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Abstract
Consider a linear realizationof amatroid over afield.One associateswith it a configura-
tion polynomial and a symmetric bilinear form with linear homogeneous coefficients.
The corresponding configuration hypersurface and its non-smooth locus support the
respective first and second degeneracy scheme of the bilinear form.We show that these
schemes are reduced and describe the effect of matroid connectivity: for (2-)connected
matroids, the configuration hypersurface is integral, and the seconddegeneracy scheme
is reduced Cohen–Macaulay of codimension 3. If thematroid is 3-connected, then also
the second degeneracy scheme is integral. In the process, we describe the behavior
of configuration polynomials, forms and schemes with respect to various matroid
constructions.
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1 Introduction

1.1 Feynman diagrams

A basic problem in high-energy physics is to understand the scattering of particles.
The basic tool for theoretical predictions is the Feynman diagram with underlying
Feynman graph G = (V , E). The scattering data correspond to Feynman integrals,
computed in the positive orthant of the projective space labeled by the internal edges
of the Feynman graph. The integrand is the square root of a rational function in the
edge variables xe, e ∈ E , that depends parametrically on the masses and moments of
the involved particles (see [10]).

The convergence of a Feynman integral is determined by the structure of the denom-
inator of this rational function, which always involves a power of the square root of
the Symanzik polynomial

∑
T∈TG

∏
e/∈T xe of G where TG denotes the set of spanning

trees of G. The remaining factor of the denominator, appearing for graphs with edge
number less than twice the loop number, is a power of the square root of the second
Symanzik polynomial obtained by summing over 2-forests and involves masses and
moments. Symanzik polynomials can factor, and the singularities and intersections of
the individual components determine the behavior of the Feynman integrals.

Until about a decade ago, all explicitly computed integrals were built frommultiple
Riemann zeta values andpolylogarithms; for example,Broadhurst andKreimer display
a large body of such computations in [8]. In fact, Kontsevich at some point speculated
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that Symanzik polynomials, or equivalently their cousins the Kirchhoff polynomials

ψG(x) =
∑

T∈TG

∏

e∈T
xe

be mixed Tate; this would imply the relation to multiple zeta values. However, Bel-
kale and Brosnan [4] proved that the collection of Kirchhoff polynomials is a rather
complicated class of singularities: their hypersurface complements generate the ring
of all geometric motives. This does not exactly rule out that Feynman integrals are in
some way well-behaved, but makes it rather less likely, and explicit counterexamples
to Kontsevich’s conjecture were subsequently worked out by Doryn [15] as well as by
Brown and Schnetz [11]. On the other hand, these examples make the study of these
singularities, and especially any kind of uniformity results, thatmuchmore interesting.

The influential paper [6] of Bloch, Esnault and Kreimer generated a significant
amount of work from the point of view of complex geometry: we refer to the book
[23] of Marcolli for exposition, as well as [10,12,15]. Varying ideas of Connes and
Kreimer on renormalization that viewFeynman integrals as specializations of the Tutte
polynomial, Aluffi and Marcolli formulate in [1,2] parametric Feynman integrals as
periods, leading to motivic studies on cohomology. On the explicit side, there is a large
body of publications in which specific graphs and their polynomials and Feynman
integrals are discussed. But, as Brown writes in [9], while a diversity of techniques is
used to study Feynman diagrams, “each new loop order involves mathematical objects
which are an order of magnitude more complex than the last, […] the unavoidable fact
is that arbitrary integrals remain out of reach as ever.”

The present article can be seen as the first step towards a search for uniform prop-
erties in this zoo of singularities. We view it as a stepping stone for further studies of
invariants such as log canonical threshold, logarithmic differential forms and embed-
ded resolution of singularities.

1.2 Configuration polynomials

The main idea of Belkale and Brosnan is to move the burden of proof into the more
general realm of polynomials and constructible sets derived from matroids rather than
graphs, and then to reduce to known facts about such polynomials. The article [6]
casts Kirchhoff and Symanzik polynomials as very special instances of configuration
polynomials; this idea was further developed by Patterson in [27]. We consider this
as a more natural setting since notions such as duality and quotients behave well
for configuration polynomials as a whole, but these operations do not preserve the
subfamily of matroids derived from graphs. In particular, we can focus exclusively on
Kirchhoff/configuration polynomials, since the Symanzik polynomial of G appears
as the configuration polynomial of the dual configuration induced by the incidence
matrix of G.

The configuration polynomial does not depend on a matroid itself but on a configu-
ration, that is, on a (linear) realization of amatroid over a fieldK. The samematroid can
admit different realizations, which, in turn, give rise to different configuration poly-
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nomials (see Example 5.3). The matroid (basis) polynomial is a competing object,
which is assigned to any, even non-realizable, matroid. It has proven useful for combi-
natorial applications (see [3,28]). For graphs and, more generally, regular matroids, all
configuration polynomials essentially agree with the matroid polynomial. In general,
however, configuration polynomials differ significantly from matroid polynomials, as
documented in Example 5.2.

Configuration polynomials have a geometric feature that matroid polynomials lack:
generalizing Kirchhoff’s matrix-tree theorem, the configuration polynomial arises as
the determinant of a symmetric bilinear configuration form with linear polynomial
coefficients. As a consequence, the corresponding configuration hypersurface maps
naturally to the generic symmetric determinantal variety. In the present article, we
establish further uniform, geometric properties of configuration polynomials, which
we observe do not hold for matroid polynomials in general.

1.3 Summary of results

Some indication of what is to come can be gleaned from the following note byMarcolli
in [23, p. 71]: “graph hypersurfaces tend to have singularity loci of small codimension.”

Let W ⊆ KE be a realization of a matroid M of rank rkM = dimW on a set
E (see Definition 2.14). Fix coordinates xE = (xe)e∈E . There is an associated sym-
metric configuration (bilinear) form QW with linear homogeneous coefficients (see
Definition 3.20). Its determinant is the configuration polynomial (see Definition 3.2
and Lemma 3.23)

ψW = det QW =
∑

B∈BM

cW ,B ·
∏

e∈B
xe ∈ K[xE ]

where BM denotes the set of bases ofM and the coefficients cW ,B ∈ K∗ depend of the
realization W . The configuration hypersurface defined by ψW is the scheme

XW = Spec(K[xE ]/〈ψW 〉) ⊆ KE .

It can be seen as the first degeneracy scheme of QW (see Definition 4.9). The second
degeneracy scheme �W ⊆ KE of QW , defined by the submaximal minors of QW , is
a subscheme of the Jacobian scheme �W ⊆ KE of XW , defined by ψW and its partial
derivatives (see Lemma 4.12). The latter defines the non-smooth locus of XW overK,
which is the singular locus of XW ifK is perfect (see Remark 4.10). Patterson showed
�W and �W have the same underlying reduced scheme (see Theorem 4.17), that is,

�W ⊆ �W ⊆ KE , �red
W = �red

W .

We give a simple proof of this fact. He mentions that he does not know the reduced
scheme structure (see [27, p. 696]). We show that �W is typically not reduced (see
Example 5.1), whereas �W often is. Our main results from Theorems 4.16, 4.25, 4.36
and 4.37 can be summarized as follows.
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Main Theorem Let M be a matroid on the set E with a linear realization W ⊆ KE

over a field K. Then the configuration hypersurface XW is reduced and generically
smooth over K. Moreover, the second degeneracy scheme �W is also reduced and
agrees with �red

W , the non-smooth locus of XW over K. Unless K has characteristic
2, the Jacobian scheme �W is generically reduced.

Suppose now that M is connected. Then XW is integral unless M has rank zero.
Suppose in addition that the rank of M is at least 2. Then �W is Cohen–Macaulay of
codimension 3 inKE . If, moreover, M is 3-connected, then �W is integral. ��

Note that XW = ∅ if rkM = 0 and �W = ∅ = �W if rkM ≤ 1 (see Remarks 3.5
and 4.13.(a)). It suffices to require the connectedness hypotheses after deleting all
loops (see Remark 4.11). If M is disconnected even after deleting all loops, then �W

and hence �W has codimension 2 inKE (see Proposition 4.16).
While our main objective is to establish the results above, along the way we con-

tinue the systematic study of configuration polynomials in the spirit of [6,27]. For
instance, we describe the behavior of configuration polynomials with respect to con-
nectedness, duality, deletion/contraction and 2-separations (see Propositions 3.8, 3.10,
3.12 and 3.27). Patterson showed that the second Symanzik polynomial associatedwith
a Feynman graph is, in fact, a configuration polynomial. More precisely, we explain
that its dual, the second Kirchhoff polynomial, is associated with the quotient of the
graph configuration by the momentum parameters (see Proposition 3.19). In this way,
Patterson’s result becomes a special case of a formula for configuration polynomials
of elementary quotients (see Proposition 3.14).

1.4 Outline of the proof

The proof of the Main Theorem intertwines methods from matroid theory, commu-
tative algebra and algebraic geometry. In order to keep our arguments self-contained
and accessible, we recall preliminaries from each of these subjects and give detailed
proofs (see §2.1, §2.3 and §4.1). One easily reduces the claims to the case whereM is
connected (see Proposition 3.8 and Theorem 4.36).

An important commutative algebra ingredient is a result of Kutz (see [22]): the
grade of an ideal of submaximal minors of a symmetric matrix cannot exceed 3, and
equality forces the ideal to be perfect. Kutz’ result applies to the defining ideal of�W .
The codimension of�W inKE is therefore bounded by 3 and�W is Cohen–Macaulay
in case of equality (see Proposition 4.19). In this case, �W is pure-dimensional, and
hence, it is reduced if it is generically reduced (see Lemma 4.4).

On the matroid side our approach makes use of handles (see Definition 2.3),
which are called ears in case of graphic matroids. A handle decomposition builds
up any connected matroid from a circuit by successively attaching handles (see Defi-
nition 2.6). Conversely, this yields for any connected matroid which is not a circuit a
non-disconnective handle which leaves the matroid connected when deleted (see Def-
inition 2.3). This allows one to prove statements on connected matroids by induction.

We describe the effect of deletion and contraction of a handle H to the configuration
polynomial (see Corollary 3.13). In case the Jacobian scheme �W\H associated with
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the deletion M\H has codimension 3 we prove the same for �W (see Lemma 4.22).
Applied to a non-disconnective H it followswith Patterson’s result that�W reaches the
dimension bound and is thus Cohen–Macaulay of codimension 3 (see Theorem 4.25).
We further identify three (more or less explicit) types of generic points with respect
to a non-disconnective handle (see Corollary 4.26).

In case chK �= 2, generic reducedness of �W implies (generic) reducedness of
�W . The schemes �W and �W show similar behavior with respect to deletion and
contraction (see Lemmas 4.29 and 4.31). As a consequence, generic reducedness can
be proved along the same lines (see Lemma 4.35). In both cases, we have to show
reducedness at all (the same) generic points. In what follows, we restrict ourselves to
�W . Our proof proceeds by induction on the cardinality |E | of the underlying set E
of the matroid M.

Unless M a circuit, the handle decomposition guarantees the existence of a non-
disconnective handle H . In case H = {h} has size 1, the scheme �W\h associated
with the deletionM\h is the intersection of �W with the divisor xe (see Lemma 4.29).
This serves to recover generic reducedness of�W from�W\h (see Lemma 4.30). The
same argument works if H does not arise from a handle decomposition.

This leads us to consider non-disconnective handles independently of a handle
decomposition. They turn out to be special instances of maximal handles which form
the handle partition of the matroid (see Lemma 2.4). As a purely matroid-theoretic
ingredient, we show that the number of non-disconnective handles is strictly increasing
when adding handles (see Proposition 2.12). For handle decompositions of length 2,
a distinguished role is played by the prism matroid (see Example 2.7). Its handle
partition consists of 3 non-disconnective handles of size 2 (see Lemmas 2.10 and
2.25). Here an explicit calculation shows that �W is reduced in the torus (K∗)6 (see
Lemma 4.28). The corresponding result for �W holds only if chK �= 2.

Suppose now thatM is not a circuit and has no non-disconnective handles of size 1.
Then M\e might be disconnected for all e ∈ E and does not qualify for an inductive
step. In this case, we aim instead for contractingW by a suitable subset G � E which
keeps M connected. In the partial torus KF × (K∗)G where F := E\G, the scheme
�W/G associated with the contraction M/G relates to the normal cone of �W along
the coordinate subspace V (xF ) where xF = (x f ) f ∈F (see Lemma 4.31). To induce
generic reducedness from�W/G to�W , we pass through a deformation to the normal
cone, which is our main ingredient from algebraic geometry. The role of xh above is
then played by the deformation parameter t .

In algebraic terms, this deformation is represented by the Rees algebra ReesI R
with respect to an ideal I�R, and the normal cone by the associated graded ring gr I R
(see Definition 4.6). Passing through ReesI R, we recover generic reducedness of R
along V (I ) from generic reducedness of gr I R (see Definition 4.3 and Lemma 4.7).
By assumption on M, there are at least 3 more elements in E than maximal handles
(see Proposition 2.12), andM is the prismmatroid in case of equality. Based on a strict
inequality, we use a codimension argument to construct a suitable partition E = F�G
for which all generic points of �W are along V (xF ) (see Lemma 4.34). This yields
generic reducedness of �W in this case (see Lemma 4.32). A slight modification of
the approach also covers the generic points outside the torus (K∗)6 if M is the prism
matroid. The case where M is a circuit is reduced to that where M is a triangle by
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successively contracting an element of E (see Lemma 4.33). In this base case �W is
a reduced point, but �W is reduced only if chK �= 2 (see Example 4.14).

Finally, suppose that M is a 3-connected matroid. Here we prove that �W is irre-
ducible and hence integral, which implies that� is irreducible (see Theorem 4.37).We
first observe that handles of (co)size at least 2 are 2-separations (see Lemma 2.4.(e)).
It follows that the handle decomposition consists entirely of non-disconnective 1-
handles (see Proposition 2.5) and that all generic points of �W lie in the torus (K∗)E
(see Corollary 4.27). We show that the number of generic points is bounded by that
of �W\e for all e ∈ E (see Lemma 4.30). Duality switches deletion and contraction
and identifies generic points of �W and �W⊥ (see Corollary 4.18). Using Tutte’s
wheels-and-whirls theorem, the irreducibility of �W can therefore be reduced to the
cases where M is a wheel Wn or a whirl Wn for some n ≥ 3 (see Example 2.26 and
Lemma 4.38). For fixed n, we show that the schemes XW , �W and �W are all iso-
morphic for all realizations W ofWn andWn (see Proposition 4.40). An induction on
n with an explicit study of the base cases n ≤ 4 finishes the proof (see Corollary 4.41
and Lemma 4.43).

2 Matroids and configurations

Our algebraic objects of interest are associated with a realization of a matroid. In
this section, we prepare the path for an inductive approach driven by the underlying
matroid structure. Our main tool is the handle decomposition, a matroid version of the
ear decomposition of graphs.

2.1 Matroid basics

In this subsection, we review the relevant basics of matroid theory using Oxley’s book
(see [26]) as a comprehensive reference.

Denote by MinP and MaxP the set of minima and maxima of a poset P . Let M
be a matroid on a set E =: EM. We use this font throughout to denote matroids. With
2E partially ordered by inclusion, M can be defined by a monotone submodular rank
function (see [26, Cor. 1.3.4])

rk = rkM : 2E → N = {0, 1, 2, . . . }

with rk(S) ≤ |S| for any subset S ⊆ E . The rank of M is then

rkM := rkM(E).

Alternatively, it can be defined in terms of each of the following collections of subsets
of E (see [26, Prop. 1.3.5, p. 28]):

• independent sets IM = {I ⊆ E | |I | = rkM(I )} ⊆ 2E ,
• bases BM = Max IM = {B ⊆ E | |B| = rkM(B) = rkM} ⊆ 2E ,
• circuits CM = Min(2E\IM) ⊆ 2E ,
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Fig. 1 The triangular prism

e1 e3

e5 e2 e4

e6

• flats LM = {F ⊆ E | ∀e ∈ E\F : rkM(F ∪ {e}) > rkM(F)}.
For instance (see [26, Lem. 1.3.3]), for any subset S ⊆ E ,

rkM(S) = max {|I | | S ⊇ I ∈ IM}. (2.1)

The closure operator of M is defined by (see [26, Lem. 1.4.2])

clM : 2E �→ LM, rkM = rkM ◦ clM . (2.2)

The following matroid plays a special role in the proof of our main result.

Definition 2.1 (Prismmatroid). The prism matroid has underlying set E with |E | = 6
and circuits

CM = {{e1, e2, e3, e4}, {e1, e2, e5, e6}, {e3, e4, e5, e6}}.

The name comes from the observation that its independent sets IM are the affinely
independent subsets of the vertices of the triangular prism (see Fig. 1).

The elements of E\⋃BM and
⋂

BM are called loops and coloops inM, respectively.
A matroid is free if E ∈ BM, that is, every e ∈ E is a coloop in M. By a k-circuit in
M we mean a circuit C ∈ CM with |C | = k elements, 3-circuits are called triangles.

The circuits in M give rise to an equivalence relation on E by declaring e, f ∈ E
equivalent if e = f or e, f ∈ C for some C ∈ CM (see [26, Prop. 4.1.2]). The
corresponding equivalence classes are the connected components of M. If there is at
most one such a component, thenM is said to be connected. The connectivity function
of M is defined by

λM : 2E → N, λM(S) := rkM(S)+ rkM(E\S)− rk(M).

