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Abstract. We prove that the number of conjugacy classes of a finite group G consisting
of elements of odd order, is larger than or equal to that number for the normaliser of a
Sylow 2-subgroup of G. This is predicted by the Alperin Weight Conjecture.

Introduction

Let G be a finite group, and let p be a prime. The celebrated Alperin Weight
Conjecture (AWC) [Al] states that the number l(G) of conjugacy classes of G of
elements of order not divisible by p equals the number of G-conjugacy classes of
p-weights of G. (Recall a p-weight of G is a pair (Q, δ), where Q is a p-subgroup
of G and δ is an irreducible complex character of NG(Q)/Q such that δ(1) and
|NG(Q)/Q| have the same p-part.)

One of the consequences of AWC is the following, purely group-theoretic inno-
cent-looking inequality.
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CONJECTURE A (Alperin). If G is a finite group, p is a prime, and P ∈
Sylp(G), then

l(G) ≥ l(NG(P )) .

The Alperin Weight Conjecture was reduced to a problem on simple groups in
[NT1]: if the nonabelian finite simple groups satisfy what is now called the inductive
AWC-condition, then AWC is true for every finite group. (Its block-wise refinement
was reduced in [Sp].) Despite the fact that certain families of simple groups have
been shown to satisfy the inductive AWC condition (see [BS], [FLZ], [FM], [Li],
[Ma], etc.), it is fair to say that a full proof of AWC seems yet, unfortunately, out
of reach.

The inductive AWC condition requires the existence of well-behaved bijections
between the weights (R, γ) of a quasi-simple group S and the irreducible Brauer
characters of S. Here, we propose to focus on the case where R ∈ Sylp(S), and
we prove that checking this (important) case is enough to verify, for instance,
Conjecture A (see Theorem 2). The first case is, of course, p = 2, and this is what
we prove in this paper. As a consequence, we obtain the following.

THEOREM B. Assume that p = 2. Then l(G) ≥ l(NG(P )).

As noted in Remark 2, there are infinite families of simple and quasi-simple
groups where l(G)− l(NG(P )) = 1. We suspect that the equality l(G) = l(NG(P ))
can only hold when NG(P ) = G, although this does not seem to be implied by
AWC. We will comment on this in the final section of this paper, but see also
Remark 1.

Perhaps it is of interest to remark that the following naive approach to proving
Theorem B does not always work: if H is a 2-complement of P in NG(P ), then
l(NG(P )) = k(H), but it is not in general true that the different conjugacy classes
of H fuse into distinct conjugacy classes of G, as shown by G = A5.

Let us close this introduction with a couple of related observations. The other
famous counting conjecture, the McKay conjecture, also carries with it some re-
lationship between the global and the local numbers of conjugacy classes. If k(G)
denotes the number of conjugacy classes of G, it was already pointed out by W. Feit
in [Fe] that the McKay conjecture implies that k(G) ≥ k(NG(P )) whenever P is
abelian, an inequality that has not yet been proved either. In fact, a combination
of the Itô–Michler theorem and the McKay conjecture easily implies the following
purely group-theoretical conjecture, which perhaps it is convenient to have written
down.

CONJECTURE C. Let G be a finite group, and p a prime. Then

k(G) ≥ k(NG(P )/P ′),

with equality if and only if P �G and P is abelian.

Of course, for p = 2, Conjecture C follows from the main result of [MS] and the
Itô–Michler theorem.

Finally, it has been asked if there is some group-theoretical characterisation
of the Itô–Michler theorem for p-Brauer characters of p-solvable groups (outside
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p-solvable groups, the degrees of Brauer characters do not behave well). The p-
solvable groups G such that q does not divide ϕ(1) for all ϕ ∈ IBr(G), where
q is a prime, were already studied by Manz–Wolf [MW1], and more recently by
Lewis–Tong Viet [LT]. A natural characterisation might be the following.

CONJECTURE D. Let G be a finite p-solvable group, let q be a prime, and
let Q ∈ Sylq(G). Then q is coprime to the degree of every irreducible p-Brauer
character of G if and only if l(G) = l(NG(Q)/Q′).

By work in [NST], the inductive McKay-condition of [IMN] implies Conjec-
ture D; see Remark 3.

Acknowledgement. The authors are grateful to Jay Taylor for helpful comments
on regular embeddings and to the referee for careful reading and helpful comments
on the paper.

1. Reduction to simple groups

We use the notation in [IMN], [Na], and [NT1]. The definition of when a
nonabelian simple group satisfies the inductive Sylow-AWC condition will be given
in the next section.

Theorem 1. Let p be a prime. Suppose that K/Z is a direct product of isomorphic
nonabelian simple groups of order divisible by p, which satisfy the inductive Sylow-
AWC condition where Z = Z(K) is a cyclic p′-group. Let Q ∈ Sylp(K) and λ ∈
Irr(Z) be faithful. Then there exists a subgroup H of K with NK(Q) ≤ H < K
and an injection

∗ : IBr(H|λ)→ IBr(K|λ).

