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Abstract
The simulation of Dynamic Random Access Memories (DRAMs) on system level

requires highly accurate models due to their complex timing and power behavior.

However, conventional cycle-accurate DRAM subsystem models often become a

bottleneck for the overall simulation speed. A promising alternative are simulators

based on Transaction Level Modeling, which can be fast and accurate at the same

time. In this paper we present DRAMSys4.0, which is, to the best of our knowledge,

the fastest and most extensive open-source cycle-accurate DRAM simulation

framework. DRAMSys4.0 includes a novel software architecture that enables a fast

adaption to different hardware controller implementations and new JEDEC stan-

dards. In addition, it already supports the latest standards DDR5 and LPDDR5. We

explain how to apply optimization techniques for an increased simulation speed

while maintaining full temporal accuracy. Furthermore, we demonstrate the simu-

lator’s accuracy and analysis tools with two application examples. Finally, we

provide a detailed investigation and comparison of the most prominent cycle-ac-

curate open-source DRAM simulators with regard to their supported features,

analysis capabilities and simulation speed.
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1 Introduction

Since today’s applications become more and more data centric, the role of Dynamic
Random Access Memory (DRAM) in compute platforms grows in importance due to

its large impact on the whole system performance and power consumption. Over the

last two decades, the number of DRAM standards specified by the JEDEC Solid
State Technology Association has been growing rapidly. Because of the large variety

of standards, system designers have to face the difficult task of choosing devices

that fit system requirements for performance, size, power consumption and costs

best. A short time to market aggravates this choice and creates the need for DRAM

simulation models that allow both fast and truthful design space exploration.

A DRAM subsystem is composed of a memory controller and memory devices.

Although the JEDEC standards define a framework of rules that apply to the order

and minimum timing between DRAM commands, the controller still has to take

many scheduling decisions. Different controller implementations exploit this

freedom in order to optimize for different metrics (e.g., latency, bandwidth, power).

Therefore, a DRAM subsystem simulation not only represents one specific JEDEC

standard, but also only one specific controller implementation. This simulation can

be performed on several levels of abstraction, each offering a certain trade-off

between speed and accuracy. Figure 1 provides an overview of common simulation

models.

Non-cycle-accurate models (right side) allow high simulation speeds but lack in

accuracy. The simplest, pure functional model of a DRAM subsystem is a fixed-

latency model [1]. This approach processes all request with the same constant

latency and all subsystem internals are omitted. However in reality, the latencies of

DRAM accesses reach from a dozen to several hundred cycles due to the complex

device architecture. Therefore, a pure functional model is ineligible for any

performance estimations. Cycle-approximate models try to mimic the latency

Fig. 1 Different DRAM simulation models
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behavior of real DRAM subsystems by utilizing e.g. statistical methods [2, 3] or

neural networks [4]. Unfortunately, their accuracy can vary greatly from simulation

to simulation, which makes them unsuitable for reliable performance estimations

and design space exploration, too.

Cycle-accurate DRAM simulation models (left side) provide full temporal

accuracy for reliable investigations, but usually take a lot more time to execute.

RTL descriptions of real DRAM controllers [5] can be simulated using a Discrete
Event Simulation (DES) kernel. State-of-the-art cycle-accurate DRAM simulators,

namely DRAMSim2 [6], DRAMsim3 [7], Ramulator [8] and DrSim [9], avoid the

overhead of a DES kernel and use a simple loop to represent clock cycles. In

addition, they do not model individual signals, which reduces the complexity and

allows faster modifications. However, all these simulation models evaluate every

single clock cycle, whether or not there are any state changes in the system. This

leads to a direct proportionality of consumed wall-clock time and simulated time,

while the memory access density only has a partial impact on wall-clock time (see

Sect. 5). Thus, when coupled with modern CPU simulators, the DRAM simulation

can become a bottleneck of the overall simulation speed [10].

To reach higher simulation speeds, many commercial simulation tools use

(TLM). This approach is also based on a DES kernel, however, neither individual

signals nor individual clock cycles have to be modelled. Processes are only

evaluated when state changes occur (see Sect. 2.1) and, as a result, the simulation

speed is only dependent on the memory access density. That way, TLM models can

surpass the speed of all abovementioned simulators significantly. Nevertheless, they

can also be developed to preserve full accuracy. The design space exploration

framework DRAMSys3.0 [11] provides a cycle-accurate DRAM subsystem model

based on the SystemC/TLM2.0 IEEE 1666 Standard [12]. Despite its frequent use in

research, DRAMSys3.0 has never been open sourced and does not support the latest

DRAM standards. gem5 [13], one of the most popular open-source full-system

simulators, uses a similar TLM concept to increase simulation speed. Major

drawback of its detailed DRAM model [14] is a close link to the DDR3 and DDR4

standards, which leads to a reduced accuracy for simulations with other JEDEC

standards as shown in [10].

To the best of our knowledge, there exists no DRAM simulator that is open

source, models the latest JEDEC standards with cycle accuracy, and performs

simulations at a speed sufficient for fast design space exploration.

Therefore, we introduce DRAMSys4.0, a completely revised version of

DRAMSys3.0 [11]. Besides its supports for the latest JEDEC standards (e.g.,

DDR5 and LPDDR5), it is optimized to achieve between 10� to 20� higher

simulation speeds compared to its predecessor and offers a largely extended toolbox

for analysis and validation. The framework is now also open sourced on GitHub.1

This paper is an extension of [15]. In addition to the original work, we show two

application examples that demonstrate the flexibility of DRAMSys4.0. The first

example is also used to evaluate the simulator’s accuracy against real hardware,

while the second one serves as a setup to compare the full-system performance

1 https://github.com/tukl-msd/DRAMSys
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impact of DDR5 to its predecessor DDR4. In both application examples the new

features of the Trace Analyzer are required for result interpretation. In summary,

this paper makes the following contributions:

– We present the novel software architecture of DRAMSys4.0, which enables high

simulation speeds as well as high flexibility for a fast adaption to different

DRAM controller implementations and fast expansion by new JEDEC standards.