For k ≥ 1, a subset S ⊆ E , or the partition E = S � (E\S), is called a k-separation
of M if

λM(S) < k ≤ min {|S|, |E\S|}.
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It is called exact if the latter is an equality. The connectivity λ(M) ofM is the minimal
k for which there is a k-separation of M, or λ(M) = ∞ if no such exists. The matroid
M is said to be k-connected if λ(M) ≥ k. Connectedness is the special case k = 2.

We now review some standard constructions of new matroids from old. Their geo-
metric significance is explained in §2.3.

The direct sumM1⊕M2 of matroidsM1 andM2 is the matroid on EM1 � EM2 with
independent sets

IM1⊕M2 :=
{
I1 � I2

∣
∣ I1 ∈ IM1 , I2 ∈ IM2

}
. (2.3)

The sum is proper if EM1 �= ∅ �= EM2 . Connectedness means that a matroid is not
a proper direct sum (see [26, Prop. 4.2.7]). In particular, any (co)loop is a connected
component.

Let F ⊆ E be any subset. Then the restriction matroid M|F is the matroid on F
with independent sets and bases (see [26, 3.1.12, 3.1.14])

IM|F = IM ∩ 2F , BM|F = Max {B ∩ F | B ∈ BM}. (2.4)

Its set of circuits is (see [26, 3.1.13])

CM|F = CM ∩ 2F . (2.5)

By definition, rkM|F = rkM |2F , sowemay omit the indexwithout ambiguity. Thinking
of restriction to E\F as an operation that deletes elements in F from E , one defines
the deletion matroid

M\F := M|E\F .

The contraction matroid M/F is the matroid on E\F with independent sets and bases
(see [26, Prop. 3.1.7, Cor. 3.1.8])

IM/F =
{
I ⊆ E\F ∣∣ I ∪ B ∈ IM for some/every B ∈ BM|F

}
,

BM/F =
{
B ′ ⊆ E\F ∣∣ B ′ ∪ B ∈ BM for some/every B ∈ BM|F

}
. (2.6)

Its circuits are theminimal non-empty setsC\F whereC ∈ CM (see [26, Prop. 3.1.10]),
that is,

CM/F = Min
{
C\F | F � C ∈ CM

}
. (2.7)

In §2.3, E will be a basis and E∨ the corresponding dual basis. We often identify
E = E∨ by the bijection

ν : E → E∨, e �→ e∨. (2.8)

The complement of a subset S ⊆ E corresponds to

S⊥ := ν(E\S) ⊆ E∨.

The dual matroid M⊥ is the matroid on E∨ with bases

BM⊥ =
{
B⊥

∣
∣
∣ B ∈ BM

}
. (2.9)
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In particular, we have (see [26, 2.1.8])

rkM+ rkM⊥ = |E |.

Connectivity is invariant under dualizing (see [26, Cor. 8.1.5]),

λM = λM⊥ ◦ ν, λ(M) = λ(M⊥). (2.10)

We use ν−1 in place of (2.8) for M⊥, so that S⊥⊥ = S. For subsets F ⊆ E and
G ⊆ E∨, one can identify (see [26, 3.1.1])

(M/F)⊥ = M⊥|F⊥ = M⊥\ν(F),

(M\ν−1(G))⊥ = (M|G⊥)⊥ = M⊥/G. (2.11)

Various matroid data of M⊥ is also considered as codata of M. A triad of M is a
3-cocircuit of M, that is, a triangle of M⊥.

Example 2.2 (Uniform matroids). The uniform matroid Ur ,n of rank r ≥ 0 on a set E
of size |E | = n has bases

BUr ,n = {B ⊆ E | |B| = r}.

For r = n it is the free matroid of rank r . It is connected if and only if 0 < r < n. By
definition, U⊥r ,n = Un−r ,n for all 0 ≤ r ≤ n.

Informally, we refer to a matroidM on E for which E ∈ CM, and hence, CM = {E},
as a circuit, and as a triangle if |E | = 3. It is easily seen that such a matroid is Un−1,n
where n = |E |, and that λ(Un−1,n) = 2.

2.2 Handle decomposition

In this subsection, we investigate handles as building blocks of connected matroids.

Definition 2.3 (Handles). Let M be a matroid. A subset ∅ �= H ⊆ E is a handle in
M if C ∩ H �= ∅ implies H ⊆ C for all C ∈ CM. Write HM for the set of handles in
M, ordered by inclusion. A subhandle of H ∈ HM is a subset ∅ �= H ′ ⊆ H . We call
H ∈ HM

• proper if H �= E ,
• maximal if H ∈ MaxHM,
• a k-handle if |H | = k,
• disconnective if M\H is disconnected and
• separating if min {|H |, |E\H |} ≥ 2.

Singletons {e} and subhandles are handles. If⋃ CM �= E , then E\⋃ CM ∈ MaxHM
and is a union of coloops. The maximal handles in

⋃
CM are the minimal non-empty

123



Matroid connectivity and singularities of configuration… Page 11 of 67 11

intersections of all subsets of CM. Together they form the handle partition of E

E =
⊔

H∈MaxHM

H ,

which refines the partition of
⋃

CM into connected components. In particular, each
circuit is a disjoint union of maximal handles. For any subset F ⊆ E , (2.5) yields an
inclusion

HM ∩ 2F ⊆ HM|F .

Lemma 2.4 (Handle basics). Let M be a matroid and H ∈ HM.

(a) If H = E, then M = Ur ,n where n = |E | ≥ 1 and r ∈ {n − 1, n} (see Exam-
ple 2.2). In the latter case, |E | = 1 if M is connected.

(b) Either H ∈ IM or H ∈ CM. In the latter case, H is maximal and a connected
component of M. In particular, if M is connected and H is proper, then H ∈ IM,
H � C for some circuit C ∈ CM, and H ∈ CM/(E\H).

(c) For any subhandle∅ �= H ′ ⊆ H, H\H ′ consists of coloops inM\H ′. In particular,
non-disconnective handles are maximal.

(d) If H /∈ CM, then there is a bijection

CM → CM/H , C �→ C\H .

If H /∈ MaxHM, then there is a bijection

MaxHM → MaxHM/H , H ′ �→ H ′\H ,

which identifies non-disconnective handles. In this case, the connected compo-
nents of M which are not contained in H\⋃ CM correspond to the connected
components of M/H.

(e) Suppose that M is connected and H is proper. Then

rk(M/H) = rkM− |H |, λM(H) = 1.

In particular, if H is separating, then H is a 2-separation of M.

Proof (a) Suppose that H = E . Then CM ⊆ {E} andM = Un−1,n in case of equality.
Otherwise, CM = ∅ implies BM = {E} and M = Un,n (see [26, Prop. 1.1.6]).

(b) Suppose that H /∈ IM. Then there is a circuit H ⊇ C ∈ CM. By definition of
handle and incomparability of circuits, H = C\(E \ H) ∈ CM/(E\H) (see (2.7))
and H = C is disjoint from all other circuits and hence a connected component
of M.

(c) Suppose that h ∈ H\H ′ is not a coloop in M\H ′. Then h ∈ C ∩ H for some
C ∈ CM\H ′ ⊆ CM (see (2.5)) and hence H ′ ⊆ H ⊆ C since H is a handle, a
contradiction.

123



11 Page 12 of 67 G. Denham et al.

(d) The first bijection follows from (2.7) with F = H . The remaining claims follow
from the discussion preceding the lemma.

(e) Part (b) yields the first equality (see [26, Prop. 3.1.6]) along with a circuit H �=
C ∈ CM. Pick a basis B ∈ BM\H . Clearly S := B � H spans M. For any h ∈ H ,
we check that S\{h} ∈ IM. Otherwise, there is a circuit S\{h} ⊇ C ∈ CM. Since
C � B and by definition of handle, we have H ∩ C �= ∅ and hence h ∈ H ⊆ C ,
a contradiction. It follows that rkM = |S| − 1 = rk(M\H)+ |H | − 1 and hence
the second equality. ��

Proposition 2.5 (Handles in 3-connected matroids). Let M be a 3-connected matroid
on E with |E | > 3. Then all its handles are non-disconnective 1-handles.

Proof Let H ∈ HM be any handle. By Lemma 2.4.(a), H must be proper. By
Lemma 2.4.(e), H is not separating, that is, |H | = 1 or |E\H | = 1. In the latter
case, M is a circuit by Lemma 2.4.(b) and hence not 3-connected (see Example 2.2).
So H is a 1-handle.

Suppose that H is disconnective. Consider the deletion M′ := M\H on the set
E ′ := E\H . Pick a connected component X ofM′ of minimal size |X | < ∣∣E ′∣∣. Since
H �= ∅ and |E | > 3, both X ∪ H and its complement E\(X ∪ H) = E ′\X have at
least 2 elements. Since X is a connected component of M′ and by Lemma 2.4.(e),

rk(X)+ rk(E ′\X) = rkM′ = rkM.

Since rk(X ∪ H) ≤ rk(X)+ |H | = rk(X)+ 1, it follows that

λM(X ∪ H) = rk(X ∪ H)+ rk(E\(X ∪ H))− rkM < 2.

Whence X ∪ H is a 2-separation of M, a contradiction. ��
The following notion is the basis for our inductive approach to connected matroids.

Definition 2.6 (Handle decompositions). Let M be a connected matroid. A handle
decomposition of length k of M is a filtration

CM � F1 � · · · � Fk = E

such that M|Fi is connected and Hi := Fi\Fi−1 ∈ HM|Fi for i = 2, . . . , k.

By Lemma 2.4.(b) and (2.5), a handle decomposition yields circuits

C1 := F1 ∈ CM, Hi � Ci ∈ CM|Fi ⊆ CM, i = 2, . . . , k. (2.12)

Conversely, it can be constructed from a suitable sequence of circuits.

Example 2.7 (Handle decomposition of the prism matroid). The prism matroid (see
Example 2.1) has handle partition

E = {e1, e2} � {e3, e4} � {e5, e6}.
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A handle decomposition of length 2 is given by

F1 = {e1, e2, e3, e4} � F2 = E .

Note that all handles are proper, maximal, separating 2-handles.

Proposition 2.8 (Existence of handle decompositions). LetM be a connected matroid
and C1 ∈ CM. Then there is a handle decomposition of M starting with F1 = C1.

Proof There is a sequence of circuits C1, . . . ,Ck ∈ CM which defines a filtration
Fi :=⋃ j≤i C j such that Ci ∩ Fi−1 �= ∅ and Ci\Fi−1 ∈ CM/Fi−1 for i = 2, . . . , k (see
[13]). The hypothesis Ci ∩ Fi−1 �= ∅ implies thatM|Fi is connected for i = 1, . . . , k.

It remains to check that Hi = Ci\Fi−1 ∈ HM|Fi for i = 2, . . . , k. Since circuits
are nonempty, ∅ �= Hi � Fi . Let C ∈ CM|Fi be a circuit such that e ∈ C ∩ Hi ⊆
C ∩ Ci . Suppose by way of contradiction that Hi � C . Then there exists some
d ∈ Ci\(C ∪ Fi−1). By the strong circuit elimination axiom (see [26, Prop. 1.4.12]),
there is a circuit C ′ ∈ CM|Fi ⊆ CM (see (2.5)) for which d ∈ C ′ ⊆ (C ∪Ci )\{e}. Then
C ′\Fi−1 ⊆ Ci\Fi−1 ∈ CM/Fi−1 by assumption on Ci . It follows that either C ′ ⊆ Fi−1
or C ′\Fi−1 = Ci\Fi−1 (see (2.7)). The former is impossible because C ′ � d /∈ Fi−1,
and the latter because C ′ ∪ Fi−1 �� e ∈ Ci . ��

In the sequel, we develop a bound for the number of non-disconnective handles.

Lemma 2.9 (Non-disconnective handles). LetM be a connected matroid. Suppose that
H ∈ HM and H ′ ∈ HM\H are non-disconnective with H ∪ H ′ �= E. Then there is a
non-disconnective handle H ′′ ∈ HM such that H ′′ ⊆ H ′, with equality if H ′ ∈ HM.

Proof By hypothesis, M and M\H are connected and H ∪ H ′ �= E implies that
both H and H ′ are proper handles. Then Lemma 2.4.(b) yields circuits C ∈ CM and
C ′ ∈ CM\H ⊆ CM (see (2.5)) such that H � C and H ′ � C ′.

Suppose that C ⊆ H ∪ H ′. Then the strong circuit elimination axiom (see [26,
Prop. 1.4.12]) yields a circuit C ′′ ∈ CM for which C ′′ ⊆ H ∪ C ′, H ′ � C ′′ and
C ′′ � H ∪ H ′. Since C ′′ � C ′ contradicts incomparability of circuits, H � C ′′ since
H is a handle and Lemma 2.4.(b) forbids equality.

Replacing C by C ′′ if necessary, we may assume that H ′ � C and C � H ∪ H ′.
In particular, H ′′ := H ′\C ∈ HM\H and H ′′ = H ′ if H ′ ∈ HM. Since M\(H ∪ H ′)
is connected by hypothesis, C witnesses the fact that H , C ∩ H ′ and E\(H ∪ H ′)
are in the same connected component of M\H ′′ (see (2.5)). In other words, M\H ′′ is
connected. If H ′′ ∈ HM is a handle, then H ′′ is therefore non-disconnective.

Otherwise, there is a circuit C ′′ ∈ CM such that ∅ �= C ′′ ∩ H ′′ �= H ′′. In particular,
H ⊆ C ′′ since otherwise C ′′ ∩ H = ∅ and C ′′ ∈ CM\H (see (2.5)) which would
contradict H ′′ ∈ HM\H . This means that C ′′ connects H with C ′′ ∩ H ′′. We may
therefore replace H ′′ by ∅ �= H ′′\C ′′ � H ′′ and iterate. Then H ′′ ∈ HM after finitely
many steps. ��
Lemma 2.10 (Handle decomposition of length 2). LetM be a connected matroid with
a handle decomposition of length 2. ThenM has at least 3 (disjoint) non-disconnective
handles. In case of equality, they form the handle partition of M.
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Proof Consider the circuits C ′ := C1 ∈ CM, C := C2 ∈ CM (see (2.12)), the non-
disconnective handle H := H2 ∈ HM and the subsets ∅ �= H ′ := C ′\C ⊆ E and
∅ �= H ′′ := C∩C ′ ⊆ E . Then E = H�H ′�H ′′ andC ′ = H ′∪H ′′ andC = H∪H ′′.

Let C ′′ ∈ CM be any circuit with C ′ �= C ′′ �= C . By incomparability of circuits,
C ′′ � C ′ and hence H ⊆ C ′′ since H is a handle. By Lemma 2.4.(d), we may assume
that |H | = 1. Then H ′ ⊆ C ′′ (see [26, §1.1, Exc. 5]). In particular, H ′ ∈ HM is a
third non-disconnective handle. If H ∪ H ′ ⊆ C ′′ is an equality, then also H ′′ ∈ HM
is a non-disconnective handle and H � H ′ � H ′′ is the handle decomposition.

Otherwise, C ′′ witnesses the fact that H , H ′ and ∅ �= C ′′ ∩ H ′′ �= H ′′ are in the
same connected component of M|C ′′ (see (2.5)). If H ′′\C ′′ ∈ HM is a handle, then it
is therefore non-disconnective. Otherwise, iterating yields a third non-disconnective
handle H ′′\C ′′ ⊇ H ′′′ ∈ HM. ��
Example 2.11 (Unexpected handles). Consider the matroid M on E = {1, . . . , 6}
whose bases

BM = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5},
{1, 2, 3, 6}, {1, 2, 4, 6}, {1, 3, 4, 6}, {2, 3, 4, 6},
{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}}

index those sets of columns of the matrix

⎛

⎜
⎜
⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 2
0 0 0 1 1 2

⎞

⎟
⎟
⎠

which form a basis of F4
3 (see Remark 2.15). Its circuits and maximal handles are

given by

CM = {F1 := {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 5, 6}, {3, 4, 5, 6}},
MaxHM = {{1, 2}, {3, 4}, {5}, {6} =: H2}.

In particular, M is connected with a handle decomposition

F1 � F1 � H2 =: F2 = E

of length 2. Here all 4 maximal handles are non-disconnective and the inequality
in Lemma 2.10 is strict. This can happen because M is not a graphic matroid (see
Lemma 2.25).

Proposition 2.12 (Lower bound for non-disconnective handles). LetM be a connected
matroid with a handle decomposition of length k ≥ 2. Then M has at least k + 1
(disjoint) non-disconnective handles.
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Proof We argue by induction on k. The base case k = 2 is covered by Lemma 2.10.
Suppose now that k ≥ 3. By hypothesis (see Definition 2.6), Hk ∈ HM is a non-
disconnective handle and the connected matroid M\Hk = M|Fk−1 has a handle
decomposition of length k − 1. By induction, there are k (disjoint) non-disconnective
handles H ′0, . . . , H ′k−1 ∈ HM\Hk . Since k ≥ 3 and handles are non-empty, Hk ∪H ′i �=
E for i = 0, . . . , k − 1. For each i = 0, . . . , k − 1, Lemma 2.9 now yields a non-
disconnective handle H ′i ⊇ H ′′i ∈ HM. Thus,M has k+1 (disjoint) non-disconnective
handles H ′′0 , . . . , H ′′k−1, Hk ∈ HM. ��

We conclude this section with an observation.