Now, suppose that K is a normal subgroup in some group G with with Z ≤ Z(G),
and write N = NG(H). Then the following hold.

(a) KN = G, K ∩N = H and NG(Q) ≤ N < G.
(b) The injection ∗ can be chosen to be N -equivariant and

|IBr(G|θ∗)| = |IBr(N |θ)|

for all θ ∈ IBr(H|λ).

Proof. Follow the proofs of Theorem 13.1 of [IMN] and Theorem 3.2 of [NT1]. In
each step of Theorem 3.2 of [NT1], the radical subgroups under consideration are
simply the Sylow subgroups, and the inductive Sylow-AWC condition is guaranteed
by the inductive AWC condition. The “intermediate subgroup” H (which was not
considered in [NT1]) is dealt with in exactly the same way as in Theorem 13.1 of
[IMN]. �

We are now ready to give the main result in this section.

Theorem 2. Let p be a prime, let G be a finite group, and let P ∈ Sylp(G). Let
Z�G and suppose that λ ∈ IBr(Z) is P -invariant. If all the simple groups involved
in G/Z satisfy the inductive Sylow-AWC condition then

|IBr(G|λ)| ≥ |IBr(ZNG(P )|λ)| .
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Proof. We argue by induction on |G : Z|. By using the Clifford correspondence
for Brauer characters, we may assume that λ is G-invariant. By using modular
character triples ([Na, Thm. 8.28]), we may assume that Z is a central cyclic
p′-subgroup.

If G is p-solvable, in this case the theorem follows from [MW2, Thm. 23.10].
Hence, we may assume that G is not p-solvable.

Let K/Z be a chief factor of G. Let ∆ be a complete set of representatives for the
NG(P )-action on the set IBrP (K|λ) of P -invariant irreducible Brauer characters

of K that lie over λ. Suppose that η, ηg ∈ ∆ for some g ∈ G. Then P, P g
−1 ≤ Gη,

where Gη is the stabiliser of η in G. Thus there is x ∈ Gη such that xg ∈ NG(P ).
Now, η, ηg = ηxg ∈ ∆, so η = ηg. Therefore, we can write

IBr(G|λ) =
⊔
η∈∆

IBr(G|η) t Ξ

as a disjoint union, where Ξ is the set of irreducible Brauer characters of G that
lie over no element of ∆. Now,

IBr(KNG(P )|λ) =
⊔
η∈∆

IBr(KNG(P )|η)

is also a disjoint union. Hence, if KP is not normal in G, by induction we have
that

|IBr(G|λ)| ≥
∑
η∈∆ |IBr(G|η)|

≥
∑
η∈∆ |IBr(KNG(P )|η)|

= |IBr(KNG(P )|λ)|
≥ |IBr(ZNG(P )|λ)| .

Therefore, we may assume that KP �G.
If K/Z is p-solvable, then so is G, which is not the case. So we have that K/Z

is a direct product of isomorphic simple groups of order divisible by p.
Let Q = P ∩K ∈ Sylp(K). Now, we use Theorem 1. We know that there is a

subgroup NK(Q) ≤ H < K, an injection

∗ : IBr(H|λ)→ IBr(K|λ)

such that if N = NG(H), then KN = G, K ∩ N = H, NG(Q) ≤ N < G, the
injection ∗ is N -equivariant and

|IBr(G|θ∗)| = |IBr(N |θ)|

for all θ ∈ IBr(H|λ). Since P ∩K = Q, we have that NG(P ) ≤ NG(Q) ≤ N .
Since N < G, by induction we have that

|IBr(N |λ)| ≥ |IBr(NG(P )|λ)| .

Let Ψ be a complete set of representatives for the N -action on IBr(H|λ). Then

IBr(N |λ) =
⊔
τ∈Ψ

IBr(N |τ)
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and ⊔
τ∈Ψ

IBr(G|τ∗) ⊆ IBr(G|λ)

are disjoint unions. By Theorem 1(2) and the Clifford correspondence, we have
that

|IBr(N |λ)| =
∑
τ∈Ψ

|IBr(G|τ∗)| ≤ |IBr(G|λ)| ,

as wanted. �

Remark 1. In Theorem 2, equality can hold even when PZ is not normal; e.g.,
for G = SL2(5) with p = 3 we have |IBr(G|λ)| = 3 = |IBr(ZNG(P )|λ)| for the
nontrivial character λ of Z = Z(G) = C2.

2. The inductive Sylow AWC-condition and simple groups

In this section, we show that all simple groups satisfy the inductive Sylow-AWC
condition for p = 2, thereby completing the proof of Theorem B. We follow the
definitions in [NT1, §3] and [IMN, §10], which we adapt to our situation. Suppose
that X is a nonabelian simple group of order divisible by p. We say that X satisfies
the inductive Sylow-AWC condition if the following two conditions hold for every
choice of perfect group S such that S/Z = X, with Z := Z(S) cyclic of order not
divisible by p. Fix Q ∈ Sylp(S) and a faithful λ ∈ Irr(Z). Let A be the subgroup
of Aut(S) consisting of all automorphisms that act trivially on Z and stabilise Q.
We require that there exists a subgroup T stabilised by A, with NS(Q) ≤ T < S
such that:

(i) There is an A-equivariant injection

∗ : IBr(T |λ)→ IBr(S|λ).

