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Abstract. We provide a complete elaboration of the L2-Hilbert space hypocoercivity theorem for the de-
generate Langevin dynamics with multiplicative noise, studying the longtime behavior of the strongly
continuous contraction semigroup solving the abstract Cauchy problem for the associated backward Kol-
mogorov operator. Hypocoercivity for the Langevin dynamics with constant diffusion matrix was proven
previously by Dolbeault, Mouhot and Schmeiser in the corresponding Fokker–Planck framework and made
rigorous in the Kolmogorov backwards setting by Grothaus and Stilgenbauer. We extend these results to
weakly differentiable diffusion coefficient matrices, introducing multiplicative noise for the corresponding
stochastic differential equation. The rate of convergence is explicitly computed depending on the choice
of these coefficients and the potential giving the outer force. In order to obtain a solution to the abstract
Cauchy problem, we first prove essential self-adjointness of non-degenerate elliptic Dirichlet operators on
Hilbert spaces, using prior elliptic regularity results and techniques from Bogachev, Krylov and Röckner.
We apply operator perturbation theory to obtain essential m-dissipativity of the Kolmogorov operator, ex-
tending the m-dissipativity results from Conrad and Grothaus. We emphasize that the chosen Kolmogorov
approach is natural, as the theory of generalized Dirichlet forms implies a stochastic representation of the
Langevin semigroup as the transition kernel of a diffusion process which provides a martingale solution to
the Langevin equation with multiplicative noise. Moreover, we show that even a weak solution is obtained
this way.

1. Introduction

We study the exponential decay to equilibrium of Langevin dynamics with multi-
plicative noise. The corresponding evolution equation is given by the following sto-
chastic differential equation on R2d , d ∈ N, as

dXt = Vtdt,

dVt = b(Vt )dt − ∇Φ(Xt )dt + √
2σ(Vt )dBt ,

(1.1)

where Φ : Rd → R is a suitable potential whose properties are specified later, B =
(Bt )t≥0 is a standard d-dimensional Brownian motion, σ : Rd → R

d×d a variable
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diffusion matrix with at least weakly differentiable coefficients, and b : Rd → R
d

given by

bi (v) =
d∑

j=1

∂ j ai j (v) − ai j (v)v j ,

where ai j = Σi j with Σ = σσ T .
This equation describes the evolution of a particle described via its position (Xt )t≥0

and velocity (Vt )t≥0 coordinates, which is subject to friction, stochastic perturbation
depending on its velocity, and some outer force ∇Φ. To simplify notation, we split
R
2d into the two components x, v ∈ R

d corresponding to position and velocity,
respectively. This extends to differential operators∇x ,∇v , and the Hessian matrix Hv .

Using Itô’s formula, we obtain the associated Kolmogorov operator L as

L = tr (ΣHv) + b(v) · ∇v + v · ∇x − ∇Φ(x) · ∇v. (1.2)

Here, a · b or alternatively (a, b)euc denotes the standard inner product of a, b ∈ R
d .

We introduce the measure μ = μΣ,Φ on (R2d ,B(R2d)) as

μΣ,Φ = (2π)−
d
2 e−Φ(x)− v2

2 dx ⊗ dv =: e−Φ(x) ⊗ ν,

i.e., ν is the normalized standard Gaussian measure on R
d . We consider the operator

L on the Hilbert space H :=L2(R2d , μ).
We note that the results below on exponential convergence to equilibrium can also

be translated to a corresponding Fokker–Planck setting, with the differential oper-
ator LFP given as the adjoint, restricted to sufficiently smooth functions, of L in
L2(R2d , d(x, v)). The considered Hilbert space there is H̃ :=L2(R2d , μ̃), where

μ̃ := (2π)−
d
2 eΦ(x)+ v2

2 dx ⊗ dv.

Indeed, this is the space inwhich hypocoercivity of the kinetic Fokker–Planck equation
associated with the classical Langevin dynamics was proven in [1]. The rigorous
connection to theKolmogorov backwards setting considered throughout this paper and
convergence behavior of solutions to the abstract Cauchy problem ∂t f (t) = LFP f (t)
are discussed in Sect. 5.3.

The concept of hypocoercivity was first introduced in the memoirs of Cédric Villani
([2]), which is recommended as further literature to the interested reader. The approach
we use here was introduced algebraically by Dolbeault, Mouhot and Schmeiser (see
[3] and [1]) and then made rigorous including domain issues in [4] by Grothaus and
Stilgenbauer, where it was applied to show exponential convergence to equilibrium
of a Fiber laydown process on the unit sphere. This setting was further generalized
by Wang and Grothaus in [5], where the coercivity assumptions involving in part the
classical Poincaré inequality for Gaussian measures were replaced by weak Poincaré
inequalities, allowing for more general measures for both the spatial and the velocity
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component. In this case, the authors still obtained explicit, but subexponential rates of
convergence.On the other hand, the stronger notion of hypercontractivitywas explored
in [6] on general separable Hilbert spaces without the necessity to explicitly state the
invariant measure. The specific case of hypocoercivity for Langevin dynamics on the
position space R

d has been further explored in [7] and serves as the basis for our
hypocoercivity result. However, all of these prior results assume the diffusion matrix
to be constant, while we allow for velocity-dependent coefficients.
In contrast to [7], we do not know if our operator (L ,C∞

c (R2d)) is essentially m-
dissipative and are therefore left to prove that first. This property of the Langevin oper-
ator has been shown byHelffer andNier in [8] for smooth potentials and generalized to
locally Lipschitz-continuous potentials by Conrad and Grothaus in [9, Corollary 2.3].
However, a corresponding result for a non-constant second-order coefficient matrix
Σ is not known to the authors.

Moreover, the symmetric part S of our operator L does not commute with the linear
operator B as in [7]; hence, the boundedness of the auxiliary operator BS needs to be
shown in a different way, which we do in Proposition 3.10.
In Theorem 3.4, we show under fairly light assumptions on the coefficients and the

potential that the operator (L ,C∞
c (R2d)) is essentially m-dissipative and therefore

generates a strongly continuous contraction semigroup on H . The proof is given in
Sect. 4 and follows the main ideas as in the proof of [9, Theorem 2.1], where a
corresponding result for Σ = I was obtained.

For that proof, we rely on perturbation theory of m-dissipative operators, starting
with essentialm-dissipativity of the symmetric part of L . To that end,we state an essen-
tial self-adjointness result for a set of non-degenerate elliptic Dirichlet differential op-
erators (S,C∞

c (Rd)) on L2-spaceswhere themeasure is absolutely continuouswrt. the
Lebesguemeasure. This result is stated in Theorem 4.5 and combines regularity results
from [10] and [11] with the approach to show essential self-adjointness from [12].
Finally, our main hypocoercivity result reads as follows:

Theorem 1.1. Let d ∈ N. Assume that Σ : Rd → R
d×d is a symmetric matrix of

coefficients ai j : Rd → R which is uniformly strictly elliptic with ellipticity constant
cΣ . Moreover, let each ai j be bounded and locally Lipschitz-continuous, hence ai j ∈
H1,p
loc (Rd , ν) ∩ L∞(Rd) for each p ≥ 1. Assume the growth behavior of ∂kai j for all

1 ≤ k ≤ d to be bounded either by

|∂kai j (v)| ≤ M(1 + |v|)β

for ν-almost all v ∈ R
d and some M < ∞, β ∈ (−∞, 0] or by

|∂kai j (v)| ≤ M(1B1(0)(v) + |v|β)

for ν-almost all v ∈ R
d and some M < ∞, β ∈ (0, 1). Define NΣ in the first case as

NΣ :=
√
M2

Σ + (BΣ ∨ M)2 and in the second case as NΣ :=
√
M2

Σ + B2
Σ + dM2,

where
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MΣ := max{‖ai j‖∞ | 1 ≤ i, j ≤ d} and

BΣ := max
{
|∂ j ai j (v)| : v ∈ B1(0), 1 ≤ i, j ≤ d

}
.

Let further Φ : R
d → R be bounded from below, satisfy Φ ∈ C2(Rd) and that

e−Φ(x) dx is a probability measure on (Rd ,B(Rd)) which satisfies a Poincaré in-
equality of the form

‖∇ f ‖2L2(e−Φ(x) dx) ≥ Λ

∥∥∥∥ f −
∫

Rd
f e−Φ(x) dx

∥∥∥∥
2

L2(e−Φ(x) dx)

for some Λ ∈ (0,∞) and all f ∈ Cc(R
d). Furthermore, assume the existence of a

constant c < ∞ such that

|HΦ(x)| ≤ c(1 + |∇Φ(x)|) for all x ∈ R
d ,

where H denotes the Hessianmatrix and |HΦ| the Euclideanmatrix norm. If β > −1,
then also assume that there are constants N < ∞, γ < 2

1+β
such that

|∇Φ(x)| ≤ N (1 + |x |γ ) for all x ∈ R
d .

Then, the Langevin operator (L ,C∞
c (R2d)) as defined in (1.2) is closable on H and

its closure (L , D(L)) generates a strongly continuous contraction semigroup (Tt )t≥0

on H. Further, it holds that for each θ1 ∈ (1,∞), there is some θ2 ∈ (0,∞) such that

‖Tt g − (g, 1)H‖H ≤ θ1e
−θ2t ‖g − (g, 1)H‖H

for all g ∈ H and all t ≥ 0. In particular, θ2 can be specified as

θ2 = θ1 − 1

θ1

cΣ

n1 + n2NΣ + n3N 2
Σ

,

and the coefficients ni ∈ (0,∞) only depend on the choice of Φ.

