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Essential m-dissipativity for Possibly
Degenerate Generators
of Infinite-dimensional Diffusion Processes
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Abstract. First essential m-dissipativity of an infinite-dimensional
Ornstein-Uhlenbeck operator N , perturbed by the gradient of a
potential, on a domain FC∞

b of finitely based, smooth and bounded
functions, is shown. Our considerations allow unbounded diffusion
operators as coefficients. We derive corresponding second order regular-
ity estimates for solutions f of the Kolmogorov equation αf − Nf = g,
α ∈ (0, ∞), generalizing some results of Da Prato and Lunardi. Second,
we prove essential m-dissipativity for generators (LΦ, FC∞

b ) of infinite-
dimensional degenerate diffusion processes. We emphasize that the es-
sential m-dissipativity of (LΦ, FC∞

b ) is useful to apply general resolvent
methods developed by Beznea, Boboc and Röckner, in order to con-
struct martingale/weak solutions to infinite-dimensional non-linear de-
generate stochastic differential equations. Furthermore, the essential m-
dissipativity of (LΦ, FC∞

b ) and (N, FC∞
b ), as well as the regularity esti-

mates are essential to apply the general abstract Hilbert space hypoco-
ercivity method from Dolbeault, Mouhot, Schmeiser and Grothaus, Stil-
genbauer, respectively, to the corresponding diffusions.
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1. Introduction

The classical Langevin dynamics (compare [23, Chapter 8.1])
dXt = Ytdt

dYt = (−Yt − DΦ(Xt))dt +
√

2dWt,
(1.1)

describes the evolution of the positions Xt = (X(1)
t , ...,X

(n)
t ) ∈ (Rd)n and

velocities Yt = (Y (1)
t , ..., Y

(n)
t ) ∈ (Rd)n of n particles in dimension d, where
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(Wt)t≥0 is a standard Brownian Motion in (Rd)n. I.e. the velocity of the
particles is subjected to friction and a stochastic perturbation. The n-particle
potential Φ : (Rd)n → R, with gradient DΦ, affects the motion of the particles
and can be used to model their interactions.

The equation has been studied under various aspects. In order to show
exponential convergence to equilibrium of such type of non-coercive evolu-
tion equations, Cedric Villani developed the concepts of hypocoercivity, see
[25]. Abstract hypocoercivity concepts for quantitative descriptions of conver-
gence rates are introduced in [13]. These are translated to the corresponding
stochastic equations, taking domain issues into account, in [15]. In [16] these
concepts have been further generalized to the case where only a weak Poincaré
inequality is needed. In this case one obtains (sub-)exponential convergence
rates. Ergodicity and rate of convergence to equilibrium of the Langevin dy-
namics with singular potentials are elaborated e.g. in [3] and [17]. Recently,
the dynamics and its hypocoercivity behavior is studied on abstract smooth
manifolds, see [20]. The latter articles cited above have in common that they
study the associated Kolmogorov backward operator. Applying Itô’s formula,
the Kolmogorov backward operator associated to (1.1), also called Langevin
operator, applied to f ∈ C∞

0 (Rd × R
d) (w.l.o.g n = 1) is given by

LΦf = Δ2f − 〈x,D2f〉 − 〈DΦ,D2f〉 + 〈y,D1f〉.
Here, C∞

0 (Rd ×R
d) denotes the space of compactly supported smooth (infin-

itely often differentiable) functions from R
d ×R

d to R, x and y the projection
to the spatial and the velocity component, respectively, 〈·, ·〉 the euclidean
inner product, Δ2, D2 the Laplacian and the gradient in the velocity compo-
nent and D1 the gradient in the spatial component. The key observation is the
essential m-dissipativity of (LΦ, C∞

0 (Rd ×R
d)) defined in L2(Rd ×R

d, μΦ,R),
where

μΦ = (2π)− d
2 e−Φ(x)− 1

2 y2
λd ⊗ λd.

We want to emphasize the degenerate structure of the Langevin equation,
i.e. the noise only appears in the velocity component. The degeneracy of
the equation corresponds to the fact that the Laplacian in the definition of
(LΦ, C∞

0 (Rd ×R
d)) is degenerate, i.e. only acts in the velocity component. As

the antisymmetric part of (LΦ, C∞
0 (Rd ×R

d)) in L2(Rd ×R
d, μΦ,R) contains

first order differential operators in the spatial component and the symmet-
ric part only differential operators in the velocity component, the operator
(LΦ, C∞

0 (Rd × R
d)) is non-sectorial.

In this article we address an infinite-dimensional generalization of the
Langevin operator above. In order to do that let (U, (·, ·)U ) and (V, (·, ·)V ) be
two real separable Hilbert spaces. Consider the real separable Hilbert space
W = U × V with inner product (·, ·)W defined by

((u1, v1), (u2, v2))W = (u1, u2)U + (v1, v2)V , (u1, v1), (u2, v2) ∈ W.

Denote by B(U) and B(V ) the Borel σ-algebra on U and V , on which we con-
sider centered non-degenerate infinite-dimensional Gaussian measures μ1 and
μ2, respectively. The measures are uniquely determined by their covariance
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operators Q1 ∈ L(U) and Q2 ∈ L(V ). Furthermore, we consider bounded lin-
ear operators K12 ∈ L(U ;V ), K21 ∈ L(V ;U) and a symmetric bounded linear
operator K22 ∈ L(V ). For a given measurable potential Φ : U → (−∞,∞],
which is bounded from below, we set ρΦ = 1

cΦ
e−Φ, where cΦ =

∫
U

e−Φdμ1 and
consider the measure μΦ

1 = ρΦμ1 on (U,B(U)). On (W,B(W )) we introduce
the product measure

μΦ = μΦ
1 ⊗ μ2.

The infinite-dimensional Langevin operator (LΦ,FC∞
b ) is defined by

FC∞
b 	 f 
→ LΦf = SΦf − AΦf ∈ L2(μΦ),

where for f ∈ FC∞
b , SΦf and AΦf are given by

SΦf =tr[K22D
2
2f ] − (v,Q−1

2 K22D2f)V ,

AΦf =(u,Q−1
1 K21D2f)U + (DΦ(u),K21D2f)U − (v,Q−1

2 K12D1f)V .

Above, FC∞
b is a space of finitely based, smooth and bounded functions, see

Definition 2.3 and 4.1, below. Furthermore, u and v denotes the projections
of W to U and V , respectively. One of the major challenges in this article is to
show essential m-dissipativity of the infinite-dimensional Langevin operator
in L2(μΦ).

We also address essential m-dissipativity and regularity estimates in
L2(μΦ

1 ) for infinite-dimensional Ornstein-Uhlenbeck operators, perturbed by
the gradient of a potential Φ. Indeed we fix a possible unbounded linear
operator (C,D(C)) in U and introduce the operator (N,FC∞

b ) in L2(μΦ
1 )

defined by

FC∞
b 	 f 
→ Nf =tr[CD2f ] − (u,Q−1

1 CDf)U − (DΦ, CDf)U ∈ L2(μΦ
1 ).

In [7], [2] and [8] similar operators and corresponding regularity estimates
are studied, but the results are restricted to bounded diffusion operators
(C,D(C)) as coefficients.

The essential m-dissipativity of (N,FC∞
b ) in L2(μΦ

1 ) is useful in various
applications. E.g. to study stochastic quantization problems as in [8, Section
4] and to solve stochastic reaction diffusion equations as in [7, Section 5].
In addition, essential m-dissipativity and related regularity estimates of such
operators, will be essential for our planed application of the general abstract
hypocoercivity method from [15] to our infinite-dimensional setting. For this
application it is needed to allow unbounded diffusion operators (C,D(C)) as
coefficients in the definition of the perturbed Ornstein-Uhlenbeck operator
(N,FC∞

b ).
The organization of this article is as follows. First, we fix notions and de-

fine several important spaces. Then properties of infinite-dimensional Gauss-
ian measures are elaborated, especially the relation between finite and infinite-
dimensional Gaussian measures in Lemma 2.1 and the integration by parts
formula from Corollary 2.11 are focused. In Theorem 2.9 we use the integra-
tion by parts formula to describe Sobolev spaces w.r.t. infinite-dimensional
Gaussian measures.
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Sect. 3 introduces necessary conditions on (C,D(C)) (compare Hy-
pothesis 3.1) to obtain essential m-dissipativity of an Ornstein-Uhlenbeck
operator with diffusion operator (C,D(C)) as coefficient. In Theorem 3.6
we perturb this Ornstein-Uhlenbeck operator by the gradient of a potential
Φ : U → (−∞,∞], which is in W 1,2(U, μ1,R) and bounded from below. If
DΦ is strictly bounded by 1

2
√

λ1
, where λ1 is the biggest eigenvalue of Q1, we

obtain essential m-dissipativity of (N,FC∞
b ) in L2(μΦ

1 ). Note that the restric-
tion to such potentials is due to the possible unboundedness of (C,D(C)). In
the second part of this section we imitate the strategy used in [7] to derive an
infinite-dimensional second order regularity estimate for f ∈ FC∞

b in terms
of g = αf − Nf , α ∈ (0,∞).

In Sect. 4, we deal with the essential m-dissipativity of (LΦ,FC∞
b ) in

L2(μΦ). First, we consider the case where the potential Φ = 0. We decompose
our infinite-dimensional Langevin operator into countable finite-dimensional
ones, to use arguments for finite-dimensional Langevin operators as described
in [21] and [6]. We derive first order regularity estimates needed to add per-
turbations in terms of Φ. I.e. we consider potentials Φ as in Theorem 4.11
and use the Neumann-Series theorem to obtain essential m-dissipativity of
(LΦ,FC∞

b ) in L2(μΦ). During the whole section we assume Hypothesis 4.3,
which is the key to the decomposition described above.