(ii) For each θ ∈ IBr(T |λ), there is a group G satisfying the following conditions:
(a) S � G, Z ≤ Z(G). In particular, if N = NG(T ), as in Lemma 10.1

of [IMN], we have that G = SN , T = S ∩ N , and the injection ∗ is
N -equivariant.

(b) The stabiliser B of θ in A is exactly the group of automorphisms of S
induced by the conjugation action of the subgroup M = NG(Q) on S.

(c) The subgroup C = CG(S) is abelian, and the set IBr(C|λ) contains a
G-invariant character γ.

(d) We have the equality

[θ∗ · γ]G/SC = [θ · γ]N/TC ,

where these cohomology elements are defined as in [NT1, §3],

We remark that this condition is implied by the inductive AWC condition of
[NT1]. Indeed, if we have that the simple group S/Z = X satisfies the inductive
AWC-condition (or, as it is called in [NT1], if X is AWC-good), then we let T =
NS(Q) and the injection ∗ to be the inverse of the map

∗(Q,λ) onto its image. We
notice that the set dz(NS(Q)/Q|λ) is simply the set IBr(NS(Q)|λ).
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Finally, we remark that in this paper, that is for p = 2, our intermediate
subgroup T will always be NS(Q). For future applications (for p odd), though,
it is convenient to allow for more generality.

Lemma 3. Let q = pf be a power of the odd prime p, r ∈ Z≥1, and ε ∈ {±}. Let

Cε denote the cyclic subgroup of order q − ε1 in F×q and C̃ε its character group.

If ε = +, let D := Cf × C2 = 〈σ, τ〉 act on C̃ε via σ(µ) = µp and τ(µ) = µ−1. If

ε = −, let D := C2f = 〈σ〉 act on C̃ε via σ(µ) = µp. Extend this action to

Ω(r) := O2′(C̃ε)× · · · ×O2′(C̃ε)︸ ︷︷ ︸
r

component-wise, and for any element µ = (µ1, . . . , µr) ∈ Ω(r), let J(µ) consist of
all γ ∈ D such that

γ(µ) = λµ := (λµ1, λµ2, . . . , λµr) for some λ = λγ ∈ C̃ε.

Then the following statements hold.

(a) Suppose r > 1 and µ 6= (µ1, µ1, . . . , µ1). Then J(µ) is cyclic. Furthermore,
the subgroup J(µ) and the inertia subgroup StabD(µ) of

µ := µ−1
1 µ =

(
1Cε , µ

−1
1 µ2, . . . , µ

−1
1 µr

)
in D are both equal to J(µ).

(b) If r = 1 and µ1 6= 1Cε then the inertia subgroup StabD(µ) is cyclic.

Proof. (a) It suffices to show that O2(J(µ)) is cyclic when ε = +. Assume that
O2(J(µ)) is noncyclic. Then the abelian group O2(J(µ)) contains three distinct
involutions α, β, αβ. Note that at least one of them, say α, is outside of the cyclic
group 〈σ〉 ∼= Cf . Now, if β /∈ 〈σ〉 then αβ ∈ 〈σ〉. Replacing β by αβ, we may assume
that β = σf/2 (and 2|f). Write α = σjτ with 0 ≤ j < f . Then 1 = α2 = σ2j , so
f |2j and j = 0 or j = f/2. Replacing α by αβ in the latter case, we may assume
that α = τ . It follows that there exists some λ ∈ C̃ε such that λµi = α(µi) = µ−1

i ,
whence µ2

i = λ−1 and (µ−1
1 µi)

2 = 1Cε for all 1 ≤ i ≤ r. Since µ−1
1 µi has odd order,

it follows that µ1 = . . . = µr, contrary to the assumption.
By the preceding result, we have that J(µ) = 〈δ〉 for some δ ∈ J(µ), and there

exists some λ ∈ C̃ε such that δ(µi) = λµi for all i. It follows that δ(µ−1
1 µi) = µ−1

1 µi
for all i, and thus δ ∈ StabD(µ) and J(µ) ≤ StabD(µ). Since StabD(µ) ≤ J(µ)
and J(µ) = J(µ) by definition, the statements follow.

(b) As in (a), it suffices to rule out the case ε = + and O2(StabD(µ)) is not
cyclic. Arguing as in (a), we see in such a case that µ1 = τ(µ1) = µ−1

1 , and so
µ1 = 1Cε . �

As a consequence of [NT1, Thm. C], we have the following.

Theorem 4. Let X be a finite nonabelian simple group of Lie type in characteris-
tic p. Then X satisfies the inductive Sylow-AWC condition for the prime p.

The main result of this section is the following statement.
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Theorem 5. Let X be a finite nonabelian simple group. Then X satisfies the
inductive Sylow-AWC condition for the prime p = 2.

