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Abstract
This article presents a methodology whereby adjoint solutions for partitioned multiphysics problems can be computed effi-
ciently, in a way that is completely independent of the underlying physical sub-problems, the associated numerical solution 
methods, and the number and type of couplings between them. By applying the reverse mode of algorithmic differentiation 
to each discipline, and by using a specialized recording strategy, diagonal and cross terms can be evaluated individually, 
thereby allowing different solution methods for the generic coupled problem (for example block-Jacobi or block-Gauss-
Seidel). Based on an implementation in the open-source multiphysics simulation and design software SU2, we demonstrate 
how the same algorithm can be applied for shape sensitivity analysis on a heat exchanger (conjugate heat transfer), a deform-
ing wing (fluid–structure interaction), and a cooled turbine blade where both effects are simultaneously taken into account.

Keywords Discrete adjoints · Multiphysics · Sensitivity analysis · Algorithmic differentiation · Fluid–structure interaction · 
Conjugate heat transfer

1 Introduction

In engineering sciences, especially those concerned with 
fluid flow problems, one finds important cases where mul-
tiphysics effects play a crucial role in the design of new 
parts. In the context of partitioned simulation approaches, 
and from a software perspective, this means that two or more 
solvers are coupled by exchanging data at common physical 
boundaries during the simulation. Finding superior designs 
via numerical optimization is a question of establishing 

suitable design goals and using software that can facilitate 
the procedure to fulfill them. For optimization methods rely-
ing on discrete adjoint solutions, the couplings between the 
different physics models must be considered to obtain accu-
rate sensitivities. In the present study on adjoint approaches, 
we are interested in design processes that are closely linked 
to finding optimal values for an objective function, denoted 
by J̃ , by varying some set of design parameters (x) with sup-
port of the total derivative d

dx
J̃.

Furthermore, we assume that values of J̃ are computed 
from x and associated simulation results, generally solutions 
(u) to PDE problems that model the physical phenomena of 
interest. These solutions can be said to depend only on the 
design parameters since they, and all other derived quanti-
ties, are uniquely defined by the parameters, i.e., u = u(x).

However, in deriving the adjoint solution method, it is 
useful to consider the function of interest as a function of 
the parameters and the solution. We denote this by defining 
an objective function J ∶ ℝ

m ×ℝ
n
→ ℝ and setting

J̃(x) ∶= J(x, u(x))
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accordingly, where m is the number of design parameters 
and n is the number of components, formally the number of 
unknowns in the discretized PDE problem. Naive differentia-
tion1 of J̃ at x by application of the chain rule yields

which is a computationally intractable problem for large m, 
as the last term in (1) requires differentiation of the con-
verged solution with respect to all design parameters.

Adjoint methods from control theory (Lions 1971) can 
efficiently capture the implicit dependence of the function 
on the solution variables without having to evaluate the 
computationally expensive term d

dx
u(x) . In general, (1) is 

manipulated using some form of the PDE equations (also 
called constraints). One way to achieve this will be detailed 
in Sect. 2.

In the context of computational fluid dynamics, the 
method was first used by Jameson (1988, 1995) who 
employed adjoint solutions for certain (potential) flow solu-
tion constraints through the notion of a Lagrange multiplier. 
The method has since evolved in two major directions; in 
the continuous approach where the adjoint is a solution to a 
PDE derived from the primal PDE, whereas in the discrete 
approach, the adjoint is based on the discrete PDE solver. 
Both have shown to provide accurate gradients even for com-
plex flow problems.

For multiphysics problems, the development of continu-
ous adjoint methods is an attractive area of research, but 
by definition, any such method must consider the specific 
physics. In Feppon et al. (2019), a coupled adjoint PDE sys-
tem is developed—using Hadamard’s method—for cases 
with a combination of conjugate heat transfer (CHT) and 
fluid–structure interaction (FSI) between a fluid and a solid 
domain. Although no studies on the accuracy of derived sen-
sitivities are given, numerical examples indicate that even 
triple physics cases can be properly handled with continu-
ous adjoints. On the discrete adjoint side, such a framework 
for simultaneous FSI and CHT has recently been developed 
(Smith et al. 2021) which is especially designed for prob-
lems that require the coupling between a flow and a thermoe-
lastic solver, e.g., for design aspects of hypersonic vehicles 
[see also the subsequent study in Kamali et al. (2020)]. It 
builds on hand-coded discrete adjoints included in FUN3D 
(Biedron et al. 2019), derived from the PDE solvers in a 
residual-based formulation. The authors show accurate 
gradients obtained from adjoint vectors that are the solu-
tion to a 9 × 9 (or 6 × 6 in case of pure CHT) block matrix 
equation where all blocks have been assembled individually 

(1)
d

dx
J̃(x) =

𝜕

𝜕x
J(x, u) +

𝜕J

𝜕u
(x, u)

d

dx
u(x),

to account for the solvers, the necessary transfer routines 
between them, and FSI mesh deformations. For a pure CHT 
problem, another approach using a residual-based formula-
tion for the PDE solvers and subsequent derivation of the 
discrete adjoint equations is presented in Makhija and Beran 
(2019), it also incorporates density-based topology optimi-
zation variables into the problem setting, which in the SU2 
framework is only currently supported for FSI problems 
(Gomes and Palacios 2020).

Indeed, the differentiation of multiphysics solvers for 
topology optimization is common (Dunning et al. 2015; 
Lundgaard et al. 2018; Picelli et al. 2020). However, in such 
applications solvers tend to be of the monolithic type (for 
example so that locations of the domain can be either fluid 
or solid), or the discrete adjoint methodology is developed 
specifically for the primal methods used. The coupling of 
flow and heat adjoint solvers has also been explored in a pre-
liminary study to this paper (Burghardt et al. 2019), and in 
an implementation in the open-source software OpenFOAM 
(Weller et al. 1998), for analyzing temperature sensitivities 
in a heat sink by using algorithmic differentiation [in short: 
AD; Griewank and Walther (2008)] of the entire CHT solver 
(and not just the residual of the discretization) and a check-
pointing strategy to reduce memory usage (Towara et al. 
2019). In this work, AD is also applied to entire solvers, but 
the main strategy used to reduce memory usage is preaccu-
mulation (Albring et al. 2016; Sagebaum et al. 2019). These 
AD-based “whole solver” approaches allow a generic treat-
ment of solvers, for which the source code is available, since 
they do not require the tailor-made preconditioning strate-
gies used in residual-based discrete adjoint methods.