Applications of the results, we derived in Sect. 3 and Sect. 4, are dis-
cussed in the last section. We propose an infinite-dimensional non-linear
degenerate stochastic differential equation, see (5.1). With the results we
achieved in this article and the resolvent methods from [1] we plan to solve
it. Moreover, we elaborate, how the essential m-dissipativity of (N,FC∞

b )
can be used to show hypocoercivity of the semigroup (Tt)t≥0 generated by
the closure of (LΦ,FC∞

b ) and how hypocoercivity of (Tt)t≥0 is related to the
long time behavior of the process solving (5.1). The main results obtained in
this article are summarized in the following list:

• We prove essential m-dissipativity of perturbed Ornstein-Uhlenbeck op-
erators (N,FC∞

b ) in L2(μΦ
1 ). We allow possible unbounded diffusions

(C,D(C)) as coefficients, see Theorem 3.6. There Hypothesis 3.1 is as-
sumed and perturbations by the gradient of a potential Φ, which is
bounded from below and in W 1,2(U, μ1,R), are considered. In addition,
an appropriate bound for the gradient of Φ, i.e. ‖DΦ‖L∞(μ1) < 1

2
√

λ1
,

where λ1 is the biggest eigenvalue of Q1 (see Theorem 3.6), is needed.
• Considering potentials Φ ∈ W 1,2(U, μ1,R), which are convex, bounded

from below and lower semicontinuous as in Hypothesis 3.9, we provide
second order regularity estimate for f ∈ FC∞

b in terms of g = αf −Nf ,
α ∈ (0,∞). Indeed by Theorem 3.11 it holds

∫

U

tr[(CD2f)2] + ‖Q
− 1

2
1 CDf‖2

UdμΦ
1 ≤ 4

∫

U

g2dμΦ
1 ,

where (C,D(C)) is the possible unbounded diffusion coefficient in the
definition of (N,FC∞

b ).
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• Essential m-dissipativity of the infinite-dimensional Langevin operator
(LΦ,FC∞

b ) in L2(μΦ) is shown in Theorem 4.11. We consider poten-
tials Φ in W 1,2(U, μ1,R), which are bounded from below, with bounded
gradient and assume Hypothesis 4.3 and 4.10.

2. Notations and Preliminaries

Let U and V be two real separable Hilbert spaces with inner products (·, ·)U

and (·, ·)V , respectively. The induced norms are denoted by ‖·‖U and ‖·‖V .
The set of all linear bounded operators from U to U and from U to V are
denoted by L(U) and L(U ;V ). The adjoint of an operator J ∈ L(U ;V ) is
denoted by J∗. By L+(U) we shall denote the subset of L(U) consisting of
all nonnegative symmetric operators. The subset of operators in L+(U) of
trace class is denoted by L+

1 (U) and the set of Hilbert-Schmidt operators by
L2(U).

Suppose we have J ∈ L+(U). If J is injective it is reasonable to talk
about the inverse of J : U → J(U), which will be denoted by J−1. Due to
[22, Proposition 4.4.8.] there exists a unique operator J

1
2 ∈ L+(U) such that

(J
1
2 )2 = J . If J−1 exists, so does (J

1
2 )−1, in this case we denote (J

1
2 )−1 by

J− 1
2 . By B(U) we denote the Borel σ-algebra, i.e. the σ-algebra generated by

the open sets in (U, (·, ·)U ). The euclidean inner product and induced norm
is denoted by 〈·, ·〉 and |·|, respectively.

For a given measure space (Ω,A,m) and a Banach space Y we denote
by Lp(Ω,m, Y ), p ∈ [0,∞] the Hilbert space of equivalence classes of A-B(Y )
measurable and p-integrable functions. The corresponding norm is denoted
by ‖·‖Lp(Ω,m,Y ). If p = 2, the norm is induced by an inner product denoted
by (·, ·)L2(Ω,m,Y ). In case (Ω,A) is clear from the context and Y = R

n for
some n ∈ N, we also write L2(m) instead of L2(Ω,m,Rn). By λn, n ∈ N, we
denote the Lebesgue measure on (Rn,B(Rn)).

On the measurable space (U,B(U)) we consider an infinite-dimensional
non-degenerate Gaussian measure μ1 with covariance operator Q1 ∈ L+

1 (U).
Since the measure is non-degenerate the operator Q1 is injective and therefore
positive ((Q1u, u)U > 0 for all u ∈ U). For the definition and construction of
these measures we refer to the first chapter of [10].

In the next lemma we discuss the important relation between finite
and infinite-dimensional Gaussian measures. A proof can be found in [10,
Corollary 1.19].

Lemma 2.1. Given n ∈ N and elements l1, ..., ln ∈ U . The image measure μn
1

of μ1 under the map

U 	 u 
→
(
(l1, u)U , ...(ln, u)U

)
∈ R

n

is the centered Gaussian measure on (Rn,B(Rn)) with covariance matrix
Q1,n = ((Q1li, lj)U )ij=1,...,n.

If l1, ..., ln is an orthonormal system of eigenvectors of Q1 with corre-
sponding eigenvalues λ1, ..., λn, the covariance matrix Q1,n of μn

1 is given by
the diagonal matrix diag(λ1, ..., λn).
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During this article we have to perform explicit calculations of integrals
with respect to Gaussian measures including monomials of order 2 and 4,
therefore the following lemma is useful. To proof it, apply Lemma 2.1 and
Isserlis formula from [18].

Lemma 2.2. For l1, l2, l3, l4 ∈ U it holds
∫

U

(u, l1)U (u, l2)Udμ1(u) = (Q1l1, l2)U and
∫

U

(u, l1)U (u, l2)U (u, l3)U (u, l4)Udμ1(u)

= (Q1l1, l2)U (Q1l3, l4)U + (Q1l1, l3)U (Q1l2, l4)U + (Q1l1, l4)U (Q1l2, l3)U .

To cover more general situations we consider a measurable potential
Φ : U 
→ (−∞,∞], which is bounded from below. During the paper we
will assume more or less restrictive assumptions on the potential. As in the
introduction we set ρΦ = 1

cΦ
e−Φ, where cΦ =

∫
U

e−Φdμ1. On (U,B(U)) we
consider the measure μΦ

1 defined by

μΦ
1 = ρΦμ1.

I.e. a measures having a density with respect to the infinite-dimensional
Gaussian measure μ1. We fix an orthonormal basis BU = (di)i∈N of U .

Definition 2.3. For n ∈ N, set Bn
U = span{d1, ..., dn}. The orthogonal projec-

tion from U to Bn
U is denoted by Pn and the corresponding coordinate map

by Pn, i.e. we have for all u ∈ U

Pn(u) =
n∑

i=1

(u, di)Udi and Pn(u) =
(
(u, d1)U , ..., (u, dn)U

)
.

Let C∞
b (Rn) be the space of all bounded smooth (infinitely often differen-

tiable) real-valued functions on R
n. The space of finitely based smooth and

bounded functions on U , is defined by

FC∞
b (BU ) = {U 	 u 
→ ϕ(Pm(u)) ∈ R | m ∈ N, ϕ ∈ C∞

b (Rm)}.

The subset of functions only depending on n-directions is defined correspond-
ingly by

FC∞
b (BU , n) = {U 	 u 
→ ϕ(Pn(u)) ∈ R | ϕ ∈ C∞

b (Rn)}.

For later use we define

L2
BUn

(U, μ1,R) = {U 	 u 
→ f(Pn(u)) ∈ R | f ∈ L2(Rn, μn
1 ,R)},

where μn
1 is the image measure of μ1 under Pn. Equipping L2

BUn
(U, μ1,R)

with the inner product from L2(U, μ1,R) we obtain another Hilbert space.

A very useful density result, proved in [7, Lemma 2.2], is stated in the
next lemma.

Lemma 2.4. The function spaces FC∞
b (BU ) and FC∞

b (BU , n) are dense in
L2(U, μ1,R) and L2

BUn
(U, μ1,R), respectively.
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Remark 2.5. Given a Frechét differentiable function f : U → R. For u ∈ U
we denote by Df(u) ∈ U the gradient of f in u. Analogously for a two
times Frechét differentiable function f : U → R, we identify D2f(u) ∈ L(U)
with the second order Frechét derivative in u ∈ U . For i, j ∈ N we denote
by ∂if(u) = (Df(u), di)U the partial derivative in the direction of di and by
∂ijf(u) = (D2f(u)di, dj)U the second order partial derivative in the direction
of di and dj .

We continue this section with the important integration by parts formula
for infinite-dimensional Gaussian measures, with and without densities. We
assume that BU = (di)i∈N is an orthonormal basis of eigenvectors of Q1 with
corresponding eigenvalues (λi)i∈N ⊂ (0,∞). W.l.o.g. we assume that (λi)i∈N

is decreasing to zero.
Since Q1 is injective, the inverse Q−1

1 of Q1 : U → Q1(U) exists. Obvi-
ously it holds

Q−1
1 di =

1
λi

di, i ∈ N,

and therefore it is reasonable to define the operator Q
− 1

2
1 on

⋃
n∈N

Bn
U deter-

mined by

Q
− 1

2
1 di =

1√
λi

di, i ∈ N.

Theorem 2.6. For f, g ∈ FC∞
b (BU ) and i ∈ N, it holds the integration by

parts formula
∫

U

∂ifgdμ1 = −
∫

U

f∂igdμ1 +
∫

U

(u,Q−1di)Ufgdμ1. (2.1)

Proof. Apply Lemma 2.1, use the standard integration by parts formula and
use Lemma 2.1 again. For a more detailed proof see [10, Lemma 10.1].

Fix a possible unbounded linear operator (C,D(C)) on U fulfilling the
following hypothesis.

Hypothesis 2.7. 1. (C,D(C)) is symmetric.
2. There is a strictly increasing sequence (mk)k∈N ⊂ N such that for each

n ∈ N with n ≤ mk, it holds

Bn
U ⊂ D(C) C(Bn

U ) ⊂ Bmk

U .