Lemma 2.13 (Existence of circuits). Let M be a connected matroid of rank rkM ≥ 2.
Then there is a circuit C ∈ CM of size |C | ≥ 3.

Proof Pick e ∈ E . Since M is connected, E is the union of all circuits e ∈ C ∈ CM.
Suppose that there are only 2-circuits. Then E = clM(e) (see [26, Prop. 1.4.11.(ii)])
and hence rkM = 1 (see (2.2)), a contradiction. ��

2.3 Configurations and realizations

Our objects of interest are not associated with a matroid itself but with a realization as
defined in the following. All matroid operations we consider come with a counterpart
for realizations. For graphic matroids, these agree with familiar operations on graphs
(see §2.4).

Fix a field K and denote the K-dualizing functor by

−∨ := HomK(−,K).

We consider a finite set E as a basis of the based K-vector space KE and denote by
E∨ = (e∨)e∈E the dual basis of

(KE )∨ = KE∨ . (2.13)

By abuse of notation, we set S∨ := (e∨)e∈S for any subset S ⊆ E .
We consider configurations as defined by Bloch, Esnault and Kreimer (see [6, §1]).

Definition 2.14 (Configurations and realizations). Let E be a finite set. A K-vector
subspace W ⊆ KE is called a configuration (over K). It defines a matroid MW on E
with independent sets

IMW =
{
S ⊆ E | S∨|W is K-linearly independent in W∨}. (2.14)

Let M be a matroid and W ⊆ KE a configuration (over K). If M = MW , then W
is called a (linear) realization of M and M is called (linearly) realizable (over K). A
matroid is called binary if it is realizable over F2. A configuration W ⊆ KE is called
totally unimodular if chK = 0 and W admits a basis whose coefficient matrix with
respect to E has all (maximal) minors in {0,±1}. A matroid is called regular if it
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admits a totally unimodular realization. Equivalently, a regular matroid is realizable
over every field (see [26, Thm. 6.6.3]).

Since E∨|W generates W∨, we have (see (2.14))

rk(MW ) = dimW∨ = dimW . (2.15)

Remark 2.15 (Matroids and linear algebra). The notions in matroid theory (see §2.1)
are derived from linear (in)dependence over K. Let W ⊆ KE be a realization of a
matroid M. Pick a basis w = (w1, . . . , wr ) of W where r := rkM (see (2.15)). For
each e ∈ E , e∨|W is then represented by the vector (wi

e)i ∈ Kr where wi
e := e∨(wi )

for i = 1, . . . , r . Order E = {e1, . . . , en} and set wi
j := wi

e j for j = 1, . . . , n. Then

these vectors form the columns of the coefficient matrix A = (wi
j )i, j ∈ Kr×n of

w. By construction, W is the row span of A. The matroid rank rkM(S) of any subset
S ⊆ E now equals theK-linear rank of the submatrix of A with columns S (see (2.1)
and (2.14)). An element e ∈ E is a loop in M if and only if column e of A is zero; e
is a coloop in M if and only if column e is not in the span of the other columns.

Remark 2.16 (Classical configurations). Suppose that MW has no loops, that is,
e∨|W �= 0 for each e ∈ E . Then the images of the e∨|W in PW∨ form a pro-
jective point configuration in the classical sense (see [19]). Dually, the hyperplanes
ker(e∨)∩W form a hyperplane arrangement in W (see [25]), which is an equivalent
notion in this case.

Wefix somenotation for realizations of basicmatroid operations.Any subset S ⊆ E
gives rise to an inclusion and a projection

ιS : KS ↪→ KE , πS : KE � KE/KE\S = KS (2.16)

of based K-vector spaces.

Definition 2.17 (Realizations of matroid operations). Let W ⊆ KE be a realization
of a matroid M, and let F ⊆ E be any subset.

(a) The restriction configuration (see (2.16))

W |F := πF (W ) ⊆ KF

∼= (W +KE\F )/KE\F ∼= W/(W ∩KE\F )

realizes the restriction matroid M|F .
(b) The deletion configuration

W\F := W |E\F

realizes the deletion matroid M\F . We write W\e := W \ {e} for e ∈ E .
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(c) The contraction configuration

W/F := W ∩KE\F ⊆ KE\F

realizes the contraction matroid M/F .
(d) The dual configuration (see (2.13))

W⊥ := (KE/W )∨ ⊆ KE∨

realizes the dual matroid M⊥.
(e) Any 0 �= ϕ ∈ W∨ defines an elementary quotient configuration

Wϕ := ker ϕ ⊆ KE .

Remark 2.18 Let W ⊆ KE be a realization of a matroid M.

(a) An element e ∈ E is a loop or coloop in M if and only if W ⊆ KE\{e} or
W = (W\e)⊕K{e}, respectively. In both cases, W\e = W/e ⊆ KE\{e}.

(b) For 0 �= ϕ ∈ W∨, pick w ∈ W\Wϕ and e /∈ E . Consider the configuration

Wϕ,w := Wϕ ⊕K · (w + e) ⊆ KE�{e}.

Then Wϕ,w\e = W and Wϕ,w/e = Wϕ . By definition, MWϕ is therefore an
elementary quotient of MW ; it can be characterized in terms of the notion of a
modular cut (see [21, §5.5] and [26, §7.3]). ��

Lemma 2.19 (Lift of direct sums to realizations). Let W ⊆ KE be a realization of
a matroid M. Suppose that M = M1 ⊕ M2 decomposes with underlying partition
E = E1 � E2. Then W = W1 ⊕ W2 where Wi := M/E j ⊆ KEi realizes Mi = M|Ei

for {i, j} = {1, 2}.
Proof By definition (see Definition 2.17.(a) and (c)),

W1 ⊕W2 ↪→ W ↪→ W |E1 ⊕W |E2 , Wi ↪→ W |Ei , i = 1, 2.

By the direct sum hypothesis, Wi and W |Ei realize the same matroid (see (2.3), (2.4)
and (2.6))

M/E j = M|Ei = Mi , {i, j} = {1, 2}.

Thus, dimWi = dim(W |Ei ) for i = 1, 2 (see (2.15)) and the claim follows. ��
Example 2.20 (Realizations of uniform matroids). Let W ⊆ KE be the row span of
a matrix A ∈ Kr×n (see Remark 2.15). If A is generic in the sense that all maximal
minors of A are nonzero, thenW realizes the uniformmatroid Ur ,n (see Example 2.2).
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2.4 Graphic matroids

Configurations arising from graphs are the most prominent examples for our results.
In this subsection, we review this construction and discuss important examples such
as prism, wheel and whirl matroids.

A graph G = (V , E) is a pair of finite sets V of vertices and E of (unoriented)
edges where each edge e ∈ E is associated with a set of one or two vertices in V . This
allows for multiple edges between pairs of vertices, and loops at vertices.

A graphG determines a graphic matroidMG on the edge set E . Its independent sets
are the forests and its circuits the simple cycles in G. Any graphic matroid comes from
a (non-unique) connected graph (see [26, Prop. 1.2.9]). Unless specified otherwise,
we therefore assume that G is connected. Then the bases ofMG are the spanning trees
of G (see [26, p. 18]),

BMG = TG . (2.17)

Remark 2.21 (Graph and matroid connectivity). A vertex cut of a graph G = (V , E)

is a subset of V whose removal (together with all incident edges) disconnects G. If G
has at least one pair of distinct non-adjacent vertices, then G is called k-connected if k
is the minimal size of a vertex cut. Otherwise, G is (|V | − 1)-connected by definition.
Suppose that |V | ≥ 3. Then MG is (2-)connected if and only if G is 2-connected and
loopless (see [26, Prop. 4.1.7]). Provided that |E | ≥ 4,MG is 3-connected if and only
if G is 3-connected and simple (see [26, Prop. 8.1.9]).

Example 2.22 (Prism matroid as graphic matroid). The prism matroid (see Defini-
tion 2.1) is associated with the (2, 2, 2)-theta graph in Fig. 2. In particular it is
3-connected as witnessed by the minimal vertex cut {v1, v2, v3} (see Remark 2.21).

Graphic matroids have realizations derived from the edge-vertex incidence matrix
of the graph (see [6, §2]). A choice of orientation on the edge set E turns the graph G
into a CW-complex. This gives rise to an exact sequence

0 H1 KE δ
KV σ

H0 0

(s → t)

∈

t − s

∈

K

∼ =

v 1

∈

(2.18)

Fig. 2 The (2, 2, 2)-theta graph
with a choice of orientation

v2

v4

v1 v5

v3

e1

e2

e6

e5

e3

e4
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where H• := H•(G,K) denotes the graph homology of G over K. The dual exact
sequence

0 H1 KE∨ KV∨δ∨
H0 0 (2.19)

involves the graph cohomology H• := H•(G,K) of G over K.

Definition 2.23 (Graph configurations). We call the image

KE∨ ⊇ WG := δ∨(KV∨) ker(σ )∨δ∨
∼=

of δ∨ the graph configuration of the graph G over K. Note that it is independent of
the orientation chosen to define δ in (2.18).

For any S ⊆ E , the sequence (2.18) induces a short exact sequence

0 H1 ∩KS KS W∨
G .

By definition of MG and MWG (see Definition 2.14) and since H1 is generated by
indicator vectors of (simple) cycles, we have

S ∈ IMG ⇐⇒ H1 ∩KS = 0 ⇐⇒ S ∈ IMWG
,

which implies that

MG = MWG .

The configuration WG is totally unimodular if chK = 0 (see [26, Lem. 5.1.4]) which
makes MG a regular matroid. By construction, W⊥

G = H1 ⊆ KE realizes the dual
matroid M⊥G (see Definition 2.17.(d)).

Example 2.24 (Configuration of the (2, 2, 2)-theta graph). With the orientation of the
(2, 2, 2)-theta graph G depicted in Fig. 2, the map δ∨ in (2.19) is represented by the
transpose of the matrix

⎛

⎜
⎜
⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
−1 0 −1 0 −1 0

⎞

⎟
⎟
⎠ .

Its rows generate the graph configuration WG realizing the prism matroid (see Exam-
ple 2.22).
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Lemma 2.25 (Characterization of the prism matroid). Let M be a connected matroid
on E = {e1, . . . , e6} with |E | = 6 whose handle partition

E = H1 � H2 � H3, H1 = {e1, e2}, H2 = {e3, e4}, H3 = {e5, e6},

is made of 3 maximal 2-handles (see Example 2.7 and Lemma 2.10). Then M is the
prism matroid (see Definition 2.1). Up to scaling E, it has the unique realization
W ⊆ KE with basis

w1 := e1 + e2, w2 := e3 + e4, w3 := e5 + e6, w4 := e1 + e3 + e5,

the graph configuration of the (2, 2, 2)-theta graph (see Example 2.24).

Proof Each circuit C ∈ CM is a (non-empty) disjoint union of H1, H2, H3 (see Defi-
nition 2.3). By Lemma 2.4.(b), no Hi is a circuit, but each Hi is properly contained in
one. By hypothesis, E is not a maximal handle and hence E /∈ CM. Up to renumbering
H1, H2, H3, this yields circuits H2�H3 and H1�H3. By the strong circuit elimination
axiom (see [26, Prop. 1.4.12]), there is a third circuit H1 � H2. Then

CM = {C1,C2,C3}, C1 = H2 � H3, C2 = H1 � H3, C3 = H1 � H2,

identifies with the circuits of the prism matroid. It follows that M must be the prism
matroid.

Let W ⊆ KE be any realization of M. Then dimW = rkM = 4 (see (2.15)
and (2.17)). Pick a basis w = (w1, . . . , w4) of W and denote by A = (wi

j )i, j the
coefficientmatrix (seeRemark 2.15).Wemay assume that columns 2, 4, 6, 5 of A form
an identity matrix. Since C1 and C2 are circuits, w1

3 = 0 �= w2
3 and w2

1 = 0 �= w1
1.

Thus,

A =

⎛

⎜
⎜
⎝

∗ 1 0 0 0 0
0 0 ∗ 1 0 0
∗ 0 ∗ 0 0 1
∗ 0 ∗ 0 1 0

⎞

⎟
⎟
⎠ .

Since C3 is a circuit, suitably replacing w3, w4 ∈ 〈w3, w4
〉
, reordering H3 and scaling

e1, e3 makes

A =

⎛

⎜
⎜
⎝

∗ 1 0 0 0 0
0 0 ∗ 1 0 0
0 0 0 0 ∗ 1
1 0 1 0 1 0

⎞

⎟
⎟
⎠ ,
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where w1
1, w

2
3, w

3
5 �= 0. Now suitably scaling first w1, w2, w3 and then e2, e4, e6

makes

A =

⎛

⎜
⎜
⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

⎞

⎟
⎟
⎠ .

Now w = (w1, . . . , w4) is the desired basis. ��
The following classes of matroids play a distinguished role in connection with

3-connectedness.

Example 2.26 (Wheels andwhirls). For n ≥ 2, thewheel graphWn in Fig. 3 is obtained
from an n-cycle, the “rim,” by adding an additional vertex and edges, the “spokes,”
joining it to each vertex in the rim. There is a partition of the set of edges

E = S � R, S = {s1, . . . , sn}, R = {r1, . . . , rn},

into the set S of spokes and the set R of edges in the rim. The symmetry suggests to
use a cyclic index set Zn := Z/nZ = {1, . . . , n}.

For n ≥ 3, the wheel matroid is the graphic matroidWn := MWn on E . For n ≥ 2,
the whirl matroid is the (non-graphic) matroid on E obtained fromMWn by relaxation
of the rim R, that is,

BWn := BMWn
� {R}.

In terms of circuits, this means that

CWn = CMWn
\R � {{s} � R | s ∈ S}.

Fig. 3 The wheel graph Wn

sn

rn

s1

r1s2

r2

s3

r3

s4
r4

s5r5

s6
r6

s7

r7
s8

r8

s9

r9
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The matroids Wn and Wn are 3-connected (see [26, Exa. 8.4.3]) of rank

rkWn = n = rkWn .

For each i ∈ Zn , {si , ri , si+1} is a triangle and {ri , ri+1, si+1} a triad. Conversely,
this property enforces M ∈ {Wn,Wn

}
for any connected matroid M on E (see [29,

(6.1)]).

We describe all realizations of wheels and whirls up to equivalence. In particular,
we recover the well-known fact that whirls are not binary.

Lemma 2.27 (Realizations of wheels and whirls). Let W ⊆ KE be any realization of
M ∈ {Wn,Wn

}
. Up to scaling E = S � R, W has a basis

w1 = s1 + r1 − t · rn, wi = si + ri − ri−1, i = 2, . . . , n, (2.20)

where t = 1 if M = Wn, and t ∈ K\{0, 1} if M = Wn.

Proof Since S ∈ BM, we may assume that the coefficients of s j in wi form
an identity matrix, that is, wi

s j = δi, j . The triangle
{
s j , r j , s j+1

}
then forces

w
j
r j , w

j+1
r j �= 0 and wi

r j = 0 for all i ∈ Zn\{ j, j + 1}. Suitably scaling

r1, w2, r2, w3, . . . , rn−1, wn, s1, . . . , sn successively yields (2.20). The claim on t
follows from R ∈ CWn and R ∈ BWn , respectively. ��

3 Configuration polynomials and forms

In this section, we develop Bloch’s strategy of putting graph polynomials into the
context of configuration polynomials and configuration forms. We lay the foundation
for an inductive proof of our main result using a handle decomposition. In the process,
we generalize some known results on graph polynomials to configuration polynomials.

3.1 Configuration polynomials

To prepare the definition of configuration polynomials we introduce some notation.
Let W ⊆ KE be a configuration, and let S ⊆ E be any subset. Compose the

associated inclusion map with πS to a map (see (2.16))

αW ,S : W KE πS
KS . (3.1)

Fix an isomorphism

cW : K ∼=
∧dimW W (3.2)

and set c0 := idK for the zero vector space. Any basis of W gives rise to such an
isomorphism and any two such isomorphisms differ by a nonzero multiple c ∈ K∗.
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Up to sign or ordering E , we identify

|S|∧
KS = K, ∧

s∈S s �→ 1, (3.3)

as based vector spaces. Suppose that |S| = dimW . Then the determinant

det αW ,S : K cW
∼=

∧|S|W
∧|S| αW ,S ∧|S|KS = K (3.4)

is defined up to sign. Its square

cW ,S := (det αW ,S)
2 ∈ K (3.5)

is defined up to a factor c2 for some c ∈ K∗ independent of S. Note that det α0,∅ = idK
and hence c0,∅ = 1. By definition (see (2.14)),

cW ,S �= 0 ⇐⇒ S ∈ BMW . (3.6)

Remark 3.1 (Compatibility of coefficients with restriction). LetW ⊆ KE be a config-
uration, and let S ⊆ F ⊆ E with |S| = dimW . Then the maps (3.1) for W and W |F
form a commutative diagram

W

αW ,S

πF |W ∼=

KE

πF

πS
KS

W |F

αW |F ,S

KF πS
KS

and hence cW ,S = c2 · cW |F ,S for some c ∈ K∗ independent of S.

