of a connection between the parties engaged
in communication [18]. This dedication to data reliability has propelled TCP
into a linchpin of internet communication, underpinning countless digital in-
teractions worldwide.

UDP In the intricate tapestry of internet communication, the User Data-
gram Protocol (UDP), introduced in 1980 through RFC 768, assumes a dis-
tinctive role. Situated at the Transport layer, UDP builds upon the bedrock
of the underlying IP protocol. It offers a conduit for transmitting messages,
known as datagrams, delivering a best-effort service characterized by a unique
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Figure 2.2.: Sequence diagram of HTTP requests and responses over the time

set of features. Unlike its counterpart, TCP, UDP functions as an unreliable
datagram protocol. It forgoes mechanisms for delivery control, duplicate pro-
tection, or ordering functionality. In essence, UDP operates on the premise
of delivering data expediently, without the overhead of the elaborate coor-
dination and handshakes required by TCP. Consequently, it emerges as the
preferred choice for applications prioritizing speed over meticulous reliability.

A UDP datagram, the fundamental unit of data in UDP communication,
is encapsulated within a single IP packet. This design imposes a constraint
on the maximum payload size. To initiate the transmission of a UDP data-
gram, various fields within the UDP header, including the crucial Port Control
Information (PCI), are meticulously configured. Subsequently, the data, ac-
companied by the header, embarks on its journey through the IP network
layer, poised for swift transmission [19].

UDP’s distinctive design caters to scenarios where rapid data transfer out-
weighs the need for exhaustive reliability measures. It has found its niche in
applications demanding low-latency connections, where the swiftness of com-
munication takes precedence over meticulous error-checking and data coordi-
nation.

HTTP: A Stateless Communication Protocol The Hypertext Transfer
Protocol (HTTP) stands as a cornerstone of the web, facilitating the seamless
exchange of information across the digital landscape [18]. The term ”hyper-
text” signifies text containing embedded links, commonly referred to as hyper-
links, which enable users to traverse the interconnected web of information.
HTTP functions within a message-based model, orchestrated by both clients
and servers. Clients initiate this communication by dispatching requests to
servers, which respond with corresponding answers, forming a dialogue remi-
niscent of human interaction.

Each interaction, be it a request or response, comprises two primary com-
ponents: a header and a payload. Headers are exclusively reserved for textual
information, whereas payloads can encompass both text and binary data. In
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Status number Message
1xx Informational response
100 Continue
2xx Success
200 OK
201 Created
202 Accepted
3xx Redirection
301 Moved Permanently
4xx Client Errors
403 Forbidden
404 Not Found

Table 2.2.: An extract of HTTP status codes of RFC 2616 [20].

Figure 2.2, the client initiates this exchange by forwarding a request header re-
plete with parameters, codec details, and the desired resource path. Notably,
clients have the liberty to incorporate a payload directly within the request. In
return, the server reciprocates by delivering data - often an HTML document
- as the payload, accompanied by a precise response status (as delineated in
Table 2.2). It is imperative to underscore that HTTP operates in a stateless
manner, necessitating clients to furnish all requisite information with each
request due to the absence of persistent session context.

HTTP, as specified in the widely adopted version 1.1, endows request head-
ers with a repertoire of methods, serving as unequivocal directives. Among
these, the most frequently employed methods include GET, PUT, DELETE,
and POST, each instrumental in shaping the nature of interactions between
clients and servers, thus ensuring effective communication.

• The GET Method: This method orchestrates requests aimed at retriev-
ing specific data corresponding to the request-URI. Its primary function
revolves around information retrieval, allowing clients to access and pe-
ruse resources without inducing alterations.

• The PUT Method: Triggering this method compels the server to modify
a designated resource aligned with the request-URI. The alterations are
based on the data encapsulated within the request body of the HTTP
PUT request, empowering clients to update or overwrite existing re-
sources.

• The DELETE Method: Deploying the DELETE method prompts the
server to expunge the resource identified by the request-URI. Clients
wielding this method can initiate the removal of specific resources, ef-
fecting the deletion of data housed on the server.

• The POST Method: In contrast, the POST method serves as a conduit
for creating a new resource on the server. By transmitting a request
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Component Significance
host The IP address or a registered hostname of a host

located on a server, serving as the fundamental point
of access within a Uniform Resource Identifier (URI).

port The numerical port number on the host,
representing the designated endpoint for communication.

path A sequence of segments, hierarchically organized and
separated by slashes, denoting the specific location of the
resource within the host.

query An optional component, typically initiated with a ”?”
character, providing supplementary data or parameters
that can be employed for various purposes, such as search
or data retrieval.

fragment An optional component, often introduced by a ”#”
character, serving for local reference and processing
within a web browser; it enables additional identification
or handling of specific sections within the resource hosted
on the server.

Table 2.3.: Decomposition of an URI

body within the HTTP POST request, clients convey their intention to
generate a resource associated with the request-URI, thereby instigating
the creation of new data on the server.

These HTTP methods, intrinsic to the protocol, underpin a spectrum of
interactions between clients and servers, facilitating agile data manipulation
and resource administration across the World Wide Web.

Decoding Universal Resource Identifiers (URIs) In the digital realm,
gaining access to an abstract or physical resource necessitates the use of a
Universal Resource Identifier (URI). This critical element comprises a string
of characters partitioned into distinct components using predefined operators.
Although the generic URI syntax exhibits a hierarchical structure, each con-
stituent element serves a distinct purpose in facilitating resource retrieval.

A typical URI syntax encompasses the following elements:

URI = scheme "://" host : port "/" path "?" query "#" fragment

The meaning of each component is elucidated in Table 2.3.
Example: http://10.0.0.1:80/news/?q=test#X new

Here, the blue-marked components pertain to communication, as elucidated
in the TCP/IP section. Conversely, the brown-marked components are integral
to the HTTP request.
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RESTful API: Navigating M2M Communication API, an acronym for
Application Programming Interface, plays a pivotal role in M2M (Machine-
to-Machine) communication by offering a standardized framework for client-
server interactions. In the realm of distributed connected systems, commu-
nication while sharing compatible data is a foundational task, resulting in a
multitude of paradigms for remote procedure calls.

Notably, REST-API (Representational State Transfer - Application Pro-
gramming Interface) stands out as an implementation approach character-
ized by a RESTful architecture, rather than a specific protocol or standard.
REST, which stands for Representational State Transfer, leverages standard-
ized URIs, HTTP, and typically employs JSON as a data format. This ap-
proach adheres to six fundamental principles.

Unlike alternative API design strategies, REST does not encode particular
methods within the URI. Instead, it navigates to the resource via the URI and
executes the provided HTTP request therein. In essence, any URI featuring
static content is inherently compatible with the REST architecture due to the
intrinsic similarities between REST and HTTP.

It’s imperative to recognize that a RESTful architecture isn’t optimized for
frequent content changes within a short time span, as each update necessitates
a new HTTP request [21].

JSON: A Lightweight Data Exchange Format JSON, which stands for
JavaScript Object Notation, is described as a “lightweight, text-based, language-
independent data exchange format” in RFC 4627. It serves as a compact set
of formatting rules designed to facilitate the transportability of structured
data. JSON’s primary function is to provide a textual format for serializing
structured data, and it has its roots in JavaScript, a prominent programming
language.

At its core, a JSON file is constructed from two fundamental elements:
objects and arrays. JSON’s flexibility allows objects or arrays to be effortlessly
constructed from JSON strings. Objects, in JSON terminology, represent
collections of ”name” and ”value” pairs, and they do not possess a predefined
order. Conversely, arrays consist of an ordered sequence of ”value” pairs.

The constituents of a ”value” pair within JSON are versatile, encompassing
strings, numbers, booleans, null values, nested objects, or arrays. In contrast,
a ”name” pair is invariably a string [22]. JSON’s simplicity, universality, and
compatibility with multiple programming languages have contributed to its
status as a prevalent data interchange format in various domains.

The elegance of JSON lies in its ability to represent complex data structures
in a readable and concise textual format, making it a preferred choice for data
exchange between diverse software systems and components. Its straightfor-
wardness and adaptability render it invaluable in scenarios where human read-
ability is essential, such as configuration files, APIs (Application Programming
Interfaces), and data transmission between web servers and clients.

JSON’s versatility and widespread adoption underscore its significance in
contemporary computing, making it an essential component in the communi-
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cation and interoperability of diverse systems [22].

2.5.3. IoT Reference Architecture: Structuring Complexity

As the Internet of Things (IoT) continues to evolve and grow in complex-
ity, there is a pressing need to organize its architecture into distinct layers.
This structural approach enables a more systematic understanding of the IoT
ecosystem and facilitates the development and deployment of IoT solutions.
Scholars such as Zhu et al. [23] and Chen et al. [24] have made significant
contributions by introducing a three-layered framework for constructing an
IoT reference architecture. These three layers are:

Things layer The things layer serves as the foundation of the IoT architec-
ture, where smart objects, sensors, and devices actively participate. Their pri-
mary role is to generate data, capturing information from their surroundings.
To achieve this, a variety of communication standards come into play, including
RFID (Radio-Frequency Identification), ZigBee, Bluetooth, and 6LoWPAN
(IPv6 over Low-Power Wireless Personal Area Networks). However, these
technologies often use proprietary or specialized protocols for communication.
To facilitate interoperability and communication with higher layers, this data
must be converted into a standard communication protocol. This essential
protocol conversion is typically handled by universal devices known as ”IoT
gateways.” These gateways act as intermediaries between the things layer and
the network layer, ensuring that data from various sources can be efficiently
transmitted upwards through the architecture.

Network layer The network layer, also referred to as the communication or
connectivity layer, plays a pivotal role in transporting data collected from the
things layer to remote locations. This layer employs well-established Internet
communication protocols like Ethernet, Wi-Fi, and GPRS (General Packet
Radio Service) to establish connections and transfer data. It serves as the
backbone of the IoT infrastructure, ensuring that information collected by
smart objects can be relayed to centralized systems, data centers, or other
relevant destinations. By utilizing these robust and widely adopted commu-
nication standards, the network layer forms the critical bridge between the
IoT’s sensory foundation and the upper layers responsible for processing and
application.

Application layer Sitting atop the IoT architecture is the application layer,
which directly interfaces with end-users and various applications. This layer
serves as the point of interaction between humans and the IoT ecosystem.
Depending on the specific needs and requirements of users and organizations,
the application layer provides a diverse array of services and functionalities.
This layer is exceptionally versatile and spans multiple application domains,
including smart buildings, smart homes, smart transportation systems, and
smart energy grids. In essence, the application layer harnesses the data and
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capabilities of the underlying IoT infrastructure to deliver practical solutions
and services that enhance efficiency, automation, and decision-making across
a wide spectrum of contexts.

While these three primary layers provide the foundational structure of the
IoT architecture, the ever-growing heterogeneity and complexity of IoT sys-
tems have necessitated the introduction of additional layers. As IoT networks
expand and diversify, the sheer volume of data generated by devices utilizing
various technologies becomes a significant challenge to manage effectively. To
address these emerging needs and complexities, a fourth layer, known as the
service management layer, comes into play [25].

Service management layer The service management layer in the IoT archi-
tecture plays a multifaceted role in ensuring the efficient functioning of IoT
networks. It employs proper identifiers, such as URIs (Uniform Resource Iden-
tifiers), to enable service discovery and manages services and their associated
requests. This layer is responsible for the storage and management of data
collected from the network layer, transforming it into semantically meaning-
ful information. Furthermore, it leverages semantic technologies to carry out
information discovery, enabling intelligent decision-making processes. The ser-
vice management layer extends its influence up to the application layer, ensur-
ing that processed data and insights are seamlessly integrated into user-facing
applications and services.

As IoT networks mature and expand, they open up new avenues for creating
successful business models. To harness the full potential of an IoT network
and transform it into a viable business opportunity, the introduction of a fifth
layer, often referred to as the business layer [25], becomes imperative.

Business layer The business layer, the fifth and topmost layer in the IoT
architecture, assumes a pivotal role in orchestrating the various components
and functionalities of an IoT system to drive business outcomes and create
value. This layer is primarily responsible for the strategic management of ap-
plications, overseeing the data generated by these applications, and extracting
valuable business insights from this data.

In essence, the business layer acts as the nexus between the technical in-
frastructure of the IoT, the applications that run on it, and the overarching
business objectives. It facilitates the alignment of IoT initiatives with broader
business strategies, ensuring that the technology is leveraged to achieve tan-
gible business goals.

By integrating the capabilities of the lower layers, including data storage,
data analysis, service management, and semantic services, the business layer
enables organizations to harness the full potential of their IoT investments.
It not only manages the applications that utilize IoT data but also provides
the frameworks and tools necessary for deriving actionable insights from this
data.

This holistic five-layer IoT architecture (refer to Figure 2.3), as proposed by
Fuqaha et al. [25], and further refined by Silva et al. [26], encompasses all key
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domains essential for the development and operation of a comprehensive IoT
system. These domains include the object domain (sensors and devices), the
network or connectivity domain, the middleware domain (encompassing data
storage, data analysis, service management, and semantic services), the appli-
cation domain, and finally, the business domain. By systematically addressing
these domains, organizations can build robust and effective IoT solutions that
deliver real value across various sectors and industries.

Figure 2.3.: Five-layer IoT architecture [2]

Use Cases of the IoT: Beyond a Fridge with Webcam

IoT Services: How much? And where? The Internet of Things (IoT) is not
merely a network of interconnected gadgets; it represents a paradigm shift in
how we interact with and utilize technology. To gain a deeper understanding
of what makes an IoT use case valuable and where its true potential lies, let’s
explore two simple real-life examples:

(1a) Anne is at work and realizes she forgot to turn off the lights at home.
Fortunately, she can remotely control an IoT-enabled light bulb using a
smartphone app.

In example (1a), Anne uses the internet to control a device without her
physical presence. Another example could be:

(2a) Anne is shopping for party supplies but can’t remember which drinks
she needs. She checks her fridge, which displays the contents, helping
her identify the missing items.
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In these examples, Anne leverages the internet to interact with devices with-
out physical presence. However, these scenarios represent only basic forms of
communication. They lack essential elements like data collection, intelligent
decision-making, and autonomous control.

The IoT extends beyond remote control and data retrieval. It enables the
collection, aggregation, and analysis of vast amounts of data from various
sources, including sensors, personal information, and social media. This data
allows machines to make informed decisions based on well-defined scenarios,
moving beyond mere responsiveness to human input, as seen in (1a) and (2a).

Consider a more advanced example:

(1b) Anne is leaving for work, and the IoT, based on data from multiple
sources, determines that there are no occupants at home. Consequently,
it automatically turns off the lights.

In (1b), Anne benefits from time and resource savings. The IoT’s advantages
include the ability to control devices remotely, receive real-time data without
human intervention, and automatically manage resource utilization by aggre-
gating data and providing decision support.

However, the real transformative potential of IoT becomes evident when
data from multiple sources are combined:

(2b) Anne is driving her autonomous car, which decides to take her to a
store because her refrigerator indicates a shortage of drinks for her up-
coming party. It selects a local store and displays the beverages liked by
her Facebook friends.

These examples illustrate the power of data aggregation and decision-making
in IoT services. While the benefits are substantial, they also raise important
considerations, including privacy and control over personal information. As
IoT continues to evolve, finding the right balance between convenience and
data security becomes crucial.

Use cases of the IoT

The Internet of Things (IoT) finds applications in a wide range of domains, en-
hancing efficiency, automation, and decision-making processes. The following
is a selection of popular domains where IoT technologies are employed:

Energy The concept of the Internet of Energy, a convergence of distributed
energy generation systems and IoT, transforms the traditional electrical grid
into a smart grid. This transformation encompasses every facet of the grid,
from electrical devices and sensors to high-level applications and use cases
driven by data. One intriguing aspect is how interconnected distributed energy
systems within a neighborhood can collectively negotiate their potential energy
flexibility, encompassing both distributed generation and consumption. This
collective dynamic Demand Side Management (DSM) strategy opens the door
to more efficient energy utilization.
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Consider a municipal setting with a community-scale microgrid serving a
cluster of municipal buildings, supplying their power and heating require-
ments. Within this microgrid-enabled energy network, precise control of en-
ergy flows is essential to minimize costs and maximize technical efficiency.
This effective management hinges on well-informed decision-making processes.
These decisions can be expedited by amalgamating data from energy system
information models and sensor data, reducing the time required for decision
elaboration and ensuring optimal energy utilization.

Buildings and Homes Efficient resource management, resource consump-
tion, and predictive operations are paramount for both residential homes and
commercial buildings. Building automation and management have witnessed
a surge in current trends, with the integration of various wired and wireless
communication systems, such as KNX, ModBus, and MBus. These systems
are often interconnected with the building’s operating system. Additionally,
user-developed technologies, covering aspects like safety, health, and climate,
are becoming increasingly prevalent, often operating independently from the
building’s infrastructure.

For smart buildings, a crucial consideration is the ability to capture data
from these diverse sources comprehensively, with clear semantic understand-
ing. This data should also be made accessible to other systems requiring it
for their business processes. To illustrate this data flow, consider a building
context. However, it’s equally vital that the same information elements are
available for processes and actors operating outside of the building environ-
ment, including those in energy, smart community development, health, and
transportation sectors.

Governments and regulatory bodies worldwide are taking proactive mea-
sures to enhance the energy efficiency of both commercial buildings and res-
idential neighborhoods. They are leveraging IoT technologies to unlock new
economic opportunities and benefits for all relevant stakeholders. These tech-
nologies are expected to not only enhance the usability, capacity, and cost-
effectiveness of homes and buildings but also significantly boost their energy
efficiency, aligning with global sustainability goals [27].

Health The healthcare landscape is facing escalating challenges, primarily
due to an aging population characterized by increasing rates of chronic illnesses
like obesity, dementia, and hypertension. Effectively managing healthcare in
such a scenario requires innovative solutions. E-health and assisted living
technologies designed for the elderly and individuals with special needs offer
a promising approach. These technologies aim to create decentralized and
user-friendly platforms that bridge end-users with their families, healthcare
professionals, and assistance providers.

The key to this transformation is the integration of existing commercial
equipment and sensors, leveraging available communication channels to facil-
itate seamless interactions. Importantly, these solutions are designed to cater
to individuals who may not be tech-savvy, ensuring inclusivity. A noteworthy
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shift in the healthcare industry is the transition from hospital-centered appli-
cations to patient-centered ones. This patient-centric approach fosters more
personalized and responsive healthcare services.

Advanced healthcare services, underpinned by IoT technologies, provide cus-
tomers with valuable data streams and tailored advice for prevention and im-
proving health conditions. This proactive approach empowers the elderly and
their caregivers to lead better, more independent lives while effectively manag-
ing their health and well-being. Ultimately, these advancements in healthcare
aim to enhance the quality of life for individuals facing health challenges in
an aging society.

Transport The increasing demand for parking spaces in major cities is a sig-
nificant challenge, contributing to heightened search activity, increased CO2
emissions, traffic congestion, and worsened air pollution. Addressing these
issues is crucial for the development of smart and sustainable urban envi-
ronments. Two pivotal aspects of building smart cities are efficient parking
management and optimized transportation systems. Cities are increasingly
focusing on enhancing their parking infrastructure, leveraging IoT data to
gather new insights and perform advanced analyses[28].

In the realm of transportation use cases, IoT-driven services employing pre-
diction and optimization algorithms play a crucial role. These services can
provide well-balanced parking plans that consider user preferences, historical
parking data, real-time demand, and other relevant factors. This data-driven
approach enables the emergence of innovative business models, such as dy-
namic pricing based on parking space attractiveness, hourly variations, or
customer loyalty.

Furthermore, IoT technologies facilitate the fine-tuning of parking space
management and proximity to entry points based on user-defined profiles.
This customization caters to the specific needs of different residents and inhab-
itants. When optimizing parking resources, factors like safety, predictability,
reliability, accessibility, and user comfort are taken into account. Additionally,
access control and assessment systems are integrated into the overall solution.
The type of user, whether a visitor or a resident, influences the suggested
parking location, with careful consideration given to the needs of healthcare
and emergency service organizations. This holistic approach to parking and
transportation management contributes to improved urban mobility and the
overall quality of life in cities.

Farming The agriculture sector is undergoing significant transformation due
to the processes of industrialization and modernization, coupled with the chal-
lenges of declining agricultural land and increasing global population. In this
context, the Internet of Things (IoT) is playing a pivotal role in revolution-
izing agriculture by introducing advanced technologies that enhance produc-
tion efficiency, improve the quality and quantity of agricultural products, and
reduce production costs[29]. These IoT-enabled solutions are strategically ap-
plied throughout the entire agricultural production process to maximize the
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utilization of limited arable land.
The future of agriculture is marked by the integration of precision farming

and smart farming practices. Precision farming, often referred to as precision
agriculture, involves the use of IoT technologies to provide accurate supply and
demand forecasts, real-time monitoring and resource management, and the
maintenance of production quality throughout the entire life cycle of agricul-
tural goods[30]. This approach allows farmers to precisely detect fluctuations
in agricultural conditions and apply targeted techniques, such as optimizing
the use of fertilizers and pesticides, to increase efficiency and reduce waste.

Furthermore, smart farming extends to livestock management, enabling
farmers to monitor the real-time demands of each animal and provide appro-
priate treatment or feeding. This level of precision in animal care ensures the
health and nutrition of the animals, contributing to the overall sustainability
and productivity of the agriculture sector. In essence, IoT-driven farming prac-
tices are instrumental in addressing the complex challenges facing agriculture,
from land scarcity to resource management and animal welfare, ultimately
leading to more sustainable and efficient food production.

Challenges in IoT: Navigating the Complexities of a Transformative
Technology

The barriers between our personal and professional lives have been broken
down by the Internet of Things’ widespread influence. As this game-changing
technology develops further, it poses a variety of problems that need careful
analysis and solutions. These difficulties are diverse, covering both technical
complexities and a fast expanding range of non-technical factors, each of which
is essential in determining the course of IoT.

From a technical perspective, ensuring the reliability and stability of IoT
systems stands as a paramount challenge. This includes addressing issues of
data security, privacy, and scalability as we grapple with the vast volumes of
data generated by IoT devices. Achieving seamless interoperability among di-
verse devices and platforms presents another complex hurdle that necessitates
the development of standardized protocols and data formats.

However, it is imperative to recognize that IoT’s challenges extend far be-
yond the realm of technology. Non-technical facets, including ethical, legal,
social, and economic dimensions, hold increasing significance. Ethical quan-
daries emerge concerning data collection, consent, and the responsible utiliza-
tion of this wealth of information. Legal frameworks must be meticulously
crafted to address complex issues of data ownership, liability, and regulatory
compliance. Moreover, IoT’s profound societal implications, such as its effects
on employment dynamics and digital equity, warrant careful scrutiny and the
formulation of informed policies.

Crucially, these technical and non-technical challenges are inherently inter-
connected. Technical obstacles can give rise to profound non-technical dilem-
mas, and societal expectations and legal frameworks adapt in response to
the evolving IoT landscape. As IoT continues to infiltrate various aspects of
our daily existence and industries, a holistic understanding of these intricate
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challenges is indispensable to unlock the full potential of this groundbreaking
technology. This section embarks on a comprehensive exploration of these
challenges, shedding light on the intricate interplay between technology and
society in the IoT domain.

Technical challenges In the realm of Internet of Things (IoT), several pro-
found technical challenges stand as formidable obstacles to realizing the full
potential of this transformative technology. These challenges are multifaceted
and multifarious, spanning various aspects of IoT implementation, from fun-
damental interoperability issues to the intricate web of security and privacy
concerns. Delving into the technical intricacies of IoT, we unravel these press-
ing challenges.

Interoperability from technical up to semantic level Interoperability is
the lifeblood of IoT, facilitating seamless communication between the vast ar-
ray of devices and platforms that constitute this interconnected ecosystem. At
its simplest, syntactic interoperability ensures that data exchanged between
IoT entities adheres to standardized data structures and formats, mitigating
the risk of misinterpretation. However, as IoT extends its reach to higher appli-
cation layers, the challenge of semantic interoperability emerges. This entails
extracting meaningful, context-rich information from the raw data churned out
by IoT devices at the ”things” layer. The effective orchestration of services
at the service layer hinges on this semantic comprehension. Additionally, the
dearth of universally accepted standards further complicates interoperability,
necessitating concerted efforts to harmonize disparate systems, subsystems,
devices, and applications.

Security and Privacy The bedrock of any robust IoT system is its ability
to provide airtight security measures. IoT systems must guarantee data con-
fidentiality, integrity, and availability to meet stringent security requirements.
Simultaneously, the vast amount of data collected by IoT devices, often in-
cluding sensitive user information, such as personal identifiers and financial
data, makes user privacy a paramount concern. The potential for malevolent
actors to exploit vulnerabilities and misuse user data underscores the critical
importance of privacy safeguards in IoT device development.

Connectivity Challenges: Centralised vs. Decentralised concepts IoT
applications demand intricate decisions regarding architectural strategies, par-
ticularly in the context of data management and processing. A centralized ap-
proach, where a singular server handles all service implementations and data
storage, may seem viable for small-scale deployments. However, scalability
becomes a major impediment in scenarios involving billions of interconnected
devices. Centralization introduces performance bottlenecks and becomes a
single point of failure, undermining reliability and security. Conversely, de-
centralized paradigms, such as edge computing, aim to address these issues
by pushing higher-level functions closer to the ”edge” devices. This mitigates
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the challenges of scalability and reliability but introduces a distinct set of dif-
ficulties. Concurrency problems, security concerns, bandwidth management,
and data handling complexities all come to the forefront in decentralized mod-
els. Additionally, peer-to-peer connections, while promising local data control,
introduce security challenges that require vigilant device owners and organi-
zations to fend off potential breaches.

In navigating these technical challenges, the IoT community faces a multi-
faceted landscape that necessitates innovative solutions, industry-wide coop-
eration, and a holistic approach to ensure the continued growth and matura-
tion of this transformative technology. This section delves deeper into these
challenges, offering insights into their complexities and potential avenues for
resolution.

Nontechnical challenges Beyond the intricate web of technical challenges,
the realm of IoT is also riddled with nontechnical hurdles, each carrying its
own weight in shaping the trajectory of IoT adoption and evolution. These
challenges span a spectrum of issues that extend far beyond lines of code
and technical specifications, delving into the realms of legality, privacy, user
awareness, permissions, and asset maintenance.

1. Legal and privacy issues. IoT infrastructure, with its vast network
of interconnected objects, is an intricate web that connects, identifies,
communicates with, monitors, and regulates a myriad of entities, includ-
ing users, sensors, devices, and appliances. The effective functioning of
IoT systems often necessitates the collection of extensive data, paving
the way for potential misuse and privacy violations. Incorrectly imple-
mented data collection procedures can give rise to profound ethical and
legal concerns, as the line between user convenience and data privacy
becomes increasingly blurred. Additionally, the complex landscape of
software licensing within IoT ecosystems can further compound policy
challenges.

2. Customer awareness. A critical challenge in the IoT landscape re-
volves around the level of awareness among IoT device owners regard-
ing the handling and utilization of their data. A significant portion of
IoT consumers remains largely uninformed about how their data is har-
nessed. A McAfee study[31] found that a staggering 33% of respondents
expressed concerns about their ability to monitor and manage the use of
their data by businesses. This lack of awareness not only poses privacy
and security risks but also has the potential to impede the widespread
adoption of IoT technology.

3. Customer permission. The integration of IoT applications often ne-
cessitates the addition or replacement of sensors and devices within ex-
isting systems. Moreover, users may be required to modify their conven-
tional behaviors to align with the functioning of IoT applications, such
as the transformation of a traditional building into a smart one. This
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transformation inherently involves the gathering, transmission, and anal-
ysis of personal data. Consequently, the process of persuading users to
embrace and employ IoT applications hinges on providing transparent
and easily accessible privacy regulations, ensuring that users have a clear
understanding of how their data will be managed.

4. Asset maintenance. The operational viability of IoT systems relies
heavily on the proper maintenance and upkeep of sensors and equipment.
Unfortunately, the scarcity of adequately trained support personnel and
challenges related to asset maintenance pose significant obstacles in this
regard. Ensuring that IoT assets remain in optimal working condition is
pivotal for the uninterrupted flow of data and the seamless functioning
of IoT applications.

These nontechnical challenges underscore the multifaceted nature of IoT
implementation and its far-reaching implications for society. Addressing these
challenges necessitates a holistic approach that encompasses legal frameworks,
user education, privacy regulations, and maintenance strategies to foster a
conducive environment for the continued growth and ethical development of
IoT technology.

2.5.4. Preliminary Conclusions: Navigating the IoT Landscape

The Internet of Things (IoT) has woven itself into the very fabric of our
daily existence, becoming an integral part of our lives and exerting an ever-
expanding influence on the world around us. As IoT pervades our homes,
cities, industries, and beyond, it offers tangible benefits, transforming the way
we interact with technology and the environment.

Illustrative use cases of IoT systems underscore the positive impact they
bring to our daily routines and the surrounding ecosystem. From streamlined
home automation to efficient energy management and innovative healthcare
solutions, IoT exemplifies its potential to enhance convenience, sustainability,
and well-being.

Yet, the road to realizing the full potential of IoT is not without its hurdles.
IoT initiatives encounter multifaceted challenges, spanning both the techni-
cal realm and the complex landscape of stakeholders. Technical challenges
encompass issues like interoperability, security, and connectivity, demanding
innovative solutions and standardization efforts.

Equally critical are the nontechnical challenges emanating from the very
users and entities that IoT intends to serve. Clear communication and ed-
ucation are imperative, as businesses must navigate the intricate terrain of
stakeholder engagement. End users, representing a diverse spectrum of soci-
ety, must be made cognizant of the benefits and risks associated with IoT.

For instance, a startling statistic from a 2018 McAfee study[31] reveals that
fewer than 40% of individuals employ adequate identity protection measures.
The unawareness of IoT’s underlying processes may overshadow its myriad
benefits, leading to apprehensions about security and data privacy.
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In essence, the success of IoT hinges on a harmonious interplay between
technology and society. Businesses crafting IoT systems must engage with
users transparently and effectively, illuminating the transformative potential
while addressing concerns. By cultivating awareness, fostering trust, and im-
plementing robust safeguards, the IoT landscape can evolve into a force that
not only augments our lives but does so responsibly and ethically.

2.6. IoT Platforms: Orchestrating the IoT Ecosystem

In the dynamic landscape of the Internet of Things (IoT), an array of platforms
has emerged to expedite and refine the implementation of IoT projects. These
platforms constitute a pivotal element within the intricate web of physical
and virtual entities, offering a suite of tools to simplify the intricacies of IoT
endeavors.

This chapter embarks on a comprehensive exploration of IoT platforms,
spanning the entire spectrum from the gateway level to the vast expanses of
the cloud. It delves into the architectural underpinnings of these platforms
and elucidates the process of crafting a bespoke IoT platform. Please note
that certain portions of the content and findings presented in this chapter
have been previously disseminated in [2] and [32], and have been thoughtfully
incorporated into this dissertation to provide a comprehensive and coherent
perspective on the subject matter.

At its core, an IoT platform is a multi-layered technological construct, metic-
ulously engineered to furnish an assortment of readily deployable functional-
ities, thus catalyzing the realization of IoT initiatives. The linchpin of IoT
platforms lies in their innate capacity to facilitate seamless communication
among the constellation of interconnected entities.

The sprawling IoT architecture is an intricate mosaic, composed of myriad
components. As delineated in Figure 2.4, a holistic IoT ecosystem typically
comprises five cardinal components: hardware, acting as the bedrock with
sensors and devices; gateways serving as intermediaries; cloud-based data pro-
cessing; communication protocols for connectivity; and user interfaces for in-
teraction. Devoid of IoT platforms, a conspicuous chasm would loom between
the hardware and application strata, impeding the synthesis of this multifari-
ous ensemble.

The pivotal role of IoT platforms comes to the fore in bridging this divide
and orchestrating a symphony of harmonious interactions. These platforms
empower developers to navigate the labyrinthine realm of diverse hardware
and software communication protocols, endow user devices with robust secu-
rity measures, and orchestrate the orchestration of sensor data, encompassing
collection, visualization, and analysis.

This chapter embarks on an illuminating journey through the facets of IoT
platforms. It commences by elucidating the vantage point from which one can
perceive the external environment. Subsequently, it delves into the contours
of cloud platforms, IoT middleware, and IoT gateways, encompassing both
hardware and software facets. The chapter also unravels the intricate skein
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Figure 2.4.: Place of IoT gateway and cloud platform in IoT Architecture

of protocols, threading the IoT tapestry and interconnecting devices. It tra-
verses the terrain of data processing and storage, illuminating the pathways
to harness the torrent of data generated by IoT ecosystems.

The voyage concludes with an introduction to the design paradigm of linked
appliances, an end-to-end journey that commences with the instantiation of
electronics and culminates in the fine-tuning of firmware. Join us on this
expedition as we unravel the multifaceted tapestry of IoT platforms and their
pivotal role in sculpting the IoT landscape.

2.6.1. Sensing the real world: The Vital Role of Sensors
In the realm of the Internet of Things (IoT), sensors emerge as the quintessen-
tial tools that facilitate the acquisition of real-world inputs, thereby enabling
interaction with the environment. These unassuming devices possess the re-
markable ability to transmute measurements of diverse physical parameters,
such as temperature, humidity, light, motion, heat, sound, and more, into
discernible signals interpretable by humans.

In the ever-expanding domain of IoT, a diverse array of sensor types finds
their way into an increasingly ubiquitous range of everyday objects. Within
these smart devices, exemplified by the modern refrigerator (see Fig. 2.5),
sensors assume the role of diligent sentinels, ceaselessly observing the envi-
ronment and dutifully recording data pertaining to events or changes. This
data spans a rich spectrum, encompassing metrics like ambient temperature,
humidity levels, photographic imagery, and even video recordings. This con-
tinuous influx of information serves as the lifeblood that nourishes our ability
to discern patterns, unveil trends, and craft insightful predictions.

To elucidate this symbiotic relationship between sensors and IoT applica-
tions, let us consider the hypothetical scenario of a smart refrigerator, replete
with an assortment of sensors, as outlined in Fig. 2.6[34]. Here, we dissect the
system architecture into its three fundamental components:
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Figure 2.5.: Hisense Refrigerator’s key sensors [33]

• Sensor-Equipped Container: At the bedrock of this architecture lies
the hardware domain. It comprises an ensemble of vital components, in-
cluding Arduino and Raspberry Pi, which orchestrate the monitoring of
the smart refrigerator’s condition. Armed with an array of sensors - capa-
ble of measuring temperature, humidity, and luminosity - this hardware
ecosystem stands poised to scrutinize the refrigerator’s environment. It
culminates its mission by capturing visual data, encapsulating an instant
snapshot of the surroundings at the behest of temperature and humidity
sensors.

• Information Server: Functioning as the neural hub of the system, the
Information Server serves as the vital link between the user interface,
application layer, and the sensing hardware. With an intricate web of
interconnectivity, it processes incoming sensor signals, executing a gamut
of operations in response.

• Maintenance Application: Endowing the user with omnipotent con-
trol, the Maintenance Application takes the form of a mobile application,
nestling comfortably on smartphones or tablets. This interface provides
users with unfettered access to the troves of processed data residing on
the server. Even when physically distant from their abode, users can
instantaneously tap into the repository of their connected refrigerator’s
insights.

In essence, sensors represent the pivotal conduit through which the IoT
cosmos interacts with the tangible world. These unassuming devices, armed
with the power to translate physical phenomena into digital signals, form the
foundational bedrock upon which the edifice of IoT is erected, ushering forth
an era where inanimate objects resonate with life and intelligence.
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Figure 2.6.: System Architecture of Smart Refrigerator [34]

2.6.2. IoT gateway platforms: Bridging the Physical and Digital
Realms

In the intricate tapestry of the Internet of Things (IoT), the notion of a gate-
way emerges as a pivotal linchpin, facilitating seamless communication be-
tween distinct realms. In essence, an IoT gateway, whether manifested in
hardware or software, plays the venerated role of a bridge, forging the crucial
link between IoT devices and the boundless expanse of the cloud.

The crux of the matter lies in the elemental flow of data and information
within the IoT ecosystem. IoT devices, each an autonomous data generator
in its own right, form the bedrock upon which the edifice of this technological
marvel is constructed. These devices, endowed with diverse low-level com-
munication protocols, embark on a ceaseless journey of observation and mea-
surement, their purpose being to translate real-world phenomena into digital
signals.

However, the digital realm of the cloud, wherein the fruits of these devices’
labor are destined to be harvested, stands distant and disparate. Enter the
IoT gateway, an intrepid sentinel perched at the interface of these disparate
worlds.

At its core, an IoT gateway serves as a nexus, a veritable crossroads where
data streams converge and diverge. It excels in the art of translation, deftly
converting the cryptic dialects of diverse low-level protocols into a common
tongue, one universally understood within the realm of the cloud. In essence,
it bridges the chasm between the tangible and the digital, facilitating the fluid
transfer of data and information.

To construct these vital bridges, the IoT landscape boasts a profusion of
hardware and software platforms, each offering unique capabilities and fea-
tures. In the ensuing subsections, we delve deep into the annals of these IoT
gateway platforms, unraveling their intricacies and elucidating their nuances.
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Evaluation of Gateway Hardware Platforms: Bridging the Physical Divide

In the realm of IoT gateways, a panoply of hardware platforms emerges as
the bedrock upon which IoT systems are built. These tangible gateways,
equipped with microcontrollers and CPUs, serve as the conduits that bridge
the physical and digital worlds. This subsection embarks on an exploratory
journey, shedding light on a few selected hardware gateways that exemplify
the diversity within this domain.

Raspberry Pi 3 Model B This gateway, adorned with the BCM43438 chip,
boasts WiFi 802.11n connectivity and Bluetooth Classic 4.1 capabilities. It
features a 40-pin extension header equipped with UART, I2C, and SPI connec-
tors, facilitating seamless hardware connections. Four USB host ports further
enhance its versatility.

Figure 2.7.: Front side of Raspberry Pi 3 Model B board [35]

Banana Pro The Banana Pro, housing the AP6181 chip, forgoes Bluetooth
and ZigBee modules in favor of WiFi 802.11n connectivity. Its 40-pin expan-
sion header accommodates three UART devices, two I2C buses, and one SPI
bus, while pins 16 and 17 facilitate Controller Area Network (CAN) connec-
tions in industrial and automotive applications. This gateway offers one USB
On-The-Go (OTG) port and two independent Universal Serial Bus (USB) host
ports. Fig.2.8 displays the banana pi pro front side.

Figure 2.8.: Front side of Banana Pro board [36]

Pine A64+ The Pine A64+ single-board computer caters to a spectrum of
Android OS versions. With two expansion headers, the first featuring 40 pins
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and the second known as the Euler bus, sporting 34 pins, it offers ample con-
nectivity options. Realtek RTL8723BS powers its wireless module, enabling
WiFi 802.11n and Bluetooth Classic 4.0 functionalities.

Figure 2.9.: Front side of Pine A64+ board [37]

Cubietruck This gateway leverages an AP6210 wireless chip to deliver WiFi
802.11n and Bluetooth Classic 4.0 support. Its two expansion headers, replete
with 54 pins, foster connections for three UART devices, one I2C bus, and an
SPI bus. It even accommodates modules like the Core2530 ZigBee module via
the DVK570 expansion board. Two USB host ports and one USB OTG port
enhance its connectivity.

Figure 2.10.: Front side of Cubietruck board [38]

Intel Edison Intel’s Edison module emerges as a versatile system-on-a-chip,
facilitating the creation of IoT and wearable devices. WiFi and Bluetooth 4.0
LE capabilities empower this gateway to bridge the physical and digital realms
seamlessly.

ESP8266 Hailing from Espressif Systems, the ESP82661 stands as a testa-
ment to low-power Wi-Fi microprocessors. With a complete TCP/IP stack
and microcontroller capabilities, it offers a compact yet potent solution for
IoT gateways.

1ESP8266: http://https://www.espressif.com/en/products/hardware/esp8266ex/
overview
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Figure 2.11.: Front side of Intel Edison board [39]

Arduino Uno WiFi A stalwart in the realm of microcontroller boards, the
Arduino Uno WiFi2 combines the prowess of the ATmega328P with WiFi
capabilities. It boasts an inbuilt Inertial Measurement Unit (IMU) and a
secure ECC608 crypto chip accelerator, enhancing its connectivity and security
features.

BeagleBoard BeagleBoard’s cheap single-board computers3, based on Texas
Instruments processors with ARM Cortex-A series cores, offer open-source
blueprints and readily available parts, fostering compatibility and flexibility
in hardware creation.

SODAQ The SODAQ ecosystem4 offers a range of hardware products, such
as Autonomo, SODAQ SARA AFF N211, and Mbili. These boards are engi-
neered for low power consumption, capable of running on small lithium bat-
teries and solar panels, making them ideal for remote and energy-efficient IoT
applications.

In this intricate web of hardware gateways, each platform embodies a unique
blend of features and capabilities, catering to the diverse needs of IoT systems.
These gateways stand as the tangible foundations upon which the ethereal IoT
ecosystem is built.

Evaluation of Gateway Software Platforms: Navigating the Digital Realm

In the realm of IoT gateways, where software prowess meets hardware might,
an array of open-source software platforms plays a pivotal role in building the
bridge between the physical and digital worlds. This subsection explores these
digital gatekeepers that orchestrate the flow of data in IoT systems.

OpenHAB plaftorm OpenHAB, an open-source platform rooted in Java, is
renowned for simplifying home automation. However, its versatility extends
to IoT gateways. Unlike cloud-dependent solutions, OpenHAB directly com-
municates with local devices and retains data on-site. It operates through

2Arduino Uno WiFi: http://store.arduino.cc/arduino-uno-wiFi-rev2
3BeagleBoard: https://beagleboard.org/beagleboard/
4SODAQ: https://shop.sodaq.com/sodaq-sara-aff-r410m.html
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Equinox runtime, executing bundles based on the OSGi architecture. Fig.
2.12 provides a glimpse of its architecture.

Figure 2.12.: OpenHAB architecture [40]

DeviceHive platform DeviceHive emerges as an open-source M2M commu-
nication platform that encompasses IoT gateway capabilities. Deviating from
the OSGi path, it adopts a D-BUS-based design, as illustrated in Fig. 2.13.
DeviceHive serves as a scalable, hardware-centric, and cloud-agnostic microser-
vices platform, facilitating device management, connectivity configuration,
control, and behavior analysis via APIs supporting various protocols.

OpenRemote platform Born in 2009 to resolve integration issues among
diverse M2M communication protocols, OpenRemote amalgamates multiple
protocols and technologies for smart city and building automation, aided by
visualizations. Its architecture, depicted in Fig. 2.14, comprises three key
components: local runtime controller, control panels (apps), and cloud-based
configuration tools named OpenRemote Designer.

AllJoyn platform Introduced in 2013, AllJoyn is an open-source framework
designed to ensure seamless device interoperability. This framework provides
an abstraction layer compatible with Android, iOS, Linux, and Windows,
facilitating application development without tethering to a specific operating
system[40]. AllJoyn encourages proximity networking and adaptability, as
outlined in Fig. 2.15.
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Figure 2.13.: DeviceHive architecture overview [41]

IoTivity platform Debuting in 2015, IoTivity ushers in a new standard for
interconnecting wired and wireless devices in the IoT landscape. Its architec-
ture, represented in Fig. 2.16, offers an efficient framework suitable for smart
devices, aiming to address the burgeoning needs of IoT through device-to-
device connectivity[43].

Eclipse Kura platform Eclipse Kura, a Java-based framework harnessing
OSGi, empowers the creation of IoT gateways. Operating atop the Java Vir-
tual Machine (JVM), Kura simplifies software development through reusable
building blocks. It streamlines network configuration, IoT server connectiv-
ity, and remote gateway management. Kura’s APIs grant access to hard-
ware gateway interfaces like GPIOs, I2C, Serial ports, and more, facilitating
hardware-level interactions.

These software platforms, akin to the conductors of a digital orchestra, har-
monize the diverse elements within IoT gateways, orchestrating the seamless
flow of data between the physical and digital realms.

2.6.3. IoT Middleware

IoT middleware emerges as the linchpin, connecting and accelerating various
facets of IoT systems, from resource identification to data management, know-
ledge extraction, privacy, and security enhancement. This subsection casts a
spotlight on noteworthy IoT Middleware Frameworks.

Hydra The Hydra project5, a Networked Embedded System middleware, sets
the stage for interoperability and security in IoT applications via a P2P net-
work. It empowers developers to seamlessly integrate diverse physical objects
into their applications, offering straightforward web service interfaces. Re-
gardless of the underlying network technologies (e.g., Zwave, WiFi, ZigBee,

5Hydra Project: https://vicinity2020.eu/vicinity/content/hydra
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Figure 2.14.: OpenRemote architecture [40]

LoRaWAN), Hydra excels in unifying heterogeneous physical objects. Armed
with P2P communication tools, diagnostics, Semantic Model Driven Architec-
ture, and device/service discovery capabilities, Hydra ensures the safety and
reliability of objects and services. Notably, it transforms into ”LinkSmart”6

as the Hydra project concludes.

Ubiware Ubiware adopts an agent-based middleware approach, endowing
each resource with a proactive agent. It boasts a three-layer agent architec-
ture comprising the behavior engine layer, intermediate layer, and resources
layer[45]. Drawing inspiration from ubiquitous computing, it integrates dis-
tributed AI, semantic web, and human-centric computing technologies. Ubi-
ware’s domain-independent nature facilitates the interconnection, interoper-
ability, communication, interaction, self-awareness, and planning of various
resources, systems, and devices[46]. Metadata and ontologies form its core
components, crucial for ensuring interoperability among objects.

OpenIoT OpenIoT7, a versatile middleware infrastructure, enables flexible
configuration and deployment of algorithms for collecting, filtering, and pro-
cessing information from internet-connected components. Embracing a utility
cloud computing delivery paradigm, OpenIoT paves the way for extensive
smart IoT applications at scale. It facilitates access to additional IoT-based
resources and technology, supporting the creation and management of IoT re-
source ecosystems. OpenIoT also offers on-demand utility IoT services such
as sensing as a service, impacting various scientific and technological fields,

6LinkSmart: https://www.linksmart.dk/news.php
7OpenIoT: https://github.com/OpenIotOrg/openiot
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Figure 2.15.: AllJoyn architecture [42]

including middleware for sensors and sensor networks, ontologies, semantic
models, annotations, and cloud/utility computing.