Although numerous examples of purpose-built discrete 
adjoint methods could be found in the literature, a flex-
ible approach, adaptable to multiple kinds of partitioned 
multiphysics problems, has not been developed so far. By 
which is meant problems that are defined by combining 
different physical domains, hereafter referred to as zones, 
through an exchange of interface data. Note that this does 
not preclude different zones from overlapping, moreover 
the interface need not be a surface (but generally it is). In 
general, we assume that each zone is governed by a sys-
tem of PDE’s; however, this is not strictly required insofar 
as a fixed-point iteration can be identified for the zone. 
All zones have one or more solvers associated, for fluid 
dynamics we are most commonly dealing with Navier-
Stokes or RANS equations but one can also think of solid 
zones where we are concerned with elastic deformations 
or heat conduction. The solvers within a zone are typically 
tightly coupled and exchange information over the entire 
domain. For clarity, a monolithic FSI or CHT solver as 
used for topology optimization [e.g., as in Lundgaard et al. 
(2018)] would be classified as one solver and thus occupy 
one zone. However, when the part of the domain being 

1 We use upright symbols to indicate a particular value of the param-
eters or solution.
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designed is much smaller than the surrounding fluid vol-
ume, it could be reasonable to model the problem as two 
partially overlapping zones as done in Picelli et al. (2020), 
and then track the interface as it develops. Such strategies 
are not yet available in the SU2 framework due to its aero-
nautical background, characterized by high Reynolds num-
ber applications for which body-fitted meshes and shape 
optimization are more common than immersed boundary 
and topology optimization. With shape optimization using 
mesh morphing, a high quality surface mesh is easier to 
maintain which is crucial in many fluid mechanics applica-
tions. Nevertheless, the discrete adjoint method described 
in this paper would be applicable whenever two or more 
zones (as described above) are involved.

In Sect.  2 the fixed-point concept for multiphys-
ics problems is introduced, and then used to derive the 
generic multiphysics adjoint approach. Section 3 deals 
with implementation details of the proposed algorithm in 
SU2. Finally, numerical examples are presented in Sect. 4, 
these are also used to analyze the physical meaning of 
the abstract terms introduced in Sect. 2, to facilitate com-
paring the proposed generic method with physics-specific 
methods found in the literature.

2  Multiphysics discrete adjoints

Let us denote the (e.g., PDE) solvers by a function

that maps an intermediate solution ui to ui+1 , where x ∈ ℝ
m 

denotes an arbitrary but fixed design parameter vector (usu-
ally the mesh coordinates unless otherwise specified).

It is assumed that the solution u = u(x) is given by the 
fixed point of G , this incurs no loss of generality since 
common primal solution methods can easily be put in 
this form, which may not be trivial for the residual-based 
adjoint formulation [consider for example predictor-cor-
rector methods in fluid dynamics for incompressible flows, 
e.g., He et al. (2018)]. In a practical sense, u is the first 
state for which a suitable convergence criteria is met, for 
example

where �tol is a prescribed accuracy. Nevertheless, for all 
mathematical considerations it is G(x, u) = u . This nota-
tion can be extended to multiphysics problems by assuming 
a partitioned approach is used (with r the total number of 
zones), and regarding G(x, ui) as the vector whose compo-
nents are the iterates in each zone,

(2)G(x, u) ∶ ℝ
n
→ ℝ

n

‖G(x, ui) − ui‖ < 𝜀tol

Note that the inputs ui = (ui
(1)
,… , ui

(r)
) of each solver on the 

right hand side are (possibly) the solution iterates and 
parameters of all zones, as these dependencies arise from the 
transfer of information at common physical boundaries and 
in this framework there is no limitation on how the zones 
may be connected. G(j) is then regarded as a fixed-point itera-
tor with respect to the solution variables ui

(j)
 and all ui

(k)
 with 

j ≠ k as solver parameters, this distinction will later be used 
to define adjoint cross terms. This view naturally maps to 
the common block-Gauss-Seidel (BGS) solution approach, 
but in practice the solution method for the primal coupled 
problem is not restricted. However, note that inner BGS 
iterations (within each zone) are omitted but re-introduced 
later for the adjoint method.

Throughout this article, subscripts will indicate the zone 
number, whereas superscripts refer to the iteration count 
unless otherwise specified.

2.1  Generic coupled discrete adjoint algorithm

In the context of discrete adjoints, well-known derivations 
are based on the residual operator (see the Introduction 
chapter in Giles and Pierce (1997), “Duality formulation 
for adjoint design” in Giles and Pierce (2000) or “Direct and 
Adjoint Derivative Equations” in Martins and Ning (2021) 
for a simple approach leading to (4) and the desired gradi-
ent representation (7), or the “Adjoint Approach” chapter in 
Hinze et al. (2008) for a functional-analytic view on the mat-
ter, covering the very same equations but with mathematical 
interpretations of all terms as dual space pairings) namely,

and the linear operator one obtains from differentiating w.r.t. 
u at (x, u) , with x and the corresponding solution u—defined 
by G(x, u) = u or R(x, u) = 0—being fixed;

For a given objective function J, we define the adjoint solu-
tion � ∈ ℝ

n as the solution to the adjoint equation

where �G
�u

T
 is the adjoint operator of �G

�u
 (the transposed in the 

discrete setting of this paper).
If it can be obtained, the gradient of the reduced objective 

function J̃(x) can be represented without requiring the com-
putationally expensive term d

dx
u(x) . This is achieved by first 

(3)
⎛
⎜⎜⎝

ui+1
(1)

⋮

ui+1
(r)

⎞
⎟⎟⎠
=

⎛⎜⎜⎝

G(1)(x, u
i)

⋮

G(r)(x, u
i)

⎞
⎟⎟⎠
.

R(x, u) ∶= G(x, u) − u

�R

�u
(x, u) =

�G

�u
(x, u) − Id.

(4)�R

�u

T

(x, u) � = −
�J

�u

T

(x, u),
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interpreting the matrix-vector multiplication term in (1) as 
a dual pairing using the standard inner product of ℝn (which 
we denote by “ ⟨⋅,⋅⟩ ”, turning �J

�u
(x, u) into �J

�u

T
(x, u) ) and then 

replacing �J
�u

T
(x, u) by the left-hand side of (4),

Using the definition of adjoint operators, the last line of (5) 
can be rewritten as

and by definition of u(x), i.e., R(x, u(x)) = 0 for all x and 
therefore

we obtain (noting that �
�x
R =

�

�x
G)

The adjoint equation (4) translates itself into a fixed-point 
iteration for �,

with convergence properties similar to the primal problem 
(Albring et al. 2016).

For clarity, when using adjoint solutions defined in 
terms of the discretization residual R̂ of the primal problem 
directly ( R̂ ≠ R since the program G typically contains R 
and the solution method), instead of the fixed-point approach 
above, the adjoint equations become

which is a linear system for a residual-based adjoint solu-
tion �̂� , whose value is different than what results from (8). 
Due to the poor conditioning of the residual Jacobian for 
flow problems, these systems require some form of pre-
conditioning (Maute et al. 2000; Kenway et al. 2019), usu-
ally an approximate Jacobian found in the solution of the 
primal problem is used. Here too we consider the residual 
approach to be less generic as the preconditioner is problem-
specific. In the fixed-point approach the preconditioner is 
part of the operator ( G ), and thus the primal solver can be 
treated almost entirely like a black box. The disadvantage is 
the reduced flexibility in fine tuning the solution method of 
the adjoint equations, for example using a flexible Krylov 

(5)

d

dx
J̃(x) =

𝜕

𝜕x
J(x, u) +

⟨
𝜕J

𝜕u

T

(x, u) ,
d

dx
u(x)

⟩

=
𝜕

𝜕x
J(x, u) −

⟨
𝜕R

𝜕u

T

(x, u) 𝜆 ,
d

dx
u(x)

⟩
.