– We demonstrate how RTL descriptions of DRAM controllers can be embedded

into the framework.

– We showcase the simulator’s flexibility by adapting its behavior to a real

hardware controller and expanding its models by the latest JEDEC standard

DDR5.

– We demonstrate how the graphical Trace Analyzer tool can be used to explain

and verify simulation results.

– We provide a detailed and fair comparison of the most prominent cycle-accurate

open-source DRAM simulators with regard to their features and simulation

speed.

The remaining paper is structured as follows: In Sect. 2 an overview of the

simulator and its features is given. The adaption and expansion examples are

presented in Sects. 3 and 4, respectively. Section 5 discusses related cycle-accurate

simulators, provides a detailed comparison among them, and presents cycle-

approximate approaches for DRAM simulation. Section 6 concludes the work.

2 Simulator Overview

In this section we introduce DRAMSys4.0, which is faster, more flexible, and more

comprehensive compared to its predecessor. More precisely, we present the

architecture and functionality, discuss optimizations to increase simulation speed,

explain the Trace Analyzer’s analysis features, and showcase the embedding of RTL

controllers.

2.1 Architecture and Functionality

DRAMSys2 uses the concept of TLM based on the SystemC/TLM2.0 IEEE 1666

Standard [12] for a fast and fully cycle-accurate, i.e., JEDEC compliant, simulation.

All components are designed as SystemC modules (sc_module) and connected by

TLM sockets. The simulator relies on the Approximately Timed (AT) coding style,

which defines a non-blocking four-phase handshake protocol.3 Four phases are

required to model the subsystem’s pipelined behavior and out-of-order responses to

the initiators. However, since a single memory access can translate into multiple

DRAM commands depending on the current device state (e.g., precharge (PRE) -

2 DRAMSys without a version number refers both to DRAMSys3.0 and DRAMSys4.0.
3 The TLM-AT base protocol consists of the phases BEGIN_REQ, END_REQ, BEGIN_RESP and

END_RESP.
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activate (ACT) - read (RD)/write (WR) for a row miss), four phases are not sufficient

to model the communication between controller and device with full temporal

accuracy. Therefore, a custom TLM protocol called DRAM-AT [16] with applica-

tion-specific phases is used to represent individual DRAM commands. These phases

allow a projection of the cycle-accurate DRAM protocol to TLM.

The rule of thumb for making cycle-accurate simulations fast is to reduce the

number of simulated clock cycles or events, respectively, and the executed control

flow overhead. Therefore, DRAMSys only evaluates clock cycles in which state

changes occur. Figure 2 shows an example for an ACT command and its timing

dependency4 tRCD to a following RD command. While a loop-based simulator would

evaluate ten clock cycles to issue both commands, DRAMSys only evaluates the

first one, notifies an event after tRCD, and directly evaluates the tenth clock cycle to

issue the RD command. All clock cycles in between are skipped and the simulation

time is advanced. Especially in scenarios where the memory access density is low,

this approach can lead to an enormous event reduction and a resulting simulation

speedup of several orders of magnitude (see Table 1 and Sect. 5) without losing

accuracy.

From an architectural point of view, DRAMSys4.0 consists of an arbitration and

mapping unit (short arbiter) as well as independent channel controllers and DRAM

devices for each memory channel, shown in Fig. 3. The arbiter cross-couples

multiple initiators and DRAM channels on the basis of a specified address mapping.

In addition, it can buffer several requests and responses to increase throughput and

to restore the original request order on the return path. The arbiter is followed by

independent channel controllers for each DRAM channel. They process incoming

requests by translating them into special commands depending on the devices’

current states and the simulated JEDEC standard. The connected DRAM devices

store transferred data and establish a coupling to power estimation tools

(DRAMPower [17]), thermal models (3D-ICE [18]) and retention time error

models.

The main architectural difference between DRAMSys4.0 and its predecessor is in

the simulator’s core component, the channel controller. DRAMSys4.0’s channel

controller architecture is inspired by various advanced RTL DRAM controller

implementations (e.g., [19, 20, 5]). As shown in Fig. 4, it is composed of a

scheduler, bank-granular bank machines, rank-granular refresh managers and

power-down managers, a command multiplexer, a response queue and a timing

checker. Since SystemC is based on the object-oriented C?? programming

language, all components can be designed polymorphically, which allows different

policies to be implemented. This is used to simulate different JEDEC standards and

channel controller versions without requiring a recompilation of the tool or creating

additional control flow (see Sect. 2.2). In addition, the predefined interfaces

simplify and speed up the integration process of new features. An overview of all

supported policies and JEDEC standards is provided in Table 4 in Sect. 5.

The scheduler buffers incoming requests in a configurable queue architecture and

reorders them based on the implemented scheduling policy. After selecting one

4 Timing dependencies are temporal constraints that must be satisfied between issued DRAM commands.
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request, it is forwarded to the target bank machine, which keeps track of the

associated bank’s state and issues a sequence of commands to serve this request.