FIWARE The FI-PPP program leverages FIWARE8, an open, architectural,
and operational software, to foster the generation and delivery of services
across diverse domains. FIWARE envisions an open and sustainable ecosystem
centered on open, royalty-free, and implementation-driven software platform
standards. It fuels the creation of innovative, intelligent applications across
a multitude of fields[40]. The FIWARE community, including the FIWARE
Foundation and FIWARE OSC (Open Source Community), actively supports
and drives the FIWARE platform’s evolution.

These IoT middleware frameworks function as digital bridge builders, fa-
cilitating seamless connectivity and acceleration across IoT landscapes, ulti-
mately enhancing interoperability, security, and innovation.

2.6.4. IoT cloud platforms
IoT’s convergence with cloud computing opens the door to myriad possibili-
ties. IoT cloud platforms, such as those offered by VICINITY, Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud, provide the critical in-
frastructure needed to support IoT applications.

VICINITY platform Launched under the Horizon 2020 Research and Inno-
vation Program, the VICINITY platform weaves a decentralized, open vir-
tual neighborhood network[47]. It acts as an ”interoperability as a service”

8FIWARE: https://www.fiware.org/
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Figure 2.16.: IoTivity architecture [43]

Figure 2.17.: Eclipse Kura overview [44]

provider, akin to a social network for IoT. This platform forges connections
across diverse IoT ecosystems, enabling users to interact with smart devices
as if they were part of their own ecosystem. VICINITY’s scope spans smart
home, smart energy, smart transportation, and eHealth applications.

Amazon Web Services platform AWS, a trailblazer in cloud computing since
2006, extends its prowess to IoT. Supporting device-to-device and device-to-
cloud connections, AWS bolsters various communication protocols like Web-
Sockets, MQTT, and HTTP. Security and data protection are paramount,
featuring robust authentication and encryption. Key components encompass
AWS IoT Device SDK, Device Gateway, Authentication and Authorization,
Registry, Device Shadows, and Rules Engine, as shown in Fig.2.19[48].
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Figure 2.18.: VICINITY Overview [40]

Microsoft Azure platform Launched in 2010, Microsoft Azure offers a com-
prehensive cloud computing platform. Azure encompasses Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Its multifaceted features include scalability, data analytics, high availability,
privacy, security, and a pay-as-you-go model (refer to Figure 2.20).

Google Cloud platform Born in 2008, Google Cloud Platform leverages
Google’s infrastructure to empower users in creating, launching, and expand-
ing apps, websites, and services. GCP’s data lifecycle spans acquisition, pro-
cessing, storage, and visualization, with real-time stream processing capa-
bilities (refer to Figure 2.21). Its key features encompass scalability, high
performance, security, compliance, and an environmentally friendly cloud en-
vironment.

While these IoT cloud platforms offer similar capabilities, their distinctive
qualities ensure they remain influential players in the IoT-cloud landscape.
Whether it’s VICINITY’s focus on interoperability, AWS’s robust security,
Azure’s comprehensive cloud services, or GCP’s performance and sustainabil-
ity, each platform contributes to the ever-evolving IoT ecosystem.

2.6.5. Selection of IoT platforms for building own smart devices

In the dynamic world of IoT, choosing the perfect platform to build your smart
devices is crucial. This section explores the factors to consider when selecting
an IoT platform, helping you make informed decisions on your IoT journey.

Selection of IoT platform

In the intricate realm of the Internet of Things (IoT), each platform offers
unique features and capabilities. Consequently, the task of selecting the most
suitable IoT platform becomes a complex endeavor. This section provides
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Figure 2.19.: Amazon Web Services Overview [49]

guidance for making informed choices when seeking the optimal IoT platform
for a project. The following steps are recommended:

1. Thorough Feature Comparison: Initiate the selection process by con-
ducting a comprehensive analysis of various IoT platforms. Scrutinize
their features, functionalities, and technical specifications.

2. Precise Smart Device Specification: Define precise specifications for the
smart devices that are integral to your project. This includes delineating
performance expectations and connectivity requirements.

In addition to the above steps, several key criteria should be considered in
the decision-making process:

• Hardware Platform Selection: Evaluate IoT gateway hardware plat-
forms based on criteria such as performance, connectivity capabilities,
and the capacity for autonomous operation.

• Software Platform Selection: When selecting a software platform,
examine aspects such as available IoT data gathering protocols, security
features, portability, extensibility, developer documentation, availability
of developer examples, and the robustness of the support community.

• Cloud Platform Selection: For IoT cloud platform selection, priori-
tize the following criteria:

– Robust Protocol Support: Ensure the chosen platform offers
robust support for data ingestion protocols.

– Offline Functionality: Verify the platform’s capability for reliable
offline operation.
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Figure 2.20.: Microsoft Azure Overview [50]

– Device Lifecycle Management: Confirm that the platform sup-
ports device lifecycle management through cloud-based orchestra-
tion.

– Scalable Design: Opt for a platform with a scalable architecture
that remains independent of underlying hardware.

– Analytics and Visualization: Assess whether the platform pro-
vides comprehensive analytics and visualization tools, which can
significantly impact data interpretation and decision-making.

By adhering to these systematic considerations and criteria, you can make a
well-informed selection of an IoT platform tailored to the specific requirements
of your project, ensuring its successful implementation in the realm of the
Internet of Things.

2.6.6. Connecting devices
In the vast landscape of the Internet of Things (IoT), where the convergence
of devices and data defines the ecosystem, the significance of connectivity can-
not be overstated. It is through seamless communication protocols that in-
telligent entities, ranging from sensors to gateways, facilitate the transmission
of data within the IoT framework. This section delves into the diverse array
of connectivity options, encompassing both wired and wireless communication
protocols, that underpin the IoT infrastructure.

Intricately woven into the fabric of IoT, these protocols are instrumental in
orchestrating the transfer of data between the cloud and IoT endpoints. Each
protocol carries its own set of features and advantages, tailored to specific
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Figure 2.21.: Google Cloud platform architecture [51]

use cases within the IoT landscape. The ensuing paragraphs shed light on a
selection of these IoT protocols, elucidating their functionalities and contextual
relevance.

Device connectivity protocols

A panoramic view of IoT’s technological landscape necessitates a meticulous
exploration of the diverse protocols governing connectivity between IoT de-
vices and applications. The Internet of Things (IoT) is a multifaceted realm
that encompasses a spectrum of businesses, spanning from individual devices
to extensive cross-platform deployments, amalgamating embedded technology,
cloud systems, and real-time communication.

To bring coherence to this intricate web of IoT protocols, it is prudent to
categorize them into distinct layers rather than shoehorning them into the
traditional OSI model. This stratification provides a structured framework,
ensuring a better comprehension of the IoT protocol landscape. Here are the
pivotal layers for IoT protocols:

1. Infrastructure Layer: This layer encompasses protocols such as 6Low-
PAN, IPv4/IPv6, and RPL, which serve as the bedrock for IoT networks,
managing the fundamental infrastructure on which IoT systems rely.

2. Identification Layer: In the realm of IoT, precise identification is
paramount. Protocols like EPC, uCode, IPv6, and URIs facilitate the
unique identification of IoT entities, ensuring seamless communication.

3. Communication / Transport Layer: The crux of IoT connectivity
lies in this layer, with protocols like Wi-Fi, Bluetooth, and LPWAN facil-
itating the wireless transmission of data between devices and networks.
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4. Discovery Layer: Discovery protocols like Physical Web, mDNS, and
DNS-SD play a pivotal role in locating and identifying IoT devices within
networks, a crucial aspect of IoT functionality.

5. Data Protocols: At the heart of IoT communication are data proto-
cols like MQTT, CoAP, AMQP, Websocket, and Node. These protocols
govern how data is formatted, transmitted, and received across IoT sys-
tems.

6. Device Management Layer: Device management is indispensable
for IoT scalability and maintenance. Protocols like TR-069 and OMA-
DM offer standardized mechanisms for overseeing and controlling IoT
devices.

7. Semantic Layer: In the quest to make sense of IoT data, semantic
protocols like JSON-LD and Web Thing Model provide a framework for
structuring and interpreting IoT data in a meaningful way.

8. Multi-layer Frameworks: AllJoyn, IoTivity, Weave, and Homekit
represent multi-layer frameworks that provide comprehensive solutions
for IoT interoperability, bridging various aspects of the IoT stack.

In dissecting the IoT protocol landscape through this layered approach, a
clearer understanding of the intricate web of IoT technologies emerges, paving
the way for more informed decision-making in IoT design and implementation.

Generic protocols - WiFi, Cellular, Ethernet In the expansive landscape
of IoT device connectivity, a trio of generic protocols — WiFi, Cellular, and
Ethernet — emerges as the stalwarts of modern networking standards. These
protocols, rooted in the comprehensive IEEE 802 Standard, serve as the foun-
dational building blocks for a diverse range of IoT applications, spanning from
the local area to wide area networks.

IEEE 802 Standard The IEEE 802 Standard is a comprehensive frame-
work encompassing a multitude of networking specifications, intricately de-
tailing both the physical and data-link aspects of network communication.
Among the myriad components within this standard, four prominent specifi-
cations significantly influence IoT connectivity:

• 802.3 Ethernet: This specification defines the Ethernet protocol, a ubiq-
uitous technology underpinning local area networks (LANs). Ethernet
is celebrated for its reliability and high-speed data transmission capabil-
ities.

• 802.11 Wi-Fi: Wi-Fi, characterized by various sub-specifications within
the 802.11 family, revolutionized wireless connectivity. It employs the
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
protocol for efficient channel sharing, enabling seamless wireless com-
munication.
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• 802.15 Bluetooth/ZigBee: The 802.15 specification encompasses Blue-
tooth and ZigBee, two prominent wireless technologies known for their
versatility and low-power consumption, making them ideal choices for
IoT applications.

• 802.16: Also known as WiMAX, 802.16 extends the reach of wireless
networks, particularly in metropolitan and rural areas. It offers high
data rates and robust connectivity, enhancing IoT capabilities.

Cellular Networks Cellular networks represent a pivotal facet of IoT con-
nectivity, providing ubiquitous coverage across vast geographic areas. These
networks consist of discrete cells, each served by a fixed-location transceiver
known as a base station. This infrastructure enables the transmission of voice,
data, and multimedia content. Cellular networks employ frequency division
among cells to mitigate interference and ensure optimal service quality.

Wireless Connectivity Cellular networks employ a cell structure to cover
extensive regions with radio waves. This architecture facilitates seamless com-
munication for a plethora of portable transceivers, including mobile phones
with mobile broadband modems. These devices traverse through multiple
cells during communication, ensuring uninterrupted connectivity.

In the intricate tapestry of IoT connectivity, these generic protocols stand as
robust pillars, offering diverse options for both local and wide-area communi-
cation. The IEEE 802 Standard, in particular, continues to evolve, providing
a fertile ground for innovation and the seamless integration of IoT devices into
modern networks.

LoRaWan In the realm of IoT connectivity, LoRaWAN stands as a beacon of
innovation, offering a powerful and efficient solution through Low-Power Wide-
Area Networking (LPWAN) technology. LoRaWAN has gained widespread
adoption across the globe, finding application in diverse domains such as en-
ergy management, resource conservation, pollution control, infrastructure op-
timization, disaster mitigation, and more.

BlueTooth Bluetooth, a pioneering wireless technology, has revolutionized
connectivity by facilitating the creation of Personal Area Networks (PANs). It
accomplishes this by enabling the seamless transfer of data over short distances
between a diverse array of devices, both stationary and mobile. This feat is
achieved through the utilization of short-wavelength Ultra High-Frequency
(UHF) radio waves, operating within the industrial radio bands. Bluetooth
has emerged as a transformative force in wireless connectivity, reshaping the
way devices interact within PANs. Its packet-based data transfer, frequency-
hopping agility, and adaptability across a multitude of devices have made it
an integral part of modern technology ecosystems. From personal devices to
IoT applications, Bluetooth continues to empower seamless wireless commu-
nication.
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Zigbee Zigbee stands as a formidable high-level protocol, purpose-built for
the establishment of Personal Area Networks (PANs) that cater to specific
applications such as home automation, medical device data collection, and
scenarios with stringent requirements for low-power and low-bandwidth com-
munication. In essence, Zigbee serves as an indispensable technology for appli-
cations demanding reliable, low-power, and secure wireless communication. Its
ability to cater to a diverse range of use cases, cost-effectiveness, and empha-
sis on power efficiency make it an attractive choice in the realm of WPANs.
Whether in home automation, healthcare, or industrial automation, Zigbee
continues to enable connectivity solutions that thrive in resource-constrained
environments.

LTE-M NgIoT The advent of Next-Generation Internet of Things (NGIoT)
has spurred the development of cutting-edge technologies to underpin the ever-
evolving landscape of connected devices. Among these innovations, LTE-M
(Long-Term Evolution for Machines) has emerged as a pivotal low-power wide
area network (LPWAN) tailored explicitly for machine-to-machine (M2M) and
Internet of Things (IoT) applications. LTE-M NgIoT represents a pivotal ad-
vancement in IoT connectivity, aligning itself with the demands of an increas-
ingly interconnected world. Its low-power, wide area coverage, enhanced data
capabilities, mobility support, and compatibility with NGIoT technologies po-
sition it as a cornerstone for driving innovation in both public and private
sectors. As the IoT landscape continues to evolve, LTE-M NgIoT stands as a
testament to the relentless pursuit of more efficient, connected, and intelligent
solutions.

Narrowband IoT (NB-IoT) The Third Generation Partnership Project
(3GPP) has played a pivotal role in shaping the landscape of mobile tele-
phony protocols[52]. Established to foster collaboration and standardization
in the telecommunications industry, 3GPP’s contributions have significantly
expanded the capabilities of cellular services, paving the way for a new era of
connectivity. 3GPP’s concerted efforts in advancing mobile telephony proto-
cols have not only expanded the realm of possibilities for cellular services but
have also laid the foundation for the seamless integration of IoT devices into
the cellular network. As the IoT ecosystem continues to flourish, the stan-
dards set by 3GPP remain instrumental in enabling efficient, low-power, and
widespread connectivity for a myriad of IoT applications.

2.6.7. Storing and processing of data

A new era of data creation, storage, and processing has begun as a result of
the proliferation of IoT devices. However, this abundance of data brings with
it the challenge of effectively managing and securing it across diverse physical
locations. In the realm of IoT, orchestrating data from myriad devices is a
complex task, often requiring tailored strategies to maximize its value while
ensuring data integrity and security.
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Data Optimization Notably, IoT systems often generate vast amounts of
data, but storing all this information in its entirety may not always be neces-
sary. Consider a traffic camera that counts passing vehicles; what’s crucial is
the count data over specific time intervals, not the entire video feed. Herein
lies the importance of data optimization, where irrelevant or redundant data
can be filtered out or summarized before storage or transmission. This not
only conserves storage space but also streamlines data processing.

Edge Computing IoT devices frequently operate in real-time environments
and may require immediate decision-making capabilities. In such scenarios,
it’s impractical to transmit data to a central data center for processing, as
this introduces latency. Enter edge computing, a paradigm that empowers
IoT devices to process data locally, at the edge of the network. This approach
enables rapid decision-making, reducing latency and dependence on central
data centers. For instance, an autonomous vehicle may need to process sensor
data instantly to navigate safely.

Distributed Data Processing With IoT, data is generated and processed
across a distributed network of devices. This decentralization of data process-
ing necessitates a shift in computational paradigms. Businesses must incor-
porate the capability to deploy computing and applications to the network’s
edge. This enables devices to pre-process data before transmitting it to cen-
tral data centers for long-term analysis. For instance, a smart factory may
locally analyze sensor data to optimize machinery performance before sending
summarized data to the central monitoring system.

In the IoT landscape, the journey of data, from creation to processing and
storage, is marked by complexity and dynamism. Effectively managing this
data requires a holistic approach that considers optimization, edge computing,
and distributed processing. As IoT continues to reshape industries and our
daily lives, mastering the art of data handling is paramount for harnessing its
full potential.

IoT Platform supporting connectivity

In the intricate ecosystem of the Internet of Things (IoT), platforms play a
pivotal role as tools for creating, running, and managing applications. These
platforms serve as the linchpin connecting the physical world of sensors and
devices with the digital realm of data processing and application development.

Embedded Board Platforms Hardware manufacturers leverage embedded
board platforms to craft IoT applications. These platforms offer a foundation
for building intelligent solutions, often at the device level. Manufacturers use
these boards to imbue devices with computational capabilities, enabling them
to collect data and perform basic processing tasks.
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Cloud-Centric Development For cloud service providers and application de-
velopers, IoT platforms provide a canvas upon which applications are woven
using the data harvested from sensors and devices. These platforms often dwell
in the cloud and offer a rich set of tools and services for handling IoT data.
They serve as the intermediary layer between physical devices and actionable
insights.

Data Consumption and Action At the core of IoT platforms is their ability
to consume data from sensors and devices and transform it into meaningful ac-
tions. They provide well-defined Application Programming Interfaces (APIs)
that empower developers to seamlessly connect diverse hardware platforms
and harness cloud-based services.

Centralized Platforms IoT platforms can assume various architectures, with
centralized platforms being one of them. In this model, a central hub, typically
powered by the cloud, manages the operations of connected nodes or smart
devices. While centralized platforms are effective for many IoT applications,
they may fall short when dealing with the demands of industrial IoT solutions.

IoT Platform as a Service (PaaS) PaaS is a framework that empowers de-
velopers to expedite the creation and testing of IoT applications. It offers
a structured environment for designing and building applications efficiently.
PaaS streamlines the development process by managing underlying compo-
nents like operating systems and virtualization. It significantly reduces coding
efforts and automates compliance with company policies, providing scalability,
high availability, and multi-tenancy in a cloud-based context.

Decentralized Platforms In contrast, decentralized platforms are ushering
in the next wave of IoT innovation. These platforms enable nodes within an
IoT network to interact autonomously, free from the constraints of central-
ized authority. Decentralization brings several advantages to IoT, including
robustness, scalability, low power consumption, streamlined data and device
management, and the integration of artificial intelligence at the network’s edge.

Five Pillars of Decentralized IoT Decentralized IoT architectures are un-
derpinned by five key pillars: a multi-network approach, scalable and interop-
erable implementation, efficient power management, intuitive data and device
administration, and the infusion of artificial intelligence at the edge. These
attributes collectively empower IoT platforms to tackle a broader spectrum
of applications and enable more efficient, resilient, and intelligent IoT ecosys-
tems.

In the evolving landscape of IoT, platforms remain the catalyst for innova-
tion, connecting disparate elements into cohesive and intelligent systems that
drive our interconnected future.
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IoT data storages

The deluge of data generated by the Internet of Things (IoT) poses a complex
challenge: how to efficiently collect, store, and manage this wealth of informa-
tion. Open-source platforms, such as ThingSpeak, have emerged to address
this issue, offering tools for sensor data collection and cloud integration. Some
platforms, like ThingSpeak, even provide dedicated Matlab apps for data anal-
ysis and visualization. Popular IoT boards like Beaglebone, Raspberry Pi, and
Arduino facilitate the transmission of sensor data, which can be directed to
specific channels for organization and analysis.

The IoT landscape boasts a variety of platforms, each tailored to unique
needs. Some notable contenders include Thingworx 8 IoT Platform, Microsoft
Azure IoT Suite, Google Cloud IoT Platform, IBM Watson IoT Platform,
AWS IoT Platform, Cisco IoT Cloud Connect, Salesforce IoT Cloud, Kaa
IoT Platform, and Oracle IoT Platform. These platforms offer a spectrum
of features, enabling businesses to select the one that aligns with their IoT
objectives.

Edge Computing as the IoT Data Solution: IoT data management and
archival present a formidable challenge, particularly when dealing with remote
locations, like branch offices or plant machinery that operated through servers.
In such cases, edge computing emerges as the go-to solution. Edge computing
entails processing and managing operations outside the centralized data center.

The rising popularity of edge computing is attributed to its capability to
handle the vast volumes of data generated beyond centralized data centers.
To ensure secure IoT data processing and storage, several considerations come
into play. Firstly, substantial investments are required in external networking
infrastructure. Secondly, data aggregation may suffice, obviating the need to
store all device data. Lastly, real-time data processing is imperative.

Keeping all IoT data within data centers undermines the feasibility of these
prerequisites. This is where Information Lifecycle Management (ILM) steps
in. ILM extends beyond cost-effective data storage, ensuring data resides in
locations conducive to immediate processing, leveraging machine learning and
AI algorithms for valuable business insights.

Current Options for IoT Data Processing and Storage: The IT industry
presents a myriad of solutions for processing and storing IoT data effectively:

• Public Cloud Storage: Public cloud providers not only offer storage
but also empower users to process and analyze data using AI tools.

• Snowball Appliance: IoT supplier solutions like Amazon Web Ser-
vices (AWS) employ the Snowball appliance, a server with storage, to
physically transfer and locally process data from offsite locations.

• Google Cloud Platform (GCP): GCP offers a cloud processing plat-
form for unstructured IoT data.

• On-Premise ML/AI Systems: Companies like DDN have engineered
converged infrastructure solutions to store and analyze IoT data using
on-premise ML/AI systems.
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• Excelero’s Scalable File Storage: Excelero has developed a product
to meet the demands of scalable file storage and low-latency analytics in
the IoT landscape.

The IoT data storage and processing realm is a dynamic space, constantly
evolving to meet the demands of the IoT revolution. As the IoT continues
to expand, the need for efficient, secure, and scalable data solutions becomes
increasingly vital.

2.6.8. Connected appliance design from electronics to firmware

The rapid expansion of the Internet of Things (IoT) and its associated services
is poised to usher in a new era of ubiquitous computing and communication.
Over the past few years, devices have undergone a significant transformation.
They have shrunk in size while experiencing a substantial boost in compu-
tational power, causing them to seemingly ”disappear” into the fabric of our
lives, seamlessly integrating into larger systems that can control our environ-
ments, such as networks of home appliances.

Embedded electronics are at the heart of these connected home appliances.
These electronics comprise devices equipped with CPUs, actuators, and sen-
sors to ensure real-time functionality. Given their safety-critical nature and
the potential for catastrophic consequences in terms of human life and the en-
vironment, these appliances impose stringent requirements for reliability and
assured performance.

However, the majority of household appliances currently lack wireless com-
munication interfaces and microcontrollers, rendering them incapable of con-
necting to the Internet. Recent advancements in embedded computing are
changing this landscape. As a result, the IoT is on the cusp of witnessing
a surge in interconnected white goods, as household appliances increasingly
adopt wireless connectivity. This shift promises to revolutionize our daily
lives by enhancing the efficiency and convenience of these appliances through
seamless integration into the IoT ecosystem.

Requirements for Efficient and Reliable IoT Appliance Design

When it comes to crafting efficient and dependable IoT home appliances, or
any connected device, two primary components must be considered: electron-
ics and the communication module. These elements are central to ensuring ef-
ficient operation and the perception of reliable radiofrequency signal strength.
The design of an IoT appliance involves the seamless integration of software
development across various levels (refer to Figure 2.22). This often highlights
significant challenges faced by development teams, especially in organizations
transitioning from traditional development paradigms to service-oriented ones.

At its core, any connected or even standard non-connected device’s hardware
includes a user interface for appliance control and monitoring. This interface
is linked to the power board, which frequently manages auxiliary components
such as heating and actuation devices. While some appliances may involve
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Figure 2.22.: The elements that compose the connected appliance

multiple electronics cooperating to oversee their operation, the control board
stands out as the most common electronic component housing the communi-
cation module. The essential requirements for hosting electronics encompass
the physical interface connecting the communication module (e.g. UART) and
the user interface, which may feature additional functionality for configuring
the module’s network parameters.

In contrast, the development of software for connected appliances demands
a profound understanding of the entire sequence of actions, from the appliance
itself to the end-user application. Software maintenance assumes paramount
importance in the realm of connected appliances and can result in significant
unforeseen costs if not managed efficiently. Well-designed hardware, if properly
engineered, should not necessitate maintenance and should avoid incurring
additional expenses.

Furthermore, the development of connected appliances entails creating a
functional profile representation, essentially a dictionary of functionalities. It
also involves implementing the communication protocol that facilitates con-
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nectivity between the host electronics and the communication module. The
communication module requires two protocol implementations: the first links
the module to the host electronics, while the second connects it to a cloud
platform that registers appliances based on their functional profiles. This
comprehensive approach ensures the efficient and reliable design of IoT appli-
ances, paving the way for a seamless user experience.

Definition of functional profile

In the realm of requirements engineering for Internet of Things (IoT) infras-
tructures, the definition of a functional profile assumes paramount importance.
Essentially, a functional profile serves as a meticulously structured represen-
tation, often implemented using mark-up languages or similar formats, that
comprehensively elucidates the capabilities and features of an embedded de-
vice. This profile functions as an exhaustive dictionary of functionalities,
encompassing various attributes that meticulously characterize the distinct
functionalities of a given device. As delineated by Saso [53], these attributes
typically encompass:

1. Name of the Functionality: This denotes the nomenclature or refer-
ence used to identify a specific function within the device.

2. Functionality Identifier: A unique identifier assigned to each func-
tionality to ensure unambiguous reference.

3. Type of Value: Specifies the nature of data or information associated
with the functionality, whether numerical, textual, boolean, etc.

4. Type of Access to the Value: Specifies how the data or value linked
with the functionality can be accessed, whether it’s read-only, write-only,
or both.

5. Automatic Synchronization: Indicates whether the functionality sup-
ports automatic synchronization of its data with other devices or sys-
tems.

6. Initial Value: Specifies the default or initial value for the functionality
when the device is activated or initialized.

7. Range of Valid Value: Defines the acceptable or allowable range
within which the values connected with the functionality must reside.

Table 2.4 provides an illustrative excerpt of this functional profile, particu-
larly within the context of a specific category of household appliances, such as
cooling devices. This table essentially presents a structured representation of
functionalities, their attributes, and potentially sample data pertaining to a
subset of appliances belonging to this category. It serves as a practical exam-
ple of how a functional profile is instrumental in IoT requirements engineering,
facilitating the documentation and comprehension of device capabilities.
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Table 2.4.: Refrigerator functional profile

Hardware Design for IoT-Enabled Household Appliances: Striking a Bal-
ance In the domain of hardware design for IoT-enabled household appliances,
an intricate balance between the ultimate product cost and the viability of
implementing a standardized solution across diverse appliance categories and
models stands as a contemporary challenge of significant proportions. This
challenge encompasses the hardware or electronic components of the appli-
ance and mandates adherence to specific requirements, which encompass:

1. Electronics’ Interface for Communication Module: This domain
encompasses the intricate design and seamless integration of the appli-
ance’s electronic interface, ensuring its harmonious compatibility and
connectivity with the communication module. This interface stands as
the pivotal conduit for the exchange of data and communication between
the appliance and external systems or networks.

2. Optimal Placement of Communication Module’s Antenna: The
strategic determination of the most advantageous location for the com-
munication module’s antenna within the appliance looms as a critical
consideration. This placement necessitates a meticulous evaluation of
factors such as signal strength, interference mitigation, and the overar-
ching optimization of performance. These factors converge to guarantee
the steadfast reliability of communication.

3. User Interface Augmentation for Communication Module Con-
figuration: To facilitate user-friendly setup and configuration of the
communication module, a supplementary user interface component must
be thoughtfully woven into the appliance’s design fabric. This augmen-
tation empowers users with the convenient means to tailor and fine-tune
communication settings in accordance with their preferences and specific
network requisites.

Conscientiously addressing these hardware design requisites not only en-
sures the seamless integration of IoT functionalities into household appliances
but also streamlines production costs and lends support to a more unified ap-
proach that can be universally applied across an array of appliance categories

67



Chapter 2: Background and Fundamentals

and models. This alignment with principles of standardization assumes a piv-
otal role in fostering interoperability and scalability within the dynamic IoT
ecosystem.

Firmware design In the domain of firmware design for IoT-equipped house-
hold appliances, it is imperative to adhere to practices that prevent any dis-
ruption to the core source code of the appliance. The connected code should
act as an encapsulating layer or wrapper around the existing source code.
Within this context, there exist three fundamental pillars that warrant careful
consideration:

1. Protocol for Electronics-Communication Module Connectivity: The se-
lection and implementation of a robust communication protocol are
paramount. This protocol serves as the conduit for seamless interac-
tion between the appliance’s electronic components and the communi-
cation module. Its efficiency and reliability are pivotal in ensuring data
exchange and synchronization.

2. Functional Profile and Internal Protocol Implementation: To enable the
comprehensive gathering of information from multiple electronic compo-
nents and sensors within the appliance, it is essential to define a well-
structured functional profile. This profile delineates the various func-
tionalities, their identifiers, data types, access mechanisms, automatic
synchronization procedures, initial values, and valid value ranges. The
internal protocol implementation should adhere to these specifications,
facilitating efficient data collection and transmission.

3. Firmware Update Mechanism: Implementing a firmware update mech-
anism is crucial for maintaining the appliance’s functionality and secu-
rity over time. This mechanism can be achieved through either wired
or over-the-air (OTA) solutions. However, due to the diverse nature
of electronic components and configurations across various appliances,
devising a firmware update strategy can present challenges. Ensuring
compatibility and reliability across this diversity is a primary concern.

By meticulously addressing these three pillars in firmware design, house-
hold appliances can seamlessly embrace IoT capabilities without compromis-
ing their core functionality. This approach fosters enhanced connectivity, data
acquisition, and the ability to adapt to evolving requirements, all while pre-
serving the integrity of the appliance’s essential operations.

Communication module

Security aspect The security aspect in the context of communication be-
tween the appliance’s electronics and the communication module is of utmost
importance, primarily due to safety concerns and the potential for security
breaches. To ensure the integrity and confidentiality of the data, it is highly
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recommended that the data is properly encrypted during transmission. How-
ever, there are certain challenges to consider. To keep costs down for the final
product, manufacturers often opt for tailored microcontrollers and limited
memory capacity. Implementing a custom encryption protocol under these
constraints can be a significant challenge, despite its critical importance.

Operating temperature and dimensions In household appliance develop-
ment, operating temperature is typically not a significant concern. However,
in specific categories like cooking appliances (e.g. ovens and hobs), tempera-
ture becomes a critical parameter. The prevailing trend is to design modules
with the smallest possible dimensions. This approach is driven by the need
for cross-category unification. Nevertheless, it’s essential to strike a balance,
as larger dimensions could impact mounting in certain cases.

Furthermore, for the sake of standardization and unification across different
appliance categories, it’s advisable that the communication module is certified
to operate reliably at elevated temperatures, typically at least 85oC. This
certification ensures that the module can function effectively across a range
of household appliances, including those that generate significant heat during
operation, without compromising safety or performance.

Testing and certification Comprehensive testing and certification are cru-
cial steps in ensuring the reliability and market success of a communication
module for household appliances. Rigorous testing should encompass various
environmental factors such as exposure to high temperatures, humidity, and
vibration. Detecting and rectifying potential issues during testing is essential,
as any failures in the field could have severe consequences for the product’s
reputation and market performance.

Certification plays an equally significant role and goes hand-in-hand with
testing. Accumulating a diverse range of certifications demonstrates the mod-
ule’s compliance with industry standards and safety regulations. In the com-
petitive landscape of household appliances, having an extensive list of cer-
tificates can significantly enhance the module’s market prospects. It instills
confidence in both manufacturers and consumers, assuring them of the mod-
ule’s reliability and adherence to stringent quality standards.

Firmware development The development of firmware for the communication
module in household appliances is a critical aspect, serving as the vital link
between the physical appliance and the external world. Designing the firmware
with a focus on extensibility and ease of maintenance is paramount for long-
term success. Several key components should be carefully considered during
firmware development:

• Protocol for Electronics and Communication Module: The firmware
should include a robust protocol for seamless communication between
the appliance’s electronics and the communication module. This proto-
col ensures efficient data transfer and synchronization.
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• Protocol for Communication Module and Cloud Platform: Another cru-
cial component is the protocol that facilitates communication between
the communication module and the designated cloud platform. This
connection enables data transmission, storage, and retrieval from remote
servers, enhancing the appliance’s functionality.

• User-Friendly Configuration: To enhance user experience, the firmware
should provide a user-friendly configuration interface. This could be
accessible through a website or a dedicated application, allowing users
to easily set up and customize the module’s functionality.

By carefully addressing these firmware development aspects, manufacturers
can ensure that their communication modules are adaptable, maintainable,
and user-friendly, thereby meeting the demands of both consumers and the
rapidly evolving Internet of Things (IoT) landscape.

Power consumption and power management Power consumption is a crit-
ical consideration in the development of household appliance communication
modules, especially in light of evolving legislative and regulatory demands
that emphasize energy efficiency. Manufacturers are faced with the challenge
of balancing the power requirements of the module with increasing customer
demands for connectivity features. These demands can significantly impact
power consumption and create concerns for manufacturers.

One effective strategy to address this issue is the implementation of a ro-
bust power management protocol. The key recommendation is to define and
integrate this protocol at the outset of the project. The primary goal of such a
protocol is to mitigate the rise in power consumption associated with enhanced
connectivity features.

The power management protocol can achieve this by incorporating the fol-
lowing strategies:

1. Scheduled Module Power Cycling: The protocol can schedule times when
the communication module is turned off. During these periods, the mod-
ule remains in a low-power state. It can then be periodically awakened to
receive messages sent by the cloud platform or a dedicated application.

2. User-Initiated Power Activation: The protocol should also account for
user interaction. For instance, when a user interacts with the appliance
by pressing control buttons or making adjustments through the control
panel, the communication module can be automatically activated to re-
spond to these actions.

By implementing a well-designed power management protocol, manufactur-
ers can strike a balance between delivering the desired connectivity functional-
ities and minimizing power consumption. This approach aligns with both en-
ergy efficiency regulations and consumer expectations for modern, eco-friendly
appliances.
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Mounting and antenna positioning A modular approach, featuring a sin-
gle communication module, holds promise for maintaining cost-efficiency and
standardizing procurement and stock-keeping practices. When considering the
integration of the module with the appliance’s host electronics, three main op-
tions are available:

1. Direct Connection via Connector: This option offers portability between
different appliances, but it limits the antenna’s position to that of the
host electronics.

2. Direct Soldering: Direct soldering is a viable choice for applications with
higher demands and substantial manufacturing volumes. However, it can
pose challenges for after-sales replacement in the event of malfunction.

3. Indirect Mounting with a Connecting Cable: In appliances with limited
mounting space or specific design constraints, an indirect approach using
a mounting case and connecting cable may be considered. This option
can offer flexibility in installation.

Optimizing the positioning of the module’s antenna is crucial for achieving
the best possible signal strength. Identifying the optimal antenna location
can be challenging due to the diverse design constraints of different appli-
ances, such as standalone versus built-in refrigerators or ovens with glass ver-
sus metallic control panels.

While external antennas are a possibility, they introduce additional costs
related to cabling and connectors. Therefore, a preferred choice is to design
the module with an on-board antenna to minimize costs and streamline in-
tegration. Proper antenna placement is a critical aspect of ensuring reliable
communication for connected appliances.

2.6.9. Preliminary Conclusions
In this chapter, we have delved into the essential components of IoT infrastruc-
ture, including IoT gateways, middleware, and cloud platforms. Our explo-
ration began with an overview of selected platforms, highlighting their distinc-
tions to assist in platform selection for developing IoT devices. It’s important
to emphasize that each IoT project is unique, and the choice of platform should
align with the specific requirements of the project.

Furthermore, we delved into the realm of communication protocols, which
serve as the backbone for managing data within IoT infrastructures. These
protocols play a crucial role in ensuring seamless data exchange between de-
vices. We also examined the intricacies of data storage and processing within
the IoT ecosystem, emphasizing the significance of efficient data management.

The final section of this chapter centered on the design of connected appli-
ances, spanning from hardware design considerations to firmware development.
This holistic approach underscores the importance of meticulous planning and
execution to create IoT devices that meet both functional and efficiency re-
quirements.
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As we move forward, the next chapters will build upon this foundational
knowledge, exploring advanced topics and practical applications within the
vast and dynamic field of the Internet of Things.

2.7. The VICINITY project

The VICINITY project stands as a pioneering initiative within the Horizon
2020 program, executed between 2016 and 2020, with a core objective of estab-
lishing an innovative platform aimed at connecting and unifying disparate IoT
infrastructures. This unified ecosystem, often referred to as a virtual neigh-
borhood, empowers users to make selections concerning the interconnection of
their smart objects within a peer-to-peer network. It effectively transforms
isolated IoT infrastructures into interoperable systems, operating seamlessly
at both technical and semantic levels. A pivotal development underpinning
this transformation is the seamless integration of a sophisticated semantic
model into the VICINITY platform, greatly enhancing semantic interoper-
ability among smart objects originating from various operators and adhering
to diverse standards [54].

The architectural foundation of the VICINITY platform, which advocates
for interoperability as a service, is elegantly depicted in Figure 2.23. This ar-
chitectural framework embodies a decentralized, bottom-up, and cross-domain
approach, reminiscent of a social network. Users are empowered to configure
their IoT setups, seamlessly integrating standards aligned with their chosen
services. They have full control over their privacy levels within the peer-to-
peer network. In essence, VICINITY empowers users to orchestrate their IoT
ecosystems to meet their unique needs and preferences. By amalgamating
services from diverse domains and granting users the authority to define the
extent of information sharing while respecting privacy concerns, the VICIN-
ITY platform fosters synergies among services from various domains. This vi-
sionary approach holds the potential to usher in an era of novel cross-domain
services, thereby expanding the horizons of the IoT market.

Upon the completion of the VICINITY project, the platform’s efficacy and
innovation were comprehensively demonstrated through pilot sites across di-
verse domains, including energy, building automation, health, and transport.
The project showcased the platform’s ability to create cross-domain services
that generate added value for users. Notable examples of these value-added
services include micro-trading of demand-side management capabilities, AI-
driven optimization of smart urban districts, and the application of business
intelligence principles to IoT. These achievements underscored VICINITY’s
potential not only to harmonize the intricacies of IoT but also to unlock the
substantial potential of cross-domain services.

This dissertation focuses primarily on the creation of a virtual environment
designed for testing and validating IoT infrastructures and the use cases that
go along with them. This virtual environment accurately replicates real-life
scenarios before their physical deployment. Within this context, a prominent
use case pertains to smart energy management at one of VICINITY’s pilot
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Figure 2.23.: High-level VICINITY architecture [55]

sites in Tromsø, Norway. This smart energy use case serves as an illustra-
tive example of VICINITY’s potential to foster innovative and efficient IoT
solutions.

2.8. Homomorphic encryption

Within the architecture of VICINITY, the paramount importance of privacy
protection is enshrined, ingeniously designed to ensure that only metadata
pertaining to connected devices is stored within a central cloud. Sensitive
and personal data, exemplified by sensor readings, is transmitted exclusively
on a peer-to-peer basis, traversing directly from the data producer to its in-
tended consumer. The transmission of such sensitive data requires prior and
individual approval from the data owner, affirming their explicit consent.

However, even within this meticulously designed privacy framework, chal-
lenges persist. Once an individual has granted consent for data sharing, their
information becomes accessible to potential third-party entities, some of which
may initially appear trustworthy but could harbor malicious intent. In the con-
text of IoT, the concept of ”Value-Added Services (VAS)” stands as a linchpin,
essential for ushering the full potential of smart IoT applications. Users, de-
spite harboring reservations about divulging their personal information, may
find it tempting to share their data with VAS providers, ultimately compro-
mising their privacy.

A far more desirable approach, one that obviates the need to expose sensi-
tive data in plain text while still facilitating the functionality of VAS, can be
realized through the application of homomorphic encryption (HE) schemes.
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Homomorphic encryption presents a remarkable capability: the execution of
specific calculations (or in the case of fully homomorphic encryption, arbitrary
functions) on encrypted ciphertexts, all without the necessity of decrypting the
data beforehand. This cryptographic technique, once considered an enigma,
is the linchpin for preserving data privacy.

Historically, partially homomorphic encryption schemes were the focus of
research efforts. These schemes, while valuable, had limitations, constraining
the types of operations that could be executed on encrypted data. However, a
monumental breakthrough occurred with the introduction of fully homomor-
phic encryption by Gentry in 2009 [56, 57]. This innovation empowered the
execution of arbitrary computations on ciphertexts without any requirement
to decrypt the data, thereby eliminating the exposure of plaintext information.

It is essential to recognize that the adoption of fully homomorphic encryp-
tion does entail computational costs. The increased computational demand
necessitates a trade-off between performance and versatility, and organizations
must make informed decisions in this regard.

In Chapter 5.2.2, we will delve into practical applications of homomorphic
encryption within our framework. This exploration will allow us to assess and
evaluate various options within a realistic yet controlled environment, thereby
shedding light on the intricate interplay between user privacy, data utility, and
computational resources in the context of VICINITY’s IoT ecosystem.
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In the realm of IoT and Cyber-Physical Systems, this chapter embarks on a
comprehensive exploration of the state-of-the-art in simulation techniques. It
commences with a deep dive into the simulation of the Internet of Things (IoT),
unearthing the key requirements that underpin effective IoT simulation. This
journey further unravels the intricacies of crafting simulation scenarios in the
context of IoT, while simultaneously addressing the multifaceted challenges
and shedding light on future directions in this dynamic field. The chapter
then extends its focus to the simulation of Cyber-Physical Systems (CPS),
emphasizing the critical aspects of validation, verification, and the pivotal
role of Discrete Event Simulation in CPS. A panoramic view of existing IoT
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simulators is presented, from stalwarts like S3 and OMNeT++ to innovative
hybrids like ACOSO and OMNeT++. The chapter’s voyage continues with
a spotlight on MAMMotH for emulating large-scale IoT scenarios and ex-
plores the nuances of DEUS, COOJA, and NS3. The chapter culminates in a
comparative analysis of IoT simulation approaches, dissecting interconnected
simulation levels, versatility, community support, synchronization, scalability,
and continuous-time approximations. This comprehensive overview sets the
stage for an in-depth understanding of the evolving landscape of IoT and CPS
simulation methodologies.

3.1. Simulation of the Internet of Things

The development and validation of Internet of Things (IoT) systems rely heav-
ily on simulation, particularly given how diverse and dynamic IoT networks
are. These simulations are essential tools for testing and optimizing different
IoT system components, such as communication protocols, energy consump-
tion patterns, and decision-making processes in a variety of scenarios. The
basic requirements, difficulties, and developments in this field are highlighted
in this chapter as we dig into the multifaceted world of Internet of Things
simulation. In order to establish the platform for a detailed examination of
its intricacies, this part gives a fundamental grasp of IoT simulation.

The Internet of Things (IoT) has revolutionized how devices interact and
share information, ushering in an era of interconnected smart systems. How-
ever, this intricate web of devices, each operating with distinct standards and
functionalities, poses significant challenges when it comes to testing and vali-
dating IoT ecosystems. IoT simulation emerges as a powerful tool to address
these challenges, offering a controlled environment to evaluate and optimize
IoT solutions.

Key Requirements for IoT Simulation A. Gluhak, in the paper titled ”A
Survey on Facilities for Experimental IoT Research” [58], outlines crucial re-
quirements for effective IoT simulation:

1. Scalability: The exponential growth of IoT devices necessitates sim-
ulations capable of handling thousands of nodes, accommodating the
rapidly expanding IoT landscape.

2. Heterogeneity: IoT environments encompass highly diverse devices,
and a robust simulator must support this heterogeneity while ensuring
that device programmability remains manageable.

3. Repeatability: Simulations should be replicable across different testbeds,
promoting consistency and facilitating cross-testbed comparisons. Achiev-
ing this objective mandates standardization and the consistent packaging
of simulation results.
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4. Federation: Complex scenarios often necessitate distributed simula-
tions. A common framework for authentication and experiment schedul-
ing is vital to connect and coordinate different simulations.

5. Concurrency: Many IoT applications involve multiple users interact-
ing concurrently. Effective IoT simulations must minimize interference
among concurrent experiments and efficiently allocate testbed resources.

6. Mobility: IoT devices frequently operate in dynamic, real-world envi-
ronments. Simulators must emulate real-world device movements and
interactions effectively.

7. User Involvement and Impact: IoT applications often require hu-
man interaction, a challenging aspect to simulate. To address this, sim-
ulations must support real-time execution to incorporate genuine user
interactions seamlessly.

IoT simulation stands as a critical enabler in the development and validation
of IoT solutions. By embracing the core requirements outlined by A. Gluhak
and adapting to the evolving IoT landscape, simulations continue to play an
instrumental role in fostering innovation, reliability, and security within the
IoT ecosystem. This chapter sets the stage for a deeper exploration of IoT
simulations, shedding light on their significance and potential in shaping the
IoT landscape of tomorrow.

3.2. Simulation of Cyber-Physical Systems

The simulation of Cyber-Physical Systems (CPS) serves as a potent tool for the
development and testing of various scenarios within the realm of the Internet of
Things (IoT). Broadly, a simulation comprises two fundamental components:
a model and the execution of a range of experiments. While simulations can
theoretically be conducted with or without computer assistance, contemporary
usage predominantly revolves around computerized simulations. Within this
context, diverse programming and descriptive languages, spanning from low-
level to system-level modeling languages, cater to specific use cases. This
classification hinges on three primary model types, elucidating the underlying
concept [59]:

• Physical models pertain to tangible entities, including objects such as
a race car’s gearwheel, a building’s architectural layout, or even more
abstract constructs.

• Decision-making models become instrumental in simulations where events
or decisions singularly dictate the course of the process. This category
finds common ground in sandtable exercises and coffee automata simu-
lations.
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• Deterministic models encompass stochastic models grounded in prob-
ability theory. They find application in areas like quantum theory or
thermal flow simulations.

Figure 3.1 offers an overview of the relationships inherent in a simulation.
The source system constitutes the real-world subject under investigation, sit-
uated within the experimental framework. This framework is supplemented
by a behavior database sourced from prior observations or experiments. Out
of this experimental context, a model is crafted to encapsulate a simplified
version of reality. Subsequently, the simulator is forged from the model to
generate the model’s behavior. Given these intricate relationships, a closer
examination of validation and verification becomes imperative.

3.2.1. Validation and Verification
Validation concerns itself with the modeling relation and gauges the degree
of accuracy in representing the source system through the model. Conversely,
verification pertains to the simulation relation and assesses the fidelity between
the model and the simulator [60]. In essence, simulations are underpinned by
mathematical models and serve as invaluable tools for predicting technical or
economic processes, including failures. Historically, time-dependent models
described using differential equations were the go-to choice for simulations
[60]. However, the ever-increasing computational power has ushered in the
era of complex simulations, particularly decision-making models.