Remark 2.8. Note that for given n ∈ N and f = ϕ(Pn(·)) ∈ FC∞
b (BU ) one

has Df =
∑n

i=1 ∂iϕ(Pn(·))di ∈ Bn
U . Hence the hypothesis above ensure that

expressions like CDf , Q
− 1

2
1 CDf or Q−1

1 CDf are well-defined.

Theorem 2.9. Assume that Hypothesis 2.7 hold. The operators

D : FC∞
b (BU ) → L2(U, μ1, U)

CD : FC∞
b (BU ) → L2(U, μ1, U)

Q
− 1

2
1 CD : FC∞

b (BU ) → L2(U, μ1, U)
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(CD,CD2) : FC∞
b (BU ) → L2(U, μ1, U) × L2(U, μ1,L2(U))

are closable in L2(U, μ1,R).

Proof. As the proof of closability for the first three operators are essen-
tially the same, we restrict ourself to the third and the last. Let (fn)n∈N ⊂
FC∞

b (BU ) converge to 0 in L2(U, μ1,R) and be such that Q
− 1

2
1 CDfn → F

in L2(U, μ1, U) as n → ∞. For m ∈ N, there is some mk ∈ N such that
Bm

U ⊂ Bmk

U . By symmetry and the invariance properties of (C,D(C)) and
the fact that (di)i∈N is an orthonormal basis of eigenvectors of Q1 it holds

(Q− 1
2

1 CDfn, dm)U =
∞∑

l=1

(Q− 1
2

1 Cdl, dm)U∂lfn =
mk∑

l=1

(Q− 1
2

1 Cdl, dm)U∂lfn.

For an arbitrary g ∈ FC∞
b (BU ) we obtain by the integration by parts formula

∫

U

(Q− 1
2

1 CDfn, dm)Ugdμ1

= −
mk∑

l=1

(Q− 1
2

1 Cdl, dm)U

∫

U

fn(∂lg − (u,Q−1
1 dl)Ug)dμ1.

Observe that g and ∂lg − (u,Q−1
1 dl)Ug are in L2(U, μ,R) and therefore

∫

U

(F, dm)Ugdμ1 = 0.

By the density of FC∞
b (BU ) in L2(U, μ1,R) we conclude (F, dm)U = 0 for

all m ∈ N, hence finally F = 0. To show that the fourth operator is clos-
able we proceed similarly. Indeed, let (fn)n∈N ⊂ FC∞

b (BU ) converge to 0 in
L2(U, μ1,R) and be such that CDfn → F in L2(U, μ1, U) and CD2fn → A
in L2(U, μ1,L2(U)), as n → ∞. As above F = 0. Now for l,m ∈ N we find a
corresponding mk with l,m ≤ mk such that

(CD2fndl, dm)U =
mk∑

i=1

(Cdl, di)U∂lifn.

Hence for arbitrary g ∈ FC∞
b (BU ), we obtain by the integration by parts

formula
∫

U

(CD2fndl, dm)Ugdμ1 =
mk∑

i=1

(Cdl, di)U

∫

U

∂lifngdμ1

= −
mk∑

i=1

(Cdl, di)U

∫

U

∂ifn(∂lg − (u,Q−1
1 dl)Ug)dμ1

= −
∫

U

(dl, CDfn)U (∂lg − (u,Q−1
1 dl)Ug)dμ1.

Arguing as in the first part we observe (Adl, dm)U = 0 in L2(U, μ1,R), im-
plying A = 0 in L2(U, μ1,L2(U)).

By Theorem 2.9 it is reasonable to define W 1,2(U, μ1,R), W 1,2
C (U, μ1,R),

W 1,2

Q
− 1

2
1 C

(U, μ1,R) and W 2,2
C (U, μ1,R) as the domain of the closures of D,
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CD, Q
− 1

2
1 CD and (CD,CD2) in L2(U, μ1,R), respectively. We still denote

the closures of the differential operators from the theorem above by D, CD,
Q

− 1
2

1 CD and (CD,CD2). By [10, Proposition 10.6] every bounded function
f : U → R with bounded Frechét derivative is in W 1,2(U, μ1,R) and the
classical gradient of f coincides with Df in L2(U, μ1,R).

Remark 2.10. Adapting the proof of [11, Lemma 9.2.5] one can show that the
integration by parts formula from Theorem 2.6 also holds in the case that
f, g ∈ W 1,2(U, μ1,R).

Invoking the remark above the following integration by parts formula
for the measure μΦ

1 is valid.

Corollary 2.11. Assume the potential Φ : U → (−∞,∞] is bounded from
below and in W 1,2(U, μ1,R). For f, g ∈ FC∞

b (BU ) and i ∈ N, it holds the
integration by parts formula

∫

U

∂ifgdμΦ
1 = −

∫

U

f∂igdμΦ
1 +

∫

U

(u,Q−1di)UfgdμΦ
1 +

∫

U

∂iΦfgdμΦ
1 .

3. Perturbed Ornstein-Uhlenbeck Operators and
Corresponding Regularity Estimates

This section is devoted to an infinite-dimensional Ornstein-Uhlenbeck oper-
ator, perturbed by the gradient of the potential Φ. As already mentioned in
the introduction, such operators naturally occur during the application of the
abstract Hilbert space hypocoercivity method. Also an infinite-dimensional
regularity estimate is derived in the second part of this section. The proof
of such estimates is motivated by the results from [7], where Giuseppe Da
Prato and Alessandra Lunardi investigated Sobolev regularity for a class of
second order elliptic partial differential equations in infinite-dimensions. As
before μ1 is a centered non-degenerate Gaussian measure on the real sep-
arable Hilbert space U with covariance operator Q1 ∈ L+

1 (U). We fix an
orthonormal basis of eigenvectors BU = (di)i∈N of Q1. W.l.o.g. the corre-
sponding sequence of eigenvalues (λi)i∈N decreases to zero. We start with the
operator (N0,FC∞

b (BU )), defined in L2(U, μ1,R) by

FC∞
b (BU ) 	 f 
→ N0f = tr[CD2f ] − (u,Q−1CDf)U ∈ L2(U, μ1,R),

where we assume that (C,D(C)) is a possible unbounded linear operator on
U . Since we allow such unbounded diffusions as coefficients, we cannot use
general results from [7] or [11, Section 10]. Assuming Hypothesis 3.1 below,
ensures that the expressions tr[CD2f ] and Q−1

1 CDf are reasonable.
At this point we have to mention that the operator N0 is well-defined in

the sense that two representatives of the same equivalence class yield the same
output. To see this, note that the measure μ1 has full topological support,
i.e. the smallest closed measurable set with full measure is U . The proof of
this statement can be found in [24], it relies on the fact that we assumed that
the Hilbert space U is separable.

During this section we permanently assume the following hypothesis.
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Hypothesis 3.1. 1. (C,D(C)) is symmetric and positive.
2. There is a strictly increasing sequence (mk)k∈N ⊂ N such that for each

n ∈ N with n ≤ mk, it holds

Bn
U ⊂ D(C) C(Bn

U ) ⊂ Bmk

U .

For n ∈ N, set n∗ = mink∈N{mk|n ≤ mk}.

Note that Hypothesis 3.1 adds positivity of (C,D(C)) to Hypothesis 2.7.
This additional assumption is important to achieve essential m-dissipativity
of (N0,FC∞

b (BU )), which is proved in the theorem below.

Theorem 3.2. The operator (N0,FC∞
b (BU )) is

1. dissipative in L2(U, μ1,R), with

(N0f, g)L2(U,μ1,R) =
∫

U

−(CDf,Dg)Udμ1,

for all f, g ∈ FC∞
b (BU ) and fulfills

2. the dense range condition (Id − N0)(FC∞
b (BU )) = L2(U, μ1,R),

i.e. is essentially m-dissipative in L2(U, μ1,R). The resolvent in α ∈ (0,∞)
of the closure (N0,D(N0)) is denoted by R(α,N0).

Proof. The first item of the statement follows by the integration by parts for-
mula from Theorem 2.6 together with the invariance properties of (C,D(C)).
For the second statement we fix n ∈ N, f = ϕ(Pn(·)) ∈ FC∞

b (BU , n) and
n∗ ∈ N, according to Hypothesis 3.1. Extending ϕ ∈ C∞

b (Rn) canonically to
a function ϕ̃ ∈ C∞

b (Rn∗
) we can calculate

N0f(u)

=
n∑

i,j=1

∂ijϕ(Pn(u))(Cdi, dj)U −
n∑

i=1

n∗
∑

j=1

(u, dj)U (dj , Q
−1
1 Cdi)U∂iϕ(Pn(u))

=
n∗
∑

i,j=1

∂ijϕ̃(Pn∗(u))(Cdi, dj)U −
n∗
∑

i,j=1

(u, dj)U
1
λj

(dj , Cdi)U∂iϕ̃(Pn∗(u)).

Hence if we set

Cn∗ = ((Cdi, dj)U )n∗
ij=1 and Q1,n∗ = ((Q1di, dj)U )n∗

ij=1 = diag(λ1, ..., λn∗),

we obtain

N0f(u) = tr[Cn∗D2ϕ̃(Pn∗(u))] − 〈Pn∗(u), Q−1
1,n∗Cn∗Dϕ̃(Pn∗(u))〉.

It is therefore natural to consider the operator (N0,n∗ , C∞
b (Rn∗

)) defined by

C∞
b (Rn∗

) 	 ϕ 
→N0,n∗ϕ = tr[Cn∗D2ϕ] − 〈·, Q−1
1,n∗Cn∗Dϕ〉 ∈ L2(Rn∗

, μn∗
1 ,R).

