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Abstract
Gliomas are primary brain tumors with a high invasive potential and infiltrative spread.
Among them, glioblastomamultiforme (GBM)exhibitsmicrovascular hyperplasia and
pronounced necrosis triggered by hypoxia. Histological samples showing garland-like
hypercellular structures (so-called pseudopalisades) centered around the occlusion site
of a capillary are typical for GBM and hint on poor prognosis of patient survival. We
propose amultiscale modeling approach in the kinetic theory of active particles frame-
work and deduce by an upscaling process a reaction-diffusion model with repellent
pH-taxis. We prove existence of a unique global bounded classical solution for a
version of the obtained macroscopic system and investigate the asymptotic behavior
of the solution. Moreover, we study two different types of scaling and compare the
behavior of the obtained macroscopic PDEs by way of simulations. These show that
patterns (not necessarily of Turing type), including pseudopalisades, can be formed
for some parameter ranges, in accordance with the tumor grade. This is true when the
PDEs are obtained via parabolic scaling (undirected tissue), while no such patterns are
observed for the PDEs arising by a hyperbolic limit (directed tissue). This suggests
that brain tissue might be undirected - at least as far as glioma migration is concerned.
We also investigate two different ways of including cell level descriptions of response
to hypoxia and the way they are related .
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1 Introduction

Classified as grade IV astrocytoma by WHO Louis et al. (2007), glioblastoma mul-
tiforme (GBM) is considered to be the most aggressive type of glioma, with a
median overall survival time of 60 weeks, in spite of state-of-the-art treatment Rong
et al. (2006),Wrensch et al. (2002). It is characterized by fast, infiltrative spread and
unchecked cell proliferation which triggers hypoxia and upregulation of glycolysis,
usually accompanied locally by exuberant angiogenesis Brat et al. (2002),Fischer et al.
(2006); one of the typical features of GBM is the development of a necrotic core Louis
et al. (2007). Increased extracellular pressure from edema and expression of proco-
agulant factors putatively lead to vasoocclusion and thrombosis Brat and Van Meir
(2004), hence impairing oxygen supply at the affected site, which becomes hypoxic
and induces tissue necrotization. As a consequence, glioma cells actively and radially
migrate away from the acidic area Brat et al. (2004), forming palisade-like structures
exhibiting arrangements of elongated nuclei stacked in rows at the periphery of the
hypocellular region around the occlusion site Wippold et al. (2006). Such histopatho-
logical patterns are typically observed in GBM and are used as an indicator of tumor
aggressiveness Brat andMapstone (2003),Kleihues et al. (1995). Pseudopalisades can
be narrow, with a width less than 100 μm and a fibrillar interior structure, medium-
sized (200–400 μm wide) with central necrosis and vacuolization, but with a fibrillar
zone in the immediate interior proximity of the hypercellular garland-like formation.
Finally, the largest ones exceed500μm inwidth and are surrounding extensive necrotic
areas, most often containing central vessels Brat et al. (2004).
Mathematical modeling has become a useful means for supporting the investigation
of glioma dynamics in interaction with the tumor microenvironment. Over the years
several modeling approaches have been proposed. While discrete and hybrid mod-
els (see e.g. Böttger et al. (2012),Khain et al. (2011),Sander and Deisboeck (2002))
use computing power to assess the rather detailed interplay between glioma cells
and their surroundings, the continuum settings enable less expensive simulations and
mathematical analysis of the resulting systems of differential equations. Since the
structure of brain tissue with its patient-specific anisotropy is (among other factors)
essential for the irregular spread of glioma, the mathematical models should be able
to include in an appropriate way such information, which is available from diffusion
tensor imaging (DTI) data. The macroscopic evolution of a tumor is actually deter-
mined by processes taking places on lower scales, thus it is important to deduce the
corresponding population dynamics from descriptions of cell behavior on mesoscopic
or even subcellular levels, thereby taking into account the interactions with the under-
lying anisotropic tissue and possibly further biochemical and/or biophysical traits of
the extracellular space. This has been done e.g. in Corbin et al. (2018),Engwer et al.
(2015a),Engwer et al. (2015b),Engwer et al. (2016),Hunt and Surulescu (2016),Painter
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and Hillen (2013) upon starting on the mesoscale from the kinetic theory of active
particles (KTAP) framework Bellomo (2008) and obtaining with an adequate upscal-
ing the macroscopic PDEs of reaction-(myopic) diffusion(-taxis) type for the tumor
dynamics. Depending on whether the modeling process included subcellular events,
these PDEs contain in their coefficients information from that modeling level, thus
receiving a multiscale character. It is this approach that we plan to follow here, how-
ever with the aim of obtaining cell population descriptions for the pseudopalisade
formation rather than for the behavior of the whole tumor.
Mathematical models addressing glioma pseudopalisade formation are scarce; we
refer to (Cai et al. 2016; Caiazzo and Ramis-Conde 2015) for agent-based approaches
and to (Alfonso et al. 2016; Martínez-González et al. 2012) for continuous settings.
Of the latter, Alfonso et al. (2016) investigated the impact of blood vessel collapse on
glioma invasion and the phenotypic switch in the migration/proliferation dichotomy.
It involves a system of PDEs coupling the nonlinear dynamics of glioma popula-
tion with that of nutrient concentration and vasculature, thus not explicitly including
acidity. The PDE for the evolution of tumor cell density was obtained upon starting
from a PDE/ODE system for migrating/proliferating glioma densities and performing
transformations relying on several assumptions. The work inMartínez-González et al.
(2012) describes interactions between normoxic/hypoxic glioma, necrotic tissue, and
oxygen concentration. Themodel confirms the histological pattern behavior and shows
by simulations a traveling wave concentrically moving away from the highly hypoxic
site toward less acidic areas. The PDE system therein was set up in a heuristic manner
directly on the macroscale, and it features reaction-diffusion equations without taxis
or other drift.
In the present workwe are interested in deducing effective equations for the space-time
evolution of glioma cell density in interaction with extracellular acidity (concentra-
tion of protons), thereby accounting for the multiscality of the involved processes and
for the anisotropy of brain tissue. The deduced model should be able to reproduce
pseudopalisade-like patterns and to investigate the influence of acidity and tissue on
their behavior. The rest of this paper is organized as follows: in Sect. 2 we formu-
late our model upon starting from descriptions of cell dynamics on the microscopic
and mesoscopic scales. Section 3 is concerned with obtaining the macroscopic lim-
its of that setting; we will investigate parabolic as well as hyperbolic upscalings,
correspondingly leading to diffusion and drift-dominated evolution, respectively, and
depending on tissue properties (directed/undirected). In Sect. 4 we provide an assess-
ment of parameters and functions involved in the deduced macroscopic PDE systems
and perform numerical simulations, also providing a comparison between the studied
modeling approaches. Section 5 is dedicated to establishing the existence and unique-
ness of a global bounded classical solution to a version of the macroscopic system
obtained by parabolic scaling. A result concerning the asymptotic behavior of such
solution is proved as well. Finally, Sect. 6 contains a discussion of the obtained results
and an outlook on further problems of interest related to GBM pseudopalisades. In
the Appendix we address an alternative modeling approach and its parabolic limit and
provide a linear stability analysis with comments on pattern formation for a version
of the macroscopic limit obtained via parabolic scaling.
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2 Model set up on subcellular andmesoscopic scales

The approach in (Engwer et al. 2015a, b) led to (hapto)taxis of glioma cell population
on the macroscale upon taking into account receptor binding of cells to the surround-
ing tissue. As such, it was a simplification of subcellular dynamics as considered in
(Kelkel and Surulescu 2011, 2012; Lorenz and Surulescu 2014), where the cancer
cells were supposed to interact with the tissue and with a soluble ligand acting as a
chemoattractant. The latter works, however, were concerned with the micro-meso-
macro formulation of cancer cell evolution in dynamic interaction with the tissue
(as a mesoscopic quantity) and the ligand (obeying a nonlocal macroscopic PDE),
along with the analysis therewith, whereas here we intend to obtain a system of effec-
tive macroscopic PDEs for glioma population density in interaction with space-time
dependent acidity. Here the macroscopic scale is smaller than in the mentioned previ-
ous works: it is not the scale of the whole tumor, but that of a subpopulation, localized
around one or several vasoocclusion sites in a comparatively small area of the tumor -
corresponding to a histological sample. Since (see end of first paragraph in Sect. 1) the
size of such samples is too small to allow a reliable assessment of underlying tissue
distribution viaDTI1, we do not describe a detailed cell-tissue interaction via cell activ-
ity variables as in the mentioned works. However, tissue anisotropy might be relevant
even on such lower scale, therefore we consider, instead, an artificial structure by way
of some given water diffusion tensor, in order to be able to test such influences on the
glioma pattern formation. Therefore, on the subcellular level we only account explic-
itly for interactions between extracellular acidity and glioma transmembrane units
mediating them. The latter can be ion channels and membrane transporters ensuring
proton exchange, or even proton-sensing receptors Holzer (2009).
We denote by y(t) the amount of transmembrane units occupied with protons (in the
following we will call this the activity variable, in line with the KTAP framework in
Bellomo (2008)) and by R0 the total amount of such units (ion channels, receptors,
etc), which for simplicity we assume to be constant. Let S denote the concentration
of (extracellular) protons and Smax be a threshold value, which, when exceeded, leads
to cancer cell death. The corresponding binding/occupying kinetics are written

S

Smax
+ (R0 − y)

k+
−⇀↽−
k−

y,

so that we can write for the corresponding subcellular dynamics (upon rescaling y �
y/R0)

ẏ = G(y, S) := k+ S

Smax
(1 − y) − k−y, (2.1)

where k+ and k− represent the reaction rates. We denote by y∗ the steady-state of the
above ODE, thus we have

1 The typical size of a voxel is ca. 1 mm3
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y∗ = k+S/Smax

k+S/Smax + k− = S/Smax

S/Smax + kD
, kD := k−

k+
. (2.2)

As in (Engwer et al. 2015a, b) we will consider deviations from the equilibrium of
subcellular dynamics:

z := y∗ − y.

