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Abstract
Many practical optimisation problems have conflicting objectives, which should be 
addressed by multi-criteria optimisation (MCO), i.e. by determining the set of best 
compromises, the Pareto set (PS), along with its picture in parameter space (PSPS). 
In previous work on low-dimensional MCO problems, we have found characteristic 
topological features of the PS and PSPS, which depend on the dimensionality of 
the parameter space M and the objective space N. E.g., M = 2 and N = 3 yields tri-
angles with needle-like extensions. The reasons for these topological features were 
unknown so far. Here, we show that they are to be expected if all objective functions 
of the MCO satisfy two conditions: (a) they can be approximated by quadratic func-
tions and (b) one of the eigenvalues of the Hessian matrix evaluated at the function’s 
minimum is small compared to the other eigenvalues. Objective functions which 
meet conditions (a) and (b) have a valley-like topology, for which the valley lies in 
the direction of the eigenvector corresponding to the lowest eigenvalue. The PSPS 
can be estimated by starting at the minimum of an objective function, following the 
valley, and combining these lines for all objective functions. The PS is obtained by 
evaluating the objective functions. We believe that the conditions (a) and (b) are met 
in many practical problems and discuss an example from molecular modelling. The 
improved understanding of the features of these MCO problems opens the route for 
designing methods for swiftly finding estimates of their PS and PSPS.
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1 Introduction

Optimisation problems with conflicting objectives are encountered in many prac-
tical applications, viz.  in engineering; and multi-criteria optimisation (MCO) is 
an appropriate way to deal with them. In MCO, the Pareto set (PS) is determined, 
which is the set of the best possible compromises between the objectives (Pareto 
2014). For any point on the PS, an improvement in one objective is only possible 
at the cost of a decline in at least one other objective; hence, the PS represents the 
optimal solutions of the MCO problem. For a detailed mathematical discussion, 
the reader is referred to Ref. Ehrgott (2005). In practical MCO problems, typi-
cally only one solution can be realised, which should be chosen from the PS. In 
MCO, not only the PS is determined, but also its picture in the parameter space 
(PSPS). Having selected a point on the PS, the PSPS shows which parameters 
are needed to get to that point. Determining PS is far from trivial as a brute force 
enumeration of the parameter space is usually infeasible from a practical stand-
point. Hence, dedicated methods for determining PS have been developed, see 
e.g. Logist et al. (2010), Hernandez (2012), which, however usually still require 
a large number of evaluations of the objective function. The present work deals 
with the topology of low-dimensional PS, as they are encountered in many practi-
cal problems. The results enable swift estimations of the PS in these cases.

MCO has been used in many fields of engineering, e.g. the design of energy sys-
tems (Shirazi et al. 2014; Najafi et al. 2014), semiconductors (Ganesan et al. 2015) 
and chemical processes (Clark and Westerberg 1983; Bhaskar et al. 2000; Rangaiah 
and Petriciolet 2013; Höller et al. 2019; von Kurnatowski et al. 2017; Bortz et al. 
2014). In the field of thermodynamics, to give just one example, MCO has been 
used before for modelling pure compounds and mixtures (Kulkarni et al. 2020; Stö-
bener et al. 2014, 2016; Werth et al. 2015; Kohns et al. 2016) with equations of state 
(Rehner and Gross 2020; Graham 2020; Forte et al. 2017) and excess Gibbs energy 
models (Forte et al. 2020). In such applications, both the number of objectives N as 
well as the number of parameters M is usually low, with typical values below five for 
both numbers. However, if the evaluation of the objective functions is costly, such as 
in the development of molecular models, the determination of PS may pose a severe 
problem even for such low-dimensional MCO problems.

In our previous work on MCO in thermodynamics (Kulkarni et al. 2020; Stö-
bener et al. 2014; Kohns et al. 2016), we have observed characteristic topologies 
of the PSPS and the PS, which depend on the numbers for N and M, but not on 
the specific problem that is investigated. A sketch of these topologies for some 
cases is shown in Fig. 1.

For N = 2 , the PS as well as PSPS show two distinct branches, which are both 
almost straight lines. The region near the intersection of the branches is the so 
called Pareto knee region, where the values of both the objectives are typically 
low, while the branches far from the Pareto knee region have high value of one 
objective and low value of the other. For N = 3 , the PSPS shows triangles in the 
centre, with needle-like extensions from the vertices, which are, however, not 
always observed. In this case, the central triangular region is the Pareto knee.
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Fig. 1  Sketches of typical 
topologies of the Pareto set (PS, 
right panels) in the objective 
space and their pictures in the 
parameter space (PSPS, left pan-
els) for low dimensional MCO 
problems with N objectives and 
M parameters as observed in 
previous studies of our group 
(Kulkarni et al. 2020; Stöbener 
et al. 2014; Kohns et al. 2016; 
Forte et al. 2020). The stars 
indicate the extreme compro-
mises, i.e. the global minima 
of the N individual objective 
functions
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It has been shown previously (Kulkarni et al. 2020; Stöbener et al. 2014; Kohns 
et al. 2016) that these characteristic topologies are closely related to properties of 
the individual objective functions of the MCO problem. However, the inner work-
ings of that relation have not been unravelled yet, and the conditions under which 
these characteristic topologies occur are still unknown. The starting point of the 
present work was therefore the wish to clarify these issues. The central hypothesis 
behind the approach was that the characteristic topological features are observed if 
the topologies of the individual objective functions meet certain requirements, and 
the aim was to elucidate the corresponding conditions.