3.2.2. The role of Discrete Event Simulation in CPS
In the context of CPS, where the dimension of time, particularly in terms of
durability, is a critical parameter, discrete event simulations have emerged as
the method of choice for drawing meaningful conclusions from simulations.
These simulations are based on mathematical models and serve as a reliable
means for predicting the behavior of systems, especially those within the IoT
domain, where events play a pivotal role.

Figure 3.1.: Relationships between the source system, model and simulation[60]

In conclusion, the simulation of Cyber-Physical Systems is an indispensable
tool within the IoT landscape. It encompasses diverse modeling approaches
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and techniques to capture the intricacies of real-world scenarios. These sim-
ulations are underpinned by mathematical models, enabling predictions, and
assessments of technical and economic processes. With the rise of compu-
tational power, simulations have evolved to tackle complex decision-making
models. In the ever-expanding IoT ecosystem, discrete event simulations have
taken center stage due to their ability to faithfully replicate real-world dynam-
ics, ensuring accurate verifications of CPS. This chapter serves as a founda-
tional exploration of the significance and methodologies employed in simulat-
ing Cyber-Physical Systems, setting the stage for deeper investigations into
this critical facet of IoT research and development.

3.3. Overview of IoT Simulators

The rapid and exponential growth of the Internet of Things (IoT) market un-
derscores the need for robust tools and methodologies to address the increasing
complexity of IoT systems. Presently, the number of interconnected devices
has surpassed the global human population, illustrating the sheer scale and
magnitude of this technological phenomenon [61]. In the intricate landscape of
IoT networks, simulation emerges as a pivotal instrument, facilitating crucial
functions such as early-phase validation before the deployment of IoT systems
in real-world scenarios.

The IoT market is marked by its continuous expansion, with no signs of
abating. The proliferation of connected devices, each contributing to the ever-
expanding ecosystem, necessitates a comprehensive understanding of their be-
havior, interactions, and performance. As a result, simulation frameworks
and platforms become indispensable in addressing the multifaceted challenges
inherent to IoT networks.

The intricate nature of IoT networks, characterized by diverse devices, pro-
tocols, and dynamic environments, renders real-world testing and validation a
costly and time-consuming endeavor. Simulation, on the other hand, offers a
controlled and efficient means of replicating IoT scenarios, enabling researchers
and practitioners to assess system functionality, analyze performance, and val-
idate various use cases without the need for physical deployment.

Simulation serves as a critical tool in the early phases of IoT system de-
velopment, where the feasibility and effectiveness of proposed solutions can
be rigorously evaluated and refined. By emulating real-world conditions and
scenarios, simulation allows for the identification of potential bottlenecks, vul-
nerabilities, and optimization opportunities, thereby contributing to the en-
hancement of IoT systems’ robustness and reliability.

Furthermore, IoT simulation platforms foster innovation and drive research
initiatives within the IoT domain. They provide a flexible and scalable en-
vironment for exploring new protocols, algorithms, and technologies. Re-
searchers can experiment with various configurations, test hypotheses, and
develop novel solutions, all within the confines of a simulated IoT ecosystem.

This section provides an insightful overview of IoT simulators, delving into
the diverse range of tools and frameworks available for simulating IoT envi-
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ronments. It highlights their significance in IoT development and deployment
and explores their contributions to research, testing, and validation within the
IoT domain. Additionally, it offers valuable insights into the evolving land-
scape of IoT simulation, setting the stage for a comprehensive exploration of
existing simulation platforms and their applications.

3.3.1. S3 and OMNeT++
The concept of ”Smart Shires” introduced by Feretti and D’Angelo [62] sig-
nifies a novel approach to harnessing the potential of the Internet of Things
(IoT) in the development of intelligent, interconnected regions. Central to this
approach is the deployment of simulation as a pivotal tool for architectural val-
idation before the deployment of physical prototypes. Feretti and D’Angelo
underscore the importance of scalability and real-time capabilities in their
choice of simulation tools. Furthermore, they advocate for multi-level simu-
lations, acknowledging that simulating the entire model at the highest level
of detail is often impractical. Instead, their approach amalgamates distinct
simulators, each specializing in simulating a specific domain.

This concept laid the foundation for the development of the ”Smart Shire
Simulator” (S3), implemented using the ”GAIA/ART‘IS” middleware. The
ART‘IS framework is designed for executing large-scale simulations sequen-
tially, in parallel, and in a distributed manner. It encompasses various commu-
nication algorithms, including TCP/IP, MPI, and shared memory, and offers
synchronization mechanisms for both pessimistic and optimistic approaches.
In contrast, the GAIA framework simplifies the simulation of scenarios in par-
allel and distributed fashion by providing a high-level application programming
interface (API) that reduces simulation time through adaptive partitioning of
the model.

Performance evaluation of S3 confirmed its scalability limitations in a se-
quential setup, prompting the exploration of parallel configurations. Tests
revealed that for moderate loads (ranging from 1000 to 8000 simulated enti-
ties), employing only two processor cores did not yield substantial speedup
due to communication overhead. In cases of heavy loads, additional cores
demonstrated improved performance, albeit not commensurate with expec-
tations. This subpar performance is attributed to the nature of the model,
characterized by limited computational requirements per simulated entity but
a high volume of inter-entity communications. Subsequent experiments evalu-
ated the impact of adaptive partitioning on performance. Results consistently
indicated speedup relative to static partitioning, reinforcing its utility in op-
timizing simulation efficiency.

In their subsequent work [63], D’Angelo, Feretti, and Ghini extended their
simulation framework to encompass the simulation of the Internet of Things
(IoT), merging Smart Shires with surrounding urban areas. Here, the authors
proposed an intricate multi-level simulation approach, where a high-level sim-
ulator orchestrates domain-specific simulators. They emphasized the impor-
tance of inter-model interactions and interoperability between simulators in
this complex setup. The authors applied this approach to a ”Smart Market”
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scenario, introducing a more advanced version of multi-level simulation that
included sequential execution of different simulators.

The top-level simulation was implemented using S3 with improved broad-
casting via ”geoPbB”. Level 1 incorporated two simulators in succession: an
ADVISOR-based simulator, built on MATLAB/Simulink for analyzing vehi-
cle performance and fuel economy, and an OMNeT++ simulator for modeling
grid-based market sellers and mobile pedestrian nodes. The top-level and
lower-level simulators communicated through TCP socket connections. Ex-
periments confirmed that more logical processes in level 0 increased memory
consumption, highlighting the necessity of partitioning level 1 across multiple
interconnected hosts.

Building on this multi-level simulation approach, D’Angelo, Feretti, and
Ghini further explored the potential of Parallel and Distributed Simulation
(PADS) in their work [64]. They recognized the scalability limitations of con-
ventional monolithic simulators and proposed a hybrid simulation approach.
This approach aimed to mitigate the challenges associated with scaling the
number of simulated entities in large-scale IoT simulations. While advocating
the use of hybrid simulators, the authors highlighted potential concerns related
to inter-model interactions, data transfer between simulators, and introduced
approximation errors.

To evaluate the efficiency of their proposed hybrid approach, the authors
conducted experiments with S3 and OMNeT++ individually. Their findings
supported the assumption that increasing logical processes in level 0 resulted
in a substantial rise in memory consumption. They suggested partitioning
level 1 across multiple hosts as a solution. Subsequent experiments scruti-
nized the parallel and distributed approach, with the top-level (S3) and level
1b (OMNeT++) residing on a Linux host, and level 1a (ADVISOR[65]) on
a Windows host. Experiments revealed that introducing multiple logical pro-
cesses in level 0 incurred significant overhead. The authors concluded that
while this approach demonstrated promise for scalability, it was imperative to
carefully orchestrate the synchronization of logical processes to avoid memory
thrashing.

This work extends the concept of multi-level simulation to exclusively em-
ploy discrete event simulation techniques while fostering interoperability be-
tween diverse simulators.

Multi-Level Simulation for Scalable IoT Modeling

The multi-level simulation approach, as presented in previous research by Fer-
etti and D’Angelo [62] and further expanded upon by D’Angelo, Feretti, and
Ghini [63] and [64], serves as a powerful paradigm for scalable modeling of the
Internet of Things (IoT). This section delves deeper into this approach, elu-
cidating its intricacies and highlighting its advantages for simulating complex
IoT scenarios.

Scalability Challenges in IoT Modeling The burgeoning IoT landscape presents
a formidable challenge in terms of scalability. As the number of interconnected
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devices continues to skyrocket, traditional simulation methods struggle to cope
with the sheer volume of entities and the complexity of interactions. Scaling
up simulations linearly with the increasing number of entities becomes imprac-
tical, necessitating novel approaches to modeling and analysis.

The Concept of Multi-Level Simulation Multi-level simulation is a visionary
approach designed to address the scalability limitations of traditional simu-
lations. At its core, it consists of hierarchically organized simulation levels,
each catering to specific aspects of the IoT scenario. These levels collectively
represent a holistic simulation environment that strikes a balance between
computational complexity and simulation fidelity.

The key components of this multi-level simulation approach include:

1. Top-Level Simulation (Level 0): The top-level simulator orches-
trates the overall simulation, setting the stage for the entire IoT sce-
nario. It operates at a coarser level of detail, focusing on high-level
behaviors, movement patterns, and service interactions. In the context
of S3 [62] and similar frameworks, this simulator is responsible for man-
aging the entire simulated territory, including smart cities, regions, or
shires. Communication between simulated entities is often based on sim-
plified models to reduce computational overhead.

2. Lower-Level Simulations (Level 1 and Beyond): Lower-level sim-
ulators are domain-specific and responsible for modeling fine-grained
interactions, entities, and phenomena within the IoT scenario. They
operate at a higher level of detail, capturing intricate behaviors, com-
munication protocols, and movement dynamics. The lower levels can
encompass various simulators, such as discrete event simulators (e.g.
OMNeT++), agent-based models, or specialized simulators tailored to
specific IoT domains. These simulators focus on specific aspects like ve-
hicular traffic, market dynamics, or wireless communication, enhancing
the overall fidelity of the simulation.

Advantages of Multi-Level Simulation for IoT Multi-level simulation offers
several compelling advantages when applied to IoT modeling:

1. Scalability: By distributing the simulation workload across multiple
levels, multi-level simulation mitigates scalability issues. The top-level
simulator simplifies the overall structure, enabling simulations of vast
territories without overwhelming computational resources.

2. Fidelity and Realism: Multi-level simulations strike a balance be-
tween computational efficiency and realism. Fine-grained lower-level
simulations capture intricate details of IoT components, ensuring the ac-
curacy of specific domain behaviors. This approach enables high-fidelity
modeling of scenarios involving diverse IoT devices and interactions.
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3. Interoperability: Multi-level simulation encourages interoperability
between different simulation tools and models. Diverse simulators can
coexist within the same framework, facilitating the integration of spe-
cialized domain knowledge and models. This interoperability is crucial
for simulating complex, heterogeneous IoT scenarios involving various
technologies and standards.

Challenges and Considerations Despite its advantages, multi-level simula-
tion poses certain challenges and considerations:

1. Synchronization: Coordinating interactions between the top-level and
lower-level simulators can introduce synchronization complexities. En-
suring that the models at different levels remain coherent and aligned is
crucial for accurate simulations.

2. Data Exchange: Effective data exchange mechanisms are essential for
seamless communication between different simulators. Developing stan-
dardized interfaces for data interchange is necessary to maintain consis-
tency across levels.

3. Approximation Errors: The use of hybrid simulation approaches, as
seen in [64], may introduce approximation errors. Careful validation and
calibration of models at different levels are essential to minimize these
errors.

Conclusion

Multi-level simulation stands as a promising paradigm for scalable and re-
alistic IoT modeling. By hierarchically organizing simulations and enabling
interoperability between diverse simulators, it addresses the challenges posed
by the exponential growth of IoT devices and interactions. While challenges
related to synchronization, data exchange, and approximation errors persist,
ongoing research in this area holds the potential to revolutionize the way we
simulate and understand complex IoT scenarios. As the IoT ecosystem con-
tinues to expand, multi-level simulation will likely play an increasingly vital
role in designing, testing, and optimizing IoT applications and systems.

3.3.2. Leveraging ACOSO and OMNeT++ for Hybrid IoT
Simulation

In this section, we delve into an innovative hybrid simulation approach, pro-
posed by Fortino and his team in a series of works [66], [67], and [68]. This
approach focuses on the ”thing aspect” of the Internet of Things (IoT), empha-
sizing the critical role played by Smart Objects within IoT ecosystems. The
core concept revolves around tightly coupling these Smart Objects with agents,
effectively transforming the IoT into a decentralized multi-agent system.
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IoT as a Multi-Agent System

Fortino’s approach capitalizes on the principles of Agent-Based Computing.
Smart Objects within the IoT are treated as agents, collectively forming a de-
centralized multi-agent system. This multi-agent perspective enhances inter-
operability among heterogeneous subsystems and distributed resources. Mod-
eling IoT as a multi-agent system streamlines system development and model-
ing. It enhances scalability and robustness while reducing design time and time
to market. The multi-agent approach inherently aligns with the distributed
nature of the IoT.

ACOSO: The Agent-Based Simulator

Fortino et al. employ the ACOSO (Agent-Based COoperating Smart Object)
simulator as a central tool for modeling the behavior and interactions of Smart
Objects. ACOSO serves as the primary tool for simulating the intricate behav-
iors of these Smart Objects. To simulate the complex and nuanced communi-
cation dynamics between Smart Objects, the researchers harness OMNeT++
in conjunction with the INET framework. OMNeT++ provides a versatile and
highly detailed platform for modeling communication and networking aspects.

Experimental Focus on Communication Characteristics

Fortino’s experimental endeavors prioritize gaining insights into the commu-
nication patterns among Smart Objects within various deployment scenarios.
Instead of concentrating on traditional performance metrics, these experiments
seek to uncover the inherent nature of interactions within IoT systems. It’s
important to note that Fortino’s approach relies on agent-based modeling,
which differs from the discrete event simulation methodology presented in this
dissertation. However, both approaches share a common thread in utilizing
OMNeT++ to intricately model communication aspects within IoT systems.

Conclusion

Fortino and his research team’s innovative hybrid simulation approach, which
unites ACOSO and OMNeT++, demonstrates the adaptability and versa-
tility of simulation techniques in the context of IoT research. By treating
Smart Objects as agents within a multi-agent system, this approach offers a
fresh perspective on IoT modeling, with a strong emphasis on decentralized
interactions and interoperability. The synergy between ACOSO’s agent-based
modeling and OMNeT++’s communication modeling capabilities provides a
comprehensive toolset for exploring the dynamic nature of IoT communication.
While this approach diverges from the discrete event simulation methodology
developed in this dissertation, it underscores the diverse range of simulation
techniques available to researchers and practitioners in the ever-evolving field
of IoT. As IoT systems continue to grow in complexity, the choice of simu-
lation approach, whether agent-based or discrete event-based, will depend on
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specific research objectives and system characteristics, further enriching the
IoT simulation landscape.

3.3.3. Emulating Large-Scale IoT Scenarios with MAMMotH

In this section, we delve into an innovative approach proposed by Öooga,
Ou, Deng, and Ylö-Jääski in [69]. Rather than focusing solely on simulation,
their work revolves around the emulation of massive-scale Internet of Things
(IoT) scenarios. The choice to emphasize emulation over simulation stems
from a crucial distinction – emulators aim to replicate real-world conditions
and actual device interactions, avoiding the simplifications often inherent in
simulations. Moreover, network simulators may overlook critical issues related
to message timing.

Rationale for Emulation

Emulation is favored due to its capacity to replicate complex real-world sce-
narios with high fidelity. Unlike simulations, emulators ensure precise timing
of message exchanges. The authors highlight the limitation of current IoT sim-
ulators and emulators in handling large-scale testing with millions of nodes,
primarily attributed to scalability challenges. They did a survey of 15 differ-
ent Internet of Things simulators and emulators. Namely: NS2[70], NS3[71],
PDNS[72], GTNetS[73], J-Sim[74], Jist[75], COOJA[76], TOSSIM[77], DSSim-
ulator[78], GlomoSIM[79], OMNeT++[80], SensorSIM[81], SENSE[82], EMU-
LAB[83] and ATEMU[84]. They came to the conclusion, that the landscape
of tools primarily directed towards Internet of Things (IoT) research predom-
inantly comprises simulators tailored to assess specific facets of IoT networks.
It is noteworthy that a substantial portion of these IoT-focused simulators
has, over time, either stagnated without active development or been discon-
tinued. This phenomenon could be attributed to their inherent limitations,
which often confine them to addressing only isolated aspects of IoT. In con-
trast, generic network simulators with IoT extensions, exemplified by NS2
and NS3 and their derivatives, exhibit sustained utility within the research
community. Additionally, certain variants, like PDNS and NS3 equipped with
MPI support, offer the added capability of distributed simulations, thereby
extending their applicability to more complex IoT scenarios.

In the realm of IoT testing, emulators stand as an alternative to simula-
tors, offering a more diverse and practical approach. However, it’s crucial to
note that most emulators are constrained to operate within a single virtual
machine (VM) and are often limited in terms of the number of nodes they
can emulate, with the notable exception of EMULAB. This limitation is pri-
marily due to the resource-intensive nature of emulators. Consequently, the
deployment of a multitude of nodes for large-scale IoT emulation on a single
VM becomes impractical. Consequently, a glaring gap persists in the field of
IoT research tools: the absence of a robust, large-scale emulation platform
capable of accommodating the intricacies and intricacies of the IoT landscape.
This unmet need underscores the demand for the development of a dedicated
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platform to facilitate large-scale IoT emulation, a domain ripe for exploration
and innovation in the IoT research community.

MAMMotH: A Large-Scale IoT Emulator

The authors introduce ”MAMMotH,” an emulator specifically designed to em-
ulate extensive IoT deployments. MAMMotH’s ambitious goal is to simulate
tens of thousands of nodes within a single virtual machine (VM), with an
envisioned future capability of scaling up to a staggering 20 million nodes.
Linear scalability is a fundamental objective of this emulator architecture.
MAMMotH targets three core emulation scenarios:

• Mobile devices connected via GPRS to a central base station.

• Wireless Sensor Networks linked through GPRS to a central base station.

• Constrained devices connected to proxies, which are subsequently linked
to a backend infrastructure.

Emulations of Links, Gateways and Nodes

To facilitate link emulation, the authors determined that traffic between nodes
on proxies or base stations should adhere to GPRS or 802.15.4 profiles. TCP
and UDP traffic simulation is planned through the utilization of NS2-derived
models combined with a ”netfilter”-style traffic scheduler. Gateway emulation
options include employing EMULAB or employing a Linux Virtual Machine
equipped with OpenWRT. Gateways play a pivotal role in connecting the
IoT ecosystem to broader networks. Node emulation is achieved through the
utilization of existing software that supports the Constrained Application Pro-
tocol (CoAP). The authors employed a proprietary Java-based node emulator
in conjunction with ”libcoap,” which required modification to utilize threads,
overcoming the kernel’s limitations on the number of processes. This innova-
tive approach enabled emulation of up to 10,000 nodes within a single VM,
with the primary constraints being the maximum number of threads allowed
per kernel and the availability of free UDP ports.

Conclusion

The MAMMotH emulator represents a remarkable departure from traditional
IoT simulation techniques. Öooga, Ou, Deng, and Ylö-Jääski’s focus on em-
ulation, as opposed to simulation, underscores the significance of replicating
real-world conditions in IoT research. By enabling the emulation of massive-
scale IoT scenarios with tens of thousands or even millions of nodes, MAM-
MotH addresses scalability challenges that have hindered previous simulators
and emulators. The emulator’s distinctive approach, including link emula-
tion, gateway emulation, and node emulation, provides a powerful platform
for investigating IoT systems’ behavior and performance in real-world-like con-
ditions.
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In this landscape of diverse IoT research tools and techniques, MAMMotH
stands as a testament to the adaptability and ingenuity of researchers in the
field. While this approach differs from the discrete event simulation methodol-
ogy developed in this dissertation, it broadens the spectrum of available tools
for IoT exploration. As IoT systems continue to evolve and grow in complex-
ity, the choice between emulation, simulation, or other techniques will depend
on the specific research objectives, further enriching the IoT emulation and
simulation ecosystem.

3.3.4. DEUS, COOJA and NS3

This chapter embarks on an exploration of DEUS, COOJA, and NS-3, three
pivotal tools in the domain of IoT research and simulation. Together, they
offer a comprehensive suite for investigating and understanding complex IoT
systems[85]. Below, we delve into the details of each tool, elucidating their
unique features, capabilities, and applications.

DEUS: A Discrete Event Urban Simulator

DEUS, short for Discrete Event Urban Simulator, plays a crucial role in the
realm of IoT research. This simulator is specially designed to focus on ur-
ban environments, making it invaluable for studying IoT deployments within
cityscapes.

DEUS is particularly adept at modeling IoT scenarios in urban settings,
facilitating the analysis of various IoT applications in smart cities. It operates
on a discrete event simulation model, enabling precise control and tracking of
events and interactions within the simulated urban environment. DEUS offers
a detailed, granular representation of urban landscapes, allowing researchers to
evaluate IoT systems’ performance in real-world urban conditions. The simu-
lator’s emphasis on urban scenarios makes it an ideal choice for understanding
the intricacies of IoT deployments in densely populated areas, where factors
like mobility, communication, and resource management are of paramount
importance.

COOJA: A Network Simulator for IoT

COOJA is a prominent network simulator tailored explicitly for IoT research.
Its primary focus is on simulating wireless sensor networks, making it an in-
valuable tool for exploring IoT applications that rely on low-power, wireless
communication.

COOJA specializes in modeling wireless sensor networks, making it partic-
ularly well-suited for IoT scenarios involving resource-constrained devices and
low-power communication protocols. This simulator provides a highly detailed
representation of sensor nodes and their interactions, allowing researchers to
assess the performance and behavior of IoT systems with a high degree of
precision. COOJA’s support for Contiki, a popular operating system for IoT
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devices, further enhances its relevance in IoT research. Researchers can sim-
ulate Contiki-based IoT deployments with ease. The simulator’s focus on
network-level modeling and wireless communication makes it an indispensable
tool for investigating IoT applications that rely on efficient data transmission
and network management.

NS-3: A Versatile Network Simulator

NS-3, or Network Simulator 3, is a versatile and widely-used network simu-
lator that extends its capabilities to encompass IoT research. With a broad
range of features and extensive community support, NS-3 is a go-to choice
for simulating diverse networking scenarios, including those within the IoT
domain.

NS-3 boasts versatility, enabling researchers to model a wide spectrum of
networking scenarios, from traditional computer networks to emerging IoT
deployments. Its modular architecture and support for various communication
protocols make it adaptable to different IoT use cases, allowing researchers to
explore IoT applications across diverse domains. NS-3’s active community
and extensive documentation ensure a wealth of resources for users, making
it accessible and user-friendly, particularly for newcomers to IoT simulation.
Researchers can leverage NS-3’s features to simulate IoT scenarios involving
diverse devices, communication technologies, and network topologies, offering
a broad canvas for IoT exploration.

Conclusion

DEUS, COOJA, and NS-3 collectively provide a comprehensive toolkit for
IoT research and simulation, each offering unique strengths and capabilities.
DEUS excels in urban IoT scenarios, offering a fine-grained representation of
city environments. COOJA specializes in wireless sensor networks, making
it indispensable for IoT applications reliant on low-power, wireless communi-
cation. NS-3, with its versatility and extensive community support, accom-
modates a wide range of IoT use cases, ensuring researchers have access to a
flexible and powerful simulation platform.

As the IoT landscape continues to evolve, the choice of simulation tool
depends on specific research objectives and the nature of the IoT deployment
under investigation. Whether it’s urban environments, resource-constrained
devices, or diverse networking scenarios, these tools empower researchers to
delve into the complexities of IoT systems, paving the way for advancements
in this dynamic field.

3.4. Comparison of IoT Simulation Approaches
Comparing the afore mentioned various IoT simulation approaches and the
simulator developed in this dissertation, reveals a spectrum of strategies and
capabilities tailored to different research needs and scenarios. Each approach
possesses distinct advantages and trade-offs, contributing to the diversity of
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tools available for IoT research. Below, I conduct a comparative analysis to
shed light on their relative merits and applications.

3.4.1. Interconnected Simulation Levels

By tightly integrating several simulation levels, encasing domain-specific sim-
ulators inside models, and coordinating them in a single event-loop, the sug-
gested simulator sets itself apart. This approach fosters a seamless exchange
of information between simulation levels and allows for flexible model inter-
change. Unlike some other simulators, the boundaries between hierarchical
levels are more fluid, permitting dynamic model swapping. This adaptabil-
ity proves advantageous when dealing with IoT scenarios that demand varied
levels of detail and continuous-time approximations.

3.4.2. Versatility and Diversity

DEUS, COOJA, and NS-3 cater to diverse IoT research needs by offering a
range of specialized features. DEUS excels in urban environments, providing
a granular representation of cityscapes. COOJA shines in modeling wireless
sensor networks, making it indispensable for low-power IoT applications. NS-
3’s adaptability and extensive protocol support accommodate a wide spectrum
of IoT use cases. The choice among these tools depends on the specific research
objectives and the nature of the IoT deployment.

3.4.3. Community Support and Documentation

NS-3 stands out for its active community and extensive documentation, mak-
ing it an attractive choice for researchers, especially those new to IoT sim-
ulation. Access to a wealth of resources and user-friendly features ensures a
smoother learning curve and efficient problem-solving.

3.4.4. Synchronization and Scalability

Synchronization mechanisms and scalability differ across the approaches. The
interconnected model approach offers a flexible solution for accommodating
different simulation models and time-steps, enabling efficient synchronization
without complex processes. On the other hand, some approaches, like the
combined use of S3 and OMNeT++, necessitate meticulous synchronization
strategies and may face scalability constraints, particularly in scenarios with
a large number of entities.

3.4.5. Continuous-Time Approximations

The proposed simulator’s capability to accommodate continuous-time approx-
imating techniques without intricate synchronization processes sets it apart.
This flexibility enables the integration of diverse model types within the sim-
ulation, providing researchers with the freedom to explore various modeling
approaches seamlessly.
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3.4.6. Conclusion
In conclusion, the comparison of these IoT simulation approaches underscores
the importance of choosing the right tool for the specific research context.
Each simulator offers unique strengths and caters to distinct IoT scenarios.
Researchers must consider factors such as the complexity of the simulation,
the level of detail required, and the nature of the IoT deployment when se-
lecting the most suitable tool. The diversity in available options reflects the
multifaceted nature of IoT research, with each simulator contributing to ad-
vancements in this dynamic field. Ultimately, the effectiveness of an IoT sim-
ulation approach hinges on its alignment with the research objectives and the
intricacies of the IoT system under investigation.
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4.8. Human in the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 4 delves into the intricate world of simulating IoT networks as the
underlying concepts of my work. At its core, this chapter unfolds the funda-
mental concept underpinning IoT network simulation, scrutinizing the pivotal
requirements and specifying Discrete Event Systems. It navigates through the
rigorous realm of Discrete Event Specification, embracing the DEVS formal-
ism, atomic DEVS, network DEVS, closure under coupling, simulation loops,
parallel DEVS, and the integration of Continuous Time Hybrid DEVS. The
chapter then transitions to the practical domain of OMNeT++, dissecting
its implementation for models, message passing, the simulator core, and the
simulatinon environment. With a keen eye on the simulation approach, it
illuminates the importance of level hierarchy, model reuse, and synchroniza-
tion. Implementing the simulation core takes center stage, exploring the core
simulation framework, the hierarchy middleware, and seamless OMNeT++
integration. Additionally, the chapter delves into the critical dimensions of
Hardware in the Loop, complete with OMNeT++ socket servers, VICINITY
Adapters, and Simulation Schedulers. The chapter concludes with a compre-
hensive exploration of the dynamic realm of Human in the Loop, offering an
extensive conceptual understanding of these intricate facets of IoT network
simulation. Please note that certain portions of the content and findings pre-
sented in this chapter have been previously disseminated in conferences such
as [86, 87, 88, 89, 90], and have been thoughtfully incorporated into this dis-
sertation to provide a comprehensive and coherent perspective on the subject
matter.

4.1. Introduction

The discrete-event network simulation framework Omnet++ has demonstrated
its remarkable capabilities in various contexts. However, when tasked with
the simulation of an entire smart city, it encounters notable performance chal-
lenges. These issues become particularly pronounced when simulating the
intricate network of models required to represent a comprehensive urban en-
vironment. Nevertheless, the potential benefits of simulating an entire smart
city, including the complex interactions between its constituent components,
hold immense promise for advancing the concepts of smart cities and the In-
ternet of Things (IoT).

This approach endeavors to harness the formidable capabilities of the Om-
net++ framework, renowned for its prowess in simulating network traffic, and
as a foundation for INET in simulating internet-related scenarios. To mit-
igate the performance bottlenecks encountered when simulating vast urban
environments, we introduce a lightweight custom simulation framework. The
overarching objective is to seamlessly integrate the strengths of Omnet++
while addressing its performance limitations.

To achieve this goal, we employ the principles of hierarchical modeling of
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Discrete-event Systems (DEVS) models to establish a ”time hierarchy” within
the simulation. The fundamental concept involves dynamic transitions be-
tween models that provide simplified representations of substantial city seg-
ments (e.g. city quarters or districts) with relatively coarse-grained time res-
olutions. Concurrently, we incorporate interconnected networks of models to
capture finer-grained details within specific areas of interest. This dynamic ap-
proach empowers us to economize computational resources by utilizing coarser
abstractions for less critical portions of the simulated city, while finely tuning
our focus to observe crucial details precisely when they become relevant.

The proposed simulation framework excels in supporting multi-level simu-
lations while relying exclusively on a discrete-event simulation technique. By
enabling dynamic model switching across various levels of abstraction, we ef-
fectively simplify extensive sections of a simulated IoT network with a coarser
time resolution. This adaptability allows us to dynamically scrutinize and pri-
oritize details pertinent to specific simulation scenarios, providing a nuanced
perspective on the intricacies of smart city operations.

4.2. Concept

The primary objective of this approach is to formulate a versatile DEVS
(Discrete-Event System Specification) simulator that possesses hybrid sim-
ulation capabilities tailored to accommodate large-scale IoT and Smart City
simulations, specifically designed to address the unique requirements outlined
within the context of the VICINITY project. As elucidated in Section 4.2.1,
we must consider both the general requisites of IoT simulations and the spe-
cialized demands inherent to the VICINITY project’s use cases.

One key advantage of this approach is the consolidation of simulation tools
into a singular, comprehensive simulator, obviating the need to orchestrate
a disparate array of simulators for each unique scenario. This consolidation
promises enhanced efficiency and simplicity in managing complex simulations.

The core architectural concept revolves around adopting a time-hybrid ap-
proach to address the intricacies associated with handling an extensive mul-
titude of models and events within large-scale simulations. This approach is
pivotal in achieving the envisioned performance improvements and scalability
required for these simulations. The emphasis is on meticulously managing the
interconnections that constitute the crux of IoT systems. Consequently, our
model is centered around these connections, with a network simulator serving
as its core.

When considering the choice between DEVS and DETS (Discrete-Event
Time-Stepped), we opt for DEVS, primarily because Omnet++ itself adheres
to the DEVS framework. While integrating DETS into Omnet++ would be
feasible, it introduces unnecessary overhead due to the presence of empty time
frames. Nevertheless, it is important to note that DETS inherently offers a
more straightforward implementation of changes in time hierarchy. By merely
adjusting a dynamically calculated scaling factor, DETS allows for the adap-
tation of time steps across various simulation levels, enhancing flexibility.
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Our architectural design adopts a tree-like structure to organize the time
hierarchy, characterized by multiple simulators operating in tandem, rather
than relying on a single monolithic simulator or one dedicated simulator per
level. This design closely aligns with the principles of DynDEVS (Dynamic
Discrete-Event System Specification), a fundamental concept worth mention-
ing in the context of our approach.

Central to our approach is the fusion of Omnet++ (augmented by INET)
with a general-purpose DEVS simulator. This integration enables the transla-
tion of agent-based models into the DEVS framework, with a primary focus on
enhancing scalability. We achieve this scalability through the introduction of
a time hierarchy, which introduces finer-grained time steps as we delve deeper
into the simulation. This innovative approach empowers us to efficiently man-
age the intricacies of large-scale IoT and Smart City simulations, facilitating
a higher degree of precision and control.

4.2.1. Requirements

The requirements for a comprehensive IoT simulator, drawn from existing
works in the field (as highlighted in Section 3), along with specific demands
emerging from the VICINITY project, are multifaceted and crucial in shap-
ing the framework’s architecture. These requirements encompass a range of
essential facets:

1. Simulating Thousands of Interconnected Devices: The simulator
must be capable of efficiently simulating a vast number of interconnected
devices. While certain IoT scenarios, such as smart homes, involve a rel-
atively limited number of devices, larger-scale applications, like city-wide
services, necessitate the simulation of thousands of entities. Scalability
is key to providing valuable insights across a spectrum of scenarios [62].

2. Real-Time or Near Real-Time Simulation: The simulator should
offer the ability to run in (almost) real-time, especially for proactive
approaches. While detailed simulations are valuable for understanding
fine-grained processes, large-scale IoT scenarios in smart cities require
agility. The framework should incorporate techniques to enable these
approaches without sacrificing real-time performance.

3. Hardware in the Loop (HIL) Capabilities: To facilitate the anal-
ysis of prototypes and real-world device behavior, the simulation frame-
work should ideally support hardware in the loop (HIL) capabilities.
Alternatively, it should provide interfaces for seamless integration with
existing HIL solutions.

4. High Scalability: In conjunction with the first two requirements, the
framework must exhibit high scalability. Real-time capabilities should
not diminish when simulating scenarios involving thousands of interact-
ing entities.
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5. Parallel and Distributed Simulation: The framework should either
include built-in support for parallel and distributed simulations or be de-
signed in a manner that facilitates the incorporation of these capabilities.
This is in alignment with findings from [64].

6. Rapid Model Development: To meet the project’s time-sensitive
requirements, the simulator should enable rapid model development.
Ideally, it should support the use of functional mock-up interfaces and
streamline the process of creating complex models.

7. Integration of Heterogeneous Technologies: The simulator should
have the capability to unify various heterogeneous technologies at all lev-
els of IoT. It should be able to model and simulate the diverse technolo-
gies relevant to different IoT domains and enable seamless interaction
between them.

8. Support for Domain-Specific Simulators: As a final requirement,
the framework should facilitate the integration of additional domain-
specific simulators. If, during the framework’s deployment, the need
arises to incorporate specialized simulators, this integration should be
straightforward and require minimal effort.

These requirements serve as the foundational pillars upon which the pro-
posed IoT simulation framework will be constructed. Each requirement rep-
resents a vital aspect essential for the simulator’s success in addressing the
challenges posed by large-scale IoT and Smart City simulations, particularly
within the context of the VICINITY project.

4.2.2. Specification of Discrete Event Systems
Discrete Event Systems (DEVS), exemplified by computer networks, Very
Large-Scale Integration (VLSI) circuits, and even activities as nuanced as a
ping-pong game, are characterized by their inherent nonlinearity. This non-
linearity arises from the amalgamation of two key attributes: the system’s
current state and the state transition it undergoes [60]. Consequently, the
modeling of discrete systems demands specialized techniques.

Throughout the history of mathematics, several formalisms have emerged to
address the unique characteristics of discrete event systems. These formalisms
encompass queuing theory, Petri nets, Markov processes, and Finite State Ma-
chines (FSM). However, in 1975, Bernard Zeigler embarked on a mission to
establish a unified foundation that would seamlessly integrate various mathe-
matical modeling techniques with the complexities of highly nonlinear system
simulation [91].

The crux of the challenge in modeling discrete event systems, as eluci-
dated in Zeigler’s seminal work ”Theory of Modeling and Simulation,” lies
in the specification of state changes and the deterministic sequences governing
them. Transitions between states are contingent upon the antecedent sequen-
tial state, predicated on inputs or outputs [91]. Each discrete step within these
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scenarios is aptly termed an event, and events can also be triggered by the
elapsing of a designated time interval.

Bernard Zeigler’s formalism can be viewed as an extension of the Moore
Machine formalism, essentially representing a Finite State Machine (FSM).
This extension introduces two pivotal enhancements: the concept of a ”life-
span” for each state and the incorporation of ”hierarchical coupling.” These
additions empower the formalism to accommodate the intricate dynamics and
intricacies of highly nonlinear systems, thus rendering it an invaluable tool for
modeling and simulating complex discrete event systems.

For example an atomic model is specified as:

M =<X, Y, S, ta, δext, δint, λ > (4.1)

where:
X set of input events
Y set of output events
S set of sequential states
δext ∶ Q ×X → S external state transition function
δint ∶ S → S internal state transition function
λ ∶ S → Y output function
ta ∶ S → R+0 ∪∞ time advance function

4.3. Discrete Event Specification
The Discrete Event Systems (DEVS) formalism is an extension of the Finite
State Automata formalism, enriched with concepts from Discrete Event Sim-
ulation (DES)[92]. Introduced by Zeigler in 1976[91], DEVS was conceived
as a unifying framework for discrete event modeling and simulation. In this
section, we present an overview of the DEVS formalism, with a focus on both
atomic and coupled DEVS formalism.

4.3.1. DEVS Formalism

DEVS is specifically designed for modeling Discrete Event Systems. It offers
mechanisms to describe systems whose states change through deterministic
transitions between sequential states or due to external inputs and their cor-
responding outputs.

In DEVS, changes in the system state are referred to as events, which can
arise from various sources. These events may result from the expiration of
a time interval, external inputs, or the generation of model outputs. DEVS
categorizes events into two types: internal events and external events. How
the discrete event system responds to these events is further elucidated in
Section 4.3.2.

To manage the complexity of such systems, DEVS employs a hierarchi-
cal structure composed of simpler, coupled components[60]. These coupled
components can take the form of atomic DEVS models or coupled network
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DEVS models, which themselves can include coupled models. The connec-
tions, or couplings, between these models dictate how they interact with each
other. For instance, one model’s output can serve as the external input for
another model. DEVS facilitates hierarchical modeling by being closed under
coupling[92]. This property ensures that for every such network, a resultant
atomic model can be computed, behaving equivalently to the network. Con-
sequently, DEVS supports the creation of complex hierarchical models.

The subsequent sections will provide in-depth explanations of atomic, net-
work, and closure under coupling concepts.

4.3.2. Atomic DEVS
The Atomic DEVS model is defined as:

atomic ≡ ⟨S, X, Y, δint, δext, λ, ta⟩, (4.2)
Here’s a detailed breakdown of its components:

• Sequential States (S): These states represent the discrete states of
the system. Typically, S is a structured set S = ×n

i=1Si, which formalizes
multiple concurrent aspects of a system[92].

• Time Advance Function (ta): The ta function maps each sequential
state s ∈ S to a positive real number, indicating the time the system
remains in that state before an internal event occurs, and a transition
to the next state takes place.

• Internal Transition Function (δint): This function defines how the
system transitions from one sequential state to another within the given
time frame.

• Output Set (Y ): The output set represents the possible outputs pro-
duced during an internal transition. Typically, Y is a structured set
Y = ×l

i=1Yi[92].

• Output Function (λ): The λ function maps each internal state to an
element in the output set Y or the empty set ∅. Outputs are generated
only during internal transitions.

To model external inputs from the input set X, which is also typically
structured[92], the concept of total states (Q) is introduced. These total states
incorporate both the sequential state s and the elapsed time e since the last
state transition:

Q = {(s, e)∣s ∈ S, 0 ≤ e ≤ ta(s)}
The elapsed time e can be used to calculate the time left in the current state

as σ = ta(s) − e.
To handle input events (x ∈ X) occurring within a bounded time interval,

the external transition function (δext) is employed:

δext ∶ Q ×X → S
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In summary, in an atomic DEVS model, the system is in a sequential state
s ∈ S at any given time. If no external events occur, it remains in this state
until the time advance function ta(s) expires. Upon expiration, the output
function λ(s) produces an output y ∈ Y , and the model transitions to a new
state as determined by the internal transition function δint(s). This is referred
to as an internal transition. A state with ta(s) = 0 is called a transient state,
and a state with ta(s) =∞ is termed a passive state. When an external event
in the form of external input x ∈ X occurs, an external transition is triggered
via the external transition function δext(s, e, x), where the current state s and
elapsed time e define the current total state.

4.3.3. Network DEVS
A Network DEVS model, also known as a coupled DEVS model, is defined as
a network composed of interconnected components:

network ≡ ⟨Xself , Yself , D,{Mi},{Ii},{Zi,j}, select⟩, (4.3)

Here is a breakdown of the components within this network:

• Input and Output Sets for Self (Xself and Yself ): These sets define the
allowed inputs and outputs for the coupled model itself.

• Set of Unique Components (D): D represents a set of unique components
within the model. It is important to note that the model itself (self) is
not included in D. Components in D are denoted as Mi∣i ∈D, and each
of these components must be an atomic DEVS model.

• Influencees (Ii): Ii represents the set of components influenced by i ∈D∪
self . It describes how the components within the network are coupled.

The network adheres to certain rules:

• Hierarchical Principle: No component within the network is allowed
to influence other components outside of the coupled network model.

• No Self-Influence: Components cannot influence themselves to pre-
vent infinite loops in the model’s state.

These rules are expressed as:

∀i ∈D ∪ {self} ∶ Ii ⊆D ∪ {self}

and
∀i ∈D ∪ {self} ∶ i ∉ Ii.

To complete the coupling of components, the model employs output-to-input
translation functions Zi,j :

{Zi,j ∣i ∈D ∪ {self}, j ∈ Ii},
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Zself,j ∶Xself →Xj ,∀j ∈D,

Zi,self ∶ Yi → Yself ,∀i ∈D,

Zi,j ∶ Yi → Yj ,∀i, j ∈D.

These functions enable the translation of outputs and inputs between com-
ponents:

• Zself,j translates outputs from the self component to inputs of compo-
nent j.

• Zi,self translates outputs from component i to inputs of the self compo-
nent.

• Zi,j translates outputs from component i to inputs of component j.

Within such coupled models, it is possible that multiple state transitions
of the components occur simultaneously due to the discrete-event abstraction.
To address these situations, a tie-breaking function select is included in the
formalism. This function selects a unique component from a non-empty subset
E of D to determine the order in which components are handled.

In summary, a Network DEVS system does not explicitly model a state
but rather implicitly represents its state and behavior through interconnected
atomic DEVS models. These models are coupled together into a network,
and the interactions between them are defined by input and output transla-
tion functions, allowing for the modeling of complex systems with multiple
components.

4.3.4. Closure under coupling
The concept of Closure under Coupling allows the interchange of a DEVS
network model with an equivalent atomic one. This interchange is achieved by
constructing a resultant atomic DEVS model. The significance of this principle
is that it relaxes the previous constraint, which stated that a network DEVS
model could only consist of atomic components. This idea will be applied in
this dissertation to realize a time hierarchy. To illustrate how this works, we
will delve into the construction of the resultant atomic model based on the
explanation in [92].

Starting from the network DEVS definition in Equation 4.3, which encom-
passes all the model’s components:

Mi = ⟨Si, Xi, Yi, δint,i, δext,i, λi, tai⟩∀i ∈D,

a resultant atomic DEVS model is constructed following Equation 4.2. To
do this, we first build the set of total states for all components:

Qi = {(si, ei)∣s ∈ Si, 0 ≤ ei ≤ tai(si)}∀i ∈D,

Next, we create the set of all sequential states of the resultant model through
a product:
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S = ×i∈DQi.

The time advance function of the resultant atomic model selects the most
imminent event time among all coupled components as its output. Imminent
events are those events scheduled to occur next. The function picks the most
immediate event and moves the clock forward in the smallest increments until
all of the components undergo an internal transition:

ta(s) =min{σi = tai(si) − ei∣i ∈D}.
This time advance function allows us to create the IMM set of imminent

components that are planned for a simultaneous internal transition:

IMM(s) = {i ∈D∣σi = ta(s)}.
From this set, we choose one component i∗ using the select function men-

tioned in the previous subsection (Section 4.3.3). Now, the output of this
component is computed before the internal transition as follows:

λ(s) = Zi∗,self(λi∗(si∗), ifself ∈ Ii∗).
The following changes occur in the various components of the overall state

due to the internal transition function:

δint = (. . . , (s′j , e′j), . . . ),
where

(s′j , e′j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(δint,j(sj), 0), forj = i∗

(δext,j(sj , ej + ta(s), Zi∗,j(λi∗(si∗))), 0), forj ∈ Ii∗ ,

(sj , ej + ta(s)), otherwise

In this transformation, the component i∗ transitions to sequential state
δint,i∗(si∗), the elapsed time e is reset to zero, and all influencees of i∗ change
their state as an external transition occurs when the output-to-input translated
output of i∗ arrives at them with an elapsed time equal to the time advance
ta(s). Subsequently, their elapsed time is also set to zero. The state of all
other components remains unchanged.

When an external event occurs, the external transition function transforms
the total state as follows:

δext(s, e, x) = (. . . , (s′i, e′i), . . . ),
where

(s′i, e′i) =
⎧⎪⎪⎨⎪⎪⎩

(δext,i(si, ei + e, Zself,i(x)), 0), fori ∈ Iself

(si, ei + e), otherwise

This process ensures that the resultant atomic model captures the behavior
of the entire network DEVS model, allowing for the interchange between the
two representations.
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4.3.5. The simulation loop

The implementation of an abstract simulator in the context of DEVS for-
malisms, including atomic and network DEVS, and closure under coupling, is
facilitated through a simulation loop.

In line with the hierarchical design principle of DEVS models, this im-
plementation employs various execution engines, referred to as processors,
throughout the model hierarchy[60]. These processors include:

1. Atomic Simulator: Associated with an atomic model, this simulator
controls its internal and external state change functions, manages the
output function, and keeps track of the last and next event times for
this model.

2. Coordinator: Linked to a coupled model, the coordinator’s role is to
route and translate input and output between the coupled components
and the external environment.

3. Root Simulator: Responsible for coordinating the global aspects of
the simulation.

The simulation loop operates by passing messages, which convey information
about the source or target of an event, the event time, and possibly a value to
be transported. Four types of messages are used:

• * messages: Represent internal events.

• X messages: Carry information about external inputs.

• Y messages: Transport a model’s output.

• done messages: Indicate that a model has completed its task.

The simulation cycle begins with the root coordinator examining its list of
external input events and the scheduled times for the next internal events.
The model with the smallest remaining time until the next internal event is
referred to as an imminent model, and its associated simulator is the imminent
simulator. Depending on whether the next event is an external input or an
internally scheduled event, the root simulator generates a * or X message,
respectively.