Similar to the scheduler, the bank machines support various page policies [14] to

improve the bandwidth, latency and power consumption of different workloads by

automatically precharging the accessed row in some cases. Since DRAMSys4.0

models the timing, power, thermal and error behavior of DRAM devices in full

detail, the channel controller also regularly issues refresh commands and triggers

power-down operation during idle phases. These tasks are taken over by refresh

managers and power-down managers. Both components are designed polymorphi-

cally as well to represent different refresh and power-down policies. To find the

earliest possible time for issuing a command to the DRAM while satisfying all

timing dependencies, bank machines, refresh managers and power-down managers

invoke the timing checker. On the basis of the whole command history and

information extracted from the simulated JEDEC standard, the timing checker

determines this point in time. Since the timing dependencies differ from standard to

standard, DRAMSys4.0 uses a separate checker for each of them. If more than one

bank machine, refresh manager or power-down manager want to issue a command

in the same clock cycle, a conflict arises because of the shared command bus. The

command multiplexer resolves this conflict by prioritizing one of them (e.g., earliest

request first or round robin among ranks/banks). As last component the channel

Fig. 2 TLM implementation of the ACT command [16]

Fig. 3 Architecture of DRAMSys4.0
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controller includes a response queue to buffer responses for a transport back to the

arbiter.

2.2 Optimization of Simulation Speed

To further increase the simulation speed of DRAMSys while maintaining its

accuracy, several optimizations have been performed during the revision. As stated

earlier, simulations can be sped up by reducing the number of simulated clock

cycles or events, respectively, and the executed control flow overhead. Although the

used TLM concept ensures a minimum of evaluated clock cycles, multiple events

may still be fired in the same cycle that trigger separate processes or the same

process several times. This mechanism is usually needed to model hardware

concurrency. While DRAMSys3.0’s channel controller internally used three event-

triggered processes, the new channel controller only needs a single event-triggered

process to represent all functionality. It manages the communication and transfer of

data between all internals. Table 1 shows the resulting event reduction for

exemplary memory traces of the MediaBench benchmarks [21] simulated with a

DDR3 DRAM (1 GB DDR3-1600, single channel, single rank, row-bank-column

address mapping, FR-FCFS scheduling, open-page policy, run on an Intel Core i9

with 5 GHz). The simulations were performed with a disabled refresh mechanism to

highlight the correlation between number of requests and events. The table also

shows the large difference between total number of clock cycles and simulated

events.

By means of the polymorphic software architecture, DRAMSys4.0 is capable of

modeling different JEDEC standards and channel controller implementations

without introducing any additional control flow that is executed frequently during

the simulation and, thus, slows it down. Moreover, processing-intensive string

manipulations for the creation of debug messages or log files can be completely

removed in the revised version if they are not required. The gained simulation

speedup with disabled refresh mechanism for the MediaBench benchmarks is also

shown in Table 1, more speedup results will be presented in Figure 10 in Sect. 5.1.

Fig. 4 Channel controller
architecture
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2.3 Trace Analyzer

To offer advanced analysis capabilities for DRAM subsystem design space

exploration and not only performance-related outputs to the console or a text file,

DRAMSys provides the Trace Analyzer. This component has also been completely

revised and lots of new features have been added. During a simulation, all TLM

transactions of the channel controller can be recorded in an SQLite trace database.

Afterwards, this database can be visualized and evaluated with the Trace Analyzer.

It illustrates a time window of requests, DRAM commands and the utilization of

individual banks as shown in Fig. 5. Since the view is fully customizable like a

Fig. 5 Program interface of the Trace Analyzer [11]

Table 1 Event reduction and total speedup for MediaBench benchmarks [21]

Benchmark Memory Clock Simulated events Event Total

Requests Cycles v3.0 v4.0 Reduction (%) Speedup

h263decode 9867 142185273 49904 36258 27.34 9.22

g721encode 14655 152283166 65528 48900 25.38 8.98

g721decode 19350 171781365 91828 70171 23.58 9.73

gsmdecode 19734 42213726 93520 71158 23.91 9.07

c-ray-1.1 21627 132918262 119660 85124 28.86 10.12

fractal 33895 64184959 228184 156697 31.33 11.15

jpegdecode 43143 19675438 196408 148407 24.44 9.23

mpeg2decode 72043 97603461 374848 272235 27.37 10.01

unepic 129145 10557869 718716 536878 25.30 10.02

jpegencode 173995 39209690 769872 580929 24.54 9.35

epic 182957 55148722 940708 698595 25.74 9.80

mpeg2encode 616935 798646158 3457084 2522754 27.03 9.98

h263encode 858099 526757549 4312932 3148787 26.99 9.35
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wave viewer, also large subsystems with dozens or hundreds of banks can be

analyzed. Exploiting the power of SQL, both recording and requesting data happens

quickly, enabling a user-friendly handling and a smooth navigation through the

whole trace with millions of requests and associated DRAM commands.

Traces can also be evaluated with the provided Python interface of the Trace

Analyzer. Different metrics are described as formulas consisting of SQL statements

and can be customized or extended to the user’s needs. Predefined metrics are for

instance memory utilization (bandwidth), average response latency or exploited

bank parallelism.

In addition to the request visualization and Python interface, memory bandwidth,

scheduling buffer utilization and power are plotted over time. More insights into the

channel controller can also be gained with the provided latency histogram. The

histogram serves as an important metric to compare the behavior and performance

of different controller implementations, containing much more information than

simple numbers like average bandwidth or average response latency. One especially

helpful feature of the Trace Analyzer is the timing dependency analysis. For each

issued DRAM command the longest timing dependency and associated root

command that caused the delay can be displayed. Statistics about the frequency of

different timing dependencies are provided as well. This helps system designers to

find and eliminate limiting factors of the subsystem.