The results published by Augusto et al. (2014) turned out to be a key for tack-
ling this challenge. Augusto et al. (2014) have derived analytical expressions for the 
PSPS for arbitrary numbers for M and N for the case that all objective functions 
are quadratic. The topologies sketched in Fig. 1 can be obtained from their results 
if certain conditions are met. Basically, the lines in Fig. 1 correspond to valleys in 
the contours of the individual objective functions. Mathematically, the valleys can 
be related to Eigenvalues and Eigenvectors of the individual objective functions at 
their minima (crosses in Fig. 1). From this, mathematical conditions can be derived 
which, if met, lead to the occurrence of the characteristic topologies.

Such valley-like topologies are found in the objective functions of many practical 
MCO problems. For example, we have observed such topologies in all of our previ-
ous studies on MCO in the field of thermodynamics, independent of type of thermo-
dynamic model that was used, i.e. for molecular models (Kulkarni et al. 2020; Stö-
bener et al. 2014; Kohns et al. 2016), equations of state (Forte et al. 2018), as well as 
for models of the Gibbs excess energy (Forte et al. 2020). Also, in MCO problems 
from various other fields, e.g., from process design (Bortz et al. 2014, 2017; Burger 
et al. 2014), energy systems engineering (Chiu et al. 2019), and from quantitative 
spectroscopy (Matviychuk et al. 2020), PS were found that indicate valley-like struc-
tures of the topology of the objective functions. We refer here to the existence of so-
called “Pareto knees” in the PS (Branke et al. 2004), which may be interpreted as the 
result of valleys in the topology that intersect each other. If these valleys are steep, 
the resulting Pareto knee will be sharp.

Hence, there is good reason to believe that what we are studying in the present 
work is not just some special case, but one which is of high practical interest. The 
insights gained in our study explain not only empirical observations from the lit-
erature (e.g.  regarding the Pareto knees), they can also be used for designing new 
methods for determining PS and the PSPS in practical problems. We also specify the 
conditions for which the interesting and practically relevant type of behaviour stud-
ied here has to be expected.

To illustrate our findings, we discuss a practical MCO problem: the development 
of molecular models of water, where the aim is to describe different thermodynamic 
properties well, viz. the vapour pressure and liquid density. The objectives are con-
flicting, as the considered class of water models (which is the most common one) 
is fairly simple, so that not all properties of water can be simultaneously modelled 
with high accuracy. Therefore, compromises have to be made and it is highly desir-
able to know the PS, which is the set of the best compromises. We show that for this 
MCO problem, the valley-like topologies occur and the mathematical conditions 
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that characterise them are met. We also use the example to discuss how the insights 
from the present work can be used for estimating the Pareto set of the MCO prob-
lem, based on the analysis of the individual objective functions. We note that the 
MCO problems we have studied here contain no constraints, neither for the objec-
tives nor for the parameters. Considering the influence of adding constraints was 
out of the scope of the present study, especially as it would have required individual 
considerations for different types of constraints (e.g. constraints on the PS and the 
PSPS, respectively).

This paper is organised as follows: Sect.  2 presents a mathematical analysis of 
properties of Pareto sets in the case of quadratic objective functions, including a dis-
cussion of constructing estimates of these sets based on properties of the individual 
objective functions. In Sect. 3, we discuss how these findings can be applied to sys-
tems, for which the objective functions are not quadratic, but can be approximated 
by quadratic functions. The results are then illustrated by two types of examples in 
Sect. 4: the first one is a study on systems with synthetic quadratic objective func-
tions and the second one is a practical MCO problem from thermodynamics, the 
optimisation of molecular model of water. Finally, conclusions are drawn in Sect. 5.

2  MCO with quadratic objective functions

2.1  Quadratic objective functions

In general, a quadratic objective function fi in an M-dimensional parameter space 
can be written as

where i = 1,… ,N , and N is the dimensionality of the objective space. The vector 
� ∈ ℝ

M is a point in the parameter space, �i ∈ ℝ
M indicates the coordinates of the 

minimum of fi , �i is the Hessian matrix of fi . The Hessian matrix �i is a symmetric 
M ×M matrix, thus hjk,i = hkj,i ∀ j ≠ k.