Finally, our main results may be summarized by the following list:

• Essential m-dissipativity (equivalently essential self-adjointness) of non-dege-
nerate elliptic Dirichlet differential operators with domain C∞

c (Rd) on Hilbert
spaces with measure absolutely continuous wrt. the d-dimensional Lebesgue
measure is proved, see Theorem 4.5.

• Essential m-dissipativity of the backwards Kolmogorov operator (L ,C∞
c (Rd))

associated with the Langevin equation with multiplicative noise (1.1) on the
Hilbert space H under weak assumptions on the coefficient matrix Σ and the
potential Φ, in particular not requiring smoothness, is shown, see Theorem 3.4.

• Exponential convergence to a stationary state of the corresponding solutions to
the abstract Cauchy problem ∂t u(t) = Lu(t), see (5.1) on the Hilbert space
H with explicitly computable rate of convergence, as stated in Theorem 1.1, is
proved.
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• Adaptation of this convergence result to the equivalent formulation as a Fokker–
Planck PDE on the appropriate Hilbert space H̃ := L2(R2d , μ̃) is provided. In
particular, this yields exponential convergence of the solutions to the abstract
Fokker–Planck Cauchy problem ∂t u(t) = LFPu(t), with LFP given by (5.3), to
a stationary state, see Sect. 5.3.

• A stochastic interpretation of the semigroup as a transition kernel for a diffusion
process is worked out. Moreover, we prove this diffusion process to be a weak
solution to the Langevin SDE (1.1) and derive for it strong mixing properties
with explicit rates of convergence, see Sect. 5.2.

2. The abstract hypocoercivity setting

We start by recalling some basic facts about closed unbounded operators on Hilbert
spaces:

Lemma 2.1. Let (T, D(T )) be a densely defined linear operator on H and let L be
a bounded linear operator with domain H.

(i) The adjoint operator (T ∗, D(T ∗)) exists and is closed. If D(T ∗) is dense in H,
then (T, D(T )) is closable and for the closure (T , D(T )) it holds T = T ∗∗.

(ii) L∗ is bounded and ‖L∗‖ = ‖L‖.
(iii) If (T, D(T )) is closed, then D(T ∗) is automatically dense in H. Consequently

by (i), T = T ∗∗.
(iv) Let (T, D(T )) be closed. Then, the operator T L with domain

D(T L) = { f ∈ H | L f ∈ D(T )}

is also closed.
(v) LT with domain D(T ) need not be closed; however,

(LT )∗ = T ∗L∗.

Let us now briefly state the abstract setting for the hypocoercivity method as in [4].
Data conditions (D) We require the following conditions which are henceforth as-
sumed without further mention.

(D1) The Hilbert space: Let (E,F , μ) be some probability space and define H to
be H = L2(E, μ) equipped with the standard inner product (·, ·)H .

(D2) The C0-semigroup and its generator: (L , D(L)) is some linear operator on H
generating a strongly continuous contraction semigroup (Tt )t≥0.

(D3) Core property of L: Let D ⊂ D(L) be a dense subspace of H which is a core
for (L , D(L)).

(D4) Decomposition of L: Let (S, D(S))) be symmetric, (A, D(A)) be closed and
antisymmetric on H such that D ⊂ D(S) ∩ D(A) as well as L|D = S − A.
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(D5) Orthogonal projections: Let P : H → H be an orthogonal projection satisfy-
ing P(H) ⊂ D(S), SP = 0 as well as P(D) ⊂ D(A), AP(D) ⊂ D(A).
Moreover, let PS : H → H be defined as

PS f := P f + ( f, 1)H , f ∈ H.

(D6) Invariant measure: Let μ be invariant for (L , D) in the sense that

(L f, 1)H =
∫

E
L f dμ = 0 for all f ∈ D.

(D7) Conservativity: It holds that 1 ∈ D(L) and L1 = 0.

Since (A, D(A)) is closed, (AP, D(AP)) is also closed and densely defined.Hence,
by von Neumann’s theorem, the operator

I + (AP)∗(AP) : D((AP)∗AP) → H,

where D((AP)∗AP) = { f ∈ D(AP) | AP f ∈ D((AP)∗)}, is bijective and admits
a bounded inverse. We therefore define the operator (B, D((AP)∗)) via

B := (I + (AP)∗AP)−1(AP)∗

Then, B extends to a bounded operator on H .
As in the given source, we also require the following assumptions:

Assumption. (H1) Algebraic relation: It holds that P AP|D = 0.

Assumption. (H2) Microscopic coercivity: There exists some Λm > 0 such that

−(S f, f )H ≥ Λm‖(I − PS) f ‖2 for all f ∈ D.

Assumption. (H3) Macroscopic coercivity: Define (G, D) via G = PA2P on D.
Assume that (G, D) is essentially self-adjoint on H. Moreover, assume that there is
some ΛM > 0 such that

‖AP f ‖2 ≥ ΛM‖P f ‖2 for all f ∈ D.

Assumption. (H4) Boundedness of auxiliary operators: The operators (BS, D) and
(BA(I − P), D) are bounded, and there exist constants c1, c2 < ∞ such that

‖BS f ‖ ≤ c1‖(I − P) f ‖ and ‖BA(I − P) f ‖ ≤ c2‖(I − P) f ‖

hold for all f ∈ D.

We now state the central abstract hypocoercivity theorem as in [4]:
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Theorem 2.2. Assume that (D) and (H1)–(H4) hold. Then, there exist strictly positive
constants κ1, κ2 < ∞ which are explicitly computable in terms of Λm,ΛM , c1 and c2
such that for all g ∈ H we have

‖Tt g − (g, 1)H‖ ≤ κ1e
−κ2t‖g − (g, 1)H‖ for all t ≥ 0.

More specifically, if there exist δ > 0, ε ∈ (0, 1) and 0 < κ < ∞ such that for all
g ∈ D(L), t ≥ 0, it holds

κ‖ ft‖2 ≤
(

Λm − ε(1 + c1 + c2)

(
1 + 1

2δ

))
‖(I − P) ft‖2

+ε

(
ΛM

1 + ΛM
− (1 + c1 + c2)

δ

2

)
‖P ft‖2,

(2.1)

where ft := Tt g − (g, 1)H , then the constants κ1 and κ2 are given by

κ1 =
√
1 + ε

1 − ε
, κ2 = κ

1 + ε
.

In order to prove (H4), we will make use of the following result:

Lemma 2.3. Assume (H3). Let (T, D(T )) be a linear operator with D ⊂ D(T ) and
assume AP(D) ⊂ D(T ∗). Then,

(I − G)(D) ⊂ D((BT )∗) with (BT )∗(I − G) f = T ∗AP f, f ∈ D.

If there exists some C < ∞ such that

‖(BT )∗g‖ ≤ C‖g‖ for all g = (I − G) f, f ∈ D, (2.2)

then (BT, D(T )) is bounded and its closure (BT ) is a bounded operator on H with
‖BT ‖ = ‖(BT )∗‖.
In particular, if (S, D(S)) and (A, D(A)) satisfy these assumptions, the correspond-

ing inequalities in (H4) are satisfied with c1 = ‖(BS)∗‖ and c2 = ‖(BA)∗‖.
Proof. Let h ∈ D((AP)∗) and f ∈ D. Set g = (I −G) f . By the representation of B
on D((AP)∗) together with self-adjointness of (I + (AP)∗AP)−1 and D ⊂ D(AP),
we get

(h, B∗g)H = (Bh, (I − G) f )H = ((AP)∗h, f )H = (h, AP f )H .

So B∗g = AP f ∈ D(T ∗). By Lemma 2.1 (v), ((BT )∗, D((BT )∗)) = (T ∗B∗,
D(T ∗B∗)), which implies (BT )∗g = T ∗B∗g = T ∗AP f .
By essential self-adjointness and hence essential m-dissipativity ofG, (I−G)(D) is

dense in H . Therefore by (2.2), the closed operator ((BT )∗, D((BT )∗)) is a bounded
operator on H . Since (BT, D(T )) is densely defined, by Lemma 2.1 (i) and (ii), it is
closable with BT = (BT )∗∗, which is a bounded operator on H with the stated norm.
The last part follows directly by S f = S(I − P) f for f ∈ D. �
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3. Hypocoercivity for Langevin dynamics with multiplicative noise

As stated in the introduction, the aim of this section is to prove exponential con-
vergence to equilibrium of the semigroup solving the abstract Kolmogorov equation
corresponding to the Langevin equation with multiplicative noise (1.1).

We remark that most of the conditions are verified analogously to [7], the main
difference being the proof of essential m-dissipativity for the operator (L ,C∞

c (R2d))

as well as the first inequality in (H4). Nevertheless, some care has to be takenwhenever
S is involved, as it does not preserve regularity to the same extent as in the given
reference.

3.1. The data conditions

We start by introducing the setting and verifying the data conditions (D). The no-
tations introduced in this part will be used for the remainder of the section without
further mention.
Let d ∈ N and set the state space as E = R

2d ,F = B(R2d). In the following, the
first d components of E will be written as x , the latter d components as v. Let ν be the
normalized Gaussian measure on R

d with mean zero and covariance matrix I , i.e.,

ν(A) =
∫

A
(2π)−

d
2 e− x2

2 dx .

Assumption. (P) The potential Φ : Rd → R is assumed to depend only on the posi-
tion variable x and to be locally Lipschitz-continuous. We further assume e−Φ(x) dx
to be a probability measure on (Rd ,B(Rd)).