Proof. We first discuss two easy situations.

Case 1. Suppose that S = X (which is the only possibility if Mult(X)p′ = 1),
and NS(Q) = Q.

Then λ = 1, IBr(NS(Q)|λ) = {1NS(Q)}, and the map 1NS(Q) 7→ 1S clearly
satisfies the required conditions.

Thus we may assume that either S 6= X (and so Mult(X)p′ > 1) or NS(Q) > Q.

Case 2. Suppose now that NS(Q)/Q ∼= Z(S) ∼= C3 and Out(S) ∼= C2 acts
nontrivially on Z(S). Then NS(Q)/Q has two irreducible characters α1, α2 not
having Z(S) in their kernel, interchanged by Out(S), and clearly all faithful irre-
ducible 2-Brauer characters of S are not invariant under Out(S). Since there are
at least two such, say β1 and its image β2 under Out(S), we are again done by
sending αi 7→ βi for i = 1, 2.

We now treat the various groups in turn, using the classification of finite simple
groups.

Case 3. Suppose that X = An, n ≥ 6.
If n ≥ 8, then S = X and NS(Q) = Q (see e.g., [Ko, Cor.]), whence we are done

by Case 1. If n = 7, we are in Case 2. If n = 6, then S ∼= 3.A6, A ∼= NA6.23(Q) =
Q · 23, and NS(Q) = Q × Z. We take G to be the nonsplit extension S · 23 in
[GAP], and note that S has two faithful irreducible 2-Brauer characters β1,2 of
degree 9, which lie above the nonprincipal linear characters λ1,2 of Z and which
extend to G. Now the map ∗ can be taken to be λi 7→ βi.

Case 4. Suppose that X is one of the 26 sporadic simple groups. For these, the
inductive AWC condition was verified in [AD]. (In fact, for most groups we are
either in Case 1 or Case 2, and the few remaining cases can also be dealt with
easily.)

We are left to deal with the simple groups X of Lie type. If X is in characte-
ristic 2, we are done by Theorem 4, whence it remains to consider groups of Lie
type in odd characteristic q0 with p = 2. The ones with nonself-normalising Sylow
2-subgroups are listed in [Ko, Cor.].

Case 5. Suppose that X = 2G2(q2) with q2 > 3. Then we are done by [NT1,
Prop. 8.4].

Case 6. Suppose that X = PSLn(εq) with n ≥ 3, ε ∈ {±}, and q = qf0 .
Here, as customary, we let PSLn(εq) denote PSLn(q) when ε = +, respectively

PSUn(q) when ε = −, and similarly for SLn(εq) and GLn(εq).
For the group X ∼= PSU4(3), we are in Case 1 or 2, and thus by [KL, Thm. 5.1.4]

may assume that S is a central quotient of SLn(εq). First assume that n is a power
of 2. Then the Sylow 2-subgroups of X are self-normalising, see e.g., [Ko, Cor.].
As Z(SLn(εq)) ∼= Cgcd(n,q−ε1) is a 2-group in this case, we have that S = X, and
so we are done by Case 1.

So now write n = 2n1 +2n2 + · · ·+2nr , where r > 1 and n1 > n2 > . . . > nr ≥ 0.
Relaxing the condition that λ is faithful, we may assume that S = SLn(εq), and
embed S into H := GLn(εq). View H = HF for H = GLn(Fq) and a Steinberg
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endomorphism F : H → H, and consider the F -fixed point subgroup of a Levi
subgroup of H, L = H1 × · · · × Hr ≤ H with Hi = GL2ni (εq), and a Sylow 2-
subgroup P = P1×· · ·×Pr of H with Pi ∈ Syl2(Hi). Then we can take Q = P ∩S
and have

NH(P ) = NH1
(P1)× · · · ×NHr (Pr) = P ×N1, NS(Q) = Q× (N1 ∩ S),

with

NHi(Pi) = Pi×O2′(Z(Hi)), N1 := O2′(NH(P )) = O2′(Z(H1))×· · ·×O2′(Z(Hr))

(see e.g., [NT3, (3.3)] and the first displayed formula in part (b) of the proof of
[NT3, Thm. 4.3]).

As in the proof of [NT3, Thm. A] and Lemma 3, let Cε denote the cyclic

subgroup of order q − ε1 in F×q , C̃ε denote its character group, and set

Ω∗(n) := Ω(r) = O2′(C̃ε)× · · · ×O2′(C̃ε)︸ ︷︷ ︸
r

;

in particular, Irr(N1) can be canonically identified with Ω∗(n). Then the proof of
[NT3, Thm. A] yields canonical bijections

α : B → Ω∗(n) and β : IBr(NH(P )/P )→ Ω∗(n)

where B is the set of odd-degree irreducible 2-Brauer characters of H. Moreover,
for any Brauer character

µ = µ1 � µ2 � · · ·� µr

with µi ∈ IBr(O2′(Z(Hi))), of N1, we have β(µ) = (t̂1, t̂2, . . . , t̂r), and

µ(h) =

r∏
j=1

t̂j(z
2nj ) for all h = zIn ∈ O2′(Z(H)). (1)