2.2  Method of Augusto et al.

Augusto et  al. (2014) have described an analytical method for determining the 
PS for an MCO containing an arbitrary number of quadratic objective functions 
described by Eq. (1). The full method, which works for any M and N, is described in 
the Appendix. Here, we introduce it using the simple but vivid case M = N = 2 for 
illustration.

Let the two objective functions be fA(�) and fB(�) , their Hessian matrices � and 
� , and their minima at �A and �B . fA can be written as

(1)

fi(�) = (� − �i)
⊺
�i(� − �i)

�i =

⎛⎜⎜⎝

h11,i … h1M,i

⋮ ⋱ ⋮

hM1,i … hMM,i

⎞⎟⎟⎠
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where, �, �A ∈ ℝ
2 . The Hessian matrix � is symmetric, and hence both the non-

diagonal elements are equal, thus a12 = a21 = and.
In principle, the Hessian � as well as the corresponding minimum �A are arbi-

trary. However, without loss of generality, a coordinate transformation can be 
applied such that (i) �A lies at the origin, and (ii) the eigenvectors of � are parallel 
to the coordinate axes, so that the non-diagonal elements of � vanish. Additionally, 
for the purpose of the present discussion, one of the eigenvalues of � is scaled to 1, 
which does not impact the topology of the objective function. Denoting the other 
eigenvalue by � , � can then be written as

Varying the parameter � yields different ratios of eigenvalues. A valley-like topology 
of fA is obtained if either 𝜉 ≫ 1 or 𝜉 ≪ 1 . We will discuss the former case, for which 
the valley is oriented in the x1-direction.

For two quadratic objective functions, following Augusto et al. (2014) (Eq. (27) 
in their paper), any point �∗ on the PSPS can be calculated as follows:

Here, wA and wB are the weights corresponding to the objective functions fA(�) and 
fB(�) respectively. Each choice of the weights (wA,wB) gives a unique point �∗ of the 
PSPS, so that the evaluation of Eq. (4) as a function of wA yields the entire PSPS. 
The PS is then found by evaluating the objective functions fA and fB for all values 
of �∗ . When wA ≈ 1 , the point �∗ is close to �A (the coordinates of the minimum of 
fA(�) ), and when wB ≈ 1 , the point �∗ is close to �B (the coordinates of the minimum 
of fB(�)).

2.3  Analysis

In the present section, the results of Augusto et al. (2014) are used for an analysis of 
the topology of the PSPS, and, as a consequence, also of the PS. For simplicity and 
clarity, we continue to discuss the case M = N = 2 , but emphasise that the argument 
can be generalised, as shown in the Appendix.

Equation (4) can be rearranged to give:

(2)
fA(�) = (� − �A)

⊺
�(� − �A)

� =

(
a11 and
and a22

)

(3)� =

(
1 0

0 �

)

(4)�
∗ = (wA� + wB�)

−1(wA��A + wB��B)

(5)wA + wB = 1

(6)�
∗ =

[(
� +

wB

wA

�
−1
�

)−1

(wA�)
−1

]
wB��B
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where � is the unit matrix of dimension M ×M.
Let us consider a point �∗ in the vicinity of �A , so that wA ≫ wB . Applying a Tay-

lor series expansion in wB

wA

 to the first term in brackets in Eq. (6) yields the following 
approximation:

In the following, we only keep the leading term, i.e.,

Substituting the values for �B = [x1,B, x2,B]
⊺ and the matrices � and �−1 yields:

Note that the coordinate transformation was carried out such that the minimum of fA 
is shifted to the origin and � becomes a diagonal matrix, while the minimum of fB is 
generally at some other position �B = (x1,B, x2,B)

⊺ and � is not a diagonal matrix, 
i.e. bnd ≠ 0 . Equation (9) shows directly that for wB

wA

≪ 1 , the PSPS approaches the 
origin, i.e. the coordinates of minimum of fA.

If 𝜉 ≫ 1 , Eq. (9) can be approximated by:

Hence, for 𝜉 ≫ 1 , the x2-component of �∗ is small, i.e. the PSPS near the minimum 
of fA lies close to the x1-axis.

The eigenvalues of fA are 1 and � , and the eigenvector belonging to the eigen-
value 1 is the vector in the x1-direction. Hence, Eq. (10) can be interpreted as fol-
lows: for 𝜉 ≫ 1 , the minimum of fA together with the eigenvector corresponding to 
the smaller eigenvalue of � define a linear approximation of the PSPS in the vicinity 
of the minimum of fA . The geometric interpretation of this finding in the fA(x1, x2) 
space is that for 𝜉 ≫ 1 , the minimum of fA lies at the bottom of a valley which goes 
in the x1-direction (the direction of the eigenvector corresponding to the eigenvalue 
1). The deviations of the PSPS from that linear approximation increase with increas-
ing distance from the minimum of fA (with increasing wB

wA

 ) and with lower ratios of 
the eigenvalues � . The same arguments can be applied to fB.