Since the events on this scale are much faster than those on the mesoscopic and
especially macroscopic levels, the equilibrium is supposed to be quickly attained, so
z is very small. We will use this assumption in the subsequent calculations; as in
(Engwer et al. 2015a, b) it will allow us to get rid of higher order moments during the
upscaling process, thus to close the system of moments leading to the macroscopic
formulation. This assumption also allows us to ignore on this microscopic scale the
time dependency of S.2 Next, we consider the path of a single cell starting at position
x0 and moving with velocity v in the acidic environment. Since the glioma cells are
supposed to move away from the highly hypoxic site, we take:

x := x0 − vt,

which leads to

ż = −k+(
S

Smax
+ kD)z − kD/Smax

(S/Smax + kD)2
v · ∇S. (2.3)

We denote by p(t, x, v, y) the density function of glioma cells at time t , position
x ∈ R

n , velocity v ∈ V ⊂ R
n , and with activity variable y ∈ Y = (0, 1). We assume

as in (Corbin et al. 2018; Engwer et al. 2015a, b, 2016; Hunt and Surulescu 2016;
Painter and Hillen 2013) that the cells have a constant (average) speed s > 0, so that
V = sSn−1, i.e. only the cell orientation is varying on the unit sphere. In terms of
deviations z ∈ Z ⊂ [y∗ −1, y∗] from the steady-state (we also call z activity variable)
we consider for the evolution of p the kinetic transport equation (KTE)

∂t p+v · ∇ p−∂z
(((

k+S/Smax+k−)
z+ f ′(S)v · ∇S

)
p
)=L [λ(z)]p+P(S, M)p,

(2.4)

whereL [λ(z)]p := −λ(z)p+λ(z)
∫
V K (x, v, v′)p(v′)dv′ denotes the turning oper-

ator modeling cell velocity adaptations due to tissue contact guidance and acidity
sensing, with λ(z) denoting the turning rate of cells. Thereby, K (x, v, v′) is a turning
kernel giving the likelihoodof a cellwith velocityv′ to change its velocity regime intov.
We adopt the choice proposed in Hillen (2006), i.e. K (x, v, v′) = q(x,v̂)

ω
where q(x, v̂)

2 In fact, keeping this dependency and accounting for the correct scales during the macroscopic limit
leads to omission of the arising supplementary term, so that the outcome is the same whether we do such
assumption at this step or later on.
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is the (stationary) orientation distribution of tissue fibers with ω = ∫
V q(v̂)dv = sn−1

and v̂ = v
|v| ∈ S

n−1. We take the turning rate as in Engwer et al. (2015a)

λ(z) = λ0 − λ1z ≥ 0, (2.5)

where λ0 and λ1 are positive constants. The choice means that the turning rate is
increasing with the amount of proton-occupied transmembrane units. The turning
operator in (2.4) thus becomes

L [λ(z)]p = L [λ0]p − L [λ1]zp, (2.6)

with

L [λi ]p(t, x, v, y) = −λi p(t, x, v, y) + λi
q

ω

∫

V
p(t, x, v, y)dv for i = 0, 1.

(2.7)

We also employ the notation f (S) = y∗ to emphasize that the steady-state of subcellu-
lar dynamics depends on the proton concentration S. The last term in (2.4) represents
growth or depletion, according to the acidity level in the tumor microenvironment.
Similarly to Engwer et al. (2015b), but now accounting for the effect of acidity, we
consider a source term of the form

P(S, M) := μ(M)

∫

Z
χ(z, z′)

(
1 − S

Smax

)
p(t, x, v, z′)dz′, (2.8)

where χ(z, z′) represents the likelihood of cells having activity state z′ to go into
activity state z under the influence of acidity S(t, x): higher acid concentrations hinder
proliferation and even lead to apoptosis. In particular, χ is a kernel with respect to z,
i.e.

∫
Z χ(z, z′)dz = 1. The acidity is reported again to the threshold value Smax . The

growth rate μ(M) depends on the total amount M(t, x) = ∫
V

∫
Z p(t, x, v, z)dzdv of

glioma cells, irrespective of their orientation or activity state, and takes into account
limitations by overcrowding. We will provide a concrete choice later in Sect. 4.1.
Hence, the presence of tissue is supporting proliferation, which is maintained until the
environment becomes too acidic even for tumor cells.
The micro-meso formulation for glioma dynamics including the KTE (2.4) with
the turning and proliferation operators introduced in (2.6) and (2.8), respectively, is
supplemented with the evolution of acidity described by the macroscopic PDE

St = Ds�S + βM − αS, (2.9)

where Ds is the diffusion coefficient of protons, β is the proton production rate by
tumor cells, and α denotes the rate of acidity decay.
The high dimensionality of the above setting makes the numerics too expensive, thus
we aim to deduce macroscopic equations which can be solved more efficiently and,
moreover, facilitate the observation of the glioma cell population and its patterning
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behavior. In order to investigate the possible effects of the tissue being directed or not3,
we will perform two kinds of macroscopic limit: the parabolic one, for the diffusion-
dominated case of undirected tissue, and the hyperbolic limit for directed tissue, which
should be drift-dominated. Both types of limits are performed in a formal way, as the
rigorous processes would require analytical challenges which go beyond the aims of
this note.

3 Macroscopic limits

We consider the following moments with respect to v and z:

m(t, x, v) =
∫

Z
p(t, x, v, z)dz M(t, x) =

∫∫

V×Z
p(t, x, v, z)dzdv

mz(t, x, v) =
∫

Z
zp(t, x, v, z)dz Mz(t, x) =

∫∫

V×Z
zp(t, x, v, z)dzdv

and neglect higher order moments w.r.t. z due to the assumption of the steady-state of
subcellular dynamics being rapidly reached. Moreover, we assume p to be compactly
supported in the phase space Rn × V × Z .
Integrating (2.4) w.r.t z, we get:

∂tm + ∇x · (vm) = −λ0m + λ1m
z + λ0

q

ω
M − λ1

q

ω
Mz + μ(M)

(
1 − S

Smax

)
m

(3.1)

Multiplying (2.4) by z and integrating w.r.t. z we get:

∂tm
z + ∇x · (vmz) = −(k+S/Smax + k−)mz − f ′(S)v · ∇S m − λ0m

z + λ0
q

ω
Mz

+ μ(M)

(
1 − S

Smax

) ∫

Z

∫

Z
zχ(z, z′)p(z′)dz′dz. (3.2)

In the following we denote as e.g., in (Hillen 2006; Engwer et al. 2015a) by

Eq(x) :=
∫

Sn−1
θq(x, θ)dθ

Vq(x) :=
∫

Sn−1
(θ − Eq) ⊗ (θ − Eq)q(x, θ)dθ

the mean fiber orientation and the variance-covariance matrix for the orientation dis-
tribution of tissue fibers, respectively.

3 By ’undirected’ we mean as in Hillen (2006) that the fibers are symmetric along their axis and both fiber
directions are identical, while ’directed’ means unsymmetric fibers; since the common medical imaging
techniques are not providing the necessary resolution, it is actually not known whether brain tissue is
directed, but such feature might play a role in the formation of glioma patterns
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3.1 Parabolic limit

In this subsection we consider the tissue to be undirected, which translates
into the directional distribution function for tissue fibers being symmetric, i.e.∫
Sn−1 q(x, θ)dθ = ∫

Sn−1 q(x,−θ)dθ . We rescale the time and space variables by
t̃ := ε2t , x̃ := εx. Since proliferation is much slower than migration, we also rescale
with ε2 the corresponding term, as in Engwer et al. (2015b). For notation simplification
we will drop in the following the˜symbol from the scaled variables t and x.
Thus, from (3.1) and (3.2) we get:

ε2∂tm+ε∇x · (vm) = −λ0m+λ1m
z+λ0

q

ω
M−λ1

q

ω
Mz+ε2μ(M)

(
1− S

Smax

)
m

(3.3)

ε2∂tm
z + ε∇x · (vmz) = −(k+S/Smax + k− + λ0)m

z − ε f ′(S)v · ∇S m + λ0
q

ω
Mz

+ ε2μ(M)

(
1 − S

Smax

) ∫

Z

∫

Z
zχ(z, z′)p(z′)dz′dz. (3.4)

Now, using Hilbert expansions for the moments:

m = m0 + εm1 + ε2m2 + ...

mz = mz
0 + εmz

1 + ε2mz
2 + ...

M = M0 + εM1 + ε2M2 + ...

Mz = Mz
0 + εMz

1 + ε2Mz
2 + ...

and identifying the equal powers of ε, we get
ε0:

0 = −λ0m0 + λ1m
z
0 + λ0

q

ω
M0 − λ1

q

ω
Mz

0 (3.5)

0 = −(k+S/Smax + k−)mz
0 − λ0m

z
0 + λ0

q

ω
Mz

0 (3.6)

ε1:

∇ · (vm0) = −λ0m1 + λ1m
z
1 + λ0

q

ω
M1 − λ1

q

ω
Mz

1 (3.7)

∇ · (vmz
0) = −(k+S/Smax + k−)mz

1 − f ′(S)v · ∇Sm0 − λ0m
z
1 + λ0

q

ω
Mz

1 (3.8)

ε2:

∂tm0+∇ · (vm1)=−λ0m2 + λ1m
z
2 + λ0

q

ω
M2 − λ1

q

ω
Mz

2 + μ(M)

(
1 − S

Smax

)
m0

(3.9)
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If we also expand μ around M0, (3.9) leads to

∂tm0+∇ · (vm1)=−λ0m2+λ1m
z
2+λ0

q

ω
M2 − λ1

q

ω
Mz

2+μ(M0)

(
1 − S

Smax

)
m0.