(6)
d

dx
J̃(x) =

𝜕

𝜕x
J(x, u) −

⟨
𝜆 ,

𝜕R

𝜕u
(x, u)

d

dx
u(x)

⟩

−
�R

�u
(x, u)

d

dx
u(x) =

�R

�x
(x, u),

(7)
d

dx
J̃(x) =

𝜕

𝜕x
J(x, u) + 𝜆T

𝜕

𝜕x
G(x, u).

(8)�
!
=

�J

�u

T

(x, u) +
�G

�u

T

(x, u) �,

(9)𝜕R̂

𝜕u

T

(x, u) �̂� = −
𝜕J

𝜕u

T

(x, u),

solver to accelerate or stabilize the convergence, as done in 
Maute et al. (2000); Kenway et al. (2014). Notwithstand-
ing, strongly coupled partitioned solution methods are still 
applicable, e.g., Gomes and Palacios (2020), at the expense 
of stricter requirements on the information the primal solver 
must expose, for example which degrees of freedom par-
ticipate in interface exchanges. Furthermore, quasi-Newton 
methods can also be used to accelerate or stabilize the con-
vergence of (8). In SU2 we use a least-squares approxima-
tion of the inverse Jacobian of (8), based on the IQN-ILS 
method (Degroote et al. 2009).

For the evaluation of each new iterate �(i+1) of (8), the 
matrix-vector product (�G∕�u)T(x, u) �(i) on the right hand 
side is evaluated through the reverse mode of AD. In a 
multizone context, the adjoint solution consists of the 
adjoint solutions of all zones, that is,

and the fixed-point iteration update in (8) becomes a simul-
taneous update for all zones k = 1… r,

As mentioned before for primal solution algorithms, more 
intricate update schemes can be proposed. Most importantly, 
BGS-type updates where multiple updates are carried out 
for one zone, keeping the adjoints of others fixed. With i 
being the outer iteration count, l the inner iteration count 
and l∗ the number of repeated inner updates, this gives an 
alternative to (10),

that can lead to a more stable procedure for l∗ > 1 and to 
lower solution times, especially for problems with deform-
ing grids (note that for �(0,i) ∶= �(i) and l∗ = 1, (10) is recov-
ered). Also for stability, it is sometimes beneficial to relax 
the update of the cross terms ( j ≠ k summation). In Sect. 3.2 
we detail how the cross terms are managed to allow this 
relaxation using minimal storage and computation.

Regarding convergence of the method, the upper row 
in (11) that maps �(l,i)

(k)
 to �(l,i+1)

(k)
 is linear in terms of �(k) by 

definition. Denoting this mapping by N(k) , we see that

� = (�(1),… , �(r)),

(10)�
(i+1)

(k)
=

�J

�u(k)

T

(x, u) +
�G

�u(k)

T

(x, u) �(i).

(11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
(l+1,i)

(k)
=

�J

�u(k)

T

(x, u) +
�G(k)

�u(k)

T

(x, u) �
(l,i)

(k)

+
�
j≠k

�G(j)

�u(k)

T

(x, u) �
(i)

(j)

�
(i+1)

(k)
= �

(l∗,i)

(k)
.

(12)
‖‖‖‖‖
�N(k)

��(k)
(�

(l,i)

(k)
)
‖‖‖‖‖
=
‖‖‖‖‖
�G(k)

�u(k)
(x, u)

‖‖‖‖‖
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which means the inner iterations in (11) converge if the max-
imal eigenvalue of �G(k)∕�u(k) is smaller than one. Although 
no assumption was made that could guarantee this condi-
tion, since �G(k)∕�u(k) is used during the primal simulation 
giving the solution u (usually by implicit time stepping), 
there is evidence that the eigen spectrum is non-problem-
atic. However, should any convergence problems arise, for 
example due to limitations of the primal method or due to 
inherent unsteadiness (caused e.g. by flow separation), there 
are techniques to stabilize the inner fixed-point iterations, 
such as the recursive projection method by Shroff and Keller 
(1993) which applies a Newton update to a small number 
of eigenvectors with large eigenvalues. Many studies show 
that such an approach works well for tangent and adjoint 
computations [e.g., Campobasso and Giles (2004); Albring 
et al. (2017)]. Similarly, this applies to the full iteration (11), 
where we cannot assume that perturbations caused by the 
coupling terms are small enough that the spectrum of N  
does not become unstable (in the sense that it leads to large 
eigenvalues in the coupled system). Again, should (outer) 
convergence problems occur it is possible to use stronger 
coupling methods than BGS as done in Gomes and Palacios 
(2020). Clearly, in both cases (inner and outer) these stabili-
zation techniques do not interfere significantly with the main 
goal of the proposed method, which is to be generic and 
applicable to any combination of zones, solvers, interface 
interpolation methods, etc.

In the more particular case of FSI discrete adjoint meth-
ods, we furthermore note that some authors take a 2-field 
(fluid and structure) approach to the problem [e.g., Kenway 
et al. (2014)], while others consider the mesh deformation 
as a third field [e.g., Sanchez et al. (2018)]. The zone con-
cept is better suited to the 2-field approach, while the 3-field 
approach is more natural when establishing the coupled 
adjoint equations manually, as it allows isolating key terms 
of the block Jacobians in equations (8) and (9). This isola-
tion is important for efficiency, and in the proposed algo-
rithm it is achieved automatically by identifying key abstract 
phases of the primal solution algorithm, for example the 
transfer of data across interfaces. This is detailed in Sect. 3.

2.2  Design parameter sensitivities

In the previous section the parameters were assumed to be 
the mesh coordinates of all zones (but any other differen-
tiable parameter of the solvers could have been given as 
example). For shape optimization it is not practical nor ade-
quate to use all nodal coordinates as design variables. The 
number of shape design variables is reduced via the com-
mon strategy (in aerodynamic shape optimization) of using 
a surface parameterization followed by volume deformation 
[e.g., Economon et al. (2016)]. That is, a small set of design 

variables (e.g., free-form-deformation, FFD, control points) 
is used to define or modify the design surface nodes. The 
perturbation of these nodes is then used to deform the inner 
nodes of the meshes, a process akin to FSI mesh deforma-
tion, which in SU2 makes use of the same method, namely 
the solid elasticity analogy. Let this two-step process be rep-
resented by the explicit relation

Due to the variety of methods for surface parameterization 
and volume deformation, it is natural to consider this opera-
tion separately from the primal solution. Consequently, its 
differentiation is also separate from the adjoint solution. 
Since the grid coordinates are an explicit function of the 
shape parameters a, derivatives with respect to these at point 
a are given by

Although other alternatives can be proposed, this product fits 
the reverse mode of AD, and its cost is independent of the 
number of shape parameters. Finally, this modular approach 
can be extended to other types of optimization, for example, 
filtering operations for density-based topology optimization 
are a form of parameterization that fits (13).