2.4 Embedding of RTL Controllers

In addition to the simulation of DRAM subsystems based on the high-level TLM

channel controller, DRAMSys4.0 offers the possibility to embed cycle-accurate

RTL channel controller models into the framework. This allows the validation and

analysis of hardware with the framework’s provided tools (see Section 2.3) without

any manual translation to a higher abstraction level. As an example, the Verilog

description of the DDR3 channel controller presented in [5] was auto-translated into

an equivalent SystemC RTL model by the Verilator tool5. To convert TLM

transports from arbiter and DRAM devices into associated RTL signals (including a

clock signal, which is not present in DRAMSys) and vice versa, a special transactor

module is wrapped around the RTL design.

Just like a TLM simulation, an RTL simulation can be accelerated by skipping

unnecessary events, see, e.g., [22]. Similar to the idea of clock gating in real circuits

for power saving, turning off the clock signal during idle phases of an RTL

simulation saves a lot of simulation events since clock signals have high event

generation rates. Thus, the so-called clock suppression can tremendously speed up a

simulation without changing its results. We adopted this technique for the

embedded RTL simulation. However, since the refresh counter of the RTL channel

controller is not incremented by a suspended clock any more, its state has to be

saved externally in the transactor module before suspending the clock and an event

has to be notified at the time the next refresh command should be scheduled. When

this event is fired or a new request arrives, the internal refresh counter is updated to

5 https://www.veripool.org/projects/verilator/
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the proper value and the clock is resumed. Additional modifications to the RTL are

not required.

Figure 6 shows the speedups achieved by TLM and clock-suppressed RTL for

artificial traces with random access patterns and varying access densities (accesses

per clock cycle) normalized to the plain RTL channel controller model (1 GB

DDR3-1600, single channel, single rank, row-bank-column address mapping, FCFS

scheduling, open-page policy, run on an Intel Core i9 with 5 GHz). For high

densities the clock suppression mechanism does not bring an advantage because the

controller never turns idle and no cycles can be skipped. Instead, it creates a very

small computational overhead. With decreasing densities the idle time increases and

the speedup rises to a factor of 40. At this point it saturates because refresh

commands have to be issued regularly also during idle phases (self-refresh operation

is not supported by the RTL controller). The TLM model achieves an even higher

speedup across the entire range, which is of factor 3 for high access densities and

rises to a factor of 4000 for low densities (self-refresh operation of the TLM model

was disabled for a fair comparison). This is mainly a result of the higher abstraction

level that does not model individual signals, thus saving lots of events.

3 TLM Controller Adaption to Real Hardware

For a design space exploration framework like DRAMSys4.0 a high configurability

and flexibility is essential not only to find the optimal subsystem configuration, but

also to adapt the software model to existing hardware implementations as fast and

closely as possible. That way, the faster TLM controller can be used for simulation

in place of the slower RTL to accelerate the system design process, enabling a

shorter time to market and reduced costs. As an example, we demonstrate the

adaption of our TLM controller to the hardware controller implementation that was

embedded into DRAMSys4.0 in Sect. 2.4.

The reference RTL is an open-source DDR3 controller optimized for low power

and low latencies. Internally, it is equipped with bank-granular request buffers and a

Fig. 6 Simulation speedups normalized to RTL channel controller
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FIFO scheduler. The translation from incoming addresses to rows, banks and

columns can be determined separately for each address bit. Refresh commands are

neither postponed nor pulled in, and row precharges are always initiated with a

separate precharge command (open-page policy). To reduce power and enable

operation at high data rates also with slower logic nodes, the frequency ratio

between controller and physical layer is 1:4, i.e., one controller clock cycle

corresponds to four clock cycles on the command/address and data bus. New

requests can only be accepted every fourth DRAM clock cycle, which, however, is

still sufficient to utilize the full memory bandwidth because one DDR3 burst

transfer also takes four clock cycles. Additional delays on the command bus are

avoided by filling up four upcoming slots in each controller clock cycle. The

minimum delay from an incoming request to an associated command being issued

by the controller is three clock cycles. Similar to DRAMSys4.0, the RTL also uses a

command multiplexer, but with a slightly different prioritization policy.

Nearly all specifications of the reference RTL can be directly configured in

DRAMSys4.0. Major differences that remain are the 1:4 frequency ratio, which is

fixed to 1:1 in DRAMSys4.0, and the exact command multiplexer implementation.

By introducing small source code adjustments (i.e., less than 25 lines of code and

one man-day of work), we are also able to reproduce these behaviors almost

identically. To evaluate the accuracy, the Mediabench benchmarks [21] from

Sect. 2.2 are simulated on the (1) RTL controller, (2) TLM controller without

source code changes (called ‘‘unadjusted’’) and (3) TLM controller with small

source code changes (called ‘‘adjusted’’). Table 2 contains the simulation results for

average bandwidth without idle phases and average response latency evaluated with

Table 2 Bandwidth and latency comparison of (1) RTL, (2) unadjusted TLM and (3) adjusted TLM

controller for MediaBench benchmarks [21]

Benchmark Avg. bandwidth w/o idle [Gib/s] Avg. response latency [ns]

(1) (2) (3) (1) (2) (3)

h263decode 12.43 ? 6.89% ? 2.17% 117.8 - 1.02% ? 1.36%

g721encode 9.42 ? 4.86% ? 1.23% 63.6 - 5.03% - 1.10%

g721decode 11.88 ? 4.03% ? 0.93% 66.9 - 3.89% - 0.60%

gsmdecode 15.69 ? 1.94% ? 0.83% 229.7 - 0.74% ? 0.22%

c-ray-1.1 11.78 ? 5.34% ? 1.65% 97.2 - 1.54% ? 0.62%

fractal 10.38 ? 5.32% ? 1.01% 90.3 - 5.43% - 2.55%

jpegdecode 16.03 ? 1.06% ? 0.71% 305.5 ? 0.13% ? 0.69%

mpeg2decode 11.70 ? 6.38% ? 1.09% 81.3 - 6.03% - 2.09%

unepic 13.08 ? 4.05% ? 0.66% 197.1 - 0.96% ? 0.20%

jpegencode 10.53 ? 8.13% ? 1.68% 83.8 - 6.44% - 2.03%

epic 11.78 ? 6.36% ? 1.16% 116.3 - 3.27% - 0.86%

mpeg2encode 13.07 ? 4.77% ? 0.83% 118.9 - 2.52% - 0.42%

h263encode 14.02 ? 4.28% ? 1.12% 120.4 - 1.91% ? 0.17%
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the Trace Analyzer’s Python interface. The numbers of the RTL controller are

presented absolute while the numbers of the TLM controllers are shown as relative

deviations from the reference model.