Similarly, we claim that if α(ϕ) = (t̂1, . . . , t̂r), then

ϕ(h) = ϕ(1)

r∏
j=1

t̂j(z
2nj ) for all h = zIn ∈ O2′(Z(H)). (2)

Indeed, this is [NT3, (3.6)] when ε = +. In general, ϕ is the restriction χ◦s to
2′-elements of some semisimple character

χs = ±RHM (ψ) (3)

of H that is Lusztig induced from a linear character ψ of a Levi subgroup

M = CH(s) = GLk1(εq)× · · · ×GLkm(εq)
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of H, where m is the number of distinct elements among t̂1, . . . , t̂r, and, for each
j, kj is the sum of the 2ni for which the t̂i coincide, and

ψ(h) =

r∏
j=1

t̂j(z
2nj ) for all h = zIn ∈ O2′(Z(H)).

After identifying the dual group H∗ with H, the label s is a semisimple 2′-element
in H; see the first displayed formula in the proof of [NT3, Thm. A]. Let StH and
StM denote the Steinberg characters of H and of M . Then by [DM, Cor. 9.3 and
Cor. 12.18] for all h ∈ Z(H) we have

|H|q0χs(h) = ±(StH · χs)(h) = ±IndHM (StM · ψ)(h) = ±|H/M | · |M |q0ψ(h), (4)

and so χs(h) = ±|H/M |q′0ψ(h) = ±χs(1)ψ(h). In particular, if h has odd order,
then we get χs(h) = χs(1)ψ(h), proving (2).

Thus, if α(ϕ) = β(µ), then (1) and (2) show that χ and µ lie above the same
central character of O2′(Z(H)). As shown in the proof of [NT3, Thm. A], the map

α−1β : IBr(NH(P )/P )→ B

is a bijection which commutes with the action of the subgroup of Aut(H) that
stabilises P , and with the multiplication by linear Brauer characters of H, whose
set can be identified with Irr(H/O2′(H)) and thus with IBr(NH(P )/NS(Q)).

Since NH(P )/P ∼= N1 is an abelian 2′-group, each such µ restricts irreducibly
to N1∩S ∼= NS(Q)/Q, and conversely, each ν ∈ IBr(NS(Q)/Q) extends to exactly
(q − ε1)2′ linear Brauer characters of NH(P )/P .

Next, recall that H/S ∼= Cq−ε1. Since any ϕ ∈ B has odd degree, it is irreducible

over O2′(H). Hence, by Lemmas 3.2 and 3.3 of [KT], the number of irreducible
constituents of ϕ|S is equal to the number of linear (Brauer) characters ξ of
H/O2′(H) such that ϕ = ϕξ. The multiplication of ϕ = χ◦s, see (3), by such
a ξ has the effect of replacing the semisimple 2′-element s ∈ H by sz for some
z ∈ O2′(Z(H)), see e.g. [DM, Prop. 13.30]. The conjugacy class sH labels a union
of 2-blocks of H that contains ϕ by the main result of [BM]. Hence ϕ = ϕξ implies
that s and sz are conjugate in H. Now, since k1, . . . , km are pairwise distinct, this
can happen only when z = 1, i.e., if ξ is trivial. We have shown that every ϕ ∈ B
is irreducible over S.

We can write Aut(X) = (H/Z(H)) oD for a group D of outer automorphisms
that fix Q, with D = 〈σ〉 × 〈τ〉 ∼= Cf × C2 if ε = + and D = 〈σ〉 ∼= C2f if ε = −
(where σ is induced by a standard q0th Frobenius map Fq0 , and τ is the transpose-
inverse). Now, arguing as in part (b) of the proof of [NT3, Thm. 4.3], we see that
the assignment

θ := µ|NS(Q) 7→ α−1β(µ)|S = ϕ|S =: θ∗ (5)

yields a map IBr(NS(Q)|λ)→ IBr(S|λ) (if ϕ|S lies over λ) that is D-equivariant;
it trivially commutes with the action of NH(Q). Note that if ϕ|S = ϕ′|S for
ϕ,ϕ′ ∈ B, then, as they are both irreducible over S, they differ by some linear
ξ ∈ IBr(H/S). Again using (3) to locate the unions of 2-blocks that contain ϕ = χ◦s
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and ϕξ = ϕ′ = χ◦s′ , we see that s′ and s are H-conjugate, and so after a suitable
conjugation, we have CH(s′) = CH(s) and s′ = sz for some z ∈ Z(H) (if ξ
corresponds to z). This shows that µ = β−1α(ϕ) and µ′ := β−1α(ϕ′) agree on
NS(Q), and thus the map defined in (5) is injective.

If θ ∈ IBr(NS(Q)) is trivial, then we can take S = X and argue as in Case
1. Suppose θ 6= 1NS(Q). In this case, θ as an N1 ∩ S-character is obtained by
restricting some N1-character µ = µ1 � µ2 � · · ·� µr with

µ := (µ1, µ2, . . . , µr) 6= (µ1, µ1, . . . , µ1).