As the matrix Cn∗ is symmetric and positive and −Cn∗Q−1
1,n∗ has only nega-

tive eigenvalues we can use the argumentation of [21] (compare also Proposi-
tion 4.7 below) to obtain that (N0,n∗ , C∞

b (Rn∗
)) is essentially m-dissipative

in L2(Rn∗
, μn∗

1 ,R), hence (Id−N0,n∗)(C∞
b (Rn∗

)) is dense in L2(Rn∗
, μn∗

1 ,R).
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Given ε > 0 and h = g(Pn∗(·)) ∈ L2
BUn∗

(U, μ1,R). As (Id−N0,n∗)(C∞
b (Rn∗

))

is dense in L2(Rn∗
, μn∗

1 ,R) we find ϕ ∈ C∞
b (Rn∗

) such that

‖(Id − N0,n∗)ϕ − g‖L2(Rn∗ ,μn∗
1 ,R) < ε.

Using Lemma 2.1 we obtain

‖(Id − N0)ϕ(Pn∗(·)) − h‖L2
BUn∗

(U,μ1,R)

=‖(Id − N0,n∗)ϕ − g‖L2(Rn,μn∗
1 ,R) < ε.

In other words (Id − N0)(FC∞
b (BU , n∗)) is dense in L2

BUn∗
(U, μ1,R). Fi-

nally we use the result above to show that (Id − N0)(FC∞
b (BU )) is dense

in L2(U, μ1,R). Indeed let ε > 0 and take an element h ∈ L2(U, μ1,R).
By Lemma 2.4 we find n ∈ N, w.l.o.g. n = n∗, and g ∈ FC∞

b (BU , n∗) ⊂
L2

BUn∗
(U, μ1,R) such that

‖h − g‖L2(U,μ1,R) <
ε

2
.

As (Id − N0)(FC∞
b (BU , n∗)) = L2

BUn∗
(U, μ1,R) we find f ∈ FC∞

b (BU , n∗)
such that

‖(Id − N0)f − g‖L2(U,μ1,R) <
ε

2
.

Hence the triangle inequality yields

‖(Id − N0)f − h‖L2(U,μ1,R) < ε.

Invoking the famous Lumer-Phillips theorem we obtain that the operator
(N0,FC∞

b (BU )) is essentially m-dissipative in L2(U, μ1,R). �

Before we go ahead and perturb (N0,FC∞
b (BU )) we need an L2(μ1)

regularity estimate for the first and second order derivatives of a function
f ∈ FC∞

b (BU ) in terms of g ∈ L2(U, μ1,R), where

αf − N0f = g, (3.1)

for a given α ∈ (0,∞).

Theorem 3.3. Suppose we have f ∈ FC∞
b (BU ) and g = αf − N0f , α ∈

(0,∞), as in Equation (3.1) above. It holds g ∈ W 1,2(U, μ1,R) and the iden-
tities
∫

U

αf2 + (CDf,Df)Udμ1 =
∫

U

gfdμ1

∫

U

α(CDf,Df)U + ‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2]dμ1 =
∫

U

(Dg,CDf)Udμ1,

are valid. In particular it holds
∫

U

‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2]dμ1 =
∫

U

(N0f)2dμ1.
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Proof. Due to the definition of N0 and the fact that F is in FC∞
b (BU ) it is

easy to see that g is infinitely often differentiable. As Dg is in L2(U, μ1, U)
and has at most linear growth (compare equation (3.2)), an approximation
argument shows that g is in W 1,2(U, μ1,R).

To show the first equation, we multiply (3.1) with f and integrate over
U with respect to μ1. An application of the integration by parts formula from
Theorem 2.6 results in

∫

U

αf2 + (CDf,Df)Udμ1 =
∫

U

gfdμ1.

To show the second equation we differentiate (3.1) with respect to the k-th
direction yielding

α∂kf − N0∂kf + (dk, Q−1
1 CDf)U = ∂kg (3.2)

Now we multiply the equation above with ∂lf(dk, Cdl)U . In order to structure
the arguments we treat the resulting terms separately. If we sum over all in-
dices’s a direct calculation shows that the first and third term on the left hand
side of the equation above is equal to α(CDf,Df)U and (CDf,Q−1

1 CDf)U ,
respectively. The right hand side of the equation is then equal to (Dg,CDf)U .
We also get

∞∑

k,l=1

(dk, Cdl)U

∫

U

−N0∂kf∂lfdμ1 =
∞∑

k,l=1

(dk, Cdl)U

∫

U

(CD∂kf,D∂lf)Udμ1

=
∫

U

tr[(CD2f)2]dμ1,

and therefore the second equation from the statement is shown. Rearranging
the terms of the equation we just derived yields

∫

U

‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2]dμ1 =
∫

U

(D(−N0f), CDf)Udμ1.

Now it holds
∫

U

(D(−N0f), CDf)Udμ1 =
∞∑

k,l=1

(dk, Cdl)U

∫

U

∂k(−N0f)∂lfdμ1

=

∞∑

k,l=1

(dk, Cdl)U

∫

U

N0f(∂klf − (u, Q−1
1 dk)U∂lf)dμ1

=

∫

U

(N0f)2dμ1,

where we used that N0f ∈ W 1,2(U, μ1,R) and Remark 2.10.
Note that the infinite sums in the calculations above are actually finite

ones. �

Remark 3.4. Given an arbitrary f ∈ FC∞
b (BU ). There is some n ∈ N, s.t.

Df ∈ Bn
U . In particular CDf ∈ Bn

U , by Hypothesis 3.1. Therefore

1
λ1

‖CDf‖2
U ≤ ‖Q− 1

2
1 CDf‖2

U . (3.3)
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Hence by the last equality in Theorem 3.3 we achieve
∫

U

1
λ1

‖CDf‖2
U + tr[(CD2f)2]dμ1 ≤

∫

U

‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2]dμ1

=
∫

U

(N0f)2dμ1.

(3.4)

Corollary 3.5. It holds

D(N0) ⊂ W 1,2

Q
− 1

2
1 C

(U, μ1,R) ∩ W 2,2
C (U, μ1,R)

and for all f ∈ D(N0) we have the inequality
∫

U

1
λ1

‖CDf‖2
U + tr[(CD2f)2]dμ1 ≤

∫

U

‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2]dμ1

=
∫

U

(N0f)2dμ1.

(3.5)

Proof. Given f ∈ D(N0). We find a sequence (fn)n∈N ⊂ FC∞
b (BU ) such that

fn → f and N0fn → N0f in L2(U, μ1,R) as n → ∞. By (In)equality (3.4)
(fn)n∈N is a Cauchy-sequence in W 1,2

Q
− 1

2
1 C

(U, μ1,R) ∩ W 2,2
C (U, μ1,R). Hence

f ∈ W 1,2

Q
− 1

2
1 C

(U, μ1,R) ∩ W 2,2
C (U, μ1,R) and the (in)equality of the statement

is shown. �

Using (In)equality (3.5) and Neumann-Series theorem we are able to
deal with perturbations of (N0,FC∞

b (BU )) as described in the following the-
orem.

Theorem 3.6. Assume that Φ is in W 1,2(U, μ1,R), bounded from below and
with ‖DΦ‖2

L∞(μ1)
< 1

4λ1
. The operator (N,FC∞

b (BU )) defined by

FC∞
b (BU ) 	 f 
→ Nf =tr[CD2f ] − (u,Q−1

1 CDf)U

− (DΦ, CDf)U ∈ L2(U, μΦ
1 ,R),

1. fulfills

(Nf, g)L2(U,μΦ
1 ,R) =

∫

U

−(CDf,Dg)UdμΦ
1 ,

for all f, g ∈ FC∞
b (BU ), in particular is dissipative in L2(U, μΦ

1 ,R).
Furthermore we have

2. the dense range condition (Id − N)(FC∞
b (BU )) = L2(U, μΦ

1 ,R).

In particular (N,FC∞
b (BU )) is essentially m-dissipative in L2(U, μΦ

1 ,R). The
resolvent in α ∈ (0,∞) of the closure (N,D(N)) is denoted by R(α,N).

Proof. The first item of the statement follows by the integration by parts
formula from Corollary 2.11 together with the invariance properties of the
involved operators. For f ∈ L2(U, μ1,R) set

Tf = −(DΦ, CDR(1, N0)f)U .
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Since D(N0) ⊂ W 1,2

Q
− 1

2
1 C

(U, μ1,R) ⊂ W 1,2
C (U, μ1,R) the definition above is

reasonable. Using the Cauchy-Schwarz inequality, Inequality (3.5) and the
assumption on Φ we observe

‖Tf‖2
L2(μ1)

=
∫

U

(DΦ, CDR(1, N0)f)2Udμ1

≤ ‖DΦ‖2
L∞(μ1)

∫

U

‖CDR(1, N0)f‖2
Udμ1

<
1
4

∫

U

(N0R(1, N0)f)2dμ1

=
1
4

∫

U

(f − R(1, N0)f)2dμ1 ≤ ‖f‖2
L2(μ1)

.

Therefore the linear operator T : L2(U, μ1,R) → L2(U, μ1,R) is well-defined
with operator norm less than one. Hence by the Neumann-Series theorem we
obtain that (Id − T )−1 exists in L(L2(U, μ1,R)). In particular for a given
g ∈ L2(U, μ1,R) we find f ∈ L2(U, μ1,R) with f − Tf = g in L2(U, μ1,R).
Since (N0,D(N0)) is m-dissipative, there is h ∈ D(N0) with (Id − N0)h = f .
This yields

(Id − N0)h + (DΦ, CDh)U = f + (DΦ, CDR(1, N0)f)U = f − Tf = g.

If we can show that D(N0) ⊂ D(N) with Nf = N0f − (DΦ, CDf)U for all
f ∈ D(N0) the proof is finish by the Lumer-Philipps theorem. Indeed this
implies

FC∞
b (BU ) ⊂ L2(U, μ1,R) ⊂ (Id − N)(D(N0)) ⊂ (Id − N)(D(N)).

i.e. the dense range condition, as FC∞
b (BU ) is dense in L2(U, μΦ

1 ,R). So let
f ∈ D(N0) be given. There is a sequence (fn)n∈N ⊂ FC∞

b (BU ) s.t. fn → f
and N0fn → N0f in L2(U, μ1,R). As ρΦ = 1

cΦ
e−Φ is bounded it is easy to

see that fn → f in L2(U, μΦ
1 ,R). In view of the assumptions on DΦ and the

Inequality (3.5) we can estimate

‖N0f − (DΦ, CDf)U − Nfn‖2
L2(μΦ

1 )

≤2‖N0(f − fn)‖2
L2(μΦ

1 ) + 2
∫

U

(DΦ, CD(f − fn))2UdμΦ
1

≤2‖ρΦ‖L∞(μ1)

(
‖N0(f − fn)‖2

L2(μ1)
+ ‖DΦ‖2

L∞(μ1)

∫

U

‖CD(f − fn)‖2
Udμ1

)

≤2‖ρΦ‖L∞(μ1)
5
4
‖N0(f − fn)‖2

L2(μ1)
.