In terms of average bandwidth the adjusted TLM always achieves a higher

accuracy compared to the unadjusted TLM with an average absolute deviation of

1.2% compared to 4.9%. In terms of average response latency the results are similar

(1.0% compared to 3.0%) except for h263decode and jpegdecode where the

unadjusted TLM controller actually outperforms the adjusted one. It should be

noted, however, that averaged metrics have to be treated with caution. Negative and

positive deviations cancel each other out, and even a fixed-latency model (see

Sect. 1) can be tuned to the reference RTL behavior in a way that it shows the same

average bandwidth and response latency. For that reason, the accuracy is also

investigated using the new response latency histograms of the Trace Analyzer (see

Sect. 2.3). Due to space limitations, we only present histograms of the two

aforementioned benchmarks in Fig. 7, noting that all other benchmarks show even

smaller deviations.

(a) (b)

(c) (d)

Fig. 7 Exemplary response latency histograms of RTL vs. unadjusted TLM and RTL vs. adjusted TLM
controller for MediaBench benchmarks [21]
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In general, both the unadjusted and the adjusted TLM come close to the reference

RTL from a response latency perspective, which reinforces the results in Table 2.

The unadjusted TLM model has one large mismatch for the bin between 50 ns and

60 ns, which is caused by the 1:1 clocking that allows new requests to be

acknowledged in each clock cycle and not only in every fourth clock cycle. Apart

from that, we also see slight deviations of both TLM models for latencies above

300 ns. They result from the exact placement of refresh commands, which is

handled less strictly in the reference RTL and has not been adjusted for the sake of

simplicity. This leads to a transaction-wise mean relative error in response latency

across all benchmarks of 9.75% and 6.12% for the unadjusted and adjusted TLM

controller, respectively. When disabling refresh, the adjusted version even achieves

an error of less than 1%. In summary, the section proves that DRAMSys4.0 can be

closely adapted to reference RTL controller implementations with minimal effort,

enabling both fast and accurate simulations at the same time.

4 Simulator Expansion by DDR5

Since DRAMSys4.0 is a framework especially used in early design phases for the

exploration of new JEDEC standards, it is crucial to enable a fast expansion. As

JEDEC has published the latest DRAM standard DDR5 just recently, we

demonstrate the simulator’s expandability by integrating the new standard. The

framework is then also used for a full-system performance comparison to the

predecessor standard DDR4.

4.1 The DDR5 Standard

Before the new standard is integrated, the most significant differences to its

predecessor DDR4 are outlined. DDR5 raises the maximum interface data rate from

3200 MT/s to 6400 MT/s, effectively doubling the maximum theoretical memory

bandwidth per data pin. A further increase to 8400 MT/s is planned in the future.

DIMMs are now composed of two independent 32-bits-wide channels instead of

one 64-bits-wide channel. This way the internal prefetch can be doubled to support

the increased interface speeds without doubling the amount of transferred data per

burst access from 64 bytes to 128 bytes. Higher interface speeds also require a

higher bank parallelism to keep the sustainable bandwidth up. Therefore, the

number of banks per device rises from 16 to 32, while the maximum capacity of a

device rises from 16 Gb to 64 Gb. In addition, up to 16 dies can be stacked to form

a three-dimensional device with so-called logical ranks (to distinguish them from

physical ranks, which are distributed over a DIMM).

One problem that always comes with higher storage capacities is the increased

refresh overhead, which can lead to significant performance drops. To overcome

this problem, DDR5 introduces a new refresh mode called same-bank refresh
(REFsb) as an alternative to the conventional all-bank refresh (REFab). When

using same-bank refresh commands, only a quarter of all banks is blocked at a time,

while all other banks can still process requests. Finally, DDR5 offers special refresh
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management commands (RFMab/RFMsb) to prevent row hammer attacks. They

have to be issued by the controller when the number of row activations between to

refreshes exceeds a certain bank-granular threshold.

4.2 Expansion Steps

The expansion of DRAMSys4.0 by a new JEDEC standard starts with the creation

of a new timing checker. In comparison to DDR4 the overall number of timing

dependencies increases significantly because of new commands (REFsb/RFMab/
RFMsb) and the distinction between logical and physical ranks. Nevertheless, the

creation does not take significantly more time because the source code can be

generated automatically and error free from a high level domain-specific language

description called DRAMml [23, 15]. Two channels per DIMM can be modeled with

two separate channel controllers and do not require any adjustments. Specifications

of different speed grades, device sizes and rank combinations translate into

configuration files that are loaded at the start of a simulation.