3  Algorithmic differentiation 
of a multiphysics solver

The central part of the method described in the previous sec-
tion is the evaluation of Jacobian transposed matrix-vector 
products of the form

for a given pair of zones (j, k) and an adjoint vector �(j) . This 
section details how that is achieved with low storage and 
computational cost using the reverse mode of AD.

3.1  Storing and evaluating derivative information 
via AD

Using operator overloading AD, products of the form in 
(15) can be evaluated by first letting G compute a solution 
update starting from a previous iterate for all zones [as in 
(3)] while recording (or taping) the operations performed 
along the execution (or directly their derivatives) to an 
external data structure, that can then be used to evalu-
ate the overall derivatives by applying the chain rule in 
reverse.

(13)(x(1),… , x(r)) = M(a).

(14)
d

da
J̃(x(a)) =

d

dx
J̃(x(a))

d

da
M(a).

(15)
�G(j)

�u(k)

T

(x, u) �(j)
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More precisely, each intermediate value that these oper-
ations generate is assigned an index of a global adjoint 
vector, incremented each operation, during the record-
ing. The external data structure (called the tape) holds all 
information to compute partial derivatives of an intermedi-
ate value with respect to the inputs of the respective opera-
tion—which could be an elementary one or, for example, 
the solution of an entire linear system whose derivatives 
are handled symbolically in SU2.

In a reverse accumulation process (Griewank and 
Walther 2008), values defined by the term (15) are com-
puted by initializing derivative values at indices of out-
puts of G with values of � , accumulating all derivative 
contributions of intermediate values that were needed to 
compute G(u) from u and finally extracting derivatives at 
indices of u.

To draw a clear connection to the vocabulary of AD, let 
us write y = G(u) and define ẏ ∶= (𝜕G∕𝜕u)u̇ with u̇ being an 
input derivative of u. We then have

with ū ∶= (𝜕G∕𝜕u)Tȳ and “ ⟨⋅,⋅⟩ ” the standard inner product. 
Setting ȳ = 𝜆 and u̇ = 1 , we obtain (15). Note that, as pointed 
out already, rewriting ⟨ẏ, 𝜆⟩ as ū is crucial since computing 
the Jacobian first is unfeasible, whereas the reverse mode 
needs much less memory. There are many AD tools available 
that implement (16), but as in Albring et al. (2016), CoDi-
Pack (Sagebaum et al. 2019) was chosen for its performance 
and convenience to use within C + + codes.

In order to proceed from the black-box evaluation in 
(8) to the modular evaluation needed to implement (15) 
(recall we deal with pairs of zones), it is important to 
access derivatives through indices that refer to the solu-
tion variable at its input or output state, as the transfer 
of data may assign them an incremented index (e.g., by 
overwriting data at boundaries that are an interface). In our 
implementation, we use an additional data structure stor-
ing both indices alongside each primal solution variable.

For cost effectiveness of the adjoint computation 
besides manual supply of derivatives for some (large) 
operations, we note that small parts of the recording are 
immediately evaluated, and a Jacobian matrix is preac-
cumulated [i.e. stored; Sagebaum et al. (2019)] instead to 
reduce the memory footprint.

Another efficiency aspect that has to be considered is 
the transfer of solution data across zones, and subsequent 
mesh deformation for some classes of problems. By using 
solution variable indices and tagging sections of the tape, 
cross derivatives like in (15) for j ≠ k can be computed 
once per outer iteration independently of the diagonal 
terms computed on every inner iteration. The tape layout 

(16)⟨ẏ, ȳ⟩ =
�
𝜕G

𝜕u
u̇, ȳ

�
=

�
u̇,

𝜕G

𝜕u

T

ȳ

�
= ⟨u̇, ū⟩,

and high level operations that allow this are described 
next.

3.2  Adjoint evaluation algorithm, subroutines 
and tape layout

For our implementation of (11) we build the adjoint solution 
update (Algorithm 1) upon the following subroutines:

– ComputeAdjointsObjFunc: First initializes the 
adjoint value of J with 1.0 and then evaluates all deriva-
tives �J∕�u (x, u) for the variables of all zones.

– ComputeAdjoints: Taking the zone index j as argu-
ment, it initializes the adjoint values at the indices of u(i+1)

(j)
 

(that were saved during recording) with values of �(j) (we 
leave out superscripts for simplicity, as inner and outer 
iterations are present). Then it evaluates the product 
(�G(j)∕�u)

T(x, u) �(j) for all variables in one zone (inner 
iteration) or all zones (outer iteration with cross terms).

– Iterate: Takes the zone index k as argument and 
extracts the current derivative values (which can be 
(�G(j)∕�u(k))

T(x, u) �(j) or �J∕�u(k)(x, u) ) from the tape 
indices for u(i)

(k)
 into the adjoint solution vector in zone k.

– GetExternal: Besides the adjoint solution vector, every 
zone needs a separate vector, referred to as External, 
which holds the sum of cross terms j ≠ k and the objective 
function gradient. Mathematically this can be seen as the 
right hand side of the adjoint equations for each zone.

– UpdateCrossTerm: Takes zone indices j (source) 
and k (target) as inputs and updates the External vec-
tor in zone k with derivatives with respect to zone j (i.e., 
(�G(j)∕�u(k))

T(x, u) �(j) ). As the adjoints of zone j are 
updated, we update its cross contributions to zones k ≠ j , 
so that the update of subsequent zones uses the most cur-
rent value of their External vectors. Furthermore, we 
may want to apply a relaxation factor to these cross contri-
butions. To do so, the (relaxed) difference between current 
and previous cross terms is added to the External of 
zone k, while simultaneously updating the previous cross 
term. This strategy requires a table of previous cross terms 
to be kept (a block sparse matrix with vector blocks).
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For a given zone pair (j, k), the ComputeAdjoints 
routine does not need to evaluate the entire tape (which 
includes all solvers), only the necessary sections are eval-
uated for computational efficiency (mainly G(j) and pos-
sibly the data transfer). To allow this, key positions are 
saved during the recording of the primal computations, 
so that the tape evaluation can be restricted to the desired 
sections.

The layout of the tape is shown in Fig. 1. The saved posi-
tions for the corresponding sections, separated by hyphens, 

are: Start, Registered, Dependencies, Trans-
fer and Objective_Function.

A further position, It_Ready, is saved to indicate the 
start of the recording of solvers of the first zone.

By these separations, the transfer of data section (colored 
blue) is automatically included when the section in purple, 
corresponding to the objective function, is evaluated (which 
is only the case when the adjoint of the objective function is 
relevant, i.e., when its Jacobian is needed). Moreover, using 
the Transfer position, the transfer of data section can be 
optionally included when evaluating w.r.t. zones, as needed 
in Algorithm 2.