Consider the dual basis E∨ = (e∨)e∈E of E as coordinates on KE ,

xe := e∨, ∂e := ∂

∂xe
, e ∈ E . (3.7)

Given an enumeration of E = {e1, . . . , en}, we write

xi := xei , ∂i := ∂ei , i = 1, . . . , n.
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For any subset S ⊆ E , we set

xS := (xe)e∈S, x S :=
∏

e∈S
xe, x := xE . (3.8)

Definition 3.2 (Configuration polynomials). LetW ⊆ KE be a realization of amatroid
M. Then the configuration polynomial of W is (see (3.5))

ψW :=
∑

B∈BM

cW ,B · x B ∈ K[x].

Remark 3.3 (Well-definedness of configuration polynomials). Any two isomorphisms
cW (see (3.2)) differ by a nonzero multiple c ∈ K∗. Using the isomorphism c · cW
in place of cW replaces ψW by c2 · ψW . In other words, ψW is well-defined up to a
nonzero constant square factor. Whenever ψW occurs in a formula, we mean that the
formula holds true for a suitable choice of such a factor.

Remark 3.4 (Equivalence of configuration polynomials). Dividing e ∈ E by c ∈ K∗
multiplies both xe = e∨ (see Remark 2.16) and the identifications (3.3) with e ∈ S by
c. For each e ∈ B ∈ BM, this multiplies cW ,B by c2 and x B by c. This is equivalent to
substituting c3 · xe for xe in ψW . Scaling E thus results in scaling x in ψW .

However, dropping the equality (3.7) and scaling e ∈ E for fixed xe replaces W
in ψW by a projectively equivalent realization (see [26, §6.3]). If M is binary, then
all realizations of M over K are projectively equivalent (see [26, Prop. 6.6.5]). The
corresponding configuration polynomials are geometrically equivalent in this case.
In general, however, there are geometrically different configuration polynomials for
fixed M and K (see Example 5.3).

Remark 3.5 (Degree of configuration polynomials). Let W ⊆ KE be a realization of
a matroid M. Then (see (2.15) and (3.6))

degψW = rkM = dimW .

In particular, ψW �= 0, and ψW = 1 if and only if rkM = 0. By definition, ψW is
independent of (divided by) xe if and only if e ∈ E is a (co)loop in M.

Remark 3.6 (Matroid polynomials and regularity). For any matroidM, not necessarily
realizable, there is a matroid (basis) polynomial

ψM :=
∑

B∈BM

x B .

IfM is regular, then ψW = ψM for any totally unimodular realizationW ofM overK.
Conversely, this equality for some realization W over K with chK = 0 establishes
regularity ofM. For regularM, all configuration polynomials overK are geometrically
equivalent (see Remark 3.4). In general, however, ψW and ψM are geometrically
different (see Example 5.2).

123



Matroid connectivity and singularities of configuration… Page 25 of 67 11

Example 3.7 (Configuration polynomials of uniform matroids). Let W ⊆ KE be a
realization of a uniform matroid M = Ur ,n (see Example 2.20).

(a) Suppose that M = Un,n is a free matroid. Then E ∈ BM and

ψW = x E

is the elementary symmetric polynomial of degree n in n variables.
(b) Suppose that M = Un−1,n is a circuit. Then E ∈ CM and by Remark 3.1 and (a)

ψW =
∑

e∈E
ψW\e, ψW\e = x E\{e}.

Apriori, substituting x E\{e} forψW\e inψW is invalid (see Remark 3.3). However,
this can be achieved as follows: Ordering E = {e1, . . . , en}, W has a basis wi =
ei + ci · en with ci ∈ K∗ where i = 1, . . . , n− 1. Scaling first w1, . . . , wn−1 and
then e1, . . . , en−1 makes c1 = · · · = cn−1 = 1. This turns ψW into

ψW =
∑

e∈E
x E\{e},

the elementary symmetric polynomial of degree n − 1 in n variables.
(c) If M = Un−2,n , then M has

( n
n−2
)
bases, and ψW has

( n
n−2
)
monomials whose

coefficients depend on the choice of W . For instance, the row span W of the
matrix

(
1 0 1 1
0 1 1 −1

)

realizes U2,4 and

ψW = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + 4x3x4.

Realizations of U2,n are treated in Example 5.4. ��
In the following, we put matroid connectivity in correspondence with irreducibility

of configuration polynomials.

Proposition 3.8 (Connectedness and irreducibility).LetM be amatroid of rank rkM ≥
1 with realization W ⊆ KE . Then M is connected if and only if M has no loops and
ψW is irreducible. In particular, ifM =⊕n

i=1Mi with connected componentsMi and
induced decomposition W = ⊕n

i=1 Wi (see Lemma 2.19), then ψW = ∏n
i=1 ψWi

where ψWi is irreducible if rkMi ≥ 1, and ψWi = 1 otherwise.

Proof First suppose thatM = M1⊕M2 is disconnectedwith underlyingproper partition
E = E1 � E2. By Lemma 2.19, W = W1 ⊕ W2 where Wi ⊆ KEi realizes Mi . Then
αW ,B = αW1,B1⊕αW2,B2 and hence cW ,B = cW1,B1 ·cW2,B2 for all B = B1�B2 ∈ BM
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where Bi ∈ BMi for i = 1, 2 (see (2.3)). It follows that ψW = ψW1 · ψW2 . This
factorization is proper if M and hence each Mi has no loops (see Remark 3.5). Thus,
ψW is reducible in this case.

Suppose now that ψW is reducible. Then

ψW = ψ1 · ψ2

with ψi homogeneous non-constant for i = 1, 2. Since ψW is a linear combination of
square-free monomials (see Definition 3.2), this yields a proper partition E = E1�E2
such that ψi ∈ K[xEi ] for i = 1, 2. Set

Mi := M|Ei , i = 1, 2. (3.9)

Each basis B ∈ BM indexes a monomial x B in ψW (see (3.6)). Set Bi := B ∩ Ei ∈
IMi for i = 1, 2 (see (2.4)). Then x B = x B1 · x B2 where x Bi is a monomial in ψi for
i = 1, 2. By homogeneity of ψi , Bi ∈ BMi for i = 1, 2 and hence B = B1 � B2 ∈
BM1⊕M2 (see (2.3)). It follows that BM ⊆ BM1⊕M2 .

Conversely, let B = B1 � B2 ∈ BM1⊕M2 where Bi ∈ BMi for i = 1, 2. Then
Bi = B ′i ∩ Ei for some B ′i ∈ BM for i = 1, 2 (see (2.4) and (3.9)). As above, x Bi is
a monomial in ψi for i = 1, 2. Then x B = x B1 · x B2 is a monomial in ψW and hence
B ∈ BM (see (3.6)). It follows that BM ⊇ BM1⊕M2 as well.

So M = M1 ⊕M2 is a proper decomposition and M is disconnected.
This proves the equivalence and the particular claims follow. ��
We use the following well-known fact from linear algebra.

Remark 3.9 (Determinant formula). Consider a short exact sequence of finite dimen-
sional K-vector spaces

0 W V U 0.

Abbreviate
∧

V :=∧dim V V . There is a unique isomorphism

∧
W ⊗

∧
U =

∧
V

that fits into a commutative diagram of canonical maps

∧
W ⊗∧dimU V

∧dimW V ⊗∧dimU V

∧
W ⊗∧U

∧
V .

Tensored with

(
∧

U )∨ =
∧

(U∨), (
∧

W )∨ =
∧

(W∨),
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respectively, it induces identifications

∧
W =

∧
V ⊗

∧
U∨,

∧
U =

∧
W∨ ⊗

∧
V .

Consider a commutative diagram of finite dimensional K-vector spaces with short
exact rows

0 W

α ∼=

V

γ ∼=

U 0

0 U ′ V ′ W ′
β ∼=

0.

Then the above identifications for both rows fit into a commutative diagram

∧
W

∧
α ∼=

∧
W ⊗∧U ⊗∧U∨

∧
α⊗∧β−1⊗∧β∨ ∼=

∧
V ⊗∧U∨

∧
γ⊗∧β∨ ∼=

∧
U ′

∧
U ′ ⊗∧W ′ ⊗∧W ′∨ ∧

V ′ ⊗∧W ′∨.

The following result of Bloch, Esnault and Kreimer describes the behavior of con-
figuration polynomials under duality (see [6, Prop. 1.6]).

Proposition 3.10 (Dual configuration polynomials). Let W ⊆ KE be a realization of
a matroid M. For a suitable choice of cW (see (3.2)),

det αW⊥,S⊥ = det αW ,S

for all S ⊆ E of size |S| = rkM. In particular,

ψW⊥ = x E
∨ · ψW ((x−1e∨ )e∈E ).

Proof Let S ⊆ E be of size |S| = rkM. Then S ∈ BM if and only if S⊥ ∈ BM⊥ (see
Remark 3.3). We may assume that this is the case as otherwise both determinants are
zero. Then there is a commutative diagram with exact rows

0 W

αW ,S ∼=

KE

ν ∼=

KE/W 0

0 KS KE∨πS◦ν−1
KS⊥

π∨
S⊥

α∨
W⊥,S⊥∼=

0
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where themiddle isomorphism is induced by (2.8). This yields a commutative diagram
(Remark 3.9 and (2.15))

K

cW

∼=
∧|E |KE ⊗K K

id⊗cW⊥
∧rkM W

∧rkM αW ,S

∧|E |KE ⊗∧rkM⊥ W⊥

∧|E | ν⊗∧rkM⊥ αW⊥,S⊥

∧rkMKS ∧|E |KE∨ ⊗∧rkM⊥ KS⊥ .

Using (3.3), we may drop
∧|E |KE and

∧|E |KE∨ . A suitable choice of cW turns the
upper isomorphism into an equality. The claim follows by definition (see (3.4) and
Definition 3.2). ��

The coefficients of the configuration polynomial satisfy the following restriction–
contraction formula.

Lemma 3.11 (Restriction–contraction for coefficients). Let W ⊆ KE be a realization
of a matroid M, and let F ⊆ E be any subset. For any basis B ∈ BM, B ∩ F ∈ BM|F
if and only if B\F ∈ BM/F . In this case,

cW ,B = c2 · cW/F,B\F · cW |F ,B∩F

where c ∈ K∗ is independent of B.

Proof The equivalence for B ∈ BM holds by definition of matroid contraction (see
(2.6)). For any such B, there is a commutative diagram with exact rows (see Defini-
tion 2.17.(a) and (c))

0 W/F W W |F 0

0 KE\F KE KF 0

0 KB\F KB KB∩F 0.
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Taking exterior powers yields (see Remark 3.9 and (2.15))

K

cW ∼=
∼=
c

K = K⊗K

cW/F⊗cW |F∼=
∧rkM W

∧rkM αW ,B
∼=

∧rk(M/F) W/F ⊗∧rk(M|F ) W |F
∧rk(M/F) αW/F,B\F⊗∧rk(M|F ) αW |F ,B∩F∼=

∧rkMKB ∧rk(M/F) KB\F ⊗∧rk(M|F ) KB∩F .

��

The following result describes the behavior of configuration polynomials under
deletion–contraction. It is the basis for our inductive approach to Jacobian schemes
of configuration polynomials. The statement on ∂eψW was proven by Patterson (see
[27, Lem. 4.4]).

Proposition 3.12 (Deletion–contraction for configuration polynomials). Let W ⊆ KE

be a realization of a matroid M, and let e ∈ E. Then

ψW =

⎧
⎪⎨

⎪⎩

ψW\e = ψW/e if e is a loop in M,

ψW |e · ψW/e = ψW |e · ψW\e if e is a coloop in M,

ψW\e + ψW |e · ψW/e otherwise,

where ψW |e = xe if e is not a loop in M. In particular,

∂eψW =

⎧
⎪⎨

⎪⎩

0 if e is a loop in M,

ψW/e = ψW\e if e is a coloop in M,

ψW/e otherwise,

ψW |xe=0 =

⎧
⎪⎨

⎪⎩

ψW\e = ψW/e if e is a loop in M,

0 if e is a coloop in M,

ψW\e otherwise.

Proof Decompose

ψW =
∑

e/∈B∈BM

cW ,B · x B + xe ·
∑

e∈B∈BM

cW ,B · x B\{e}. (3.10)

The second sum in (3.10) is nonzero if and only if e is not a loop. Suppose that this
is the case. Then M|e is free with basis {e} and ψW |e = xe by Remark 3.7.(a). By
Lemma 3.11 applied to F = {e}, the second sum in (3.10) then equals (see (2.6) and
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Remark 3.3)

c2 · cW |e,{e} ·
∑

B∈BM/e

cW/e,B · x B = ψW/e

for some c ∈ K∗. The first sum in (3.10) is nonzero if and only if e is not a coloop. By
Lemma 3.11 applied to F = E\{e}, it equals in this case (see (2.4) and Remark 3.3)

c2 · c0,∅ ·
∑

B∈BM\e

cW\e,B · x B = ψW\e

for some c ∈ K∗. If e is a (co)loop, then W/e = W\e (see Remark 2.18.(a)). The
claimed formulas follow. ��

The following formula relates configuration polynomials with deletion and contrac-
tion of handles. It is the starting point for our description of generic points of Jacobian
schemes of configuration hypersurfaces in terms of handles.

Corollary 3.13 (Configuration polynomials and handles). Let W ⊆ KE be a realiza-
tion of a connected matroid M on E, and let E �= H ∈ HM be a proper handle.
Then

ψW = ψW/(E\H) · ψW\H + ψW |H · ψW/H , (3.11)

ψW/(E\H) =
∑

h∈H
ψW |H\{h} , (3.12)

ψW |H = xH , ψW |H\{h} = xH\{h}. (3.13)

In particular, after suitably scaling H,

ψW =
∑

h∈H
xH\{h} · ψW\H + xH · ψW/H . (3.14)

Proof By Lemma 2.4.(b), H ∈ CM/(E\H) and hence (3.12) by Example 3.7.(b). By
Lemma 2.4.(b) (see (2.4)), M|H is free, and equalities (3.13) follows from Exam-
ple 3.7.(a). Equality (3.14) follows from (3.11), (3.12) and Example 3.7.(b). It remains
to prove equality (3.11).

We proceed by induction on |H |. Let h ∈ H and set H ′ := H\{h}. Since M is
connected, it has no (co)loops and hence

ψW = ψW\h + ψW |h · ψW/h (3.15)

by Proposition 3.12. If |H | = 1, then H ∈ CM/(E\H) implies that rk(M/(E\h)) = 0
and hence ψW/(E\h) = 1 (see Remark 3.5). Suppose now that |H | ≥ 2. By
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Lemma 2.4.(b) and (c), M|H ′ is free and H ′ consists of coloops in M\h. Iterating
Proposition 3.12 thus yields

ψW\h =
∏

h′∈H ′
ψW |h′ · ψW\H = ψW |H ′ · ψW\H . (3.16)

By Lemma 2.4.(d), the set H ′ is a proper handle in the connected matroidM/h. By
Lemma 2.4.(c), h is a coloop in M\H ′ and hence

W/h\H ′ = W \ H ′/h = W\H ′ \ h = W\H .

by Remark 2.18.(a). By the induction hypothesis,

ψW/h =
∑

h′∈H ′
ψW |H ′\{h′} · ψW\H + ψW |H ′ · ψW/H . (3.17)

By Lemma 2.4.(b), M|H and M|H\{h′} are free. Iterating Proposition 3.12 thus yields

ψW |h · ψW |H ′ = ψW |H , ψW |h · ψW |H ′\{h′} = ψW |H\{h′} . (3.18)

Using equalities (3.12) and (3.18), equality (3.11) is obtained by substituting (3.16)
and (3.17) into (3.15) (see Remark 3.3). ��

The following result describes the behavior of configuration polynomials when
passing to an elementary quotient.

Proposition 3.14 (Configuration polynomials of quotients). Let W ⊆ KE be a real-
ization of a matroid M, and let 0 �= ϕ ∈ W∨. Then

ψWϕ =
∑

S⊆E
|S|=rkM−1

(
∑

e/∈S
±ϕ̃e · det αW ,S∪{e}

)2

x S,

where ϕ̃ = (ϕ̃e)e∈E ∈ (KE )∨ is any lift of ϕ with a sign ± determined by a Laplace
expansion.

123



11 Page 32 of 67 G. Denham et al.

Proof Set V := W⊥ and Vϕ := W⊥
ϕ and consider the commutative diagramwith short

exact rows and columns

0

0 K

0 Wϕ KE V∨ϕ 0

0 W

ϕ

KE

ϕ̃

V∨ 0

K 0

0.

Dualizing and identifying the two copies ofK by the Snake Lemma yields a commu-
tative diagram with short exact rows and columns

0

0 K
·ϕ̃

0 W∨
ϕ KE∨ Vϕ 0

0 W∨ KE∨ V 0

K

·ϕ
·ϕ̃

0

0.

(3.19)
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By Remark 3.9 and with a suitable choice of cV (see Remark 3.3), the right vertical
short exact sequence in (3.19) gives rise to a commutative square

K
cVϕ ∧rkM⊥+1 Vϕ

K
cV ∧rkM⊥ V

Let S′ ⊆ E∨ with
∣
∣S′
∣
∣ = dim Vϕ = rkM⊥ + 1 and denote (see (2.8))

ϕ̃S′ = (ϕ̃ν−1(e))e∈S′ ∈ KS′ .