The most challenging innovation DDR5 comes with is same-bank refresh and

refresh management. Same-bank refresh requires a new refresh manager imple-

mentation besides the existing all-bank refresh manager, which is much more

complex. To minimize any negative impact on bandwidth and latency, refresh

commands should be issued preferably to idle banks. While all-bank refresh targets

all banks at once and has no room for optimizations, the target banks of a same-bank

refresh command are selectable to some extent. However, the flexibility is limited

because all banks have to be refreshed once before one bank can be refreshed for a

second time. During phases of high DRAM activity, the controller is also allowed to

postpone a number of refresh commands to a later point in time. Refresh

management brings an additional level of complexity. The manager has to track the

number of activate commands to each bank and issue refresh management

commands between regular refreshes if a certain threshold is exceeded. Although

this behavior has to be modeled as a large state machine, it requires only 300 lines

of code and is much less complex compared to a real hardware implementation.

All in all, the whole expansion was performed in about two man-weeks, allowing

system designers to generate first simulation results almost immediately after the

release of the new standard and long before any hardware is available.

4.3 Evaluation

As a last step, the new simulation model is used to compare the performance of

DDR5 and DDR4. In [24] it was already shown that in terms of maximum

sustainable bandwidth a memory subsystem based on the new standard always

outperforms a memory subsystem based on the predecessor. However, the

performance of a full system is a far more important metric, since a high

sustainable memory bandwidth does not necessarily lead to a high system

performance and vice versa. Parameters like average and maximum memory

latency play an essential role, too. Therefore, this evaluation focuses on the full-

system performance in terms of processor Instructions Per Cycle (IPC) that can be
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achieved with DDR5 and DDR4 memory subsystems. The following sections

describe the experimental setup and present the simulation results, which are

summarized into several key observations afterwards.

4.3.1 Experimental Setup

To generate system performance results we couple DRAMSys4.0 to the latest

version of gem5 [25], which is one of the most popular open-source computer

architecture simulators and a state-of-the-art tool for performance evaluations.

Although gem5 is not based on SystemC/TLM2.0, it can be coupled to TLM-based

memory subsystems using special translation modules [26]. That way the gem5

main memory model can be replaced with DRAMSys4.0 for DDR5 simulations,

which are not yet supported by the tool natively.

Unfortunately, gem5’s detailed processor models have one major drawback:

simulation speed. Booting a Linux kernel can already take hours, and quite often

benchmarks run for several days or weeks [27]. To avoid such long simulation times

with only losing minimal accuracy we make use of prerecorded elastic traces [28].

Unlike fixed memory traces they capture data and load/store order dependencies by

instrumenting gem5’s detailed out-of-order processor model for recording. After-

wards, they can be played back on a special TraceCPU model with different cache

and main memory subsystems, achieving both high simulation speeds and a high

simulation accuracy at the same time. This approach perfectly fits our needs for the

evaluation. We select elastic traces of five example applications from the High-
Performance Computing (HPC) domain: DGEMM [29], HPCG [30], GUPS [29],

FFT [31] and Linpack [32]. The performance is evaluated based on the single-core

IPC of an ARM processor at 2 GHz and 4 GHz and the multi-core IPC at 2 GHz.

The processor is coupled to DDR4 and DDR5 memory subsystems with different

speed grades. Table 3 contains detailed information about the system setup.

Table 3 System setup for evaluation

Processor ARM ISA, 16/16-entry load/store buffers, 40-entry ROB,

1 core @ 2 GHz/4 GHz, 4 cores @ 2 GHz

Caches per-core L1-I cache: 48 kB, 3-way set associative,

per-core L1-D cache: 32 kB, 2-way set associative,

shared L2 cache: 2 MB for each core, 16-way set associative

Channel controller 32/32-entry read/write request queues,

FR-FCFS scheduling [33], open-page policy

DDR4 memory 32 GB, distributed over 1 channel, 2 ranks per channel,

16 banks per rank, all-bank refresh,

speed grades 1600, 2400, 3200

DDR5 memory 32 GB, distributed over 2 channels, 2 ranks per channel,

32 banks per rank, same-bank refresh,

speed grades 3200, 4000, 4800, 5600, 6400
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4.3.2 Simulation Results

The simulation results for all benchmarks are presented in Figure 8. To show the

relative performance improvement that is achieved with faster DDR4 speed grades

and different DDR5 speed grades the IPC is normalized to the slowest memory

(DDR4-1600). At first sight the results can be grouped into three categories. (1) For

DGEMM and HPCG (Figure 8a and 8b) DDR4 slightly outperforms DDR5 in

single-core IPC at 2 GHz (up to 8% difference). (2) For GUPS and FFT (Figures 8c

and 8d) the results are the other way round, i.e., DDR5 slightly outperforms DDR4

in single-core IPC at 2 GHz (up to 10% difference). (3) For Linpack (Figure 8e) the

IPC is almost independent of the selected memory subsystem. Furthermore, the

results of DDR5 are particularly bad at a higher CPU frequency (4 GHz), where it

loses up to 11% in IPC over DDR4 for HPCG, while it performs especially well in

the multi-core case, gaining up to 14% in IPC over DDR4 for GUPS. In order to

understand these results we have to take a look at the average memory bandwidth of

the benchmarks using the Trace Analyzer’s metrics.

(a) (b) (c)

(d) (e)

Fig. 8 Processor IPC for HPC benchmarks
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For Linpack the average memory bandwidth is less than 1% of the maximum

theoretical bandwidth6 in all test cases. This explains why the results are

independent of the selected memory subsystem: the application accesses memory

only very rarely, thus its performance is barely influenced by the access delays. For

all other applications the average memory bandwidth varies between 5% for FFT

with DDR4-1600 and up to 11.5% for HPCG with DDR4-1600 executed on a single

core. With four cores active these values approximately multiply by four. Although

in theory the fastest DDR5 device (DDR5-6400) can achieve double the bandwidth

of the fastest DDR4 device (DDR4-3200), DDR5 outperforms DDR4 for the FFT

benchmark with a lower average bandwidth and loses out against DDR4 for HPCG

when more bandwidth is required. This shows us that apparently the average

memory bandwidth is not the only parameter that influences the results. To find the

actual reason, the memory access patterns and bandwidth distribution over time

have to be investigated. At this point the Trace Analyzer’s new plots pay off.