I.e. Nfn → N0f − (DΦ, CDf)U in L2(U, μΦ
1 ,R). Since (N,D(N)) is closed

by construction we obtain D(N0) ⊂ D(N) with Nf = N0f − (DΦ, CDf)U

for all f ∈ D(N0) as desired. �

The following lines are devoted to derive a L2(U, μΦ
1 ,R) regularity esti-

mate for the first and second order derivatives of a function f ∈ FC∞
b (BU )

in terms of g ∈ L2(U, μ1,R) related via

αf − Nf = g, (3.6)
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for some given α ∈ (0,∞).

Theorem 3.7. Assume that Φ : U → R is Fréchet differentiable, bounded from
below and DΦ : U → U is Lipschitz continuous. If f ∈ FC∞

b (BU ), g and
α ∈ (0,∞) are as in Equation (3.6) it holds
∫

U

αf2 + (CDf,Df)UdμΦ
1 =

∫

U

gfdμΦ
1

∫

U

α(CDf,Df)U + ‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2] + (D2ΦCDf,CDf)UdμΦ
1

=
∫

U

(Dg,CDf)UdμΦ
1 .

In particular we have
∫

U

‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2] + (D2ΦCDf,CDf)UdμΦ =
∫

U

(Nf)2dμΦ
1 .

Proof. The first equation follows by multiplying (3.6) with f , an integration
over U with respect to μΦ

1 and an application of the first item in Theorem 3.6.
To show the second equation we differentiate (3.6) with respect to the k-th
direction resulting in

α∂kf − N∂kf + (dk, Q−1
1 CDf)U +

∞∑

i=1

(di, CDf)U∂kiΦ = ∂kg.

Note that the infinite sum in the line above is actually a finite one. Moreover
∂kiΦ exists μ1-a.e., since the Lipschitz continuous function ∂iΦ : U → R is
Gateaux differentiable μ1-a.e. by [10, Proposition 10.11]. Now we multiply
the equation above with ∂lf(dk, Cdl)U . If we sum over all indices’s a direct
calculation shows that the first and third term as well as the right hand side
is equal to α(CDf,Df)U , ‖Q

− 1
2

1 CDf‖2
U and (Dg,CDf)U , respectively. For

the second term we calculate
∞∑

k,l=1

(dk, Cdl)U

∫

U

−N∂kf∂lfdμΦ
1

=
∞∑

k,l=1

(dk, Cdl)U

∫

U

(CD∂kf,D∂lf)UdμΦ
1 =

∫

U

tr[(CD2f)2]dμΦ
1 .

Moreover we have
∞∑

k,l,i=1

(di, CDf)U∂lf(dk, Cdl)U∂kiΦ =
∞∑

k,i=1

(di, CDf)U (dk, CDf)U∂kiΦ

= (D2ΦCDf,CDf)U ,

from which we conclude the second equation. As in Theorem 3.3 we can
rearrange the terms of the second equation to get

∫

U

‖Q
− 1

2
1 CDf‖2

U + tr[(CD2f)2] + (D2ΦCDf,CDf)UdμΦ
1

=
∫

U

(D(−Nf), CDf)UdμΦ
1 .
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Note that N0f, (DΦ, CDf)U ∈ W 1,2(U, μ1,R), by [10, Proposition 10.11] and
[10, Proposition 10.9] as well as ∂jfρΦ ∈ W 1,2(U, μ1,R), j ∈ N. Using the
integration by parts formula from Remark 2.10 we therefore get

∫

U

(D(−Nf), CDf)UdμΦ
1

=
∞∑

i,j=1

(Cdi, dj)U

∫

U

(
∂i(−N0f) + ∂i(DΦ, CDf)U

)
∂jfρΦdμ1

=
∞∑

i,j=1

(Cdi, dj)U

∫

U

Nf
(
∂i(∂jfρΦ) − (u,Q−1

1 di)U∂jfρΦ

)
dμ1

=
∫

U

(Nf)2dμΦ
1 .

Note that the infinite sums in the calculations above are actually finite
ones. �

Remark 3.8. Suppose we are in the situation of Theorem 3.7. Using the
Cauchy-Schwarz inequality and the first equation in Theorem 3.7 we obtain

∫

U

αf2 + (CDf,Df)UdμΦ
1 ≤ ‖g‖L2(μΦ

1 )‖f‖L2(μΦ
1 )

= ‖g‖L2(μΦ
1 )‖R(α,N)g‖L2(μΦ

1 )

≤ 1
α

‖g‖2
L2(μΦ

1 ).

Now additionally suppose that Φ is a convex function. Hence we can estimate
using the third equation in Theorem 3.7 and the convexity of Φ

∫
U

tr[(CD2f)2] + ‖Q
− 1

2
1 CDf‖2

UdμΦ
1 ≤

∫
U

(Nf)2dμΦ
1 =

∫
U

(αf − g)2dμΦ
1

≤ 2
∫

U
(αf)2 + g2dμΦ

1 ≤ 4
∫

U
g2dμΦ

1 . (3.7)

Hypothesis 3.9. The potential Φ is in W 1,2(U, μ1,R), convex, bounded from
below and lower semicontinuous.

Remark 3.10. For a potential Φ fulfilling Hypothesis 3.9 one can introduce
the so called Yoshida approximation Φt, t > 0, defined by

Φt(u) = inf
x∈U

{
Φ(x) +

‖u − x‖2
U

2t

}
.

One can show that for all t > 0 is the Yoshida approximation Φt : U →
(−∞,∞] is convex and Fréchet differentiable with

1. −∞ < infx∈U Φ(x) ≤ Φt(u) ≤ Φ(u) for all u ∈ U ,
2. limt→0 Φt(u) = Φ(u) for all u ∈ U ,
3. ‖DΦt(u)‖U ≤ ‖DΦ(u)‖U for μ1-a.e. u ∈ U and
4. limt→0 DΦt(u) = DΦ(u) for μ1-a.e. u ∈ U .

Furthermore DΦt is Lipschitz continuous for all t > 0. A proof of these
statements can be found in [12].
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Theorem 3.11. Suppose Φ fulfills Hypothesis 3.9. For f ∈ FC∞
b (BU ) and

g = αf − Nf , α ∈ (0,∞), as in Equation (3.6) we have
∫

U

αf2 + (CDf,Df)UdμΦ
1 ≤ 1

α

∫

U

g2dμΦ
1 ,

∫

U

tr[(CD2f)2] + ‖Q
− 1

2
1 CDf‖2

UdμΦ
1 ≤ 4

∫

U

g2dμΦ
1 .

Proof. Let (Φt)t>0 be the Yoshida approximation of Φ. For all t > 0, define
gt by

αf − tr[CD2f ] + (·, Q−1
1 CDf)U − (DΦt, CDf)U = gt.

By Remark 3.8 we obtain
∫

U

(αf2 + (CDf,Df)U )ρΦt
dμ1 ≤ 1

α

∫

U

g2
t ρΦt

dμ1,

∫

U

(tr[(CD2f)2] + ‖Q
− 1

2
1 CDf‖2

U )ρΦt
dμ1 ≤ 4

∫

U

g2
t ρΦt

dμ1.

By Remark 3.10, ρΦt
= 1

cΦt
e−Φt is bounded by a constant θ ∈ (0,∞) in-

dependent of t. In particular (tr[(CD2f)2] + ‖Q
− 1

2
1 CDf‖2

U )ρΦt
and (αf2 +

(CDf,Df)U )ρΦt
are bounded by (tr[(CD2f)2]+‖Q

− 1
2

1 CDf‖2
U )θ and (αf2 +

(CDf,Df)U )θ, respectively. Since the expressions converge pointwisely to

(tr[(CD2f)2] + ‖Q
− 1

2
1 CDf‖2

U )ρΦ and (αf2 + (CDf,Df)U )ρΦ we know that
the left hand sides of the inequalities above converge to

∫
U

(tr[(CD2f)2] +

‖Q
− 1

2
1 CDf‖2

U )dμΦ
1 and

∫
U

αf2 + (CDf,Df)UdμΦ
1 , respectively. It also holds

|
∫

U

g2
t ρΦt

− g2ρΦdμ1| ≤ |
∫

U

g2
t (ρΦt

− ρΦ)dμ1| + |
∫

U

(g2
t − g2)ρΦdμ1|

= |
∫

U

g2
t (ρΦt

− ρΦ)dμ1| + |‖gt‖2
L2(μΦ

1 ) − ‖g‖2
L2(μΦ

1 )|.

Note that g2
t can be bounded independent of t by an μ1-integrable function,

hence the first term in the above inequality goes to zero as t goes to zero by
another application of the dominated convergence theorem. The second term
also tends to zero. Indeed the Cauchy-Schwarz inequality and the definitions
of g and gt yields

∫

U

(g − gt)2dμΦ
1 =

∫

U

(DΦ − DΦt, CDf)2UdμΦ
1

≤
∫

U

‖DΦ − DΦt‖2
U‖CDf‖2

UdμΦ
1 .