Due to (3.19) the maps αVϕ,S′ (see (3.1)) and

(
ϕ̃S′ αV ,S′

) : K⊕ V KE∨ πS′
KS′

agree after applying
∧rkM⊥+1. Laplace expansion thus yields

det αVϕ,S′ =
∑

e∈S′
±ϕ̃ν−1(e) · det αV ,S′\{e}.

Let S ⊆ E with |S| = dimWϕ = rkM − 1 and S′ = S⊥. Then Proposition 3.10
yields

cWϕ,S =
(
∑

e/∈S
±ϕ̃e · det αW ,S∪{e}

)2

.

��

3.2 Graph polynomials

We continue the discussion of graphic matroids from §2.4 and consider their config-
uration polynomials.

Definition 3.15 (Graph polynomials). The (first) Kirchhoff polynomial of a graph G
over K is the polynomial

ψG :=
∑

T∈TG

xT ∈ K[x].

Replacing xT by x E\T defines the (first) Symanzik polynomial ψ⊥G of a graph G over
K. We refer to ψG and ψ⊥G as (first) graph polynomials.
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By (2.17), we have ψG = ψW for any totally unimodular realization W of MG .
In particular, this yields the following result of Bloch, Esnault and Kreimer (see [6,
Prop. 2.2] and Proposition 3.10).

Proposition 3.16 (Graph polynomials as configuration polynomials). The graph poly-
nomials

ψG = ψWG , ψ⊥G = ψW⊥
G
,

are the configuration polynomials of the graph configuration and of its dual (see
Definition 2.23). ��
Example 3.17 (Graph polynomial of the prism). For the unique realization W = WG

of the prism matroid (see Lemma 2.25),

ψW = ψG = x1x2(x3 + x4)(x5 + x6)

+ x3x4(x1 + x2)(x5 + x6)

+ x5x6(x1 + x2)(x3 + x4)

is the Kirchhoff polynomial of the (2, 2, 2)-theta graph G (see Fig. 2).

Let G = (E, V ) be a graph. A 2-forest in G is an acyclic subgraph T of G with
|V | − 2 edges. Any such T = {T1, T2} has 2 connected components T1 and T2. We
denote by T 2

G the set of all 2-forests in G.

Definition 3.18 (Second graph polynomials). The second Kirchhoff polynomial of a
graph G over K is the polynomial

ψG(p) :=
∑

{T1,T2}∈T 2
G

mT1(p)
2 · xT1�T2 ∈ K[x], mTi (p) :=

∑

v∈Ti
pv,

depending on a momentum 0 �= p ∈ ker σ for G over K (see (2.18)). Note that

mT1(p) =
∑

v∈T1
pv = −

∑

v∈T2
pv = −mT2(p),

and hence, the coefficient mT1(p)
2 ∈ K of ψG(p) is well-defined.

Replacing the 2-forests T1�T2 by cut sets E\(T1�T2) defines the second Symanzik
polynomial ψ⊥G (p) of a graph G over K (see [27, Def. 3.6]). We refer to ψG(p) and
ψ⊥G (p) as second graph polynomials.

The following reformulation of a result of Patterson realizes second graph polyno-
mials as configuration polynomials of a (dual) elementary quotient (see [27, Prop. 3.3]
and Proposition 3.10). Patterson’s proofmakes the general formula in Proposition 3.14
explicit in case of graph configurations (see [27, Lem. 3.4]).
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Proposition 3.19 (Second graph polynomials as configuration polynomials). The sec-
ond graph polynomials

ψG(p) = ψ(WG )p , ψ⊥G (p) = ψ((WG )p)⊥ ,

are the configuration polynomials of the quotient of the graph configuration by a
momentum and of its dual (see Definitions 2.17.(d) and (e) and 2.23). ��

3.3 Configuration forms

The configuration form yields an equivalent definition of the configuration polynomial
as a determinant of a symmetric matrix with linear entries. Its second degeneracy locus
turns out to be the non-smooth locus of the hypersurface defined by the corresponding
configuration polynomial.

Definition 3.20 (Configuration forms). Let μK denote the multiplication map of K.
Consider the generic diagonal bilinear form on KE ,

QKE :=
∑

e∈E
xe · μK ◦ (e∨ × e∨) : KE ×KE → K[x].

Let W ⊆ KE be a configuration. Then the configuration (bilinear) form of W is the
restriction of QKE to W ,

QW := QKE |W×W : W ×W → K[x].

Alternatively, it can be seen as the composition of canonical maps

QW : W [x] KE [x] Q
KE

KE∨[x] W∨[x], (3.20)

where −[x] means −⊗K[x]. For k = 0, . . . , r := dimW , it defines a map

r−k∧
W ⊗

r−k∧
W ⊗K[x] → K[x].

Its image is the kth Fitting ideal Fittk coker QW (see [16, §20.2]) and defines the k−1st
degeneracy scheme of QW . We set

MW := Fitt1 coker QW � K[x].

Note the different fonts used for MW and MW (see Definition 2.14).
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Remark 3.21 (Configuration forms as matrices). With respect to a basis w =
(w1, . . . , wr ) ofW , QW becomes a matrix of Hadamard products (see Remark 2.15)

Qw =
(〈
x, wi�w j

〉)

i, j
=
(
∑

e∈E
xe · wi

e · w j
e

)

i, j

∈ Kr×r , wi
e = e∨(wi ).

Let Qi, j denote the submaximal minor of a square matrix Q obtained by deleting row
i and column j . Then

MW =
〈
Qi, j

W

∣
∣
∣ i, j ∈ {1, . . . , r}

〉
.

Any basis of W can be written as w′ = Uw for some U ∈ AutK W . Then

Qw′ = UQwU
t .

and the Qi, j
w′ become K-linear combinations of the Qi, j

w . We often consider QW as a
matrix Qw determined up to conjugation.

Remark 3.22 (Configuration forms and basis scaling). Scaling E results in scaling x
in QW and in MW (see Remark 3.4).

Bloch, Esnault and Kreimer defined ψW in terms of QW (see [6, Lem. 1.3]).

Lemma 3.23 (Configuration polynomial from configuration form). For any configu-
ration W ⊆ KE , the configuration polynomial

ψW = det QW ∈ MW

is the determinant of the configuration form (see Remarks 3.3 and 3.21). ��
Example 3.24 (Configuration form of the prism realization). Consider the realization
W of the prism matroid with basis given in Lemma 2.25. Then the corresponding
matrix of QW reads (see Remark 3.21)

QW =

⎛

⎜
⎜
⎝

x1 + x2 0 0 x1
0 x3 + x4 0 x3
0 0 x5 + x6 x5
x1 x3 x5 x1 + x3 + x5

⎞

⎟
⎟
⎠ .

Lemma 3.23 recovers the polynomial det QW = ψW in Example 3.17.

The following result describes the behavior of Fitting ideals of configuration forms
under duality. We consider the torus

TE := (K∗)E ⊂ KE , K[TE ] = K[x±1] = K[x]x E .
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The Cremona isomorphism TE ∼= TE∨ is defined by

ζE : K[TE ] ∼= K[TE∨], x−1e ↔ xe∨ , e ∈ E . (3.21)

Proposition 3.25 (Duality and cokernels of configuration forms). Let W ⊆ KE be a
configuration. Then there is an isomorphism over ζE ,

coker(QW )x E
∼= coker(QW⊥)x E∨ ,

where the indices denote localization (see (3.8)). In particular, this induces an iso-
morphism

(MW )x E
∼= (MW⊥)x E∨ .

Proof Consider the short exact sequence

0 W KE KE/W 0 (3.22)

and itsK-dual
0 W∨ KE∨ W⊥ 0. (3.23)

We identify KE = KE∨∨ and KE/W = W⊥∨, and we abbreviate

Q := QKE , Q∨ := Q
KE∨ .

Then QxE and Q∨
x E∨ are mutual inverses under ζE . Together with (3.22) and (3.23)

tensored by K[x±1] and (3.20) for W and W⊥, they fit into a commutative diagram
with exact rows connected vertically by morphisms over ζE

0

0 coker(QW⊥)x E∨

0 W [x±1]
(QW )x E

KE [x±1]
QxE

W⊥∨[x±1] 0

0 W∨[x±1] KE∨[x±1]

Q∨
xE
∨

W⊥[x±1]

(QW⊥ )
xE
∨

0

coker(QW )x E 0

0,

123



11 Page 38 of 67 G. Denham et al.

where−[x±1]means−⊗K[x±1]. Exactness of the columns is due to det QW = ψW �=
0 (see Lemma 3.23 and Remark 3.5). Composing the middle vertical isomorphism
over ζE with (taking preimages along) the dashed compositions yields the claimed
isomorphism by a diagram chase. ��

The following result describes the behavior of submaximal minors of configuration
forms under deletion–contraction. It is the basis for our inductive approach to second
degeneracy schemes.

Lemma 3.26 (Deletion–contraction for submaximal minors). Let W ⊆ KE be a real-
ization of a matroid M of rank r = rkM, and let e ∈ E. Then any basis of W/e can
be extended to bases of W and W\e such that Qi, j

W =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi, j
W\e = Qi, j

W/e if e is a loop in M,

ψW\e = ψW/e if e is a coloop in M, i = r = j,

xe · Qi, j
W\e = xe · Qi, j

W/e if e is a coloop in M, i �= r �= j,

0 if e is a coloop in M, otherwise,

ψW/e if e is not a (co)loop in M, i = r = j,

Qi, j
W\e if e is not a (co)loop in M, i = r or j = r ,

Qi, j
W\e + xe · Qi, j

W/e if e is not a (co)loop in M, i �= r �= j,

for all i, j ∈ {1, . . . , r}. In particular, the Qi, j
W are linear combinations of square-free

monomials for any basis of W .

Proof Pick a basis w1, . . . , wr of W ⊆ KE and consider

QW =
(
∑

e∈E
xe · wi

e · w j
e

)

i, j

∈ Kr×r

as a matrix (see Remark 3.21). Recall that (see Definition 2.17.(b) and (c)),

W\e = πE\{e}(W ), W/e = W ∩KE\{e},

and the description of (co)loops in Remark 2.18.(a):

• If e is a loop, then wi
e = 0 for all i = 1, . . . , r and hence W\e = W = W/e.

• If e is not a loop, then we may adjust w1, . . . , wr such that wi
e = δi,r for all

i = 1, . . . , r and then w1, . . . , wr−1 is a general basis of W/e.
• If e is a coloop, then we may adjust wr = e and πE\{e} identifies w1, . . . , wr−1
with a basis of W\e = W/e.

In the latter case,

QW =
(
QW\e 0
0 xe

)

, (3.24)

and the claimed equalities follow (see Lemma 3.23).
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It remains to consider the case in which e is not a (co)loop. Then ιE\{e} and πE\{e}
(see (2.16)) identify w1, . . . , wr−1 and w1, . . . , wr with bases of W/e and W\e,
respectively. Hence,

QW\e =
(
QW/e b
bt a

)

, QW =
(
QW/e b
bt xe + a

)

, (3.25)

where both the entry a and column b are independent of xe. We consider two cases.
If i = r or j = r , then clearly Qi, j

W = Qi, j
W\e. Otherwise,

Qi, j
W = Qi, j

W\e + xe · Qi, j
W/e.

This proves the claimed equalities also in this case (see Lemma 3.23) and the particular
claim follows. ��

As an application of Lemma 3.23, we describe the behavior of configuration poly-
nomials under 2-separations.

Proposition 3.27 (Configuration polynomials and 2-separations). Let W ⊆ KE be
a realization of a connected matroid M. Suppose that E = E1 � E2 is an (exact)
2-separation of M. Then

ψW = ψW/E1 · ψW |E1 + ψW |E2 · ψW/E2 .

Proof We adopt the notation from [30, §8.2]. Extend a basis B2 ∈ BM|E2 to a basis
B ∈ BM. Then W is the row span of a matrix (see [30, (8.1.1)] and Remark 2.15)

A =
(
I 0 A1 0
0 I D A′2

)

,

where the block columns are indexed by B\B2, B2, E1\B, E2 \ B2, and rk D = 1.
After suitably ordering and scaling B2, E1\B the lower rows of A, we may assume
that

D = (1 b)t a1,

a1 =
(
1 · · · 1 0 · · · 0

) �= 0,

b = (1 · · · 1 0 · · · 0
)
.

The size of b and a1 is determined by number of rows and columns of D, respectively.
While b could be 0, at least one entry of a1 is a 1. After suitable row operations and
adjusting signs of B2, we can repartition

A =
⎛

⎝
I 0 0 A1 0
0 1 0 a1 a2
0 bt I 0 A2

⎞

⎠ . (3.26)
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Denote by e ∈ E the index of the column (0 1 b)t . Let X1, xe, X2, X ′1, X ′2 be diagonal
matrices of variables corresponding to the block columns of A. Then the configuration
form of W becomes (see Remark 3.21)

QW =
⎛

⎝
X1 + A1X ′1At

1 A1X ′1at1 0
a1X ′1At

1 xe + a1X ′1at1 + a2X ′2at2 xeb + a2X ′2At
2

0 bt xe + A2X ′2at2 bt xeb + X2 + A2X ′2At
2

⎞

⎠ ,

which involves

QW |E1 =
(
QW/E2 A1X ′1at1
a1X ′1At

1 a1X ′1at1

)

,

QW/E2 = X1 + A1X
′
1A

t
1,

QW |E2 =
(

xe + a2X ′2at2 xeb + a2X ′2At
2

bt xe + A2X ′2at2 QW/E1

)

,

QW/E1 = bt xeb + X2 + A2X
′
2A

t
2.

Laplace expansion of ψW = det QW (see Lemma 3.23) along the eth column yields
the claimed formula. ��
Remark 3.28 (Configuration polynomials and handles). Let W ⊆ KE be a realization
of a connected matroidM, and let H ∈ HM be a separating handle. By Lemma 2.4.(e),
H is a 2-separation ofM. Proposition 3.27 applied to E = (E\H)� H thus yields the
statement of Corollary 3.13 in this case.

4 Configuration hypersurfaces

In this section, we establish our main results on Jacobian and second degeneracy
schemes of realizations of connected matroids: the second degeneracy scheme is
Cohen–Macaulay, the Jacobian scheme equidimensional, of codimension 3 (see Theo-
rem 4.25). The second degeneracy scheme is reduced, the Jacobian scheme generically
reduced if chK �= 2 (see Theorem 4.25).

4.1 Commutative ring basics

In this subsection, we review the relevant preliminaries on equidimensionality and
graded Cohen–Macaulayness using the books of Matsumura (see [24]) and Bruns
and Herzog (see [7]) as comprehensive references. For the benefit of the non-experts
we provide detailed proofs. Further we relate generic reducedness for a ring and an
associated graded ring (see Lemma 4.7).

4.1.1 Equidimensionality of rings

Let R be a Noetherian ring. We denote by Min Spec R and Max Spec R the sets of
minimal and maximal elements of the set Spec R of prime ideals of R with respect
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to inclusion. The subset Ass R ⊆ Spec R of associated primes of R is finite and
Min Spec R ⊆ Ass R (see [24, Thm. 6.5]).

One says that R is catenary if every saturated chain of prime ideals joining p, q ∈
Spec R with p ⊆ q has (maximal) length height(q/p) (see [24, 31]). We say that R is
equidimensional if it is catenary and

∀p ∈ Min Spec R : ∀m ∈ Max Spec R : p ⊆ m "⇒ height(m/p) = dim R.

If R is a finitely generated K-algebra, then these two conditions reduce to (see [7,
Thm. 2.1.12] and [24, Thm. 5.6])

∀p ∈ Min Spec R : dim(R/p) = dim R.

We say that R is pure-dimensional if

∀p ∈ Ass R : dim(R/p) = dim R,

which implies in particular that Ass R = Min Spec R. It follows that pure-dimensional
finitely generated K-algebras are equidimensional.

The following lemma applies to any equidimensional finitely generatedK-algebra.

Lemma 4.1 (Height bound for adding elements). Let R be a Noetherian ring such that
Rm is equidimensional for all m ∈ Max Spec R.

(a) All saturated chains of primes in p ∈ Spec R have length height p.
(b) For any p ∈ Spec R, x ∈ R and q ∈ Spec R minimal over p+ 〈x〉,

height q ≤ height p+ 1.

Proof (a) Take two such chains of length n and n′ starting at minimal primes p0 and
p′0, respectively. Extend both by a saturated chain of primes of lengthm containing
p and ending in a maximal ideal m. Since Rm is equidimensional by hypothesis,
these extended chains have length n + m = n′ + m. Therefore, the two chains
have length n = n′.

(b) By Krull’s principal ideal theorem, height(q/p) ≤ 1. Take a chain of primes in
p of length height p and extend it by q if p �= q. By (a), this extended chain has
length height q and the claim follows. ��

Lemma 4.2 (Equidimensional finitely generated algebras and localization). Let R be
an equidimensional finitely generated K-algebra and x ∈ R. If Rx �= 0, then Rx is
equidimensional of dimension dim Rx = dim R.