The findings that were discussed above for the case M = N = 2 can be general-
ised to arbitrary values of M and N. For each objective fi (i = 1,… ,N) , an analy-
sis as the one described above can be carried out. If one of the eigenvalues of the 
M ×M diagonal Hessian matrix �i defining fi (see Eq.  (1)) is much smaller than 
all the other eigenvalues, then the minimum of fi together with the eigenvector 

(7)�
∗ =

(
wB

wA

)
�

−1
��B −

(
wB

wA

)2

(�−1
�)2�B +O

[(
wB

wA

)3]

(8)�
∗ =

wB

wA

�
−1
��B +O

[(
wB

wA

)2]

(9)�
∗ =

( wB

wA

(b11x1,B + bndx2,B)
wB

wA

1

�
(bndx1,B + b22x2,B)

)

(10)�
∗ =

(wB

wA

(b11x1,B + bndx2,B)

O(
wB

wA

1

�
)

)
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corresponding to that eigenvalue define a linear approximation of the PSPS, in the 
vicinity of the minimum. The corresponding equations for the general case are given 
in the Appendix.

2.4  Estimation of the Pareto set

We now consider the case of quadratic objective functions and assume that for each 
objective function, one eigenvalue of the Hessian matrix is much smaller than the 
others, i.e. the objective functions have valley-like topologies. It then follows from 
Sect. 2.3 that estimates for the Pareto set of the MCO problem in the vicinity of the 
minima can be obtained by considering only the valleys of the individual objective 
functions fi (i = 1,… ,N) . We describe two alternative ways for achieving this.

(a) Linear approximation The linear approximation consists of the following 
three steps to be carried out for all i = 1,… ,N objectives: 

(1) Find the minimum �i of fi.
(2) Find the eigenvector �i belonging to the smallest eigenvalue of the matrix �i.
(3) Combine the results from 1) and 2) to obtain a linear approximation of the PSPS 

near �i.

This process yields N straight lines that can be combined to get an estimate of the 
PSPS. From this, the PS can be found by evaluating the objective functions of the 
MCO problem at each point on the PSPS. The way these individual lines have to be 
combined to form the estimate of the PSPS depends on M and N.

We will discuss this by referring to Fig.  1. Let us consider the first case, 
M = N = 2 : there are two lines which will intersect in general. The intersection 
point in the objective space is known as the Pareto knee. The arguments given here 
explain why often very sharp Pareto knees are found. Not the entire lines belong 
to the PSPS, but only their respective sections between the minima and the Pareto 
knee.

For M = 2 and N = 3 , there are three lines in the two-dimensional parameter 
space. Not only these three lines belong to the PSPS, but also the triangular region 
between these lines (see Fig. 1). The picture of this triangular region in the objective 
space corresponds to the Pareto knee. We will refer to this area connecting the lines 
(both in the PS as well as the PSPS) as the Pareto knee region.

For the case considered here ( M = 2 , N = 3 ), the area between the lines in the 
PSPS is in general triangular and easy to construct. For other cases, defining this 
area is not so straightforward; e.g. for M = 3 and N = 3 , there are three lines which, 
however, will in general not intersect. It was not in the scope of the present work 
to establish a general theory on how to construct the Pareto knee region from the 
knowledge of the lines. Intuitively, the Pareto knee region is expected to be found 
where lines are close to each other and the solution on how to construct it will 
depend on the quality of the linear approximation of the PSPS in the regions where 
the lines are close.
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The linear approximation of the PSPS will only be good near the minima 
�i , while deviations will occur far from the minima. The size of these deviations 
depends on the details of the problem, including the distance of the different min-
ima �i (i = 1,… ,N) from each other. It would be possible to get better predictions 
by taking into account higher order terms in the Taylor series expansion mentioned 
above, but this would require the knowledge of derivatives of the objective func-
tion up to an order higher than two, which may be difficult to obtain in practical 
problems. The idea of the valley-like topology of the objective functions enables 
devising a different strategy instead, which is called valley approximation in the 
following.

(b) Valley approximation
The valley approximation is a modification of the linear approximation, in which 

the step 2 in the scheme shown above is replaced by a different scheme for finding 
the lines which start at the minima �i of the objective functions fi . The geometrical 
picture of the objective functions for which one of the eigenvalues is much smaller 
than the others is a valley-like topology. The lowest point of the valley is the mini-
mum of fi , located at �i . The valley is first approximated well by linear approxima-
tion, in the vicinity of �i , using the approach described above under a). However, 
with increasing distance from �i , deviations between the valley of fi and the lin-
ear approximation will occur. We suggest to use the bottom line of the valley as an 
approximation of the PSPS rather than using the linear approximation also for large 
distances away from �i . We refrain from trying to give a formal proof that this is an 
improvement over the linear approximation but will discuss some examples below 
that confirm the according expectation.