(3.10)

Integrating (3.6) w.r.t. v we get

0 = −(k+S/Smax + k−)Mz
0 − λ0M

z
0 + λ0M

z
0

	⇒ Mz
0 = 0 and mz

0 = 0.

Then from (3.5) we obtain m0 = q
ω
M0. Integrating (3.8) w.r.t. v gives

0 = −(k+S/Smax + k−)Mz
1 − f ′(S)∇S ·

∫

V
v
q

ω
dvM0.

The assumption of undirected tissue gives Eq = 0, thus from the above equation we
obtain Mz

1 = 0, which in virtue of (3.8) implies

mz
1 = − f ′(S)v · ∇S m0

(k+S/Smax + k− + λ0)
.

The compact Hilbert-Schmidt operatorL [λ0]m1 = −λ0m1 + λ0
q
ω
M1 is considered

as in Hillen (2006) on the weighted space L2
q
ω

(V ) := {ζ : ∫
V |ζ(v)|2 dv

q(v̂)
ω

< ∞}. It
has kernel4 〈 q

ω
〉, thus its pseudo-inverse can be taken on the orthogonal complement

〈 q
ω
〉⊥, to deduce from (3.7)

m1 = − 1

λ0

(∇ · (vm0) − λ1m
z
1

)
.

We summarize our hitherto information about the moments:

m0 = q

ω
M0 (3.11)

mz
0 = Mz

0 = M1 = Mz
1 = 0 (3.12)

m1 = − 1

λ0

(
∇ · (v

q

ω
M0) − λ1m

z
1

)
(3.13)

mz
1 = − f ′(S)v · ∇S m0

(k+S/Smax + k− + λ0)
. (3.14)

Now integrating (3.10) w.r.t. v we obtain

∫

V

(
∂t

( q

ω
M0

)
+ ∇ · (vm1)

)
dv = μ(M0)

(
1 − S

Smax

) ∫

V
m0dv

4 The brackets 〈·〉 denote the span set
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Using (3.11)-(3.14), the previous equation becomes

∂t M0 = ∇∇ : (DT (x)M0) + ∇ · (g(S)DT (x)∇S M0) + μ(M0)

(
1 − S

Smax

)
M0,

(3.15)

where:

g(S) = λ1(k
+S/Smax + k− + λ0)

−1 f ′(S),

f (S) = S/Smax

S/Smax + kD
,

u(x) = 1

λ0ω

∫

V
v ⊗ v∇q(x, v̂)dv = ∇ · DT (x),

DT (x) = 1

λ0ω

∫

V
q(x, v̂)v ⊗ vdv.

This macroscopic PDE forms together with (2.9) the system characterizing glioma
evolution under the influence of acidity. It involves a term describing repellent pH-
taxis (the glioma cells move away from large acidity gradients), in which the tactic
sensitivity function contains the tumor diffusion tensorDT encoding information about
the anisotropy of underlying tissue and the function g(S) which relates to the subcel-
lular dynamics of proton sensing and transfer across cell membranes. The myopic
diffusion

∇∇ : (DT (x)M0) = ∇ · (DT (x)∇M0 + u(x)M0)

is common to this and previous models (Engwer et al. 2015a, b; Hunt and Surulescu
2016; Painter and Hillen 2013) obtained by parabolic scaling from the KTAP frame-
work.

3.2 Hyperbolic scaling

In this subsection we investigate the macroscopic limit of (2.4) in the case where
the tissue is directed. In particular, this means that the mean fiber orientation Eq is
nonzero, as the orientation distribution q is unsymmetric.
Consider on L2

q
ω

(V ) =< q/ω > ⊕ < q/ω >⊥ the Chapman-Enskog expansion of

the cell distribution function p(t, x, v, z) in the form

p(t, x, v, z) = p̄(t, x, z)
q

ω
(x, v̂) + ε p⊥(t, x, v, z), (3.16)

where
∫
V p⊥(t, x, v, z)dv = 0 and p̄(t, x, z) := ∫

V p(t, x, v, z)dv. Then for
the moments introduced at the beginning of this Sect. 3 and with the notations
m⊥(t, x, v) := ∫

Z p⊥(t, x, v, z)dz, mz
⊥(t, x, v) := ∫

Z zp⊥(t, x, v, z)dz, we have
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m(t, x, v) =
∫

Z
p(t, x, v, z)dz =

∫

Z
p̄(t, x, z)

q(x, v̂)
ω

dz + ε

∫

Z
p⊥(t, x, v, z)dz

= q(x, v̂)
ω

M(t, x)

+ εm⊥(t, x, v)

mz(t, x, v) =
∫

Z
zp(t, x, v, z)dz = q(x, v̂)

ω∫

Z
z p̄(t, x, z)dz + ε

∫

Z
zp⊥(t, x, v, z)dz

= q(x, v̂)
ω

Mz(t, x) + εmz
⊥(t, x, v).

(3.17)

Now we rescale the time and space variables by t̃ := εt, x̃ := εx and drop again the˜
symbol to simplify the notation. As before, the proliferation term is scaled by ε2. With
these, the Eqs (3.1) and (3.2) become, respectively:

ε∂tm+ε∇x · (vm) = −λ0m+λ1m
z + λ0

q

ω
M − λ1

q

ω
Mz + ε2μ(M)

(
1 − S

Smax

)
m

(3.18)

and

ε∂tm
z+ε∇x · (vmz)=−(k+S/Smax+k−)mz − ε f ′(S)v · ∇S m − λ0m

z + λ0
q

ω
Mz

+ ε2μ(M)

(
1 − S

Smax

) ∫

Z

∫

Z
zχ(z, z′)p(z′)dz′dz. (3.19)

Using (3.17) we write

ε∂t

( q

ω
M + εm⊥)

+ε∇ · (v
( q

ω
M + εm⊥)

) = −λ0

( q

ω
M + εm⊥)

+ λ1

( q

ω
Mz + εmz

⊥
)

+λ0
q

ω
M − λ1

q

ω
Mz + ε2μ(M)

(
1 − S

Smax

)
m (3.20)

ε∂t

( q

ω
Mz + εmz

⊥
)

+ε∇ · (v
( q

ω
Mz + εmz

⊥
)
)

= −(k+S/Smax + k−)
( q

ω
Mz + εmz

⊥
)

−ε f ′(S)v · ∇S
( q

ω
M + εm⊥)

−λ0

( q

ω
Mz + εmz

⊥
)
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+λ0
q

ω
Mz

+ε2μ(M)

(
1 − S

Smax

) ∫

Z

∫

Z
zχ(z, z′)p(z′)dz′dz. (3.21)

Since q is independent of time, these equations imply

q

ω
∂t M + ε∂tm

⊥ + ∇ · (vM
q

ω
)

+ ε∇ · (vm⊥) = −λ0m
⊥ + λ1m

z
⊥ + εμ(M)

(
1 − S

Smax

)
m (3.22)

ε
q

ω
∂t M

z + ε2∂tm
z
⊥ + ε∇ · (vMz q

ω
)

+ ε2∇ · (vmz
⊥) = −(k+S/Smax + k−)

q

ω
Mz − ε(k+S/Smax + k−)mz

⊥

− ε f ′(S)v · ∇S
q

ω
M − ε2 f ′(S)v · ∇S m⊥

− ελ0m
z
⊥

+ ε2μ(M)

(
1 − S

Smax

)

∫

Z

∫

Z
zχ(z, z′)p(z′)dz′dz. (3.23)

Integrating (3.22) w.r.t. v gives

∂t M + ∇ · (ẼqM) + ε∇ ·
∫

V
vm⊥dv = εμ(M)

(
1 − S

Smax

)
M, (3.24)

where we used the notation Ẽq(x) := ∫
V v q

ω
(x, v̂)dv = sEq .

From (3.23) we get at leading order

−(k+S/Smax + k−)
q

ω
Mz = 0 ⇒ Mz = 0.

Plugging this in (3.23), we obtain (again at leading order)

0 = −(k+S/Smax + k−)mz
⊥ − f ′(S)v · ∇S

q

ω
M − λ0m

z
⊥,

whence

mz
⊥ = − f ′(S)v · ∇S

k+S/Smax + k− + λ0

q

ω
M . (3.25)

From (3.24):

∂t M = εμ(M)

(
1 − S

Smax

)
M − ∇ · (ẼqM) − ε∇ ·

∫

V
vm⊥dv. (3.26)

123



Multiscale modeling of glioma pseudopalisades: contributions from... Page 13 of 45 49

Plugging this into (3.22) we get (at leading order)

L [λ0]m⊥ = − q

ω
∇ ·

(
ẼqM

)
+ ∇ · (vM

q

ω
) − λ1m

z
⊥. (3.27)

Since the right hand side vanishes when integrated w.r.t. v, we can pseudo-invert
L [λ0] and use (3.25) to get

m⊥ = −1

λ0

(
∇ ·

(
vM

q

ω

)
− q

ω
∇ ·

(
ẼqM

)
− λ1

− f ′(S)v · ∇S

k+S/Smax + k− + λ0

q

ω
M

)
,

(3.28)

hence

∇ ·
∫

V
vm⊥dv = −∇∇ : (DT M)

+ ∇ ·
(

1

λ0
Ẽq∇ · (ẼqM)

)
− λ1∇ ·

(
f ′(S)

k+S/Smax + k− + λ0
DT M∇S

)
, (3.29)

so that (3.24) becomes

∂t M + ∇ · (sEqM
) = ε∇∇ : (DT M) − ε∇ ·

(
s2

λ0
Eq∇ · (EqM)

)

+ ε∇ · (g(S)DT M∇S) + εμ(M)

(
1 − S

Smax

)
M . (3.30)

Comparing this with the parabolic limit obtained in (3.15) we observe that we obtain
the same form for the (myopic) diffusion, repellent pH-taxis, and proliferation terms,
but here they are ε-corrections of the leading transport terms - together with the new
advectionwhich drives cellswith velocity ε

λ0
Eq∇·Eq in the direction of the dominating

drift.