The recording process makes use of software abstractions 
that exist for the primal solvers, for example running one 
iteration or computing the possible objective functions. One 
action that warrants further discussion is the computation of 
dependent quantities (second item in Fig. 1) as it is specific 
of the adjoint solvers. This dependency abstraction serves to 
capture the cyclic nature of iterative methods, for example, 
eddy viscosity is needed at the start of a RANS iteration, this 
quantity is a post-processing result of the turbulence solver, 
which in turn requires some pre-processing quantities of the 
flow solver, namely primitive variables and their gradients. 
Similarly, to trace the dependencies of a fluid iteration to 
the grid coordinates, one needs to evaluate the geometric 
properties of the grid (areas, volumes, etc.). In summary, the 
dependency abstractions are relatively simple (but crucial) 
orchestrations of pre- and post-processing operations.

A helper function AD_ComputeAdjoints taking as 
arguments the entry and exit points for evaluation (repre-
sented by horizontal hyphens in Fig. 1) provides an interface 
to the AD tool to evaluate the tape by sections.

The ComputeAdjoints routine is implemented in 
terms of this helper, e.g., to compute (�G(j)∕�u)

T(x, u) �(j) , 
four calls are needed to account for all sections, including 
data transfer (see Algorithm 2).

As mentioned, for efficiency the transfer section of the 
tape is only evaluated in the last inner iteration (see Algo-
rithm 1) as it may contain an expensive mesh deformation 
operation. Furthermore, during the recording of the defor-
mation operation, we introduce the simplification that the 
stiffness matrix is constant (i.e., not a function of the solu-
tion variables or parameters) as this nearly halves the total 
memory usage of a typical FSI problem. This approximation 
is consistent with what is done to project the volumetric 

register ui
(1), . . . ,u

i
(r) or x(1), . . . ,x(r)

and save their indices (input)
compute dependent quantities (e.g. gradients)
from (ui

(1), . . . ,u
i
(r))

transfer boundary data to all G(j) from
all ui

(k), k �= j,

eventually including deformation of grids

recompute dependent quantities on
deformed grids

compute J(x,ui)

start the update ui+1
(1) = G(1)(x,ui) . . .

save indices of ui+1
(1) (output)

...

start the update ui+1
(r) = G(r)(x,ui) . . .

save indices of ui+1
(r) (output)

storing
(derivatives

of)
all

statem
ents

→

Fig. 1  Proposed tape layout for a multiphysics solver
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sensitivities onto the design surface modified by the shape 
parameterization approach. For similar memory usage con-
cerns, and general differentiability of the methods involved, 
we also assume the interpolation operators used to transfer 
fluid forces and structural displacements between domains 
to be constant.

4  Applications

This section showcases the proposed method on three mul-
tiphysics examples, one for CHT, one for FSI, and a final 
combined FSI-CHT problem. In all problems G(1) is a flow 
solver. In the first case, the second zone is a rigid material 
that conducts heat and transfers it into the fluid ( G(2) is a 
heat solver), whereas in the second case we have an elastic 
material that deforms under fluid loads ( G(2) is an elasticity 
solver).

In the proposed generic approach, both are two-zone 
problems for which the adjoint fixed-point iteration is

By the design of Algorithm 1, the matrix-vector product on 
the right hand side is not done in a single operation, rather 
it is split into several steps.

That is, to obtain the updated adjoint solution �(i+1)
(1)

 for 
zone 1, �(1) is updated by evaluating the diagonal term 
(�G(1)∕�u(1))

T �
(l)

(1)
 for InnerIter times [cf. (11)] while adding 

to it the external contribution from the last outer iteration, 
(�G(2)∕�u(1))

T �
(i)

(2)
 , in each step.

Before updating �(2) in similar fashion, the cross term 
(�G(1)∕�u(2))

T �
(i+1)

(1)
 is evaluated with the new value of �(1).

Note the physical interpretation of the cross terms for 
CHT problems:

– �G(1)∕�u(2) constitutes the flow solver’s dependence on 
the temperature of the solid, this is due to the temperature 
at the interface which determines the heat flux;

– �G(2)∕�u(1) represents the heat solver’s dependence on the 
heat fluxes at the interface, which are determined by the 
flow solver.

Whereas for an FSI problem:

– �G(1)∕�u(2) is the flow solver’s dependence on the fluid 
mesh displacements with respect to the initial (unde-
formed) grid coordinates, which in turn are defined by 
the structural displacements at the interface. That is, the 
displacements are an explicit function of the initial coor-
dinates and of the fluid-structure interface displacements;

(
λ
(i+1)
(1)

λ
(i+1)
(2)

)
=

(
∂J

∂u(1)
∂J

∂u(2)

)
+

( ∂G(1)

∂u(1)

∂G(1)

∂u(2)
∂G(2)

∂u(1)

∂G(2)

∂u(2)

)T (
λ
(i)
(1)

λ
(i)
(2)

)
.

– �G(2)∕�u(1) constitutes the elasticity solver’s dependence 
on the fluid forces at the interface, which are due to pres-
sure and shear stresses.

As already pointed out, all kinds of coupling terms (regard-
less of the kind of interface) are immediately computed 
whenever the transfer tape section is part of the adjoint 
evaluation process (as in Algorithm 2). In terms of the sec-
ond example, it will directly evaluate the flow solver output 
w.r.t. communicated structural displacements as the mesh 
adaption is contained. Generally speaking, no additional 
operations are necessary for FSI interfaces which will be in 
particular useful for the combination test case.

4.1  Conjugate heat transfer test case

This test case is for steady state, turbulent, incompressible 
flow through a 2D array of heated cylinders. A typical pin 
array for e.g., power electronics cooling can consist of tens 
up to a couple of thousand individual pins. Instead of a simu-
lation on the entire pin array a common simplification is to 
only use a characteristic unit cell, see Fig. 2. Through mir-
roring at symmetry boundaries and translating at periodic 
boundaries one recovers an approximation to the initial full 
array. The presented simulation setup includes several sim-
plifications which have to be validated using a full size pin 
array. It is, however, within reason to presume that general 
design rules can be derived from such a reduced, fast to 
evaluate, unit cell approach.

The geometry of the simulation domain is fully charac-
terized by three quantities: distance between pin midpoints 
6.44 mm (three neighboring pins form an equilateral trian-
gle), the inner pin radius 0.6 mm and outer pin radius 2 mm. 
Inlet and outlet in the fluid domain are prescribed as periodic 
boundaries (Patankar et al. 1977). Symmetry boundaries on 
top and bottom are indicated in Fig. 2 and handling of the 
interfaces between fluid and solid is described in literature 
(Burghardt et al. 2019). On the inner pin arc in the solids a 
heatflux of 5e5 W/m2 is prescribed and all other non-inter-
face walls are adiabatic.