If a * message is created, it is propagated recursively by the coordinators,
starting with the top-level coordinator and then passed down the hierarchy
to reach the imminent simulator. The imminent simulator first executes its
output function λ. If λ generates an output other than the non-event ∅, a Y
message is created and sent to the parent coordinator. The coordinator then
executes its Zi,j function to translate the output message into an X message
and forwards it to the destination coordinator linked to this model. Subse-
quently, the simulator executes the internal transition function δint to update
the model’s state. Afterward, the time advance function ta(s) is executed
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to schedule the next internal event. The time in the future when this event
will occur is then sent in a done message to the parent coordinator. When
the coordinator receives done messages from all its children, it selects the one
with the earliest future time and forwards it to its coordinator. Once the root
simulator has received done messages from all its children, it updates its next
event time, and the cycle begins anew.

If, on the other hand, the root simulator chooses an external input and
generates an X message, this message traverses all coordinators along its path
to reach the corresponding simulator. The atomic simulator then executes the
external transition function δext and subsequently the time advance function.
Finally, a done message is generated, which serves to schedule further future
events[60],[92].

4.3.6. Parallel DEVS

In the previous section (Section 4.3.3), we introduced the network DEVS for-
malism, where the select function determined the sequence of execution when
two models were scheduled for state transitions simultaneously. This led to
the sequential execution of imminent models by a coordinator, which posed
challenges in representing systems with coincident state changes.

To address this issue, Parallel DEVS was introduced as an extension to the
DEVS formalism. Parallel DEVS enables models to receive multiple external
events simultaneously and process them in a single step. In an atomic Parallel
DEVS model, the components are defined as:

atomic ≡ ⟨S, X, Y, δint, δext, δcon, λ, ta⟩,

Here, S, X, Y , δint, δext, λ, and ta remain the same as in the standard DEVS
atomic model (as defined in equation 4.2). However, there’s an additional
function called δcon, which is the confluent transition function:

δcon ∶ S ×X → S

The elapsed time (e = ta(s)) equals the outcome of the time advance func-
tion, making this function simply a particular case of the external transition
function. When an internal and external event take place at the same time, it
is used to determine the new state of the model[60].

In addition to the adapted definition of atomic models, atomic models in
Parallel DEVS maintain external input events in multi-sets, often referred
to as Bags[60]. During each iteration of the simulation loop, when a model
generates output events, they are first routed to their destination model and
stored in the bag. Afterward, the new states of the models are determined by
one of the three state transition functions: δint, δext, or δcon.

For network models in Parallel DEVS, the only notable change is the omis-
sion of the select function. The remaining functionality remains largely un-
changed[93]. This extension allows for more efficient modeling of systems with
coincident state changes.
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4.3.7. Continuous Time Hybrid DEVS
DEVS, as previously discussed, has a significant limitation in that it cannot
directly simulate continuous-time models. To address this limitation, a con-
cept called hybrid systems is introduced. Hybrid systems aim to approximate
continuous models using discrete event models, effectively integrating discrete
events and numerical integration steps. In this context, an atomic discrete
event model can encapsulate and approximate a continuous model in its state
space form, provided it has methods for event detection and numerical inte-
gration. Interactions with such models can only occur through discrete events.

A hybrid model combines continuous state variables x ∈ Rm with a set of
discrete state variables Q. Transitions in hybrid systems depend on both
continuous and discrete state variables. The time advance function, which
determines these transitions, is defined as:

ta((xk, q)) = G((xk, q))
Here, xk represents the value of x at time tk. The function G ∶ (Rm ×Q)→

R∞0 calculates the time until the next event occurs.
Hybrid systems can change their state in response to internal events at

ta((xk, q)) = 0 or in response to external events at h ≤ G((xk, q)). The value
of x at time tk+1 can be computed as:

xk+1 = xk + ∫
tk+h

tk

f(x(t), q)dt,

Here, f(x, q) represents the function that governs the continuous evolution
of x. The model’s responses to events are defined as follows:

• δ̂int: Response to internal events.

• δ̂ext: Response to external events.

• δ̂con: Response to concurrent (continuous) events.

• λ̂: Output produced in response to events.

These responses are defined based on the hybrid system’s continuous state
and discrete state variables. The relationship between these hybrid responses
and the standard DEVS responses for internal, external, and concurrent events
is established.

Events in hybrid systems are categorized as time events if G can be directly
calculated from the model’s state, and as state events if they must be computed
from event surfaces in the state space. Event surfaces are constructed using
threshold functions gp(x(tk + h), q) = 0. G(x(tk), q) can be implicitly defined
as the smallest non-negative h that satisfies at least one of these threshold
functions.

Simulating hybrid systems requires two additional functions: a numerical
integration function and a root-finding function to locate events between in-
tegration steps.
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In summary, continuous time hybrid DEVS extends DEVS to handle continu-
ous-time models by approximating them using discrete events and numerical
integration methods, allowing for the simulation of systems with both contin-
uous and discrete dynamics[93].

4.4. OMNeT++
OMNeT++ is a powerful object-oriented modular discrete event network sim-
ulation framework primarily written in C++. It’s worth noting that an
extended version of OMNeT++ designed for commercial use is known as
OMNEST1. OMNeT++ is widely adopted within the academic community
due to its highly modular architecture and is the foundation for various open-
source model suites, with INET being one of the prominent examples2.

Key Features of OMNeT++ are:

1. Modularity: OMNeT++’s modular design allows users to build and
extend simulation models with ease. It’s structured in a way that pro-
motes code reusability and adaptability.

2. Discrete Event Simulation (DES): OMNeT++ follows the principles
of Discrete Event Simulation (DES), making it suitable for modeling and
simulating systems where events occur at distinct points in time.

3. Community and Ecosystem: The academic community has devel-
oped a wealth of open-source model libraries and frameworks that can
be seamlessly integrated with OMNeT++, thus expanding its capabili-
ties.

OMNeT++ finds applications in various domains, including computer net-
works, communication systems, and distributed systems. Researchers and
engineers use OMNeT++ to simulate and analyze the behavior of complex
systems under different conditions and configurations.

In the upcoming subsections, we’ll delve deeper into the implementation
principles of Discrete Event Simulation, which underlie OMNeT++.

4.4.1. Implementation of Models
In OMNeT++, models are implemented using modules, which can be catego-
rized into two main types: simple modules and compound modules.

Simple Modules These are analogous to atomic DEVS models. Simple mod-
ules are active components of the simulation and represent the fundamental
building blocks. They can generate events, process messages, and interact
with other modules. In the context of DEVS, they are akin to atomic models.
Simple modules have input and output gates that enable communication with
other modules.

1https://www.omnest.com/
2https://inet.omnetpp.org/
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Compound Modules Compound modules are equivalent to network DEVS
models. They serve as containers for organizing and connecting multiple sim-
ple modules. In DEVS terms, they correspond to systems of interconnected
atomic models. Compound modules do not have a direct role in generating or
processing events but are crucial for defining the structure of the simulation.
The top-level compound module is referred to as the ”system module.”

Module Communication Modules in OMNeT++ communicate through in-
put and output gates. These gates allow messages to be exchanged between
modules, enabling the modeling of relationships and interactions within the
simulation. Connections between gates define how modules are interconnected.
Importantly, connections cannot span multiple hierarchy levels, ensuring a
clear and hierarchical structure in the simulation.

Network Description Language (NED) To define the hierarchy and topol-
ogy of modules, OMNeT++ uses the Network Description Language (NED).
NED files store information about the structure of the simulation, specify-
ing the types of modules, their connections, and their properties. NED files
work in conjunction with message definitions and C++ source files to form
the complete network model.

In summary, OMNeT++ employs a modular approach to model implemen-
tation, where simple modules represent active components, compound mod-
ules define the structure, and NED files describe the hierarchy and connections
between modules. This architecture allows for flexibility and scalability in cre-
ating complex network simulations.

4.4.2. Message Passing
In OMNeT++, modules communicate through messages instead of events.
These messages, although implemented as an internal subclass of OMNeT’s
event system, provide a flexible way to exchange data among modules. Key
aspects of message passing in OMNeT++ include:

1. Message Format: Messages in OMNeT++ can contain complex data
structures. Users have the flexibility to define custom message formats
by extending C++ source files. This allows for the representation of
various types of information within messages.

2. Links and Connections: Messages are transmitted between modules
through connections known as ”links.” These connections support several
attributes, including:

• Data Rate: The rate at which data can be transmitted.
• Propagation Delay: The time taken for a message to travel from

sender to receiver.
• Bit Error Rate: The likelihood of errors occurring in the transmit-

ted bits.

105



Chapter 4: Simulation of IoT networks

• Packet Error Rate: The likelihood of errors occurring in entire pack-
ets of data.

These attributes are typically associated with ”channel” objects, which
define the characteristics of the link.

3. Direct Messaging: OMNeT++ allows modules to send messages di-
rectly to each other, bypassing the need for explicit connections. This
direct messaging capability enables flexible communication patterns.

4. Time Advancement: When a module receives a message, the local
simulation time is advanced. This time advancement mechanism ensures
that messages are processed in the correct temporal order.

5. Self Messages: OMNeT++ supports self-messages, which enable mod-
ules to implement autonomous actions. Modules can schedule and re-
ceive messages from themselves, allowing for the execution of specific
tasks or behaviors independently of external events.

In summary, OMNeT++ employs a message passing mechanism for inter-
module communication. Messages can carry diverse data structures, and com-
munication can occur through both explicit links and direct messaging. The
simulation time is managed to ensure the correct sequencing of events, and
self-messages enable autonomous module behavior.

4.4.3. Implementation of the Simulator

In OMNeT++, the implementation of the core simulation loop (refer to section
4.3.5) involves the orchestration of several pivotal classes, each contributing
to the management of events and their subsequent execution. These classes
encompass:

Simulator The central role of the Simulator class is to govern the overar-
ching simulation process. It serves as the conductor, directing the execution
of events, regulating the simulation’s temporal progression, and ensuring the
ordered processing of events. The Simulator class closely collaborates with
other integral constituents of the simulation loop to maintain temporal syn-
chronization and control.

Future Event Schedule (FES) The Future Event Schedule serves as a foun-
dational data structure responsible for the meticulous tracking of all scheduled
events within the simulation. It maintains a comprehensive registry of events,
encompassing their temporal stamps and the originating modules. Managed
by the Simulator, the FES stands as the arbiter of event chronology, guaran-
teeing that events are executed in precise temporal succession.
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Scheduler The Scheduler component assumes a pivotal role in the formula-
tion of the event execution sequence. It furnishes scheduling strategies that
dictate the manner in which events are selected from the FES for execution.
OMNeT++ extends the basic scheduling options, encompassing strategies like
sequential and real-time approaches, while also accommodating user-defined
scheduling strategies for customization.

Collectively, these integrated components within OMNeT++ culminate in
a robust simulation framework, adept at addressing a spectrum of simula-
tion scenarios. The Simulator assumes the mantle of event scheduling and
execution, ensuring the seamless advancement of simulations. Moreover, the
presence of diverse scheduling strategies, including opportunities for users to
craft bespoke strategies, bestows flexibility and adaptability upon simulations,
aligning them with specific research requisites and objectives.

4.4.4. Implementation of the Environment

In OMNeT++, the environment in which the simulation is conducted is a crit-
ical component that encapsulates and extends the functionality of the simula-
tion kernel. OMNeT++ offers users three distinct off-the-shelf environments,
each designed to accommodate various simulation scenarios. These environ-
ments are responsible for overseeing the execution of the simulation loop, cap-
turing relevant information generated during the simulation, and providing a
user-friendly interface for interacting with the simulation.

Of the three available environments, two are graphical environments tai-
lored for visual interaction with the simulation, while the third is a lightweight,
command-line-based implementation. For the context of this work, which em-
phasizes performance in the context of large-scale IoT scenarios, the command-
line environment assumes paramount significance. This environment, although
minimalistic in terms of user interface, remains instrumental in gathering es-
sential data from the simulation.

Notably, while the graphical environments offer rich visual feedback and
interaction capabilities, it’s imperative to acknowledge that they can poten-
tially introduce non-negligible overhead and influence the temporal dynamics
of the simulation. This characteristic renders them less suitable for applica-
tions where precise control over time advancement and performance optimiza-
tion is of paramount importance.

In summary, OMNeT++ affords users the flexibility to select an environ-
ment that aligns with their specific simulation objectives, whether they priori-
tize visual interactivity or performance optimization. For scenarios demanding
fine-grained control over simulation parameters, the lightweight command-
line environment emerges as a pragmatic choice, effectively facilitating data
gathering and analysis while minimizing extraneous influences on simulation
dynamics.

107



Chapter 4: Simulation of IoT networks

4.5. Approach

The chosen approach for developing the IoT simulation framework builds upon
decades of research in discrete event systems, which have evolved a rich set
of techniques for parallel and distributed simulation. This well-established
foundation includes various extensions to the original specification, such as
PDEVS and DynDEVS, that cater to specific problems and domains, includ-
ing the ability to dynamically change connections within DEVS models [60].
Moreover, the modeling techniques for discrete event simulations are widely
recognized, offering an intuitive grasp for both experienced and inexperienced
developers. Given these advantages, the approach adopts the DEVS specifi-
cation as its foundational framework.

A prevalent theme across the reviewed related works is the paramount im-
portance of scalability, especially when dealing with large-scale IoT simula-
tions. Consequently, one of the primary objectives of this dissertation is to
introduce a simulation framework tailored for large-scale IoT scenarios, ac-
companied by a modeling technique that expedites the creation of extensive
use cases.

Rather than opting for the amalgamation of diverse domain-specific simula-
tors into a multi-level simulation, this approach takes a dynamic approach to
time advancement and model granularity during simulation. To ensure high
scalability in large-scale scenarios, the proposed framework employs varying
levels of detail and time advancement for the same simulated entity. These
aspects change dynamically during the simulation based on the user’s inter-
ests. A real-world analogy can be drawn to a magnifying glass, which zooms
in with great detail on its focal point while keeping the surroundings constant.
This approach enables simulations of expansive scenarios, such as the deploy-
ment of a new city-wide service, allowing researchers to simultaneously study
relationships across the entire area and delve into intricate processes within
individual entities or hardware in the loop.

Similar to the multi-level simulations discussed in Chapter 3, this approach
employs multiple levels of detail to simulate complex scenarios. However,
instead of implementing different levels using distinct domain-specific simula-
tors, this approach defines simulation hierarchy levels by manipulating time
advancement and model detail within the utilized models. While this intro-
duces an upfront modeling cost, as different models with varying levels of
detail must be developed, the reusability of these models mitigates this as a
one-time expense.

In practice, the switching and substitution of models during simulation runs
occur through transitions between low-detail atomic DEVS models and com-
prehensive network DEVS models. These network models provide a finer-
grained understanding of the atomic model’s processes and represent a new
simulation level. Consequently, a delicate equilibrium between models of spe-
cific interest and those providing essential background information effectively
reduces the number of generated simulation events. Additionally, by grouping
coarse and fine-grained models into partitions, well-established PADS (Paral-
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lel and Distributed Simulation) techniques for discrete event simulators can
be applied.

To implement these lower-level models in the framework, OMNeT++, com-
plemented by its INET extension, is employed. OMNeT++ serves as the
foundation for modeling detailed interactions among ”smart things” and their
interplay. This approach leverages OMNeT++’s capabilities to provide a ver-
satile and efficient solution for managing varying levels of detail and time ad-
vancement within the simulation, achieving the required scalability for large-
scale IoT simulations.

4.5.1. Level Hierarchy and Structure - Expanding DEVS
The proposed approach introduces a novel model type known as hierarchical
atomic to define the simulation framework within the DEVS specification.
This specialized model combines the features of both atomic and network
DEVS models and introduces additional functionalities for state transfer and
model selection. Mathematically, this new model can be represented as:

hatomic ≡ ⟨atomic, network,{transport}, select⟩, (4.4)

Here, atomic and network represent the contained atomic and network DEVS
models, respectively. {transport} denotes the set of transport functions re-
sponsible for transferring state information between models, and select is the
function responsible for choosing the currently active model.

The detailed definition of the hierarchical atomic model is as follows:

hatomic ≡ ⟨SA, XA, XN , YA, YN ,

D,{MN},{IN},{ZN}, δint, δext, δcon,

λ, ta, select,{transport}⟩,
(4.5)

Let’s break down the components of this definition:

• SA, XA, XN , YA, and YN represent the state and input/output sets for
the atomic (A) and network (N) parts of the model.

• D denotes the set of possible states of the model.

• MN represents the set of network models within the hierarchical atomic
model.

• IN represents the set of input functions for the network models.

• ZN represents the set of output functions for the network models.

• δint, δext, and δcon are the internal, external, and confluent transition
functions.

• λ represents the output function.

• ta is the time advance function.
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• select is the function responsible for selecting the currently active model.

• transport includes the transport functions necessary for transferring
states between the atomic and network models, namely

transportA→N ∶ SA → S ⊂ ∪iSi ∈D, forSi ∈Di (4.6)

and
transportN→A ∶ S ⊂ ∪iSi ∈D → SA, forSi ∈Di (4.7)

.

These transport functions are essential for managing the transition between
simulation levels. It’s important to note that these functions don’t need to
be isomorphisms since the network model is expected to be more expressive
than the atomic model. Therefore, only a subset of possible states from the
network model’s components is utilized.

In this hierarchical approach, the different contained models define the
boundaries of simulation levels. The encapsulated atomic DEVS model re-
sides on the same level as the new hierarchical atomic model, while the en-
capsulated network DEVS model belongs to the level below. This transition
between levels is marked by the transport functions.

Notably, models within the same level share similar step sizes in time ad-
vancement. If there’s a significant discrepancy in the time step sizes among
network models belonging to the same level, it can impact the efficiency of
the simulation. For optimal performance, it’s crucial to ensure that the time
advancement characteristics of models within the same level are reasonably
consistent.

This novel hierarchical atomic model offers a powerful mechanism for man-
aging multi-level simulations efficiently, balancing computational resources,
and enabling detailed observations when required. It leverages the strengths
of both atomic and network DEVS models while introducing essential features
for seamless state transfer and model selection, contributing to the overall
effectiveness of the proposed simulation framework.

4.5.2. Model reuse and the model tree
The inherent organizational characteristics of DEVS models, both atomic and
network, coupled with the DEVS framework’s property of closure under cou-
pling, offer a powerful foundation for constructing complex models. This ver-
satility in model composition is a cornerstone of the innovative approach pre-
sented in this dissertation. Figure 4.1 visually illustrates the ease with which
the newly introduced model, integral to the hierarchical architecture, can func-
tion interchangeably as a plain atomic DEVS model within network models
at all levels of the hierarchical tree structure. Furthermore, the atomic mod-
els nested within the encompassing network model can also be substituted
with the newly introduced model. This dynamic model substitution strategy
forms the basis for establishing distinct hierarchical levels, each characterized
by varying levels of detail and time advancement within the simulation.
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Figure 4.1.: The model tree and organization of hierarchy levels

The implications of this tree-like organization of simulation levels extend to
the overarching modeling approach and influence the potential for paralleliza-
tion within the sequential simulation framework.

Firstly, with respect to the modeling approach, it is advisable to adopt a
bottom-up methodology. In this approach, the most intricate and detailed
level of modeling is initially designed comprehensively and then deconstructed
into smaller components, represented as leaf nodes in the hierarchical model
tree. The efficiency gained from dynamically exchanging models with varying
levels of detail depends on the specific simulation scenario. More efficient
model partitions along the tree may only emerge through iterative evaluation
during simulation. The bottom-up construction methodology ensures that the
core aspects of the scenario are developed only once and can subsequently be
partitioned and tailored as needed. Additionally, when considering models
that can be interchanged, such as entire protocol stacks or spatially distinct
segments of the environment, the potential for extensive model reuse becomes
evident. By efficiently leveraging the capability to swap models with more or
less detailed representations of the simulated system, complex scenarios, like
simulating a user’s journey through a smart city while dynamically swapping
models to focus on relevant details, become feasible.

In terms of implementation, the strategic placement of integrated domain-
specific simulators within the model tree is of paramount importance. This
placement can be achieved either by distributing simulators across the nodes
of the tree or by adopting a hierarchical structure with one domain-specific
simulation kernel per level.

Secondly, in the context of potential partitioning techniques for paralleliza-
tion, careful consideration must be given to the placement of different net-
works. Poor partitioning choices within models with a high density of encap-
sulated networks could negatively impact simulation performance. Therefore,
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modeling for a parallel scenario may necessitate more thorough planning and
consideration compared to other modeling approaches.

During the implementation of the proposed simulator, the decision was made
to distribute multiple instances of a simulator across the hierarchical model
tree. This strategic placement within the introduced hierarchical atomics of-
fered a more flexible implementation of functionality while maintaining a clear
separation between the simulator responsible for advancing a specific model
and the model itself. Furthermore, as the proposed approach involves the
concurrent interchange of models across various levels of the tree, deploying
a single instance of a domain-specific simulator per level would not be prac-
tical, as it could potentially create bottlenecks that hinder multiple models
throughout the simulation.

In summary, the concept of model reuse within a tree-like model hierarchy
is a fundamental and ingenious aspect of the proposed simulation approach.
It fosters adaptability, scalability, and efficient resource utilization, rendering
it a pivotal component of the innovative simulation framework.

4.5.3. Synchronization
When transitioning between an atomic and network model and vice versa,
the potential for synchronization errors looms. These errors may arise from
previously scheduled autonomous events that could become invalid during
the model exchange process. To comprehend the operation mode of the im-
plemented abstract simulator, it’s important to note that following an au-
tonomous event, the imminent model is rescheduled using its time advance
function. This detail provides a foundation for simplifying synchronization
procedures: If model exchanges exclusively occur during events, the subse-
quent rescheduling of the encompassing model significantly reduces the likeli-
hood of incorrectly scheduled models.

However, depending on the specific implementation of the Future Event Set
(FES), internal events may still be scheduled inappropriately, either too early
or too late. For instance, during a switch from a detailed, slower-advancing
network model to the respective atomic one, there’s a possibility that inter-
nal events from one of the network’s faster-advancing components are still
present in the FES. While a straightforward solution involves maintaining a
future event schedule that accommodates at most one event per atomic model,
the reality is often more complex. Various applications may require different
scheduling strategies, and not all of them may align with the requirements of
this approach. OMNeT++, for instance, is equipped with several potential
scheduling classes, emphasizing the necessity of addressing the synchronization
challenge directly.

In light of these considerations, the proposed new model type must au-
tonomously manage its scheduling conflicts and devise responses to erroneously
scheduled autonomous events. While models typically track their internal time
using their time advance function and the elapsed time since the last inter-
nal event, which generally adheres to a correct time advance pattern for the
model, this mechanism becomes unreliable when internal event occurrences
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are in question. Therefore, the model must possess the capability to access
global simulation time. This can be achieved in various ways, such as per-
mitting individual models to access the simulation environment or simulation
kernel, similar to the approach adopted by OMNeT++. Alternatively, global
simulation time can be provided to the model with each function call to one
of the state transition functions or the output function.

In essence, addressing synchronization challenges effectively within the pro-
posed approach is essential for maintaining the integrity and accuracy of large-
scale IoT simulations, where model exchanges and dynamic adjustments play
a crucial role in optimizing performance and resource utilization.

4.6. Implementation of the Simulation Core

In this chapter, we delve into the intricate details of implementing the light-
weight simulator, which was previously introduced in section 4.5. Specifically,
we explore the seamless integration of this simulator with the OMNeT++
framework, shedding light on the symbiotic relationship between the two sim-
ulation environments, as depicted in Figure 4.2.

The primary focus of this chapter is twofold. Firstly, we present the founda-
tional framework responsible for realizing the abstract simulator, as outlined
in Subsection 4.3.5. This framework forms the backbone of our simulation
architecture and is instrumental in orchestrating the fundamental simulation
processes. Secondly, we delve into the pivotal enhancements required to equip
our simulation framework with the capacity to model continuous time hybrid
systems. The introduction of continuous time modeling is paramount for the
accurate representation of various sensor functionalities within the smart city
ecosystem. Furthermore, it empowers our simulations to emulate dynamic
events occurring within specific time intervals, a capability of paramount im-
portance in scenarios involving motion and movement within the smart city
infrastructure.

Moving forward, we detail the intricacies of implementing time hierarchical
models. These models introduce a novel dimension of flexibility, enabling the
incorporation of different levels of time resolution into our simulations. This
flexibility is invaluable for the simulation of complex systems operating under
diverse temporal constraints.

In closing, we address the vital topic of integrating our simulator within the
OMNeT++ framework. This integration represents a critical juncture in our
simulation endeavor, as it ensures the harmonious coexistence and interaction
of our lightweight simulator with OMNeT++, thereby harnessing the collective
strengths of both environments for the benefit of our smart city simulation
framework.

4.6.1. The core simulation framework

This subsection unveils the fundamental architecture of our core simulation
framework, an essential component of our lightweight simulator. To achieve
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Figure 4.2.: The architecture of the implementation

the desired lightweight profile, we carefully considered and adapted the ab-
stract simulator design discussed in Subsection 4.3.5. The conventional hier-
archical structure of different processor layers, intertwined with the necessity
for continuous control message exchange, appeared to introduce unnecessary
overhead. Furthermore, the requirement to manage each model component
with its dedicated processor seemed impractical, especially when confronting
the vast number of models potentially encountered within a smart city simu-
lation.

Our solution involves flattening the hierarchical logistical structure that
envelops the topological hierarchy of DEVS models. The objective is to con-
solidate all coupled network and atomic models into a single unified level.
However, this endeavor goes beyond mere aggregation; it also necessitates the
concentration of administrative responsibilities within a single entity. This
entity, referred to as the simulator, is designed to assume the pivotal roles of
advancing global and local simulation time, orchestrating model state transi-
tion functions, and efficiently routing input and output data within the model
hierarchy. The result is a versatile simulator capable of supervising an arbi-
trary number of atomic and coupled models, ensuring the proper execution of
simulation procedures.

The simulator functions seamlessly with both atomic and network models,
represented as distinct classes. These classes serve as abstract base classes,
enabling users of our simulation framework to create models tailored to their
specific systems of interest. To simplify the operation on DEVS models, atomic
and network models share a common base class.

Interactions within the simulator and between models are managed through
events. Events encapsulate critical information, including input and output
values, associated models, and the corresponding timestamps. When dealing
with future events tied to internal state transitions, the events are stored in a
Future Event Schedule (FES), an integral component of the simulator. Beyond
its role in managing internal events, the FES also implements the select func-
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tion for network models (as defined in Section 4.3.3), a critical aspect of the
formal DEVS definition. To address situations where multiple models sched-
ule state transitions simultaneously, the FES groups events sharing the same
timestamp, thereby ensuring their orderly processing. Additionally, the FES
facilitates the implementation of Parallel DEVS (PDEVS) by accommodating
delta functions for confluent events.

While our framework suffices for the execution of DEVS simulation models,
we extend its functionality to observe and react to state changes, input, and
output events. To this end, we introduce the event listener class template, a
versatile tool for users to tailor their specific requirements.

Furthermore, we augment the core framework with a lightweight container
class that efficiently collects and transfers multiple entities within models and
throughout the simulator. To manage the creation and lifetime of these con-
tainers, we introduce the object pool, providing an organized and efficient
resource management system.

This software system closely resembles the abstract simulator design pro-
posed by Nutaro in [93]. However, notable distinctions from Nutaro’s concept
are elaborated in subsequent subsections dedicated to specific classes.

The composition of the software system is visualized in Figure 4.3. It com-
prises instances of the simulator class template, each overseeing numerous
DEVS models, both atomic and network, and governing the progression of
simulation time. These simulator instances are supported by corresponding
Future Event Schedules and Object Pools. Communication between simula-
tors and models is facilitated through instances of events, efficiently routed
through the model hierarchy by the simulator and network models. Event
listeners stand ready to respond to these events as per the requirements of the
user.

In summary, the core simulation framework presented here serves as the
foundation for our lightweight simulator. Its adaptability, unified structure,
and efficient event management form a robust basis for implementing various
DEVS models and accommodating different time and data types, thereby pro-
moting interoperability with other simulation frameworks such as OMNeT++.

Simulator

The Simulator class template (refer to Figure 4.4) forms a vital component of
our simulation framework. This class orchestrates the simulation process, and
its critical algorithms are elucidated herein. The Simulator operates with an
abstract interface, AbstractSimulator, from which it inherits essential meth-
ods.

To comprehend its functionality, the primary methods are outlined below:

1. nextEventTime(): This method retrieves the timestamp of the next im-
minent event.

2. executeNextEvent(): It is responsible for executing the next imminent
event.
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Figure 4.3.: The core simulation framework as UML
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3. computeNextOutput(): This function calculates the output of imminent
atomic models.

4. computeNextState(...): It manages the computation of the next state,
considering both internal and external transitions.

5. unscheduleAllModels(): This method unschedules all future events.

The Simulator relies on a Future Event Schedule (FES) to track imminent
events. The imminentEvents container holds these events, while the activated-
Models container stores models active during the current simulation step. The
simulator also employs object pools for efficient object resource management,
particularly beneficial for frequently used objects like containers.

Figure 4.4.: The Simulator class template

The class introduces an interface, IFutureEventSchedule, to ensure flexibility
in FES implementations. The interface defines methods such as minPriority(),
getImminentEvents(...), removeMinimum(), and schedule(...). By default, our
framework uses the FutureEventSchedule, which employs a min heap data
structure to manage imminent events efficiently[80]. This heap is organized
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based on event timestamps, with the root node representing the most imminent
event. The FES’s main purpose is to determine which event is scheduled
next for execution. It optimally handles situations where multiple events are
scheduled simultaneously by grouping them and processing them sequentially.

Algorithm 1: The simulation loop
1 while nextEventTime() < +∞ do
2 executeNextEvent();
3 end

The simulation loop (refer to section 4.3.5) is executed within the Simulator.
It starts by determining the timestamp of the next event using nextEvent-
Time(). As long as there are future events (nextEventTime() < +∞), the
simulation loop iteratively calls executeNextEvent() to execute the events as
seen in algorithm 1. The executeNextEvent() function operates in two phases.

In the first phase, it calculates the output of imminent atomic models. For
this, it retrieves imminent events from the FES and iterates through them. If
an output container does not exist for a model, it creates one and invokes the
output function, then routes the output as per the network model’s routing
information. Models receiving output events are added to the set of activat-
edModels. The basic algorithm is presented in Algorithm 2.

Algorithm 2: computeNextOutput algorithm
1 if outputFunction already executed then
2 return;
3 else
4 imminentEvents ← FES.getImminentEvents();
5 foreach event ∈ imminentEvents do
6 if outputContainer exists then
7 break;
8 else
9 create outputContainer;

10 event.getModel().outputFunction(event);
11 routeOutput();
12 end
13 end
14 end

The second phase focuses on computing the new state of active models. It
involves internal transitions for imminent models and external transitions for
models within activatedModels. The simulator checks for external input in its
input container and routes it to associated models. It also executes the internal
transition function for imminent models if no external input is associated with
them. If external input and autonomous actions coincide, the simulator calls
the confluent transition function. Next, activated models transition to their
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new states based on their external transition functions.
The simulator maintains an input container for external inputs, and this

container is cleared after each iteration of the simulation loop. This is used to
process external input, routing it to the appropriate models and calculating
the external state transitions.

Furthermore, the simulator is responsible for routing input and output
events between models. The routing method uses the event source, its value,
and the parent model to deliver events. If the destination model is atomic,
the input is injected into it, and the model is marked as activated. If the des-
tination is a network model, the simulator recursively routes the events until
an atomic model is reached. The routing continues until either an atomic
model is encountered or the source model has no parent model (indicating the
top-level network model).

Models

In the context of our simulation framework, models refer to both atomic and
network DEVS models(refer to section 4.3). These models share common
features and an interface (as seen in Figure 4.5) that is fundamental to the
functioning of the framework. Here, we will delve into the key aspects of these
models.

Figure 4.5.: The model class template

1. Hierarchical Structure: Every model, whether atomic or network, is
part of a hierarchical structure. This structure is created by organizing
models into different levels of network models, which, in turn, couple
atomic models together. To facilitate this hierarchical organization, each
model possesses a pointer to its parent network model. This pointer
allows a model to access its parent within the hierarchical structure.
Models can set their parent using dedicated get and set methods.
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2. Type Identification: Models need to inform the simulator of their
specific type—whether they are atomic or network models. This type
identification is crucial because the simulator treats atomic and network
models differently concerning scheduling and state transitions. Models
achieve this by implementing the isTypeAtomic() and isTypeNetwork()
functions. These functions return a null pointer and are expected to be
overridden by the respective model classes. By knowing the type of a
model, the simulator can appropriately manage its behavior.

Importantly, models in our simulation framework do not need to be aware of
the simulator or any other underlying infrastructure of the simulation engine.
This separation of concerns ensures modularity and allows models to focus
solely on their specific functionality and logic within the simulation.

In essence, models in our framework are the building blocks of the simula-
tion. They can represent various components and subsystems of the simulated
system, whether they are atomic entities or network structures. The hierar-
chical arrangement, parent-child relationships, and type identification mecha-
nisms enable models to interact effectively within the simulation framework,
providing a foundation for creating complex simulations.

Atomic Models The implementation of atomic models in our simulation
framework adheres to the atomic DEVS formalism and is encapsulated within
the Atomic class template. This abstract class template serves as a blueprint
for concrete atomic models that are part of a simulation. The interface of the
Atomic class template is depicted in Figure 4.6.

Attributes The Atomic class template incorporates four essential attributes
for its core functionality:

• timeLast: This attribute stores the simulation time at which the model
was last scheduled.

• active: It is a flag that indicates whether the model is currently active
and part of the schedule.

• inputContainer and outputContainer: These containers enable the in-
teraction of the model with the external world, allowing the simulator
to inject input and collect output.

Access Methods Access to these attributes is facilitated through dedi-
cated get and set methods. Additionally, the deactivate(...) function serves to
deactivate the model, returning the input and output containers to the object
pool and facilitating garbage collection.

Functions The Atomic class template includes a set of pure virtual func-
tions that must be implemented by concrete models that inherit from it. These
functions define the behavior of the atomic model within the simulation:
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Figure 4.6.: The atomic class template

• deltaInternal(...): This function defines the behavior of the model in
response to internal events.

• deltaExternal(...): It specifies the behavior of the model in response to
external input events.

• deltaConfluent(...): This function handles events that are both internal
and external (confluent events).

• outputFunction(...): This function determines the model’s output be-
havior.

• timeAdvance(): It defines the model’s time advance function, influencing
its scheduling within the simulation.

• gcOutput(...): This function is used for cleanup when the model is no
longer in use.

• The deltaInternal(...) and deltaConfluent(...) functions serve as sinks
for scheduled internal events from the simulator. This enables atomic
models to access the current simulation time, a crucial requirement for
their behavior.
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• Type Identification: Finally, the class also implements the typeIsAtomic()
function, which is inherited from the Model class. This function returns
a self-pointer and aids in identifying the model’s type as atomic.

In essence, the Atomic class template provides the fundamental structure
and behavior that atomic models must adhere to within our simulation frame-
work. Concrete atomic models inherit from this template and implement the
necessary functions to define their specific behavior and interactions within
the simulation.

Network Models The Network class template plays a pivotal role in our
simulation framework, serving as the foundation for modeling complex hier-
archical structures of coupled atomic models. Despite its simplicity in terms
of attributes, this class template is crucial for facilitating the interactions be-
tween atomic models within a network.

Figure 4.7.: The network class template
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Attributes The Network class template (refer to Figure 4.7) does not in-
clude any attributes, as its primary function is to provide a structural frame-
work for connecting atomic models within a network.

Functions

1. getComponents(...) (Pure Virtual): This function is required to be im-
plemented by any concrete network model that inherits from the Network
class template. Its purpose is to inform the user about all the atomic
models that are coupled together within the network. This function
serves as a means for the user to access and manage the atomic models
within the network effectively.

2. route() (Pure Virtual): The route() function is an essential component
used by the simulator to obtain routing information for both input and
output events of the atomic models within the network. It defines how
events are routed through the hierarchical structure of the network to
their respective destinations. This is crucial for managing the flow of
information between atomic models, ensuring proper communication and
interaction.

3. typeIsNetwork(): Similar to the typeIsAtomic() function in the Atomic
class, the typeIsNetwork() function is implemented in the Network class
template. It returns a self-pointer and aids in identifying the model’s
type as a network model.

In essence, the Network class template is a fundamental building block
within our simulation framework, allowing the creation of hierarchical struc-
tures of coupled atomic models. It provides the necessary functions for man-
aging and routing events between atomic models, enabling the modeling of
complex systems with intricate interactions. Models that inherit from the
Network class template must implement the getComponents(...) and route()
functions to define the specific structure and behavior of the network.

Hybrid Models

The incorporation of continuous-time hybrid systems into our simulation frame-
work, as defined in subsection 4.3.7, draws inspiration from the work presented
in [93]. Here, we provide an overview of the essential methods and components
that enable the simulation of hybrid models within our developed simulator.

HybridAtomic Class The HybridAtomic class (refer to Figure 4.8 serves as
the core component for simulating hybrid models. It employs three additional
classes, namely ODESystem, ODESolver, and EventLocator, to manage and
execute the hybrid modeling functionality effectively.
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Figure 4.8.: HybridAtomic

Attributes

• State Variables: The HybridAtomic class includes attributes to store
the state variables of the discrete event model represented by the hybrid
system.

• Event Flag: An additional flag within this class plays a pivotal role in
indicating the occurrence of an event.

External Classes

• ODESystem: This class encapsulates the continuous-time behavior of
the hybrid model, providing the necessary functionalities to manage and
solve ordinary differential equations (ODEs).

• ODESolver: Responsible for solving the ODEs associated with the hy-
brid model, the ODESolver class ensures accurate numerical solutions,
allowing for the simulation of continuous-time dynamics.
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• EventLocator: The EventLocator class specializes in identifying events
within the continuous-time simulation, facilitating the synchronization
of discrete and continuous components.

In essence, the HybridAtomic class, along with its associated components,
enables the simulation of hybrid models by seamlessly integrating discrete
event-driven behavior with continuous-time dynamics. The interaction be-
tween these components allows for the accurate representation of systems with
both discrete and continuous behaviors, making our simulation framework ver-
satile and capable of modeling a wide range of complex systems.

ODE System The ODESystem serves as a foundational class that must be
extended to implement specific hybrid models. It defines several crucial meth-
ods:

• stateEventFunction(. . . ): This method computes state event functions,
which help identify state transitions within the continuous dynamics of
the hybrid model.

• timeEventFunction(. . . ): Similar to the state event function, this method
computes time event functions, which capture specific time points where
events occur.

• derivativeFunction(. . . ): The derivative function calculates the rate of
change of the continuous state variables. This function plays a funda-
mental role in advancing the continuous dynamics of the hybrid system.

Additionally, the ODESystem class includes methods for implementing dis-
crete behaviors:

• internalEvent(. . . ): This method handles internal events, which occur
within the continuous-time component of the model.

• externalEvent(. . . ): External events are managed by this method, allow-
ing the model to react to discrete events from its environment.

• confluentEvent(. . . ): In cases where internal and external events coin-
cide, the confluent event function is used to manage their interactions.

• outputFunction(. . . ): The output function computes the model’s outputs
based on its current state.

By providing these methods, the ODESystem class forms the basis for im-
plementing the continuous and discrete behaviors of hybrid models.

ODE Solver The ODESolver class is responsible for advancing the continu-
ous state variables of the hybrid model over time. It defines two key methods:
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• Integrate(. . . ): This method advances the system’s state from one time
point to another, accommodating the continuous dynamics. It returns
the actual integration step size used during the process and updates the
states stored within the HybridAtomic class.

• advance(. . . ): Similar to Integrate, this method also advances the con-
tinuous state but guarantees advancement up to a specific time point.

By utilizing these methods, the ODESolver class ensures the accurate pro-
gression of the continuous-time component of the hybrid model.

Event Locator The EventLocator class focuses on identifying state events
within a fixed interval. It is an abstract class, and its implementations must
define the findEvents(. . . ) method. This method is crucial for detecting state
events by analyzing the continuous state of the hybrid model and the end
state at the conclusion of the fixed interval. It relies on a specified integration
method to locate state events accurately. When a state event is found, the
EventLocator class records the time of its occurrence, the model’s state at that
moment, and a flag indicating which threshold function triggered the event.

In summary, the ODESystem, ODESolver, and EventLocator components
work together to enable the accurate simulation of hybrid models by seamlessly
integrating continuous and discrete behaviors. These components provide the
necessary tools and methods for modeling complex systems with both contin-
uous and discrete dynamics.

4.6.2. Hierarchy Middleware

In this section, we embark on the practical realization of the novel model type
introduced in Chapter 4.5, known as the Hierarchy Middleware. This intricate
component forms a crucial part of our simulation framework, facilitating the
modeling of complex hierarchical structures within the simulated environment.

To comprehensively understand the architecture and functionality of this
Hierarchy Middleware, we will first delve into the intricate web of inheritance
relationships and associations that underlie its design. This discussion serves
as a foundational exploration, shedding light on the structural underpinnings
of our model, paving the way for a deeper analysis of its operational intricacies.

Subsequently, we will transition to a more granular examination of the im-
plementation, delving into specific sections of the codebase that carry partic-
ular significance. While prior discussions have primarily focused on abstract
algorithms and high-level concepts, this part of the section aims to provide
a practical, code-level perspective on how the Hierarchy Middleware operates
within our simulation framework. Through this lens, we can gain valuable in-
sights into the technical underpinnings that empower our model to handle the
complexities of hierarchical systems in the context of discrete-event simulation.
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Hierarchical Atomic

The Hierarchical Atomic model, embodied in the HierarchicalAtomic class
template, constitutes a pivotal component of our simulation approach, encap-
sulating both atomic and network models. This amalgamation, depicted in
Figure 4.9, facilitates the seamless integration of atomic and network model
behaviors within a single framework.

Figure 4.9.: Hierarchical Atomic

The HierarchicalAtomic class template is designed to function as a wrapper
around an arbitrary model. It can encapsulate both an Atomic model and
a Network model, functioning as an intermediary between them. From the
perspective of an external Simulator (as discussed in subsection 4.6.1), the
HierarchicalAtomic behaves like a regular atomic model. However, it orches-
trates the switch between its internal encapsulated models, ensuring that their
behaviors are faithfully represented and synchronized.

A key distinction is that the HierarchicalAtomic itself does not verify whether
the behavior of the encapsulated Network model provides a more detailed
specification of the Atomic model’s behavior. This responsibility falls upon
the user, who must choose the appropriate models to encapsulate.

This class is instrumental in the management of its encapsulated models’ ex-
ecution and state synchronization. It maintains a private flag, hierarchyActive,
to determine which model is currently active. This flag is toggled through the
method requestHierarchySwitch, which ensures synchronization between the
models and avoids instantaneous switches, allowing the encapsulated models
to react to events before switching.

The HierarchicalAtomic class inherits from EventListener, which enables it
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to register itself as an event listener in the encapsulated Simulator. When
the internal Simulator triggers events in the HierarchicalAtomic, it can check
these events against its list of output models to determine which outputs are
relevant to the current model.

The synchronization mechanism (refer to Figure 4.10) is managed through
the synchronizationError flag, which detects scheduling errors arising from
finer-grained time advances within the encapsulated Network. This flag en-
sures that events are scheduled correctly, even when switching back and forth
between the encapsulated Atomic and Network models.

1 template <typename ValueType, typename TimeType>
2 void deltaInternal(Event<ValueType, TimeType> inInternalEvent){
3 if (!hierarchyActive){
4 if (hierarchySwitchRequested){
5 injectAtomicstatusIntoNetwork();
6 //Schedule Models
7 simulator−>addModel(this−>network, inInternalEvent.time);
8 simulator−>computeNextState(inputBag, inInternalEvent.time);
9 hierarchySwitchRequested = false;

10 hierarchyActive = true;
11 }else{
12 //Detect synchronization errors
13 if (inInternalEvent.time < this−>timeLast + atomic−>timeAdvance()){
14 correctedTimeAdvance = this−>timeLast + atomic−>timeAdvance() −
15 inInternalEvent.time;
16 synchronizationError = true;
17 return;
18 }
19 atomic−>deltaInternal(inInternalEvent);
20 }
21 }else{
22 if (hierarchySwitchRequested){
23 simulator−>executeNextEvent();
24 injectNetworkStatusIntoAtomic();
25 simulator−>unscheduleAllModels();
26 hierarchySwitchRequested = false;
27 hierarchyActive = false;
28 }else{
29 internTimeLast = simulator−>nextEventTime();
30 simulator−>executeNextEvent();
31 }
32 }
33 }

Figure 4.10.: HierarchicalAtomic’s deltaInternal method

The timeAdvance method in the HierarchicalAtomic class, as shown in Fig-
ure 4.11, calculates the simulation time advance for both encapsulated models.
If the HierarchicalAtomic is currently in the Atomic mode and a synchroniza-
tion error is detected, it corrects the time advance accordingly. When the
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Network is active, it scales down the time advances to reflect the finer-grained
time resolution. This ensures that scheduled events are executed at the correct
times, preventing synchronization errors.

1 template <typename ValueType, typename TimeType>
2 TimeType HierarchicalAtomic<ValueType, TimeType>::timeAdvance(){
3 if (!hierarchyActive){
4 if (synchronizationError){
5 synchronizationError = false;
6 return atomic−>timeAdvance() − correctedTimeAdvance;
7 }else{
8 return atomic−>timeAdvance();
9 }

10 }else{
11 if (simulator−>nextEventTime() < pdevsInf<TimeType>())
12 return simulator−>nextEventTime() − internTimeLast;
13 else
14 return pdevsInf<TimeType>();
15 }
16 }

Figure 4.11.: HierarchicalAtomic’s timeAdvance method

In summary, the HierarchicalAtomic model serves as a crucial bridge be-
tween atomic and network models within our simulation framework. It seam-
lessly switches between these models, ensuring their behaviors are faithfully
represented and synchronized, all while preventing synchronization errors. The
encapsulation of models allows for a more versatile and modular approach to
simulation modeling, where complex hierarchical structures can be built with
ease.

4.6.3. OMNeT++ - Integration
OMNeT++ Integration into our existing simulation framework is a pivotal
step that empowers our system with the capabilities of OMNeT++, a renowned
network simulation tool. This integration enhances the versatility and appli-
cability of our framework, enabling the simulation of complex systems en-
compassing both discrete event-driven and network-centric behaviors. In the
subsequent sections, we delve into the details of this integration.