4 Numerical simulations

4.1 Parameters and coefficient functions

We assume a logistic type growth of the tumor cells and choose

μ(x, M) = μ0

(
1 − M

Mmax

)
, (4.1)

where μ0 is the growth rate and Mmax is the carrying capacity of tumor cells.
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Table 1 Parameters (dimensional quantities)

Parameter Meaning Value Reference

Mmax Glioma carrying capacity 105 − 108 cells/mm3 Banerjee et al. 2015; Hathout
et al. 2014; Rockne et al. 2010)

Smax Acidity threshold for
cancer cell death

10−6.4 mol/l Webb et al. (2011)

s Speed of glioma cells 2.8 · 10−6 mm/s estimated, Prag et al. (2002)

λ0 Turning frequency
coefficient

0.1 s−1 (Engwer et al. 2015a; Sidani et al. 2007)

λ1 Turning frequency
coefficient

0.01 − 0.2 s−1 (Engwer et al. 2015a; Sidani et al. 2007)

k+ Interaction rate tumor
cells-protons

0.004 s−1 Lauffenburger and Lindermann (1993)

k− Detachment rate 0.01 s−1 Lauffenburger and Lindermann (1993)

β Proton production rate 10−9 mol /(mm3s) Estimated, Martin and Jain (1994)

α Proton removal rate 10−11 /s Estimated

Ds Acidity diffusion
coefficient

5 · 10−8 − 10−5 mm2/s Estimated

μ0 Glioma growth rate 0.2/day Stein et al. (2007) Eikenberry
et al. (2009)

Nondimensionalization

Considering the following nondimensional quantities:

M̃ := M0

Mmax
, S̃ := S

Smax
, t̃ := βMmax

Smax
t, x̃ := x

√
βMmax

Ds Smax
,

D̃T := DT

Ds
, α̃ := α

β

Smax

Mmax
, λ̃1 := λ1

k+ , λ̃0 := λ0

k+ ,

g̃(S̃) = λ̃1kD

(S̃ + kD)2(S̃ + kD + λ̃0)
, μ̃0 = μ0Smax

βMmax
,

and dropping the tildes for simplicity of notation, we get the following nondimension-
alized system:

∂t M = ∇∇ : (DT M) + ∇ · (g(S)MDT∇S) + μ0 (1 − M) (1 − S) M (4.2)

∂t S = �S + M − αS (4.3)
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4.2 Description of tissue

The structure of brain tissue can be assessed by way of biomedical imaging, e.g.
diffusion tensor imaging (DTI) which provides for each voxel the water diffusion
tensor Dw. The corresponding resolution is, however, too low and does not deliver
information about the (orientation) distribution of tissue fibers below the size of a
voxel (ca. 1 mm3). For more details we refer e.g. to (Engwer et al. 2015a; Painter
and Hillen 2013) and references therein. As mentioned in Sect. 1, pseudopalisades are
comparatively small structures with a medium width of 200−400 μm. Thus, in order
to investigate the possible effect of (local) tissue anisotropy on these patterns we will
create a synthetic DTI data set which will allow to compute the tumor diffusion tensor
DT in the space points of such a narrow region. To this aim we proceed as in Painter
and Hillen (2013) and consider the water diffusion tensor

Dw(x, y) =
(
0.5 − d(x, y) 0

0 0.5 + d(x, y)

)
(4.4)

where d(x, y) = 0.25e−0.005(x−450)2 − 0.25e−0.005(y−450)2 . For the fiber distribution
function, we consider a mixture between uniform and von Mises-Fisher distributions,
as follows:

q(x, θ) = δ

2π
+ (1 − δ)

(
1

2π I0(k(x))

)
ek(x)ϕ1(x)·θ + e−k(x)ϕ1(x)·θ

2
(4.5)

Here, δ ∈ [0, 1] is a weighting coefficient, ϕ1 is the eigenvector corresponding to the
leading eigenvalue of Dw(x) and I0 is the modified Bessel function of first kind of
order 0. Also, θ = (cos ξ, sin ξ) for ξ ∈ [0, 2π ], and k(x) = κFA(x), where FA(x)
denotes the fractional anisotropy: in 2D it has the form Painter and Hillen (2013)

FA(x) = |λ1 − λ2|√
λ21 + λ22

,

with λi (i = 1, 2) denoting the eigenvalues ofDw(x). The parameter κ ≥ 0 character-
izes the sensitivity of cells towards orientation of tissue fibers. For perfectly aligned
tissue (i.e., maximum anisotropy), FA(x) = 1 and k(x) = κ . Taking κ = 0 means,
however, that the cells are insensitive to even such alignment and the distribution in
4.5 becomes a uniform one. Taking δ = 1 has the same effect.
For the model deduced by hyperbolic scaling in Subsection 3.2, we consider for the
orientation distribution of tissue fibers the following combination of two unsymmetric
unimodal von Mises distributions:

qh(x, θ) = δ

2π I0(kh(x))
ekh(x)γ ·θ + 1 − δ

2π I0(k(x))
ek(x)ϕ1·θ , (4.6)
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where kh(x) = 0.05e−10−6
(
(x−450)2+(y−450)2

)
, γ =

(
1/

√
2, 1/

√
2
)T

and the rest of

parameters are the same as in (4.5). The first summand, similar to the choice in Hillen
and Painter (2013), generates an orientation along the diagonal γ , while the second
leads to alignment along the positive x and y directions. Due to kh(x), the strength of
diagonal orientation of tissues decreases from the chosen center (450, 450).
The macroscopic tissue density Q is obtained in the same way as in Engwer et al.
(2015b) by using the free path length from the diffusivity obtained from the data,
more precisely from the water diffusion tensor. In that approach the occupied volume
is obtained upon computing a characteristic (diffusion) length lc = √

tr(Dw)tc, where
tc is the characteristic (diffusion) time. The latter is determined by assuming the
underlying stochastic process behind water diffusion tensor measurements to be a
Brownian motion and considering the expected exit time from the minimal ball with
radius r containing a square with side length h as smallest unit in our grid. Therefore,
the tissue density Q (area fraction occupied by tissue) is:

Q = 1 − l2c
h2

, (4.7)

where

lc =
√
tr (Dw) h2

4l1

with l1 being the largest eigenvalue of Dw.

4.3 Numerical experiments

The system (4.2), (4.3) is solved numerically on a square domain [0, 1000]×[0, 1000]
(in μm) using appropriate finite difference methods for spatial discretization and an
IMEX method for time discretization, where the diffusion part is handled implicitly,
while the advection and source terms are treated explicitly. We use a standard cen-
tral difference scheme (5-point stencil) for the acidity diffusion. To avoid numerical
instability Mosayebi et al. (2010) due to negative values in the stencil obtained from
discretization of mixed derivative terms in the myopic tumor diffusion, we use the
non-negative discretization scheme proposed in Weickert (1998) instead of the stan-
dard one. Thereby, the derivatives are calculated in newly chosen directions (diagonal
directions of the 3 × 3-stencil in 2D) in addition to the standard x,y-directions and
mixed term derivatives are replaced by directional derivatives. To discretise the advec-
tion terms, we use a first order upwind scheme for the parabolic scaling model, while
for the system obtained via hyperbolic scaling we employ a second order upwind
scheme with Van Leer flux limiter. Implicit and explicit Euler methods are used for
IMEX time discretization. The systems are solved with no-flux boundary conditions

123



Multiscale modeling of glioma pseudopalisades: contributions from... Page 17 of 45 49

Fig. 1 Initial conditions. Upper row: set (4.8) for tumor cell density a and acidity distribution b, lower row:
set (4.9) for tumor cell density c and acidity distribution d

and the following sets of initial conditions as illustrated in Fig. 1a, b:

M(x, 0) = 0.005

(

e
−(x−500)2−(y−500)2

2(25)2 + e
−(x−600)2−(y−500)2

2(20)2 + e
−(x−300)2−(y−400)2

2(10)2

)

(4.8a)

S(x, 0) = 10−7e
−(x−500)2−(y−500)2

2(15)2 + 10−7e
−(x−600)2−(y−500)2

2(10)2 + 10−6.4e
−(x−300)2−(y−400)2

2(7.5)2 .

(4.8b)

and 1c, d, respectively:

M(x, 0) = 0.005

(

e
−(x−500)2−(y−500)2

2(25)2 + e
−(x−600)2−(y−500)2

2(20)2

)

(4.9a)

S(x, 0) = 10−6.4e
−(x−500)2−(y−500)2

2(15)2 + 10−6.4e
−(x−600)2−(y−500)2

2(10)2 . (4.9b)
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Fig. 2 a:Macroscopic tissue density (Experiments 1, 2) andb:mesoscopic tissue distribution forExperiment
2, for a given fiber direction

Experiment 1 Fully isotropic tissue
We begin by considering a fully isotropic tissue, i.e. taking δ = 1 in (4.5). The
corresponding fractional anisotropy is everywhere FA = 0, and the macroscopic
tissue density Q is shown in Fig. 2a.
The simulations show (seeFigs. 3 and4) the formationof a pseudopalisade-like pattern,
with a very acidic, hypocellular center region surrounded by relatively high glioma
cell densities. Thereby, the initial distribution of the tumor cell aggregates and their
corresponding pH distribution decisively influence the shape and size of the pattern
and the space-time acidity distribution; compare Figs. 3 and 4.