The pressure drop over the domain is set to 208 Pa and 
the inlet bulk temperature to 338 K. Other constant fluid 

Fig. 2  Simulation setup schematic. Heatflux boundary conditions 
indicated with red arrows and symmetry planes with a dash-dotted 
line. The FFD box in green encloses the half pin
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properties are density � = 1045 kg/m3 , specific heat cp = 
3540 J/(kg K), laminar viscosity �dyn = 1.385e − 3 Pa s, lam-
inar and turbulent Prandtl numbers Prlam = 11.7 and Prturb = 
0.9. The fluids material properties represent Glysantin in a 
50/50 mixture with water, a commonly used liquid for auto-
motive cooling circuits. The constant material properties 
in the solid represent aluminum: density � = 2719 kg/m3 , 
specific heat cp = 871 J/(kg K) and thermal conductivity � 
= 200 W/(m K). Convective fluxes are discretized using a 
Flux-Difference-Splitting (FDS) with second order accuracy 
achieved by a MUSCL approach (Economon 2020). No lim-
iters are used for variable reconstruction and gradients are 
computed via the Green-Gauss theorem. The Menter SST 
turbulence model without wall function is used.

The computational mesh is fully structured, e.g., only 
quadrilaterals are used, and consists of 8477 elements in 
the fluid and 6747 elements in the solid. A y+ < 1 is obtained 
everywhere but the mesh is too coarse in order to ensure a 
mesh independent solution. The purpose here is solely to 
verify the gradient accuracy of the discrete adjoint method. 
Nonetheless, temperature contour lines are given in Fig. 3 
that show a thin temperature boundary layer on the middle 
pin and a noticeable heat convection into the fluid body at 
the separation point at approximately 1 o’clock. Note that 
the quarter pins are not periodically connected in this simu-
lation which leads to a considerable temperature difference 
compared to the examined half pin.

As geometry parametrization a free-form-deformation 
(FFD) box encloses the half pin in the center of the simula-
tion domain, see Fig. 2, and consists of 18 control points. 
For the gradient validation only the vertical movement of 
the middle, upper control point is considered. Since a con-
stant heatflux is prescribed, the temperature of the pin is 
determined by the cooling performance of the pin shape, 
i.e., the geometry of the fluid-solid interface. Therefore the 
average temperature on the inner arc of the center pin is set 
as an objective function and the interface as the region to 
be designed. Other boundaries are fixed to preserve sym-
metry. Note that for simplicity the gradient only considers 
changes to the center pin and not equivalent changes to the 
quarter pins.

The sensitivity computed via discrete adjoint for the 
specified FFD point (− 741.3575) is validated using finite 

differences as shown in Table 1. The optimal step size has 
to be determined for each design variable individually such 
that choosing a single step size for all design variables would 
lead to higher deviation for selected FFD points. Note that 
further lowering the finite difference step size in Table 1 
results in a higher difference due to increased numerical 
errors.

The CHT adjoint testcase has a maximum memory 
consumption of 2 GB which is approximately 2 times the 
memory used by the primal evaluation. The same ratio is 
observed in the compute time which is about 1000 CPU 
seconds for the adjoint evaluation and was run on 14 cores 
(Intel Xeon Gold 6132 CPU). A compute time comparison 
highly depends on convergence criteria and is only given 
to show the comparable compute cost between primal and 
adjoint evaluation.

4.2  Fluid–structure interaction test case

To verify the shape sensitivities for FSI problems we con-
sider the simulation of a flexible wing at low Mach num-
ber (0.6) and 4 degrees angle-of-attack (AoA). The wing 
geometry (Fig. 4) is generated by lofting two symmetric 
4-digit NACA profiles, a 0.25 m chord 9% thickness profile 
at the root, and a 0.175 m chord 7.2% thickness profile at 
the tip. The wing span is 1 m, with the 0.25c line swept 
back 5 degrees, and a linear twist distribution of -3 degrees 
to prevent static divergence. The primal simulation meth-
odology has been described in the literature (Gomes and 
Palacios 2020), thus here we describe only the choice of 
numerical schemes. We approximate the wing structure as a 
neo-Hookean hyper-elastic solid with elasticity modulus of 
7.5 GPa and Poisson’s ratio of 0.35, with these properties the 
vertical displacement of the wing tip is approximately 20% 
of chord (see Fig. 5). On the fluid side air at standard tem-
perature and pressure is considered. Both fluid and structural 
grids are composed mostly of hexahedra, the former having 
832 000 nodes and the latter 174 000 nodes, respectively. 
We note that the fluid grid is not sufficiently fine for detailed 
flow field analysis, as y+ ≈ 5 and we use Menter’s SST tur-
bulence model without wall functions (which at the time of 
writing were not fully implemented in SU2). However, it 

Fig. 3  Temperature contour lines

Table 1  Validation of the average temperature gradient obtained from 
adjoints (− 741.3575) against finite differences (FD) with deformation 
paramater a = a0 + 10p for the middle upper FFD point in Fig. 2

Magnitude p Finite difference Relative error (%)

− 4 − 705.6977 4.81007
− 5 − 738.1632 0.43087
− 6 − 740.5946 0.10291
− 7 − 740.8425 0.06947
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is adequate for verification of discrete adjoint sensitivities 
(whose accuracy is not mesh dependant). Convective fluxes 
are computed with a second order Roe scheme, where the 
gradients are computed via the Green-Gauss theorem, and 
the MUSCL reconstruction of flow variables is limited with 
Venkatakrishnan and Wang’s limiter.

The free-form-deformation (FFD) box shown in Fig. 4 
has 98 control points, rather than verifying derivatives for 
each point (and each Cartesian coordinate), we define stretch 
(acting on chord) and translation variables for each spanwise 
section of points. We will refer to these 14 variables as S0−6 
and T0−6 , respectively (starting the numbering at the root) 
and normalize them taking as reference value 0.05 m (20% 
of root chord). The gradients of drag coefficient ( Cd ) and 
elastic energy (or compliance) are verified, we chose these 
functionals as the first is fluid oriented, whereas the second 
is mostly structural. The values of the functionals are also 

normalized (by 0.01 and 75 J, respectively) which leaves 
both gradients dimensionless and of comparable magnitudes.

A suitable finite difference step size was determined by 
conducting a convergence study, starting with a step size 
of 0.05 and halving it each time we obtained second order 
central approximations to the gradients. At step sizes below 
0.0125 the approximations start to diverge due to the typical 
limitations of finite differences, as the variation of the func-
tionals approaches the accuracy to within which the primal 
problem can be converged ( ≈ 10−6 change over FSI itera-
tions). Therefore, gradients obtained with step size of 0.025 
were considered. The error associated with the approxima-
tion, used to compute lower and upper confidence bounds, 
was estimated by taking the average plus three standard 
deviations of the differences between second and fourth 
order central approximations, across all variables ( S0−6 , 
T0−6 ). With fourth order values being computed using also 
the function values obtained at ±0.05 . The results for drag 
are plotted in Fig. 6, together with the sensitivity values 
computed via the discrete adjoint approach. Fig. 7 shows the 
results for the elastic energy functional.