Proof Any minimal prime ideal of Rx is of the form px where p ∈ Min Spec R with
x /∈ p. By the Hilbert Nullstellensatz (see [24, Thm. 5.5]),

⋂
Max V (p) = p.
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This yields an m ∈ Max Spec R such that p ⊆ m �� x and hence px ⊆ mx ∈
Max Spec Rx . Since R and hence Rx is a finitely generated K-algebra,

dim(Rx/px ) = height(mx/px ) = height(m/p) = dim R

by equidimensionality of R. The claim follows. ��

4.1.2 Generic reducedness

The following types ofArtinian local rings coincide: field, regular ring, integral domain
and reduced ring (see [24, Thms. 2.2, 14.3]). A Noetherian ring R is generically
reduced if the Artinian local ring Rp is reduced for all p ∈ Min Spec R (see [24,
Exc. 5.2]). This is equivalent to R satisfying Serre’s condition (R0). We use the same
notions for the associated affine scheme Spec R.

Definition 4.3 (Generic reducedness). We call a Noetherian scheme X generically
reduced along a subscheme Y if X is reduced at all generic points specializing to a
point of Y . If X = Spec R is an affine scheme, then we use the same notions for the
Noetherian ring R.

Lemma 4.4 (Reducedness and purity). A Noetherian ring R is reduced if it is generi-
cally reduced and pure-dimensional.

Proof Since R is pure-dimensional, Ass R = Min Spec R, and hence, R becomes a
subring of localizations (see [24, Thm. 6.1.(i)])

R ↪→
⊕

p∈Ass R
Rp =

⊕

Min Spec R

Rp.

The latter ring is reduced since R is generically reduced, and the claim follows. ��
Lemma 4.5 (Reducedness and reduction). Let (R,m) be a local Noetherian ring. Sup-
pose that R/t R is reduced for a system of parameters t . Then R is regular and, in
particular, an integral domain and reduced.

Proof By hypothesis, R/t R is local Artinian with maximal idealm/t R. Reducedness
makes R/t R a field, and hence, m = t R. By definition, this means that R is regular.
In particular, R is an integral domain and reduced (see [24, Thm. 14.3]). ��
Definition 4.6 (Rees algebras). Let R be a ring and I � R an ideal. The (extended)
Rees algebra is the R[t]-algebra (see [20, Def. 5.1.1])

ReesI R := R[t, I t−1] ⊆ R[t±1].

The associated graded algebra is the R/I -algebra

gr I R :=
∞⊕

i=0
I i/I i+1.
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Lemma 4.7 (Generic reducedness from associated graded ring).Let R be aNoetherian
d-dimensional ring, I � R an ideal, S := ReesI R and R̄ := gr I R.

(a) Suppose R is an equidimensional finitely generatedK-algebra. Then S is a (d+1)-
equidimensional finitely generated K-algebra.

(b) If S is (d + 1)-equidimensional and I �= R, then R̄ is d-equidimensional.
(c) If S is equidimensional and R̄ is generically reduced, then R is generically reduced

along V (I ).

Proof There are ring homomorphisms

R → R[t] → S → S/t S ∼= R̄.

Since R is Noetherian, I is finitely generated and S finite type over R.

(a) If R is an integral domain, then so are S ⊆ R[t±1]. By definition, formation of
the Rees ring commutes with base change. After base change to R/p for some
p ∈ Min Spec R, we may assume that R is a d-dimensional integral domain. Then
S is a (d + 1)-dimensional integral domain (see [20, Thm. 5.1.4]). Since S is a
finitely generated K-algebra (as R is one), S is equidimensional.

(b) Multiplication by t is injective on R[t±1] and hence on S. If I �= R, then S/t S ∼=
R̄ �= 0 and t is an S-sequence. Since S is (d + 1)-equidimensional, R̄ is d-
equidimensional by Krull’s principal ideal theorem.

(c) Let p ∈ Min Spec R and consider the extension p[t±1] ∈ Spec R[t±1]. Then (see
[20, p. 96])

t /∈ p̃ := p[t±1] ∩ S ∈ Min Spec S

and hence
Sp̃ = (St )p̃t = R[t±1]p[t±1]. (4.1)

Since p[t±1] ∩ R = p, the map R → R[t±1] induces an injection

Rp ↪→ R[t±1]p[t±1]. (4.2)

To check injectivity, consider Rp � x/1 �→ 0 ∈ R[t±1]p[t±1]. Then 0 = xy ∈
R[t±1] for some y = ∑i yi t

i ∈ R[t±1]\p[t±1]. Then 0 = xyi ∈ R for all i and
y j ∈ R\p for some j . It follows that 0 = x/1 ∈ Rp. Combining (4.1) and (4.2)
reducedness of Rp follows from reducedness of Sp̃.
Suppose now that V (p) ∩ V (I ) �= ∅ and hence (the subscript denoting graded
parts)

R �= p+ I = p̃0 + (t S)0 = (p̃+ t S)0

implies that p̃ + t S �= S. Let q ∈ Spec S be a minimal prime ideal over p̃ + t S.
No minimal prime ideal of S contains the S-sequence t ∈ q. By Lemma 4.1.(b),
height q = 1 and q is minimal over t . This makes t a parameter of the localization
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Sq. Under S/t S ∼= R̄, the minimal prime ideal q/t S ∈ Spec(S/t S) corresponds to
a minimal prime ideal q̄ ∈ Spec R̄. Suppose that R̄ is generically reduced. Then

Sq/t Sq = (S/t S)q/t S ∼= R̄q̄

is reduced. By Lemma 4.5, Sq and hence its localization (Sq)p̃q = Sp̃ is reduced.
Then also Rp is reduced, as shown before. ��

4.1.3 Graded Cohen–Macaulay rings

Let (R,m) be a Noetherian ∗local ring (see [7, Def. 1.5.13]). By definition, this means
that R is a graded ringwith uniquemaximal graded idealm. For anyp ∈ Spec R, denote
by p∗ ∈ Spec R the maximal graded ideal contained in p (see [7, Lem. 1.5.6.(a)]). For
any p ∈ Spec R, there is a chain of maximal length of graded prime ideals strictly
contained in p (see [7, Lem. 1.5.8]). If m /∈ Max Spec R, then such a chain for n ∈
Max Spec R ends with m � n. It follows that

dim R =
{
dim Rm if m ∈ Max Spec R,

dim Rm + 1 if m /∈ Max Spec R.
(4.3)

For any proper graded ideal I � R also (R/I ,m/I ) is ∗local and

m ∈ Max Spec R ⇐⇒ m/I ∈ Max Spec(R/I ). (4.4)

Any associated prime p ∈ Ass R is graded (see [7, Lem. 1.5.6.(b).(ii)]) and hence
p ⊆ m. This yields a bijection (see [24, Thm. 6.2])

Ass R → Ass Rm, p �→ pm. (4.5)

If I�R is a graded ideal andp ∈ Spec Rminimal over I , thenp/I ∈ Min Spec(R/I ) ⊆
Ass(R/I ), and hence, p is graded.

The following lemma shows in particular that ∗local Cohen–Macaulay rings are
pure- and equidimensional.

Lemma 4.8 (Height and codimension). Let (R,m) be a ∗local Cohen–Macaulay ring
and I � R a graded ideal. Then R is pure-dimensional and

height I = codim I . (4.6)

In particular, R/I is equidimensional if and only if height p = codim I for all minimal
p ∈ Spec R over I .

Proof The ∗local ring (R,m) is Cohen–Macaulay if and only if the localization Rm

is Cohen–Macaulay (see [7, Exc. 2.1.27.(c)]). In particular, Rm is pure-dimensional
(see [7, Prop. 1.2.13]) and (see [7, Cor. 2.1.4])

height Im = codim Im (4.7)
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Using (4.3), (4.4) for I = p and bijection (4.5), it follows that R is pure-dimensional:

∀p ∈ Ass R : dim R =
{
dim Rm if m ∈ Max Spec R,

dim Rm + 1 if m /∈ Max Spec R,

=
{
dim(Rm/pm) if m ∈ Max Spec R,

dim(Rm/pm)+ 1 if m /∈ Max Spec R,

=
{
dim(R/p)m/p if m ∈ Max Spec R,

dim(R/p)m/p + 1 if m /∈ Max Spec R,

= dim(R/p).

Using (4.3) and (4.4), (4.6) follows from (4.7):

height I = height Im = codim Im
= dim Rm − dim(Rm/Im)

= dim Rm − dim(R/I )m/I

= dim R − dim(R/I ) = codim I .

Since R is Cohen–Macaulay, it is (universally) catenary (see [7, Thm. 2.1.12]). By
(4.4) and the preceding discussion of chains of prime ideals in R/I and R/p, I is
equidimensional if and only if dim(R/I ) = dim(R/p) for all prime ideals p ∈ Spec R
minimal over I . The particular claim then follows by (4.6) for I and p. ��

4.2 Jacobian and degeneracy schemes

In this subsection, we associate Jacobian and second degeneracy schemes to a configu-
ration. By results of Patterson and Kutz, their supports coincide and their codimension
is at most 3.

For a Noetherian ring R, we consider the associated affine (Noetherian) scheme
Spec R, whose underlying set consists of all prime ideals of R. We refer to elements of
Min Spec R asgeneric points, ofAss R asassociated points, and ofAss R\Min Spec R
as embedded points of Spec R. An ideal I � R defines a subscheme Spec(R/I ) ⊆
Spec R.

By abuse of notation we identify

KE = SpecK[x].

Due to Lemma 4.8,

codimKE Spec(K[x]/I ) = height I

for any graded ideal I � K[x].
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Definition 4.9 [Configuration schemes] Let W ⊆ KE be a configuration. Then the
subscheme

XW := Spec(K[x]/〈ψW 〉) ⊆ KE

is called the configuration hypersurface of W . In particular, XG := XWG is the graph
hypersurface of G (see Definition 2.23). The ideal

JW := 〈ψW 〉 + 〈∂eψW | e ∈ E〉� K[x]

is the Jacobian ideal of ψW . We call the subschemes (see Definition 3.20)

�W := Spec(K[x]/JW ) ⊆ KE , �W := Spec(K[x]/MW ) ⊆ KE ,

the Jacobian scheme of XW and the second degeneracy scheme of QW .

Remark 4.10 (Degeneracy and non-smooth loci). If chK � rkM = degψ (see
Remark 3.5), then ψW is a redundant generator of JW due to the Euler identity.
By Lemma 3.23, X red

W and �red
W are the first and second degeneracy loci of QW

(see Definition 3.20), whereas �red
W is the non-smooth locus of XW over K (see [24,

Thm. 30.3.(1)]). If K is perfect, then �red
W is the singular locus of XW (see [24, §28,

Lem. 1]).

Remark 4.11 (Loops and line factors). Let W ⊆ KE be a realization of matroid M.
Suppose that e is a loop in M, that is, e∨|W = 0. Then ψW and QW are independent
of xe (see Remark 3.5 and Definition 3.20)

XW = XW\e ×A1, �W = �W\e ×A1, �W = �W\e ×A1.

��
Lemma 4.12 (Inclusions of schemes). For any configuration W ⊆ KE , there are
inclusions of schemes �W ⊆ �W ⊆ XW ⊆ KE .

Proof By definition, ψW ∈ JW and hence the second inclusion. By Lemma 3.23,
ψW = det QW ∈ MW and hence ∂eψW ∈ MW for all e ∈ E . Thus, JW ⊆ MW and
the first inclusion follows. ��
Remark 4.13 (Schemes for matroids of small rank). Let W ⊆ KE be a realization of
a matroid M.

(a) If rkM ≤ 1, then ψW = 1 (see Remark 3.5) or ψW �= 0 is a K-linear form. In
both cases, �W = ∅ = �W . If rkM ≥ 2, then 〈x〉 ∈ �W �= ∅ �= �W � 〈x〉.

(b) If rkM = 2, then�W is aK-linear subspace ofKE and hence an integral scheme.
If chK �= 2, the same holds for �W due to the Euler identity (see Remark 4.10).
Otherwise, the non-redundant quadratic generator ψW of JW can make �W non-
reduced (see Example 4.14). ��
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Example 4.14 (Schemes for the triangle). LetM be a matroid on E ∈ CM with |E | = 3
and hence rkM = |E | − 1 = 2. Up to scaling and ordering E = {e1, e2, e3}, any
realization W ⊆ KE of M has the basis

w1 := e1 + e3, w2 := e2 + e3.

With respect to this basis, we compute

QW =
(
x1 + x3 x3

x3 x2 + x3

)

,

MW = 〈x1 + x3, x2 + x3, x3〉 = 〈x1, x2, x3〉.

It follows that �W is a reduced point.
On the other hand,

ψW = det QW = x1x2 + x1x3 + x2x3,

JW = 〈ψW , x1 + x2, x1 + x3, x2 + x3〉.

The matrix expressing the linear generators x1 + x2, x1 + x3, x2 + x3 in terms of the
variables x1, x2, x3 has determinant 2. If chK �= 2, then JW = 〈x1, x2, x3〉 and �W

is a reduced point. Otherwise,

JW = 〈ψW , x1 − x3, x2 − x3〉 =
〈
x1 − x3, x2 − x3, x

2
3

〉

and �W is a non-reduced point.

Lemma 4.15 Consider two sets of variables x = x1, . . . , xn and y = y1, . . . , ym. Let
0 �= f ∈ I � K[x] and 0 �= g ∈ J � K[y]. Then

f · J [x] + I [y] · g = 〈 f , g〉 ∩ I [y] ∩ J [x]� K[x, y].

Proof For the non-obvious inclusion, take h = a f +bg ∈ I [y]∩ J [x]. Since f ∈ I [y],
bg ∈ I [y] and similarly a f ∈ J [x]. Since f �= 0 and J are in different variables, it
follows that a ∈ J [x] and similarly b ∈ I [y]. ��
Theorem 4.16 (Decompositions of schemes). Let W ⊆ KE be a realization of a
matroid M without loops. Suppose that M = ⊕n

i=1Mi decomposes into connected
components Mi on Ei . Let W = ⊕n

i=1 Wi be the induced decomposition into Wi ⊆
KEi (see Lemma 2.19). Then XW is the reduced union of integral schemes XWi ×
KE\Ei , and �W is the union of �Wi × KE\Ei and integral schemes XWi × XWj ×
KE\(Ei∪E j ) for i �= j . The same holds for � replaced by �. In particular, XW is
generically smooth over K.

Proof Proposition 3.8 yields the claim on XW (see Remark 3.5). For the claims on
�W and �W , we may assume that n = 2 withM1 possibly disconnected. The general
case then follows by induction on n.
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By Proposition 3.8 and Definition 3.20, ψW = ψW1 ·ψW2 and QW = QW1 ⊕QW2 .
Then Lemma 4.15 yields

JW = ψW1 · JW2 [xE1 ] + JW1 [xE2 ] · ψW2

= 〈ψW1 , ψW2

〉 ∩ JW1 [xE2 ] ∩ JW2 [xE1 ],

and hence,

�W = (XW1 × XW2) ∪ (�W1 ×KE2) ∪ (KE1 ×�W2).

The same holds for J and � replaced by M and �, respectively.
Suppose now thatM is connected. By Proposition 3.12, ψW � ∂eψW for any e ∈ E

and hence �W � XW . The particular claim follows. ��
Patterson proved the following result (see [27, Thm. 4.1]).While Patterson assumes

chK = 0 and excludes the generator ψW ∈ JW , his proof works in general (see
Remark 4.10). We give an alternative proof using Dodgson identities.

Theorem 4.17 (Non-smooth loci and second degeneracy schemes). Let W ⊆ KE be
a configuration. Then there is an equality of reduced loci

�red
W = �red

W .

In particular, �W and �W have the same generic points, that is,

Min�W = Min�W .

Proof Order E = {e1, . . . , en} and pick a basis w = (w1, . . . , wr ) of W . We may
assume that its coefficients with respect to e1, . . . , er form an identity matrix, that is,
wi
e j = δi, j for i, j ∈ {1, . . . , r}. For i, j ∈ {1, . . . , r} denote by Q{i, j},{i, j}W the minor

of QW obtained by deleting rows and columns i, j . Then there are Dodgson identities
(see Remark 3.21, Lemma 3.23 and [6, Lem. 8.2])

(Qi, j
W )2 = Qi, j

W · Q j,i
W = Qi,i

W · Q j, j
W − det QW · Q{i, j},{i, j}W

= ∂iψW · ∂ jψW − ψW · Q{i, j},{i, j}W ∈ JW

for i, j ∈ {1, . . . , r}. In particular, any prime ideal p ∈ SpecK[x] over JW contains
MW and hence �red

W ⊆ �red
W . The opposite inclusion is due to Lemma 4.12. ��

Corollary 4.18 (Cremona isomorphism). Let W ⊆ KE be a configuration. Then the
Cremona isomorphism TE ∼= TE∨ identifies

XW ∩TE ∼= XW⊥ ∩TE∨ ,

�W ∩TE ∼= �W⊥ ∩TE∨ ,

�W ∩TE ∼= �W⊥ ∩TE∨ .
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In particular, �W , �W , �W⊥ and �W⊥ have the same generic points in TE ∼= TE∨ .

Proof Propositions 3.10 and 3.25 yield the statements for XW and�W . The statement
for �W follows using that ζE (see (3.21)) identifies xe∂e = −xe∨∂e∨ for e ∈ E . The
particular claim follows with Theorem 4.17. ��

Proposition 4.19 (Codimension bound). Let W ⊆ KE be a configuration. Then the
codimensions of �W and �W in KE are bounded by

codimKE �W = codimKE �W ≤ 3.

In case of equality, �W is Cohen–Macaulay (and hence pure-dimensional) and �W

is equidimensional.