Note that the first part implies Φ ∈ H1,∞
loc (Rd). Moreover, Φ is differentiable dx-

a.e. on R
d , such that the weak gradient and the derivative of Φ coincide dx-a.e. on

R
d . In the following, we fix a version of ∇Φ.
The probability measure μ on (E,F ) is then given by μ = e−Φ(x) dx ⊗ ν, and

we set H := L2(E, μ), which satisfies condition (D1). Next, we assume the following
about Σ = (ai j )1≤i, j≤d with ai j : Rd → R:

Assumption. (Σ1) Σ is symmetric and uniformly strictly elliptic, i.e., there is some
cΣ > 0 such that

(y,Σ(v)y) ≥ cΣ · |y|2 for all y, v ∈ R
d .

Assumption. (Σ2) There is some p > d such that for all 1 ≤ i, j ≤ d, it holds that
ai j ∈ H1,p

loc (Rd , ν)∩ L∞(Rd). Additionally, ai j is locally Lipschitz-continuous for all
1 ≤ i, j ≤ d.

Additionally, we will consider one of the following conditions on the growth of the
partial derivatives:
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Assumption. (Σ3) There are constants 0 ≤ M < ∞, −∞ < β ≤ 0 such that for all
1 ≤ i, j, k ≤ d

|∂kai j (v)| ≤ M(1 + |v|)β for ν − almost all v ∈ R
d .

Assumption. (Σ3′) There are constants 0 ≤ M < ∞, 0 < β < 1 such that for all
1 ≤ i, j, k ≤ d

|∂kai j (v)| ≤ M(1B1(0)(v) + |v|β) for ν-almost all v ∈ R
d .

We note that any of these imply ∂ j ai j ∈ L2(Rd , ν) for all 1 ≤ i, j ≤ d.

Definition 3.1. Let Σ satisfy (Σ2). Then, we set

MΣ := max{‖ai j‖∞ : 1 ≤ i, j ≤ d} and

BΣ := max{|∂ j ai j (v)| : v ∈ B1(0), 1 ≤ i, j ≤ d}.
If Σ additionally satisfies (Σ3), then we define

NΣ :=
√
M2

Σ + (BΣ ∨ M)2.

If instead (Σ3′) is fulfilled, then we consider instead

NΣ :=
√
M2

Σ + B2
Σ + dM2.

Definition 3.2. Let D = C∞
c (E) be the space of compactly supported smooth func-

tions on E . We define the linear operators S, A and L on D via

S f =
d∑

i, j=1

ai j∂v j ∂vi f +
d∑

i=1

bi∂vi f,

where bi (v) =
d∑

j=1

(∂ j ai j (v) − ai j (v)v j ),

A f = ∇Φ(x) · ∇v f − v · ∇x f,

L f = (S − A) f, for f ∈ D.

Integration by parts shows that (S, D) is symmetric and non-positive definite on
H , and (A, D) is antisymmetric on H . Hence, all three operators with domain D are
dissipative and therefore closable.We denote their closure, respectively, by (S, D(S)),

(A, D(A)) and (L , D(L)).

For f ∈ D and g ∈ H1,2(E, μ), integration by parts yields

(L f, g)H = −
∫

E

(
∇ f,

(
0 −I
I Σ

)
∇g

)

euc

dμ.

In particular, (D6) is obviously fulfilled. Next, we provide an estimate which will be
needed later:
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Proposition 3.3. Let (Σ2) and either (Σ3) or (Σ3′) hold, respectively, and recall
Definition 3.1. Then, for all 1 ≤ i, j ≤ d, it holds that

‖∂ j ai j − ai jv j‖L2(ν) ≤ NΣ.

Proof. Due to integration by parts, it holds that
∫

Rd
a2i jv

2
j dν =

∫

Rd
a2i j + 2ai jv j∂ j ai j dν.

Hence, we obtain in the case (Σ3′)
∫

Rd
(∂ j ai j − ai jv j )

2 dν =
∫

Rd
(∂ j ai j )

2 + a2i j dν

≤
∫

B1(0)
(∂ j ai j )

2 dν +
∫

Rd\B1(0)
(∂ j ai j )

2 dν + M2
Σ

≤ B2
Σ +

∫

Rd\B1(0)
(M |v|β)2 dν + M2

Σ

≤ B2
Σ + M2

Σ +
d∑

k=1

M2
∫

Rd
v2k dν = B2

Σ + M2
Σ + M2d.

The case (Σ3) follows from (∂ j ai j )2 ≤ (BΣ ∨ M)2. �

We now state the essential m-dissipativity result, which will be proven in the next
section.

Theorem 3.4. Let (Σ1), (Σ2) and either (Σ3) or (Σ3′) be fulfilled, and letΦ be as in
(P). Assume further thatΦ is bounded frombelowand that |∇Φ| ∈ L2(Rd , e−Φ(x) dx).
If β is larger than −1, then assume additionally that there is some N < ∞ such that

|∇Φ(x)| ≤ N (1 + |x |γ ), where γ <
2

1 + β
.

Then, the linear operator (L ,C∞
c (R2d)) is essentially m-dissipative and hence, its

closure (L , D(L)) generates a strongly continuous contraction semigroup on H. In
particular, the conditions (D2)–(D4) are satisfied.

Let us now introduce the orthogonal projections PS and P:

Definition 3.5. Define PS : H → H as

PS f =
∫

Rd
f dν(v), f ∈ H,

where integration is understood w.r.t the velocity variable v. By Fubini’s theorem and
the fact that ν is a probability measure on (E,F ), it follows that PS is a well-defined
orthogonal projection on H with

PS f ∈ L2(Rd , e−Φ(x) dx), ‖PS f ‖L2(Rd ,e−Φ(x) dx) = ‖PS f ‖H , f ∈ H,
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where L2(Rd , e−Φ(x) dx) is interpreted as embedded in H .
Then, define P : H → H via P f = PS f − ( f, 1)H for f ∈ H . Again, P is an

orthogonal projection on H with

P f ∈ L2(Rd , e−Φ(x) dx), ‖P f ‖L2(Rd ,e−Φ(x) dx) = ‖P f ‖H , f ∈ H.

Additionally, for each f ∈ D, PS f admits a unique representation in C∞
c (Rd), which

we will denote by fS ∈ C∞
c (Rd).

In order to show the last remaining conditions (D5) and (D7), we will make use of
a standard sequence of cutoff functions as specified below:

Definition 3.6. Let ϕ ∈ C∞
c (Rd) such that 0 ≤ ϕ ≤ 1, ϕ = 1 on B1(0) and ϕ = 0

outside of B2(0). Define ϕn(z) := ϕ( zn ) for each z ∈ R
d , n ∈ N. Then, there exists a

constant C < ∞ independent of n ∈ N such that

|∂iϕn(z)| ≤ C

n
, |∂i jϕn(z)| ≤ C

n2
for all z ∈ R

d , 1 ≤ i, j ≤ d.

Moreover, 0 ≤ ϕn ≤ 1 for all n ∈ N and ϕn → 1 pointwisely on R
d as n → ∞.

Lemma 3.7. Let (Σ2) and either (Σ3) or (Σ3′) be fulfilled, and let Φ be as in (P).
Then, the operator L satisfies the following:

(i) P(H) ⊂ D(S) with SP f = 0 for all f ∈ H,
(ii) P(D) ⊂ D(A) and AP f = −v · ∇x (PS f ),
(iii) AP(D) ⊂ D(A) with A2P f = 〈v,∇2

x (PS f )v〉 − ∇Φ · ∇x (PS f ).
(iv) It holds 1 ∈ D(L) and L1 = 0.

In particular, (D5) and (D7) are fulfilled.

Proof. We only show (i), as the other parts can be shown exactly as in [7]. First, let
f ∈ C∞

c (Rd) and define fn ∈ D via fn(x, y) := f (x)ϕn(v). Then, by Lebesgue’s
dominated convergence theorem and the inequalities in the previous definition,

S fn = f ·
⎛

⎝
d∑

i, j=1

ai j∂i jϕn +
d∑

i=1

bi∂iϕn

⎞

⎠ → 0 in H as n → ∞,

since ai j ∈ L∞(Rd) ⊂ L2(Rd , ν), |v| ∈ L2(Rd , ν) and ∂ j ai j ∈ L2(Rd , ν) for all
1 ≤ i, j ≤ d.
Since fn → f in H and by closedness of (S, D(S)), this implies f ∈ D(S) with

S f = 0, where f is interpreted as an element of H .
Now, let g ∈ P(H) and identify g as an element of L2(Rd , e−Φ(x) dx). Then, there

exist gn ∈ C∞
c (Rd) with gn → g in L2(Rd , e−Φ(x) dx) as n → ∞. Identifying all

gn and g with elements in H then yields gn → g in H as n → ∞ and gn ∈ D(S),
Sgn = 0 for all n ∈ N. Therefore, again by closedness of (S, D(S)), g ∈ D(S) and
Sg = 0. �
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3.2. The hypocoercivity conditions

Now, we verify the hypocoercivity conditions (H1)-(H4) for the operator L . From
here on, we will assume Σ to satisfy (Σ1), (Σ2) and either (Σ3) or (Σ3′), with
NΣ referring to the appropriate constant as in Definition 3.1. Analogously to [7], we
introduce the following conditions:
Hypocoercivity assumptions (C1) − (C3) We require the following assumptions on
Φ : Rd → R:

(C1) The potential Φ is bounded from below, is an element of C2(Rd) and e−Φ(x) dx
is a probability measure on (Rd ,B(Rd)).