The integration process requires modifications to OMNeT++’s environment
class, enabling seamless interaction with our simulator. This environment
class, often referred to as the Simulation Host Environment (SHE), serves as
the bridge between OMNeT++ and our simulation framework. In the next
subsection on the shared environment, we scrutinize these necessary adapta-
tions, elucidating how they facilitate the coexistence of OMNeT++ and our
framework.

Subsequently, in the section on AbstractModuleCoupling, we explore the
intricacies of data exchange between the various types of models in both sim-
ulators. This includes atomic and network models in our framework, as well
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as modules and connections in OMNeT++. This data interchange mecha-
nism is vital for achieving a harmonious integration where information flows
seamlessly between the two simulation environments.

Shared Environment

To seamlessly merge our core simulation framework, detailed in Section 4.6.1,
with OMNeT++, a unified simulation loop known as the Shared Environment
is essential. This shared environment acts as a unifying interface, providing
users access to the functionalities of both simulators while presenting critical
information regarding simulation management and noteworthy events.

OMNeT++ offers three pre-built environments: a basic command-line en-
vironment, a Tk environment, and a Qt environment, each equipped with
its simulation loop. However, to facilitate the integration of our simulation
framework with OMNeT++, users have the flexibility to create their custom
environments, which can then be registered and selected at runtime. For this
purpose, OMNeT++ offers the cRunnableEnvir class as an interface to imple-
ment custom environments.

In this integration effort, we opt to utilize the EnvirBase class as a foun-
dational component. This class is employed by OMNeT++ for its pre-built
environments, offering a range of built-in functionalities, such as setup and
cleanup procedures before and after simulation runs. The EnvirBase class
will serve as the base for our shared environment, enhancing the efficiency of
the environment development process.

To harmonize the functionalities of both simulators within the shared en-
vironment, we establish a combination of interfaces. The primary interface,
ISharedEnvironment, defines the requisite methods necessary to extend any
environment built on top of EnvirBase into a shared environment. This in-
terface closely collaborates with a data structure that embodies the Model
Tree, a concept detailed in subsection 4.5.2. The public interface of this data
structure is defined by IModelTree. Further elaboration on these interfaces
will be provided in the subsequent sections.

In an endeavor to streamline the development of the shared environment,
we draw upon the existing functionality of OMNeT++’s command-line en-
vironment, transferring it to a new class template that also implements the
newly introduced interfaces. This approach significantly simplifies the process
of creating a shared environment, enabling users to harness the capabilities of
both simulators within a unified simulation context.

ISharedEnvironment The ISharedEnvironment interface plays a pivotal role
in enabling the seamless integration of our dual simulator environment. Rather
than hardcoding the necessary changes directly into the command-line envi-
ronment class, this interface offers a more versatile approach. It empowers
classes that rely on an instance of the shared environment, such as the Ab-
stractModuleCoupling, to function independently of the specific environment
implementation. Moreover, it paves the way for deploying more advanced
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environments in the future. The interface definition is presented in Figure
4.12.

Figure 4.12.: ISharedEnvironment

In the context of ISharedEnvironment, the TimeType parameter for all uti-
lized class templates is mapped to OMNeT++’s simtime t, while the Value-
Type parameter remains open until the simulation’s data type is determined.
The interface mandates the implementation of the following methods:

• runShared(): This method encapsulates the core simulation logic re-
quired to run both simulators within a single simulation loop. A concrete
implementation of this method will be provided later in this section.

• getCoupledModel(. . . ) and getCoupledSimulator(. . . ): These methods
play a pivotal role during the simulation’s initialization phase, linking
OMNeT++ modules and Atomic models.

• advanceRootSim(): This method is responsible for advancing the simu-
lation managed by the rootSimulator. It is intended to be invoked by
SyncEvents, which are injected into OMNeT++’s simulation loop.

• schedule(. . . ): To gain access to the protected schedule method within
the simulators, the simulator class template needs to befriend the in-
terface. The interface then utilizes the protected schedule method to
schedule a model within the simulator’s Future Event Set (FES).

Additionally, the interface includes a set of utility functions for convenient
access to specific models or simulators from the model tree.

Furthermore, ISharedEnvironment maintains a data structure containing
pointers to HierarchicalAtomics and timestamps at which they should transi-
tion between their encapsulated models. This data structure is accessible to
all potential environment subclasses that implement the interface. This shared
data structure ensures consistent and synchronized behavior across the shared
environment, facilitating the seamless interaction between the two simulators.
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IModelTree The core of any potential implementation of ISharedEnviron-
ment hinges upon the underlying data structure used to represent the hier-
archy of HierarchicalAtomics and the overall model topology. Although the
name might suggest a conventional tree structure, for reasons of efficiency,
it’s not a strict requirement. The interface can be observed in Figure 4.13,
defining the following methods:

• addModel(. . . ): This method, as the name implies, is responsible for in-
corporating a given model into the data structure. It should also store
information about any encapsulated simulators if they inherit from Hier-
archicalAtomic. This stored information becomes essential for the over-
loaded method getPathToRootSim, which returns all simulators on a
bottom-up path from any given simulator or model.

• getPathToRootSim(. . . ): This method plays a critical role in navigating
the hierarchy. Given a simulator or model, it returns all simulators
encountered along the path to the root simulator.

The data structure represented by IModelTree serves as the backbone for
efficient and effective interaction between models and simulators in our dual
environment. It allows for precise traversal of the model hierarchy, ensuring
that the interactions between models and simulators are well-coordinated and
synchronized. This is especially crucial in the context of the shared environ-
ment, where both simulators must operate in harmony to produce accurate
and meaningful results.

Figure 4.13.: IModelTree

SharedSequentialScheduler and SyncEvent Introducing a new class of events,
this section outlines an essential mechanism for synchronizing the rootSimu-
lator and OMNeT++. This class extends OMNeT++’s existing cEvent class
and thus requires the implementation of the pure virtual method, execute.
This method’s role is straightforward; it casts OMNeT’s active environment
to the ISharedEnvironment interface and then invokes its advanceRootSim
method.

These specialized events, referred to as SyncEvents, are generated by in-
stances of the SharedSequentialScheduler class template. This class template
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expands upon OMNeT’s cSequentialScheduler and introduces the critical func-
tionality needed to harmonize both simulators within a unified simulation
loop. When the scheduler is queried for the next imminent event, it conducts
a meticulous examination of both simulators’ Future Event Sets (FES). If it
determines that the next event of the root Simulator should take precedence
over the earliest event in OMNeT++, it creates and returns a new SyncEvent.
This event triggers synchronization, ensuring that both simulators operate
seamlessly together in the same simulation loop. This tight synchronization
is crucial to maintain consistency and accuracy throughout the simulation.

SharedEnvironment With all the necessary interfaces and classes in place,
it’s now possible to construct a shared environment. Essentially, this en-
vironment should implement the previously introduced interfaces and make
appropriate adjustments to OMNeT++’s simulation method.

The simulateShared method, showcased in Figure 4.14, is a customized ver-
sion of OMNeT++’s CmdEnv’s simulate method. To keep the focus on the
modifications, unmodified code is encapsulated within the helper functions
setupSimulateShared and endSimulateShared.

1 template <typename ValueType>
2 void SharedEnvironment<ValueType>::simulateShared(){
3 Speedometer speedometer = setupSimulateShared();
4 try{
5 if (!opt−>expressMode)
6 runSimulateShared();
7 else
8 runSimulateSharedExpressMode(&speedometer);
9 }catch (cTerminationException& e){

10 if (opt−>expressMode)
11 doStatusUpdate(speedometer);
12 loggingEnabled = true;
13 stopClock();
14 deinstallSignalHandler();
15 stoppedWithTerminationException(e);
16 displayException(e);
17 return;
18 }catch (std::exception& e){
19 if (opt−>expressMode)
20 doStatusUpdate(speedometer);
21 loggingEnabled = true;
22 stopClock();
23 deinstallSignalHandler();
24 throw;
25 }
26 endSimulateShared(speedometer);
27 }

Figure 4.14.: SharedEnvironment’s simulateShared method

setupSimulateShared configures various parameters required for the simula-
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tion loop and the collection of statistics and status information. Subsequently,
it calls the runSimulateShared (or runSimulateSharedExpressMode) function,
which handles the actual simulation.

Since most administrative tasks are already managed by ISharedEnviron-
ment and SharedSequentialScheduler, only minor adjustments are needed.
These adjustments are made within the runSimulateShared and runSimulate-
SharedExpressMode functions. Figure 4.15 illustrates the runSimulateShared
function, and runSimulateSharedExpressMode functions are analogous.

The primary change is within the core simulation loop, where it’s checked
if the next event of the rootSimulator occurs before the next event of OM-
NeT++. This is achieved using the getNextSimTime method, which retrieves
the arrival time of the first event in OMNeT++’s Future Event Set (FES) and
then restores the event to its original state. If any events in the rootSimula-
tor’s schedule are scheduled to occur before the next OMNeT++ event, the
rootSimulator advances its simulation until an OMNeT++ event occurs. After
the OMNeT++ event is executed, the loop repeats, processing any reactions
to that event.

The logic ensures that the simulators’ internal state transitions are per-
fectly synchronized, contributing to the overall consistency and accuracy of
the simulation.

AbstractModuleCoupling

In order to seamlessly connect atomic models with OMNeT++’s cSimpleMod-
ules for use as transportation networks, a key component is introduced: the
abstract class template AbstractModuleCoupling (refer to Figure 4.16). This
class inherits from OMNeT++’s cSimpleModule and the EventListener class
template. The TimeType parameter of EventListener is set to simtime t in
OMNeT++, as this is the shared simulation’s time unit. However, the Value-
Type parameter remains open and must be defined for specific use cases, as it
depends on the data type used in the simulation.

The main function of this class is to facilitate the translation of inputs
between the core simulation framework described in section 4.6.1 and OM-
NeT++. To inject messages into OMNeT++ models, the class implements
EventListener’s outputEvent method (refer to Figure 4.17). When an output
event occurs in the core simulation, this method is invoked. It subsequently
triggers the translateOutput and prepareAndSend methods, both of which are
pure virtual methods that must be implemented by concrete modules inher-
iting from AbstractModuleCoupling. Additionally, the setContext calls are
vital. They ensure that the output is correctly associated with the respec-
tive module and prevents issues where messages would be owned by OMNeT’s
cDefaultList instead of the module itself.

On the other hand, to inject OMNeT++ messages into the core simulation
framework, the handleMessage method of cSimpleModule is employed. This
process is depicted in Figure 4.18.

In essence, when a message arrives in an OMNeT++ module, it’s translated
into the corresponding data type for the simulation. This translated message
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1 template <typename ValueType>
2 void runSimulateShared(){
3 while (true){
4 if (!this−>switchCommands.empty()){
5 auto switchCommand = this−>switchCommands.front();
6 if (switchCommand.time <= getSimulation()−>guessNextSimtime()){
7 for (auto hatomicIter = switchCommand.models.begin();
8 hatomicIter != switchCommand.models.end(); hatomicIter++)
9 (∗hatomicIter)−>requestHierarchySwitch();

10 this−>switchCommands.erase(this−>switchCommands.begin());
11 }
12 }
13 cEvent ∗event = getSimulation()−>takeNextEvent();
14 if (!event)
15 throw cTerminationException(”Scheduler interrupted while waiting”);
16
17 // flush ∗between∗ printing event banner and event processing, so that
18 // if event processing crashes, it can be seen which event it was
19 if (opt−>autoflush)
20 out.flush();
21
22 // execute event
23 getSimulation()−>executeEvent(event);
24
25 // flush so that output from different modules don’t get mixed
26 cLogProxy::flushLastLine();
27
28 checkTimeLimits();
29 if (sigintReceived)
30 throw cTerminationException(”SIGINT or SIGTERM received, exiting”);
31 }
32 }

Figure 4.15.: SharedEnvironment’s runSimulateShared method
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Figure 4.16.: AbstractModuleCoupling

is then encapsulated into an event and injected into the simulator managing
the model. The simulator’s computeNextState method is called to execute the
input, triggering an external state change. Finally, the environment overseeing
the simulation is notified. This step is essential because different simulator en-
tities managing the simulation aren’t aware of each other, so the environment
must traverse the hierarchy of wrapped simulators from the receiving model
to its root and reschedule the hierarchical models that contain the receiving
one.

In concrete implementations of ModuleCoupling, methods such as translate-
Output, prepareAndSend, and translateMessage must be implemented. These
methods rely on pointers to coupledModel and observedSimulator, which are
obtained during OMNeT++’s initialization phase. The couplingID parameter
is read from the respective NED files during initialization, used to request the
necessary pointers from the active environment, and register itself as an event
listener for the coupled model on the observed simulator.

4.7. Hardware in the loop

In many instances, the need arises for interactions with objects external to the
simulation environment, such as the authentic VICINITY network. These in-
teractions may encompass direct engagement with real-world objects or merely
exerting control over entities within the simulation. In this context, VICINITY
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1 template <typename ValueType>
2 void outputEvent(pdevs::Event<ValueType, simtime t> inValue, simtime t inTime){
3 if(inValue.model == coupledModel){
4 getSimulation()−>setContext(this);
5 cMessage∗ msg = new cMessage((messageName).c str());
6 msg = translateOutput(inValue.value, msg);
7 prepareAndSend(msg);
8 delete msg;
9 getSimulation()−>setGlobalContext();

10 }
11 }

Figure 4.17.: AbstractModuleCoupling’s outputEvent method

1 template <typename ValueType>
2 void handleMessage(cMessage ∗msg){
3 ValueType translatedMsg = translateMessage(msg);
4 Event<ValueType, simtime t> inputEvent(coupledModel, translatedMsg, getSimulation()
5 −>getSimTime());
6 inputBag.insert(inputEvent);
7 if (observedSimulator){
8 observedSimulator−>computeNextState(inputBag, getSimulation()−>getSimTime());
9 auto env = check and cast<ISharedEnvironment<ValueType>∗>(getSimulation()

10 −>getActiveEnvir());
11 env−>omnetInputArrived(observedSimulator, coupledModel);
12 inputBag.clear();
13 }else{
14 throw new PDEVSCouplingError();
15 }
16 delete msg;
17 }

Figure 4.18.: AbstractModuleCoupling’s handleMessage method
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emerges as an invaluable communication platform due to its device-agnostic
and standards-agnostic attributes. To facilitate the seamless integration of a
specific infrastructure into VICINITY, the pivotal component required is an
Adapter that furnishes the necessary REST API for communication with the
VICINITY Agent.

In the context of infrastructures simulated via our simulation framework,
establishing a means of communication with the VICINITY Agent beyond the
simulation environment becomes imperative. To address this requirement, we
have implemented a socket-based approach for interacting with the VICINITY
Agent. This approach obviates the need for an entire network simulation,
offering a streamlined mechanism to communicate with the VICINITY Agent,
thereby enhancing the efficiency and flexibility of interactions between the
simulated environment and the VICINITY network.

4.7.1. OMNeT++ socket server

To establish seamless communication between the OMNeT++ simulation and
the VICINITY Agent, the integration of a socket server becomes imperative.
The primary function of this server is to facilitate the reception of API calls
from the VICINITY Agent, mediate the exchange of pertinent data with the
OMNeT++ simulation, and subsequently dispatch a response.

The fundamental challenge in this endeavor lies in the synchronization of
socket requests with the discrete event scheduler inherent to OMNeT++. Ini-
tially, the simulation must be executed in real-time, a feat achieved by har-
monizing event-time with wall-clock time. This entails the deliberate delay
of event execution within the scheduler. The temporal gap between two con-
secutive events serves as an opportune window for the scheduler to listen to
and process socket data. When necessary, new events can be injected into the
event queue to handle received data.

An alternative approach is adopted wherein a dedicated socket server-thread
is employed to preprocess all inbound and outbound socket data. This method-
ology serves to minimize the computational overhead incurred by the simu-
lation, as only relevant data is exchanged with the simulation thread. The
server-thread effectively manages other processing tasks, including communi-
cation and protocol-related overhead, without imposing any noticeable impact
on the simulation. Consequently, the simulation scheduler awaits notifications
from the server-thread rather than socket requests. This synchronization is
achieved through the utilization of promise and future objects, integral com-
ponents of the C++ standard library.

Figure 4.19 provides a visual representation of the core synchronization con-
cept between the socket server-thread and the simulation thread, elucidating
the orchestration of communication within the hardware-in-the-loop function-
ality.
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Figure 4.19.: Simulation- and Server-Thread synchronization

4.7.2. OMNeT++ VICINITY Adapter

To enable seamless communication between VICINITY and simulated objects,
regardless of the network employed within the simulation, a simulated access-
point plays a pivotal role. This access-point effectively operates as an in-
termediary, functioning as a router to facilitate the exchange of requests and
responses between VICINITY and the simulation, which includes relaying and
protocol conversion as required.

The access-point module, denoted as VicinityAccesspoint, collaborates closely
with VicinityAdapter, a subclass of SocketServer. The latter is responsible for
managing the socket server thread, which handles incoming requests from
VICINITY. In the context of synchronization, as illustrated in Figure 4.19,
VicinityAdapter assumes the role of the socket server, while VicinityAccess-
point serves as the handling module. Below, we delve into the functionality of
these two pivotal modules:

VicinityAdapter Upon initialization, VicinityAdapter is configured with a
designated port for listening. Upon invoking startAdapter(), the method re-
turns a future-object. As soon as a request arrives, it triggers the availability of
an object of type RequestStruct. This object encapsulates all pertinent request
data. Additionally, a promise-object is provided, which is subsequently uti-
lized to establish a ResponseStruct. Within this structure, all response-related
data is conveyed, along with a fresh ‘promise‘-object designed for handling the
next incoming request.

VicinityAccesspoint The VicinityAccesspoint module assumes the pivotal
role of routing adapter requests into the simulation. Furthermore, it is tasked
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with furnishing object-discovery data upon request by the adapter. To compile
all requisite data for object discovery, the access-point initiates a broadcast of
messages of type ObjectDiscoveryPkt (refer to Figure 4.20). These broadcasts
include isRequest=true flags, addressing all connected modules. Modules that
should be accessible via VICINITY subsequently respond with their own Ob-
jectDiscoveryPkt message, marked as isRequest=false, while including their
respective object-data in JSON format within the objectJson field.

The access-point then consolidates a JSON object encompassing all the
received ObjectDiscoveryPkt responses. This JSON object is served upon re-
quest by the adapter. When an incoming request pertains to setting or read-
ing a property or action, the access-point forwards this request to the relevant
module, employing a VnetPkt message. The recipient module processes the re-
quest and issues a response back to the access-point, again through a VnetPkt
message. Upon processing the message, the access-point generates a response
destined for the adapter, thus completing the request. In cases where a tar-
geted module fails to respond within a specified time frame, a timeout event oc-
curs, prompting the access-point to issue a VININITY RESPONSE NOT FOUND
response to the adapter, thus concluding the request with an error code.

Figure 4.20.: Class diagram of messages used inside the simulation

4.7.3. Simulation Scheduler

As elucidated in section 4.7.1, the OMNeT++ scheduler necessitates adap-
tation to seamlessly integrate the adapter. The original SocketRTScheduler
was purpose-built for actively listening on a single socket during the time gaps
between simulation events. In our framework, however, the management of
sockets is delegated to a dedicated thread. This arrangement notably simpli-
fies the role of the scheduler, as it only needs to monitor a single future-object
and, upon any changes to this object, notify the handler module, in this case,
the access-point.

Upon initiating the simulation, the access-point module (VicinityAccess-
point) registers a notification message and a pointer, which consistently points
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to the most recent future-object from the adapter-thread, with the scheduler.
Given that the scheduler operates as a real-time scheduler, it must wait until
the next scheduled event time (handled in cSocketRTScheduler::takeNextEvent()).
During this waiting period, the scheduler remains idle, patiently anticipating
the readiness of the future-object.

When the designated future-object finally becomes ready, the simulation
time is updated to align with the actual time, effectively accounting for the
time spent blocked on the future-object. Subsequently, the notification-message
assigned to VicinityAccesspoint is scheduled for immediate delivery at the cur-
rent time. Upon receiving this notification-message, the access-point is primed
to accept and process data from the future-object. Furthermore, the access-
point takes on the responsibility of updating the future-object, to which the
scheduler holds a reference. This ensures that the scheduler remains prepared
for processing subsequent requests. In cases where the future-object is deemed
invalid, the scheduler simply enters a sleep state, awaiting either a timeout or
the arrival of the next scheduled event.

4.8. Human in the loop
To address the stipulated requirements elucidated in Section 4.2.1, we shall
embark on a journey to devise a functional specification that serves as the
bedrock for our conceptual framework.

Expanding upon the insights gleaned in the subsection on the Mobility Pilot
Site, we shall pivot our focus towards the realm of the smart parking use-case.
This particular scenario hinges on the intricate interplay between events and
the sensors embedded within individual parking lots, i.e., the context arises
when a vehicle seeks parking.

Simulation Deployment

App Simulation Mobile App
Parking Simulation Parking facility

Figure 4.21.: Simulation and Deployment Matrix: At the vertical the environ-
ments (simulation and deployment) are mirrored. The horizontal
states the related use-cases of each environment.

It is essential to bear in mind the nuances illustrated in Figure 4.21, which
factor into the comprehensive simulation of parking scenarios. This encom-
passes a holistic consideration of the parking ecosystem. Furthermore, we
must remain cognizant of the need to adhere to practical constraints while
still delivering a solution commensurate with the allocated timeframe.

In light of these requisites, the core mission at hand revolves around the
establishment of a seamless conduit of communication between the various
entities involved. Additionally, a validation of the efficacy of this communi-
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cation framework is imperative, manifesting as a compelling proof-of-concept
for the underlying technology stack.

Mobility Pilot Site Tromsø

Smart parking Parking with smart sensor integration
Priority parking Specific parking space request is prioritised

Emergency parking Automatic allocation for first responder
Shared parking Reimbursed for sharing parking space

Table 4.1.: The use-cases of the Mobility Pilot Site Tromsø with their descriptions

The crux of our Human-in-the-Loop demonstration is centered predomi-
nantly on the mobility pilot site situated in Tromsø. This choice has been
made deliberately, with a particular emphasis on the intricacies and challenges
intrinsic to this locale. At its core, the primary use-case scenario within this
chosen pilot site is poised to tackle a common urban conundrum - the dearth of
real-time information regarding available parking spaces. The consequences of
this deficiency are well-documented, with a substantial portion of urban traffic
congestion arising from the prolonged quest for unoccupied parking slots. It’s
worth noting that the smart parking pilot site is seamlessly integrated into a
larger context, specifically an assisted living and healthcare facility. Within
this context, an underground garage facility takes center stage, providing a
total of 32 parking spaces. This facility encompasses two crucial features: two
Electric Vehicle (EV) charging stations and four designated handicap parking
spaces. Enumerated in Table 4.1 are the envisaged use-cases tailored to the
Tromsø facility. However, the focal point of this use case part orbits squarely
around the smart parking use-case, leveraging this distinct scenario as a test-
ing ground. To facilitate the seamless operation of the underground garage,
each parking space is equipped with a suite of technical apparatus. This en-
semble comprises a camera sensor, entrusted with the responsibility of vehicle
authentication; a visual indicator, employed for signaling parking space avail-
ability; and a ground sensor, instrumental in detecting the presence of a vehicle
within a given parking slot. The schematic representation of this concept is
succinctly depicted in Figure 4.22, encapsulating the essential elements of this
smart parking infrastructure.

Mobile App

When delving into mobile app development, a pivotal decision revolves around
the choice of the mobile operating system, predominantly between Android
and iOS. It’s noteworthy that as of 2017, these two behemoths jointly domi-
nated a staggering 99.8% of the mobile OS market share [94].

However, for the scope of this dissertation, iOS has been exclusively cho-
sen as the target platform. This decision was steered by several factors, chief
among them being the seamless alignment with the ecosystem at Rheinland-
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Figure 4.22.: Conceptional drawing of the functionalities of one parking lot within
the Mobility Pilot Site

Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), particu-
larly within the Cyber-Physical Systems (CPS) group.

RPTU boasts an Apple-friendly environment that is well-integrated with
iOS app development tools and resources. This alignment not only stream-
lines the development process but also ensures a more efficient and effective
integration with the broader infrastructure within RPTU, facilitating a more
cohesive and harmonized approach..

Cross-Platform towards Native App Development

Even when concentrating primarily on the iOS platform, the issue of whether
to design the program as a native or cross-platform application is crucial.
This choice specifies the method of development and the tools that will be
used during the software lifecycle.

An app is considered to be native if it closely follows the framework and
instructions given by the iOS platform. It utilizes iOS-specific functionalities
and design principles and is created particularly for iOS devices. A cross-
platform program, in comparison, aims for a wider range of compatibility and
uses a higher degree of abstraction to access the features offered by both the
iOS and Android platforms. A different programming language or framework
that is independent of any particular platform is frequently used to implement
this abstraction.

The main draw of the cross-platform strategy is its ability to share a sin-
gle codebase across many platforms, such as iOS and Android, without the
need to produce separate versions of the app in other programming languages.
However, this convenience has a unique set of factors to take into account,
making the decision between native and cross-platform development complex.

Table 4.2 provides a thorough analysis of the advantages and disadvantages
of both strategies to aid in this decision-making process. The evaluation cri-
teria for this project include:

1. Hardware Support: This criterion pertains to the ability to access and
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leverage hardware features like cameras, GPS, accelerometers, NFC, and
more.

2. Energy Efficiency: In the mobile realm, minimizing power consump-
tion is of paramount importance. Striving for a battery life of at least a
day necessitates careful consideration of every feature’s impact on energy
consumption.

3. Performance: Balancing energy efficiency and performance is a funda-
mental challenge. The aim is to deliver a stable, high-performing app
while maintaining an energy-efficient behavior.

4. Cost: The financial aspect is crucial for organizations, especially when
considering that native development typically requires separate code-
bases for iOS and Android, potentially necessitating the hiring of addi-
tional developers.

5. User Experience (UX): UX is a crucial determinant of an app’s suc-
cess. Graphical elements and aspect ratio compatibility with various
modern smartphones significantly impact user comfort and familiarity.

6. Recyclable Code: The ability to reuse code across different devices is
an important factor for developers, affecting development efficiency and
maintenance.

7. Device Compatibility: As mobile operating systems evolve, app com-
patibility is essential. Apps must adapt to new OS versions to remain
supported and usable.

Table 4.2 illustrates the fundamental differences between cross-platform
and native app development, highlighting the trade-offs between the two ap-
proaches. These differences stem from the inherent nature of cross-platform
development as a ”third-party” approach, resulting in potential lag in keeping
pace with platform updates and advancements.

For the human in the loop interface as part of this simulation framework, the
native approach has been chosen. While hardware support, energy efficiency,
and performance may be secondary considerations in the initial development
phase to achieve a minimum viable product, other factors hold greater weight.

From the perspective of the VICINITY project, cost and code recyclability
are not of paramount importance, as the project’s primary concern is achieving
a top-tier user experience to encourage user engagement. Furthermore, the
desire to utilize the latest and most advanced features of the iOS platform
aligns with the project’s commitment to cutting-edge technologies. Therefore,
a native iOS app is the most fitting choice for this endeavor.

App Functionality Enabling seamless communication between an app and
a simulation tool necessitates the creation of a user interface that is both
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Native Cross-Platform
Hardware-Support + -

Efficency + -
Performance + -

Cost - +
User-Experience + -
Recyclable Code - +

Device Compatibility - +

Table 4.2.: Pros and cons of Cross-Platform or Native development

intuitive and purposeful. A well-designed interface must strike a delicate bal-
ance between providing adequate information and features while avoiding over-
whelming the user.

Initially, the app should offer users a clear and straightforward entry point,
ensuring that the interface does not inundate them with excessive data or fea-
tures. Providing users with a concise overview of the app’s core functionality
is essential. This introductory section serves to familiarize users, particularly
first-time users, with the app’s purpose and capabilities, establishing a sense
of comfort and ease of use.

The primary function of the app revolves around smart parking, specifically
assisting users in determining the availability of parking spaces. It’s impor-
tant to note that the app operates exclusively within a simulated environment,
where users have input control instead of direct interaction with physical ve-
hicles. Consequently, the app will focus on visualizing parking lot occupancy
and status, enabling users to interact with the simulation effortlessly.

However, it’s worth emphasizing that the graphical user interface of the
app will not incorporate additional simulation data or logs. Such data would
essentially replicate the functionality provided by the underlying OMNeT++
platform, leading to unnecessary redundancy and potential interface clutter.
Thus, the decision to omit these elements in the app’s interface serves to
maintain a streamlined and efficient user experience.

Lastly, the app’s functionality is complemented by an imprint and contact
form, facilitating user feedback and communication. This professional touch
ensures that users have a channel through which they can provide input, report
issues, or seek assistance, contributing to a robust and user-centric application.

In summary, the app’s functionality centers on providing users with clear
and actionable information related to smart parking within the simulation
environment. It maintains a user-friendly and uncluttered interface, focusing
on its core purpose while facilitating user feedback and interaction through an
integrated contact mechanism.

Accessibility Accessibility must be carefully considered before moving on to
the layout design. A crucial concern is making sure the app’s user interface is
simple to use on a number of devices. Common smartphone sizes, which nor-
mally range from 4.7 inches to 6.5 inches, can be used to evaluate this. Table
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4.3 offers a grid for categorizing display positions to assist in this assessment.
With Table 4.3 as a reference, the accessibility of the app should be assessed

when holding the smartphone in the left hand. Users should be able to navigate
the interface by iteratively tapping on the screen using their thumb. It’s
important to note that the smartphone can also be held in the right hand,
in which case the numbering of Table 4.3 should be mirrored. Regardless of
hand orientation, different levels of effort are required to reach specific on-
screen elements. To quantify these efforts, a metric is introduced:

1. Easy: The thumb effortlessly reaches all interface elements, requiring
no additional muscle strain or hand movements.

2. Moderate: Here, the thumb may need to be stretched or supported by
auxiliary hand movements to access certain interface elements.

3. Hard: These interface elements demand specific thumb movements or
even necessitate the support of the second hand to access effectively. In
essence, they are practically unreachable using only the thumb.

13 14 15
10 11 12
7 8 9
4 5 6
1 2 3

Table 4.3.: Classification of a smartphone screen with a grid of numbers

To enhance usability, each grid array in Table 4.3 is color-coded according
to its assigned accessibility category: green for ”easy,” orange for ”moderate,”
and red for ”hard.”

Ultimately, these accessibility metrics inform design decisions, particularly
regarding layout and placement of interface elements. Figure 4.23 provides an
overlay with an iPhone, offering a visual representation of these considerations
and guiding subsequent design choices.

Wireframe The wireframe is an essential early-stage component in the devel-
opment of any app-driven product. It serves the crucial purpose of providing
a clear visualization of the application’s appearance and functionality. Wire-
frames aim to showcase how the application will be used, offering a skeletal
framework devoid of any design elements that might distract from its core
functionalities. This is achieved by eschewing the use of colors, logos, fonts,
or other graphical elements.

In this work, a minimalist approach is adopted, employing plain grey boxes
to indicate areas where text could be placed. Boxes with a white cross symbol-
ize areas for images, while boxes featuring a play button icon signify actions
to be executed.
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Figure 4.23.: Accessibility of a smartphone screen with only using one hand

As depicted in Figure 4.24, the wireframe is derived from the functionalities
outlined in Section 4.8 and positioned within the layout of an iOS-capable
device. The process involves making certain assumptions about the use of
images and the arrangement of elements.

The initial screen of the app corresponds to the general information segment
of the functionalities. Here, the application might display essential information
such as the detection of the simulation or deployment environment. Subse-
quently, the user is presented with the choice of either initiating the parking
simulation or accessing detailed information via the imprint area.

The wireframe for the middle screen in Figure 4.24 represents the primary
functionality of communicating with the parking simulation. To emphasize
the need for user action, this screen is intentionally kept minimal, featuring
only the essential components: an action button and an indicator displaying
the availability status of parking spaces.

Another user option is to navigate to the detailed information screen, which
provides explanations and clarifications. Notably, the application includes
navigation capabilities, allowing users to return to previous screens or switch
between the three main screens, a topic further elaborated upon in Section
5.5.3.

Parking Simulation

Conceptually, the parking simulation may be broken down into three main
parts: the camera, the floor sensor, and a visual indicator (see Figure 4.22).
Together, these elements carry out a thorough simulation of parking space
occupancy.

From an abstract standpoint, it is not difficult to understand how these
parts work together. The floor sensor locates a vehicle on the parking surface
while the camera takes a picture of the parking area. On the other hand,
the visual indicator offers a visual signal to show whether the parking place is
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Figure 4.24.: Wireframe with interaction sequences

open or occupied.
However, when delving into the details of the simulation’s implementation,

certain assumptions and simplifications must be considered. To prototype and
validate the proof of concept, it is assumed that the camera component readily
accepts the presence of any vehicle without prior verification. In practical
terms, this means that upon the execution of a command within the app
(triggered by the user’s action), the camera will consistently interpret this as
a valid vehicle arrival.

Both the visual indicator and the floor sensor follow a straightforward oper-
ational model akin to a simple switch mechanism. When a command is issued
through the app, these sensors respond by switching their state from ”parking
space free” to ”parking space reserved,” thereby simulating the occupation of
the parking space.

Regarding communication within the simulation environment, the founda-
tional principles established in the OMNeT++ adapter discussed in Section
4.7.2 can be adopted. This means that the core focus of communication within
the simulation context will center on the visual indicator and the floor sensor,
orchestrating the seamless execution of the parking space occupancy simula-
tion.

Network Connection

To facilitate interaction between the iOS app and the smart parking simu-
lation, a well-defined route must be established. As indicated in Figure 2.1,
this involves identifying and connecting the various nodes along this commu-
nication path. Consequently, this section aims to consolidate the individual
concepts previously described into a coherent network route.

Initiating from the iOS mobile app, which functions as one endpoint, akin
to a client in network terminology (as elucidated in Section 2.5.2), the first
objective is to establish a connection with the virtual machine housing the
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smart parking simulation. The OMNeT++ adapter presented in Section 4.7.2,
plays a pivotal role in this connectivity. Within the OMNeT++ adapter, two
nodes can be discerned: one serving as the gateway to the external network,
and the other designated for interaction with the simulation itself, as depicted
in Figure 4.19.

The final participant in this intricate network configuration is the smart
parking sensor simulation. Thus, the smart parking simulation is intercon-
nected with the OMNeT++ adapter. In summary, a user’s request must
traverse a total of five nodes in this network architecture before circling back
to deliver a response.

The ensuing section will provide a visual representation of this network con-
nection, considering the comprehensive concepts governing each constituent
element of this communication framework.

Architectural Model

Having distilled the concepts outlined in previous sections, an architectural
model can be synthesized and visually represented, as depicted in Figure 4.25.
Each constituent entity is represented, complete with its respective connec-
tion nodes indicated by green dots. Additionally, the communication route
is delineated by the green line. Consequently, the architecture is designed to
ensure that communication adheres to the precisely defined route.

Figure 4.25 underscores the principal focus of this work: the comprehensive
functionalities of the iOS app and the smart parking simulation. In this archi-
tectural framework, the virtual machine and the OMNeT++ adapter serve as
a foundational infrastructure, acting as a facilitating framework. Therefore,
they are not illustrated in exhaustive detail but rather as pivotal components
of the network architecture.

This architectural model provides a holistic perspective on the network con-
nection and interaction among the various entities involved, thereby offering a
comprehensive overview of the system’s design and communication pathways.

Figure 4.25.: Holistic view of connection nodes and the endpoints of the route
which are represented by the iOS app and parking simulation.
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This chapter embarks on a comprehensive exploration of a case study focus-
ing on the intricacies of a Smart Energy Use Case. Please note that certain
portions of the content and findings presented in this chapter have been pre-
viously disseminated in conferences such as [86, 87, 88, 89, 90], and have been
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thoughtfully incorporated into this dissertation to provide a comprehensive
and coherent perspective on the subject matter.This chapter commences with
an insightful introduction, setting the stage for an in-depth analysis of the
case study. It delves into the scenario underpinning the case study, complete
with a SysML Model that elucidates its intricacies. Furthermore, the chapter
delves into the establishment of a Knowledge Base within SysMD, providing
a holistic overview of its structure. Within this realm, it explores the Smart-
Power Knowledge Base, scenarios embedded in SysMD, and the multifaceted
dimensions of Smart Parking and Smart Home applications. The chapter then
transitions into the practical domain, detailing the meticulous implementation
of the performance evaluation. It elucidates the smart home network and its
module connections, security-, health-, electronics-simulations, and the intri-
cate calculations related to energy consumption. A significant facet of this
chapter is the implementation of the Human-in-the-loop interface, which al-
lows for real-time interactions within the simulation. It thoroughly explicates
the setup of the OMNeT++ Adapter, Parking Simulation, and the iOS App
interface. The chapter culminates in a comprehensive evaluation of the case
study’s various dimensions. This includes an analysis of SysMD Models, a
rigorous assessment of performance, an exploration of Software in the Loop
Evaluation, and a profound understanding of Human in the Loop Evaluation.
This chapter serves as a holistic exploration of the Smart Energy Use Case
within the broader context of IoT network simulation.

5.1. Introduction to the Case Study

The objective of this case study is the development of a sophisticated smart
parking and smart home scenario for IoT simulation. This endeavor lever-
ages the simulation approach delineated in Chapter 4.5, thereby harnessing
its intrinsic capacity for facilitating large-scale, multi-level simulations. This
feature proves indispensable given the complexity of the envisaged use case,
entailing the simulation of numerous households, cars and power generators,
each replete with an array of interconnected devices. One notable advantage
of the chosen simulation approach is its seamless integration with OMNeT++
[95], a powerful and versatile simulation tool. OMNeT++, fortified with its
INET framework, furnishes a conducive environment for simulating network
traffic, a pivotal facet in any IoT scenario. Additionally, OMNeT++ boasts
an integrated power management tool, a salient feature germane to our use
case. The utility of this embedded power management tool lies in its ability
to perform comprehensive power consumption assessments for individual con-
sumers (households, cars, etc.). Through meticulous simulations, it enables
the accurate prediction of a house’s power consumption profile. This predic-
tive capability is instrumental in optimizing energy production and allocation,
ensuring that energy generation aligns precisely with anticipated consumption
patterns. By adhering to this principle, energy surplus is minimized, leading
to enhanced energy efficiency and sustainability in smart home environments.
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5.2. Scenario

5.2.1. SysML Model

The utilization of SysML for modeling in the context of this use case involves
the comprehensive use of Enterprise Architect, a modeling tool renowned for
its multifaceted capabilities. While Enterprise Architect offers a wide array of
integrated tools, its initial complexity can pose a steep learning curve for users.
However, once proficient in its operation, it has proven to be an invaluable as-
set, facilitating rapid modeling, verification, and validation of complex designs.
This use case serves as a platform for designing a SysML model that effec-
tively demonstrates the synergies and interactions between a smart grid and
a smart home system. While the use case is deliberately kept straightforward,
it readily accommodates expansion, effectively showcasing the advantages of a
model-based development approach for such systems. The smart grid within
this use case encompasses diverse generator types. These generators exhibit
varying characteristics, with some being cost-effective yet environmentally less
impactful, while others are costlier but provide higher electricity output. This
dichotomy necessitates careful consideration during the modeling process, as it
profoundly influences several critical smart grid features. Specifically, this use
case defines two generator types: Type A, characterized by higher electricity
output at a commensurately higher cost, and Type B, known for its lower elec-
tricity capacity but with reduced operational costs compared to Type A gen-
erators. Furthermore, the smart grid incorporates renewable energy resources,
activating generators only when the available renewable energy sources cannot
meet the current electricity demand. In this context, the microgrid represents
a smart home environment, equipped with common smart home devices and
an Electric Vehicle Charging (EVC) station, adding a layer of complexity and
real-world relevance to the model. The SysML model encompasses an array of
diagrams, commencing with requirements and package diagrams that serve to
organize the model’s components. On one facet, the model features behavior
and structure diagrams that elucidate the architecture of embedded software,
including algorithms, functions, and logic components. On the other facet,
the model includes parametric diagrams, which delve into the analytical as-
pects, representing the physical attributes of the system. Notably, parametric
diagrams often require expertise in specific domains, particularly in dealing
with physical values, rules, and equations. For instance, when modeling a
generator, considerations extend to factors such as the rate at which power
is injected into the grid over time, accounting for the startup period during
which the generator operates below maximum capacity. This level of detail
enables the emulation of the behavior of specific physical components within
the system.

Requirements and Package Diagrams

In the realm of IoT and smart grid projects, maintaining a well-structured
and comprehensive approach is paramount due to the rapid complexity and
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scale at which such projects evolve. Iterations in requirements and designs are
commonplace as these projects grow. To effectively address these challenges,
SysML, specifically package and requirements diagrams, play a crucial role. At
the outset of any project, structuring and management are vital. This entails
proper allocation of resources, such as time and personnel, and ensuring that
both requirements and designs are not only complete but also accurate. In
domains like IoT and smart grids, projects can swiftly become intricate and
expansive. Consequently, recurrent revisions in requirements and designs are
not unusual.

Figure 5.1.: package compare

In this use case, SysML’s package and requirements diagrams are harnessed
to tackle these challenges effectively. In Figure 5.1, we observe the hierarchical
structure of the model in the Project Browser, which can become increasingly
unwieldy as the model expands. To mitigate this, various visualizations of a
package diagram for the microgrid are presented in the same figure. Enterprise
Architect allows the creation of package diagrams for each package, enabling
seamless navigation of the entire project. This stands in stark contrast to
the Project Browser, which can become unwieldy, especially in large, multi-
faceted IoT projects that span numerous domains. In addition to the package
diagrams mirroring the project’s folder hierarchy (as depicted in Figure 5.2),
special package diagrams have been designed explicitly to facilitate navigation
in large-scale projects. These diagrams utilize navigation calls independent of
the actual folder hierarchy, enabling more natural and straightforward project
navigation. Depending on the project’s nature and the individuals involved,
different package organization structures may be preferred.

In this use case, the primary packages include ”Structures,” which con-
tains links to all the structure diagrams categorized based on diagram type,
”UseCases,” and ”Requirements,” all organized similarly to the ”Structures”
package. Additionally, the ”Activity Simulation Scenarios” package diagram
links to significant activities used for demonstration with SysMLSim (as seen
in Figure 5.4). Lastly, the ”Dimension and Units” package links to the folder
named ”Dimensions and Units.” Enterprise Architect suggests various libraries
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Figure 5.2.: package project navigation

containing commonly used elements in software engineering when creating a
project. One such library is ”Dimension and Units,” defining widely used
units across various domains, including physics units (e.g. kilograms and sec-
onds) and electrical engineering units (e.g. Amperes for electric current), as
illustrated in Figure 5.3.

Figure 5.3.: package units

Subsequently, a crucial step involves establishing requirements. For the
smart home, fundamental functional requirements have been defined, such as
the activation of lights upon motion detection (as presented in Figure 5.5).
In contrast, requirements for the smart grid are framed in a more general
manner, emphasizing self-healing properties and dynamic pricing. This gen-
erality is advantageous, as SysML accommodates the creation of high-level
requirements, (refer to Figure 5.5).

SysML’s capability to allocate requirements to functions, functions to struc-
tures, and activities to operations is instrumental in maintaining traceability.
When a requirement undergoes modification, it becomes straightforward to
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Figure 5.4.: package sim scenarios

Figure 5.5.: Requirements Diagram for the micro grid
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track all associated models and revise them accordingly. Likewise, when a
model is altered, it is easy to trace all the affected requirements. The package
diagrams and requirement diagrams provide robust traceability throughout
the development process.

Block Definition Diagram and Internal Block Diagram

The Block Definition Diagram (BDD) and Internal Block Diagram (IBD) play
a crucial role in defining the structure and composition of complex systems,
enabling engineers to visualize and specify the relationships between different
components and subsystems. In this use case, these diagrams are employed
to provide a clear and detailed representation of both the smart grid and the
micro grid, which is essentially a smart home with various subsystems and
devices.

Block Definition Diagram (BDD) The Block Definition Diagram, as shown
in Figure 5.6, serves as a high-level overview of the micro grid within the
smart home. It defines the key subsystems, their associated devices, and their
interconnections. The subsystems are based on the VICINITY smart home
test lab, comprising Home Automation and Security, Energy Consumption
and E-Mobility, and E-Health and Assisting Technologies. These subsystems
are encapsulated blocks that contain attributes, operations, and relationships.

Figure 5.6.: Micro Grid Block Diagram
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Among the most important devices in this use case are the fall sensor,
motion sensor, E-Bike charging station, heart rate, and respiration monitors.
These devices are part of the Home Automation and Security and E-Health
and Assisting Technologies subsystems. Additionally, the energy storage and
electricity meter are pivotal components for the smart grid, providing essential
information about energy consumption. The smart grid, represented in a
simplified manner, is composed of micro grids and various generators. Future
iterations of this model could introduce more complexity by including different
types of micro grids or additional generators. For this use case, a single micro
grid, which represents a smart home, is considered.

Internal Block Diagram (IBD) The Internal Block Diagram, exemplified
in Figure 5.7, delves into the intricate interactions between objects within
each component. It elucidates how objects flow from one element to another,
offering a comprehensive view of data exchanges and connections.

Figure 5.7.: Micro Grid Internal Block Diagram

In Figure 5.7, the flow of objects within the micro grid is illustrated. It
showcases the paths through which objects pass between various components,
providing insights into how electricity, water, and other resources are trans-
ferred between systems. In the appendix, each component’s IBD is detailed,
enumerating the ports through which objects are transmitted. Together, the
BDD and IBD are instrumental in modeling the structure and functionality of
the micro grid and smart grid in this use case. They help in understanding how
subsystems are organized, how devices interact, and how data and resources
are shared within the system. This level of detail is crucial for accurate system
design, analysis, and validation, especially in the context of complex IoT and
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smart grid projects where precision and clarity are paramount.

State Machines and Activity Diagrams

The State Machine and Activity Diagrams are fundamental tools in SysML
for modeling the dynamic behavior and activities of a system. In this use case,
they are utilized to depict various operational states and processes within both
the smart home (micro grid) and the smart grid.

State Machine Diagrams State Machine Diagrams, exemplified by Figure
5.8 and Figure 5.9, are employed to represent the states and transitions of
devices and systems. In these diagrams, simplicity is maintained by primarily
focusing on the on/off states of devices. However, for more intricate models,
transitions between states can be triggered by specific events, such as signals
or external inputs.