The action of σ, and τ when ε = +, on Ω∗(n) is described in the displayed formula
after [GKNT, (5.2)], which agrees with the action prescribed in Lemma 3, and α
and β both commute with the action of D. Now, δ ∈ D fixes θ if and only if δ(µ)
agrees with µ on N1 ∩ S, i.e., if δ belongs to the subgroup J := J(µ) of Lemma 3.
Hence J is cyclic, and, replacing µ by µ, we have that J is the same as StabD(µ),
on the local side. On the global side, the arguments with θ∗ = ϕ|S right after (5)
show that δ ∈ D fixes θ if and only if δ(ϕ) agrees with ϕ on S, i.e., if δ ∈ J , and,
again by Lemma 3, after replacing µ by µ, which amounts to multiplying ϕ by a
linear character, we also have that J is the same as StabD(ϕ).

Again relaxing the faithfulness of λ, we can take G = HoJ . As the H-character
ϕ is J-invariant, ϕ is G-invariant; also J fixes Q, θ, and θ∗ as mentioned above.
Furthermore, G = NG(Q)S by the Frattini argument. Hence, the stabiliser B of Z,
Q, and θ in Aut(S) induces the action of NG(Q) on S, as required in part (2)(b) of
the inductive Sylow-AWC condition. Furthermore, in the notation of [NT1, §3.3],
we have C = CG(S) = Z(H) and γ is the restriction of ϕ to C. Since J is cyclic
and both µ and ϕ are J-invariant, µ extends to NG(Q) and ϕ extends to G. Thus
both cocycles [θ · γ]NG(Q)/NS(Q)C and [θ∗ · γ]G/SC are trivial, and we are done.

Case 7. Suppose that X = E6(εq) with ε ∈ {±} and 2 - q = qf0 .
(Again, we let E6(εq) denote E6(q) when ε = + and 2E6(q) when ε = −.)

Here, Mult(X) = Cgcd(3,q−ε1), so we may assume that S = GF , where G is a
simple, simply connected algebraic group of type E6 and F : G→ G is a Steinberg
endomorphism. According to [GLS, Table 4.5.2], S has a unique conjugacy class
tS of 2-central involutions whose centraliser L = CS(t) has a component L1 =
Spinε10(q); in fact, t is the unique central involution in both L and L1. We can
certainly assume t ∈ Q ∈ Syl2(L). Let L = CG(t), an F -stable Levi subgroup with
L = LF . Then L1 = [L,L]F and T1 := Z(L)◦ is a 1-dimensional F -stable torus of
G with TF

1
∼= Cq−ε1 (as CL(L1) ∼= Cq−ε1, see [GLS, Table 4.5.2]). So

A1 := O2′(T
F
1 ) ∼= C(q−ε1)2′

centralises Q. Since NX(Q/Z(S)) ∼= C(q−ε1)2′/ gcd(3,q−ε1) by [Ko, Cor.], we see that

NS(Q) = Q×A1. (6)

As shown in the proof of [NT2, Prop. 4.3], L and hence also T1 = Z(L)◦ and
A1 can be chosen to be D-invariant, where D = 〈σ〉 ∼= C2f if ε = − and D = 〈σ〉×
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〈τ〉 ∼= Cf×C2 if ε = +, and σ and τ act on Irr(A1) as prescribed in Lemma 3. Note
that L = CS(s) for 1 6= s ∈ A1 r Z(S) (indeed, L centralises s, but s /∈ Z(G), so
the claim follows by the maximality of the proper Levi subgroup L). Furthermore,
two such elements s, s′ are S-conjugate only when s′ = s (indeed, if s′ = sx for
some x ∈ S, then tx = t for the unique central involution in L = CS(s) = CS(s′),
whence x ∈ CS(t) = L, and so sx = s′). Since [L : L1CL(L1)] = gcd(4, q− ε1) and
|L/L1| = q − ε1, we have

L = O2′(L)×A1 (7)

and can canonically identify the set of linear 2-Brauer characters of L with Irr(A1).
Arguing as in Case 1, we may, and will in the subsequent analysis, assume that
θ ∈ IBr(NS(Q)) is nontrivial at A1, and define G and θ∗ ∈ IBr(S).

First consider the case 3 - (q − ε1). Then S = X, and it can also be identified
with the dual group S∗ = G∗F ; in particular, Z(S) = 1. Similarly, L can be
identified with the centraliser of any 1 6= s ∈ A1 in G∗F . Here, Out(S) = D, and
J := StabD(θ) is cyclic by Lemma 3. Now we can take G = S o J and define
θ∗ to be the restriction χ◦ to 2′-elements of the character χ = ±RSL(θ), with

θ ∈ IBr(A1) viewed as a linear character of L/O2′(L). At the same time, this χ
is the semisimple character labelled by the semisimple 2′-element s corresponding
to θ, cf. [DM, Thm. 13.25]. The conjugacy class sS labels the union of 2-blocks
that contain χ◦ and, as mentioned above, 1 6= s, s′ ∈ A1 are S-conjugate only
when s′ = s. Using this, we see that StabD(θ∗) = J and the map θ 7→ θ∗ is a
D-equivariant injection. As J is cyclic, both θ and θ∗ extend to J , and so we are
done.