(C2) The probability measure e−Φ(x) dx satisfies a Poincaré inequality of the form

‖∇ f ‖2L2(e−Φ(x) dx) ≥ Λ‖ f − ( f, 1)L2(e−Φ(x) dx)‖2L2(e−Φ(x) dx)

for some Λ ∈ (0,∞) and all f ∈ C∞
c (Rd).

(C3) There exists a constant c < ∞ such that

|∇2Φ(x)| ≤ c(1 + |∇Φ(x)|) for all x ∈ R
d .

Note that in particular, (C1) implies (P). As shown in [2, Lemma A.24], conditions
(C3) and (C1) imply ∇Φ ∈ L2(e−Φ(x) dx).
Since we only change the operator (S, D(S)) in comparison with the framework

of [7], the results stated there involving only (A, D(A)) and the projections also hold
here and are collected as follows:

Proposition 3.8. Let Φ satisfy (P). Then, the following holds:

(i) Assume additionally ∇Φ ∈ L2(e−Φ(x) dx). Then, (H1) is fulfilled.
(ii) Assume that Φ satisfies (C1) and that ∇Φ ∈ L2(e−Φ(x) dx). Then, the operator

(G, D)definedbyG := PA2P is essentially self-adjoint, equivalently essentially
m-dissipative. For f ∈ D, it holds

G f = PAAP f = Δ fS − ∇Φ · ∇ fS .

(iii) Assume that Φ satisfies (C1) and (C2) as well as ∇Φ ∈ L2(e−Φ(x) dx). Then,
(H3) holds with ΛM = Λ.

(iv) Assume thatΦ satisfies (C1)-(C3). Then, the second estimate in (H4) is satisfied,
and the constant there is given as c2 = cΦ ∈ [0,∞), which only depends on the
choice of Φ.

It remains to show (H2) and the first half of (H4):

Proposition 3.9. LetΦ be as in (P). Then, Condition (H2) is satisfied withΛm = cΣ .

Proof. Let g ∈ C∞
c (Rd). The Poincaré inequality for Gaussian measures, see for

example [13], states

‖∇g‖2L2(ν)
≥

∥∥∥∥g −
∫

Rd
g(v) dν(v)

∥∥∥∥
2

L2(ν)

.
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Therefore, integration by parts yields for all f ∈ D:

(−S f, f )H =
∫

E
〈∇v f,Σ∇v f 〉 dμ ≥

∫

Rd

∫

Rd
cΣ |∇v f (x, v)|2 dν e−Φ(x) dx

≥ cΣ

∫

Rd

∫

Rd
( f − PS f )

2 dν e−Φ(x) dx = cΣ‖(I − PS) f ‖2H
�

Finally, we verify the first part of (H4):

Proposition 3.10. Assume thatΦ satisfies (C1) and (C2) aswell as∇Φ ∈ L2(e−Φ dx).
Then, the first inequality of (H4) is also satisfied with c1 = dΣ := √

2d3NΣ .

Proof. For f ∈ D, define T f ∈ H by

T f :=
d∑

i=1

bi∂i ( fS) =
d∑

i, j=1

(∂ j ai j − ai jv j )∂xi (PS f ).

We want to apply Lemma 2.3 to the operator (S, D(S)). Let f ∈ D, h ∈ D(S) and
hn ∈ D such that hn → h and Shn → Sh in H as n → ∞. Then, by integration by
parts,

(Sh, AP f )H = lim
n→∞(Shn,−v · ∇x (PS f ))H = lim

n→∞(hn,−T f )H = (h,−T f )H .

This shows AP f ∈ D(S∗) and by the first part of Lemma 2.3, (I −G) f ∈ D((BS)∗)
and (BS)∗(I − G) f = S∗AP f = −T f . Now, set g = (I − G) f , then, via Proposi-
tion 3.3,

‖(BS)∗g‖2H = ‖T f ‖2H =
∫

E

(
d∑

i=1

bi∂i fS

)2

dμ

≤ d2
d∑

i, j=1

∫

Rd

∫

Rd
(∂ j ai j (v) − ai j (v)v j )

2 dν(v) (∂xi (PS f )(x))
2 e−Φ(x) dx

≤ d3N 2
Σ

d∑

i=1

∫

Rd
∂xi (P f ) · ∂xi (PS f ) e

−Φ(x) dx .

A final integration by parts then yields

‖(BS)∗g‖2H ≤ −d3N 2
Σ

∫

Rd
P f · (Δx PS f − ∇Φ∇x (PS f )) e

−Φ(x) dx

= −d3N 2
Σ

∫

Rd
P f · G f e−Φ(x) dx

≤ d3N 2
Σ ‖P f ‖L2(e−Φ(x) dx) · ‖G f ‖L2(e−Φ(x) dx)

≤ d3N 2
Σ ‖P f ‖H (‖(I − G) f ‖H + ‖ f ‖H )

≤ 2d3N 2
Σ ‖g‖2H ,

where the last inequality is due to dissipativity of (G, D). �
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Proof. (of Theorem 1.1) Under the given assumptions, all conditions (C1)–(C3),
(Σ1), (Σ2) and either (Σ3) or (Σ3′) are satisfied. Therefore, hypocoercivity fol-
lows by the previous propositions and Theorem 2.2. It remains to show the stated
convergence rate, which will be done as in [7] or [14] using the determined values for
c1, c2, ΛM and Λm . Fix

δ := Λ

1 + Λ

1

1 + cΦ + dΣ

.

Then, the coefficients on the right hand side of (2.1) can be written as cΣ − εrΦ(NΣ)

and εsΦ , respectively, where

rΦ(NΣ) := (1 + cΦ +
√
2d3NΣ)

(
1 + 1 + Λ

2Λ
(1 + cΦ +

√
2d3NΣ)

)
and

sΦ := 1

2

Λ

1 + Λ
.

and ε = εΦ(Σ) ∈ (0, 1) still needs to be determined. Write rΦ(NΣ) + sΦ as the
polynomial

rΦ(NΣ) + sΦ = a1 + a2NΣ + a3N
2
Σ,

where all ai ∈ (0,∞), i = 1, . . . , 3 depend on Φ. Then, define

ε̃Φ(NΣ) := NΣ

rΦ(NΣ) + sΦ
= NΣ

a1 + a2NΣ + a3N 2
Σ

.

Some rough estimates show ε̃Φ(NΣ) ∈ (0, 1). Now, let v > 0 be arbitrary and set

ε := v

1 + v

cΣ

NΣ

ε̃Φ(NΣ) ∈ (0, 1).

Then, εrΦ(NΣ) + εsΦ = v
1+v

cΣ < cΣ ; hence, we get the estimate

cΣ − εrΦ(NΣ) > εsΦ = v

1 + v

2cΣ

n1 + n2NΣ + n3N 2
Σ

=: κ,

where all ni ∈ (0,∞) depend on Φ and are given by

ni := 2

sΦ
ai , for each i = 1, . . . , 3.

Clearly, κ , ε and δ now solve (2.1) and the convergence rate coefficients are given via
Theorem 2.2 by

κ1 =
√
1 + ε

1 − ε
=

√√√√1 + v + cΣ
NΣ

ε̃Φ(NΣ)v

1 + v − cΣ
NΣ

ε̃Φ(NΣ)v
≤

√
1 + 2v + v2 = 1 + v and

κ2 = κ

1 + ε
>

1

2
κ

Hence, by choosing θ1 = 1 + v and θ2 = 1
2κ = θ1−1

θ1

cΣ
n1+n2NΣ+n3N2

Σ

, the rate of

convergence claimed in the theorem is shown. �
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Remark 3.11. We remark here that all previous considerations up to the explicit rate
of convergence can also be applied to the formal adjoint operator (L∗, D) with L∗ =
S + A, the closure of which generates the adjoint semigroup (T ∗

t )t≥0 on H . For
example, the perturbation procedure to prove essential m-dissipativity is exactly the
same as for L , since the sign of A does not matter due to antisymmetry. We can use
this to construct solutions to the corresponding Fokker–Planck PDE associated with
our Langevin dynamics, see Sect. 5.3.

4. Essential m-dissipativity of the Langevin operator

The goal of this section is to prove Theorem 3.4. We start by giving some basics on
perturbation of semigroup generators.

4.1. Basics on generators and perturbation

Definition 4.1. Let (A, D(A)) and (B, D(B)) be linear operators on H . Then, B is
said to be A-bounded if D(A) ⊂ D(B) and there exist constants a, b < ∞ such that

‖B f ‖H ≤ a‖A f ‖H + b‖ f ‖H (4.1)

holds for all f ∈ D(A). The number inf{a ∈ R | (4.1) holds for some b < ∞} is
called the A-bound of B.

Theorem 4.2. Let D ⊂ H be a dense linear subspace, (A, D) be an essentially m-
dissipative linear operator on H and let (B, D) be dissipative and A-bounded with
A-bound strictly less than 1. Then, (A + B, D) is essentially m-dissipative and its
closure is given by (A + B, D(A)).

A useful criterion for verifying A-boundedness is given by:

Lemma 4.3. Let D ⊂ H be a dense linear subspace, (A, D) be essentially m-
dissipative and (B, D) be dissipative. Assume that there exist constants c, d < ∞
such that

‖B f ‖2H ≤ c(A f, f )H + d‖ f ‖2H
holds for all f ∈ D. Then, B is A-bounded with A-bound 0.