Experiment 2 Anisotropic tissue
With the choice δ = 0.2, κ = 3 we describe an underlying tissue with pronounced
anisotropy (two crossing fibre bundles). The corresponding mesoscopic fiber distri-
bution q is shown in Fig. 2b for a fixed fiber direction, while the macroscopic tissue
density Q remains unchanged.
The results of this experiment are shown in Figs. 5 and 6. The simulated patterns have
similar shapes with those in Experiment 1, but here the tissue anisotropy determines
the cells to follow the main orientation of the fiber bundles, which leads to a longer
persistence of (small amounts of) cells in the central region with more localized cell
aggregates exhibiting higher maxima (see Figs. 5b and 6b). The patterns at later times
(see Figs. 5c and 6c) still bear traits of the degraded tissue; the cells are still forming
garland-like structures around the hypoxic centers, with the highest cell density located
at one or several peripheral sites with highly aligned tissue, farthest away from the
main sources of (initial) acidity. As before, the initial distributions of tumor and acidity
influence the shape of the patterns (compare Figs. 5 and 6). The differences between
the acidity distributions in Fig. 5(d–f) and those in Fig. 3(d–f) (and correspondingly
Fig. 6(d–f) and, respectively, those in Fig. 4(d–f) for the set of initial conditions (4.9))
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Fig. 3 Tumor (upper row) and acidity (lower row) at several times for Experiment 1 and initial conditions
(4.8)

Fig. 4 Tumor (upper row) and acidity (lower row) at several times for Experiment 1 and initial conditions
(4.9)
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Fig. 5 Tumor (upper row) and acidity (lower row) at several times for Experiment 2 and initial conditions
(4.8)

are less prominent, since the acidity concentration S obeys in both cases a PDE with
linear diffusion, where the tissue anisotropy has minor influence.

Running numerical simulations for several different parameter sets led to the following
observations:

• The decisive parameter in this system seems to be α, which relates to the proton
buffering efficacy (in the nondimensionalized form (4.2) it is basically the ratio
between the acidity removal and proton production rates). The tumor growth rate
μ0 plays a role, too, but a less prominent one. Concretely, pseudopalisade patterns
form for very low values of α (weak buffering). If the system is able to remove
protons more efficiently (e.g., because there is a functioning capillary network),
then these garland-like patterns typical for GBM do not form in a time span which
is relevant for this cancer (less than a year); instead, there are rather homogeneous
structures with dense cellular areas and no necrosis - which corresponds to a lower
tumor grade, without (local) occlusions of capillaries and corresponding necro-
tization (anaplastic astrocytoma), some with partially preserving the underlying
tissue structure (fibrillar astrocytoma), see Ramnani (2020) for WHO-grading on
the basis of histopathological samples. Figure 7 shows the evolution of glioma and
acidity at several times for the system with initial conditions (4.9) and the same
parameters as in the simulations of Experiment 2, with the exception of α, which
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Fig. 6 Tumor (upper row) and acidity (lower row) at several times for Experiment 2 and initial conditions
(4.9)

is now still very small, but four orders of magnitude higher. The tumor cells are
producing acidity (by glycolysis) and the inner region begins to degrade, as in the
previous simulations. However, due to the stronger acidity removal ratio, it does
not become severely hypoxic, which allows the tumor cells to repopulate it, while
the rest of the neoplasm is expanding outwards. The underlying tissue structure is
thereby supporting both migration and growth. Notice the more extensive tumor
spread in comparison with Fig. 6. In Appendix B we do a short linear stability
analysis of system (4.2), (4.3) with a constant tumor diffusion coefficient; it turns
out that no Turing patterns are formed - which does not mean, however, that other
types of patterns are not possible.

• If α exceeds a certain threshold value (in our simulations it was one order of
magnitude higher than in the computations for Figure 7) then the solution blows
up already in 1D.

• The shape of the source term in the equation for tumor cell density has itself
a substantial influence on the pattern. It should be chosen in such a way that
proliferation is reduced for higher acidity levels. This is, however, not enough for
pseudopalisade formation: for instance, a source term of the form μ0(1− M) M

1+S
instead of that in (4.2) does not lead to such patterns, as there is no decay of glioma
cells due to hypoxia. Figure 8 shows the behavior of tumor and acidity for this
alternative choice of the source term, in the framework of Experiment 2.

Including repellent pH-taxis leads to the formation of wider pseudopalisades, with
thinner cell ’garlands’ than in the case where the glioma cells are only performing
myopic diffusion and being degraded by excessive acidity. Figure 9 illustrates the
differences between tumor density and acidity in the two cases, i.e. between solutions
of (4.2), (4.3) and those of the same system with g(S) = 0. The differences are more
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Fig. 10 Mean fiber orientation Eq a and zoom near crossing of fiber strands b for qh as in (4.6) with
δ = 0.2. c: mesoscopic tissue density qh for direction ξ = π/2

pronounced in earlier stages of pattern formation and become smaller with advancing
time. The plots also show that pseudopalisades are formed even if there is no pH-taxis,
suggesting that the latter merely enhances the effect of the source/decay term in (4.2)
who is actually driving the pattern - together with an opportune parameter combination
(in particular, adequate proton buffering).
To see the effect of drift dominance we also solve the macroscopic system (3.30), (2.9)
obtained by hyperbolic scaling. Thereby we use (where applicable) the same set of
parameters and boundary conditions as before for the parabolic scaling (Table 1). For
the scaling parameter we take ε = 10−5. The initial conditions are those in set (4.9), as
visualized in Figs.1(c, d). Here we consider an unsymmetric tissue with mesoscopic
orientational distribution qh as in (4.6). Figure 10 shows the mean fiber orientation
Eq corresponding to qh along with a magnification to observe the directionality in
the neighborhood of the crossing fiber strands, and with qh plotted for δ = 0.2 and a
specific direction ξ = π/2.
The results obtained by solving the system for the evolution of tumor cells and acidity
are shown in Fig. 11. Although we ran the simulations for a longer time than we did
for the system obtained via parabolic scaling no pseudopalisade patterns are formed.
Rather, the drift-dominated PDE for glioma cell density drives the cells along the
positive x and y directions (as δ = 0.2 makes the second term in (4.6) dominant).
The cells ’escaping’ that influence move fast along the diagonal γ towards the right
upper corner and cannot form the pattern in due time. A quick comparison with Fig. 6
obtained for the parabolic limit and q as in (4.5) shows the radically different behavior
w.r.t. the two approaches.
Similar observations apply when the first von Mises distribution in (4.6) exerts full
influence (for δ = 1). Figure 12 shows tissue characteristics for this case: fractional
anisotropy FA, zoomed Eq , and qh for ξ = π/2. The very low FA values indicate
a highly isotropic tissue. Figure 13 illustrates the behavior of tumor cell density and
acidity for this case, inwhich the glioma cells aremigrating very fast along the diagonal
γ , accompanied by acidity they produce. When reaching the right uppermost corner
of the domain they remain there (due to the no-flux boundary conditions) and further
express acidity, eventually both solution components getting depleted. This is again
in striking contrast to the solution behavior obtained by parabolic scaling for isotropic
and undirected tissue (compare with Fig. 4) and, since such evolution is not seen in
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histologic patterns, it endorses the suspicion of the underlying tissue being undirected,
at the same time speaking against hyperbolic scaling. As a casual observation there
can be blow-up also in this case, however for a much (three orders of magnitude)
stronger proton buffering than in the parabolic case.
We also solved the system (3.30), (2.9) upon using several other initial conditions
and parameter sets, none of which led to the formation of pseudopalisades. The
observed behavior does not significantly change for any choice of the scaling param-
eter ε ∈ [10−6, 10−2]. Thus, since such patterns are actually observed in histologic
samples of glioblastoma, the simulations suggest that the fibers of brain tissue do not
seem to be directed. This endorses the parabolic upscaling approach and goes along
with a diffusion dominated motion, correspondingly biased by acidity gradients. With
these, the cells are primarily driven by acidity, but also influenced by the underlying,
undirected tissue. The interplay between these actors leads to various types of patterns,
depending on the parameter range and the relationship between the parameters.

5 Qualitative analysis of themacroscopic reaction-diffusion-taxis
system

5.1 Main results

We consider system (4.2), (4.3) with a slight modification of the source term in (4.3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Mt = ∇ · (DT (x)∇M) + ∇ · ((g(S)DT (x)∇S+u(x))M) + f (M, S), (t, x) ∈ (0,+∞) × �,

St = �S + ζM
1+M − αS, (t, x) ∈ (0,+∞) × �,

(
DT (x)∇M + u(x)M

)
· ν = ∇S · ν = 0, (t, x) ∈ (0,+∞) × ∂�,

M(0, x) = M0(x), S(0, x) = S0(x), x ∈ �,

(5.1)

with g(S) := �
(S+K )2(S+K+B)

and f (M, S) = μ0M(1 − M)(1 − S), where we use
� = λ1kD , K = kD , and B = λ0 to denote the corresponding constants occurring in
the expression of g(S) as given in Sect. 4.1. � ⊂ R

N is considered to be a bounded
domain with sufficiently smooth boundary ∂�, all involved constants are positive,
M0 ∈ L∞(�), M0 �≡ 0, M0, S0 ≥ 0, and S0 ∈ W 1,∞(�). The no-flux boundary
conditions are obtained through the upscaling procedure (as done e.g., in Corbin et al.
(2021) for a related problem).
For the tumor diffusion tensor DT we require

Assumption 5.1 (A) DT (x) ∈
(
C2,γ (�) ∩ C(�)

)N×N
, γ ∈ (0, 1), u = ∇ · DT is

uniformly bounded in �, and u(x) = 0 for x ∈ ∂�;
(B) there exists ϑ > 0 such that for any ξ ∈ R

N and x ∈ �,

ξ� · DT (x) · ξ ≥ ϑ |ξ |2.
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Theorem 5.1 Let N ≥ 1. Suppose that Assumption 5.1 holds. Then if ζ < α and
‖S0‖L∞(�) < 1, system (5.1) admits a unique global bounded classical solution.