3  Application to non‑quadratic MCO problems

The topologies shown in Fig.  1 were observed in practical MCO problems from 
chemical engineering, and they are fully in line with the theory developed in the pre-
vious section for the quadratic objective functions. In particular, the theory explains 
the occurrence of the different cases shown in Fig. 1. For N > 2 , needle-like exten-
sions of the PSPS are only found if the minima of the objective functions fi lie out-
side the Pareto knee region.

This suggests that the following holds for the objective functions fi in the under-
lying MCO problem: 

 (i) The fi can be approximated reasonably by quadratic functions.
 (ii) One of the eigenvalues of the Hessian matrix of fi , evaluated at the minimum 

of fi is much smaller than the other eigenvalue.

If these conditions are met, it is expected that (a) the linear approximation as well 
as, alternatively, (b) the valley approximation can be used for obtaining estimates of 
the PSPS, and, accordingly of the PS, as described in Sect. 2.4. Furthermore, for real 
MCO problems, there is a further option:

(c) Quadratic approximation
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In the first step, for each goal function fi , quadratic approximations around their 
minima are constructed. Then, the method of Augusto et  al. (2014) is applied to 
each of these quadratic functions, so that an estimate of the PSPS is obtained.

Near the minimum, the quadratic approximation yields the same results as the 
linear approximation, but in the region of the Pareto knee, it may deviate strongly 
from the linear approximation. Furthermore, the linear approximation as well as the 
valley approximation yield only curves, while the quadratic approximation can yield 
objects of higher dimensions, which is important in the Pareto knee region.

4  Examples

4.1  Synthetic quadratic objective functions

In this section, we consider synthetic quadratic objective functions as defined in 
Eq. (2) in two-dimensional parameter space, i.e. M = 2 . Three different quadratic 
objective functions, fA , fB and fC , are defined in the following. We will consider 
an example with a two-dimensional objective space, i.e. N = 2 , using only the two 
objectives fA and fB , as well as a second example with a three-dimensional objective 
space, i.e. N = 3 , using all three objectives fA , fB and fC.

As in Sect. 2.2, the objective function fA(�) was chosen to have its minimum at 
the origin, its eigenvectors parallel to the coordinate axes, and the two eigenvalues 
1 and � . As a consequence, � is a diagonal matrix with its diagonal entries as 1 and 
� . The other two objective functions, fB(�) and fC(�) , are obtained by rotating fA(�) 
about the origin and translating it by different amounts, such that the minima are 
shifted. fB(�) is obtained by rotating fA(�) by −70◦ and positioning its minimum at 
�B = [10,−5]⊺ , while fC(�) is obtained by rotating fA(�) by 45◦ and positioning its 
minimum at �C = [10, 5]⊺ . Thus, the ratio of eigenvalues � is the same for all three 
objectives. Choosing the same ratio of eigenvalues for all objective functions is not 
a requirement for the current analysis to be valid; it was only done for convenience.

Two different ratios of eigenvalues, viz. 10 and 100, are used to assess the accu-
racy of the linear approximation and the valley approximation of the PSPS and the 
PS (see Sect. 2.4). The exact solution was calculated using the method of Augusto 
et al. (2014) For � = 100 , the valley-like landscape is “steeper” than that for � = 10 . 
Fig. 2 illustrates the three objective functions fA , fB , and fC , for � = 10.

Figure 3 presents the Pareto sets for the MCO when the two objectives fA(�) and 
fB(�) are considered. The figures show the PSPS on the left and the PS on the right. 
Additionally, in the parameter space, the valleys of the individual functions as well 
as their minima (analogous to Fig. 2) are shown for reference.

For the synthetic quadratic functions, the valleys are straight lines along the 
eigenvectors corresponding to the smaller eigenvalue of the Hessians of the objec-
tive functions. As a consequence, the valley approximations (red lines) and the lin-
ear approximations (green dotted lines) coincide with each other.

For � = 10 , PSPS is accurately approximated, except for the region of the 
Pareto knee. However, even the differences in that region hardly show up in the 
PS, which is very well approximated. As expected, the approximation is even 
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better for � = 100 , where the differences between the approximation and the 
exact solution are basically negligible both for the PSPS and the PS.

Figure  4 presents the Pareto sets for the synthetic quadratic objective func-
tions for all three objectives fA(�) , fB(�) , and fC(�) . Again, the two ratios of 
eigenvalues � = 10 and � = 100 are considered. As for the case with two objec-
tives discussed above, the PS is approximated very well for both � = 10 as well 
as � = 100 . Therefore, for brevity, we only show the results for the PSPS in 
Fig. 4.

For � = 10 , the approximations work very well near the minima, while in the 
region of the Pareto knee, deviations are observed. For � = 100 , these deviations 
basically vanish, leading to an almost perfect approximation of the PSPS.