In the remaining case 3|(q−ε1), we need to use a regular embedding. In this case,
F acts trivially on Z := Z(G) ∼= C3 which is contained in T1. Fix a 1-dimensional
torus T2 and a D-equivariant isomorphism ι : T1 → T2, and let

H :=
(
G×T2

)
/Z ′, H := HF ,

where Z ′ := {(y, ι(y−1)) | y ∈ Z}. Then g 7→ (g, 1)Z ′ gives a D-equivariant regular
embedding G→ H; correspondingly, S = GF embeds in H as a normal subgroup
with cyclic quotient H/S ∼= Cq−ε1. We also embed T2 in H via x 7→ (1, x)Z ′. By
[Ca, Prop. 3.6.8], Z(H) = Z(H)F , and so it is equal to TF

2
∼= Cq−ε1. Fix an element

z ∈ T1 of order 3(q− ε1), so that F (z)z−1 generates Z, and let z := (z, ι(z−1)) so
that Z ′ := 〈zq−ε1〉. Now we consider the torus T := (T1 ×T2)/Z ′ of H. Then

TF = {(zi, ι(z−j)) | i, j ∈ Z/3(q − ε1)Z, i+ j ∈ 3Z/3(q − ε1)Z}

is homocyclic of order (q − ε1)2. Indeed, TF = B1 ×B2, where

B1 := 〈(z, ι(z−1))Z ′〉 ∼= Cq−ε1, B2 := 〈(z−2, ι(z−1))Z ′〉 ∼= Cq−ε1.

Fixing the isomorphism ι′ : (z, ι(z−1))Z ′ 7→ (z−2, ι(z−1))Z ′ between B1 and B2, we
have that the subgroup {bι′(b−1) | b ∈ B1} is precisely 〈(z3, 1)Z ′〉 = TF

1 = CL(L1)
(under the embedding G → H); in particular, it contains the subgroup A1 in
(6). Viewing TF = {(b1, b2) := b1ι

′(b2) | b1, b2 ∈ B1}, we see that the irreducible
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characters µ� µ with µ ∈ IBr(B1) of TF are precisely the ones that are trivial at
A1. Hence by Lemma 3 with r = 2, if θ ∈ IBr(A1) is nontrivial, then it admits an
extension θ̃ to TF such that

StabD(θ) = StabD(θ̃) =: J is cyclic. (8)

Since Z(H) ∩ S = Z, P := Q×O2(Z(H)) is a Sylow 2-subgroup of H. Note that

NH(P ) = P ×A, (9)

where A := O2′(T
F ) = O2′(B1)×O2′(B2). (Indeed, A centralises Q, and so P as

well, and P ∩A = 1. Next, NH(P ) ≤ NH(Q), and NS(Q) has index q−ε1 = |H/S|
in NH(Q) by the Frattini argument. Hence,

|NH(P )| ≤ (q − ε1)|NS(Q)| = (q − ε1)(q − ε1)2′ |Q| = (q − ε1)2
2′ |P | = |P ×A|,

and (9) follows.)
On the global side, since G∗ ∼= G/Z, we may take H∗ = H with the surjection

H → G∗ given by (g, t)Z ′ 7→ gZ. (This can be seen by a direct calculation with
root data to determine the dual, or using the classification results in [Ta].) Hence
we can identify the dual group H∗ with H. Next we consider the Levi subgroup
M := MF , with M := (L × T2)/Z ′ = CH(T1) = CH(t) the centraliser of the
involution t ∈ Z(P ). It follows from (7) that O2′(M) ≤ PL = P (O2′(L) × A1),
i.e., O2′(M) ≤ O2′(L)P . As O2′(M) contains both P and O2′(L), we must have
that O2′(M) = O2′(L)P . Now P ∩O2′(L) = P ∩ L = Q, so

|O2′(L)P | = |P | · |O
2′(L)|

|Q|
=

(q − ε1)2 · |Q| · |L|/(q − ε1)2′

|Q|

=
(q − ε1)2 · |M |

(q − ε1)2′ · (q − ε1)
=
|M |
|A|

.

We can also check, using the fact that F acts trivially on Z ′, that A∩L ≤ TF∩LF =
TF

1 , so |AL/L| = |A/(A ∩ L)| = |A|/|A1| = (q − ε1)2′ . Hence O2(M/L) = AL/L,
M = ALP = AO2′(L)P = AO2′(M), and thus

M = O2′(M)×A; (10)

in particular, we can canonically identify the set of linear 2-Brauer characters of
M with Irr(A).