Theorem 5.2 Under the assumptions of Theorem5.1, supposemoreover that∇·u(x) =
0 for all x ∈ �. Then there exists μ∗ > 0, such that if μ0 > μ∗, for any x ∈ � we
have

lim
t→∞ M(t, x) = 1, lim

t→∞ S(t, x) = ζ

2α
.

Moreover, there exists C > 0 and D > 0 such that for all t ∈ [0,+∞),

‖M(t, ·) − 1‖L∞(�) ≤ Ce− Dt
N+2 ,

∥∥∥∥S(t, ·) − ζ

2α

∥∥∥∥
L∞(�)

≤ Ce− Dt
N+2 .

5.2 Global existence, uniqueness, and boundedness of solutions

Firstly, we state a result concerning local existence of classical solutions, which can be
proved bywell-establishedmethods involving standard parabolic regularity theory and
an appropriate fixed point framework. Moreover, one can thereby derive a sufficient
condition for extensibility of a given local-in-time solution(seeWinkler (2010) or Cao
(2014) for example).

Lemma 5.1 Let � ⊂ R
N (N ≥ 1) be a bounded domain with smooth boundary.

Suppose that the nonnegative functions M0, S0 are in W 1,∞(�). Then there exist
Tmax ∈ (0,∞] and a unique pair of non-negative functions (M, S) satisfying

M ∈ C0([0, Tmax );C0(�)) ∩ C2,1((0, Tmax ) × �),

S ∈ C0([0, Tmax );C0(�)) ∩ L∞
loc([0, Tmax );W 1,∞(�)) ∩ C2,1((0, Tmax ) × �),

and solving (5.1) classically in � × (0, Tmax ). Moreover, if Tmax < ∞, then

lim sup
t→Tmax

(‖M(t, ·)‖L∞(�) + ‖S(t, ·)‖W 1,∞(�)

) = ∞.

Next we prove results relating to the global boundedness of solutions to (5.1).

Lemma 5.2 There exists CS > 0 such that

‖S‖L∞([0,Tmax )×�) ≤max

{
ζ

α
, ‖S0‖L∞(�)

}
,

‖∇S‖L∞([0,Tmax )×�) ≤CS
(‖∇S0‖L∞(�) + 1

)
.
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Proof Taking pS p−1 (p > 1) as a test function for the S-equation of (5.1), for any
ε ∈ (0, 1), we obtain

d

dt

∫

�

S p = − 4(p − 1)

p

∫

�

|∇S
p
2 |2 + pζ

∫

�

MSp−1

1 + M
− α p

∫

�

S p

≤ −4(p − 1)

p

∫

�

|∇S
p
2 |2 + pζ p|�|

α p−1(1 − ε)p−1 − εα p
∫

�

S p, (5.2)

from which we obtain

d

dt

∫

�

S p ≤ pζ p|�|
α p−1(1 − ε)p−1 − εα p

∫

�

S p

and then by Gronwall’s inequality

∫

�

S p ≤
∫

�

S p
0 + ζ p|�|

εα p(1 − ε)p−1 , (5.3)

from which we obtain that for any t ∈ [0, Tmax ),

‖S(t, ·)‖L∞(�) = lim
p→∞

(∫

�

S p
) 1

p

≤ lim
p→∞

(∫

�

S p
0 + ζ p|�|

εα p(1 − ε)p−1

) 1
p

=max

{
ζ

α(1 − ε)
, ‖S0‖L∞(�)

}
.

From the arbitrariness of ε ∈ (0, 1) we therefore obtain

‖S‖L∞([0,Tmax )×�) ≤ max

{
ζ

α
, ‖S0‖L∞(�)

}
.

On the other hand, from the L p-Lq estimates for the Neumann heat semigroup on a
bounded domain and the fact that

S = et�S0 +
∫ t

0
e(t−s)�

(
ζM

1 + M
− αS

)
,

we obtain for all t ∈ (0, Tmax ),

‖∇S(t, ·)‖L∞(�) = ‖∇et�S0‖L∞(�) +
∫ t

0
‖∇e(t−s)�

(
ζM

1 + M
− αS

)
‖L∞(�)

≤ C1e
−λ1t‖∇S0‖L∞(�) + C2

∫ t

0
e−λ1(t−s)(1 + (t − s)−

1
2 )‖ζ + αS‖L∞(�)

≤ CS
(‖∇S0‖L∞(�) + 1

)
,

123



49 Page 32 of 45 P. Kumar et al.

where λ1 > 0 denotes the first nonzero eigenvalue of −� in � ⊂ R
N under the

Neumann boundary condition. ��

Lemma 5.3 Under the assumptions of Theorem5.1, for any p > 1, there existsC(p) >

0 such that for t ∈ (0, Tmax ), we have

‖M(t, ·)‖L p(�) ≤ C(p).

Proof Taking pM p−1 as a test function for the M-equation of (5.1) and denoting
D0 := ‖DT (·)‖L∞(�), D1 := ‖u(·)‖L∞(�), then from the no-flux boundary conditions
we obtain

d

dt

∫

�

Mp = − 4(p − 1)

p

∫

�

(∇M
p
2 )� · DT (x) · ∇M

p
2 − (p − 1)

∫

�

u(x) · ∇Mp

− (p − 1)
∫

�

(∇Mp)�g(S)DT (x)∇S + μ0 p
∫

�

Mp(1 − M)(1 − S)

≤ − 4(p − 1)ϑ

p

∫

�

|∇M
p
2 |2 + 2(p − 1)ϑ

p

∫

�

|∇M
p
2 |2 + p(p − 1)

2ϑ
D2
1

∫

�

Mp

+ 2(p − 1)ϑ

p

∫

�

|∇M
p
2 |2 + C3

∫

�

Mp + μ0 p
∫

�

Mp − C4

∫

�

Mp+1

=(C3 + μ0 p + p(p − 1)

2ϑ
D2
1)

∫

�

Mp − C4

∫

�

Mp+1

≤C5 − μ0 p
∫

�

Mp, (5.4)

where

C3 := (p − 1)p

2ϑ
D2
0C

2
S

(‖∇S0‖L∞(�) + 1
)2 �2

K 4(K + B)2
,

C4 = μ0 p

(
1 − max

{
ζ

α
, ‖S0‖L∞(�)

})
, C5 := (C3 + 2μ0 p + p(p − 1)

2ϑ
D2
0)

p+1|�|C−p
4 .

Thus we obtain that for any t ∈ (0, Tmax ),

‖M(t, ·)‖L p(�) ≤
(∫

�

Mp
0 + C5

μ0 p

) 1
p := C(p).

��

Proof of Theorem 5.1 FromLemma 5.3 and the standardMoser iteration process, there
exists C > 0 such that ‖M(t, ·)‖L∞(�) ≤ C for all t ∈ (0, Tmax ). Then in view of
Lemma 5.1, Theorem 5.1 is a direct consequence of Lemma 5.2. ��
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5.3 Long time behavior

Lemma 5.4 Under the assumptions of Theorem 5.2, there exists μ∗ > 0 defined in
(5.7) such that for μ0 > μ∗, for all t > 0, the function

F(t) =
∫

�

(M − 1 − lnM) + CM

2

∫

�

(
S − ζ

2α

)2

satisfies

F ′(t) ≤ −D(t),

where

D(t) = D

{∫

�

(M − 1)2 + CM

2

∫

�

(
S − ζ

2α

)2
}

with D a constant defined in (5.8).

Proof According to the strong maximum principle and the assumption M0 �≡ 0, M
is positive in (0,∞) × �. Testing the M-equation of (5.1) by 1 − 1

M , by Young’s
inequality and the fact of ∇ · u(x) = 0 for x ∈ �, u(x) = 0 for x ∈ ∂�, using the
no-flux boundary condition, we obtain that there exists CM > 0 such that

d

dt

∫

�

(M − 1 − lnM) = −
∫

�

(∇M

M

)�
DT (x)

∇M

M
−

∫

�

(∇M

M

)�
g(S)DT (x)∇S

+
∫

�

∇ · u lnM − μ0

∫

�

(M − 1)2 (1 − S)

≤ − ϑ

∫

�

∣∣
∣∣
∇M

M

∣∣
∣∣

2

+ ϑ

∫

�

∣∣
∣∣
∇M

M

∣∣
∣∣

2

+ CM

∫

�

|∇S|2

− μ0

(
1 − max

{
ζ

α
, ‖S0‖L∞(�)

})∫

�

(M − 1)2

=CM

∫

�

|∇S|2 − μ0

(
1 − max

{
ζ

α
, ‖S0‖L∞(�)

}) ∫

�

(M − 1)2

(5.5)

with CM := D2
0�

2

4ϑK 4(K+B)2
. Testing the S-equation of (5.1) by S − ζ

2α , we obtain

1

2

d

dt

∫

�

(
S − ζ

2α

)2

= −
∫

�

|∇S|2 + ζ

2

∫

�

M − 1

(1 + M)
(S − ζ

2α
) − α

∫

�

(
S − ζ

2α

)2

≤ −
∫

�

|∇S|2 − α

2

∫

�

(
S − ζ

2α

)2

+ ζ 2

8α

∫

�

(M − 1)2. (5.6)
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Combining (5.5) and (5.6), we obtain

d

dt

∫

�

[

M − 1 − lnM + CM

2

(
S − ζ

2α

)2
]

≤
(

ζ 2CM

8α
− μ0

(
1 − max

{
ζ

α
, ‖S0‖L∞(�)

})) ∫

�

(M − 1)2 − αCM

2

∫

�

(
S − ζ

2α

)2

.