We also require the following generalization of the perturbation method:

Lemma 4.4. Let D ⊂ H be a dense linear subspace, (A, D) be essentially m-
dissipative and (B, D) be dissipative on H. Assume that there exists a complete
orthogonal family (Pn)n∈N, i.e., each Pn is an orthogonal projection, Pn Pm = 0
for all n �= m and

∑
n∈N Pn = I strongly, such that

Pn(D) ⊂ D, Pn A = APn, and PnB = BPn

for all n ∈ N. Set An := APn, Bn := BPn, bothwith domain Dn := Pn(D), as operators
on Pn(H). Assume that each Bn is An-bounded with An-bound strictly less than 1.
Then, (A + B, D) is essentially m-dissipative.
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4.2. The symmetric part

We first prove essential self-adjointness, equivalently essential m-dissipativity, for
a certain class of symmetric differential operators on specific Hilbert spaces. This is
essentially a combination of two results by Bogachev, Krylov, and Röckner, namely
[10, Corollary 2.10] and [12, Theorem 7]; however, the combined statement does not
seem to be well known and might hold interest as the basis for similar m-dissipativity
proofs. We use the slightly more general statement from [11, Theorem 5.1] in order
to relax the assumptions.

Theorem 4.5. Let d ≥ 2 and consider H = L2(Rd , μ) where μ = ρ dx, ρ = ϕ2 for
some ϕ ∈ H1,2

loc (Rd) such that 1
ρ

∈ L∞
loc(R

d). Let A = (ai j )1≤i, j≤d : Rd → R
d×d

be symmetric and locally strictly elliptic with ai j ∈ L∞(Rd) for all 1 ≤ i, j ≤ d.

Assume there is some p > d such that ai j ∈ H1,p
loc (Rd) for all 1 ≤ i, j ≤ d and that

|∇ρ| ∈ L p
loc(R

d). Consider the bilinear form (B, D) given by D = C∞
c (Rd) and

B( f, g) := (∇ f, A∇g)H =
∫

Rd
(∇ f (x), A(x)∇g(x))euc ρ(x) dx, f, g ∈ D.

Define further the linear operator (S, D) via

S f :=
d∑

i, j=1

ai j∂ j∂i f +
d∑

i=1

bi∂i f, f ∈ D,

where bi = ∑d
j=1(∂ j ai j + ai j

∂ jρ

ρ
) ∈ L p

loc(R
d), so that B( f, g) = (−S f, g)H . Then,

(S, D) is essentially self-adjoint on H.

Proof. Analogously to the proof of [12, Theorem 7], it can be shown that ρ is contin-
uous, hence locally bounded. Assume that there is some g ∈ H such that

∫

Rd
(S − I ) f (x) · g(x) · ρ(x) dx = 0 for all f ∈ D. (4.2)

Define the locallyfinite signedBorelmeasure ν via ν = gρ dx ,which is then absolutely
continuous with respect to the Lebesgue measure. By definition it holds that

∫

Rd

⎛

⎝
d∑

i, j=1

ai j∂ j∂i f +
d∑

i=1

bi∂i f − f

⎞

⎠ dν = 0 for all f ∈ D,

so by [11, Theorem 5.1], the density g · ρ of ν is in H1,p
loc (Rd) and locally Hölder

continuous, hence locally bounded. This implies g = gρ · 1
ρ

∈ L p
loc(R

d) ∩ L∞
loc(R

d)

and∇g = ∇(gρ) · 1
ρ

−(gρ)
∇ρ

ρ2 ∈ L p
loc(R

d). Hence, g ∈ H1,p
loc (Rd) is locally bounded,

and g · bi ∈ L p
loc(R

d) for all 1 ≤ i ≤ d. Therefore, we can apply integration by parts
to (4.2) and get for every f ∈ D:
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0 = −
d∑

i, j=1

(ai j∂i f, ∂ j g)H −
d∑

i=1

(∂i f, bi g)H +
d∑

i=1

(∂i f, bi g)H − ( f, g)H

= −
∫

Rd
(∇ f, A∇g)euc dμ − ( f, g)H .

(4.3)

Note that this equation can thenbe extended to all f ∈ H1,2(Rd)with compact support,
since p > 2 by definition. Now, letψ ∈ C∞

c (Rd) and set η = ψg ∈ H1,2(Rd), which
has compact support. The same then holds for f := ψη ∈ H1,2(Rd). Elementary
application of the product rule yields

(∇η, A∇(ψg))euc = (∇ f, A∇g)euc − η(∇ψ, A∇g)euc + g(∇η, A∇ψ)euc. (4.4)

From now on, for a, b : R
d → R

d , let (a, b) always denote the evaluation of the
Euclidean inner product (a, b)euc. By using (4.4) and applying (4.3) to f , we get

∫

Rd
(∇(ψg), A∇(ψg)) dμ +

∫

Rd
(ψg)2 dμ

=
∫

Rd
(∇η, A∇(ψg)) dμ +

∫

Rd
ηψg dμ

=
∫

Rd
(∇ f, A∇g) dμ −

∫

Rd
η(∇ψ, A∇g) dμ

+
∫

Rd
g(∇η, A∇ψ) dμ +

∫

Rd
f g dμ

= −
∫

Rd
ψg(∇ψ, A∇g) dμ +

∫

Rd
g(∇(ψg), A∇ψ) dμ

=
∫

Rd
g2(∇ψ, A∇ψ) dμ,

where the last step follows from the product rule and symmetry of A. Since A is locally
strictly elliptic, there is some c > 0 such that

0 ≤
∫

Rd
c(∇(ψg),∇(ψg)) dμ ≤

∫

Rd
(∇(ψg), A∇(ψg)) dμ

and therefore, it follows that
∫

Rd
(ψg)2 dμ ≤

∫

Rd
g2(∇ψ, A∇ψ) dμ. (4.5)

Let (ψn)n∈N be as in Definition 3.6. Then, (4.5) holds for all ψ = ψn . By dominated
convergence, the left part converges to ‖g‖2H as n → ∞. The integrand of the right
hand side term is dominated by d2C2M · g2 ∈ L1(μ), where C is from Def. 3.6 and
M := max1≤i, j≤d ‖ai j‖∞. By definition of the ψn , that integrand converges point-
wisely to zero as n → ∞, so again by dominated convergence it follows that g = 0
in H .
This implies that (S − I )(D) is dense in H and therefore, that (S, D) is essentially

self-adjoint. �
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Remark 4.6. The above theorem also holds for d = 1, as long as p ≥ 2. Indeed,
continuity of ρ follows from similar regularity estimates, see [12, Remark 2]. The
proof of [11, Theorem 5.1] mirrors the proof of [10, Theorem 2.8], where d ≥ 2
is used to apply [10, Theorem 2.7]. However, in the cases where it is applied, this
distinction is not necessary (since p′ < q always holds). Finally, the extension of
(4.3) requires p ≥ 2.

We use this result to prove essential m-dissipativity of the symmetric part (S, D)

of our operator L:

Theorem 4.7. Let H, D and the operator S be defined as in Sect. 3.1. Then, (S, D)

is essentially m-dissipative on H. Its closure (S, D(S)) generates a sub-Markovian
strongly continuous contraction semigroup on H.

Proof. Define the operator (S̃,C∞
c (Rd)) on L2(Rd , ν) by

S̃ f :=
d∑

i, j=1

ai j∂ j∂i f +
d∑

i=1

bi∂i f, f ∈ C∞
c (Rd).

The density ρ of ν wrt. the Lebesgue measure is given by ρ(v) = e−v2/2 = (e−v2/4)2.
Due to the conditions (Σ1), (Σ2) and either (Σ3) or (Σ3′), all assumptions from
Theorem 4.5 are fulfilled and therefore, (S̃,C∞

c (Rd)) is essentially m-dissipative in
L2(ν). Let g = g1 ⊗ g2 ∈ C∞

c (Rd) ⊗ C∞
c (Rd) be a pure tensor. Then, there is a

sequence ( f̃n)n∈N in C∞
c (Rd) such that (I − S̃) f̃n → g2 in L2(ν) as n → ∞. Define

fn ∈ D for each n ∈ N by

fn(x, v) := g1(x) f̃n(v).

Then,

‖(I − S) fn − g‖H = ‖g1 ⊗ ((I − S̃) f̃n − g2)‖H = ‖g1‖L2(e−Φ(x) dx) · ‖(I − S̃) f̃n − g2‖L2(ν),

which converges to zero as n → ∞. By taking linear combinations, this shows that
(I−S)(D) is dense inC∞

c (Rd)⊗C∞
c (Rd)wrt. the H -norm. SinceC∞

c (Rd)⊗C∞
c (Rd)

is dense in H , (S, D) is essentially m-dissipative and its closure (S, D(S)) generates
a strongly continuous contraction semigroup.
It can easily be shown that (S f, f +)H ≤ 0 for all f ∈ D. Parallelly to the proof

of (D7), it holds that 1 ∈ D(S) and S1 = 0. This together implies that (S, D(S)) is a
Dirichlet operator and the generated semigroup is sub-Markovian. �

4.3. Perturbation of the symmetric part for nice coefficients

Now,we extend the essentialm-dissipativity stepwise to the non-symmetric operator
L by perturbation. This follows and is mostly based on the method seen in the proof
of [15, Theorem 6.3.1], which proved that result for Σ = I .
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Since S is dissipative on D1 := L2
0(e

−Φ dx)⊗C∞
c (Rd) ⊃ D, the operator (S, D1) is

essentially m-dissipative as well. The unitary transformation T : L2(Rd , d(x, v)) →
H given by T f (x, v) = e

v2
4 + Φ(x)

2 f (x, v) leaves D1 invariant. This implies that the
operator (S1, D1) on L2(Rd , d(x, v)), where S1 = T−1ST , is again essentially m-
dissipative. Note that S1 is explicitly given by

S1 f =
d∑

i, j=1

ai j∂v j ∂vi f − 1

4
(v,Σv) f + 1

2
tr(Σ) f +

d∑

i, j=1

∂ j ai j (
vi

2
f + ∂vi f )

Now, consider the operator (ivx I, D1),which is dissipative asRe(ivx f, f )L2(Rd ,d(x,v))

= 0 for f ∈ D1. We show the following perturbation result:

Proposition 4.8. LetΣ satisfy (Σ3)withβ ≤ −1. Then, the operator (S1+ivx I, D1)

is essentially m-dissipative on L2(Rd , d(x, v)).