The agreement between finite difference approximations 
and adjoint sensitivities of drag is better for the translation 
variables ( T0−6 ), to some extent this was expected due to the 
larger magnitude of those derivatives, and the way those var-
iables are constructed from the FFD control points (a trans-
lation variable moves all the points in a section by an equal 
amount, whereas a stretch variable moves points away from 
the centerline of the box proportionally to their distance to 
it). The overall agreement is also better for the elastic energy 
functional, this is also expected as the elastic energy depends 
strongly on pressure and structural deformation (i.e., almost 
directly on the solution variables), whereas drag at subsonic 

Fig. 4  Wing geometry and free-form-deformation box, viewed from 
the wing tip and the top

Fig. 5  Deformed configuration of the wing and pressure coefficient 
contours

Fig. 6  Absolute value of drag sensitivities, from the adjoint solver, 
and finite difference error bounds
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speed depends mostly on viscous effects (and therefore on 
gradients of the solution variables).

Since due to the typical limitations of finite differences, 
it was not possible to obtain derivative approximations with 
a small enough step size (the one used is 2.5% of the plau-
sible range for use in optimization) we cannot attribute the 
discrepancies only to the memory-saving approximations 
introduced in Subsect. 3.2.

A typical challenge of implementing an algorithmic dif-
ferentiation-based discrete adjoint solver in a non-intrusive 
manner, i.e., not requiring extensive modifications to the 
architecture of the code, and/or of the implementation of 
the algorithms, is maintaining a low memory footprint. Run-
ning the adjoint FSI problem used for verification requires 
113 GB of memory, or approximately 4 times the memory 
required to run the primal simulation. We note, however, 
that while multi-grid acceleration was used for the primal 
solution, it was not for the adjoint solution, doing so roughly 
doubles the memory footprint of the fluid problem, which 
would increase the adjoint-to-primal memory ratio to ≈ 6 . 
Notwithstanding not using multi-grid, the adjoint solution 
takes approximately the same time as the primal, about 15 
minutes running on 48 cores (4 Intel Xeon E5-2650v4 CPU). 
This memory footprint ratio is reasonable considering that 
operator overloading AD is used throughout the code [com-
pared to Albring et al. (2016); Towara et al. (2019); Kenway 
et al. (2019)]. In an absolute sense it may appear large for the 
total problem size of one million fluid and structural nodes. 
However, for practical purposes, it is more relevant to judge 
the memory footprint against the available memory in the 
number of compute nodes that needs to be enlisted to obtain 
optimization results in reasonable time frames. The current 
framework also performs well under this metric.

4.3  Turbine stage stator blade (combination case 
of CHT and FSI)

This final test case highlights the modularity of the approach 
presented in this paper. As it not only allows for handling 
multiphysics setups where the number and type of physi-
cal domains is unknown, but also for arbitrary interfaces 
between them. In this example a single zone acts as a heat 
conducting body with a CHT interface to a surrounding 
fluid zone, simultaneously, the same physical interface also 
receives solid displacements by additionally being marked 
as an FSI interface. This results in a deformation of the heat 
and fluid zones according to a third elastically deforming 
zone, which occupies the same physical space as the heat 
conducting zone. In this example the same numerical grid 
is used twice, but it would also be possible to use differ-
ent grids to individually resolve temperature and stress 
gradients.

Similarly to the previous examples, the sensitivity analy-
sis framework is applied to this turbine stator blade with 
three internal cooling channels (Fig. 8) in high pressure 
compressible flow that causes deformations altering the 
pressure difference acting on the blade. Keeping track of 
the heat transfer, e.g., to control the temperature of the blade, 
requires the deformation to be considered (Fig. 9).

Effectively three different kinds of physics are coupled 
by exchanging structural displacements, fluid forces, and 
heat quantities at the physical interface. Note that no ther-
moelastic solver was used for this study, i.e., we assume 
no dependency of the structural solver on the temperature 
distribution.

The cooling channels are set to a fixed temperature of 
400 K, the compressible air flow at Mach 0.2 enters at 

Fig. 7  Absolute value of elastic energy sensitivities, from the adjoint 
solver, and finite difference error bounds

Fig. 8  Cooled turbine blade in high-pressure flow



 O. Burghardt et al.

1 3

28 Page 12 of 14

1.3 MPa and 600 K and drops to 0.9 MPa at the outlet. The 
material parameters are set to the ones of steel, except 
for a significantly reduced elasticity modulus of 4GPa in 
order to increase the deformation, and thus increase the 
importance of coupling effects (in a 3D setting significant 
deformation would occur also with larger elasticity moduli 
due to bending and torsional loads over the span).

A free-form-deformation box  (Fig.  10) is created 
around the blade in order to validate the adjoint solutions 
containing all cross contributions created by the dependen-
cies between the primal solvers. A single FFD parameter 
(a) of the box (control point at position (6,9) in the green 
lattice) is varied (resulting in the deformation shown in 
Fig. 11) and the change in the heat flux (given by the sur-
face integral around the blade perimeter based on the flow 
solution) is monitored.

The heat flux derivative d

da
J̃(x(a0)) [cf. (14)] is calculated 

by summing up contributions obtained from the adjoint 
solutions (7) of the flow (-276185.18), heat conduction 

(287154.54), and the elastic deformation (1160.81), giving a 
total of d

da
J̃(x(a0)) = 12130.17 . Regarding these values, one 

notes that the elastic deformation has a significant effect on 
the shape sensitivity of the heat flux. This result was verified 
using finite differences as shown in Table 2.

Error estimates based on the setup used for this test case 
become less reliable for perturbations below 1.0E − 7 due to 
numerical errors. As the relative importance of the coupling 
effects, illustrated by the individual contributions to the total 
derivative, is much larger than the relative error between 
finite differences and the adjoint method, higher order finite 
difference approximation were considered unnecessary.

5  Conclusions

This paper has presented a methodology on how to set up 
and implement an algorithm to compute discrete adjoints 
for multiphysics problems using algorithmic differentia-
tion, thereby providing accurate gradients for optimization 
purposes.

By design, no a priori knowledge about the physical setup 
of the primal problem is required, which allows the cur-
rent implementation in SU2 to be applied to conjugate heat 
transfer, fluid–structure interaction, or combinations of both, 
without problem-specific code having to be written for each 
coupled adjoint problem.

Fig. 9  Deformation of the blade through flow tractions

Fig. 10  FFD box, each vertex being a shape parameter

Fig. 11  Shape modification through a single parameter

Table 2  Validation of the heat flux gradient obtained from adjoints 
against finite differences (FD) with deformation paramater 
a = a0 + 10p

Magnitude p Finite difference Relative error (%)

− 4 12168.1 0.3074
− 5 12142.2 0.0989
− 6 12132.1 0.0159
− 7 12130.0 0.0013
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To the authors’ knowledge, no such unifying approach 
has been pursued so far within the optimization commu-
nity. Besides all apparent advantages of using a common 
code base (such as ease of maintenance and compatibility), 
it also opens the way to include further kinds of physics 
with minimal effort, to ultimately tackle arbitrarily complex 
multiphysics optimization problems.