By choosing

μ∗ : = ζ 2CM

4α
(
1 − max{ ζ

α
, ‖S0‖L∞(�)}

) , (5.7)

D : = min

{
ζ 2CM

8α
, α

}
, (5.8)

we obtain that μ0 > μ∗ leads to F ′(t) ≤ −D(t). ��
Proof of Theorem 5.2 The proof of Theorem 5.2 is very standard. We include the proof
here for completeness. Denote h(s) := s − 1 − ln s. Noticing that h′(s) = 1 − 1

s
and h′′(s) = 1

s2
> 0 for all s > 0, we obtain that h(s) ≥ h(1) = 0 and F(t) is

nonnegative. From Lemma 5.4, we have F ′(t) ≤ −D(t) and then

∫ t

0
D(τ )dτ ≤ F(0)

for all t > 0, from which we have

∫ t

0

{∫

�

(M − 1)2 + CM

2

∫

�

(
S − ζ

2α

)2
}

< ∞.

Using a similar argument as in Lemma 3.10 of Tao andWinkler (2015), we can obtain
the uniform convergence of solutions, namely

‖M(t, ·) − 1‖L∞(�) → 0,

∥∥∥∥S(t, ·) − ζ

2α

∥∥∥∥
L∞(�)

→ 0

as t → ∞. Then there exists t0 > 0 such that for all t > t0, ‖M − 1‖L∞(�) ≤ 1
2 ,

which together with the fact that

1

3
(s − 1)2 ≤ h(s) ≤ (s − 1)2 for all s >

1

2

implies that

1

3

∫

�

(M − 1)2 + CM

2

∫

�

(
S − ζ

2α

)2

≤ F(t) ≤ 1

D
D(t) (5.9)
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for all t > t0. Hence

F ′(t) ≤ −D(t) ≤ −DF(t),

from which we obtain

F(t) ≤ F(t0)e
−D(t−t0). (5.10)

Substituting (5.10) into (5.9), we obtain

1

3

∫

�

(M − 1)2 + CM

2

∫

�

(
S − ζ

2α

)2

≤ F(t0)e
−D(t−t0),

which implies that there exists C > 0 such that for all t > t0,

‖M(t, ·) − 1‖L2(�) ≤ Ce−Dt/2,
∥∥∥∥S(t, ·) − ζ

2α

∥∥∥∥
L2(�)

≤ Ce−Dt/2.

Furthermore, notice that there exists a constant C1 > 0 such that

‖M(t, ·) − 1‖W 1,∞(�) ≤ C1,

∥∥∥
∥S(t, ·) − ζ

2α

∥∥∥
∥
W 1,∞(�)

≤ C1 for all t > 0.

Thus the Gagliardo–Nirenberg inequality yields

‖M(t, ·) − 1‖L∞(�) ≤ C

(
‖M(t, ·) − 1‖

N
N+2

W 1,∞(�)
‖M(t, ·) − 1‖

2
N+2

L2(�)
+ ‖M(t, ·) − 1‖L2(�)

)

≤ C‖M(t, ·) − 1‖
2

N+2

L2(�)
≤ Ce− Dt

N+2

for all t > 0. Similarly, we can obtain

∥∥
∥∥S(t, ·) − ζ

2α

∥∥
∥∥
L∞(�)

≤ Ce− Dt
N+2 .

This concludes the proof of Theorem 5.2. ��
Remark 5.1 For the above rigorous results to hold we required among others that ζ <

α, which means that the acidity buffering by the tumor environment is stronger than
the production of protons by the cancer cells.While this is true for lower grade tumors,
it no longer holds for more advanced neoplasms like GBM. Numerical simulations
show that no pseudopalisades are forming, unless ζ substantially exceeds α.
In fact, in Sect. 4.3 we already observed that α (which controls proton buffering) was
the decisive parameter for the fate of the patterns and even for singularity formation.
The weakening of proton production considered in this section enhances the influence
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of acidity depletion, which due to the form of f (M, S) contributes to keeping the
glioma density bounded by its carrying capacity. A similar result can be obtained by
replacing in f (M, S) the factor 1− S with 1/(1+ S). In that case there is no smallness
requirement for ζ ; moreover, the results hold even if (4.3) is considered instead of the
S-equation in (5.1). No pseudopalisades are forming in this case either (recall Fig. 8).

6 Discussion

The multiscale approach employed in this work allows to obtain a macroscopic
description for the evolution of glioma cell density featuring repellent pH-taxis and
providing the concrete forms of involved diffusion, transport, and taxis coefficients,
upon starting frommodeling on the microscopic level of cell-acidity interactions. This
fully continuous setting is quite different from previous models (Alfonso et al. 2016;
Martínez-González et al. 2012) of pseudopalisade formation and spread, which are
accounting for vascularization and necrosis rather than for direct effects of acidity.
Nevertheless, our system of two PDEs of reaction-(myopic) diffusion-advection type
obtained by parabolic upscaling from lower levels of description is able to reproduce
biologically observed patterns,whereby repellent pH-taxis does not seem to effectively
trigger, butmerely to enlarge such structures; depending on the acidity buffering poten-
tial of the tumor cells and their environment in relationship to their ability to proliferate,
the resulting patterns can be assigned to lower or higher tumor grades, with pseudopal-
isades corresponding to the latter. This endorses the idea that proton buffering might
be beneficial for decelerating progression towards GBM, see e.g. (Boyd et al. Decem-
ber 2017; Koltai et al. 2020) and references therein. For instance, genetic targeting of
carbonic anhydrase 9 (a common hypoxia marker catalyzing the conversion of carbon
dioxide to bicarbonate and protons) provided evidence of delayed tumor growth in the
GBM cell line U87MG McIntyre et al. (2012).
In our deduction of the macroscopic system from the KTAP framework we used for
the turning rate λ(z) = λ0 − λ1z > 0. This could be made more general, e.g. upon
considering any regular enough function λ, expanding it around the steady-state y∗,
and keeping the first two terms of the expansion: λ(z) � λ(y∗) − λ′(y∗)z := λ0(S) −
λ1(S)z. The higher order terms will get anyway lost during the scaling process, due to
ignoring the higher order moments w.r.t. z. The new coefficients λ0, λ1 are no longer
constants, but depend on the macroscopic variable S by way of y∗.5 Consequently,
the obtained macroscopic PDE for the glioma population density will have diffusion
and taxis coefficients depending on S, thus leading to a more intricate coupling of the
PDE system for M and S.
Beside including subcellular level information via a transport term w.r.t. the activity
variable(s) and a turning rate depending therewith, we also considered an alternative
way to account for cell reorientations in response to acidity levels. Trying to recover
the same macroscopic limit led to a well-determined choice of the acidity-dependent
function h involved in the turning rate λ(v, S) from (A.3).

5 An essential requirement on λ is thereby to ensure that λ(y∗) > 0 and λ′(y∗) > 0.
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For the sake of simplicity we considered in (2.9) a genuinely macroscopic PDE of
reaction-diffusion type for the evolution of acidity. More detailed models involving
intra- and extracellular proton dynamics with randomness have been introduced in
(Hiremath and Surulescu 2015, 2016; Hiremath et al. 2018; Kloeden et al. 2016), some
of them connecting it to the dynamics of tumor cells. The latter inferred, however, a
rather heuristic, mainlymacroscopic description, with coefficients possibly depending
on such microscopic quantities like concentration of intracellular protons. Connecting
multiscale formulations of proton and cell dynamics and identifying an appropriate
way of upscaling to deduce the corresponding macroscopic equations would be a first
step towards accounting for subcellular processes in amannerwhich is detailed enough
to capture such low-scale events, but also eventually simplified enough to still enable
efficient computations.
The observation that no pseudopalisades seem to emerge for a transport-dominated
system as obtained by hyperbolic scaling of the micro-meso setting suggests that
the microscopic brain tissue is undirected, at least w.r.t. glioma migration along its
constituent fibers. This is a relevant information for the existing models of glioma
invasion built upon ideas commonly employedwithin the KTAP framework andwhich
take into account the underlying brain structure and its properties in trying to predict
the tumor extent and its aggressiveness; we refer to Hillen (2006) and Corbin et al.
(2021) for two works where such issue is explicitly addressed. On the other hand, this
could also be relevant from a biological viewpoint; indeed, to our knowledge such
information is not available in the biological literature. We are far from claiming to
have a watertight evidence; it is rather a cue to motivate such speculation which should
of course be properly verified by appropriately designed biological experiments.
The linear stability analysis performed in Appendix B for constant diffusion coeffi-
cients suggests that pseudopalisades are a rather nonstandard type of patterns -at least
as far as this model is concerned. The pH-chemorepellence is enhancing the diffusive
effect, driving the tumor cells away from the strongly hypoxic site(s). Thereby, the
form of the space-dependent tumor diffusion coefficient seems to play a decisive role
for the shape of the tumor pattern, as simulations show. The formation of garland-like
structures can be observed during the first half of the simulation time, after which
there is no ’ring-like closure’ of the cell aggregates, although these seem to develop
on each side of a hypocellular, acidic region. A rigorous analysis has still to be done,
even in the case DT (x) > 0 for all x .
To acquire more qualitative information about the solutions of themacroscopic system
deduced via parabolic scaling, we also performed a well-posedness analysis. As the
global behavior of solutions to (4.2), (4.3) seems out of reach, we assumed the pro-
duction of protons by tumor cells to infer saturation and proved that the corresponding
system has a unique global bounded nonnegative solution in the classical sense - for
which certain assumptions on the tumor diffusion tensor were needed. In the case
of solenoidal drift velocity and sufficiently large tumor growth, we proved that the
solution approaches asymptotically the steady-state in which the tumor is at its car-
rying capacity, with a corresponding acidity concentration. The patterning behavior
for the system with saturated, but sufficiently high net proton production is the same
as for system (4.2), (4.3) and numerical simulations show, too, the same qualitative
behavior of solutions. The rigorous qualitative study of system (4.2), (4.3) (without
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the modifications and assumptions made in Sect. 5) in terms of global well-posedness
and singularity formation remains open.
Themodel could be extended to include effects of vascularization and necrosis. Indeed,
it is largely accepted (Brat et al. 2002;Brat andVanMeir 2004;Wippold et al. 2006) that
the hypoxic glioma cells induced tomigrate away from sites with very low pH express,
among others, proteases and vascular endothelial growth factors (VEGF) initiating and
sustaining angiogenesis. Endothelial cells (ECs) are attracted chemotactically towards
the garland-like structures of high glioma density surrounding the hypoxic area, which
leads to further invasion and overall tumor expansion. A corresponding model should
contain an adequate description ofmacroscopicECdynamics,which could be obtained
aswell fromanoriginallymultiscale setting, similarly to that for glioma cells but taking
into account the features specific to EC migration.
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Appendix