Proof The equality of codimensions follows from Theorem 4.17. The scheme
�W is defined by the ideal MW of submaximal minors of the symmetric matrix
QW with entries in the Cohen–Macaulay ring K[x] (see [7, 2.1.9]). In particular,
codimKE �W = gradeMW (see [7, 2.1.2.(b)]). Kutz proved the claimed inequality
and that MW is a perfect ideal in case of equality (see [22, Thm. 1]). In the latter case,
K[x]/MW = K[�W ] is a Cohen–Macaulay ring (see [7, Thm. 2.1.5.(a)]) and hence
pure-dimensional (see Lemma 4.8). Then �W is equidimensional by Theorem 4.17.

��

4.3 Generic points and codimension

In this subsection, we show that the Jacobian and second degeneracy schemes reach
the codimension bound of 3 in case of connected matroids. The statements on codi-
mension and Cohen–Macaulayness in our main result follow. In the process, we obtain
a description of the generic points in relation with any non-disconnective handle.

Lemma 4.20 (Primes over the Jacobian ideal and handles). Let W ⊆ KE be a real-
ization of a connected matroid M, and let H ∈ HM be a proper handle.

(a) For any h ∈ H, xH\{h} · ψW\H ∈ JW .
(b) For any e, f ∈ H with e �= f , x H\{e, f } · ψW\H ∈ JW +

〈
xe, x f

〉
.

(c) For any d ∈ H and e ∈ E\H, xH\{d} · ∂eψW\H ∈ JW + 〈xd〉.
(d) If p ∈ SpecK[x] with JW ⊆ p �� ψW\H , then

〈
xe, x f , xg

〉 ⊆ p for some e, f , g ∈
H with e �= f �= g �= e.

Proof By Remark 3.4 and Corollary 3.13, we may assume that

ψW =
∑

h∈H
xH\{h} · ψW\H + xH · ψW/H

has the form (3.14).
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(a) Using that ψW is a linear combination of square-free monomials (see Defini-
tion 3.2),

xH\{h} · ψW\H = ψW |xh=0 = ψW − xh · ∂hψW ∈ JW .

(b) This follows from

JW � ∂eψW =
∑

h∈H
xH\{e,h} · ψW\H + xH\{e} · ψW/H

≡ xH\{e, f } · ψW\H mod
〈
xe, x f

〉
.

(c) This follows from

JW � ∂eψW =
∑

h∈H
xH\{h} · ∂eψW\H + xH · ∂eψW/H

≡ xH\{d} · ∂eψW\H mod 〈xd〉.

(d) By (a), the hypotheses force xH\{h} ∈ p for all h ∈ H and hence
〈
xe, x f

〉 ⊆ p for
some e, f ∈ H with e �= f . Then xH\{e, f } ∈ p by (b) and the claim follows. ��

Remark 4.21 (Primes over the Jacobian ideal and 2-separations). Let W ⊆ KE be
a realization of a connected matroid M. Suppose that E = E1 � E2 is an (exact)
2-separation of M. For {i, j} = {1, 2}, note that

di := degψW |Ei = degψW/E j + 1

and hence by Proposition 3.27

JW � ψW = ψW/Ei · ψW |Ei + ψW |E j
· ψW/E j ,

JW �
∑

e∈Ei

xe∂eψW = di · ψW/Ei · ψW |Ei + (di − 1) · ψW |E j
· ψW/E j .

Subtracting di ·ψW from the latter yieldsψW |E j
·ψW/E j ∈ JW , for j = 1, 2. It follows

that, for every prime ideal p ∈ SpecK[x] over JW and every 2-separation F ofM, we
have ψW |F ∈ p or ψW/F ∈ p.

Lemma 4.22 (Inductive codimension bound). Let W ⊆ KE be a realization of a
connectedmatroidM, and let H ∈ HM be a proper non-disconnective handle. Suppose
that codimKE\H �W\H = 3. Then �W is equidimensional of codimension

codimKE �W = 3

with generic points of the following types:

(a) p = 〈xe, x f , xg
〉 =: pe, f ,g for some e, f , g ∈ H with e �= f �= g �= e,
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(b) p = 〈ψW\H , xd , xh
〉 =: pH ,d,h for some d, h ∈ H with d �= h,

(c) ψW\H , ψW/H ∈ p �� xh for all h ∈ H.

Proof Since H is non-disconnective, ψW\H ∈ K[xE\H ] is irreducible by Proposi-
tion 3.8. Since d, h ∈ H with d �= h, pH ,d,h ∈ SpecK[x] with height pH ,d,h = 3.
The same holds for pe, f ,g .

By Lemma 4.8 and the dimension hypothesis, JW\H �K[xE\H ] has height 3. Thus,
for any d ∈ H ,

height(
〈
JW\H , xd

〉
) = height JW\H + 1 = 4. (4.8)

In particular, �W\H �= ∅ and hence �W �= ∅ by Remark 4.13.(a).
Let p ∈ SpecK[x] be any minimal prime ideal over JW . By Lemma 4.8 and

Proposition 4.19, it suffices to show for the equidimensionality that height p ≥ 3.
This follows in particular if p contains a prime ideal of type pe, f ,g or pH ,d,h . By
Lemma 4.20.(d), the former is the case if ψW\H /∈ p. We may thus assume that
ψW\H ∈ p. By Lemma 4.20.(c),

xH\{d} · ∂eψW\H ∈ p+ 〈xd〉. (4.9)

for any d ∈ H and e ∈ E\H .
First suppose that xd ∈ p for some d ∈ H . If xH\{d} ∈ p, then p contains a prime

ideal of type pH ,d,h for some h ∈ H\{d}. Otherwise, 〈JW\H , xd
〉 ⊆ p by (4.9) and

hence height p ≥ 4 by (4.8) (see Remark 4.23).
Now suppose that xh /∈ p for all h ∈ H and hence ψW/H ∈ p by (3.11) and (3.13)

in Corollary 3.13. Let q ∈ SpecK[x] be any minimal prime ideal over p + 〈xd〉. By
(4.9), q contains one of the ideals

〈
ψW\H , ψW/H , xd , xh

〉 = pH ,d,h +
〈
ψW/H

〉
,
〈
JW\H , xd

〉
, (4.10)

for some h ∈ H\{d}. By Lemma 2.4.(b) and (e) (see Remark 3.5),

degψW/H = rk(M/H) = rkM− |H |
= rkM− rk(H) = rk(M\H)− λM(H) < degψW\H

and henceψW\H � ψW/H andψW/H /∈ pH ,d,h . Thus, both ideals in (4.10) have height
at least 4 (see (4.9)) and hence height q ≥ 4. It follows that height(p+ 〈xd〉) ≥ 4 and
then height p ≥ 3 by Lemma 4.1.(b). ��
Remark 4.23 The case where height p ≥ 4 in the proof of Lemma 4.22 does finally
not occur due to the Cohen–Macaulayness of �W achieved by the argument (see
Proposition 3.8).

Lemma 4.24 (Generic points for circuits). Let W ⊆ KE be a realization of a matroid
M on E ∈ CM with |E | − 1 = rkM ≥ 2. Then �red

W is the union of all codimension-3
coordinate subspaces of KE .
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Proof We apply the strategy of the proof of Lemma 4.22. By Remark 4.13.(4.13),
the rank hypothesis implies that �W �= ∅. Let p ∈ SpecK[x] be any minimal prime
ideal over JW . If ψW\H /∈ p for some E �= H ∈ HM, then Lemma 4.20.(d) yields
e, f , g ∈ H with e �= f �= g �= e such that

〈
xe, x f , xg

〉 ⊆ p. Otherwise, p contains
x E\H = ψW\H ∈ p for all E �= H ∈ HM and hence all xe where e ∈ E . (This can only
occur if |E | = 3.) By Lemma 4.8 and Proposition 4.19, it follows that p = 〈xe, x f , xg

〉
.

By symmetry, all such triples e, f , g ∈ E occur (see Example 3.7). ��
Theorem 4.25 (Cohen–Macaulayness of degeneracy schemes). Let W ⊆ KE be a
realization of a connected matroidM of rank rkM ≥ 2. Then�W is Cohen–Macaulay
(and hence pure-dimensional) and �W is equidimensional, both of codimension 3 in
KE .

Proof By Proposition 4.19, it suffices to show that codimKE �W = 3. Lemma 2.13
yields a circuit C ∈ CM of size |C | ≥ 3 and codimKC �W |C = 3 by Lemma 4.24.
Proposition 2.8 yields a handle decomposition of M of length k with F1 = C . By
Lemma 4.22 and induction on k, then also codimKE �W = 3. ��
Corollary 4.26 (Types of generic points). Let W ⊆ KE be a realization of a connected
matroid M of rank rkM ≥ 2, and let H ∈ HM be a non-disconnective handle such
that rk(M\H) ≥ 2. Then all generic points of �W and �W are of the types listed in
Lemma 4.22 with respect to H.

Proof Applying Theorem 4.25 to the matroid M\H with realization W\H , the claim
follows from Lemma 4.22 and Theorem 4.17. ��
Corollary 4.27 (Generic points for 3-connected matroids). Let W ⊆ KE be a real-
ization of a 3-connected matroid M with |E | > 3 if rank rkM ≥ 2. Then all generic
points of �W and �W lie in TE , that is,

Min�W = Min�W ⊆ TE .

Proof The equality is due to Theorem 4.17. We may assume that �W �= ∅ and hence
rkM ≥ 2 by Remark 4.13.(a). Let p ∈ Min�W be a generic point of �W . For any
e ∈ E , consider the 1-handle H := {e} ∈ HM. By Proposition 2.5 and Lemma 2.4.(e),
H is non-disconnective with rk(M\H) = rkM ≥ 2. Corollary 4.26 forces p to be of
type (c) in Lemma 4.22. It follows that p ∈⋂e∈E D(xe) = TE . ��

4.4 Reducedness of degeneracy schemes

In this subsection, we prove the reducedness statement in our main result as outlined
in §1.4.

Lemma 4.28 (Generic reducedness for the prism). Let W ⊆ KE be any realization
of the prism matroid (see Definition 2.1). Then �W ∩ TE is an integral scheme of
codimension 3, defined by 3 linear binomials, each supported in a corresponding
handle. If chK �= 2, then also �W ∩TE = �W ∩TE .
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Proof By Remark 3.22, we may assume that W is the realization from Lemma 2.25.
A corresponding matrix of QW is given in Example 3.24. Reducing its entries modulo
p := 〈x1 + x2, x3 + x4, x5 + x6〉 makes all its 3 × 3-minors 0. Therefore, JW ⊆
MW ⊆ p by Lemma 4.12. Using the minors

Q2,3
W = (x1 + x2) · (−x3x5),

Q2,4
W = (x1 + x2) · (−x3) · (x5 + x6),

Q3,4
W = (x1 + x2) · (x3 + x4) · x5,

Q4,4
W = (x1 + x2) · (x3 + x4) · (x5 + x6),

one computes that

−Q2,3
W + Q2,4

W − Q3,4
W + Q4,4

W = (x1 + x2) · x4x6.

By symmetry, it follows that x2x4x6 · p ⊆ MW and hence

�W ∩ D(x2x4x6) = V (p) ∩ D(x2x4x6).

Using ψW from Example 3.17, one computes that

(x2 · (x2∂2 − 1)+ x4x6 · (∂3 + ∂5)+ (x4 + x6) · (1− x4∂4 − x6∂6))ψW

= 2 · (x1 + x2) · x24 x26 .

By symmetry, it follows that 2 · x22 x24 x26 · p ⊆ JW and hence

�W ∩ D(x2x4x6) = V (p) ∩ D(x2x4x6).

if chK �= 2. ��
More details on the prism matroid can be found in Example 5.1.

Lemma 4.29 (Reduction and deletion of non-(co)loops). Let e ∈ E be a non-(co)loop
in a matroid M. For any I � K[x] set

Ī := (I + 〈xe〉)/〈xe〉� K[x]/〈xe〉 = K[xE\{e}].

Then JW\e ⊆ J̄W and MW\e = M̄W for any realization W ⊆ KE of M.

Proof This follows from Proposition 3.12 and Lemma 3.26. ��
Lemma 4.30 (Generic reducedness and deletion of non-(co)loops). Let W ⊆ KE be a
realization of a matroid M, and let e ∈ E be a non-(co)loop. Then �W\e = ∅ implies
�W = ∅. Suppose thatMin�W ⊆ D(xe) and that�W and�W\e are equidimensional
of the same codimension. If �W\e is generically reduced, then �W is generically
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reduced. In this case, each p ∈ Min�W defines a non-empty subset γ (p) ⊆ Min�W\e
such that

V (p) ∩ V (xe) =
⋃

q∈γ (p)

V (q), (4.11)

p �= p′ "⇒ γ (p) ∩ γ (p′) = ∅. (4.12)

In particular, |Min�W | ≤
∣
∣Min�W\e

∣
∣. The same statements hold for � replaced by

�.

Proof The subscheme �W ∩ V (xe) ⊆ KE\{e} is defined by the ideal J̄W (see
Lemma 4.29). By Lemma 4.29 and since JW is graded,

�W\e = ∅ ⇐⇒ JW\e = K[xE\{e}] "⇒ J̄W = K[x]/〈xe〉
⇐⇒ JW + 〈xe〉 = K[x] ⇐⇒ JW = K[x] ⇐⇒ �W = ∅

which is the first claim.
Let p ∈ Min�W be a generic point of �W . Considered as an element of SpecK[x]

it is minimal over JW . Since JW and hence p is graded, p + 〈xe〉 �= K[x]. Let q ∈
SpecK[x] be minimal over p+ 〈xe〉. By Lemma 4.29,

JW\e ⊆ J̄W ⊆ q̄. (4.13)

Since xe /∈ p by hypothesis, Lemma 4.1 shows that

height q = height p+ 1,

height q̄ = height q− height 〈xe〉 = height p.

By the dimension hypothesis, Lemma 4.8 and (4.13), it follows that q̄ is minimal over
both JW\e and J̄W . The former means that q̄ ∈ Min�W\e. The set γ (p) of all such q̄
is non-empty and satisfies condition (4.11).

Denote by t ∈ K[�W ] the image of xe. Then q /∈ MinK[�W ] by hypothesis and
q is minimal over t since q̄ is minimal over J̄W . This makes t is a parameter of the
localization

R := K[�W ]q.

The inclusion (4.13) gives rise to a surjection of local rings

K[�W\e]q̄ � K[�W ∩ V (xe)]q̄ = R/t R. (4.14)

Suppose now that �W\e is generically reduced. Then K[�W\e]q̄ is a field which
makes (4.14) an isomorphism. By Lemma 4.5, R is then an integral domain with
unique minimal prime ideal pq. Thus, K[�W ]p = Rpq is reduced and p is uniquely
determined by q̄. This uniqueness is condition (4.12). The particular claim follows
immediately.
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The preceding arguments remain valid if � and J are replaced by � and M ,
respectively: Lemma 4.29 applies in both cases. ��
Lemma 4.31 (Initial forms and contraction of non-(co)loops). Let W ⊆ KE be a
realization of a matroid M. Suppose E = F � G is partitioned in such a way that
M/G is obtained from M by successively contracting non-(co)loops. For any ideal
J�K[x]xG = K[xF , x±1G ], denote by J inf the ideal generated by the lowest xF -degree
parts of the elements of J . Then JW/G [x±1G ] ⊆ (J infW )xG and MW/G [x±1G ] ⊆ (M inf

W )xG .

Proof We iterate Proposition 3.12 and Lemma 3.26, respectively, to pass from W to
W/G by successively contracting non-(co)loops e ∈ G. This yields a basis of W
extending a basis w1, . . . , ws of W/G such that

ψW = xG · ψW/G + p,

∂ f ψW = xG · ∂ f ψW/G + ∂ f p,

Qi, j
W = xG · Qi, j

W/G + qi, j , (4.15)

for all f ∈ F and i, j ∈ {1, . . . , s}, where p, qi, j ∈ K[x] are polynomialswith no term

divisible by xG . Since ψW and Qi, j
W are homogeneous linear combinations of square-

free monomials (see Definition 3.2 and Lemma 3.26), xG · ψW/G , xG · ∂ f ψW/G and

xG ·Qi, j
W/G are the respective lowest xF -degree parts in (4.15). The claimed inclusions

follow. ��
Lemma 4.32 (Generic reducedness and contraction of non-(co)loops). Let W ⊆ KE

be a realization of a matroidM. Suppose E = F �G is partitioned in such a way that
M/G is obtained fromM by successively contracting non-(co)loops. Then �W/G = ∅
implies �W ∩ D(xG) ∩ V (xF ) = ∅. Suppose that �W ∩ D(xG) and �W/G are
equidimensional of the same codimension. If�W/G is generically reduced, then�W ∩
D(xG) is generically reduced along V (xF ). The same statements hold for � replaced
by �.

Proof Consider the ideal

I := 〈xF 〉� K[�W ∩ D(xG)] =: R
= K[�W ]xG = (K[x]/JW )xG = K[xF , x±1G ]/(JW )xG ,

R being equidimensional by hypothesis. With notation from Lemma 4.31

R̄ = gr I R = gr I ((K[x]/JW )xG ) ∼= (gr〈xF 〉(K[x]/JW ))xG

∼= (K[x]/J infW )xG = K[xF , x±1G ]/(J infW )xG .