Proof. Define the orthogonal projections Pn via Pn f (x, v) := ξn(x) f (x, v), where ξn

is given by ξn = 1[n−1,n)(|x |), which leave D1 invariant. Then, the conditions for
Lemma 4.4 are fulfilled, and we are left to show the An-bounds. Note that due to the
restriction on β, there is some constant C < ∞ such that ∂ j ai j (v)vi ≤ C for all
1 ≤ i, j ≤ d, v ∈ R

d . For each fixed n ∈ N, it holds for all f ∈ PnD1:

‖ivx f ‖2L2 ≤ n2
∫

R2d
|v|2 f 2 d(x, v) ≤ 4c−1

Σ n2
∫

R2d

(v,Σv)

4
f 2 d(x, v)

≤ 4c−1
Σ n2

∫

R2d

(v,Σv)

4
f 2 + (∇v f,Σ∇v f ) d(x, v)

= 4c−1
Σ n2

∫

R2d

⎛

⎝−
d∑

i, j=1

ai j∂v j ∂vi f −
d∑

i, j=1

∂ j ai j∂vi f + (v,Σv)

4
f

⎞

⎠ f d(x, v)

= 4c−1
Σ n2

⎛

⎝(−PnS1 f, f ) +
∫

R2d

1

2
tr(Σ) f 2 +

d∑

i, j=1

∂ j ai j
vi

2
f 2 d(x, v)

⎞

⎠

≤ 4c−1
Σ n2

(
(−S1 f, f ) + (d2C + dMΣ

2
)‖ f ‖2L2

)
.

Hence, by Lemma 4.3, (ivx I Pn, PnD1) is S1Pn-bounded with Kato-bound zero. Ap-
plication of Lemma 4.4 yields the statement. �
Since C∞

c (Rd) ⊗ C∞
c (Rd) is dense in D1 wrt. the graph norm of S1 + ivx I , we

obtain essential m-dissipativity of (S1 + ivx I,C∞
c (Rd) ⊗ C∞

c (Rd)) and therefore
also of its dissipative extension (S1 + ivx I, D2) with D2 :=S (Rd) ⊗ C∞

c (Rd)),
whereS (Rd) denotes the set of smooth functions of rapid decrease on Rd . Applying
Fourier transform in the x-component leaves D2 invariant and shows that (L2, D2) is
essentially m-dissipative, where L2 = S1 + v∇x . Now, we add the part depending on
the potential Φ.

Proposition 4.9. Let Σ satisfy (Σ3) with β ≤ −1 and Φ be Lipschitz-continuous.
Then, the operator (L ′, D2) with L ′ = L2 − ∇Φ∇v is essentially m-dissipative on
L2(Rd , d(x, v)).
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Proof. It holds due to antisymmetry of v∇x that

‖∇Φ∇v f ‖2L2 ≤ ‖|∇Φ|‖2∞c−1
Σ

(
(∇v f,Σ∇v f )L2 +

(
(v,Σv)

4
f, f

)

L2
− (v∇x f, f )L2

)

≤ ‖|∇Φ|‖2∞c−1
Σ

(
(−L2 f, f )L2 + (d2C + dMΣ

2
)‖ f ‖2L2

)
,

analogously to the proof of Proposition 4.8, which again implies that the antisym-
metric, hence dissipative operator (∇Φ∇v, D2) is L2-bounded with bound zero. This
shows the claim. �

Denote by H1,∞
c (Rd) the space of functions in H1,∞(Rd) with compact support

and set D′ := H1,∞
c (Rd)⊗C∞

c (Rd). As (L ′, D′) is dissipative and its closure extends
(L ′, D2), it is itself essentially m-dissipative. The unitary transformation T from the
beginning of this section leaves D′ invariant, and it holds that T L ′T−1 = L on D′.
This brings us to the first m-dissipativity result for the complete Langevin operator:

Theorem 4.10. Let Σ satisfy (Σ3) with β ≤ −1 and Φ be Lipschitz-continuous.
Then, (L , D) with is essentially m-dissipative on H.

Proof. By the previous considerations, (L , D′) is essentially m-dissipative on H . Let
f ∈ D′ with f = g ⊗ h. It holds g ∈ H1,∞

c (Rd) ⊂ H1,2(Rd). Choose a sequence
(gn)n∈N with gn ∈ C∞

c (Rd), such that gn → g in H1,2(Rd) as n → ∞. Due to

boundedness of e−Φ and v je−v2/2 for all 1 ≤ j ≤ d, it follows immediately that
gn ⊗ h → f and L(gn ⊗ h) → L f in H as n → ∞. This extends to arbitrary f ∈ D′
via linear combinations and therefore shows that C∞

c (Rd) ⊗C∞
c (Rd) and hence also

D, is a core for (L , D(L)). �

4.4. Proof of Theorem 3.4

It is now left to relax the assumptions on Σ and Φ by approximation. Let the
assumptions of Theorem 3.4 hold and wlog Φ ≥ 0. For n ∈ N, we define Σn via

Σn = (ai j,n)1≤i, j≤d , ai j,n(v) := ai j

((
n

|v| ∧ 1

)
v

)
.

Then, each Σn also satisfies (Σ1)-(Σ3) with β = −1, since ∂kai j,n = ∂kai j on Bn(0)

and |∂kai j,n | ≤ (1+√
d)nLΣ,n
|v| outside of Bn(0), where LΣ,n denotes the supremum

of max1≤k≤d |∂kai j | on Bn(0). Let further ηm ∈ C∞
c (Rd) for each m ∈ N with

η = 1 on Bm(0) and set Φm = ηmΦ, which is Lipschitz-continuous. Define Hm as

L2(R2d , e− v2
2 −Φm (x) d(x, v)) and (Ln,m, D) via

Ln,m f =
d∑

i, j=1

ai j,n∂v j ∂vi f +
d∑

i=1

d∑

j=1

(∂ j ai j,n(v) − ai j,n(v)v j )∂vi f

+v · ∇x f − ∇Φm · ∇v f.



J. Evol. Equ. Essential m-dissipativity and hypocoercivity of Langevin dynamics Page 21 of 29 11

Then, Theorem 4.10 shows that for each n,m ∈ N, (Ln,m, D) is essentially m-
dissipative on Hm , and it holds that Ln,m f = L f for all f ∈ D on Bm(0) × Bn(0).
Note further that ‖ · ‖H ≤ ‖ · ‖Hm .
We need the following estimates:

Lemma 4.11. Let n,m ∈ N and Σn, Φm as defined above. Then, there is a constant
D1 < ∞ independent of n,m such that for each 1 ≤ j ≤ d, the following hold for all
f ∈ D:

‖v j f ‖Hm ≤ D1n
1+β
2 ‖(I − Ln,m) f ‖Hm ,

‖∂v j f ‖Hm ≤ D1n
1+β
2 ‖(I − Ln,m) f ‖Hm .

Proof. Recall the unitary transformations Tm : L2(R2d , d(x, v)) → Hm defined by

Tm f = e
v2
4 + Φm (x)

2 f , as well as the operator L ′
n,m = T−1

m Ln,mTm , and let f ∈ T−1
m D.

Then,

L ′
n,m f =

d∑

i, j=1

ai j,n∂v j ∂vi f − 1

4
(v,Σnv) f + 1

2
tr(Σn) f +

d∑

i, j=1

∂ j ai j,n(
vi

2
f + ∂vi f )

− v∇x f + ∇Φm∇v f.

Analogously to the proof of Proposition 4.8 and due to antisymmetry of v∇x and
∇Φm∇v on L2(d(x, v)), it holds that

‖v j Tm f ‖2Hm
= ‖v j f ‖2L2(d(x,v))

≤ 4c−1
Σ

∫

R2d

1

4
(v,Σnv) f 2 d(x, v)

≤ 4c−1
Σ

⎛

⎝(−L ′
n,m f, f )L2(d(x,v)) +

∫

R2d

f 2

2

⎛

⎝tr(Σn) +
d∑

i, j=1

∂ j ai j,nvi

⎞

⎠ d(x, v)

⎞

⎠ .

Since | tr(Σn)| ≤ | tr(Σ)| ≤ d · MΣ and

|∂ j ai j,n(v)vi | ≤ |∂ j ai j (v)| · |vi | ≤ max{BΣ, M · nβ+1} for all v ∈ Bn(0),

as well as

|∂ j ai j,n(v)vi | ≤ (1 + √
d)n |vi ||v| max1≤k≤d supy∈Bn(0) |∂kai j (y)|

≤ 2
√
dMnβ+1 for all v /∈ Bn(0),

and wlog BΣ ≤ M · nβ+1, it follows that

‖v j Tm f ‖2Hm
≤ 4c−1

Σ (−L ′
n,m f, f )L2(d(x,v))

+2c−1
Σ (dMΣ + 2d5/2Mnβ+1)‖ f ‖2

L2(d(x,v))
.