Fig. 2  Contour plots of the three synthetic quadratic objective functions considered in the present work. 
The white stars indicate the global minima of the functions, while the white dashed lines indicate the val-
leys (paths of lowest ascent) that pass through the minima
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4.2  Parametrisation of a molecular model of water

As a practical example for the applying of the concepts for estimating Pareto sets 
developed in the present work, we discuss now an MCO problem from thermody-
namics, the parametrisation of a molecular model of water. Therefore, we chose 
a popular water model, the so-called SPC/E model (Berendsen et  al. 1987) as a 

Fig. 3  Pareto sets for the MCO with the two synthetic quadratic objective functions fA and fB . Top row: 
� = 10 , bottom row: � = 100 . Left: parameter space (PSPS), right: objective space (PS). Blue lines: exact 
solution, red lines: valley approximation, green dotted lines: linear approximation (see Sect. 2.4), black 
dotted lines: valleys of the individual functions. The stars in the plots indicate the global minima of the 
individual objective functions. The valley approximation and the linear approximation are strictly identi-
cal here
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starting point. The problem with applying MCO for the development of molecu-
lar models of fluids is that the evaluations of the goal functions are computation-
ally extremely costly, as they usually require carrying out molecular simulations at 
many state points in each iteration step. We have circumvented this problem here by 
using the so-called reduced units methods, which is explained below, together with 
simulation data for the SPC/E model from a previous study of our group (Kulkarni 
et al. 2020). This enabled us to carry out the analysis without carrying out additional 
molecular simulations. In the MCO problem, which we study, there are three objec-
tive functions which measure the difference between the results from the molecular 
model (Kulkarni et al. 2020) and experimental data (Lemmon et al. 2018; Wagner 
and Pruß 2002) for three important thermodynamic properties of water: saturated 
liquid density ( �liq ), vapour pressure ( ps ) and enthalpy of vaporisation ( Δhvap ). 
The definition of the corresponding objective functions �ps , ��liq and �(Δhvap) 
was adopted from our previous work (Kulkarni et al. 2020) and is included in the 
Appendix.

The reduced units method (Merker et  al. 2012) is used here to obtain the rela-
tion between the parameters and the objectives. While SPC/E model has five param-
eters, only two of them were used as variables ( M = 2 ), in order to be able to apply 
the reduced units method. These are the Lennard-Jones size parameter � and the 
Lennard-Jones energy parameter � . Upon varying � and � , the other model param-
eters vary in a prescribed way. Details are given in Merker et al. (2012) and are not 
important for the present discussion. We mention this here only to emphasise that 
further imptovements would be possible if all parameters were used in the MCO, 
which we have simply not done here for computational reasons and as M = 2 is also 

Fig. 4  PSPS for the MCO with the three synthetic quadratic objective functions fA , fB and fC . Left: 
� = 10 , right: � = 100 . Blue: exact solution, red: valley approximation, green: linear approximation, 
black dotted lines: valleys of the individual functions. The stars in the plots indicate global minima of the 
individual objective functions. The valley approximation and the linear approximation are strictly identi-
cal here
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convenient for the discussion. If simulation results for the original model, which is 
SPC/E here, are available, the reduced units method yields analytical expressions 
for obtaining the relation between the simulation results and the parameters � and � . 
From these, the objectives of the MCO problem, �ps , ��liq and �(Δhvap) , can be cal-
culated. We refer the reader to the original Ref. Merker et al. (2012) for more details 
on the reduced units method.

Contour plots for the three objectives ��liq , �ps and �(Δhvap) as functions of the 
parameters � and � are shown in Fig. 5. Both ��liq and �ps show global minima as 
well as valleys passing through the minima. Here, the valleys were estimated by 
selecting the lowest values of the individual objectives along their cross sections 
parallel to the coordinate axes. Note that �(Δhvap) does not depend on � here. As a 

Fig. 5  Contour plots of the three objective functions for the optimisation of the SPC/E water model. The 
objectives ��liq , �ps and �(Δhvap) indicate the deviations between simulation results for SPC/E and the 
experimental data for saturated liquid density, vapour pressure and enthalpy of vaporisation respectively. 
The white stars indicate the minima of the functions, while the white dashed lines indicate the valleys 
(paths of lowest ascent) that pass through the minima. There is no distinct minimum for �(Δhvap) as this 
objective does not depend on �
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consequence, the contour lines of this objective are parallel to the �-axis. Thus, there 
is no distinct minimum for this objective, rather the minimum is “spread” across an 
entire line parallel to the �-axis, i.e. a line of constant �.

Since analytical relations between the objectives and the parameters are available, 
it is possible to calculate their second derivatives at the respective minima. From 
these, the Hessian matrices can be calculated, and the quadratic approximations of 
the objective functions can be obtained. Also, the eigenvalues of the Hessian at the 
minima of the individual objectives were computed, which are shown in Table 1. 
The ratios of the eigenvalues are significantly larger than those considered for the 
synthetic quadratic functions, c.f. Sect. 4.1.