HPCG and DGEMM distribute all memory accesses evenly over time (see Fig. 9

blue curve). Even the slowest memory subsystem DDR4-1600 can handle the

requests one after another, they neither overlap nor influence each other. FFT and

GUPS show different access schemes, which are mixtures of high-bandwidth and

idle segments (see Fig. 9 orange curve). These applications require a lot of data at

once, but not during the whole runtime. Since DDR5 is optimized for higher

bandwidths, it outperforms DDR4 in those cases. The reason why DDR4 actually

performs better than DDR5 for HPCG and DGEMM can be attributed to the

minimum memory access latency: besides the increase in bandwidth, DDR5 also

comes with increased access latencies over DDR4, which are caused by the

hardware shrinking, higher bank count and increased burst length [34, 35]. After

calculating the average memory access latency for DGEMM and HPCG with the

Trace Analyzer metrics, we observe that accesses to DDR4 are already completed

after around 32 ns, while accesses to DDR5 take around 38 ns. This results in more

waiting cycles for the processor and a lower IPC count. Higher speed grades slightly

reduce the latency, but its major part is independent of the speed grade.7 Similar

observations have already been made when DDR4 was compared to its predecessor

DDR3 [36].

Using this background information, we are now also able to explain the results

for a higher CPU frequency and for the multi-core simulations. At a higher CPU

frequency the memory requests move closer together. For DGEMM and HPCG all

DDR4 memories can still handle the requests fast enough and keep the IPC up due

to their low latency. In contrast, the higher latency of DDR5 has an even bigger

negative impact on the IPC because with a higher frequency the number of waiting

cycles in the processor increases. For the multi-core simulations the requests do not

move closer together, but multiple memory requests arrive at the same time. As we

6 The maximum theoretical memory bandwidth is calculated as the product of DRAM interface width

and DRAM interface speed. For a single channel of DDR4-1600 the maximum theoretical bandwidth is

64 bit � 1600MT=s ¼ 12:8GB=s.
7 A higher speed grade only reduces the time it takes to transfer the data over the interface. Delays for

precharging and activating banks or for transferring data from the DRAM core to the interface are

independent of the speed grade.
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have already observed previously, DDR5 is optimized for high-bandwidth segments

and achieves even more performance compared to DDR4.

One last subject to look into is the actual impact of higher speed grades on the

system performance. For the latency-critical benchmarks (DGEMM and HPCG) we

see an improvement with higher speed grades both for DDR4 (up to 8%) and DDR5

(up to 3%). It is achieved because the burst duration decreases, whereby the

minimum memory latency becomes shorter. However, when we double the interface

frequency from DDR4-1600 to DDR4-3200 or from DDR5-3200 to DDR5-6400,

respectively, the latency only changes by 2.5 ns in both cases, which is small

compared to the overall latency of 32 ns for DDR4 and 38 ns for DDR5 that we

have measured before. For the bandwidth-critical benchmarks (GUPS and FFT) the

result impact is a lot smaller, although the maximum theoretical bandwidth is

directly proportional to the interface frequency. This highlights that DDR5 gains its

performance over DDR4 not from faster interface speeds, but mainly from the new

architecture with two separate memory channels, an increased amount of memory

banks and the same-bank refresh mechanism, which allows the handling of more

requests in parallel. Faster interface speeds only pay off when systems max out the

upper bandwidth limits (e.g., data-flow dominated applications or high processor

core counts). One important parameter that is not taken into consideration in this

evaluation, but also has to be kept in mind, is the out-of-order capability of each

application, i.e., if memory access latencies can be hidden by performing

subsequent operations in the meantime. This parameter might also shift the results

in both directions.

4.3.3 Key Observations

To conclude this section, we sum up the key observations of our evaluation:

– DDR4 outperforms DDR5 for system configurations with low memory

bandwidth requirements due to its lower latency.

– DDR5 outperforms DDR4 for system configurations with high memory

bandwidth requirements because of the DRAM architecture changes.

Fig. 9 Bandwidth over time behavior of DGEMM and FFT for DDR4-1600
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– Higher speed grades mostly pay off when system configurations exhaust the

upper memory bandwidth limits.

5 Related Work

This section provides a comparison among the most prominent open-source cycle-

accurate DRAM simulators and introduces approaches for the cycle-approximate

modeling of DRAM subsystems.

5.1 Cycle-Accurate Simulators

As stated in the introduction, there are several publicly-available cycle-accurate

DRAM simulators. Table 4 compares all of them, including DRAMSys3.0 and

DRAMSys4.0. For simplicity, we only focus on DRAM standards specified by

JEDEC since they are the most relevant ones for system developers.

DRAMSys3.0, DRAMSim2 and DrSim were already developed several years

ago but never updated over time, thus supporting only older standards and making

them unsuitable for most current system developments. DRAMSys4.0, DRAMsim3,

Ramulator and the gem5 DRAM model are all updated from time to time, however,

only DRAMSys4.0 currently offers a model for the latest JEDEC standard DDR5.