Invoking the third and the fourth item of Remark 3.10 and another appli-
cation of the dominated convergence theorem yields that gt converges to g
in L2(U, μΦ

1 ,R) as t goes to zero. In particular the corresponding norms in
L2(U, μΦ

1 ,R) converge. All together this finishes the proof. �
Note that the regularity estimate we derived in Theorem 3.11 relies on

Hypothesis 3.9, i.e. not necessarily demanding the restriction ‖DΦ‖2
L∞(μ1)

<
1

4λ1
, we needed to show Theorem 3.6.
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4. The Infinite-dimensional Langevin Operator

The essential m-dissipativity of finite-dimensional Langevin operators have
been extensively studied in [4] and [5] for singular potentials and even in a
manifold setting in [20]. In this section we want to extend these result to
an infinite-dimensional setting, where as in the above references the non-
sectorality of LΦ causes difficulties.

As described in the introduction, we fix two real separable Hilbert
spaces (U, (·, ·)U ) and (V, (·, ·)V ) and consider the real separable Hilbert space
(W, (·, ·)W ) defined by W = U × V and

((u1, v1), (u2, v2))W = (u1, u2)U + (v1, v2)V , (u1, v1), (u2, v2) ∈ W.

By μ1 and μ2 we denote two centered non-degenerate Gaussian measures on
(U,B(U)) and (V,B(V )), respectively. The corresponding covariance opera-
tors are denoted by Q1 ∈ L+

1 (U) and Q2 ∈ L+
1 (V ). We also fix two orthonor-

mal basis BU = (di)i∈N and BV = (ei)i∈N of eigenvectors with corresponding
eigenvalues (λi)i∈N and (νi)i∈N of Q1 and Q2, respectively. W.l.o.g. we as-
sume that (λi)i∈N and (νi)i∈N are decreasing to zero. Furthermore we set
BW = (BU , BV ).

As in Definition 2.3 one can consider the orthogonal projections to Bn
U

and Bn
V , n ∈ N. To avoid an overload of notation we omit to indicate if we

project to Bn
U and Bn

V as it is clear from the context.
On (W,B(W )) we consider the product measure μ = μ1 ⊗ μ2. Using

the separability of U and V , [19, Lemma 1.2] it holds B(W ) = B(U) ⊗
B(V ). Applying [10, Theorem 1.12] one can check that μ is a non-degenerate
centered Gaussian measure with centered non-degenerate covariance operator
Q ∈ L+

1 (W ) defined by

W 	 (u, v) 
→ Q(u, v) = (Q1u,Q2v) ∈ W.

Definition 4.1. In L2(μ) we denote by FC∞
b (BW ) the space of finitely based

smooth and bounded functions on W defined by

FC∞
b (BW )

= {W 	 (u, v) 
→ ϕ(Pm(u), Pm(v)) ∈ R | m ∈ N, ϕ ∈ C∞
b (Rm × R

m)}
and correspondingly the space of finitely based smooth and bounded functions
on W only dependent on the first n directions by

FC∞
b (BW , n) = {W 	 (u, v) 
→ ϕ(Pn(u), Pn(v)) ∈ R | ϕ ∈ C∞

b (Rn × R
n)}.

Concerning derivatives of sufficient smooth functions f : W → R recall
the explanation in Remark 2.5. We set D1f =

∑∞
i=1(Df, (di, 0))W di ∈ U

and D2f =
∑∞

i=1(Df, (0, ei))W ei ∈ V as well as ∂i,1f = (D1f, di)U and
∂i,2f = (D2f, ei)V . In particular we have

Df =
∞∑

i=1

(Df, (di, 0))W (di, 0) +
∞∑

i=1

(Df, (0, ei))W (0, ei) = (D1f,D2f).

Analogously we define D2
1f , D2

2f as well as ∂ij,1f and ∂ij,2f .
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For given n ∈ N, recall the image measures μn
1 and μn

2 from Lemma 2.1
w.r.t. BU and BV , respectively and set μn = μn

1 ⊗ μn
2 on (Rn ×R

n,B(Rn) ⊗
B(Rn)).

Remark 4.2. Arguing as in Lemma 2.4 one can show that FC∞
b (BW ) is dense

in L2(μ).

Moreover we fix operators K12 ∈ L(U ;V ), K21 ∈ L(V ;U) and K22 ∈
L+(U). Last but not least we consider a measurable potential Φ : U →
(−∞,∞] which is bounded from below and recall the measures μΦ

1 and μΦ.
During the whole section we will assume the following hypothesis.

Hypothesis 4.3. 1. K22 is symmetric and positive.
2. K∗

12 = K21 and K21 is injective.
3. There is a strictly increasing sequence (mk)k∈N ⊂ N such that for each

n ∈ N with n ≤ mk, it holds

K22(Bn
V ) ⊂ Bmk

V , K12(Bn
U ) ⊂ Bmk

V and K21(Bn
V ) ⊂ Bmk

U .

4. Φ ∈ W 1,2(U, μ1,R).
For n ∈ N, set n∗ = mink∈N{mk|n ≤ mk}.

We will realize in Remark 4.6, that the invariance properties of K12,
K21 and K22 included in the hypothesis above, ensures that the infinite di-
mensional Langevin operator (LΦ,FC∞

b (BW )), defined below, has a useful
decomposability property.

Definition 4.4. We define (LΦ,FC∞
b (BW )) in L2(μΦ) by

FC∞
b (BW ) 	 f 
→ LΦf = SΦf − AΦf ∈ L2(μΦ),

where for f ∈ FC∞
b (BW ), SΦf and AΦf are given by

SΦf =tr[K22D
2
2f ] − (v,Q−1

2 K22D2f)V ,

AΦf =(u,Q−1
1 K21D2f)U + (DΦ(u),K21D2f)U − (v,Q−1

2 K12D1f)V .

The designation of SΦ and AΦ is not accidental, as we see show in the next
lemma, that (SΦ,FC∞

b (BW )) is symmetric and (AΦ,FC∞
b (BW )) antisym-

metric.
Remember that FC∞

b (BW ) is dense in L2(μΦ) by Remark 4.2 and the
fact that Φ is bounded from below. For f ∈ FC∞

b (BW ), expressions like
Q−1

2 K22D2f , Q−1
2 K22D2f and Q−1

1 K21D2f are reasonable due to Hypothe-
sis 4.3, compare also Remark 2.8.

Using the integration by parts formula from Corollary 2.11 together with
the invariance properties of K22, K21 and K12 one can derive the following
lemma.

Lemma 4.5. It holds

(1) (SΦ,FC∞
b (BW )) is symmetric and dissipative in L2(μΦ).

(2) (AΦ,FC∞
b (BW )) is antisymmetric in L2(μΦ).
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(3) 1 ∈ FC∞
b (BW ) with LΦ1 = 0 and in particular μΦ is invariant for

(LΦ,FC∞
b (BW )) in the sense that

∫

W

LΦfdμΦ = 0 for all f ∈ FC∞
b (BW ).

(4) (LΦ,FC∞
b (BW )) is dissipative in L2(μΦ) and for all f, g ∈ FC∞

b (BW )
it holds

−
∫

W

LΦfgdμΦ

=
∫

W

(D2f,K22D2g)V − (D1f,K21D2g)U + (D2f,K12D1g)V dμΦ.

By [14, Proposition 3.14] densely defined dissipative operators are clos-
able. Since (L,FC∞

b (BW )), (SΦ,FC∞
b (BW )) and (A,FC∞

b (BW )) are densely
defined dissipative operators in L2(μΦ), it is reasonable to denote their clo-
sures by (LΦ,D(LΦ)), (SΦ,D(SΦ)) and (AΦ,D(AΦ)). The overall goal is
to show essential m-dissipativity of (LΦ,FC∞

b (BW )), i.e. m-dissipativity of
(LΦ,D(LΦ)) in L2(μΦ).

The idea is to start with Φ = 0, and use a similar argumentation as
in the previous section to conclude essential m-dissipativity for Φ as in The-
orem 4.11. If Φ = 0, the infinite-dimensional measure μΦ reduces to the
infinite-dimensional centered non-degenerate Gaussian measure μ with co-
variance operator Q.

Remark 4.6. Given n ∈ N with corresponding n∗ provided by Hypothesis 4.3.
Set

K22,n∗ = ((K22ei, ej)V )n∗
ij=1, K12,n∗ = ((K12di, ej)V )n∗

ij=1,

K21,n∗ = K∗
12,n∗ , Q1,n∗ = ((Q1di, dj)U )n∗

ij=1, Q2,n∗ = ((Q2ei, ej)V )n∗
ij=1.

and consider the matrices

K̃22,n∗ =
(

0 0
0 K22,n∗

)

Qn∗ =
(

Q1,n∗ 0
0 Q2,n∗

)

Kn∗ =
(

0 K21,n

−K12,n∗ −K22,n∗

)

.

We have for f = ϕ(Pn(·), Pn(·)) ∈ FC∞
b (BW ) and (u, v) ∈ W

Lf(u, v) = tr[K̃22,n∗D2ϕ̃(zn∗)] + 〈Kn∗Q−1
n∗ zn∗ ,Dϕ̃(zn∗)〉,

where zn∗ = (Pn∗(u), Pn∗(v)) and ϕ̃ ∈ C∞
b (Rn∗ × R

n∗
) is the canonical ex-

tension of ϕ ∈ C∞
b (Rn ×R

n). Hence, it is reasonable to consider the operator
(Ln∗ , C∞

b (Rn∗ × R
n∗

)) defined for ϕ̃ ∈ C∞
b (Rn∗ × R

n∗
) and z ∈ R

n∗ × R
n∗

by

Ln∗ϕ(z) = tr[K̃22,n∗D2ϕ̃(z)] + 〈Kn∗Q−1
n∗ z,Dϕ̃(z)〉.

Invoking the assumptions from Hypothesis 4.3 the following proposition
shows that the operator (Ln∗ , C∞

b (Rn∗ ×R
n∗

)) is essentially m-dissipative in
L2(μn∗

). The idea of the proof is inspired by the consideration in [21] and
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[6]. By Cb(Rn∗ × R
n∗

) we denote the space of bounded continuous functions
from R

n∗ × R
n∗

to R.