For MCO in this case, similar to the synthetic quadratic objective functions, first, 
only two objectives, viz. ��liq and �ps , are considered, so that N = 2 . In a second 
step, three objectives, ��liq , �ps and �(Δhvap) , were considered, so that N = 3 . For 
both cases, the PSPS and the PS obtained by three methods presented in Sect.  3, 
the linear approximation, the valley approximation and the quadratic approximation, 
were compared to the exact Pareto set. The latter was calculated by a brute-force 
enumeration of the numbers for the objective functions on a narrowly spaced param-
eter grid, followed by a selection of the points that were not dominated.

Figure 6 presents the results obtained for the PSPS (left) and the PS (right) for 
the case N = 2 . Also, a zoom into the Pareto knee region of the PS is provided. 
The three approximations are shown together with the exact Pareto set. Additionally, 
the bottom lines of the valleys in the two objective functions and the corresponding 
minima are shown.

The valley approximation matches the exact Pareto set almost perfectly. As the 
objective functions are no longer strictly quadratic, the linear approximation devi-
ates from the bottom lines of the valleys, which are slightly non-linear. The linear 
approximation and the quadratic approximation show almost no differences, even 
in the region of the Pareto knee, which can be understood as a consequence of the 
topology of the individual objective functions with their sharp and deep valleys, 
and, hence, as a result from the wide spread of the Eigenvalues. However, these two 
coinciding approximations, while giving still fair results, are clearly less accurate 
than the (almost perfect) valley approximation.

Figure 7 presents the results obtained for the PSPS (left) and the PS (right) for the 
case N = 3 . As in Fig. 6, the results of the three approximations are compared to the 
exact solution. However, now there are three objective functions, and, hence, three 
valleys, only two of which have minima for the reasons discussed above.

In this case, a triangular Pareto knee region with two extensions is expected, 
which is the case here. These two extensions end at the two minima, which lie 

Table 1  Eigenvalues of the 
Hessian matrices for the 
simulation results of the three 
objective functions considered 
in the MCO of the molecular 
model of water

Objective ��liq �ps �(Δhvap)

Larger eigenvalue 1.7922 1.5337 1.1147 × 10
−3

Smaller eigenvalue 9.3032 × 10
−5 2.7859 × 10

−3 0
Ratio of eigenvalues 1.9265 × 10

4 550.5430 ∞



1626 A. Kulkarni et al.

1 3

outside the Pareto knee region. This topology is not only found in the brute force 
evaluation of the Pareto set but also by all considered approximation methods. The 
quadratic approximation yields the triangular surface and the extensions, while the 

Fig. 6  Pareto set for the MCO of the SPC/E water model with the two objective functions ��liq and �ps . 
Left: parameter space (PSPS) and right: objective space (PS) along with the magnified view of the PS 
around the Pareto knee region. Blue: exact solution, red: valley approximation, purple: quadratic approxi-
mation and green: linear approximation of the Pareto set. Additionally, the valleys (see Fig. 5) are shown 
as black dashed lines for reference. Stars indicate the global minima of the individual objective func-
tions. Exact solution and valley approximation of the Pareto set coincide with each other, while quadratic 
approximation and linear approximation of the Pareto set also coincide with each other

Fig. 7  PSPS for the MCO of 
the SPC/E water model with 
the three objective functions 
��liq , �ps and �(Δhvap) . Blue: 
exact solution, red: valley 
approximation, purple: quadratic 
approximation, and green: 
linear approximation. Stars 
indicate the global minima of 
the individual objective func-
tions. Additionally, the valleys 
(see Fig. 5) are shown as black 
dashed lines for reference
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other two methods yield only three intersecting lines, from which, it is, however, 
easy to construct the triangular Pareto knee region including the two extensions. 
As for N = 2 , the predictions from the valley method are almost perfect, and as for 
N = 2 , the differences between the results from the quadratic approximation and the 
linear approximation are negligible. Again, as for N = 2 , these predictions are less 
accurate than those of the valley approximation.

Altogether, the results from the presented examples suggest that the valley 
approximation is an accurate and useful one in practical MCO problems.

5  Conclusions

In previous studies of low-dimensional MCO problems, the Pareto sets, as well as 
their pictures in the parameter space, were found to have peculiar topologies that are 
closely related to the topologies of the individual objective functions, which often 
have a minimum lying at the lowest point of a deep and sharp valley. Such struc-
tures are characterized mathematically by the fact that one of the Eigenvalues of 
the Hessian of the objective function, at its minimum, is much smaller than the oth-
ers, which seems to be the case in many engineering problems. This finding can be 
used for estimating the Pareto set of the MCO problem: the minima of the individual 
objective functions are extreme compromises of the MCO problem, and, as such 
belong to the Pareto set. In the case described above, starting from the minimum, 
more points of the Pareto set can be found by following the valleys. We call this 
valley approximation. The so-called Pareto knee region, which is usually the region 
where the most interesting compromises are located, is found where the valleys meet 
or at least approach each other. This is discussed in the present work first for MCO 
problems with quadratic objective functions, for which the Pareto set can be deter-
mined analytically using the method of Augusto et al. (2014) Then, the analysis is 
extended to MCO problems with non-quadratic objective functions, that, however, 
are required to have the topology described above. Three schemes to determine the 
Pareto set of these MCO problems are discussed, of which the valley approximation 
gave the best results. Hence, the results not only explain the peculiar topologies of 
the Pareto sets observed earlier, but can also be used to construct approximations of 
Pareto sets.