For request initiation all simulators provide trace players and a coupling to gem5. In

addition, DRAMsim3 supports a coupling to the simulation frameworks SST [40]

and ZSim [41]. DRAMSys3.0 and DRAMSys4.0 can be coupled to TLM-AT-based

core models. While all simulators seem to be JEDEC compliant at first view, we

were able to find missing timing dependencies in DRAMsim3, Ramulator and in the

gem5 DRAM model (e.g., missing command bus dependencies for multi-cycle

commands. Besides the performance perspective, for most of today’s system

developments the power consumption and thermal behavior is of great interest,

especially in the field of embedded systems. All simulators except DrSim allow

power estimations. DRAMSys3.0, DRAMSys4.0 and DRAMsim3 can also model

the thermal behavior of devices. For performance evaluation, all simulators output

bandwidth-, latency- and power-related statistics. DRAMSim2 additionally supplies

DRAMVis [6], a tool that can visualize the bandwidth, latency and power over time.

Similarly, DRAMSys3.0 and DRAMSys4.0 provide the Trace Analyzer for visual

result analysis (see Sect. 2.3).

All simulators are also compared with regard to their simulation speed. As stated

earlier, the wall-clock time that a simulation requires does not only depend on the

amount of simulated time, but also on the memory access density (accesses per

clock cycle). This relation can especially be observed for the TLM-based

simulators. For that reason, we investigate the simulation speed for a large range

of densities using artificial traces. To minimize the impact of the simulators’

different controller implementations (e.g., queuing mechanisms, scheduling poli-

cies, further bandwidth-improving techniques like read snooping8), the memory

8 Using read snooping a read request can be served directly within the controller if an earlier write

request to the same address is still pending.
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traces exclusively provoke read misses and utilize all banks uniformly. Different

densities are created by increasing the gaps between accesses. Apart from that, all

simulators are configured as similar as possible (1 GB DDR3-1600 since DDR3 is

the only standard supported by all of them, single channel, single rank, row-bank-

column address mapping, open-page policy, run on an Intel Core i9 with 5 GHz),

built as release version, and run with a minimum of generated outputs. Using these

traces, the achieved bandwidth, latency and total simulated time of all simulators are

nearly identical (maximum deviations of 2 % because all simulators implement a

different power-down operation).

The simulation speeds of all simulators are shown in Figure 10. For high trace

densities the speeds of the fastest loop-based and TLM-based simulators

(DRAMSim2, Ramulator, DRAMSys4.0 and the gem5 DRAM model) do not

differ much from each other because state changes occur in almost all clock cycles.

At a density of around 0.2, the channel controllers start to turn idle and the

consumed wall-clock time decreases. While the graphs of all loop-based simulators

converge to a fixed value for lower densities (wall-clock time to evaluate pure idle

cycles), the TLM-based simulators show their advantage by achieving a linear

decrease, clearly outperforming all loop-based simulators. During long idle phases

they initiate self-refresh operation of the DRAM devices. This way external refresh

commands can be omitted and no clock cycles have to be evaluated at all. Since real

applications often contain idle phases and resulting average memory access

densities are located in lower ranges (e.g., 7 � 10�5 - 1 � 10�2 for the MediaBench

benchmarks), TLM-based simulators can speed up the simulation by several orders

of magnitude. Thus, the exact modeling of a DRAM subsystem in a system context

is no longer a bottleneck from a simulation perspective. For the TLM-based

simulators, DRAMSys4.0 constantly outperforms its predecessor by a factor of 10 to

20, which is a result of the optimizations explained in Sect. 2.2. The simulation

speeds of DRAMSys4.0 and the gem5 DRAM model are on the same level for high

densities. At densities lower than 10�3 the gem5 DRAM model starts to become

slightly slower than DRAMSys4.0 because the switching to self-refresh operation

takes more time.

As mentioned in the introduction, a DRAM subsystem simulation represents one

specific memory controller implementation and one specific JEDEC standard.

Although all simulators are more or less compliant with their supported JEDEC

standards, each one implements a different controller behavior (power-down policy,

refresh command placement, request buffer architecture, additional hardware

delays, etc.). Similarly, there is no golden reference RTL controller to evaluate the

accuracy against. Cycle accuracy can therefore only be assessed with respect to

JEDEC compliance. To keep the comparison fair and to avoid making one simulator

mistakenly look bad, no direct comparison of the accuracy is conducted. However,

one alternative measure that can be used is the degree of configurability, because a

high configurability is key to tune a simulator’s behavior to a reference RTL

controller. Table 4 shows that DRAMSys4.0 is at the top for almost all listed

features. Furthermore, the ease of adapting our simulator to one specific RTL

controller has been demonstrated in Sec. 3.
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5.2 Cycle-Approximate DRAM Models

Beside the cycle-accurate DRAM simulators, further approaches exist that

approximate the behavior (see Fig. 1). In [43] the authors propose an analytical

DRAM performance model that uses traces to predict the efficiency of the DRAM

subsystem. Todorov et al. [3] presented a statistical approach for the construction of

a cycle-approximate TLM model of a DRAM controller based on a decision tree.

However, these approaches suffer from a significant loss in accuracy. More

promising approaches based on machine learning techniques have been presented

recently. The paper [2] presents the modeling of DRAM behavior using decision

trees. In [4] the authors introduce a performance-optimized DRAM model that is

based on a neural network.

6 Conclusion

In this paper we presented DRAMSys4.0, an open-source cycle-accurate DRAM

simulation framework. Due to the optimized architecture it reaches very high

simulation speeds compared to state-of-the-art simulators while ensuring full

JEDEC compliance. DRAMSys4.0 supports a large collection of controller features

and standards, which allows system designers to adapt the tool to their needs with

minimal effort. Moreover, it offers the unique Trace Analyzer tool for deep analyses

and truthful design space exploration. For the future we plan to extend

DRAMSys4.0 by further emerging JEDEC standards and analysis features.
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Fig. 10 Simulation speeds of state-of-the-art DRAM simulators
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