Proposition 4.7. For all n ∈ N, the operator (Ln∗ , C∞
b (Rn∗ ×R

n∗
)) is essen-

tially m-dissipative in L2(μn∗
).

Proof. Note that the Markov semigroup (St)t≥0 associated to Ln∗ can be
represented for all t ∈ (0,∞), applied to ϕ ∈ Cb(Rn∗ × R

n∗
), evaluated at

z ∈ R
n∗ × R

n∗
as

Stϕ(z) =
1
ct

∫

Rn∗ ×Rn∗
e−〈Q(t)−1w,w〉/4ϕ(etKn∗ Q−1

n∗ z − w)d(λn∗ ⊗ λn∗
)(w),

where for t ∈ (0,∞)

ct = (4π)n∗
(det Q(t))1/2 and Q(t) =

∫

[0,t)

esKn∗Q−1
n∗ K̃22,n∗esQ−1

n∗ K∗
n∗ dλ(s),

is a symmetric and nonnegative matrix. Using the first and the second item
of Hypothesis 4.3, in particular the positivity of K22 and the injectivity of
K21 it is easy to see that the matrix

(
K̃

1
2
22,n∗ Kn∗Q−1

n∗ K̃
1
2
22,n∗

)
=

(
0 0 0 K21,n∗Q−1

2,n∗K
1
2
22,n∗

0 K
1
2
22,n∗ 0 −K22,n∗Q−1

2,n∗K
1
2
22,n∗

)

has full rank. Hence the so called Kalman rank condition is satisfied and
therefore by [26] det Q(t) > 0. In particular the representation of (St)t≥0

is reasonable. As det Q(t) > 0, we know by the arguments from [9, Sec-
tion 11.3.1] that the existence of an invariant measure ν for (St)t≥0 i.e.

∫

Rn∗×Rn∗
Stϕdν =

∫

Rn∗×Rn∗
ϕdν,

for every t ∈ [0,∞) and ϕ ∈ Cb(Rn∗ × R
n∗

) is equivalent to the existence of
a nonnegative symmetric matrix P s.t.

〈PQ−1
n∗ K∗

n∗z, z〉 + 〈K̃22,n∗z, z〉 = 0 for all z ∈ R
n∗ × R

n∗
.

As the equality above is satisfied for P = Qn∗ the existence of the invariant
measure is justified. Moreover by [9, Section 11.3.3] the invariant measure is
unique and given by μn∗

.
The invariance of the measure μn∗

allows us to extend (St)t≥0 to a
strongly continuous contraction semigroup in L2(μn∗

). Using [21, Lemma
2.1], we can show that the generator of the strongly continuous contraction
semigroup (St)t≥0 is given by Ln∗ϕ for all ϕ ∈ C∞

b (Rn∗ × R
n∗

) and that
C∞

b (Rn∗ × R
n∗

) is a core for the generator of (St)t≥0 in L2(μn∗
), i.e. the

assertion is shown. �
Theorem 4.8. The operator (L,FC∞

b (BW )) defined by

FC∞
b (B) 	 f 
→ Lf =tr[K22D

2
2f ] − (v,Q−1

2 K22D2f)V

− (u,Q−1
1 K21D2f)U + (v,Q−1

2 K12D1f)V ∈ L2(μ),

is essentially m-dissipative in L2(μ) with m-dissipative closure (L,D(L)). The
resolvent in α ∈ (0,∞), of (L,D(L)) is denoted by R(α,L).
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Proof. Since by Lemma 4.5 we already know that (L,FC∞
b (BW )) is dissi-

pative it is left to show that (Id − L)(FC∞
b (BW )) is dense in L2(μ). Let

ε > 0 and h ∈ L2(μ) be given. Remark 4.2 provides g = ψ(Pn(·), Pn(·)) ∈
FC∞

b (BW , n) ⊂ L2(μ) such that

‖h − g‖L2(μ) <
ε

2
.

Let ψ̃ ∈ C∞
b (Rn∗ × R

n∗
) be the canonical extension of ψ ∈ C∞

b (Rn × R
n).

Since (Id − Ln∗)(C∞
b (Rn∗ × R

n∗
)) is dense in L2(μn∗

), by Proposition 4.7,
we find a ϕ ∈ C∞

b (Rn∗ × R
n∗

) such that

‖(Id − Ln∗)ϕ − ψ̃‖L2(μn∗ ) <
ε

2
.

Set f = ϕ(Pn∗(·), Pn∗(·)) and use the triangle inequality together with
Lemma 2.1 to observe

‖(Id − L)f − h‖L2(μ) ≤ ‖(Id − L)f − g‖L2(μ) + ‖h − g‖L2(μ)

= ‖(Id − Ln∗)ϕ − ψ̃‖L2(μn∗ ) + ‖h − g‖L2(μ) <
ε

2
+

ε

2
= ε.

�

Before we proof the main result of this section, we discuss regularity es-
timates similar to the ones from Remark 3.8. In contrast to the estimates in
Sect. 3 we don’t have to deal with unbounded diffusion operators (C,D(C))
as coefficients, but the degenerate structure of (L,FC∞

b (BW )) is more chal-
lenging. Indeed, we are only able to derive first order regularity results.

Proposition 4.9. For f ∈ D(L) and α ∈ (0,∞), set g = αf − Lf . Then the
following equation hold

∫

W

αf2 + ‖K
1
2
22D2f‖2

V dμ =
∫

W

fgdμ.

In particular
∫

W

‖K
1
2
22D2f‖2

V dμ ≤ 1
2

∫

W

f2 + (Lf)2dμ and (4.1)

∫

W

‖K
1
2
22D2f‖2

V dμ ≤ 1
4α

∫

W

g2dμ. (4.2)

Proof. Assume f ∈ FC∞
b (BW ) and g = αf −Lf . Now Multiply g = αf −Lf

with f , integrate over W w.r.t. μ and use Lemma 4.5 item (iv) to obtain the
first identity. Rearranging the terms we obtain

∫

W

‖K
1
2
22D2f‖2

V dμ =
∫

W

fg − αf2dμ =
∫

W

f(g − αf)dμ = −
∫

W

fLfdμ.

≤ 1
2

∫

W

f2 + (Lf)2dμ.

Moreover by completing the square we have
∫

W

‖K
1
2
22D2f‖2

V dμ = −
∫

W

αf2 − fgdμ ≤ 1
4α

∫

W

g2dμ.
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Since FC∞
b (BW ) is dense in the (L,D(L)) graph norm the (in)equalities

above are also valid for f ∈ D(L). Note that for f ∈ D(L) the expression
K22D2f is understood in the sense of Theorem 2.9, compare also Corol-
lary 3.5. �

Having the regularity estimates at hand we need one last hypothesis
to derive our final essential m-dissipativity result. The hypothesis includes
condition on the potential Φ and a coercivity assumption on K22 in terms of
the operator K12K21.

Hypothesis 4.10. 1. There is a constant cK ∈ (0,∞) such that

(K12K21v, v)V ≤ cK(K22v, v)V for all v ∈ V.

2. The potential Φ is bounded from below and DΦ is bounded.
Note that the second item implies that ρΦ = 1

cΦ
e−Φ is bounded.

Theorem 4.11. Suppose Hypothesis 4.10 is valid, then D(L) ⊂ D(LΦ) with

LΦf = Lf − (DΦ,K21D2f)U , f ∈ D(L),

and the infinite-dimensional Langevin operator (LΦ,FC∞
b (BW )) is essen-

tially m-dissipative in L2(μΦ).

Proof. Using Proposition 4.9 and the first item from Hypothesis 4.10 it holds
for all f ∈ FC∞

b (BW )
∫

W

(K21D2f,K21D2f)Udμ ≤
∫

W

cK(K22D2f,D2f)V dμ

≤ cK

2

∫

W

f2 + (Lf)2dμ.

Since FC∞
b (BW ) is dense D(L) w.r.t. the (L,D(L)) graph norm the estimate

above also holds for f ∈ D(L). Again, note that for f ∈ D(L) the expressions
K22D2f and K21D2f are understood in the sense of Theorem 2.9, compare
also Corollary 3.5.

Let (fn)n∈N ⊂ FC∞
b (BW ) be a sequence converging to f ∈ D(L) wit

respect to the (L,D(L)) graph norm. Since Φ is bounded from below it is easy
to check that (fn)n∈N converges to f in L2(μΦ). Moreover we can estimate

∫

W

(LΦfn − Lf + (DΦ,K21D2f)U )2dμΦ

≤ 2
∫

W

(Lfn − Lf)2dμΦ + 2
∫

W

(DΦ,K21D2(fn − f))2UdμΦ

≤ 2‖ρΦ‖L∞(μ1)

( ∫

W

(Lfn − Lf)2dμ

+
cK

2
‖DΦ‖2

L∞(μ1)

∫

W

(fn − f)2 + (Lfn − Lf)2dμ
)
.

Hence the sequence (Lfn)n∈N converges to Lf − (DΦ,K21D2f)U in L2(μΦ).
As (LΦ,D(LΦ)) is closed we get D(L) ⊂ D(LΦ) and for all f ∈ D(L)

LΦf = Lf − (DΦ,K21D2f)U .
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By Lemma 4.5 item (iv) we already know that (LΦ,FC∞
b (BW )) is dissipative.

In view of the Lumer-Phillips theorem we are left to show the dense range
condition. For f ∈ L2(μ) and α > 0 set

Tαf = −(DΦ,K21D2R(α,L)f)U .

We calculate using the Cauchy-Schwarz inequality, the assumption on Φ,
Hypothesis 4.10 and Inequality (4.2)

∫

W

(Tαf)2dμ =
∫

W

(DΦ,K21D2R(α,L)f)2Udμ

≤ ‖DΦ‖2
L∞(μ1)

∫

W

(K21D2R(α,L)f,K21D2R(α,L)f)Udμ

≤ ‖DΦ‖2
L∞(μ1)

∫

W

cK(K22D2R(α,L)f,D2R(α,L)f)Udμ

≤ ‖DΦ‖2
L∞(μ1)

cK

4α

∫

W

f2dμ.