Questions left open by the present work include: (a) an analysis of more exam-
ples of low-dimensional practical MCO problems. The hypothesis is that many will 
be found, which show the peculiar topologies mentioned above. It would also be 
interesting to make generic statements on why this type of problems is so common. 
(b) The present method for estimating the Pareto set is based on finding branches 
of the Pareto set that start in the extreme compromises. We have basically left open 
the question how to find out in which way these branches are linked in the Pareto set 
when this does not follow from simple geometric considerations such as intersection 
points. Here the quadratic approximation method, in which all objective functions 
are approximated with quadratic functions around their respective minima, which 
was presented in the present work, could be useful, as it yields not only branches but 
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also their connections. Finally, the new methods should be implemented in a robust 
and efficient program package.

Appendix 1

Mathematical analysis for arbitrary values of M and N

Equation (10) was only derived in the main text for the case of two objective func-
tions and two parameters ( M = N = 2 ). The result is generalised here to arbitrary N 
and M. The treatment is very similar to that shown in Sect. 2.3 for M = N = 2.

Consider N quadratic objective functions fi ∀ i = 1,… ,N , as defined in Eq. (1). 
In the following, a line of arguments will be made for the objective f1 , but as in 
Sect. 2.3, similar arguments can be made for all other objectives. A coordinate trans-
formation is applied similar to that explained in Sect. 2, such that the non-diagonal 
elements of �1 are equal to zero. Thus, �1 can be written as:

Without loss of generality, one of the eigenvalues of �1 can be scaled to 1, so that 
�1 = 1 . Also, let us assume that one of the eigenvalues is dominated by all the others, 
i.e. 𝜉2, 𝜉3,… , 𝜉M ≫ 1 . Following Augusto et al. (2014) (Eq. (27) in their paper), any 
point �∗ on the Pareto set can then be calculated as follows:

Here, wi is the weight that corresponds to the objective fi . Each choice of the weights 
( w1,w2,… ,wN ) gives a unique point �∗ on the Pareto set, so that the evaluation of 
Eq. (A2) as a function of ( w1,w2,… ,wN ) yields the entire Pareto set.

Equation (A2) can be rearranged to give:

Let us consider a point in the vicinity of �1 , so that w1 ≫ w2,… ,wN . Applying a 
Taylor series expansion in wi

w1

 to the first term in brackets in Eq. (A4) yields the fol-
lowing approximation:

(A1)�1 =

⎛⎜⎜⎜⎝

�1 0 … 0

0 �2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … �M

⎞⎟⎟⎟⎠

(A2)�
∗ =

( N∑
i=1

wi�i

)−1( N∑
j=1

wj�j�j

)

(A3)
N∑
i=1

wi = 1

(A4)�
∗ =

[(
� +

N∑
i=2

wi

w1

�
−1
1
�i

)−1

(w1�1)
−1

]( N∑
j=2

wj�j�j

)
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Rearranging the above equation results in:

Substituting the values for �i = [x1,i, x2,i,… , xM,i]
⊺ and the matrices �i and �−1

1
 

yields:

Further rearrangement results in

Thus,

Equation (A9) shows that for 𝜉2,… , 𝜉M ≫ 1 , all the components of �∗ except the x1
-component are small, i.e. the PSPS near the minimum of f1 lies close to the x1-axis.

Appendix 2

Definition of objective functions

In Sect. 4.2, the objective functions �ps , ��liq and �(Δhvap) were used, for measuring 
the difference between the experimental data and the simulation results. The objec-
tive functions were then simultaneously minimised using MCO.

The definition of the objective functions was adopted from our previous 
work Kulkarni et  al. (2020). In the original paper, we calculated the difference 
between the simulation results and experimental data using absolute values. As 

(A5)�
∗ =

N∑
j=2

wj

w
1

�
−1
1
�j�j −

N∑
i=2

N∑
j=2

wiwj

w2

1

�
−1
1
�i�

−1
1
�j�j +O

(max
i
({w3

i
})

w3

1

)

(A6)�
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N∑
i=2

wi

w1

�
−1
1
�i�i +O
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i
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i
})

w2
1

)

(A7)�
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N�
i=2
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w1

⎛
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1
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a consequence, the objective functions were not differentiable along the valley. 
Instead, here, we modify the definition slightly, without changing the basic idea 
from the original paper. The objective function �Z corresponding to a property Z 
is given as:

Thus, for a water model denoted by the vector of model parameters � , �Z(�) contains 
the information on the deviation between the simulated value Zsim and the experi-
mental value Zexp of the property Z, averaged over NT temperatures Ti.
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