Figure 5.8.: State Machine of the lighting behaviour

As an example, consider the generator in Figure 5.9. It transitions from
the ”on” state to the ”powering down” state upon receiving a ”generator off”
signal. To account for the time required for generators to power up or down,
additional states are introduced, each of which triggers corresponding behav-
iors or activities defined in the Activity Diagrams (e.g. ”generator off” and
”generator on”).

Activity Diagrams Activity Diagrams, demonstrated in Figure 5.10, offer a
more detailed view of the micro grid (smart home) and its three interacting
subsystems: Home Automation and Security, Energy Consumption and E-
Mobility, and E-Health and Assisting Technologies. These diagrams illustrate
the flow of activities and interactions between subsystems.

Moreover, the Activity Diagrams reveal how the micro grid interacts with
the smart grid, providing insights into their combined workflow and demon-
strating the potential benefits of integrating and modeling these systems to-
gether.
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Figure 5.9.: State Machine of a generator
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Figure 5.10.: Activity Diagram of the Micro Grid

Figure 5.11.: Fall sensor sensing Activity Diagram
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In these diagrams, various behaviors and trigger events common in a smart
home environment are modeled. These triggers can be simple signals origi-
nating from devices or external sources (as seen in Figure 5.11). For example,
when charging an e-bike, it can increase the electricity consumption in the
micro grid, which triggers a generator in the smart grid to power up when
electricity prices are low.

Figure 5.12.: Check Health Activity Diagram

The flexibility of SysML’s trigger events allows for the modeling of various
scenarios. For instance, in the ”CheckHealth” diagram (see Figure 5.12), a fall
and motion detector are modeled to respond to specific trigger events. When
a fall is detected, signals are sent to activate the lighting and initiate a health
evaluation. These diagrams depict how devices react to real-world situations,
making it possible to simulate complex interactions within the system. These
diagrams provide a simplified view of complex systems. In more advanced
simulations, real-world data and sophisticated evaluation algorithms could be
incorporated. For instance, health monitoring systems could analyze data
trends over time and issue alerts based on more advanced criteria. Similarly,
the smart grid model could consider various factors, such as equipment failures
or sudden spikes in demand, in a more comprehensive simulation environment.
Specialized simulation tools would be better suited for such high-fidelity sim-
ulations. In summary, the State Machine and Activity Diagrams in SysML
are invaluable for modeling dynamic behaviors and processes within complex
systems, making them an essential tool for IoT and smart grid projects. They
allow for the visualization of different scenarios, event triggers, and complex
interactions, contributing to a better understanding of system dynamics and
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behavior.

Preliminary Conclusions

In this subchapter, we have explored the application of SysML (Systems Mod-
eling Language) to model and analyze a complex use case involving IoT, smart
grids, and smart homes. SysML, as a powerful modeling language, offers a
range of diagrams and tools that facilitate the structured representation of
system architecture, behavior, requirements, and more. We began by empha-
sizing the importance of proper project management, resource allocation, and
the need for complete and accurate requirements in the context of IoT and
smart grid projects. SysML’s package diagrams and requirements diagrams
provided an efficient means to organize and manage these requirements. We
demonstrated how SysML aids in handling complex projects by creating pack-
age diagrams that help navigate extensive project structures effortlessly. Mov-
ing forward, we delved into the Block Definition Diagram (BDD) and Internal
Block Diagram (IBD). BDDs enabled the definition of system composition
and parts, while IBDs showcased the flow of objects among different system
components. In our use case, we examined a simplified smart grid and a de-
tailed smart home micro grid. The IBDs illustrated how objects, representing
various forms of resources such as electricity and water, moved within and
between these components. State Machine Diagrams and Activity Diagrams
provided insights into system behavior. State Machine Diagrams primarily fo-
cused on simple device states and transitions, demonstrating how devices could
be turned on and off or undergo other state changes. Activity Diagrams, on
the other hand, depicted complex interactions and workflows within the smart
home and between the micro grid and smart grid. Various trigger events were
modeled to simulate real-world scenarios, showcasing the flexibility of SysML
in capturing dynamic behavior. This subchapter and the SysML models gen-
erated generously answers question 1 and question 2 from the target setting
of this dissertation (refer to chapter 1.4.1). In conclusion, SysML serves as a
valuable tool for modeling and simulating intricate systems like IoT-enabled
smart grids and smart homes. It enables efficient project management, re-
quirement organization, system composition definition, and behavior model-
ing. While our use case provided simplified models, SysML can accommodate
more extensive and detailed representations for higher-fidelity simulations and
analysis. In the realm of IoT and smart grids, where complexity is inherent,
SysML empowers engineers and designers to create structured, comprehensive,
and adaptable models, facilitating better system understanding and decision-
making throughout the project lifecycle.

5.2.2. Smart City

In order to exemplify the practical application and the efficacy of the mul-
tifaceted simulator developed within this study, we have meticulously mod-
eled and simulated a smart energy use case that incorporates homomorphic
encryption. This use case amalgamates elements derived from prior works,
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specifically, [87] and [88]. The focal point of this particular use case resides in
the realm of smart energy management within an urban setting. Within the
simulated cityscape, several integral components interplay to create a dynamic
smart energy ecosystem. The city itself serves as the central stage, boasting
a renewable energy infrastructure comprised of photovoltaic arrays and wind
turbines that act as power supply sources. Concomitantly, the urban land-
scape features a parking facility and a collection of residential houses, serving
as energy consumers. This dynamic energy landscape is further enriched by
the presence of electric vehicles (EVs) that navigate the city’s thoroughfares
and frequent the parking facility. A pivotal element of this smart energy
ecosystem is the implementation of a sophisticated smart parking service, op-
erable through a dedicated mobile application. This service empowers system
users to solicit the reservation of specific parking slots within the participating
parking facilities, enhancing convenience and efficiency in urban commuting.
The real-time availability status of these parking slots is diligently relayed
to users via the mobile application interface. Additionally, optical indicators
stationed at the respective parking slots provide visibility to individuals who
do not engage with the smart parking service. To comprehensively evaluate
the efficacy of our developed simulation framework, we have instantiated and
scrutinized this complex smart city scenario at three distinct levels of abstrac-
tion. The initial two higher levels of abstraction are exclusively implemented
using classes inherent to the core simulator developed within this disserta-
tion. In contrast, the third and most granular level is realized by leveraging
OMNeT++ 5.4.1 in conjunction with its INET extension 4.0. This multi-
tiered approach facilitates a comprehensive evaluation of the smart parking
scenario’s performance, offering insights into the system dynamics at varying
levels of detail.

The highest abstraction level - Level 0

At the pinnacle of the abstraction hierarchy, the highest level, denoted as
Level 0, encapsulates the modeling of fundamental and abstract processes.
These processes are instrumental in furnishing essential information that cas-
cades down to the ensuing lower levels, thus priming the simulation scenario
with the requisite foundational data. Notably, at this lofty level, the power-
generating entities within the smart city scenario find their representation.
This overarching abstraction is elegantly illustrated in Figure 5.13.

The focal entity at this zenith of abstraction is the CarGenerator atomic
model. Functioning as a fount of data and events, the CarGenerator is tasked
with delivering vital information that underpins the lower-tier simulations.
This information serves the dual purpose of simulating both users and ran-
dom vehicular arrivals at the forthcoming levels of abstraction. The conduit
for this data transfer is the CarProcessor. The CarProcessor, residing at the
apex of this abstraction hierarchy, plays a pivotal role in categorizing and chan-
neling the incoming data streams. It segregates the information into distinct
categories, crucially distinguishing between scenarios involving random visi-
tors to the parking facility and users of the smart parking mobile application.
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Figure 5.13.: Smart Energy use case: Level 0

In the latter instance, the CarProcessor orchestrates the generation of park-
ing slot preferences, mimicking the user’s intent to reserve a specific parking
space through the model of the smart parking application. If this reservation
endeavor proves unsuccessful, the data characterizing the app user’s prefer-
ences is transmuted into the semblance of information about a random visitor
to the facility, which is then subsequently conveyed to the ParkingFacility
model. Upon traversing into the precincts of the ParkingFacility model, the
received data takes on a pivotal role in crafting an abstract representation of
the dynamic interplay between random visitors and users of the smart parking
service. These entities engage in a virtual contest for the limited parking slots,
engaging in activities such as parking and exiting the facility. For users of the
smart parking application who have successfully secured a reservation, their
path leads directly to their designated parking slots. Conversely, random ar-
rivals and users who encountered reservation failures embark on a quest for the
first available parking space. Upon reaching a parking slot, a rigorous assess-
ment is undertaken to determine its current status - whether it remains vacant
or has been reserved by another user or claimed by an earlier-arriving random
vehicle. In the event that the slot has already been occupied, the searcher will
navigate back to the pursuit of an unoccupied parking space. Failure to secure
a parking space within a reasonable time threshold will result in the vehicle
exiting the parking facility. Conversely, a triumphant parking endeavor cul-
minates in the vehicle temporarily occupying the chosen parking slot, followed
by a subsequent exit from the facility. This intricate dance of arrivals, reser-
vations, and parking events unfolds within the richly abstracted landscape of
Level 0.
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The middle abstraction level - Level 1

Advancing to the intermediary stratum of abstraction, denoted as Level 1, our
focus shifts to a more granular representation of the internal processes oper-
ating within the ParkingFacility. This tier, as elucidated in Figure 5.14, intro-
duces an intricate division of the ParkingFacility into three discrete parking
decks, each of which internally mirrors the operational dynamics of the park-
ing facility situated in Tromsø. The essential framework at Level 1 revolves
around the meticulous orchestration of car arrivals, their traversal within the
facility, and eventual departures. Incoming data pertaining to vehicle arrivals
is systematically relayed to the individual parking decks in a sequential man-
ner. This orchestration becomes particularly significant when vehicles enter
the facility, for they must navigate the multi-tiered parking decks until they
locate their desired parking slot. Conversely, during a vehicle’s egress from the
ParkingFacility, it must again traverse these decks to reach the exit point. The
linchpin of this operational paradigm is the ParkingDeckControl, a critical en-
tity tasked with the bi-directional flow of information. It acts as the lynchpin
for the exchange of data between the smart parking application’s model and
the intricate layers of the parking facility simulation. This two-way conduit
ensures that the information is effectively transmitted to the relevant park-
ing deck for processing, orchestrating the allocation and utilization of parking
slots in accordance with user preferences and facility conditions.

Figure 5.14.: Smart Energy use case: Level 1 - the Parking Facility

The lowest abstraction level - Level 2

The culmination of our simulation scenario resides at the lowest tier, Level
2, where meticulous attention to detail is paramount. This stratum has been
meticulously crafted utilizing OMNeT++ 5.4.1 and INET 4.0, enabling a dy-
namic instantiation of simulated entities and the facilitation of communication
channels between sensors, actuators, and the mobile application, harnessing
the advanced capabilities endowed by INET. At this level, the parking fa-
cility manifests as an OMNeT++ ”compound module,” with each individual
parking deck represented as submodules thereof. One such parking deck mod-
eled in OMNeT++ can be found in Figure 5.15. Notably, while interactions
can transpire among these submodules across their boundaries, only those
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components linked to the active segments of the higher-level simulation are
functionally operational. When the upper-level parking deck model transitions
to the pertinent segment of the OMNeT++ module in Level 2, a symphony of
mobile nodes, the cars, materializes. These vehicles assume distinctive charac-
teristics dictated by the information furnished from the higher echelons. The
behavioral dynamics of these cars are meticulously orchestrated by the states
and conditions defined at Level 1. Depending on their specific phase – whether
they are actively seeking a vacant parking slot, are parked, or are poised to
exit the parking deck – the corresponding wireless nodes are instantiated, and
their objectives are aligned accordingly. Each car is endowed with a battery,
which depletes while the vehicle is in motion within the simulated environ-
ment. Upon parking within the facility, the car’s battery enters a recharging
phase, steadily refilling its accumulator. When the battery reaches full capac-
ity, the charging ceases, signifying that the vehicle is primed for departure,
duly equipped to navigate the digital urban terrain. This intricate interplay
of mobile entities and their energy dynamics is emblematic of the attention to
detail manifest at this lowest level of abstraction, demonstrating the sophisti-
cation of our simulation framework.

Figure 5.15.: Smart energy use case: Omnet++ Model of Parking Deck at Level 2
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VICINITY Bridge

Intricately intertwined with our simulation framework’s fabric is the VICIN-
ITY Bridge, a pivotal element that showcases the profound integration of our
hardware-in-the-loop interface with the actual VICINITY network. As dis-
cussed comprehensively in Section 2.7, VICINITY stands as a robust infras-
tructure, orchestrating the connection of disparate IoT ecosystems that would
otherwise exist as isolated islands. It is worth noting that our meticulously
crafted simulated network can indeed be categorized as one such island, with
its digital devices existing solely in the realm of simulation. The introduction
of a VICINITY adapter into our Omnet++ simulation, as delineated in Section
4.7.2, facilitates this seamless integration with VICINITY, thereby eliminat-
ing any perceptual boundaries between our simulated network’s virtual devices
and VICINITY’s real-world devices and value-added services. To VICINITY,
the devices in our simulation, existing purely in the digital realm, appear as
ordinary entities, indistinguishable from their physical counterparts. Simulta-
neously, to our value-added services, these virtual entities exhibit analogous
characteristics to genuine physical devices. This inherent fusion of virtual and
physical realms endows us with a multitude of advantages:

• Rapid Prototyping: We are empowered to swiftly prototype and scru-
tinize diverse scenarios or use cases without the necessity of an initial
physical deployment, accelerating the development cycle significantly.

• Scalability Testing: The ability to effortlessly scale up existing use
cases and assess their behavior with an expanded fleet of attached devices
equips us with invaluable insights into scalability aspects.

Given the considerable expense and time investments required for the in-
stallation and deployment of new sensors on our parking deck, as elaborated
in Figure 5.14, this virtual setup serves as an agile and cost-effective means
to commence and continue the development of our front-end application. It
operates in parallel with the real-world deployment, expediting progress. Fur-
thermore, this virtual environment affords us a unique vantage point for evalu-
ating diverse approaches concerning our enhanced privacy modules, which are
underpinned by homomorphic encryption. In the ensuing sections, we harness
this virtual framework to conduct empirical measurements and assess the real-
time impact of various homomorphic encryption schemes on the overall system
runtime in a live test scenario, shedding light on their practical implications.

Integration of the homomorphic encryption micro-service

As expounded upon in Section 2.8, homomorphic encryption emerges as a
potent tool when sensitive data must undergo processing by an entity whose
trustworthiness is not unequivocal. This scenario often arises when users ex-
pect specific benefits from a third-party value-added service or when compelled
to employ such a service, prompting concerns regarding the confidentiality of
their data. The absence of trust can manifest as a formidable impediment in

168



5.2. Scenario

the domain of the Internet of Things (IoT). Homomorphic encryption prof-
fers an elegant solution to these privacy quandaries. However, the sanctuary
of privacy it bestows carries the associated cost of heightened computational
demands, encompassing encryption, decryption, and the execution of func-
tions on ciphered data, all of which exact an augmented computational toll.
Within the VICINITY project (refer to Section 2.7), homomorphic encryp-
tion promised enhanced data security and privacy assurance. In the pursuit
of pragmatic viability, it becomes imperative to scrutinize the computational
overhead incurred by the integration of homomorphic encryption. Further-
more, the profusion of potential encryption schemes, each offering unique ho-
momorphic properties, necessitates comparative evaluation. This evaluative
process is instrumental in distinguishing between partially and fully homomor-
phic encryption schemes, elucidating the computational overhead introduced
by the latter, and benchmarking both against a scenario bereft of encryption
measures, thus void of privacy safeguards at the value-added service (VAS)
level. To this end, we embarked on a comprehensive simulation effort, mir-
roring a representative use case within VICINITY, facilitated by partially ho-
momorphic encryption, fully homomorphic encryption, and a non-encrypted
scenario. This rigorous analysis of computational costs was performed un-
der controlled laboratory conditions, harnessing Hardware-in-the-Loop simu-
lations of the VICINITY infrastructure, affording rapid and cost-effective ad-
justments compared to physical re-deployment on site. Visual representations
of the two simulated use cases can be gleaned from Figures 5.16 and 5.17, each
elucidating distinctive facets of the privacy-preserving mechanisms at play.

Figure 5.16.: Use case integration into the VICINITY network. Value-added ser-
vices have clear text access to private information.

As depicted in Figure 5.16, data pertaining to energy consumption from
the simulated vehicles is amassed and transmitted to the operator’s VAS. The
operator’s sole interest lies in the collective energy consumption of the entire
vehicle fleet, thereby initially computing the sum of all inputs. Owing to the
potential privacy implications associated with deducing behavioral patterns
from individual energy consumption data, this data category is designated as
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Figure 5.17.: Homomorphic encryption micro-service applied to use case

confidential and its non-disclosure is paramount. Given the lack of incentive
for the operator or the users to divulge their individual private data, the homo-
morphic encryption micro-service is introduced, seamlessly integrating into the
VICINITY dataflow, as showcased in Figure 5.17. This configuration is juxta-
posed with the setup in Figure 5.16. In the new arrangement, input data (e.g.
the energy consumption of each vehicle) undergoes encryption using a homo-
morphic encryption scheme. In the context of partially homomorphic encryp-
tion, a simple Paillier encryption scheme[96], capable of cipher text addition,
suffices to calculate the aggregate energy consumption of the entire fleet. Con-
sidering the potential necessity of more complex operations in future use cases,
we also simulated this scenario using the Brakerski-Gentry-Vaikuntanathan
(BGV) scheme[97], exemplifying a fully homomorphic encryption scheme. In
both instances, the encrypted payload is subsequently transmitted through the
VICINITY peer-to-peer network and delivered to the operator’s value-added
service. The homomorphic encryption micro-service engages in cipher text
addition on the encrypted inputs, followed by decentralized decryption of the
aggregated data. In this manner, only anonymized, consolidated data is pre-
sented and furnished to the value-added service, ensuring the sanctity of user
privacy. All measurements and evaluations are juxtaposed with the baseline
use case represented in Figure 5.16, offering a comprehensive assessment of
the computational overhead incurred in the quest to fortify data privacy, and
its ramifications in a real-world context.

5.2.3. Smart Home

The smart home scenario we present here builds upon the foundation estab-
lished in the preceding smart city scenario detailed in Section 5.2.2. This
scenario, initially designed for modeling a parking facility comprised of three
parking decks with capabilities such as car entry, parking, and charging, is aug-
mented to encompass the intricacies of a smart home environment. The smart
home scenario involves the integration of a simulated house environment, de-
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rived and customized from the presented SysML model. These simulated
houses comprise a multitude of components, including:

• Electronic Devices: This category encompasses a diverse range of
devices, such as washing machines, computers, and others, each con-
tributing to the overall energy dynamics of the household.

• Light Control: This facet enables the management and control of light-
ing within the smart home, introducing an additional layer of energy
management and user convenience.

• Security Control: The security control component encompasses mul-
tiple aspects, including intrusion detection against burglars and fire de-
tection, fortifying the safety of the occupants.

• Health Control: The health control system is a multifaceted element
within the smart home scenario. It encompasses the ability to detect
falls, monitor heart rate, and track respiration, all of which are crucial
for ensuring the well-being of the inhabitants.

In the context of this simulation, each house is occupied by a single individ-
ual who follows a daily routine. On working days, this individual departs for
work, with the precise timing governed by randomization. During the individ-
ual’s absence, electronic devices within the house remain dormant, reflecting
real-world patterns of usage. Crucially, the simulation imposes constraints
such that electronic devices only operate when the house’s occupant is present.
Randomly selected electronic devices activate and begin functioning when the
individual is at home, thereby contributing to the energy dynamics of the
household. Moreover, throughout the simulation, health and security control
systems continuously gather data and respond to any deviations from expected
norms. These systems are instrumental in alerting the house’s occupant to any
anomalies or potential issues related to health, safety, or security. The energy
consumed by electronic devices, lighting, and the various control systems col-
lectively constitutes the overall energy consumption of the smart home. This
complex, multi-faceted simulation is designed to replicate real-world dynamics
and interactions within a modern smart home environment.

High-Level Model Overview

As elucidated in the preceding section, the smart home scenario is meticulously
implemented through a multi-level simulation approach within the OMNeT++
framework. A comprehensive class diagram encapsulating the entire scenario
provides a high-level overview, as depicted in Figure 5.18.

In this multi-tiered simulation framework, each layer plays a distinct and
critical role in replicating the intricate dynamics of a modern smart home
environment. Below, we provide an overview of each of these layers and their
constituent components:
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Figure 5.18.: Class diagram as an overview of the scenario

Layer 1 - The Foundation At the lowest abstraction level, denoted as Layer
1, resides the fundamental building block - the House. This House forms an
integral part of the broader SmartParkingScenario, serving as the bedrock
upon which the entire simulation is constructed. Within this layer, the House
coexists with the ParkingFacility and the Windpark, each playing a role in
shaping the energy dynamics and the environment of the simulation.

Layer 2 - Augmentation and Extension Layer 2 introduces a layer of com-
plexity and refinement to the House by extending it with the HouseNetwork.
This layer follows a hierarchical approach, with the House serving as the atomic
model, while the HouseNetwork takes on the role of a network model positioned
one layer above the atomic model. Consequently, the HouseNetwork and its
associated atomic models effectively augment the capabilities of the House as
envisioned in Layer 1.

The pivotal atomic models at this layer include:

• HouseSecurityGenerator: Responsible for generating security events,
such as fire or intrusions, which are subsequently communicated to the
HouseSecurityProcessor for further processing.

• HouseSecurityProcessor: Receives security events generated by the
security generator and responds by triggering alarms within the House.
These alarms, representing potential fire or intrusion incidents, remain
active for a specified duration before being automatically deactivated.

• Electronics: This module serves as the manager of electronic devices
within the simulated household. It makes decisions regarding when to
activate or deactivate electronic devices, providing this information to
the energy management system for further analysis and control.

• HouseHealthGenerator: Responsible for generating health-related
events, specifically coronary events, which are then transmitted to the
HouseHealthProcessor.
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• HouseHealthProcessor: Tasked with analyzing health events for ab-
normalities, the health processor dispatches health alarms to the House
whenever deviations from normal health parameters are detected.

• HouseCoordinator: Acting as a central hub, the house coordinator
aggregates and disseminates events from various modules within this
layer. It serves as the linchpin for communication between Layer 2 and
Layer 3. Events received from Layer 3 are routed to the appropriate
module within Layer 2, facilitating seamless information flow.

Layer 3 - Orchestrating the Simulation The third layer, represented by the
module SimModuleCoupling, plays a pivotal role in orchestrating the simula-
tion. It acts as an interface between the layers, converting outputs from the
modules in Layer 2 into OMNeT++ messages. These messages are then trans-
mitted to the NodeGenerator module within this layer. The NodeGenerator
module assumes responsibility for processing electronic events received from
the Electronics module in Layer 2. It collaborates with the energy manage-
ment model to calculate the aggregate power consumption of the simulated
household. This vital information is then relayed back to the SimModuleCou-
pling, thereby completing the information exchange loop.

In sum, this multi-level simulation approach, as depicted in the class di-
agram, forms the bedrock of the smart home scenario. Each layer and its
constituent components collaborate seamlessly to replicate the intricate dy-
namics and interactions within a contemporary smart home environment.

House Security

Figure 5.19.: Class Diagram of HouseSecurity
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The House Security module plays a pivotal role in simulating security as-
pects within the smart home environment. It comprises two essential com-
ponents: the HouseSecurityGenerator and the HouseSecurityProcessor, both
based on the StateBasedAtomic approach. Each state has different functions
for internal (deltaInternal) and external input (deltaInternal) and timeAd-
vance, which can be seen in Figure 5.20. This design choice, featuring differ-
ent states with distinct functions for internal and external inputs, as well as
time advancement functions, greatly simplifies the expression of complex be-
haviors and dependencies, ensuring a comprehensive representation of security
dynamics within the simulation.

Figure 5.20.: Class Diagram of Atomic and, StateBasedAtomic and StateBase

Figure 5.21.: Sequence diagram of HouseSecurity
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House Security Generator The HouseSecurityGenerator module operates
within two primary states: HouseSecurityGeneratorStateIdle and HouseSecu-
rityGeneratorStateProducing.

1. HouseSecurityGeneratorStateIdle: This initial state is character-
ized by a lack of security alarm events. Each house’s duration in this
state is determined by a predefined timeAdvance function, which results
in a random time interval, typically spanning between one day and up
to 20 years. During this time, the model remains in a dormant state,
awaiting the lapse of the specified duration. This approach introduces
variability and a degree of unpredictability to the generation of security
events.

2. HouseSecurityGeneratorStateProducing: Transitioning from the
idle state to this state signifies the initiation of security event generation.
Upon entering this state, a security alarm event is generated, simulating
security incidents within the household. The nature of the security event
is randomly selected, with a 70% likelihood of generating a burglar alarm
and a 30% chance of a fire alarm. These probabilities align with real-
world statistics, where burglary incidents are more common than fires
[98] [99]. The generated security event is placed within the output bag
and subsequently transmitted to the HouseSecurityProcessor. Following
this action, the model reverts to the HouseSecurityGeneratorStateIdle,
resetting the process for the generation of future security events.

House Security Processor The HouseSecurityProcessor module operates in
two primary states: HouseSecurityProcessorStateNormal and HouseSecuri-
tyProcessorStateAlarm.

1. HouseSecurityProcessorStateNormal: In this state, the module re-
mains vigilant for incoming security events. Upon receiving a security
event, it is processed and added to the output bag. Subsequently, the
event is dispatched via the HouseNetwork to the House, where it trig-
gers the activation of the corresponding alarm within the household.
The alarm remains active for a predetermined duration, as specified by
the simulation, reflecting real-world alarm systems. Following this acti-
vation, the model transitions to the HouseSecurityProcessorStateAlarm.

2. HouseSecurityProcessorStateAlarm: In this state, the module or-
chestrates the duration for which the alarm remains active within the
House. Typically, this duration varies randomly between 1 and 24 hours.
After this predetermined period, a new security event is generated and
sent to the House, effectively simulating the deactivation of the alarm
system within the household. The model subsequently returns to the
HouseSecurityProcessorStateNormal, ready to process additional secu-
rity events as they arrive from the HouseSecurityGenerator.
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In conclusion, the House Security module effectively replicates the dynamics
of security events within the smart home scenario. By incorporating random-
ness and a state-based approach, it ensures that security incidents are gen-
erated and managed in a realistic and dynamic manner, contributing to the
overall authenticity of the simulation.

Health Applications

In the context of a smart home, the application of IoT extends beyond mere
convenience and energy efficiency. Health monitoring and emergency response
systems are pivotal IoT applications designed to enhance the well-being and
safety of individuals within the household. These systems incorporate various
IoT devices capable of monitoring critical health parameters such as heart
rate and respiration rates. Furthermore, these devices are equipped to detect
falls or other medical emergencies, triggering automatic alerts for prompt as-
sistance. This aspect is of paramount importance, as a substantial number
of accidents and health-related incidents occur within the home environment.
One such critical health monitoring device simulated in this use case is a heart
rate monitor. The heart rate monitor’s primary function is to detect potential
coronary events. Simulating the intricacies of a real heartbeat and the detec-
tion of a coronary event would be highly complex. Instead, this simulation
employs a more straightforward yet effective approach. It considers the age
and gender of the individual residing in the house, leveraging a comprehensive
study by A. Gößwald, A. Schienkiewitz, E. Nowossadeck, and M. A. Busch
[100]. This study, conducted from 2008 to 2011, involved tests, investigations,
and surveys on individuals aged between 18 and 79 years. The study’s find-
ings, summarized in Table 5.1, provide critical data on the correlation between
age, gender, and the likelihood of coronary events. These statistics are uti-
lized within the simulation to determine the probability of a coronary event
occurring.

Age % of women had a coronary % of men had a coronary
40-49 1.6 3.0
50-59 1.8 6.9
60-69 10.8 19.5
70-79 15.5 30.5

Table 5.1.: Percentage of people had a coronary at a certain age [100]

The complete model of the House Health module is depicted in Figure 5.22.
This module is constructed as a StateBasedAtomic model encompassing two
primary states: HouseHealthGenerator and HouseHealthProcessor.

HouseHealthGenerator

• HouseHealthGeneratorStateIdle: This initial state serves as a rest-
ing phase in which the module remains inactive, awaiting the initiation of
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Figure 5.22.: Class Diagram of HouseHealth

health-related events. The duration of this idle state varies for each indi-
vidual based on the timeAdvanceCoronary function, introducing stochas-
ticity and mimicking the unpredictable nature of health events. This ap-
proach adds realism to the simulation. During this idle period, the mod-
ule calculates the number of years until the individual may experience a
coronary event. The calculation takes into account the individual’s age,
gender, and the correlation percentages from the study in table 5.1.

• HouseHealthGeneratorStateProducing: Upon transitioning to this
state, the module generates a health event corresponding to a potential
coronary event. To simulate the stochasticity of health incidents, the
simulation employs a calculated time interval for each individual. This
interval is based on the calculated years until a potential coronary event.
If the time interval expires, an event is dispatched to the House in layer 1,
including the houseID. Following this, a new value for timeAdvanceCo-
ronary is computed for the individual. This value is constrained to be
between zero and five years since the probability of experiencing a coro-
nary event rises after the first occurrence. Subsequently, the module
reverts to the HouseHealthGeneratorStateIdle, where the cycle repeats,
ensuring a continuous assessment of coronary event probabilities for in-
dividuals.

HouseHealthProcessor The HouseHealthProcessor state-machine model con-
sists of two primary states:
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• HouseHealthProcessorStateNormal: In this state, the module re-
mains in readiness to receive incoming health events. Upon receiving a
health event, it processes the data and adds it to the output bag. Sub-
sequently, the processed event is transmitted via the HouseNetwork to
the House, where it influences health-related parameters or triggers an
alarm, depending on the nature of the event. The duration of alarm
activation, mirroring real-world alarm systems, is controlled by a pre-
determined time period. Following the expiration of this period, the
module transitions to the HouseHealthProcessorStateAlarm.

• HouseHealthProcessorStateAlarm: In this state, the module man-
ages the duration for which the health alarm remains active within the
House. The duration is typically set to vary randomly between 1 and 24
hours, simulating real-world alarm systems and ensuring the module’s
actions closely resemble real-life scenarios. After this predetermined pe-
riod, a new health event is generated and sent to the House, effectively
simulating the deactivation of the alarm system within the household.
Subsequently, the module transitions back to the HouseHealthProces-
sorStateNormal, ready to process additional health events as they are
received from the HouseHealthGenerator.

In essence, the House Health module simulates health monitoring and emer-
gency response systems within a smart home environment. By considering
factors such as age and gender in the context of coronary event probabil-
ity, it contributes to a more comprehensive and dynamic representation of
health-related scenarios within the simulation, enhancing its authenticity and
relevance to real-world applications.

Electronic Devices

In the simulated smart home environment, the Electronics component plays a
pivotal role in managing electronic devices within the household. This com-
ponent is structured as a StateBasedAtomic model, encapsulating two pri-
mary states: ElectronicsStateIdle and ElectronicsStateProducing (as depicted
in Figure 5.23). The Electronics model is responsible for orchestrating the
operation of various electronic devices and ensuring their realistic usage pat-
terns, including factors such as whether they are turned on, for how long, and
during what times of the day. To realize the diverse array of electronic devices
found within a typical household, a fundamental building block called the
Device class is employed. Each Device instance is characterized by a unique
name and id, serving as identifiers. Additionally, critical device attributes
are defined, such as percentageOnPerDay, minTimeOn, maxTimeOn, contin-
uesIfNotAtHome, secondOn, isLightMorning, and isLightEvening, each con-
tributing to the simulation’s realism. At the start of each simulated day, the
fillElectronicNext() function is invoked (as visualized in Figure 5.24), facilitat-
ing the calculation of essential daily parameters. First, the model determines
whether the day in question is a working day. Subsequently, it randomly as-
signs values for standUpTime and sleepTime to emulate the daily routine of
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Figure 5.23.: Class Diagram of Electronics

the household’s occupant. In the case of a working day, additional times such
as leaveHouseTime and comebackHomeTime are computed using the calcu-
lateDayTimes() function. With this information, timeAtHome is determined,
representing the duration the occupant spends at home on that particular day.

The fillElectronicDevicesTimes() function is then employed to ascertain
whether each electronic device should be activated on that day and, if so,
when and for how long it should remain operational. This function optimizes
the simulation’s realism by considering factors such as the occupant’s pres-
ence at home and the specific attributes of each device. Before delving into
the intricacies of this function, let’s first explore the Device class:

• name and id: Unique identifiers for each electronic device.

• percentageOnPerDay: This attribute denotes the likelihood that the
device is turned on during a random day. For example, if a device is
active every day, its percentageOnPerDay value is set to 1.0.

• minTimeOn and maxTimeOn: These attributes define the permissi-
ble duration for which a device may remain operational.

• continuesIfNotAtHome: A boolean attribute that determines whether
a device continues to operate even if no one is present at home. For in-
stance, a washing machine may continue to operate irrespective of the
occupant’s presence, while a radio might be turned off when no one is
at home.

• secondOn: This attribute is used internally within the Device model
and holds no particular significance in the simulation.
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Figure 5.24.: Activity Diagram of
the fillElectronicNext
function

Figure 5.25.: Activity diagram of the
calculateNextTimeAd-
vance function

• isLightMorning and isLightEvening: These attributes indicate whether
a device is a light source, influencing its behavior in the simulation.

fillElectronicDevicesTimes() This function is instrumental in determining
the activation and deactivation times for electronic devices on a given day. Its
operation can be broken down into the following steps:

1. Device Activation Probability: For each electronic device, the func-
tion evaluates whether the device should be turned on on that day
based on its percentageOnPerDay attribute. This decision simulates
the stochastic nature of device usage.

2. Duration of Operation: Once it’s established that a device should
be active, the function calculates the duration for which the device will
remain on. This duration is determined by selecting a random value
between minTimeOn and maxTimeOn.

3. Start Times: The function calculates the precise start and end times
for each device’s operation on that day. These times are determined in
conjunction with the calculateTimeWithWork() function and are further
influenced by random start times. Devices can only be turned on during
periods when there is no work or sleep scheduled.

4. Construction of electronicsNextActive: The function constructs a
list called electronicsNextActive, which contains the exact times at which
each device will require activation. Since all devices start in the off state,
these times correspond to the initial activation times for each device on
that day.
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Upon the completion of these steps, the simulation is ready to progress
through the day, and the Electronics state transitions to ElectronicsStateNor-
mal. The model remains in this state as long as there are electronic devices
requiring activation or deactivation, or until the end of the day is reached. The
function calulcateNextTimeAdvance() (as shown in Figure 5.25) facilitates the
calculation of the next event times, including both activation and deactivation
events, and ensures that the simulation adheres to a realistic timeline. When
the ElectronicsStateProducing is entered, the timeAdvance() function is trig-
gered with a value of 0, invoking the outputFunction. In this function, the
electronicsStateChange() method is used (as demonstrated in Figure 5.26),
enabling the transition of device states. If a device is currently off, its state is
changed to active, and the corresponding off time is recorded. Conversely, if
a device is already active, it is turned off, and the end-of-day time is assigned
since it will remain off for the remainder of the day. The states of all electronic
devices are then collected into a list and sent, via the output bag, to the energy
management component (as elaborated in section 5.2.3).

Figure 5.26.: Activity Diagram of the electronicsStateChange function

Upon reaching the end of the day, the fillElectronicNext() function is in-
voked again, the state transitions back to ElectronicsStateIdle, and a new
day’s simulation begins. This iterative process continues, faithfully emulat-
ing the operation of electronic devices within the smart home environment
and adhering to realistic usage patterns influenced by the occupant’s daily
routine. The Electronics is also a StateBasedAtomic model. It has the main
class Electronics and the states ElectronicsStateIdle and ElectronicsStatePro-
ducing, which can be seen in Figure 5.23. To realize the different electronic
devices, a class called Device is used. In this model, all important things of a
day including the sleep and the work times of the person living in this house
are managed. Also the ontimes of the devices are calculated. A device can only
be turned on, if the person is at home. If the person does not work a day, more
electronic devices are used this day. At the start of each day, the function fill-
ElectronicNext() (see 5.24) is called, where the basic day data are calculated.
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First it is decided, if the day is a working day or not. After that the standUp-
Time and sleepTime of the person living in the house is randomly determined.
If it is a working day, also the leaveHouseTime and the comebackHomeTime
are calculated with the calculateDayTimes() function. With this information
the calculateTimeAtHome() method can determine the timeAtHome. Now
the fillElectronicDevicesTimes() function, which decides if and when a Device
is turned on this day, is called. Before explaining this function the Device
class must be presented. In the Device class all important information about
a Device is stored. Its name and id are the unique identifiers of the device.
PercentageOnPerDay means the chance the device is on at a random day. For
example if the light is on every day, so its PercentageOnPerDay will be 1.0. If
the device is on, it is on between minTimeOn and maxTimeOn. For devices
which continue to be on, also if no one is at home, there is continuesIfNotAtH-
ome. This means this attribute is true, if for example the device is a washing
machine, because it will be on, even if the person goes to work or bed. If
the device for example is a radio, the device will be turned off, if there is no
one at home. SecondOn is only important for the implementation of Device
and has no significant meaning. The last two attributes are isLightMorining
and isLightEvening. They indicate, if the device is a light. Now the fillElec-
tronicDevicesTimes() can be explained. With the help of this function the
on and off times of the devices are calculated. First of all for each device is
determined with percentageOnPerDay, whether the device is on or not this
day. After that is calculated, how long the device should be on this day. For
this purpose, a random number between minTimeOn and maxTimeOn is used.
Afterwards with this and the help of the calculateTimeWithWork() method
and a random start time (only times with no work or sleep are possible) the
exact on and off times of each device on this day are calculated. Once all this
is done, the electronicsNextActive is filled. In this list, the exact times for the
next events of each device are stored. In this case these are the on times of the
devices, because all devices are off. After all this is done, the simulation of the
day can start and the state is changed to ElectronicsStateNormal. The model
stays as long as there is no electronic device which needs to be turned on or
off or the day ends. This is calculated with the calulcateNextTimeAdvance()
function, which can be seen in Figure 5.25. This method is located in the
Electronics class, iterates through the nextTimeAdvance list and returns the
minimum value, which is used for the timeAdvance() function of the current
state. Also the device with this time is stored in actualDevice. Afterwards
the state is changed to ElectronicsStateProducing. The timeAdvance() of this
state is 0, so that the outputFuction is called. In this method the electron-
icsStateChange() function in Electronics is used first, where the next times
are filled in nextTimeAdvance. (refer to Figure 5.26) If the device is off, its
state changes to active and the off time is filled into it. If the device is on, it is
turned off and the end of day time is used, because the device will be off for the
rest of the day. Now the states of all electronic devices are stored in a list and
sent with the output bag to the energy management tool. This is explained in
section 5.2.3. If the end of the day is reached, the fillElectronicNext() function
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is called again and after the state is changed back to ElectronicsStateIdle a
new day can start. If it is not the end of the day, this is done too.

House Energy Calculation

Figure 5.27.: Class Diagram of INET

The energy calculation within the smart home scenario is a crucial aspect
that occurs at layer 3 in the OMNeT++ framework, facilitated by the INET
framework (as illustrated in Figure 5.27). In Figure 5.28, a sequence diagram
depicts how the status of electronic devices traverses this segment of the sim-
ulation. The process begins with the output bag generated by the Electronics
model, which is then relayed to the HouseCoordinator.

HouseCoordinator This intermediary class plays a vital role in managing
the flow of data within the simulation. It takes the output bag from the
Electronics model and, through interaction with the core simulator, forwards
it to the SimModuleCoupling module in the INET framework.

SimModuleCoupling Located within the INET framework, this module serves
as an interface between the OMNeT++ simulation and the INET simulation.
Its primary function is to translate and transmit data between these two frame-
works. In the context of energy management, it leverages the translateOutput
function to convert the output bag from OMNeT++ to an appropriate format
for the INET part, encapsulated within a cMessage. This message is then
dispatched to the NodeGenerator within the INET framework.

NodeGenerator Within the INET framework, the NodeGenerator module is
responsible for handling various aspects of simulation coordination and execu-
tion. In the context of energy management, it receives the message containing
the status of electronic devices from SimModuleCoupling via the handleMes-
sage method. Subsequently, the NodeGenerator undertakes the critical task
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Figure 5.28.: Sequence diagram showing the energy consumption flow
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of calculating the energy consumption within the smart home, a process ex-
plained in detail below.

Energy Consumption Calculation Before energy consumption can be com-
puted, the energy management tool within the NodeGenerator must be appro-
priately initialized. The initializeEnergyBase function fulfills this role. In this
method, key attributes of each electronic device are set, encompassing their
energy consumption during both the active (on) and standby (off) states. No-
tably, some devices continue to draw substantial power even when switched
off, as is often the case with modern appliances. Subsequently, an energyBase
is instantiated, representing the foundation upon which energy calculations
are executed. Within the energyBase, each device is incorporated as an ener-
gyConsumer, a core concept in energy management. A novel type of energy
consumer, HouseEnergyConsumer, is introduced, extending the IEpEnergy-
Consumer interface from the INET framework. This interface accommodates
two distinct power consumption values: powerConsumptionOn and powerCon-
sumptionOff, representing the power consumed when a device is active and in
standby, respectively. The actual power consumption value, powerConsump-
tion, dynamically adjusts based on the state of the device. The setState(isOn:
bool) function governs this transition, enabling the activation or deactivation
of devices as they operate within the smart home. To retrieve the current
power consumption, the getPowerConsumption() method is employed.

Message Handling The handleMessage(msg: cMessage) method within the
NodeGenerator is responsible for receiving and processing messages, primarily
those transmitted from SimModuleCoupling. When a message of type Sim-
ElectronicChange is received, this method triggers the execution of the calcu-
lateEnergyConsumption() function. The primary purpose of this function is
to compute the total energy consumption of the smart home and subsequently
transmit this data back to the OMNeT++ portion of the simulation.

The energy calculation process unfolds as follows:

1. Updating Energy Consumers: The calculateEnergyConsumption()
function commences by updating the status of each HouseEnergyCon-
sumer, aligning their states with the information received from the Sim-
ElectronicChange message. This step ensures that the simulation accu-
rately reflects the current operational state of each electronic device.

2. Total Energy Calculation: With the states of all HouseEnergyCon-
sumers appropriately configured, the function proceeds to calculate the
total energy consumption. This calculation leverages the energyBase,
which encompasses all registered energy consumers, both electronic de-
vices and standby power sources. Additionally, the power consumed
throughout the entire day (totalPower) is determined.

3. Data Transmission: Following the computation of total energy con-
sumption and daily power consumption, these values are encapsulated
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within a new cMessage. This message is then dispatched back to the Sim-
ModuleCoupling module within the OMNeT++ framework, facilitating
the transfer of energy consumption data from the INET framework to
the OMNeT++ simulation.

By effectively coordinating this energy calculation process between OM-
NeT++ and the INET framework, the smart home simulation maintains an
accurate representation of energy consumption. This information is vital for
assessing the efficiency and sustainability of the smart home environment and
its electronic devices.

5.3. Knowledge Base in SysMD
In this section, we translate the use case into the SysMD language. The use
case is reconstructed using SysMD Notebook to showcase its capabilities in
a real-world context. Please note that the knowledge base presented in this
chapter has been previously disseminated in [101], and has been thoughtfully
incorporated into this dissertation to provide a comprehensive and coherent
perspective on the subject matter.

5.3.1. Overview
The model comprises two fundamental components: the knowledge base and
the explicit scenarios under examination. The knowledge base is a repository
of essential facts, information, legislative aspects, and standards. It serves as
the foundation for common knowledge, preventing redundancy in modeling,
fostering knowledge sharing across diverse domains, and promoting knowledge
reuse. Additionally, the knowledge base aids in establishing a fundamental
model structure, including element classes and their associated properties.
The scenarios section delves into concrete models and situations. Here, we
leverage the foundational structure and information from the knowledge base,
enriching it with specific data and assessing its compliance with the know-
ledge base. This approach essentially constructs a solution space for the given
modeling problem. Now, let’s delve into the specific example: modeling a
SmartGrid consisting of multiple houses with consumers and their electricity
demand. We’ll explore this example from a bottom-up perspective. At the
lowest layer, we encounter various consuming appliances. Moving up a level,
we find different houses, each equipped with a range of appliances. These
houses are then connected to an integrated power supplier. Across all these
levels, we can calculate various forms of power demands, such as standby or full
usage, and subsequently verify if they align with the power supply specifica-
tions. The model can be adjusted and expanded in numerous ways to explore
different calculation outcomes. Within this environment, we present scenarios
that represent real-world assumptions for modeling purposes. These concrete
designs and their corresponding specifications are detailed in the subsequent
sections. This comprehensive approach highlights the versatility of SysMD
Notebook in tackling complex, real-world scenarios.
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5.3.2. Smart Power Knowledge Base

In this initial subsection, we establish the foundation of our model, which
serves as the knowledge base for our SmartGrid environment. Within this
knowledge base, we create the SmartGrid package to encapsulate all the high-
level structures, classes, and relationships, laying the groundwork for subse-
quent detailed models. Figure 5.29 provides a visual representation of this
knowledge base. Our approach begins by defining a set of components that
are fundamental to our models. We then proceed to assign properties to these
previously defined components. These properties include essential attributes
such as a name, data type (e.g., String, Real, or Boolean), a value or value
range, and optionally, a physical unit if required for precise modeling. Fur-
thermore, we identify and define potential appliances that may be necessary
in more refined models. A notable feature of these definitions is the implicit
use of inheritance. Specifically, in lines one to six, we define the Housecon-
sumer component along with all its associated properties. By specifying that
an appliance ”isA” Houseconsumer, we implicitly inherit all the properties of
the Houseconsumer component. This approach minimizes redundancy and the
potential for errors that could arise from rewriting properties. This knowledge
base provides a structured and efficient way to establish the core elements and
their characteristics, setting the stage for the subsequent development of more
intricate SmartGrid models.

5.3.3. Scenarios in SysMD

In this section, we delve into various scenarios modeled using SysMD, with a
focus on a real-world SmartGrid environment. These scenarios demonstrate
the versatility and practicality of SysMD in capturing complex systems.