Further, it clearly holds that

(−L ′
n,m f, f )L2(d(x,v)) ≤ 1

4

(‖L ′
n,m f ‖L2(d(x,v)) + ‖ f ‖L2(d(x,v))

)2 and

‖ f ‖2L2(d(x,v))
≤ (‖L ′

n,m f ‖L2(d(x,v)) + ‖ f ‖L2(d(x,v))

)2
.
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Dissipativity of (L ′
n,m, T−1

m D) on L2(d(x, v)) implies

‖L ′
n,m f ‖L2(d(x,v)) + ‖ f ‖L2(d(x,v)) ≤ ‖(I − L ′

n,m) f ‖L2(d(x,v))

+2‖(I − L ′
n,m) f ‖L2(d(x,v)).

Overall, we get

‖v j Tm f ‖2Hm
≤ 2c−1

Σ (1 + 2(dMΣ + 2d5/2Mnβ+1))‖(I − L ′
n,m) f ‖2L2(d(x,v))

≤ 18c−1
Σ d3nβ+1 max{MΣ, M}‖(I − L ′

n,m) f ‖2L2(d(x,v))
.

Since

‖(I − L ′
n,m) f ‖2L2(d(x,v))

= ‖T−1
m (I − Ln,m)Tm f ‖2L2(d(x,v))

= ‖(I − Ln,m)Tm f ‖2Hm
,

this proves the first statement with D1 =
√
18c−1

Σ d3 max{MΣ, M}.
For the second part, note that ∂v j Tm f = Tm∂v j f + v j

2 Tm f and that

‖Tm∂v j f ‖2Hm
= (∂v j f, ∂v j f )

2
L2(d(x,v))

≤ c−1
Σ

∫

R2d
(∇v f,Σn∇v f )euc d(x, v)

≤ c−1
Σ

⎛

⎝(−L ′
n,m f, f )L2 +

∫

R2d

1

2
tr(Σn) f

2 +
d∑

i, j=1

∂ j ai j,n
vi

2
f 2 d(x, v)

⎞

⎠ .

Repeating all calculations of the first part yields

‖∂v j Tm f ‖Hm ≤
(
D1

2
+ D1

2

)
n1+β‖(I − Ln,m)Tm f ‖Hm .

�

Fix some pure tensor g ∈ C∞
c (Rd) ⊗ C∞

c (Rd). We prove that for every ε > 0,
we can find some f ∈ D such that ‖(I − L) f − g‖H < ε. This then extends to
arbitrary g ∈ C∞

c (Rd) ⊗ C∞
c (Rd) via linear combinations and therefore implies

essential m-dissipativity of (L , D) on H , since C∞
c (Rd) ⊗ C∞

c (Rd) is dense in H .
If β ≤ −1, then the proof is easier and follows analogously to the proof of of [15,
Theorem 6.3.1]. Therefore, we will assume β > −1. Recall that in this case, we have
|∇Φ(x)| ≤ N (1 + |x |γ ) for all x ∈ R

d , where γ < 2
1+β

, see the assumptions of
Theorem 3.4.
Denote the support of g by Kx × Kv , where Kx and Kv are compact sets in R

d .
By a standard construction, for each δx , δv > 0, there are smooth cutoff functions
0 ≤ φδx , ψδv ≤ 1 ∈ C∞

c (Rd) with supp(φδx ) ⊂ Bδx (Kx ), supp(ψδv ) ⊂ Bδv (Kv),
φδx = 1 on Kx , ψδv = 1 on Kv . Moreover, there are constants Cφ,Cψ independent
of δx and δv such that

‖∂sφδx ‖∞ ≤ Cφδ−|s|
x and ‖∂sψδv‖∞ ≤ Cψδ−|s|

v

for all multi-indices s ∈ N
d . Fix α such that 1+β

2 < α < 1
γ
. For any δ > 0, we set

δx := δα and δv := δ, and then define χδ(x, v) := φδx (x)ψδv (v) = φδα (x)ψδ(v).
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For f ∈ D, δ > 0, consider fδ := χδ f , which is an element of D, as χδ ∈ D.
Without loss of generality, we consider δ and hence δα sufficiently large such that
supp(φδα ) ⊂ B2δα (0), supp(ψδ) ⊂ B2δ(0) and that there are n,m ∈ N that satisfy

supp(φδα ) × supp(ψδ) ⊂ Bm(0) × Bn(0) ⊂ B2δα (0) × B2δ(0). (4.6)

The following then holds:

Lemma 4.12. Let g ∈ C∞
c (Rd) ⊗ C∞

c (Rd) and φ,ψ as above. Then, there is a
constant D2 < ∞ and a function ρ : R → R satisfying ρ(s) → 0 as s → ∞, such
that for any δ, n and m satisfying (4.6),

‖(I − L) fδ − g‖H ≤ ‖(I − Ln,m) f − g‖Hm + D2 · ρ(δ)‖(I − Ln,m) f ‖Hm

holds for all f ∈ D.

Proof. By the product rule,

‖(I − L) fδ − g‖H ≤‖χδ((I − L) f − g)‖H +
d∑

i, j=1

‖ai jφδα (x)∂ j∂iψδ(v) f ‖H

+ 2
d∑

i, j=1

‖ai jφδα (x)∂iψδ(v)∂v j f ‖H +
d∑

i, j=1

‖∂ j ai jφδα (x)∂iψδ(v) f ‖H

+
d∑

i, j=1

‖ai jv jφδα (x)∂iψδ(v) f ‖H +
d∑

i=1

‖vi∂iφδα (x)ψδ(v) f ‖H

+
d∑

i=1

‖∂iΦφδα (x)∂iψδ(v) f ‖H .

Due to the choice of n and m, every ‖ · ‖H on the right hand side can be replaced with
‖ · ‖Hm , ai j by ai j,n , and Φ by Φm , hence L by Ln,m .

We now give estimates for each summand of the right hand side, in their order of
appearance:

(1) ‖χδ((I − L) f − g)‖H ≤ ‖(I − Ln,m) f − g‖Hm ,
(2) ‖ai jφδα (x)∂ j∂iψδ(v) f ‖H ≤ MΣCψδ−2‖ f ‖Hm ,
(3) ‖ai jφδα (x)∂iψδ(v)∂v j f ‖H ≤ MΣCψδ−1‖∂v j f ‖Hm ,
(4) ‖∂ j ai jφδα (x)∂iψδ(v) f ‖H ≤ max{BΣ, M · (2δ)β∨0}Cψδ−1‖ f ‖Hm ,
(5) ‖ai jv jφδα (x)∂iψδ(v) f ‖H ≤ MΣCψδ−1‖v j f ‖Hm ,
(6) ‖vi∂iφδα (x)ψδ(v) f ‖H ≤ Cφδ−α‖vi f ‖Hm ,
(7) ‖∂iΦφδα (x)∂iψδ(v) f ‖H ≤ N (1 + (2δα)γ )Cψδ−1‖ f ‖Hm ,

where the last inequality is due to |∂iΦ(x)| ≤ N (1 + |x |γ ) for all x ∈ R
d and the

support of the cutoff as in (4.6). Application of Lemma 4.11 shows the existence of
D2 independent of n,m, such that

‖(I − L) fδ − g‖H ≤ ‖(I − Ln,m) f − g‖Hm + D2 · ρ(δ)‖(I − Ln,m) f ‖Hm
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where

ρ(δ) := δ−2 + 2
1+β
2 δ

1+β
2 −1 + 2β∨0δ(β∨0)−1 + 2

1+β
2 δ

1+β
2 −α + δ−1 + 2γ δαγ−1.

Clearly, ρ(δ) → 0 as δ → ∞ due to β < 1 and the definition of α. �

Now, finally we show that for each ε > 0, we can find some fδ ∈ D such that

‖(I − L) fδ − g‖H < ε.

Choose δ > 0 large enough such that ρ(δ) < ε
4D2‖g‖H (where ρ and D2 are provided

by Lemma 4.12) and that there exist n,m satisfying (4.6).
Then, choose f ∈ D via Theorem 4.10 such that ‖(I − Ln,m) f − g‖Hm <

min{ ε
2 , ‖g‖H } and define fδ as before. Note that due to the choice of the cutoffs,

it holds ‖g‖H = ‖g‖Hm , therefore

‖(I − L) fδ − g‖H <
ε

2
+ ε

4‖g‖Hm

(‖(I − Ln,m) f − g‖Hm + ‖g‖Hm ) < ε.

As mentioned earlier, this shows essential m-dissipativity of the operator (L , D) on
H and therefore concludes the proof of Theorem 3.4.