A An alternative approach to including acidity effects

In the derivation performed via parabolic scaling in Sect. 3.1 the term with repellent
pH-taxis was obtained as a consequence of including subcellular level dynamics in
the mesoscopic KTE (2.4) by way of the transport term w.r.t. the activity variable
z and by letting the turning rate depend on it. In the context of bacteria motion an
alternative approach was proposed in Othmer and Hillen (2002) and re-employed in
Loy and Preziosi (2020) also for eukaryotes having a more complex motility behav-
ior. It does not explicitly include subcellular dynamics (thus no activity variables and
corresponding transport terms are considered), but lets instead the cell turning rate
depend on the pathwise gradient of some chemoattractant concentration which is sup-
posed to bias the cell motion. The relationship between the two mesoscopic modeling
approaches was studied for bacteria dispersal in Perthame et al. (2016), where it was
rigorously shown that the alternative approach follows from the former one, under
certain assumptions made on the receptor binding dynamics on the subcellular level
(along with fast relaxation towards equilibrium of external signal transduction and
stiff response of the activity variables), on the turning rate, and on the initial data.
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Here we intend to investigate two such approaches for the problem at hand (glioma
cells moving away from acidity) from a less rigorous perspective, namely looking
into their (formal) macroscopic limits and comparing the numerical results obtained
therewith. Concretely, we want to compare our KTE (2.4) and its parabolic limit with
the following simpler KTE for the cell density function ρ(t, x, v):

∂tρ + ∇x · (vρ) = L [λ(v, S)]ρ + P(M, S)ρ

= −
∫

V
λ(v, S)

q(v̂′)
ω

ρ(t, x, v)dv′

+
∫

V
λ(v′, S)

q(v̂)
ω

ρ(t, x, v′)dv′ + P(M, S)ρ

= −λ(v, S)ρ(t, x, v) + q(v̂)
ω

∫

V
λ(v′, S)ρ(t, x, v′)dv′

+ P(M, S)ρ (A.1)

and its parabolic limit.Here the proliferation operator is definedwith the sameμ(M, S)

as previously used in Sect. 3 and takes the form

P(M, S) = μ(M, S)ρ, (A.2)

while for the turning rate we set6

λ(v, S) := λ0 exp (h(S)Dt S) (A.3)

� λ0(1 + h(S)Dt S), (A.4)

where Dt S := St + v · ∇xS is the pathwise gradient of S. The coefficient function
h(S) is to be chosen later.
We use again a parabolic scaling t̃ := ε2t , x̃ := εx and rescale as before the prolifer-
ation term by ε2, thus

ε2∂tρ + ε∇ · (vρ) = −λ0(1 + h(S)(ε2∂t S + εv · ∇S))ρ + λ0
q

ω
(
M + h(S)(ε2∂t S M + ε

∫

V
v′ρ(v′)dv′ · ∇S)

)

+ ε2P(M, S)ρ. (A.5)

Performing a Hilbert expansion ρ = ρ0 + ερ1 + ε2ρ2 + . . . and equating the powers
of ε yields
ε0:

0 = −λ0ρ0 + λ0
q(x, v̂)

ω
M0,

6 Notice the difference of sign in the exponent: the cells are supposed to follow the decreasing gradient of
signal S
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thus

ρ0 = q(v̂)
ω

M0. (A.6)

ε1:

∇ · (vρ0) = −λ0ρ1 − λ0h(S)ρ0v · ∇S + λ0
q

ω

(
M1 + h(S)

∫

V
v′ρ0(v′)dv′ · ∇S

)
,

thus by (A.6) and the assumption of undirected tissue

∇ · (v
q(v̂)
ω

M0) = −λ0ρ1 − λ0h(S)
q

ω
M0v · ∇S + λ0

q

ω
M1. (A.7)

This can be rewritten as

L [λ0]ρ1 = λ0h(S)
q

ω
M0v · ∇S + ∇ · (v

q(v̂)
ω

M0). (A.8)

Since the integral of the right hand side w.r.t. v vanishes we can pseudo-invertL [λ0]
as before, to get

ρ1 = −h(S)
q

ω
M0v · ∇S − 1

λ0
∇ · (v

q(v̂)
ω

M0). (A.9)

ε2:

∂tρ0 + ∇ · (vρ1) = λ0(
q

ω
M2 − ρ2) + λ0h(S)∂t S (

q

ω
M0 − ρ0)

+ λ0h(S)

(
q

ω

∫

V
v′ρ1(v′)dv′ − vρ1

)
· ∇S

+ μ(M0, S)ρ0. (A.10)

Integrating (A.10) w.r.t v gives

∂t M0 + ∇ ·
∫

V
vρ1dv = μ(M0, S)M0.

Using (A.9) leads to

∂t M0 = ∇∇ : (DT M0) + ∇ · (λ0h(S)DT M0∇S) + μ(M0, S)M0, (A.11)

which differs from (3.15) only by the tactic sensitivity coefficient. This suggests to
choose

h(S) = g(S)

λ0
= λ1

λ0

f ′(S)

k+S/Smax + k− + λ0
.
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Notice that this function corresponds to the rate of change of f (S) (equilibrium of
transmembrane interactions between glioma cells and acidity), scaled by a constant λ1
to account for changes in the turning rate per unit of change in dy∗/dt , and multiplied
by 1/(k+S/Smax +k−+λ0).While a factor const· f ′(S) is also encountered inOthmer
and Hillen (2002), the denominator obtained here for the tactic sensitivity appears
due to the specific choice of the turning rate λ(z) in (2.5), which also facilitated the
upscaling. The whole sensitivity function is tightly related to the first order moment
w.r.t. the receptor binding (’activity’) variable z, recall (3.12) and (3.14).

B Linear stability analysis for a version of (4.2), (4.3) with constant
tumor diffusion coefficient

For simplicity we perform a 1D analysis; the extension to a higher dimensional case
involving a constant tumor diffusion tensor in diagonal form is straightforward.
The uniform steady-states are P1 = (0, 0), P2 = (1, 1

α
), and P3 = (α, 1). In the

absence of diffusion and taxis, P1 and P2 are saddles, while P3 is stable for 0 < α < 1.
Thus, we investigate the possibility of Turing-like patterns only around P3 for such
biologically relevant α.
Let P∗ := (M∗, S∗) be a steady-state and consider the perturbations u := M − M∗,
σ := S − S∗. Linearizing (4.2), (4.3) (with DT = D constant) around P∗ leads to

(
u
σ

)

t
= A

(
u
σ

)

xx
+ B

(
u
σ

)
, (B.1)

whereA =
(
D Dαg(S∗)S∗
0 1

)
andB =

(
μ0(1 − 2αS∗)(1 − S∗) −αμ0S∗(1 − αS∗)

1 −α

)
.

We look for solutions of the form
∑

k �=0 Tk(t)Xk(x), with �Xk(x) + k2Xk(x) = 0 in
� and ∇Xk · ν = 0 on ∂�, thus Xk are eigenfunctions of −�, each corresponding to
the wavenumber k.
The terms making up the solution (u, σ ) will involve exponents of the eigenvalues λk
of the matrix B − k2A. It holds that

λ1,k + λ2,k = trace(B − k2A) < 0 (B.2)

λ1,kλ2,k = det(B − k2A). (B.3)

For Turing-like patterns around P∗ we need det(B − k2A) < 0, which means that
there is a positive eigenvalue. This condition takes for P∗ = P3 the concrete form

k4D + αDk2(1 + g(1)) + μ0α(1 − α) < 0. (B.4)

This cannot be satisfied for α < 1, which is typical for higher grade tumors (especially
for GBM). In fact, in view of the nondimensionalization done in Sect. 4.1, it is very
improbable to have α > 1 for this problem.
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Fig. 14 Patterns (in 1D) for tumor (left column) and acidity (middle column) for several choices of the
tumor diffusion coefficient DT (x) (plots of the latter shown in the right column). Simulations are done
for the dimension-free system (4.2), (4.3), the maximum simulation time corresponds to 10 months in
dimensional framework

To see the effect of pH-taxis (repellence by acidity) we set g(S) = 0, which only
enhances the chances of (B.4) to hold (still for α < 1), thus the presence of pH-taxis
does not dramatically change the patterning behavior; this is due to the tactic bias being
repellent; an attractive pH-taxis (as proposed in Bartel et al. (2012) for melanoma cells
or in Paradise et al. (2013) for endothelial cells7) could render (B.4) valid even for
α < 1, but does not seem to be appropriate for describing pseudopalisade formation.
The above suggests that pseudopalisades are not Turing-like patterns - at least as far
as our model with constant diffusion coefficient is used for their description. To see
the effect of the diffusion coefficient DT (x) we plot in Fig. 14 the patterns obtained
in 1D for the same parameter combination and several choices of DT (x), including
various kinds of degeneracy. Thus, the second row in Fig. 14 shows the case where
DT degenerates on a countable set, while the last row illustrates the situation with a

7 The latter could serve, however, for a model extension including angiogenesis.
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strong degeneracy, i.e. on whole subintervals of the space domain (DT is of the type
considered in Winkler and Surulescu (2017) for a closely related problem, however
with haptotaxis).
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