Acknowledgements The authors would like to gratefully acknowledge 
the support of the Bayerische Forschungsstiftung (Grant No. BFS 
AZ-1232-16), as well as the computational resources provided by the 
RHRK high-performance computing center via the ‘Elwetritsch’ high-
performance cluster at the TU Kaiserslautern.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Replication of results The source code developed for this work required 
to run the adjoint and sensitivity computations as shown in Sect. 4 is 
available at https:// github. com/ su2co de/ SU2.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Albring TA, Sagebaum M, Gauger NR (2016) Efficient aerodynamic 
design using the discrete adjoint method in SU2. In: 17th AIAA/
ISSMO multidisciplinary analysis and optimization conference

Albring TA, Dick T, Gauger NR (2017) Assessment of the recur-
sive projection method for the stabilization of discrete adjoint 
solvers. In: 18th AIAA/ISSMO multidisciplinary analysis and 
optimization conference

Biedron RT, Carlson JR, Derlaga JM, Gnoffo PA, Hammond DP, 
Jones WT, Kleb B, Lee-Rausch EM, Nielsen EJ, Park MA, 
Rumsey CL, Thomas JL, Thompson KB, Wood WA (2019) 
Fun3d manual: 13.6. In: NASA TM 2019-220416

Burghardt O, Gauger NR, Economon TD (2019) Coupled adjoints 
for conjugate heat transfer in variable density incompressible 
flows. In: AIAA Aviation 2019 Forum

Campobasso MS, Giles MB (2004) Stabilization of a linear flow 
solver for turbomachinery aeroelasticity using recursive projec-
tion method. AIAA J 42(9):1765–1774

Degroote J, Bathe K-J, Vierendeels J (2009) Performance of a new 
partitioned procedure versus a monolithic procedure in fluid–
structure interaction. Comput Struct 87(11):793–801

Dunning PD, Stanford BK, Kim HA (2015) Coupled aerostructural 
topology optimization using a level set method for 3D aircraft 
wings. Struct Multidisc Optim 51(5):1113–1132

Economon TD (2020) Simulation and adjoint-based design for vari-
able density incompressible flows with heat transfer. AIAA J 
58(2):757–769

Economon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ 
(2016) SU2: an open-source suite for multiphysics simulation 
and design. AIAA J 54(3):828–846

Feppon F, Allaire G, Bordeu F, Cortial J, Dapogny C (2019) Shape 
optimization of a coupled thermal fluid-structure problem in a 
level set mesh evolution framework. SeMA J 76(3):413–458

Giles MB, Pierce NA (1997) Adjoint equations in cfd-duality, bound-
ary conditions and solution behaviour. In: 13th computational 
fluid dynamics conference

Giles MB, Pierce NA (2000) An introduction to the adjoint approach 
to design. Flow, Turbul Combust 65(3):393–415

Gomes P, Palacios R (2020) Aerodynamic-driven topology optimiza-
tion of compliant airfoils. Struct Multidisc Optim 62:2117–2130

Griewank A, Walther A (2008) Evaluating derivatives: principles and 
techniques of algorithmic differentiation, 2nd edn. Society for 
industrial and applied mathematics, Philadelphia

He P, Mader CA, Martins JRRA, Maki KJ (2018) An aerodynamic design 
optimization framework using a discrete adjoint approach with Open-
FOAM. Comput Fluids 168:285–303

Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2008) Optimization with PDE 
constraints. Springer, Berlin

Jameson A (1995) Optimum aerodynamic design using cfd and control 
theory. In: 12th computational fluid dynamics conference

Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 
3(3):233–260

Kamali S, Mavriplis DJ, Anderson EM (2020) Sensitivity analysis for aero-
thermo-elastic problems using the discrete adjoint approach. In: AIAA 
Aviation 2020 Forum

Kenway GKW, Kennedy GJ, Martins JRRA (2014) Scalable parallel 
approach for high-fidelity steady-state aeroelastic analysis and adjoint 
derivative computations. AIAA J 52(5):935–951

Kenway GKW, Mader CA, He P, Martins JRRA (2019) Effective adjoint 
approaches for computational fluid dynamics. Prog Aerosp Sci 
110:100542

Lions JL (1971) Optimal control of systems governed by partial differential 
equations. Springer, Berlin

Lundgaard C, Alexandersen J, Zhou M, Andreasen CS, Sigmund O (2018) 
Revisiting density-based topology optimization for fluid–structure-
interaction problems. Struct Multidisc Optim 58(3):969–995

Makhija DS, Beran PS (2019) Concurrent shape and topology optimi-
zation for steady conjugate heat transfer. Struct Multidisc Optim 
59(3):919–940

Markus T, Johannes L, Uwe N (2019) Discrete adjoint approaches for CHT 
applications in OpenFOAM. Advances in evolutionary and determin-
istic methods for design, optimization and control in engineering and 
sciences. Springer, Cham, pp 163–178

Martins JRRA, Ning A (2021) Engineering design optimization. Cam-
bridge University Press, Cambridge

Maute K, Nikbay M, Farhat C (2000) Analytically based sensitivity analysis 
and optimization of nonlinear aeroelastic systems. In: 8th symposium 
on multidisciplinary analysis and optimization, California, USA. pp 
1–10

Patankar SV, Liu CH, Sparrow EM (1977) Fully developed flow and heat 
transfer in ducts having streamwise-periodic variations of cross-sec-
tional area. J Heat Transfer 99(2):180–186

Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria RS, Silva ECN (2020) 
Topology optimization of binary structures under design-depend-
ent fluid–structure interaction loads. Struct Multidisc Optim 
62(4):2101–2116

https://github.com/su2code/SU2
http://creativecommons.org/licenses/by/4.0/


 O. Burghardt et al.

1 3

28 Page 14 of 14

Sagebaum M, Albring T, Gauger NR (2019) High-performance derivative 
computations using CoDiPack. ACM Trans Math Softw 45(4):1–26

Sanchez R, Albring T, Palacios R, Gauger NR, Economon T, Alonso J 
(2018) Coupled adjoint-based sensitivities in large-displacement 
fluid–structure interaction using algorithmic differentiation. Int J Num 
Methods Eng 113(7):1081–1107

Shroff Gautam M, Keller Herbert B (1993) Stabilization of unstable 
procedures: the recursive projection method. SIAM J Num Anal 
30(4):1099–1120

Smith LJ, Halim LJ, Kennedy G, Smith MJ (2021) A high-fidelity coupling 
framework for aerothermoelastic analysis and adjoint-based gradient 
evaluation. In: AIAA Scitech 2021 Forum

Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to 
computational continuum mechanics using object-oriented techniques. 
Comput Phys 12(6):620–631

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Discrete adjoint methodology for general multiphysics problems
	Abstract
	1 Introduction
	2 Multiphysics discrete adjoints
	2.1 Generic coupled discrete adjoint algorithm
	2.2 Design parameter sensitivities

	3 Algorithmic differentiation of a multiphysics solver
	3.1 Storing and evaluating derivative information via AD
	3.2 Adjoint evaluation algorithm, subroutines and tape layout

	4 Applications
	4.1 Conjugate heat transfer test case
	4.2 Fluid–structure interaction test case
	4.3 Turbine stage stator blade (combination case of CHT and FSI)

	5 Conclusions
	Acknowledgements 
	References