We can view M as the centraliser of any s ∈ A r Z(H) in the dual group. It
follows from [DM, Thm. 1.3.25] that the map εHεMR

H
M gives a bijection between

the rational Lusztig series E(M, (s)) and E(H, (s)). We also have that L�M with
M/L ∼= TF

2
∼= Cq−ε1, and so O2′(M/L) = PL/L. Here, Out(S) = (H/Z(H))oD,

and J = StabD(θ) is cyclic by (8). Now we can take G = H o J (so that CG(S) =
Z(H)), and define θ∗ to be the restriction to S of the Brauer character χ◦, where
χ = ±RHM (θ̃) ∈ Irr(H), with θ̃ ∈ IBr(TF ) = IBr(A) viewed as a linear character

of M/O2′(M) by (10). At the same time, this χ is the semisimple character χs
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labelled by the semisimple 2′-element s corresponding to θ̃. The conjugacy class
sS labels the union of 2-blocks that contain χ◦. Note that two such elements s, s′

are H-conjugate only when s′ = s. (Indeed, as mentioned above, M = CH(s) =
CH(s′) = CH(t). Now if s′ = sx for some x ∈ H, then tx = t for the unique central
involution in M that belongs to L, whence x ∈ CH(t) = M , and so sx = s′.)

Note that H/S ∼= Cq−ε1 has exactly (q − ε1)2′ linear Brauer characters λv
labelled by the elements v ∈ O2′(Z(H)) = O2′(T

F
2 ), cf. [DM, Prop. 13.30]. Now,

multiplying χs by λv amounts to replacing s by sv. Hence χs = χsλv only when
s and sv are H-conjugate, i.e., if v = 1, as explained above. Since H/S is cyclic
and 2 - χ(1), by Lemmas 3.2 and 3.3 of [KT], this implies that χ◦|S is irreducible,
justifying the definition θ∗ = χ◦|S . Next, for any two such s, s′, χ◦s and χ◦s′ can
agree on S only when they differ by some λv. Given the canonical isomorphisms
M/O2′(M) ∼= A ∼= NH(P )/P of (9) and (10), M also has exactly (q− ε1)2′ linear
Brauer characters that are trivial at A1 < S, which can be identified with the
restrictions to M of the λv’s (when we identify M with M∗). So, multiplying χs
by λv amounts to multiplying θ̃ by a character of A that is trivial on A1 (see
[DM, Prop. 12.2] for the values of RHM ), and the latter operation does not change

θ = θ̃|A1
. Thus the map θ 7→ θ∗ is injective. Next, δ ∈ D fixes θ∗ only when

χ◦s and δ(χs)
◦ agree on S, and the previous arguments then show that δ fixes θ,

that is, StabD(θ∗) = J . The map θ 7→ θ∗ is D-equivariant; it is certainly NH(Q)-
equivariant. The calculation (4) can be repeated to show that θ and θ∗ lie above
the same character of Z. As J is cyclic, both θ and θ∗ extend to J , and so we are
done.

Case 8. Suppose that X = PSp2n(q) with 2 - q and n ≥ 1.
Here, the inductive AWC condition was shown in [FM], implying the inductive

Sylow-AWC condition.
Aside from groups already considered in Cases 5–8 above, and X = G2(3) and

Ω7(3) (for which we may have S = 3X) we have S = X by [KL, Thm. 5.1.4],
and NS(Q) = Q by [Ko, Cor.], hence we are done. For the groups S = 3.G2(3),
3.Ω7(3), 31.PSU4(3), and 32.PSU4(3) we are in Case 2. �

Theorem B now follows by combining Theorem 5 with Theorem 2.
As we mentioned in the introduction, we suspect that the equality l(G) =

l(NG(P )) is only possible when NG(P ) = G. This is at least the case for p-
solvable groups, as shown in ([MW2, Thm. 23.12]). In the general case, Alperin’s
Weight Conjecture, in its block-wise form, implies (as pointed out by Alperin) that
if B and b are Brauer correspondent p-blocks of a finite group, then l(B) ≥ l(b),
where l(B) is the number of irreducible Brauer characters in the block B. Hence if
l(G) = l(NG(P )), AWC implies that G has only p-blocks of maximal defect, and
that l(B) = l(b) in each case. By [Wi], we see that G is not a simple group either.

Remark 2. There are infinitely many simple and quasi-simple groups G with l(G)=
l(NG(P )) + 1. For example, G = SL2(q) with p|q has

l(G) = q, l(NG(P )) = q − 1.

Further examples are given by PSL3(3) and M11 with p = 3.
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Remark 3. In Theorem C of [NST], it is proved that if G is p-solvable, q is any
prime, Q ∈ Sylq(G), and all the simple groups of order divisible by q involved in
G satisfy the inductive McKay condition of [IMN] with respect to q, then

|IBrq′(G)| = |IBrq′(NG(Q))| ,

where IBrq′(G) is the set of p-Brauer characters of G degree not divisible by q.
Using the p-solvability of G (in particular, [Na, Thm. 8.30]), we see that

IBrq′(NG(Q)) = IBr(NG(Q)/Q′).

Therefore, we have q - ϕ(1) for all ϕ ∈ IBr(G) if and only if l(G) = l(NG(Q)/Q′).
This shows that the inductive McKay condition implies Conjecture D.
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