Scenario 1: Multi-House SmartGrid

Figure 5.30 illustrates the first scenario, which depicts a SmartGrid compris-
ing seven houses, each equipped with different electric appliances. Leveraging
the knowledge base established earlier, we reuse pre-defined models, enhancing
modeling efficiency. Initially, we designate each house as a microgrid, enabling
them to inherit properties defined in the knowledge base.

Additionally, we specify certain house appliances as specializations of House-
consumers. Subsequently, we assign values to the properties of these ap-
pliances, ensuring they fall within the range specified by their parent class,
thereby maintaining consistency.

For each house, we further define the assignment of various appliances, al-
lowing for diverse configurations. This flexibility enables us to assign appli-
ances multiple times or alter their orders. Under the heading of Gridsupply,
we define an electricity supplier to which the houses are connected. The prop-
erties defined for the supplier derive their values by aggregating the respective
values of the connected houses. This allows for the comparison of these values
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1 Document uses ISO26262.
2 Document imports ISO26262, ScalarValues.
3
4 Global hasA Package Smartgrid.
5 Smartgrid defines
6 microgrid isA Component;
7 AASsystem isA Component;
8 EhealthAsystem isA Component;
9 Nodegenerator isA Component;

10 Houseconsumer isA Component;
11 EnergyMobilitysystem isA Component.
12
13 Smartgrid::Houseconsumer hasA
14 Value isOn: Boolean = true,
15 Value powConsumption: Real(1..100) [W],
16 Value powConsumptionOn: Real(1 .. 10000) [W],
17 Value powConsumptionSleepOff: Real(1..100) [W],
18 Value name: String.
19
20 Smartgrid::microgrid hasA
21 Value powConsumptionOn: Real [W] =
22 sumOverParts(powConsumptionOn),
23 Value powConsumption: Real [W] = sumOverParts(powConsumption),
24 Value powConsumptionSleepOff: Real [W] =
25 sumOverParts(powConsumptionSleepOff).
26
27 Smartgrid defines
28 Smokedetec isA Houseconsumer;
29 Electronics isA Houseconsumer;
30 ColorLamp isA Houseconsumer;
31 Motiondetec isA Houseconsumer;
32 Smokedetec isA Houseconsumer;
33 Soundddetec isA Houseconsumer;
34 CVcharging isA Houseconsumer;
35 BiometricAccess isA Houseconsumer;
36 HVAC isA Houseconsumer;
37 Falldedtect isA Houseconsumer;
38 HeartRatemonitor isA Houseconsumer;
39 Respirationmonitor isA Houseconsumer;
40 Energystorage isA Houseconsumer;
41 Smartplug isA Houseconsumer;
42 Watermeter isA Houseconsumer;
43 Electronics isA Houseconsumer;
44 Lightening isA Houseconsumer.

Figure 5.29.: SmartGrid Knowledge Base
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1 Microgrid hasA Package Consumers.
2 Microgrid defines
3 gridSupply isA Component;
4 gridParking isA Component;
5 house1 isA Smartgrid::microgrid;
6 house7 isA Smartgrid::microgrid;
7 house6 isA Smartgrid::microgrid;
8 house5 isA Smartgrid::microgrid;
9 house4 isA Smartgrid::microgrid;

10 house3 isA Smartgrid::microgrid;
11 house2 isA Smartgrid::microgrid.
12
13 Microgrid::Consumers defines
14 Fridge isA Smartgrid::Electronics;
15 Smoke isA Smartgrid::Smokedetec;
16 Doorcam isA Smartgrid::BiometricAccess;
17 Smartlights isA Smartgrid::Lightening;
18 HVAC isA Smartgrid::HVAC;
19 Washer isA Smartgrid::Electronics.

Figure 5.30.: SmartGrid Scenario 1

1 Smoke hasA
2 Value powConsumption: Real(2..50) [W],
3 Value powConsumptionOn: Real(70..99) [W],
4 Value powConsumptionSleepOff: Real(1..5) [W].
5
6 HVAC hasA
7 Value powConsumption: Real(2..50) [W],
8 Value powConsumptionOn: Real(1000..3000) [W],
9 Value powConsumptionSleepOff: Real(10..20) [W].

Figure 5.31.: Properties per Consumer
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1 house1 hasA
2 Part Smoke: Consumers::Smoke,
3 Part HVAC: Consumers::HVAC,
4 Part Fridge: Consumers::Fridge,
5 Part Doorcam: Consumers::Doorcam.
6
7 house2 hasA
8 Part Smoke: Consumers::Smoke,
9 Part HVAC: Consumers::HVAC,

10 Part Smartlights: Consumers::Smartlights,
11 Part Doorcam: Consumers::Doorcam.

Figure 5.32.: Here we assign different consumers to the different generic houses
and can thereby check their respective single consumptions.

with the supplier’s defined maximum power supply, facilitating a comprehen-
sive assessment.

1 gridSupply hasA
2 Part microconsumer1: house1,
3 Part microconsumer2: house2,
4 Part microconsumer3: house3,
5 Part microconsumer4: house4,
6 Part microconsumer5: house5,
7 Part microconsumer6: house6,
8 Part microconsumer7: house7,
9 Value isOn: Boolean(true),

10 Value powConsumption: Real [W] =
11 sumOverParts(powConsumption),
12 Value powConsumptionOn: Real [W] =
13 ITE(isOn, sumOverParts(powConsumptionOn),0.0),
14 Value powConsumptionSleepOff: Real [W] =
15 sumOverParts(powConsumptionSleepOff),
16 Value maxPowpeak: Real(8..8) [kW],
17 Value b: Boolean = powConsumptionOn <= maxPowpeak.

Figure 5.33.: The connection of the different houses to one supplier grid.

Scenario 2: Integration of Microgrids

The second scenario, depicted in Figure 5.34, aims to integrate the previous
scenarios into a multi-dependent SmartGrid. Here, various microgrids, such as
houses and a smart parking facility, are modeled to be part of a comprehensive
SmartGrid system. We explore the connections between consuming entities
(e.g., electric appliances and car chargers), power supplies, and a battery with
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specific capacity.

1 Microgrid defines
2 battery isA Component;
3 connectGrid isA Component.
4
5 Microgrid::battery hasA
6 Value capacity: Real(1200..1200) [kWh].
7
8 Microgrid::connectGrid hasA
9 Part battery: Microgrid::battery,

10 Part housegrid: Microgrid::gridSupply,
11 Value mainsupplyOn: Boolean(true),
12 Value mainsupply: Real(2..2) [MW],
13 Value powDemand: Real [kW] = sumOverParts(powConsumption),
14 Value outageCover: Boolean =
15 ITE(mainsupplyOn, powDemand < mainsupply,
16 powDemand < (battery::capacity / 0.5[h])).

Figure 5.34.: In the second scenario, we connect the two power supplies with a
battery as a backup power source. We assume a maximum outage
of 30 minutes.

To account for power outage scenarios, we introduce a simple Boolean model
indicating the presence of an outage. However, this model can be expanded
with more complex time-based representations. This comprehensive approach
allows us to model uncertainties in demand and supply, representing complex
information across multiple levels and propagating calculations from the know-
ledge base up to the meta model. In doing so, we create a powerful means
of representing intricate systems in a human- and computer-readable format,
adhering to standard modeling languages.

5.4. Implementation of the performance Evaluation
This section elucidates the software implementation process of the model, as
expounded in Section 5.2.3. The realization of this model is rooted in the
utilization of the OMNeT++ simulation framework [95], specifically version
5.4.1, with C++ as the underlying programming language. The necessity of
adhering to a minimum C++14 standard arises as any divergence from this
specification impedes the software’s compilation process. It is imperative to
note that prior to engaging with the software, the installation of requisite
packages, as stipulated in the OMNeT++ user manual, is mandatory. Upon
fulfilling these prerequisites, the OMNeT++ environment can be initiated, the
use case can be seamlessly imported. Furthermore, it is essential to incorpo-
rate the INET framework 1, version 4.0, within the same project, as the newer

1https://inet.omnetpp.org
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iterations are incompatible with OMNeT++ 5.4.1. Subsequent to the success-
ful compilation of the software, the implementation phase can commence.

1 HouseNetwork::HouseNetwork()
2 {
3 // Basic house data
4 secondsPerYear = 365 ∗ 24 ∗ 60; // Total seconds in a year
5 numHouses = 10; // Number of houses
6
7 // Calculate ages and gender distribution
8 calculateAgesAndGender();
9

10 // Initialization
11 coordinator = new HouseCoordinator();
12 houseSecurityGenerator = new HouseSecurityGenerator
13 (100, secondsPerYear, numHouses); // 100 = SecurityInterval
14 houseSecurityProcessor = new HouseSecurityProcessor
15 (secondsPerYear, numHouses);
16 houseHealthGenerator = new HouseHealthGenerator
17 (&ageOfPeople, &genderOfPeople, secondsPerYear, numHouses);
18 houseHealthProcessor = new HouseHealthProcessor
19 (secondsPerYear, numHouses);
20 electronics = new Electronics(&ageOfPeople, secondsPerYear, numHouses);
21
22 // Seed for randomization
23 seed = std::chrono::system clock::now().time since epoch().count();
24
25 // Establish connections
26 connect(houseSecurityGenerator, 0, houseSecurityProcessor, 0);
27 connect(houseHealthGenerator, 0, houseHealthProcessor, 0);
28 // ... Additional connections
29 }

Figure 5.35.: Constructor of the HouseNetwork implementation

Within the HouseNetwork constructor (refer to Figure 5.35), several fun-
damental aspects of the model are addressed. This includes the definition of
key parameters, such as the number of houses and the duration of a year in
seconds. Additionally, the ages and gender distribution of the residents are
computed. The subsequent steps encompass the instantiation of various model
components:

• HouseCoordinator: A central coordinating entity.

• HouseSecurityGenerator: Responsible for generating security events.

• HouseSecurityProcessor: Processes security events.

• HouseHealthGenerator: Generates health events based on age and
gender.

• HouseHealthProcessor: Analyzes health events.
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• Electronics: Manages electronic devices within the houses.

Furthermore, the seeding of a random number generator is performed to in-
troduce stochastic elements into the simulation. Finally, connections between
these components are established to facilitate the flow of information within
the simulation. The above code snippet embodies the foundational setup for
the ensuing simulation within the OMNeT++ framework.

5.4.1. HouseNetwork and connection of the modules

This section expounds upon the establishment of the HouseNetwork and the in-
terconnection of modules within the presented showcase model, in accordance
with the framework delineated in Section 5.2.3. Within the HouseNetwork
constructor, a multitude of crucial parameters and components are defined
and initialized (refer to Figure 5.35). Notably, the attributes secondsPerYear’
and numHouses’ are set, with secondsPerYear’ serving as a variable that can
adjust the simulation’s speed. Setting secondsPerYear’ to 2436560, equating
a simulated second to a real-time minute, helps prevent excessive loss of sim-
ulation detail, a concern when using smaller values. ‘numHouses’ is a defining
parameter, governing the number of simulated houses. In the main method
(refer to Figure 5.36), the initialization of the house simulation is orchestrated.
Firstly, a new HouseNetwork and a House, intended for connection to the net-
work module, are instantiated. Subsequently, an outputBag is initialized, de-
signed to establish connections among all house modules within Layer 2. With
the aid of port connections in the HouseNetwork, this process is streamlined,
ensuring each module receives only the requisite input. A new Hierarchical-
House, which binds the House to the HouseNetwork through Layer 2’s output
bag, is generated. Additionally, the House is linked to the layer1scenario since
it resides within this layer. To facilitate communication between the main
simulation and the OMNeT++ simulation, each module in Layer 2 is incorpo-
rated into the showcaseCouplingTable, with corresponding simulator entries
in the showcaseCoupledSimulator table. These tables establish the essential
links enabling message exchanges between the two simulation environments.

The HouseCoordinator class (refer to Figure 5.37) plays a pivotal role in
orchestrating communication between the primary simulation and the OM-
NeT++ simulation. The deltaExternal method iterates through the input-
Bag, forwarding each event via the outputFunction to either OMNeT++ or
the HouseNetwork, thus enabling bidirectional communication. This commu-
nication is facilitated through a shared Environment, as described in Section
4.5.1.

5.4.2. House Security

The House Security model, a pivotal component within the use case, is com-
posed of two primary constituents: the HouseSecurityGenerator and the Hous-
eSecurityProcessor, both possessing distinct states. These modules are intri-
cately linked within the broader HouseNetwork. The HouseSecurityGenera-
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1 HouseNetwork∗ layer2Network house = new HouseNetwork();
2 House∗ layer2house = layer1scenario−>getHouse();
3 auto l2OutputBag house = Bag<Atomic<PortValue<SimEvent, int>,
4 simtime t>∗>();
5 layer2OutputBag house.insert(..(l2Network house−>getElecronics()));
6 layer2OutputBag house.insert(..(l2Network house−>getCoordinator()));
7 [...] //insert other modules
8 HierarchicalHouse∗ hierarchicalHouse = new HierarchicalHouse
9 (layer2house,layer2OutputBag house,layer2Network house);

10 layer1scenario−>setHouse(hierarchicalHouse);
11 showcaseCoupledSimulators[2] = hierarchicalHouse−>getSimulator();
12 showcaseCouplingTable[2] = layer2Network house −>getCoordinator();
13 [...] // Other entires in the coupling tables

Figure 5.36.: House part of the main function of the simulation

1 void HouseCoordinator::deltaExternal([...] elapsedTime, [...] inputBag)
2 {
3 for (auto iter = inputBag.begin(); iter != inputBag.end(); iter++)
4 {
5 int port = (∗iter).port;
6 auto type = (∗iter).value.getType();
7 if (port == electronicsPort){
8 PortValue<SimEvent, int> input = (∗iter);
9 omnetInput.push back(input);

10 }
11 [...] //other SimEvent types
12 }
13 }
14 // Adds networkInput and omnetInput to outputBag
15 void HouseCoordinator::outputFunction([...] internalEvent, [...] outputBag)
16 {
17 if (!omnetInput.empty()){
18 for (auto iter = omnetInput.begin(); iter != omnetInput.end(); iter++){
19 auto output = (∗iter);
20 outputBag.insert(output);
21 }
22 [...] // the same for the networkInput
23 }
24 }
25 //if network or omnet input is empty
26 simtime t HouseCoordinator::timeAdvance()
27 {
28 if ((!networkInput.empty()) || (!omnetInput.empty()))
29 return pdevs::pdevsZero<simtime t>();
30 return pdevs::pdevsInf<simtime t>();
31 }

Figure 5.37.: Parts of the HouseCoordinator
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tor encompasses the main class along with two states, HouseSecurityGener-
atorStateIdle and HouseSecurityGeneratorStateProducing. The constructor
for this model, as portrayed in figure 5.38, assumes a pivotal role in parame-
terization. It establishes basic values and defines key distributions. Notably,
the distributionTime is instrumental in generating a HouseSecurity event, in-
troducing a randomized waiting period ranging from one day to several years.
The randInterval parameter signifies the average time span between security
events in years. As the number of houses increases, the necessity for produc-
ing more security events amplifies. Consequently, the maximum waiting time
for an event, calculated as randInterval ∗ 2 ∗ secondsPerY ear, is divided by
the number of houses to ascertain the maximum value for the distribution.
The distributionKind is responsible for computing a random percentage, sub-
sequently utilized in determining the nature of the impending event. It should
be noted that in approximately 70% of instances, the event is categorized as
a fire, with the remaining cases designated as burglaries.

1 HouseSecurityGenerator(int randInterval,int secondsperyear,int numHouses){
2 auto seed = chrono::system clock::now().time since epoch().count();
3 rng = new mt19937(seed);
4 processorPort = 0;
5 this−>numHouses=numHouses;
6 this−>secondsperyear=secondsperyear;
7 distributionTime= uniform int distribution<int>((int)(secondsperyear/(365)),
8 (int)((randInterval∗2∗secondsperyear)/numHouses));
9 distributionKind = std::uniform real distribution<double>(0, 1);

10 distributionHouse = uniform int distribution<int>(1,numHouses);
11 nextEvent = distributionTime(∗rng);
12 nextHouse = distributionHouse(∗rng);
13 this−>currentState = HouseSecurityGeneratorStateIdle::getInstance();
14 }

Figure 5.38.: Constructor of HouseSecurityGenerator

Following the random number calculations, the state transitions to Hous-
eSecurityGeneratorStateIdle. Subsequently, the model awaits the calculated
time interval through the timeAdvance function. Once this interval elapses,
the state transitions to HouseSecurityGeneratorStateProducing. Within this
state, the outputFunction (see Figure 5.39) takes center stage. It employs
the distributionKind to compute a random percentage and stores it as kind.
This percentage determines the nature of the event, with approximately 70%
likelihood of it being a burglary, and the remaining 30% leading to a fire. The
houseID for the event is randomly selected and paired with the event type,
encapsulated as a SimEvent, which is then inserted into the outputBag. This
outputBag subsequently forwards the event to the HouseSecurityProcessor.

The HouseSecurityProcessor receives events from the HouseSecurityGener-
ator and awaits a random duration, ranging from 1 to 24 hours. After this
interval, a security event is dispatched to signal the House to deactivate the
alarm, as demonstrated in figure 5.40.
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1 void HouseSecurityGeneratorStateProducing::outputFunction(ctx,internalEvent,outputBag)
2 {
3 auto gen = static cast<HouseSecurityGenerator∗>(ctx);
4 double kind= gen−>distributionKind(∗(gen−>rng));
5 SimHouseSecurity securityEvent;
6 if(kind<=0.7){
7 securityEvent.fireDetencted=false;
8 securityEvent.burglarDetected=true;
9 }

10 else if(kind<=1.0){
11 securityEvent.fireDetencted=true;
12 securityEvent.burglarDetected=false;
13 }
14 securityEvent.houseID=gen−>nextHouse;
15 SimEvent event(securityEvent);
16 PortValue<SimEvent, int> output(gen−>processorPort, event);
17 outputBag.insert(output);
18 }

Figure 5.39.: outputFunction of HouseSecurityGeneratorStateProducing

1 void HouseSecurityProcessorStateAlarm::outputFunction( ctx, internalEvent, outputBag)
2 {
3 SimHouseSecurity securityEvent;
4 securityEvent.fireDetencted=false;
5 securityEvent.burglarDetected=false;
6 auto processor = static cast<HouseSecurityProcessor∗>(ctx);
7 securityEvent.houseID=processor−>nextHouse;
8 SimEvent event(securityEvent);
9 PortValue<SimEvent, int> output(0, event);

10 outputBag.insert(output);
11 }

Figure 5.40.: outputFunction of HouseSecurityProcessorStateAlarm

196



5.4. Implementation of the performance Evaluation

The HouseSecurityProcessor module, during its HouseSecurityProcessorStateAlarm
state, ensures that an appropriate signal is generated to deactivate the alarm
system in the House module. It is essential to note that the generated signal is
devoid of event-specific information, setting the fireDetected and burglarDe-
tected flags to false. This ensures that the alarm is consistently deactivated
for all event types. The houseID is incorporated into the signal, allowing
the House module to identify the specific house that should deactivate its
alarm system. In summary, the House Security model employs a systematic
approach to generating security events, effectively simulating both fire and
burglary events with stochasticity, and coordinates the activation and deacti-
vation of alarms within the framework. The seamless interaction between the
HouseSecurityGenerator and HouseSecurityProcessor modules, coupled with
randomized event generation, enhances the realism and versatility of the sim-
ulation.

5.4.3. House Health Services

In accordance with the concepts outlined in Section 5.2.3, the implementation
of the House Health simulation model consists of two core components: the
HouseHealthGenerator and the HouseHealthProcessor. Here, we delve into
the technical details of these components and the processes that underpin
their operation.

HouseHealthGenerator The central functionality of the HouseHealthGener-
ator is embodied in the calculateCoronary method, as depicted in figure 5.41.
At its core, this method determines the probability of a coronary event occur-
ring based on factors such as gender and age. This probability is then utilized
to ascertain the age at which a person living in the house is likely to experience
a coronary event, drawing from statistical data represented in Table 5.1.

The state of the HouseHealthGenerator is initially set to HouseHealthGener-
atorStateIdle. It remains in this state until the time calculated in timeAdvance
(Figure 5.42) elapses, transitioning to HouseHealthGeneratorStateProducing.
During this transition, the person in the selected house is scheduled to expe-
rience a coronary event.

In HouseHealthGeneratorStateProducing, the filltimeAdvanceCoronary method
(figure 5.43) is invoked during deltaInternal. This method generates a random
time interval between zero and five years, representing the time until a person
who has already experienced one coronary event might experience another.
Subsequently, the houseID of the selected house is transmitted to the House-
HealthProcessor to simulate the event. This completes the intricate processes
within the HouseHealthGenerator, which accurately emulates the occurrence
of coronary events based on statistical parameters.

HouseHealthProcessor The HouseHealthProcessor plays a vital role in the
simulation by evaluating health-related events and initiating alarms when re-
quired. This section provides insights into the inner workings of this compo-
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1 void HouseHealthGenerator::calculateCoronary(){
2 for(int i=0;i<numHouses;i++){
3 double randPercent = distributionPercentage(∗rng); int aMaxCoronary;
4 if((∗genderOfPeople)[i].compare(”m”)==0){//male
5 if(randPercent<0.03) aMaxCoronary=50;
6 else if(randPercent<0.069) aMaxCoronary=60;
7 [..]
8 }
9 else{ //female

10 if(randPercent<0.016) aMaxCoronary=50;
11 [..]
12 }
13 int age=(∗ageOfPeople)[i];
14 int lowBorder=aMaxCoronary−age−10; int highBorder=aMaxCoronary−age;
15 if(age>aMaxCoronary){
16 highBorder=5; lowBorder=0;
17 }
18 else if(age>aMaxCoronary−10){
19 highBorder=10; lowBorder=0;
20 }
21 distribution=Durationuniform int distribution<int>
22 (lowBorder∗secondsperyear, highBorder∗secondsperyear);
23 timeAdvanceCoronary[i]=distributionDuration(∗rng);
24 }
25 }

Figure 5.41.: CalculateCoronary function of HouseHealthGenerator

1 simtime t HouseHealthGeneratorStateIdle::timeAdvance([...]ctx)
2 {
3 auto gen = static cast<HouseHealthGenerator∗>(ctx);
4 map<int,int> ∗timeAdvance = gen−>getTimeAdvanceCoronary();
5 int minTime=INT MAX;int minHouse=0; // calculate time for next coronary
6 for(int i=0;i<gen−>numHouses;i++){
7 if((∗timeAdvance)[i]<minTime){
8 minHouse=i; minTime=(∗timeAdvance)[i];}
9 }

10 gen−>actualHouse=minHouse;
11 return minTime−simTime().dbl();
12 }

Figure 5.42.: timeAdvance function of HouseHealthGeneratorStateIdle
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nent. The core of the HouseHealthProcessor is represented by HouseHealth-
ProcessorStateAlarm, where it responds to health events. When an event of
this nature occurs, it generates an output signal, specifically a SimEvent de-
noting a health event, to communicate with the rest of the simulation. The
event is characterized by properties such as coronaryDetected and strokeDe-
tected, which specify the type of health event. In the case of the House-
HealthProcessor, these are set to false, indicating an alarm for health events
unrelated to coronary or stroke issues. The associated houseID is extracted
and added to the SimEvent, providing crucial information about the location
of the health event. This event is then included in the output bag, which
enables communication between various components of the simulation. With
this mechanism, the HouseHealthProcessor plays a pivotal role in responding
to health-related alarms within the simulation, ensuring timely and appropri-
ate actions are taken. This concludes the detailed description of the House
Health model’s implementation. The combination of the HouseHealthGen-
erator and HouseHealthProcessor accurately emulates health events in the
simulated households, enriching the realism and depth of the simulation.

1 void HouseHealthGeneratorStateProducing::deltaInternal([..] ctx, [..] internalEvent)
2 {
3 auto gen = static cast<HouseHealthGenerator∗>(ctx);
4 gen−>filltimeAdvanceCoronary();
5 changeState(ctx, HouseHealthGeneratorStateIdle::getInstance());
6 }
7 void HouseHealthGenerator::filltimeAdvanceCoronary(){
8 distributionDuration = std::uniform int distribution<int>(0, 5∗secondsperyear);
9 timeAdvanceCoronary[actualHouse]+=distributionDuration(∗rng);

10 }

Figure 5.43.: Call of filltimeAdvanceCoronary in HouseHealthGeneratorStatePro-
ducing

5.4.4. Electronics

The Electronics module within the simulation encompasses various electronic
devices found in households, each with its own unique attributes and be-
haviors. This section delves into the implementation details of this module,
covering key aspects such as device management, state transitions, and event
handling.

In the Electronics constructor (Figure 5.44), the basic parameters such as
dayDuration, secondsPerYear, and numHouses are initialized. The rng vari-
able is set up for random number generation. Subsequently, devices for each
house are initialized, each with distinct attributes, such as power consump-
tion and operating hours. These attributes are arbitrarily defined since there
was no available empirical data for device behavior. The daysWorkPerWeek
array is also initialized to specify the number of workdays for each house. The
calculateDayTimes method (Figure 5.45) is responsible for determining the
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1 Electronics::Electronics(int secondsPerYear,int numHouses)
2 {
3 this−>dayDuration=int(secondsPerYear/365);
4 this−>dayDuration=int(secondsPerYear/365);
5 this−>secondsPerYear=secondsPerYear;
6 this−>numHouses=numHouses; this−>ageOfPeople=ageOfPeople;
7 auto seed = std::chrono::system clock::now().time since epoch().count();
8 rng = new std::mt19937(seed);
9 this−>currentState = ElectronicsStateIdle::getInstance();

10 for(int i=0;i<numHouses;i++){
11 devices[i].push back(new Device(”DishWasher”, 0.4, 0.5, 1.5,true));
12 devices[i].push back(new Device(”WashingMashine”, 0.3, 1.5, 2.5,true));
13 devices[i].push back(new Device(”TV”, 0.6, 1, 2,false));
14 devices[i].push back(new Device(”Mower”, 0.05, 1, 2,true));
15 devices[i].push back(new Device(”Computer”, 0.6, 1, 3,false));
16 devices[i].push back(new Device(”Cooker”, 0.85, 0.10, 0.35,false));
17 devices[i].push back(new Device(”Hover”, 0.2, 0.5, 1.0,true));
18 devices[i].push back(new Device(”Radio”, 0.95, 2, 4,false));
19 devices[i].push back(new Device(”LigthMorning”, 10.0, 0.0, 1.5,false,true));
20 devices[i].push back(new Device(”LigthEvening”, 10.0, 2.0, 6.0,false,false,true));
21 devices[i].push back(new Device(”Fridge”, 10.0, 24, 24,true)); //always on
22 devices[i].push back(new Device(”Freezer”, 10.0, 24, 24,true)); //always on
23 devices[i].push back(new Device(”Router”, 10.0, 24, 24,true)); //always on
24 daysWorkPerWeek[i]=5;
25 }
26 actualDevice=devices[0][0];
27 fillElectronicNext();
28 }

Figure 5.44.: Constructor of Electronics
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sleep and work times of the occupants. The function calculates when a person
wakes up, leaves for work (if it’s a working day), returns home, and goes to
sleep.

1 void Electronics::calculateDayTimes(int actualHouse){
2 int minStandUp=(6∗dayDuration/24), maxStandUp =(8∗dayDuration/24);
3 int j=actualHouse;
4 standUpTime[j] = getUniformDistributionNumber(minStandUp, maxStandUp);
5 if(isWorkDay[j]){
6 int minleavehouse= (7∗dayDuration/24),maxleavehouse= (15∗dayDuration/24);
7 leaveHouseTime[j]=getUniformDistributionNumber(minleavehouse,maxleavehouse);
8 int minduration= (6∗dayDuration/24), maxduration= (10∗dayDuration/24);
9 int workduration = getUniformDistributionNumber(minduration,maxduration);

10 comebackHomeTime[j] = leaveHouseTime[j]+workduration;
11 }else{
12 leaveHouseTime[j]=standUpTime[j]; comebackHomeTime[j]=standUpTime[j];
13 }
14 int minSleepTime= (22∗dayDuration/24); int maxSleepTime= (24∗dayDuration/24);
15 sleepTime[j] = getUniformDistributionNumber(minSleepTime,maxSleepTime);
16 }

Figure 5.45.: CalculateDayTimes method

The ElectronicsChangeState function manages the state transitions of elec-
tronic devices. It evaluates whether a device should be turned on or off based
on specific conditions. If a device is not active, it is turned on, and the time
until it turns off is set. However, a special case is considered: when a device is
already on, but the occupant leaves for work, indicating that the device should
be turned on again when the occupant returns home. If the device is turned
off for any other reason, it is marked as inactive.

1 double Electronics::calculateNextTimeAdvance(){
2 actualDevicePair={””,INT MAX};
3 for(int i=0;i<numHouses;i++){
4 auto actualmin= getMinTimeDevice(electronicsNextActive[i]);
5 if(actualmin.second<actualDevicePair.second){
6 actualDevicePair=actualmin;
7 actualHouse=i;
8 }
9 }

10 actualDevice= getDeviceByName(actualDevicePair.first, actualHouse);
11 double simtime= simTime().dbl();
12 double startDayTimeDouble= startDayTime.dbl();
13 return actualDevicePair.second+startDayTimeDouble−simtime;
14 }

Figure 5.46.: calculateNextTimeAdvance method of Electronics

The calculateNextTimeAdvance function (Figure 5.46) is essential for man-
aging the timing of electronic device activations. It calculates the time re-
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maining until the next device event. It does so by identifying the next device
to activate in all households, considering the start time of the day and the
time until the device becomes active.

1 void ElectronicsStateProducing::outputFunction( ctx, internalEvent, outputBag){
2 auto electronics = static cast<Electronics∗>(ctx);
3 if(internalEvent.time−electronics−>startDayTime>=electronics−>dayDuration){
4 SimElectronicChange simElectronicChange; //End of Day reached
5 for(int j=0;j<electronics−>numHouses;j++){
6 for(std::size t i=0; i<electronics−>devices.size() and i<50; ++i){
7 //current maximum of 50 electronic Devices
8 simElectronicChange.electronicsActive[i]=false;
9 }

10 simElectronicChange.houseID=j; simElectronicChange.length=50;
11 SimEvent event(simElectronicChange);
12 PortValue<SimEvent,int> output(electronics−>alternateId,event);
13 outputBag.insert(output);
14 }
15 electronics−>fillElectronicNext();
16 }else{ //Not End of Day reached
17 SimElectronicChange simElectronicChange;
18 electronics−>ElectronicsChangeState();
19 for(std::size t i=0; i<electronics−>devices.size() and i<50; ++i){
20 simElectronicChange.electronicsActive[i]
21 =electronics−>electronicsActive[electronics−>actualHouse][i];
22 simElectronicChange.houseID=electronics−>actualHouse;
23 simElectronicChange.length=50;
24 }
25 SimEvent event(simElectronicChange);
26 PortValue<SimEvent,int> output(electronics−>alternateId,event);
27 outputBag.insert(output);
28 }
29 }

Figure 5.47.: outputFunction of ElectronicsStateProducing

The outputFunction in ElectronicsStateProducing (Figure 5.47) manages
the output of the Electronics module. It distinguishes between two cases: the
end of the day and state changes in the Electronics module. When the end of
the day is reached, it resets all devices in all households to an inactive state
and prepares the devices for the next day. In the case of a state change, it
calls the ElectronicsChangeState function (Figure 5.48) to update the states of
electronic devices, then generates an output event that reflects these changes.
This output event is crucial for communication between different components
of the simulation.

These elements collectively form the foundation of the Electronics module,
enabling the simulation to emulate the usage patterns of electronic devices
within households, taking into account individual preferences, work schedules,
and daily routines.
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1 void Electronics::ElectronicsChangeState(){
2 string name=actualDevice−>name;
3 int id=actualDevice−>id;
4 bool isActive = electronicsActive[actualHouse][id];
5 if(!isActive){
6 electronicsActive[actualHouse][id]=true;
7 if(!actualDevice−>secondOn){
8 electronicsNextActive[actualHouse][name]=actualDevice−>TimeTillOff;
9 }else{ //Second time on because of work

10 electronicsNextActive[actualHouse][name]=actualDevice−>TimeTillOffSecond;
11 }
12 }else if(actualDevice−>TimeTillOnSecond>0 and !actualDevice−>secondOn){
13 // Work time is during run time but actual before work
14 actualDevice−>secondOn=true;
15 electronicsNextActive[actualHouse][name] = actualDevice−>TimeTillOnSecond;
16 electronicsActive[actualHouse][id]=false;
17 }else{ // Device is turned off and not used this day anymore
18 electronicsActive[actualHouse][id]=false;
19 electronicsNextActive[actualHouse][name]=dayDuration+1;
20 actualDevice−>secondOn=false;
21 }
22 }

Figure 5.48.: ElectronicsChangeState method

5.4.5. House Energy Calculation

The House Energy Calculation module within the simulation is responsible
for modeling energy consumption in households. This section will provide an
overview of the key components and functions involved in this module.

The HouseEnergyConsumer class (figure 5.49) is a fundamental part of the
energy calculation module. It is designed to handle two states of energy con-
sumption for various household devices. The initializePower function sets up
the power consumption values for when the device is on and when it’s in sleep
or off mode. The updatePowerConsumption function allows for the dynamic
updating of power consumption based on the current state of the device.

In the NodeGenerator class, the initializeEnergyBase function (figure 5.50)
is responsible for initializing the energy calculation framework. It begins by
defining the power consumption characteristics of various household devices
and stores them in the devices vector. For each device, a corresponding House-
EnergyConsumer is created, and its power consumption attributes are set
using the initializePower function. These consumers are then added to the
energyBase, which serves as a repository for all energy consumers.

The calculateEnergyConsumption function (figure 5.51) is responsible for
computing energy consumption within a household. It is called when the
status of a device changes in Layer 2. This function updates the states of
devices in the HouseEnergyConsumer objects and calculates the current en-
ergy consumption using the getTotalPowerConsumption method provided by
the energyBase. It also computes various energy-related values and creates
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1 void HouseEnergyConsumer::initializePower(W powerConsumptionOn,
2 W powerConsumptionSleepOrOff, string name)
3 {
4 this−>powerConsumptionOn=powerConsumptionOn; this−>isOn=false;
5 this−>powerConsumptionSleepOrOff=powerConsumptionSleepOrOff;
6 this−>name=name;
7 powerConsumption = isOn ? powerConsumptionOn : powerConsumptionSleepOrOff;
8 }
9 void HouseEnergyConsumer::updatePowerConsumption()

10 {
11 powerConsumption = isOn ? powerConsumptionOn : powerConsumptionSleepOrOff;
12 emit(IEpEnergySource::powerConsumptionChangedSignal, powerConsumption.get());
13 }

Figure 5.49.: Part of the HouseEnergyConsumer

1 void NodeGenerator::initializeEnergyBase(){
2 std::vector<TDevice> devices;
3 [..] // add PowerConsumption of the various devices
4 devices.push back({”Computer”,W(250),W(10)}); // 1. name, 2. on, 3. standby
5 devices.push back({”Cooker”,W(4500),W(0)});
6 [..]
7 energyBase=new EpEnergySourceBase(); numDevices=devices.size();
8 for(std::size t i=0;i<(size t)numDevices;i++){
9 HouseEnergyConsumer ∗consumer = new HouseEnergyConsumer();

10 consumer−>initializePower(devices.at(i).powerConsumption,
11 devices.at(i).standbyPowerConsumption, devices.at(i).name);
12 energyBase−>addEnergyConsumer(consumer);
13 consumers.push back(consumer);
14 }
15 }

Figure 5.50.: InitializeEnergyBase function of NodeGenerator

a SimEvent to represent power consumption. Finally, this event is sent back
to Layer 2 for further processing. In summary, the House Energy Calculation
module models energy consumption within households, allowing devices to be
in different states with varying power consumption. It provides a framework
for tracking energy usage, updating device states, and communicating power
consumption information to other parts of the simulation.

5.5. Implementation of the Human-in-the-loop
Interface

The advent of sophisticated simulation frameworks has propelled the study
and analysis of complex systems to new heights. However, to imbue these
simulations with greater realism and applicability, the integration of human
decision-making and interaction becomes paramount. This chapter delves into
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1 void NodeGenerator::calculateEnergyConsumption(int currentHouseID){
2 for(int i=0;i<numDevices;i++){
3 bool active=electronicActive[i];
4 HouseEnergyConsumer ∗consumerHouse=consumers.at(i);
5 consumerHouse−>setState(active);
6 }
7 tHouse = simTime(); tIntervalHouse=tHouse−tLastHouse[currentHouseID];
8 tLastHouse[currentHouseID]=simTime();
9 [..]

10 inet::power::W currentEnergy = energyBase−>getTotalPowerConsumption();
11 double scale=secondsPerYear/(365∗24∗60);
12 double currentPower=0.5∗(currentEnergy.get()
13 +lastEnergy[currentHouseID])∗tIntervalHouse.dbl()∗scale/60;
14 lastEnergy[currentHouseID]=currentEnergy.get();
15 powerSum[currentHouseID]+=currentPower; SimHousePower demand;
16 demand.currentEnergyConsumption=currentEnergy.get(); // current energyConsumption
17 demand.currentPower=currentPower; //Power since last massage
18 demand.totalPower=powerSum[currentHouseID];// total power consumed
19 demand.houseID=currentHouseID;
20 SimEvent powerEvent = SimEvent(demand);
21 SimEventMessage∗ smsg = new SimEventMessage(”HousePowerdemand”);
22 smsg−>setSimEvent(powerEvent);
23 send(smsg, ”amcOut”);
24 }

Figure 5.51.: CalculateEnergyConsumption function of NodeGenerator

the meticulous design and realization of the Human-in-the-Loop (HITL) inter-
face, an instrumental component of our simulation framework. The infusion
of human elements into the simulation ecosystem introduces a host of intricate
challenges and transformative prospects. It empowers researchers and prac-
titioners to scrutinize, assess, and validate intricate system behaviors under
the influence of diverse human-centric scenarios. This chapter scrutinizes the
methodologies, technologies, and strategies pivotal in bridging the virtual and
human domains seamlessly. Our exploration commences with a comprehen-
sive elucidation of the foundational tenets governing the HITL interface. We
elucidate its inherent purpose, multifaceted functionalities, and overarching
objectives within the simulation framework. Subsequently, we embark upon a
technical odyssey, dissecting the nuanced intricacies underpinning its practical
implementation, including the crafting of user interfaces, establishment of data
exchange protocols, and the intricate dynamics of user interaction. Moreover,
we dissect the pivotal role of feedback mechanisms within HITL simulations,
expounding upon their ability to facilitate a bidirectional exchange of infor-
mation between human agents and the simulation milieu. Furthermore, we in-
vestigate the ethical and practical dimensions entailed in the incorporation of
human participants into simulations. Throughout this chapter, we underscore
the methodologies wielded for rigorous testing, validation, and optimization
of the HITL interface. We accentuate the significance of usability studies and

205



Chapter 5: Case Study: Smart Energy Use Case

participant feedback loops in the iterative refinement of the interface, aligning
it with the evolving needs and expectations of simulation end-users. In synthe-
sis, the deployment of the Human-in-the-Loop interface represents more than
a mere technological pursuit. It signifies a profound endeavor to harmonize the
capabilities of advanced computational models with the intricacies of human
decision-making within complex systems. The outcome is a simulation frame-
work that transcends algorithmic modeling, allowing scholars to scrutinize the
intricate interplay between technological systems and human behaviors within
dynamic, multifaceted environments.

5.5.1. OMNeT++ Adapter Set-Up

Adapter Integration within OMNeT++

The OMNeT++ adapter presents itself as an adaptable solution, highly amenable
to diverse simulation environments. This versatility simplifies the integration
of the adapter into various simulations with minimal overhead. The OM-
NeT++ adapter serves as the cornerstone for external communication within
OMNeT++ simulations.

Establishing Connection Points

One critical initial step in establishing an effective connection is determining
the precise destination for data transmission. This fundamental configuration
was addressed in section 4.8, where the specific IP address was identified.
As the adapter operates as an integral component of the virtual operating
system (OS), further detail is required. Drawing from the concepts elucidated
in section 4.8 regarding TCP/IP communications, this detail is encapsulated
within a port number.

Enabling HTTP Communication

With the full address confirmed, the OMNeT++ adapter becomes accessible
for processing HTTP requests and responses. The adapter has been diligently
designed to align with the structure of the VICINITY RESTful API, as docu-
mented in [102]. Moreover, as the OMNeT++ adapter functions as a RESTful
API itself, it is proficient in processing JSON data, ensuring seamless interop-
erability. For the sake of consistency and modularity, the parking simulation
will adopt the precise JSON data structure as mandated by the VICINITY
API. Nonetheless, it’s essential to highlight that the accepted HTTP requests
within this context follow the pattern detailed in Listing 5.1.

Listing 5.1: JSON objects example
1 GET /adapter/objects
2 GET /adapter/objects/{oid}/properties/{pid}
3 PUT /adapter/objects/{oid}/properties/{pid}
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Figure 5.52.: Graphical set-up of the simulation

In the context of Listing 5.1, the URI lacks an IP address for clarity, although
it is an inherent part of the overall structure. The request structure comprises
two essential lines of inquiry:

1. Object Discovery Data: Primarily employed for debugging purposes,
this request seeks to retrieve object names as a form of acknowledgment.

2. Property Reading and Writing: These requests are vital for the
accomplishment of the research objectives. They facilitate both the re-
trieval and modification of property attributes. The unique Object Iden-
tifier (OID) and Property Identifier (PID) act as variables, rendering the
URI adaptive to specific objects and properties.

The subsequent terms denote the path structure, akin to branches in a tree.
Port number 4242 serves as the entry point, guiding the traversal from adapter
to objects. Herein, objects become accessible, each identified by its unique Ob-
ject Identifier (OID). Once a specific object is accessed, various possibilities
unfold, albeit the path leading to property attributes is the primary concern.
This path terminates with an array of properties, culminating in the selection
of a particular property via a unique Property Identifier (PID). In summary,
the systematic establishment of the OMNeT++ adapter integrates seamlessly
within the overarching simulation architecture. It encompasses foundational
aspects such as IP address, port number configurations, and URI structures,
thereby providing the essential infrastructure for HTTP-based communica-
tions within HITL simulations.

5.5.2. Parking Simulation Set-Up
Building upon the groundwork established in Section 5.5.1 regarding the OM-
NeT++ adapter setup, this section delves into the intricacies of the parking
simulation. To realize the concept outlined in Section 4.8 and visually rep-
resented in Figure 4.22, a detailed simulation setup is essential. Figure 5.52
provides a snapshot of this configuration.

The diagram in Figure 5.52 seamlessly marries the schematic illustration
from Figure 4.22 with the theoretical framework elucidated in Section 4.8.
Notably, it includes the representation of the access point of the OMNeT++
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adapter. For the sake of achieving a higher degree of realism, a network
switch is introduced, interposed between the adapter’s access point and the
IoT devices. This switch serves a straightforward purpose of facilitating the
forwarding of requests and responses.

Assignment of Device Tasks

The parking simulation mandates the allocation of responsibilities to the visual
indicator light and the floor sensor devices. To determine the occupancy status
of a parking space, the floor sensor invariably serves as the queried device.
Consequently, the Floor Sensor device always plays the role of the source
in occupancy inquiries. In contrast, the publication of a reserved parking
space is a joint operation involving both the visual indicator and the floor
sensor devices. In this context, the visual indicator and floor sensor properties
collectively represent the occupancy status. To simplify communication within
the simulation, these properties are based on an off-the-shelf I/O device. This
I/O device boasts the requisite functionalities of accessibility and modifiability
in its state.

Object Identifiers (OIDs) and Property Identifiers (PIDs)

In this context, the names of the entities featured in Figure 5.52, such as visu-
alIndicator, serve as unique Object Identifiers (OIDs). These OIDs correspond
to specific entities within the simulation, representing distinct parking spaces,
devices, or sensors. Furthermore, the term ’state’ is adopted as a Property
Identifier (PID) for each device, allowing it to express two discrete values:
zero or one. A value of zero signifies that the respective parking space remains
unoccupied, indicating that no vehicle currently occupies it. Conversely, a
value of one communicates that the parking space has been reserved and is no
longer available for parking.

Additional Simulation Elements

For the sake of completeness and to consider potential future developments,
the simulation incorporates two additional components: a camera for parking
space monitoring and a virtual vehicle. These elements, while currently de-
void of specific functions, offer the flexibility to explore various scenarios and
functionalities in subsequent stages of this research.

In essence, the parking simulation is constructed as a holistic human-in-the-
loop framework that encompasses the visual representation of parking spaces,
sensors, indicators, and communication infrastructure. This setup provides the
foundational architecture required for conducting experiments and evaluations
in the context of the Human-in-the-Loop (HITL) simulation framework.
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5.5.3. Digression: iOS App Development

Architectural Design Pattern Decision

The development of the iOS application for the smart parking use case encom-
passes a spectrum of software features, including an intuitive user interface
and a robust network communication channel. It’s important to emphasize
that this application was constructed from the ground up, necessitating care-
ful considerations not only for functional aspects but also for non-functional
trade-offs. A crucial initial step in this endeavor was the selection of an archi-
tectural design pattern. Native iOS applications are developed within Apple’s
integrated development environment, Xcode, and employ the Swift program-
ming language. To seamlessly translate the wireframe design illustrated in
Figure 5.59 into a fully functional application, an architectural blueprint was
chosen.

Native iOS Development

Native iOS development is pivotal to the creation of an application that seam-
lessly integrates with the iOS ecosystem. Leveraging Apple’s development
tools and Swift language ensures a robust and optimized user experience for
iOS users. This choice is essential for achieving a high level of compatibility,
performance, and user-friendliness.

Translating Wireframes to Real App

The wireframe presented in Figure 4.24 serves as the foundational blueprint for
the iOS application. The transition from concept to reality involves translating
this wireframe into tangible app components, including user interface elements
and interactive features. This process requires meticulous attention to detail
and adherence to design guidelines to ensure a cohesive and intuitive user
experience.

Establishing the Network Communication Channel

A critical component of the iOS application is its network communication
channel, which enables seamless interaction with the simulation framework.
This aspect is pivotal for real-time updates on parking space availability and
reservation status. Technical solutions for establishing and maintaining this
communication channel are introduced, ensuring robust and reliable data ex-
change between the application and the simulation environment (see figure
4.25).