5. Applications

5.1. The associated Cauchy problem

We consider the abstract Cauchy problem associated with the operator L . Given the
initial condition u0 ∈ H , u : [0,∞) → H should satisfy

∂t u(t) = (tr (ΣHv) + b · ∇v + v · ∇x − ∇Φ · ∇v) u(t) and u(0) = u0. (5.1)

If we set u(t) := Ttu0, where (Tt )t≥0 is the semigroup on H generated by the closure
(L , D(L)) of (L , D), then the map t �→ u(t) is continuous in H . For all t ≥ 0, it
holds that

∫ t
0 u(s) ds ∈ D(L) with L

∫ t
0 u(s) ds = Ttu0 − u0 = u(t) − u0, hence, u

is the unique mild solution to the abstract Cauchy problem.
If u0 ∈ D(L), then u(t) ∈ D(L) for all t ≥ 0, and ∂t u(t) = LTtu0 = Lu(t), so u is

even a classical solution to the abstract Cauchy problem associated to L . In particular,
this holds for all u0 ∈ C2

c (R
d×d), since L is dissipative there and it extends D, which

implies C2
c (R

d×d) ⊂ D(L).
In this context, Theorem 1.1 shows exponential convergence of the unique solution

u(t) to a constant as t → ∞. More precisely, for each θ1 > 1 we can calculate
θ2 ∈ (0,∞) depending on the choice of Σ and Φ such that for all t ≥ 0,

∥∥∥∥u(t) −
∫

E
u0 dμ

∥∥∥∥
H

≤ θ1e
−θ2t

∥∥∥∥u0 −
∫

E
u0 dμ

∥∥∥∥
H

.
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5.2. Connection to Langevin dynamics with multiplicative noise

So far, our considerations have been purely analytical, giving results about the core
property of D for L and rate of convergence for the generated semigroup (Tt )t≥0 in
H . However, this approach is still quite natural in the context of the Langevin SDE
(1.1), as the semigroup has a meaningful stochastic representation. The connection
is achieved via the powerful theory of generalized Dirichlet forms as developed by
Stannat in [16], which gives the following:
Assume the context of Theorem 3.4. There exists a Hunt process

M = (
Ω,F , (Ft )t≥0, (Xt , Vt ), (P(x,v))(x,v)∈Rd×Rd

)

with state space E = R
d ×R

d , infinite lifetime and continuous sample paths (P(x,v)-
a.s. for all (x, v) ∈ E), which is properly associated in the resolvent sensewith (Tt )t≥0.
In particular (see [15, Lemma 2.2.8]), this means that for each bounded measurable f
which is also square-integrable with respect to the invariant measure μ and all t > 0,
Tt f is a μ-version of pt f , where (pt )t≥0 is the transition semigroup of M with

pt f : Rd × R
d → R, (x, v) �→ E(x,v) [ f (Xt , Vt )] .

This representation can be further extended to all f ∈ H , see for example [17, Exercise
IV.2.9].Moreover, ifμ-versions ofΣ andΦ are fixed, then P(x,v) solves themartingale
problem for L on C2

c (E) for L-quasi all (x, v) ∈ E , i.e., for each f ∈ C2
c (E), the

stochastic process (M [ f ]
t )t≥0 defined by

M [ f ]
t := f (Xt , Vt ) − f (X0, V0) −

∫ t

0
L f (Xs, Vs) ds,

is a martingale with respect to P(x,v). If h ∈ L2(μ) is a probability density with
respect to μ, then the law Ph := ∫

E P(x,v)h(x, v) dμ solves the martingale problem
for (L , D(L)), without the need to fix specific versions of Σ and Φ. In particular,
this holds for h = 1. As in [15, Lemma 2.1.8], for f ∈ D(L) with f 2 ∈ D(L) and
L f ∈ L4(μ), a martingale is also defined via

N [ f ]
t := (M [ f ]

t )2 −
∫ t

0
L( f 2)(Xs, Vs) − (2 f L f )(Xs, Vs) ds, t ≥ 0,

which may serve as a way to verify that M is already a weak solution of (1.1),
as it allows a representation of the quadratic variation process. Indeed, if we set
f in (x, v) := ϕn(xi )xi for a suitable sequence (ϕn)n∈N of cutoff functions as in Def-

inition 3.6, evaluation of N
[ f in ]
t shows that the quadratic variation [M [ f in ]]t of M [ f in ]

t is

constantly zero, which implies the same for M
[ f in ]
t . Hence, by introducing appropriate

stopping times, it follows that Xi
t − Xi

0 = ∫ t
0 V

i
s ds, so the first line of the SDE (1.1)

is satisfied.
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In an analogous procedure, using gin(x, v) := ϕn(vi )vi , we can see that the qua-
dratic covariation [V i , V j ]t is given by 2

∫ t
0 ai j (Vs) ds. Since Σ is strictly ellip-

tic, the diffusion matrix σ is invertible and by Lévy’s characterization, the pro-
cess Bt :=

∫ t
0

1√
2
σ−1(Vs) dMs is a standard d-dimensional Brownian motion, where

Mt := (M [v1]
t , . . . , (M [vd ]

t ), which is a local martingale. Moreover, it holds that

dVt = dMt + b(Vt ) − ∇Φ(Xt ) dt = √
2σ(Vt )dBt + b(Vt ) − ∇Φ(Xt ) dt,

so (Xt , Vt ) is a weak solution to the SDE (1.1) with initial distribution hμ under Ph .
Finally, in this context, the statement on hypocoercivity (Theorem 1.1) shows that

for every θ1 > 1, there is an explicitly computable θ2 ∈ (0,∞) depending on the
choice of Σ and Φ, such that the transition semigroup (pt )t≥0 satisfies

‖pt g −
∫

E
g dμ‖L2(μ) ≤ θ1e

−θ2t‖g −
∫

E
g dμ‖L2(μ) (5.2)

for all g ∈ L2(μ) and t ≥ 0. In particular, this implies that the probability law Pμ on
the space of continuous paths on E with initial distribution (and invariant measure)
μ has the strong mixing property, i.e., for any Borel sets A1, A2 on the path space, it
holds that

Pμ(ϕt A1 ∩ A2) → Pμ(A1)Pμ(A2) as t → ∞,

where ϕt A1 := {(Zs)s≥0 ∈ C([0,∞), E) | (Zs+t )s≥0 ∈ A1}. This follows from (5.2)
and associatedness of the semigroups to the probability law Pμ, see for example [15,
Remark 2.1.13].

5.3. Corresponding Fokker–Planck equation

In this part, we give a reformulation of the convergence rate result detailed in
Sect. 5.1 for readers which are more familiar with the classical Fokker–Planck formu-
lation for probability densities. In the current literature, Fokker–Planck equations are
more often expressed as equations on measures, rather than functions. For example,
in the non-degenerate case, exponential convergence in total variation to a stationary
solution is studied in [18], which includes further references to related works. Our
goal here, however, is simply to make the convergence result immediately applicable
to less specialized readers in the form of the estimate (5.4) for solutions to the Cauchy
problem associatedwith the operator defined in (5.3); hence, we stick to the expression
via probability densities.
Given a Kolmogorov backwards equation of the form −∂t u(x, t) = LKu(x, t), the

corresponding Fokker–Planck equation is given by ∂t f (x, t) = LFP f (x, t), where
LFP = (LK)′ is the adjoint operator of LK in L2(Rd , dx), restricted to smooth func-
tions. In our setting, LK = L produces via integration by parts for f ∈ D:

LFP f =
d∑

i, j=1

∂vi (ai j∂v j f + v j ai j f ) − v · ∇x f + ∇Φ∇v f. (5.3)
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Consider the Fokker–Planck Hilbert space H̃ := L2(E, μ̃), where

μ̃ := (2π)−
d
2 eΦ(x)+ v2

2 dx ⊗ dv.

Then, a unitary Hilbert space transformation between H and H̃ is given by

T : H → H̃ , Tg = ρg with ρ(x, v) := e−Φ(x)− v2
2 .

Let (Tt )t≥0 be the semigroup on H generated by (L , D(L)) and denote by (T ∗
t )t≥0

and L∗ the adjoint semigroup on H and its generator, respectively. It is evident that
for f ∈ D, L∗ is given as L∗ f = (S + A) f , where S and A refer to the symmetric
and antisymmetric components of L , respectively, as defined in Definition 3.2. As
mentioned in 3.11, we achieve the exact same results for the equation corresponding
to L∗ as for the one corresponding to L , which we considered in Sect. 3. In particular,
(L∗, D) is essentially m-dissipative and its closure (L∗, D(L∗)) generates (T ∗

t )t≥0,
which converges exponentially to equilibrium with the same rate as (Tt )t≥0.
Let T̃t g := T (T ∗

t )T−1g for t ≥ 0, g ∈ H̃ . Then, (T̃t )t≥0 is a strongly continuous
contraction semigroup on H̃ with the generator (T L∗T−1, T (D(L∗))). It is easy to
see that LFP = T L∗T−1, so for each initial condition u0 ∈ H̃ , u(t) := T̃t u0 is a
mild solution to the Fokker–Planck Cauchy problem. Note that for Φ ∈ C∞(Rd),
the transformation T leaves D invariant, which implies D ⊂ T (D(L∗)) and essential
m-dissipativity of (LFP, D) on H̃ .
If u0 ∈ T (D(L∗)), then

∂t T̃t u0 = T (L∗T ∗
t )T−1u0,

and therefore
∫

E
∂t u(t) f d(x, v) =

∫

E
L∗T ∗

t T
−1u0 f dμ =

∫

E
T ∗
t T

−1u0L f dμ

=
∫

E
T T ∗

t T
−1u0L f d(x, v) =

∫

E
LFPu(t) f d(x, v),

so u(t) is also a classical solution. Due to the invariance of μ for L , a stationary
solution is given by ρ and by Theorem 1.1, for every θ1 > 1 and the appropriate θ2 it
holds that

∥∥u(t) − ρ(u0, ρ)H̃

∥∥
H̃ =

∥∥∥T ∗
t T

−1u0 − (T−1u0, 1)H
∥∥∥
H

≤ θ1e
−θ2t

∥∥∥T−1u0 − (T−1u0, 1)H
∥∥∥
H

= θ1e
−θ2t

∥∥u0 − ρ(u0, ρ)H̃

∥∥
H̃ .

(5.4)

This shows exponential convergence to a stationary state for solutions to the Fokker–
Planck equation.
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