Hence the operator Tα : L2(μ) → L2(μ) is well-defined. Moreover, if

‖DΦ‖2
L∞(μ1)

cK

4α
< 1,

we can apply Neumann-Series theorem to get (Id − Tα)−1 ∈ L(L2(μ)). In
particular, for such α, for all g ∈ L2(μ) we find f ∈ L2(μ) with f − Tαf = g
in L2(μ). Furthermore there is h ∈ D(L) with (α − L)h = f . Therefore,

(α − LΦ)h = (α − L)h + (DΦ,K21D2h)U = f + (DΦ,K21D2R(α,L)f)U

= f − Tαf = g.

This yields L2(μ) ⊂ (α − LΦ)(D(L)). Since L2(μ) is dense in L2(μΦ) and
D(L) ⊂ D(LΦ) the dense range condition is shown and the proof is finished. �

5. Examples and Outlook

In this section we have a look at certain examples, where the results we
derived above are applicable. We consider the following situation, which is
inspired by the one in [7, Section 5].

Let U = V = L2((0, 1), λ,R), W = U × V and K12,K21,K22 such that
they fulfill the properties in Hypothesis 4.3 and 4.10(e.g. K12 = K21 = K22 =
Id). Moreover, let (−Δ,D(Δ)) be the negative Dirichlet Laplacian, i.e.

D(Δ) = W 1,2
0 ((0, 1), λ,R) ∩ W 2,2((0, 1), λ,R) ⊂ L2((0, 1), λ,R),

−Δx = −x′′.

On (U,B(U)) and (V,B(V )) we consider two centered non-degenerate infinite-
dimensional Gaussian measures μ1 and μ2 with covariance operators

Q1 = Q2 = −Δ−1 : L2((0, 1), λ,R) → D(Δ),

respectively. Recall the definition of the measures μΦ
1 and μΦ and denote by

BU = BV = (dk)k∈N = (ek)k∈N = (
√

2 sin(kπ·))k∈N the orthonormal basis
of L2((0, 1), λ,R) diagonalizing Q1 and Q2 with corresponding eigenvalues
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(λk)k∈N = (νk)k∈N = ( 1
k2π2 )k∈N. Additionally we fix a continuous differen-

tiable (convex) function φ : R → R, which is bounded from below. Assume
that there are constants C1, C2 ∈ [0,∞), p1 ∈ [2,∞) and p2 ∈ [1,∞) such
that

|φ(t)| ≤ C1(1 + |t|p1), t ∈ R,

|φ′(t)| ≤ C2(1 + |t|p2), t ∈ R.

I.e. φ and its derivative have at most polynomial growth. For such φ we
consider potentials Φ : L2((0, 1), λ,R) → (−∞,∞] defined by

Φ(u) =

{∫
(0,1)

φ ◦ udλ u ∈ Lp1((0, 1), λ,R)

∞ u /∈ Lp1((0, 1), λ,R)
.

Remark 5.1. Note that potentials as defined above are lower semicontin-
uous by Fatou’s lemma, bounded from below and in Lp(U, μ1,R) for all
p ∈ [1,∞). If φ is convex the same holds true for Φ. Using [7, Proposi-
tion 5.2] we know that Φ is bounded from below, lower semicontinuous and
in W 1,2(U, μ1,R) with DΦ(u) = φ′ ◦ u for a.e. u ∈ L2((0, 1), λ,R) (namely,
for all u ∈ L2p2((0, 1), λ,R)).

Choose a continuous differentiable (convex) φ, which is bounded from
below with at most polynomial growth. Further assume that the derivative
of φ is bounded. Now define the potential Φ in terms of φ. In Hypothesis 4.3
and 4.10 all items are valid, were by construction and Remark 5.1 we have

‖DΦ‖L∞(μ1) = sup
t∈R

|φ′(t)| < ∞.

Therefore Theorem 4.11 is applicable and we obtain essential m-dissipativity
in L2(L2((0, 1), λ,R) × L2((0, 1), λ,R), μΦ,R) of (LΦ,FC∞

b (BW )), where for
f ∈ FC∞

b (BW ) we have

LΦf =tr[K22D
2
2f ] + (v,K22ΔD2f)L2(λ)

+ (u,K21ΔD2f)L2(λ) − (φ′ ◦ u,K21D2f)L2(λ) − (v,K12ΔD1f)L2(λ).

This is the starting point to construct a martingale and even a weak solution
to the non-linear infinite-dimensional stochastic differential equation given
by

dUt = −K21ΔVtdt

dVt = (K22ΔVt + K12ΔUt − K12φ
′(Ut))dt +

√
2K22dWt.

(5.1)

In the equation above (Wt)t≥0 is a cylindrical Brownian motion on (V,B(V )).
A heuristically application of the Itô-formula suggest that this stochastic dif-
ferential equation corresponds to (LΦ,D(LΦ)). In order to make this corre-
spondence rigorous and to construct weak solutions we want to apply general
resolvent methods described in [1].

I.e. we plan to construct a μΦ-standard right process (see [1, Appen-
dix B.])

X = (Ω,F , (Ft)t≥0, (Ut, Vt)t≥0, (θt)t≥0, (Pw)w∈W ),
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providing a martingale and even a weak solution, with infinite lifetime PμΦ -
a.e. and T -continuous paths, PμΦ -a.e.. Here T denotes the weak topology on
the Hilbert space W and PμΦ the probability measure on (Ω,F) defined for
A ∈ F by

PμΦ(A) =
∫

W

Pw(A)dμΦ(w) A ∈ F .

Moreover, the transition semigroup corresponding to the process X and the
strongly continuous semigroup (Tt)t≥0 generated by (LΦ,D(LΦ)) coincide in
L2(μΦ). Using this correspondence we like to study the long-time behavior
of the Process X via the long-time behavior of the semigroup (Tt)t≥0. I.e. we
plan to apply the abstract Hilbert space hypocoercivity method from [15], to
show exponential convergence to equilibrium of the semigroup.

As announced in the introduction the results derived in Sect. 3 are
naturally needed while applying the abstract Hilbert space hypocoerciv-
ity method. A rigorous application in our infinite-dimensional setting goes
beyond the aim of this article. At this point we illustrate the rough idea
and explain how to achieve such an exponential convergence result and how
Ornstein-Uhlenbeck operators perturbed by the gradient of a potential with
unbounded diffusions (C,D(C)) as coefficients appear during the application
process. As in the article [13], of Dolbeault, Mouhot and Schmeiser we define
the modified entropy functional Hε : L2(μΦ) → R, ε ∈ [0, 1) by

Hε[f ] =
1
2
‖f‖2

L2(μΦ) + ε(Bf, f)L2(μΦ), f ∈ L2(μΦ).

The bounded linear operator B, specified below is chosen such that Hε defines
a norm which is equivalent to the norm ‖·‖L2(μΦ), compare [15]. To construct
B, define PS : L2(μΦ) → L2(μΦ) by

PSf =
∫

V

fdμ2,

where the integration is understood w.r.t. the second variable. Using that μΦ

is a probability measure one can check that the map P : L2(μΦ) → L2(μΦ)
given as

Pf = PSf − (f, 1)L2(μΦ), f ∈ L2(μΦ),

is an orthogonal projection with

Pf ∈ L2(μΦ
1 ) and ‖Pf‖L2(μΦ

1 ) = ‖Pf‖L2(μΦ), f ∈ L2(μΦ),

where we canonically embed L2(μΦ
1 ) into L2(μΦ). Now the bounded linear

operator B on L2(μΦ) is defined as the unique extension of (B,D((AΦP )∗))
to a continuous linear operator on L2(μΦ) where

B = (Id + (AΦP )∗AΦP )−1(AΦP )∗ on D((AΦP )∗).

Here (AΦP,D(AΦP )) is the linear operator AΦP with domain

D(AΦP ) = {f ∈ L2(μΦ) | Pf ∈ D(AΦ)}.
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and ((AΦP )∗,D((AΦP )∗)) denotes its adjoint on L2(μΦ). Note that by the
Neumann-Series theorem, the operator

Id + (AΦP )∗AΦP : D((AΦP )∗AΦP ) → L2(μΦ)

with domain D((AΦP )∗AΦP ) = {f ∈ D(AΦP ) | AΦPf ∈ D((AΦP )∗)} is
bijective and admits a bounded inverse. Hence B is indeed well-defined on
D((AΦP )∗). For the fact that B extends to a bounded linear operator on
L2(μΦ), see [22, Theo. 5.1.9]. Now one can calculate

d

dt
Hε[Ttf ]

= (LΦTtf, Ttf)L2(μΦ) + ε(BLΦTtf, Ttf)L2(μΦ) + ε(BTtf, LΦTtf)L2(μΦ).

Define the possible unbounded operator (C,D(C)) in U by

C = K21Q
−1
2 K12 with D(C) = {u ∈ U |K12u ∈ D(Q−1

2 )}.

One can show that for all f ∈ FC∞
b (BW ), the operator (PA2

ΦP,FC∞
b (BW ))

is given by the formula

PA2
ΦPf =tr[CD2PSf ] − (u,Q−1

1 CDPSf)U − (DΦ(u), CDPSf)U .

The essential m-dissipativity of (PA2
ΦP,FC∞

b (BW )) in L2(μΦ) and corre-
sponding regularity estimates, which are applicable in view of Theorem 3.6
and Theorem 3.11 derived in Sect. 3, are fundamental to show [15, Corol-
lary 2.13] and [15, Proposition 2.15], i.e. to derive

d

dt
Hε[Ttf ] ≤ −κHε[Ttf ],

for an appropriate chosen ε ∈ [0, 1) and a positive constant κ ∈ (0,∞),
compare [15, Theorem 2.18]. Applying Grönwall’s lemma yields the desired
exponential convergence to equilibrium.
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