In essence, the iOS application is an integral part of the Human-in-the-
Loop (HITL) simulation framework, serving as the primary interface for users
to access and interact with the smart parking system. The following sections
delve into the architectural design, development process, and technical aspects
of this iOS application.
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Architectural Design Pattern

Architectural design patterns, by their nature, transcend specific programming
languages and platforms, offering a best-practice approach for structuring soft-
ware systems. In the realm of computer science, a multitude of architectural
design patterns exists, each with its unique focus on enhancing code maintain-
ability, facilitating unit testing, and improving code comprehensibility. How-
ever, for this evaluation, the focus is solely on architectural design patterns
that pertain to the integration of a user interface with an application domain.
In particular, this exploration is guided by the context of mobile applications,
where distinctive patterns emerge due to the considerations of touchscreen
interactions and the dynamic nature of mobile devices. Neglecting the use of
such patterns can have substantial consequences. Complex codebases, without
the guiding structure of architectural patterns, can result in significant over-
head when striving to maintain consistency between the user interface and the
application functionalities. Given the development context of this work, which
involves the creation of an iOS application, two prominent architectural de-
sign patterns are noteworthy: the Model-View-Controller (MVC) pattern and
the Model-View-View Model (MVVM) pattern (refer to Figure 5.53). Both of
these patterns adhere to the fundamental principle of segregating the business-
logic model from the user interface design. This clear separation of concerns
not only enhances maintainability but also streamlines the division of labor
among developers.

Model View-Model/Controller View

user user user
password ←→ password ←→ password

confirm password confirm password

Figure 5.53.: Exemplification why it is important to use either MVC or MVVM
pattern: The act of confirming the chosen password is very important
because it preservers the user from typos. But the logic, which is
responsible for storing the user data, is not interested in a confirmed
password.

Model-View-Controller (MVC) Pattern The Model-View-Controller (MVC)
pattern, illustrated in Figure 5.54, is a widely employed architectural pattern
for the development of iOS applications using the UIKit Framework within
Xcode. This pattern aligns seamlessly with the iOS development workflow,
wherein storyboards are employed to manage the control flow. Furthermore,
Apple’s developer documentation offers comprehensive insights into the syn-
ergy between MVC and UIKit [103]. The MVC pattern organizes the appli-
cation into three distinct components, each with its specific role:

• View: The View component is responsible solely for rendering data on
the smartphone’s screen. It manages the presentation layer, which en-
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Figure 5.54.: MVC architectural design pattern

compasses elements such as text boxes and graphical elements intended
for user interaction.

• Controller: Operating in tandem with the View component, the Con-
troller is responsible for capturing user inputs and processing them. It
acts as an intermediary between the user and the application’s logic. In
this capacity, the Controller not only manages the user’s interactions but
also undertakes more intricate tasks, such as networking operations.

• Model: The Model component encapsulates both the application’s data
and its business logic. It serves as the backbone of the application,
maintaining data that is accessible to both the View and Controller
layers.

However, while MVC offers a well-defined structure for iOS application de-
velopment, it exhibits certain inherent limitations. One such limitation is
highlighted in the conference paper ”A Journey Through the Land of Model-
View-* Design Patterns” [104], where a scenario involving the coloration of a
text field in a financial report, based on varying values, underscores a chal-
lenge. MVC, by design, does not provide explicit mechanisms for handling
specific states that are not inherently part of the View. To address such
scenarios, developers may need to create custom views, which can introduce
complexities when working with user interfaces.

Model-View-ViewModel (MVVM) Pattern The Model-View-View-Model
(MVVM) architectural design pattern, depicted in Figure 5.55, presents a
distinct approach compared to the previously mentioned MVC pattern. No-
tably, in June 2019, Apple introduced SwiftUI, a new framework within Xcode,
during its Worldwide Developer Conference (WWDC). While SwiftUI is not
positioned as a direct successor to UIKit, it offers a compelling alternative for
iOS app development. The distinguishing feature of SwiftUI is its declarative
programming paradigm, which contrasts with the imperative programming
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Figure 5.55.: MVVM architectural design pattern

employed in UIKit. In declarative programming, views are constructed as
functions of their state, eliminating the need for explicit code to manage the
view’s behavior. Data binding at runtime is intrinsic to SwiftUI, reducing
reliance on manual storyboard editing. In SwiftUI, views are driven by their
state, which dictates their presentation. This shift from imperative to declara-
tive programming has transformative implications for UI development. In the
MVVM pattern, the three core components operate as follows:

• View: In MVVM, the View component assumes a more active role by
both displaying data and processing user input. Additionally, it adopts
an observing synchronization mechanism. This synchronization is estab-
lished through subscriptions to the ViewModel. The declarative data
binding inherent to SwiftUI enables this observing synchronization, fa-
cilitating separation between the View and ViewModel layers.

• View-Model: The ViewModel, in conjunction with the View, orches-
trates the communication between the View and Model layers. It notifies
the View of any changes through a notification mechanism, thus enabling
the observing synchronization mentioned earlier. The ViewModel acts
as a mediator and manages tasks such as networking operations. Impor-
tantly, it can preprocess model input before delivering it to the View.
This capability allows the ViewModel to provide the View with different
view states, which is a notable departure from the MVC pattern. The
concept of view states equips the ViewModel with additional logic.

• Model: The Model component maintains and manages data, along with
the core business logic of the application. It remains agnostic of the View
and ViewModel layers.

The MVVM pattern, as exemplified [104], offers advantages such as the
ViewModel’s ability to call upon the Model for data retrieval and processing
in different view states. Each View possesses its own logic for presenting data,
empowering the ViewModel with diverse ways to interact with the Model.
In this iOS App development process, the Model-View-View-Model (MVVM)
architectural design pattern was selected due to the promising future of the
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SwiftUI framework in the broader Apple ecosystem. SwiftUI unifies app de-
velopment across various Apple devices, influencing the future of VICINITY’s
work. Additionally, the adoption of declarative programming with data bind-
ing exemplifies modern software development practices.

Pattern Selection and User Experience It is crucial to note that the selec-
tion of an architectural design pattern does not impact the final user experi-
ence of the application. These patterns primarily influence the development
process, ensuring code quality, maintainability, and scalability. Regardless of
the chosen pattern, the end user interacts with the application without being
aware of the underlying architectural structure.

In summary, the decision to adopt either the MVC or MVVM architectural
design pattern is pivotal for optimizing the development process of the iOS
application. These patterns offer clear guidelines for organizing code, facilitat-
ing collaboration among developers, and ensuring a robust and maintainable
software solution. The following subsections are structured to align with the
MVVM pattern’s principles.

View: User Interface The development of a real iOS graphical user interface
builds upon the wireframe presented in section 4.8. This wireframe serves as
the foundation for creating a user-friendly and visually appealing iOS app.
To ensure an effective user experience (UX), adherence to Apple’s Human
Interface Guidelines (HIG) is paramount [105]. These guidelines provide com-
prehensive insights and resources for designing apps that seamlessly integrate
with Apple’s platforms. In accordance with the components identified in Fig-
ure 4.24, let’s evaluate how these design principles are applied to the various
app elements: text fields, images, actions, and navigation.

Text Fields and Images Text fields and images within the app adhere to
fundamental principles of legibility and consistency. Text is presented in a
legible black font, aligned left for optimal readability. Images are consistently
high-resolution, ensuring they appear sharp and clear on the device’s screen.
These recommendations align seamlessly with the wireframe presented in Fig-
ure 4.24.

Performing Actions Action elements in the app require careful consideration,
as they can significantly impact the user’s experience. Apple’s HIG advises
developers to use action features judiciously, preventing distractions and dis-
connection from the main app flow. Animation effects, if employed, should
align with real-world physics, ensuring they are natural and intuitive. In the
context of this work, the animation of a car’s movement serves as an apt exam-
ple. This movement is visualized through a slider element, which effectively
communicates the concept of parking space occupancy (state transitioning
from 0 to 1). The consideration of animation principles in this context cre-
ates a more engaging and realistic user experience. This concept also aligns
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with the ’state’ property described in Section 5.5.2, emphasizing the app’s
commitment to conveying information effectively.

Navigation App navigation is an essential architectural component that in-
fluences how users interact with the app. Apple’s HIG presents three primary
navigation approaches: hierarchical navigation, flat navigation, and content-
driven navigation.

• Hierarchical Navigation (Figure 5.56): This approach resembles a
tree structure, where users start with one choice per screen and navi-
gate step by step. To make different choices, users must retrace their
steps. This hierarchical navigation style may not align with the app’s
requirements, as outlined in the functional specification.

• Flat Navigation (Figure 5.57): The flat navigation approach allows for
several initial choices that users can switch between effortlessly. Each
choice leads to a specific view, facilitating easy exploration of multiple
content categories. The flat navigation style aligns well with the app’s
functional requirements, as evidenced in Figure 4.24.

• Content-Driven or Experience-Driven Navigation (Figure 5.58):
This approach encourages users to explore the app at their own pace,
facilitating content discovery. While suitable for certain app types like
gaming or books, it may not be the most appropriate choice for this
project.

Figure 5.56.: Hierarchical navigation approach.

Considering the app’s functional specification and the wireframe composi-
tion, the flat navigation approach (Figure 5.57) aligns most closely with the
app’s requirements. Notably, this decision is reinforced by the app’s wire-
frame, which inherently follows a flat navigation structure. Furthermore, Ap-
ple’s Xcode framework provides tab bars, which offer a practical navigation
solution. Tab bars, typically located at the bottom of an app screen, enable
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Figure 5.57.: Flat navigation approach

Figure 5.58.: Content or experience driven navigation

users to switch swiftly between different app categories, enhancing usability
and accessibility.

The user interface of the app is visualized in Figure 5.59, extending the
wireframe concept into a fully realized interface. The welcome screen closely
resembles its wireframe counterpart, with minimal changes for user interaction
clarity. An interactive map replaces the top image, providing users with a re-
sponsive UX element. The middle tab guides users to the action-performance
view, maintaining a minimal interface design to emphasize interaction with
the slider element. The last tab, consistent with the wireframe, provides users
with detailed app information, including an imprint. To maintain brand con-
sistency with VICINITY, the app incorporates VICINITY’s colors and adopts
an app icon that encapsulates the brand’s design language. This cohesive ap-
proach ensures a seamless transition from wireframe to a fully functional user
interface, aligning with Apple’s HIG recommendations.

Model-View: Networking In this work, the core responsibilities of the Model-
View component encompass networking tasks and the encoding/decoding of
JSON data, akin to the functionalities performed by a web browser when in-
teracting with a RESTful API. Upon launching the app, one of the initial
requests executed is a GET command, which furnishes the user with informa-
tion about parking space availability. Building upon the setup described in
Sections 5.5.1 and 5.5.2, the absolute path for this web service is as follows:

http://192.168.56.104:4242/adapter/objects/floorSensor/properties/state

Here, the OID (Object Identifier) corresponds to floorSensor as detailed in
Section 5.5.1. Similarly, the requested PID (Property Identifier) is the state
property. The web service responsible for fulfilling the GET request also han-
dles potential URIs (Uniform Resource Identifiers) session interceptions, a best
practice paradigm often used in internet communication. Upon receiving data,
the final step in the networking component’s GET request is to decode the
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Figure 5.59.: Mockup of the app which also represents the realization of the wire-
frame

JSON data, making it accessible for further processing within the Swift code-
base and subsequently rendering it in the app’s view. When a user initiates
the parking process, data from the smartphone must traverse the network to
reach the simulation. This involves data transmission through various nodes,
as depicted in Figure 4.25. As established in Section 5.5.1, to ensure that other
participants can observe the parking space reservation, two PUT requests are
dispatched: one for the visual indicator and one for the floor sensor. The PUT
request addresses are as follows:

http://192.168.56.104:4242/adapter/objects/floorSensor/properties/state

http://192.168.56.104:4242/adapter/objects/visualIndicator/properties/state

Once again, the chosen communication protocol is HTTP. In terms of OID
and PID, the principles mirror those outlined in the previous description, with
the distinction that this pertains to the PUT command and the addressing of
two distinct objects. In this context, the responsibility of Swift is to serialize
the data into JSON format, making it suitable for processing by the OM-
NeT++ adapter. It’s important to highlight that throughout the execution of
the MVVM architecture, the Model-View component also manages all bind-
ings, states, and subscribed notifications, ensuring the smooth flow of data
during runtime.

Model: Business-Logic Although the Model manages a relatively limited
variety of business logics, the complexity arises from the in-depth understand-
ing of the utilized business logic. This complexity is a direct result of adhering
to the guidelines for designing Thing Descriptions for VICINITY integrators
[106], which are based on the Web of Things (WoT) Thing Description work-
ing draft of W3C [107]. The WoT Thing Description format aims to provide
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a formal model for a common representation of WoT, detailing how metadata
and interfaces of things can be employed for interoperability among devices
or applications using the JSON format. However, not every parameter from
VICINITY’s Thing Descriptions is needed in the app’s model, leading to a
simplified and more comprehensible model for iOS app development. The
following tables elucidate the significant values for the model. Starting from
a top-down perspective, the outermost enclosure provides information about
the adapter type, referred to as the adapter-id’ in Table 5.2. In the context
of this app, it signifies the OMNeT++ adapter. Furthermore, Table 5.2 rep-
resents the complete serialization of Thing Descriptions due to the identically
named array of objects. As outlined in the command GET /adapter/objects’,
it directly leads to the comprehensive Thing Descriptions in JSON format.

Field name JSON Construct Description
adapter-id string Unique identifier of adapter within

theagent service.
thing-descriptions array of objects The array of thing descriptions.

Table 5.2.: Serialization of Thing-Descriptions in VICINITY

Advancing a step further and delving into the Thing Descriptions array
concerning objects, Table 5.3 showcases the fields of interest. The ’oid’ (Object
Identifier) is the equivalent of the command ’GET /adapter/objects/{oid}’.
The ’oid’ and ’name’ fields are not employed in the app’s visualization but
may be contemplated for future developments.

Field name JSON Construct Description
oid string Infrastructure specific unique identifier of

the object
name string Human readable name of object, visible

in neighbourhood manager
properties array of objects The array of property interaction patterns

see Property

Table 5.3.: Serialization of objects in VICINITY

Moving on to the properties array, Table 5.4 provides access to the ’pid’
(Property Identifier), which is the exact property inspected to ascertain park-
ing space availability and to simulate vehicle parking within the system. There-
fore, the path to this JSON data involves the ’GET’ and ’PUT’ commands:

/adapter/objects/{oid}/properties/{pid}.

Field name JSON Construct Description
pid string Unique identifier of the property.

Table 5.4.: Serialization of a property in VICINITY
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For the iOS app, this translates to the following unwrapping steps after
establishing a connection with the adapter:

1. Access Thing Descriptions: Displayed objects include visualIndicator,
floorSensor, and accessCamera.

2. Upon selecting one of the oids, the properties array becomes accessible.

3. Within this array, the unique pid, referred to as state in Section 5.5.2,
contains the desired information.

5.6. Evaluation
The Evaluation chapter presents a rigorous assessment of the Smart Home
Simulation System. This evaluation is structured into three pivotal com-
ponents: Performance Evaluation, Software-in-the-Loop (SIL) Testing, and
Human-in-the-Loop (HIL) Testing. Each component adheres to precise method-
ologies and metrics, aimed at scrutinizing diverse facets of the system’s perfor-
mance, functionality, and user experience. The primary focus of the inaugural
section resides in the meticulous examination of system performance. In the
realm of complex systems, such as smart homes, performance is a linchpin at-
tribute. This section employs a multifaceted approach encompassing metrics
related to computational efficiency, scalability, and responsiveness. By rigor-
ously evaluating these parameters, we seek to quantify the system’s capability
to manage increasing loads, maintain real-time responsiveness, and optimize
computational resources. The second section gravitates towards Software-in-
the-Loop (SIL) Testing, an indispensable phase for isolating and scrutinizing
the software components in isolation. This phase plays a pivotal role in iden-
tifying and rectifying software-related anomalies. Through structured testing
scenarios, we verify the correctness and efficiency of each software module,
ensuring that they seamlessly integrate and function harmoniously within the
overarching system. The third section is dedicated to the intricate domain of
Human-in-the-Loop (HIL) Testing. This testing regimen injects real or simu-
lated users into the system to gauge its human-facing attributes. User-centric
evaluations encompass usability, user-friendliness, and overall user experience.
Insights garnered from HIL testing provide critical feedback, enabling enhance-
ments in user interface design and functionality to augment user satisfaction
and system usability. These three evaluative components are designed to yield
a comprehensive understanding of the Smart Home Simulation System’s ca-
pacities and constraints. The outcomes of these assessments will serve as
pivotal directives for refining and fortifying the system, driving it towards the
pinnacle of performance, reliability, and user-centric design.

5.6.1. SysMD Model Evaluation

SysMD presents a formal and textual modeling language that empowers de-
signers to effectively capture system characteristics such as inheritance, de-
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composition, and their associated dependencies. SysMD’s versatility is evi-
dent in its applicability to a wide range of domains, including mechatronics,
physics, hardware, software, and Analog/Mixed-Signal systems. Moreover,
SysMD seamlessly integrates documentation within the model, enabling com-
prehensive knowledge bases. These knowledge bases serve as the foundation
for defining intricate system designs, which can be readily evaluated for early
performance estimates. The language’s accessibility, particularly to domain
experts, is a significant advantage. SysMD’s user-friendly nature, achieved
through the use of semantic triples and compatibility with SysMLv2 textual
representations, simplifies the modeling process. Additionally, the incorpo-
ration of units and the concept of quantities introduces an additional layer
of model checking, enhancing consistency and reliability. The SmartGrid use
case presented in this dissertation exemplifies how SysMD can be applied to
assess various system properties across different scenarios. Notably, SysMD’s
models are highly readable and interpretable, even for individuals lacking ex-
pertise in modeling. This stands as a significant advantage over SysMLv2 with
OCL, making SysMD a valuable tool for system modeling and analysis.

5.6.2. Performance Evaluation

Figure 5.60.: Performance for the simulation in one year

Performance evaluation represents a critical dimension in the assessment of
the Smart Home Simulation System’s efficiency and scalability. This chapter
meticulously dissects the system’s performance characteristics, focusing on
the relationship between computational resources, simulation time, and the
number of houses in the model.

Experimental Setup The cornerstone of this evaluation lies in the precise
configuration of simulation parameters. The variable denoted as secondsPerYear
within the HouseNetwork module was meticulously set to 3652460, effectively
establishing a real-time simulation framework. In this context, each simulation
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second equates to one real-world minute. This temporal calibration not only
enables meaningful performance measurements but also ensures the system’s
suitability for real-time execution.

Real-Time Simulation Validation To ascertain the system’s capability to
maintain real-time responsiveness, a series of experiments were conducted.
Foremost among these experiments was the measurement of simulation time
required for the completion of one virtual year, with variations in the number
of houses in the simulation model. The outcomes of these experiments are
graphically presented in Figure 5.60.

Performance Observations Figure 5.60 portrays a compelling narrative re-
garding the system’s performance. Notably, the simulation’s temporal effi-
ciency surpasses real-time constraints. For instance, simulating a single house
over the course of a year consumes a mere 22 seconds. However, as the number
of houses in the simulation increases, computational demands scale proportion-
ally. Intriguingly, the computational effort grows at a rate that is notably less
than linear. For instance, simulating 1000 houses extends the duration to a
modest 7.5 hours, which is merely a thousand-fold increase compared to a
single house. This observation underscores the system’s capacity to efficiently
simulate a substantial number of houses, substantiating its scalability. The
adherence to real-time simulation benchmarks is of paramount significance,
as it ensures that the system can be executed in real-time scenarios, such as
for monitoring, decision support, or training purposes. The observations pre-
sented herein lay the foundation for a thorough understanding of the system’s
performance attributes, vital for its real-world applicability.

House Energy Consumption

This section scrutinizes the electricity consumption patterns exhibited by the
simulated houses. To investigate the dynamic trajectory of energy utilization,
three distinct experiments were conducted, each designed to represent specific
scenarios. The results of these experiments, presented in Figure 5.61, Figure
5.62, and Figure 5.63, delineate the daily energy consumption profiles of 1000
houses over a simulated day.

Energy Consumption on Average Days Figure 5.61 illustrates the energy
consumption profile on a typical day, incorporating the randomness inherent
in real-world human activities. In this simulation, residents in these houses
follow a weekly schedule that consists of randomly distributed workdays and
days off, with a frequency of five workdays and two non-working days per
week.

During the early hours of the day, from midnight to 6 a.m., the simulation
mirrors the sleeping patterns of the residents, resulting in a relatively constant
energy consumption level. This consistency arises from essential devices such
as refrigerators, freezers, and routers, which remain operational throughout
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Figure 5.61.: Energy Consumption of 1000 houses on average days

the night. The gradual rise in energy consumption commences as residents
awaken, engage in activities, and initiate device usage. Notably, the energy
demand surges as residents prepare for work or other daily responsibilities,
driving a noticeable peak. Subsequently, as some residents depart for work,
there is a corresponding decline in energy consumption. However, due to the
presence of residents who remain at home, the energy consumption remains
elevated compared to the nighttime baseline. In the evening, upon the return
of residents, a further spike in energy consumption materializes, primarily
attributable to increased electronic device usage and heightened lighting re-
quirements. The cycle concludes with a reduction in energy usage after 10
p.m., coinciding with residents retiring to bed.

Energy Consumption on Working Days In Figure 5.62, the simulation is
configured to emulate only working days for the 1000 residents. This scenario
reveals distinctive energy consumption characteristics that reflect the demands
of a typical workday.

Two prominent peaks in energy consumption are evident, occurring during
the morning and evening hours. The first, occurring around the morning
hours, stems from residents awakening, engaging in early tasks, and notably,
illuminating their surroundings. However, it is the evening peak that stands
out, driven primarily by the increased demand for lighting during the evening
hours. Importantly, at approximately 4 p.m., energy consumption plummets
to levels akin to those observed during nighttime. This abrupt dip is associated
with the majority of residents being at their workplaces.

Energy Consumption on Non-working Days The final experiment, depicted
in Figure 5.63, recreates a scenario in which none of the 1000 residents engage
in work-related activities. This configuration emphasizes increased leisure time
and its consequent effect on energy consumption patterns.
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Figure 5.62.: Energy Consumption of 1000 houses on working days

Figure 5.63.: Energy Consumption of 1000 houses on none working days

On days devoid of work obligations, energy consumption remains relatively
steady between 10 a.m. and 6 p.m., as residents engage in various activities
that involve heightened device usage. Significantly, the total energy consump-
tion on these days surpasses that observed on regular working days. This
disparity arises from the intensified utilization of electronic devices, as resi-
dents have more leisure time at their disposal compared to working days. The
evening hours once again experience a surge in energy consumption, largely
attributed to the augmented lighting requirements during this period.

Insights Collectively, these experiments provide comprehensive insights into
the dynamic nature of energy consumption within the simulated houses. By
differentiating between workdays and non-working days, the simulations un-
derscore the role of human routines in shaping energy demand profiles. These
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observations not only facilitate a deeper understanding of residential energy
usage but also serve as valuable inputs for future energy management strate-
gies within smart home environments.

5.6.3. Software in the loop Evaluation

The assessment of computational overhead introduced by homomorphic en-
cryption within the dataflow is a pivotal aspect of this evaluation. To gauge
the impact on system performance, we conducted evaluations across three
distinct scenarios: one without homomorphic encryption, one with partially
homomorphic encryption, and one with fully homomorphic encryption. The
primary objective was to compare their respective runtimes.

Experimental Setup

The simulations were executed within a virtual machine operating on Arch
Linux, hosted on a Mac Pro workstation equipped with a 3.5 GHz 6-Core In-
tel Xeon E5 CPU, 16GB 1866 MHz DDR3 RAM, and an AMD FirePro D500
3072 MB GPU running MacOS Mojave. The virtual machine was configured
to utilize 6 processor cores and 8192 MB of RAM. Both the encryption service
and plaintext aggregation components were deployed on an external server,
effectively eliminating topology-related discrepancies in the comparative anal-
ysis. This external server was equipped with a single 2.7 GHz Intel Xeon E5
Core. Communication between the simulation and the encryption service was
facilitated via an Ethernet connection. This setup, involving the separation of
the simulation and encryption service, served to mitigate any potential compu-
tational resource contention, ensuring that computational resources allocated
to the simulation were not compromised by encryption service activities.

Encryption Service Implementation Currently, the encryption service em-
ployed open-source libraries that offer wrapper interfaces to their underlying
low-level functions. These libraries seamlessly integrate encryption into the
VICINITY architecture. For the fully homomorphic encryption aspect of the
study, the HElib Library was utilized[108]. HElib implements the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme, incorporating numerous optimizations
to enhance runtime efficiency. In the case of partially homomorphic encryp-
tion, the libhcs library[109] was integrated into the encryption service. This li-
brary encompasses a variety of partially homomorphic encryption schemes[109].
Our focus was on the implementation of the Paillier encryption scheme for ad-
ditive homomorphic encryption, aligning with the specific requirements of our
use case. Additionally, a straightforward Python script, based on the Python
Flask framework[110], was developed. This script emulates the endpoints of
the encryption service while operating on plain text input data.

223



Chapter 5: Case Study: Smart Energy Use Case

Figure 5.64.: Runtime of the simulation with and without (fully, partial) homo-
morphic encryption

Results

The runtime performance results of the various simulation runs, illustrated
in Figure 5.64, demonstrate a notable upward trend with an increasing num-
ber of participating vehicles in the System under investigation. This observed
increase in runtime is primarily attributed to the escalating computational
demands incurred during the simulation of intricate communication processes
among participants. The augmentation in runtime observed in simulation
scenarios employing homomorphic encryption, in comparison to scenarios de-
void of encryption, can be attributed to two distinct factors. Firstly, there is
the computational overhead incurred on the service side due to the encryp-
tion process itself. Secondly, the extended time required for transmitting the
substantial response ciphers, which are notably larger than their unencrypted
counterparts, across the simulated network and the actual Ethernet infrastruc-
ture. It is imperative to acknowledge that these observed performance dispar-
ities may be influenced by the constraints imposed by the real-time scheduler
employed for hardware-in-the-loop simulations. In situations characterized by
a high volume of communications within the actual network or the transmis-
sion of exceedingly large payloads (such as an extensive number of ciphers),
the real-time scheduler may need to selectively prioritize certain inbound or
outbound communications to uphold its real-time capabilities. Beyond these
considerations, the performance of our simulations was intrinsically contingent
on the efficiency and congestion levels within the laboratory network. Notably,
the state of the network had a discernible impact on the overall system per-
formance. Additionally, the choice of cryptographic libraries played a pivotal
role in shaping performance outcomes. For fully homomorphic encryption, we
leveraged HElib [108], a library characterized by active development and ongo-
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ing optimization efforts. HElib implements the BGV encryption scheme, which
undergoes constant refinement to leverage newly discovered improvements and
performance enhancements. In contrast, our implementation of partially ho-
momorphic encryption relied on libhcs [109]. While libhcs does offer support
for cryptographic systems like Paillier, El-Gamal, and Damgard-Jurik, it’s im-
portant to note that these schemes are no longer actively maintained, primarily
due to the advent of practical fully homomorphic encryption solutions. Conse-
quently, these older cryptographic schemes, lacking the capacity to capitalize
on recent advancements, exhibited inferior performance in certain scenarios
when juxtaposed with fully homomorphic encryption implementations.

Conclusions

One of the principal findings derived from this experiment is the observation
that the overhead introduced by the utilization of homomorphic encryption,
whether partially or fully homomorphic, constitutes only a fraction of the total
runtime when compared to the runtime of our plaintext simulation. Notably,
in the runtime comparison for ten cars, it is evident that fully homomorphic
encryption performs nearly identically to plaintext. Even in scenarios involv-
ing 30 cars, where fully homomorphic encryption exhibits the highest runtime
among the three approaches, the incurred overhead remains modest at ap-
proximately 1.2%. Given the considerable privacy enhancements offered by
homomorphic encryption, this overhead can be deemed negligible for our appli-
cation. These results hold significant value for our future applications. In prac-
tical use cases of homomorphic encryption within the VICINITY project, the
number of simulated cars remains within realistic and feasible bounds. Con-
sequently, we anticipate no significant runtime penalties attributable to the
adoption of homomorphic encryption. However, this novel approach promises
substantial improvements in the privacy of car owners, thereby enhancing
the acceptance and appeal of the VICINITY project to them. Furthermore,
this experiment affirms the applicability of both hardware-in-the-loop and
software-in-the-loop simulations within the proposed simulation framework.
It is important to acknowledge that the utilized real-time scheduler for simu-
lation had an anticipated impact on the overall simulation runtime, primarily
due to the necessity of interfacing with real hardware and aligning simulation
time with real-time constraints. This impact, though expected, aligns seam-
lessly with our overarching approach of dynamically interchangeable models
at runtime, which accommodate encapsulated simulators, providing a finer-
grained representation of simulation time, and thereby enabling more detailed
simulation steps. These findings serve as a foundational step in understanding
the role of homomorphic encryption in simulation scenarios and the poten-
tial of hardware-in-the-loop and software-in-the-loop simulations within our
framework. Future investigations may explore alternative real-time schedulers
to further optimize performance in scenarios with extensive communications
into real networks, mitigating potential limitations observed in this experi-
ment.
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Chapter 6
Conclusions and Outlook

6.1. Conclusion

In the pursuit of more efficient, secure, and effective cyber-physical energy
systems (CPES), the integration of Internet of Things (IoT) infrastructures has
emerged as a pivotal area of research. This dissertation, titled ”Modeling and
Simulation of Internet of Things Infrastructures for Cyber-Physical Energy
Systems,” delves into this domain, presenting a novel approach for model-
based development and simulation-based verification and validation of IoT
infrastructures within CPES. This research addresses the imperative need for
early validation of system integration in CPES, a field that unites the realms
of physical and cyber components to distribute energy efficiently and reliably.

6.1.1. Context and Significance

CPES represent a monumental leap in the energy sector by amalgamating
energy generation, transmission, distribution, and consumption with digital
communication and control technology. The physical components encompass
the tangible elements of the energy system, while the cyber facets encom-
pass the hardware, software, and communication technologies that enable the
system to function seamlessly. In recent years, the rapid evolution of IoT
platforms has created an extensive ecosystem comprising gateways, middle-
wares, and cloud platforms. Building smart devices and integrating them
with value-added services necessitates careful platform selection. Nonetheless,
the proliferation of diverse IoT network standards has complicated the repli-
cation of IoT systems. Ensuring the reliability and efficiency of IoT systems
requires comprehensive testing. This entails the management of large-scale
simulation nodes to replicate diverse communication scenarios, energy usage
patterns, and decision-making processes. The need for precise modeling of
every network component, including complex node interactions, underscores
the intricacies involved in this domain.
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6.1.2. Methodology and Contributions
The dissertation presents a methodological framework for the rapid prototyp-
ing of simulatable models for large and complex structures during the early
phases of system analysis and conceptual design. This approach provides
engineers with a powerful toolset to effectively model IoT systems while con-
sidering the power and energy requirements of future intelligent cyber-physical
energy systems. The contributions of this research can be distilled into three
key facets:

1. Model-Based Approach: The development of a model-based approach
tailored for the early conceptual design phase of IoT systems stands as
a significant contribution. The inherent complexity of IoT systems ne-
cessitates specialized simulation and modeling techniques, capable of
handling their intricacies. This approach offers a path to navigate this
complexity and facilitates the development of IoT systems. This contri-
bution answers the research questions 1 and 2 from chapter 1.4.1.
The details of the developed MBSE approach and it’s application are
clearly shown in sections 5.2 and 5.3, where the modeling languages
SysML and SysMD can unfold to their full potential. The complexity of
the use case in this dissertation is through the use of these techniques
still manageable.

2. Simulation and Emulation Framework: The creation of a simula-
tion and emulation framework for IoT infrastructures (refer to chapter
4), particularly attuned to the power and energy requirements of future
intelligent cyber-physical energy systems, represents another substantial
contribution. This framework encompasses a rapid prototyping method
for simulatable models during the initial stages of system analysis and
conceptual system design. This approach empowers IoT engineers to de-
velop and optimize systems while meticulously considering energy and
power aspects. The Framework clearly answers research question 3
from section 1.4.1. In chapter 5, the simulation framework shows it’s ca-
pabilities to efficiently simulate IoT infrastructures in order to address
their power and energy usage.

3. Integration and Application: The integration and application of the
developed methodology and simulator in a real-world scenario within
the VICINITY project adds practical relevance to this research. The
VICINITY project, focused on creating a virtual neighborhood platform
for IoT devices, poses unique challenges related to energy and power as-
pects. The simulator’s ability to handle complex infrastructures, includ-
ing energy network dimensioning for smart neighborhoods, underscores
its efficacy in addressing the distinctive requirements of future intelli-
gent cyber-physical energy systems. In the use case of this dissertation
(chapter 5) the developed simulation framework is seamlessly integrated
into the IoT scenarios arising from the VICINITY project. This clearly
answers research question 4 of the target elicitation in chapter 1.4.1.
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6.1.3. Thesis Organization and Contributions

The dissertation’s organization reflects its comprehensive approach to integrat-
ing IoT infrastructures into cyber-physical energy systems. It commences with
an in-depth exploration of state-of-the-art IoT simulators and their computa-
tional models. This investigation serves as a foundation for the development
of a specialized simulator tailored to the unique demands of the VICINITY
project.

The central premise of this research is the presentation of a holistic devel-
opment process for IoT infrastructures within cyber-physical energy systems.
The approach leverages model-based systems engineering techniques, adapted
to the specific challenges of IoT development. The dissertation illustrates
a model-based development approach aimed at the early conceptual design
phase of IoT systems. This approach acknowledges the elevated complexity of
such systems and offers a means to navigate it effectively.

A comprehensive case study further solidifies the methodology and the sim-
ulator’s utility. The scenario is meticulously modeled using SysML and sub-
sequently translated for use within the simulator. Experimental evaluations
encompassing hardware in the loop, software in the loop, and human in the
loop validate the effectiveness of this approach.

6.1.4. In Conclusion

In summary, this dissertation introduces a pioneering approach to seamlessly
integrate IoT infrastructures into the intricate tapestry of cyber-physical en-
ergy systems. The proposed methodology targets the early phases of IoT de-
velopment, including system analysis and conceptual design, with an emphasis
on the rapid prototyping of simulatable models. By harnessing SysML models
to faithfully represent system behavior and address the formidable complexity
of IoT systems, this research equips engineers with the tools needed to usher
in a new era of energy efficiency and reliability.

The developed simulator, battle-tested in the VICINITY project and demon-
strated to address the unique requirements of power and energy usage in future
intelligent cyber-physical energy systems, stands as a testament to the prac-
tical implications of this research. These contributions, taken together, hold
the promise of steering IoT systems toward a future where energy and power
requirements are not just met but optimized. In this vision, IoT seamlessly
empowers the intelligent, efficient, and secure distribution of energy, forging a
path toward a sustainable and technologically advanced future.

6.2. Summary

The dissertation dives into a transformative realm where the Internet of Things
(IoT) intersects with cyber-physical energy systems (CPES). CPES, an evolu-
tion in energy management, fuses physical components with digital technology.
In this paradigm shift, IoT plays a pivotal role, demanding advanced model-
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ing and simulation methodologies to ensure seamless integration and optimize
energy systems.

The journey begins with a comprehensive examination of IoT platforms.
These platforms form a complex ecosystem encompassing gateways, middle-
wares, and cloud platforms. The research highlights the intricacies of selecting
the right platforms when connecting smart devices and creating value-added
services. Moreover, it delves into the daunting challenge of dealing with numer-
ous IoT network standards, emphasizing the need for replicable IoT systems.

A cornerstone of this research lies in the testing of IoT systems. Replicating
scenarios involving communication, energy consumption, and decision-making
processes demands the ability to manage a multitude of simulation nodes. The
simulator’s complexity also extends to handling intricate interactions between
these nodes.

To address the multifaceted nature of IoT systems, the dissertation intro-
duces a model-based methodology. This innovative approach enables the rapid
prototyping of simulatable models, empowering engineers to navigate IoT’s
complexities effectively. It caters to the early phases of IoT system develop-
ment, specifically system analysis and conceptual system design.

A pivotal contribution of this research is the development of a simulation
and emulation framework tailored to the energy requirements of future intel-
ligent CPES. This framework facilitates the rapid prototyping of simulatable
models, ideal for handling complex IoT systems. It aims to support engineers
in developing systems that consider energy and power aspects from the outset.

The research takes a leap from theory to practice by integrating the de-
veloped methodology and simulator into the VICINITY project, a real-world
endeavor. The VICINITY project endeavors to create a virtual neighbor-
hood platform for IoT devices. This dissertation provides a novel strategy
for supporting the development of specialized IoT infrastructures crucial to
VICINITY, particularly those related to energy and power aspects. The sim-
ulator’s application to complex infrastructures contributes to the dimensioning
of energy networks in future smart neighborhoods.

In summary, this dissertation pioneers the integration of IoT infrastructures
into the realm of CPES. The model-based methodology offers a structured
approach for navigating the intricacies of IoT systems. The simulation frame-
work, fine-tuned for energy systems, prioritizes energy and power considera-
tions, ensuring efficient energy distribution. Through practical validation in
the VICINITY project, IoT emerges as the linchpin for intelligent, sustainable
energy systems. This research lays the foundation for a future where energy
systems are optimized, sustainable, and powered by the Internet of Things.

6.3. Future Work and Outlook

6.3.1. Simulation Approach

As previously delineated in [87], the current prototype supports the utiliza-
tion of continuous-time models, particularly through hybrid models. However,
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the continuous interaction among such models can present challenges concern-
ing the discrete-time architecture of the simulator. A proposed solution lies
within the realm of the generalized DEVS specification [111], which employs
polynomial events to approximate continuous output.

Large-scale IoT scenarios stand to benefit significantly from parallel and
distributed simulation techniques. By integrating MPI, OMNeT++ already
offers support for parallel and distributed execution. Future endeavors should
harness this existing architecture to enable the developed simulator to fully
leverage OMNeT++ capabilities.

The versatile simulation framework proposed herein can extend its utility
to evaluate other software or hardware solutions tailored for the Internet of
Things. For instance, the approach detailed in [112] can undergo evaluation
for performance and design within this framework.

The functional mock-up interface (FMI) emerges as pivotal for simulating
Cyber-Physical Systems (CPS). To further enhance integration at the low-
est level of the framework, FMI integration into OMNeT++ is imperative.
While SystemC models have already been incorporated into the simulation
without FMI, precision-driven simulation outcomes can greatly benefit from
FMI integration, alongside languages like Modelica.

Lastly, runtime evaluations have affirmed the feasibility of homomorphic
encryption for practical implementations. In forthcoming work, we intend to
integrate a fully homomorphic micro-service, as illustrated in Figure 5.17, into
the VICINITY architecture. Our findings indicate that this implementation
introduces negligible runtime overhead while offering substantial advantages in
terms of privacy compared to plaintext scenarios and versatility compared to
partially homomorphic encryption. Leveraging the VICINITY Bridge Feature
(see 5.2.2), this approach can undergo comprehensive testing in a simulated
environment, devoid of potential disruptions to real-world applications.

6.3.2. SysMD
As this dissertation has shown, in the context of increasingly complex prod-
ucts and systems across various domains, the need for advanced modeling tools
like SysML has become crucial. However, this poses a challenge as many sys-
tems modeling experts lack domain-specific knowledge, resulting in potential
issues. Additionally, hiring or training modeling experts can be costly and
time-consuming.

To address these challenges and provide a high-level abstraction for systems
modeling and knowledge representation, a framework and modelling language
called SysMD is currently under development. This framework primarily fo-
cuses on modeling requirements, structure, and constraints, offering several
key features:

1. Integration of Documentation and Models: The framework seam-
lessly combines modeling with Markdown documents, enhancing the
maintainability of knowledge bases. It allows for the inclusion of for-
matted text, tables, and references to external documents.
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2. Inclusive Language: The framework employs a syntax designed to
be accessible to individuals without prior modeling expertise, making
it inclusive for various stakeholders, including domain and management
experts.

3. Continuous Consistency Checking: To support formal analysis, the
framework incorporates constraint propagation techniques, facilitating
quick evaluations of design element dependencies—a valuable asset, par-
ticularly in agile development processes.

In terms of modeling languages, it’s worth noting that existing options like
UML, SysML, and OWL have limitations, especially concerning human read-
ability and formal analysis capabilities.

The framework’s target audience includes domain experts who may not
possess modeling experience. To address this, the framework relies on natu-
ral language statements, predefined semantic relationships such as ”isA” and
”hasA,” and encourages documentation as an integral part of the modeling
process. Additionally, it offers extensibility for specialized use cases.

In summary, the framework presents a user-friendly, inclusive, and highly
adaptable approach to systems modeling and knowledge representation. Its
development aligns with the growing need for accessible modeling tools in
complex domains, which may have implications for future work, especially in
the realm of simulation frameworks.
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Christoph Grimm, Juan Rico, Keith Dickerson, Raúl Garćıa-Castro,
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moth: A massive-scale emulation platform for internet of things”. In:
2012 IEEE 2nd International Conference on Cloud Computing and In-
telligence Systems. Vol. 3. IEEE. 2012, pp. 1235–1239.

[70] NS2 Wiki. http://nsnam.sourceforge.net/wiki/index.php/Main Page.
[71] NS3 Wiki. https://www.nsnam.org/wiki/index.php/Main Page.
[72] PDNS. https://www.cc.gatech.edu/computing/compass/pdns/.
[73] GTNetS. http://griley.ece.gatech.edu/MANIACS/GTNetS/.
[74] A Sobeih, J C Hou, Lu-Chuan Kung, Ning Li, Honghai Zhang, Wei-

Peng Chen, Hung-Ying Tyan, and Hyuk Lim. “J-Sim: a simulation
and emulation environment for wireless sensor networks”. In: IEEE
Wireless Communications 13.4 (2006), pp. 104–119. issn: 1536-1284.
doi: 10.1109/MWC.2006.1678171.

[75] Tronje Krop, Michael Bredel, Matthias Hollick, and Ralf Steinmetz.
“JiST/MobNet: Combined Simulation, Emulation, and Real-world Testbed
for Ad Hoc Networks”. In: Proceedings of the Second ACM International
Workshop on Wireless Network Testbeds, Experimental Evaluation and
Characterization. WinTECH ’07. New York, NY, USA: ACM, 2007,
pp. 27–34. isbn: 978-1-59593-738-4. doi: 10.1145/1287767.1287774.
url: http://doi.acm.org/10.1145/1287767.1287774.

[76] Contiki: The Open Source Operating System for the Internet of Things.
http://www.contiki-os.org/.

[77] Stanford Information Networks Group. TinyOS Wiki, TOSSIM. url:
http://tinyos.stanford.edu/tinyos- wiki/index.php?title=
TOSSIM.

[78] Jawwad Shamsi and Monica Brockmeyer. “DSSimulator: Achieving mil-
lion node simulation of Distributed Systems”. In: Spring Simulation
Multiconference. 2005.

[79] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. “GloMoSim: a library
for parallel simulation of large-scale wireless networks”. In: Proceedings.
Twelfth Workshop on Parallel and Distributed Simulation PADS’98
(Cat. No. 98TB100233). IEEE. 1998, pp. 154–161.

[80] Omnet++ Simulation Manual. url: https://omnetpp.org/doc/omne
tpp/manual/.

238

https://doi.org/10.1109/MCSE.2017.3421541
https://doi.org/10.1109/MWC.2006.1678171
https://doi.org/10.1145/1287767.1287774
http://doi.acm.org/10.1145/1287767.1287774
http://tinyos.stanford.edu/tinyos-wiki/index.php?title=TOSSIM
http://tinyos.stanford.edu/tinyos-wiki/index.php?title=TOSSIM
https://omnetpp.org/doc/omnetpp/manual/
https://omnetpp.org/doc/omnetpp/manual/


Bibliography

[81] Sung Park, Andreas Savvides, and Mani B Srivastava. “SensorSim: A
Simulation Framework for Sensor Networks”. In: Proceedings of the 3rd
ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems. MSWIM ’00. New York, NY, USA: ACM,
2000, pp. 104–111. isbn: 1-58113-304-9. doi: 10.1145/346855.346870.
url: http://doi.acm.org/10.1145/346855.346870.

[82] Gilbert Chen, Joel Branch, Michael Pflug, Lijuan Zhu, and Boleslaw
Szymanski. “SENSE: a wireless sensor network simulator”. In: Advances
in pervasive computing and networking. Springer, 2005, pp. 249–267.

[83] Emulab. https://www.emulab.net/.
[84] ATEMU. http://www.hynet.umd.edu/research/atemu/.
[85] Giacomo Brambilla, Marco Picone, Simone Cirani, Michele Amoretti,

and Francesco Zanichelli. “A Simulation Platform for Large-scale Inter-
net of Things Scenarios in Urban Environments”. In: Proceedings of the
First International Conference on IoT in Urban Space. URB-IOT ’14.
Rome, Italy: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2014, pp. 50–55. isbn: 978-1-
63190-037-2. doi: 10.4108/icst.urb-iot.2014.257268. url: http:
//dx.doi.org/10.4108/icst.urb-iot.2014.257268.
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Appendix A
SysML Diagrams

Figure A.1.: Smart Grid Requirement Diagram
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Appendix A: SysML Diagrams

Figure A.2.: Micro Grid Requirement Diagram
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Appendix A: SysML Diagrams

Figure A.3.: Micro Grid Block Definition Diagram
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Appendix A: SysML Diagrams

Figure A.4.: Smart Grid Block Definition Diagram

Figure A.5.: Components Block Definition Diagram
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Appendix A: SysML Diagrams

Figure A.6.: Control Environment One Activity Diagram

Figure A.7.: Control Environment TWO Activity Diagram
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Appendix A: SysML Diagrams

Figure A.8.: Analyze Data Activity Diagram

Figure A.9.: Detect Motion Activity Diagram
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Appendix A: SysML Diagrams

Figure A.10.: Detect Smoke Activity Diagram

Figure A.11.: Protect User Activity Diagram
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Appendix A: SysML Diagrams

Figure A.12.: Monitor Heart Rate Activity Diagram

Figure A.13.: Monitor Respiration Activity Diagram
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Appendix A: SysML Diagrams

Figure A.14.: fallsensor Activity Diagram

Figure A.15.: Analyze Data Activity Diagram
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Appendix A: SysML Diagrams

Figure A.16.: Smart Grid Package Diagram
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Appendix A: SysML Diagrams

Figure A.17.: ISQ quanities and units Package Diagram

Figure A.18.: Light State Machine Diagram
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Appendix A: SysML Diagrams

Figure A.19.: Heart Rate State Machine Diagram
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