Lemma 4.31 then yields the first claim:

�W/G = ∅ ⇐⇒ JW/G = K[xF ] ⇐⇒ JW/G [x±1G ] = K[xF , x±1G ]
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"⇒ (J infW )xG = K[xF , x±1G ] ⇐⇒ R̄ = 0 ⇐⇒ I = R

⇐⇒ �W ∩ D(xG) ∩ V (xF ) = ∅.

The latter equality makes the second claim vacuous.
We may thus assume that I �= R. Lemma 4.31 yields a surjection

π : K[�W/G ×TG ] = (K[xF ]/JW/G)[x±1G ]
= K[xF , x±1G ]/(JW/G [x±1G ]) � R̄.

By Lemmas 4.2 and 4.7 and the dimension hypothesis, source and target are equidi-
mensional of the same dimension and hence π−1 induces

Min Spec R̄ ⊆ Min(�W/G ×TG).

Suppose now that �W/G and hence �W/G × TG is generically reduced. For any
p ∈ Min Spec R̄, this makes K[�W/G ×TG]p a field and due to

πp : K[�W/G ×TG]p � R̄p

also R̄p is a field. It follows that R̄ is generically reduced. By Lemma 4.7, R is then
generically reduced along V (I ). This means that �W ∩ D(xG) is generically reduced
along V (xF ).

The preceding arguments remain valid if � and J are replaced by � and M ,
respectively: Lemma 4.31 applies in both cases. ��
Lemma 4.33 (Generic reducedness for circuits). Let W ⊆ KE be a realization of a
matroid M on E ∈ CM of rank rkM = |E | − 1 ≥ 2. Then �W is generically reduced.
If chK �= 2, then also �W is generically reduced.

Proof We proceed by induction on |E |. The case |E | = 3 is covered by Example 4.14;
here we use chK �= 2.

Suppose now that |E | > 3. Let p ∈ Min�W be a generic point of �W . By
Lemma 4.24, p = 〈

xe, x f , xg
〉
for some e, f , g ∈ H with e �= f �= g �= e. Pick

d ∈ E\{e, f , g}. Then E\{d} ∈ CM/d and hence �W/d is generically reduced by
induction. By Lemmas 4.2 and 4.32, �W ∩ D(xd) is then along V (xE\{d}). By choice
of d,

〈
xE\{d}

〉 ∈ V (p) ∩ D(xd). In other words, p ∈ Min(�W ∩ D(xd)) specializes
to a point in V (xE\{d}) ∩ D(xd). Thus, �W is reduced at p. It follows that �W is
generically reduced.

By Theorem 4.17,�W has the same generic points as�W . Therefore, the preceding
arguments remain valid if � is replaced by �. ��
Lemma 4.34 (Generic reducedness and contraction of non-maximal handles). Let
W ⊆ KE be a realization of a connected matroid M of rank rkM ≥ 2. Assume
that |MaxHM| ≥ 2 and set

� := |E | − |MaxHM| ≥ 0.
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Suppose that �W ′ is generically reduced for every realization W ′ ⊆ KE ′ of every
connected matroid M′ of rank rkM′ ≥ 2 with

∣
∣E ′
∣
∣ < |E |.

(a) If � > 3, then �W is generically reduced.
(b) If � > 2 and e ∈ E, then �W is reduced at all p ∈ Min�W ∩ V (xe).

The same statements hold for � replaced by �.

Proof Let p ∈ SpecK[x] with height p = 3. Pick a subset F ⊆ E such that∣
∣F ∩ H ′

∣
∣ = 1 for all H ′ ∈ MaxHM . If possible, pick F ∩ H ′ = {e} such that

xe ∈ p. If � > 3, then by Lemma 4.1.(b)

height(p+ 〈xF 〉) ≤ 3+ |F | = 3+ |MaxHM| < |E | = height 〈x〉. (4.16)

If � > 2 and p ∈ V (xe), then (4.16) holds with 3 replaced by 2. In either case pick
q ∈ SpecK[x] such that

p+ 〈xF 〉 ⊆ q � 〈x〉. (4.17)

Add to F all f ∈ E with x f ∈ q. This does not affect (4.17). Then xg /∈ q and hence
xg /∈ p for all g ∈ G := E\F �= ∅. In other words,

p ∈ D(xG), q ∈ V (p) ∩ D(xG) ∩ V (xF ) �= ∅. (4.18)

By the initial choice of F , G ∩ H ′ � H ′ for each H ′ ∈ MaxHM. By Lemma 2.4.(d),
successively contracting all elements of G does, up to bijection, not affect circuits and
maximal handles. In particular, M/G is a connected matroid on the set F , obtained
from M by successively contracting non-(co)loops.

Since |F | ≥ |MaxHM| ≥ 2, connectedness implies that rk(M/G) ≥ 1. If
rk(M/G) = 1, then �W/G = ∅ by Remark 4.13.(a). Then �W ∩ D(xG)∩V (xF ) = ∅
by Lemma 4.32 and hence p /∈ �W by (4.18).

Suppose now that p ∈ �W and hence rk(M/G) ≥ 2. Then �W/G is generically
reduced by hypothesis, and p ∈ �W ∩ D(xG) specializes to a point in V (xF ) ∩
D(xG) by (4.18). By Theorem 4.25 and Lemma 4.2, �W , �W ∩ D(xG) and �W/G

are equidimensional of codimension 3. By Lemma 4.8, height p = 3 means that
p ∈ Min�W . By Lemma 4.32, �W is thus reduced at p. The claims follow.

The preceding arguments remain valid if � is replaced by �. ��
Lemma 4.35 (Reducedness for connected matroids). Let W ⊆ KE be a realization of
a connected matroidM of rank rkM ≥ 2. Then �W is reduced. If chK �= 2, then �W

is generically reduced.

Proof ByTheorem 4.25,�W is pure-dimensional. By Lemma 4.4,�W is thus reduced
if it is generically reduced. By Lemma 4.12 and Theorem 4.17, the first claim follows
if �W is generically reduced.

Assume that chK �= 2. We proceed by induction on |E |. By Lemma 4.33, �W

is generically reduced if E ∈ CM; the base case where |E | = 3 needs chK �= 2.
Otherwise, by Proposition 2.8, M has a handle decomposition of length k ≥ 2. By
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Proposition 2.12,M has k+1 (disjoint) non-disconnective handles H = H1, . . . , H� ∈
HM with

� ≥ k + 1 ≥ 3. (4.19)

Note that H1, . . . , H� ∈ MaxHM ∩ IM by Lemma 2.4.(c) and (b). In particular,
rk(M\H) �= 0.

Suppose first that H = {h}. Then rk(M\h) ≥ 2 by Remark 4.13.(a) and
Lemma 4.30, and Min�W ⊆ D(xh) by Corollary 4.26. By Theorem 4.25, both �W

and �W\h are equidimensional of codimension 3. Thus, �W is generically reduced
by Lemma 4.30 and the induction hypothesis.

Suppose now that |Hi | ≥ 2 for all i = 1, . . . , �, and set (see Lemma 4.34)

m := |MaxHM|, � := |E | − m.

If � > 3, then �W is generically reduced by Lemma 4.34.(a) and the induction
hypothesis. Otherwise,

2�+ (m − �) ≤
�∑

i=1
|Hi | + (m − �) ≤ |E | = �+ m ≤ 3+ m

and hence 2� ≤∑�
i=1 |Hi | ≤ 3+ �. Comparing with (4.19) yields � = 3, k = 2 and

|Hi | = 2 for i = 1, 2, 3. By Lemma 2.10, E = H1 � H2 � H3 is then the handle
partition of M. In particular, � = 6 − 3 = 3 > 2. By Lemma 2.25, M must be the
prism matroid.

Let now p ∈ Min�W be a generic point of �W , with M the prism matroid. If
p ∈ TE , then �W is reduced at p by Lemma 4.28; here we use chK �= 2 again.
Otherwise, p ∈ V (xe) for some e ∈ E . Then �W is reduced at p by Lemma 4.34.(b)
and the induction hypothesis.

The preceding arguments remain valid for arbitrary chK if � is replaced by �. ��

Theorem 4.36 (Reducedness). Let W ⊆ KE be a realization of a matroid M. Then

�W = �red
W

is reduced. If chK �= 2, then �W is generically reduced.

Proof By Theorem 4.16 and Lemma 4.35 (see Remarks 4.11 and 4.13.(a)), �W is
reduced and �W is generically reduced if chK �= 2. The claimed equality is then due
to Theorem 4.17. ��

4.5 Integrality of degeneracy schemes

In this subsection, we prove the following companion result to Proposition 3.8 as
outlined in §1.4.
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Theorem 4.37 (Integrality for 3-connected matroids). Let W ⊆ KE be a realization
of a 3-connected matroid M of rank rkM ≥ 2. Then �W is integral and hence �W is
irreducible.

Proof The claim on �W follows from Remark 4.13.(a) and Lemmas 4.38 and 4.43
and Corollary 4.41. Theorem 4.17 yields the claim on �W . ��

In the following, we use notation from Example 2.26.

Lemma 4.38 (Reduction to wheels and whirls). It suffices to verify Theorem 4.37 for
M ∈ {Wn,Wn

}
with n ≥ 3.

Proof Let M and W be as in Theorem 4.37. By Remark 4.13.(b) and Theorem 4.17,
the claim holds if rkM = 2. If |E | ≤ 4, then M = U2,n where n ∈ {3, 4} (see [26,
Tab. 8.1]) and hence rkM = 2. We may thus assume that rkM ≥ 3 and |E | ≥ 5.

The 3-connectedness hypothesis on M holds equivalently for M⊥ (see 2.10). By
Corollaries 4.18 and 4.27, the Cremona isomorphism thus identifies

TE ⊇ Min�W = Min�W⊥ ⊆ TE∨ . (4.20)

It follows that integrality is equivalent for �W and �W⊥ . In particular, we may also
assume that rkM⊥ ≥ 3.

We proceed by induction on |E |. Suppose that M is not a wheel or a whirl. Since
rkM ≥ 3, Tutte’s wheels-and-whirls theorem (see [26, Thm. 8.8.4]) yields an e ∈ E
such that M\e or M/e is again 3-connected. In the latter case, we replace W by
W⊥ and use (2.11). We may thus assume that M\e is 3-connected. Then �W\e is
integral by induction hypothesis. Note that Min�W ⊆ D(xe) by (4.20). By Theo-
rem 4.25, �W and �W\e are equidimensional of codimension 3. By Remark 4.13.(a)
and Lemma 4.30, �W �= ∅ and |Min�W | ≤

∣
∣Min�W\e

∣
∣ = 1. It follows that �W is

integral. ��
Lemma 4.39 (Turning wheels). Let W ⊆ KE be the realization of Wn from
Lemma 2.27. Then the cyclic group Zn acts on XW , �W and �W by “turning the
wheel,” induced by the generator 1 ∈ Zn mapping

si �→ si+1, ri �→ ri+1, wi �→ wi+1. (4.21)

Proof By Lemma 2.27, W has a basis w = (w1, . . . , wn) where wi = si + ri − ri−1
for all i ∈ Zn . The assignment (4.21) stabilizes W ⊆ KE . The resulting Zn-action
stabilizesψW and QW , and hence JW and MW . As a consequence, it induces an action
on XW , �W and �W . ��

The graph hypersurface of the n-wheel was described by Bloch, Esnault and
Kreimer (see [6, (11.5)]). We show that it is also the unique configuration hyper-
surface of the n-whirl.
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Proposition 4.40 (Schemes for wheels and whirls). Let W ⊆ KE be any realization of
M ∈ {Wn,Wn

}
where E = S � R. Then there are coordinates z′1, . . . , z′n, y1, . . . , yn

onKE such that

ψW = det Qn, MW = In−1(Qn),

where

Qn :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z′1 y1 0 · · · · · · 0 yn
y1 z′2 y2 0 · · · · · · 0
0 y2 z′3 y3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 yn−3 z′n−2 yn−2 0
0 · · · · · · 0 yn−2 z′n−1 yn−1
yn 0 · · · · · · 0 yn−1 z′n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In particular, XW , �W and �W depend only on n up to isomorphism.

Proof We may assume that W is the realization from Lemma 2.27. Denote the coor-
dinates on KE = KS�R by

z1, . . . , zn, y1, . . . , yn := s∨1 , . . . , s∨n , r∨1 , . . . , r∨n , (4.22)

and consider the K-linear automorphism defined by

z′1 := z1 + y1 + t2 · yn, z′i := zi + yi + yi−1, i = 2, . . . , n.

Then QW is represented by the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z′1 −y1 0 · · · · · · 0 −t · yn
−y1 z′2 −y2 0 · · · · · · 0
0 −y2 z′3 −y3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −yn−3 z′n−2 −yn−2 0
0 · · · · · · 0 −yn−2 z′n−1 −yn−1

−t · yn 0 · · · · · · 0 −yn−1 z′n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Suitable scaling of y1, . . . , yn turns this matrix into Qn . The particular claim follows
with Lemma 3.23. ��
Corollary 4.41 (Small wheels and whirls). Theorem 4.37 holds for the matroids M =
W3 and M = Wn for n ≤ 4.

Proof LetW be any realization ofM. By Theorem 4.36, �W is reduced and it suffices
to check irreducibility, replacing K by its algebraic closure. By Proposition 4.40, we
may assume that �W = V (Ik+1(Qn)) for k = n − 2.

123



Matroid connectivity and singularities of configuration… Page 61 of 67 11

Consider the morphism of algebraic varieties of matrices

Y := Kn×k → {
A ∈ Kn×n | A = At , rk A ≤ k

} =: Z , B �→ BBt .

Let yi, j and zi, j be the coordinates on Y and Z , respectively. Then �W identifies with
V (z1,3, z2,4) ⊆ Z for n = 4 and with Z itself for n ≤ 3. Both the preimage Y of Z
and for n = 4 the preimage

V (y1,1y1,3 + y1,2y2,3, y2,1y1,4 + y2,2y2,4)

of V (z1,3, z2,4) are irreducible. It thus suffices to show that Y surjects onto Z , which
holds for all k ≤ n.

Let A ∈ Z and I ⊆ {1, . . . , n} with |I | = rk A = k and rows i ∈ I of A linearly
independent. Apply row operations C to make the rows i /∈ I of CA zero. Then
CACt is nonzero only in rows and columns i ∈ I . Modifying C to include further
row operations turns CACt into a diagonal matrix. As K is algebraically closed,
CACt = D2 where D has exactly k nonzero diagonal entries. Then A = BBt where
B := C−1D, considered as an element of Y by dropping zero columns. ��
Lemma 4.42 (Operations on wheels and whirls). Let M ∈ {Wn,Wn

}
.

(a) The bijection

E = S � R → E∨, si �→ r∨i , ri �→ s∨i ,

identifies M = M⊥.
Suppose now that n is not minimal for M to be defined, that is, n > 3 if M = Wn

and n > 2 if M = Wn.
(b) The matroidM\sn is connected of rank rk(M\sn) ≥ 2. Its handle partition consists

of non-disconnective handles, the 2-handle {rn−1, rn} and 1-handles.
(c) The matroidM/rn is connected of rank rk(M/rn) ≥ 2. Its handle partition consists

of non-disconnective 1-handles.
(d) We can identify Wn\sn/rn = Wn−1 and Wn\sn/rn = Wn−1.

Proof (a) The self-duality claim is obvious (see [26, Prop. 8.4.4]).
(b) This follows from the description of connectedness in terms of circuits (see (2.5)

and Example 2.26).
(c) This follows from the description of connectedness in terms of circuits (see (2.7)

and Example 2.26).
(d) The operation M �→ M\sn/rn deletes the triangle {sn−1, rn−1, sn} and maps the

triangle {sn, rn, s1} to {sn−1, rn−1, s1} (see (2.5) and (2.7)). By duality, it acts on
triads in the same way (see (a) and (2.11)). Moreover, R ∈ CM\sn/rn is equivalent
to R ∈ CM and hence M = Wn (see (2.5), (2.7) and Example 2.26). The claim
then follows using the characterization of wheels and whirl in terms of triangles
and triads (see Example 2.26). ��

Lemma 4.43 (Induction on wheels and whirls). Theorem 4.37 for M = Wn and M =
Wn follows from the cases n = 3 and n ≤ 4, respectively.
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Proof Suppose that n is not minimal for M ∈ {Wn,Wn
}
to be defined. Let W ′ be any

realization of M/rn . Then W ′\sn is a realization of

M/rn\sn = M \ sn/rn = Mn−1

by Lemma 4.42.(d). By induction hypothesis and Corollary 4.27, �W ′\sn is integral
with generic point in TE\{sn ,rn}. By Lemma 4.42.(c) and Corollary 4.26, Min�W ′ ⊆
TE\{rn} ⊆ D(sn). By Lemma 4.42.(c) and Theorems 4.25,�W ′ and�W ′\sn are equidi-
mensional of codimension 3. By Remark 4.13.(a) and Lemma 4.30, �W ′ is then
integral.

Let W be any realization of M and use the coordinates from (4.22). By
Lemma 4.42.(b) and Corollary 4.26, �W\sn has at most one generic point q′ in
V (yn−1, yn) while all the others lie in TE\{sn}. By Corollary 4.18, the Cremona iso-
morphism identifies the latter with generic points of�(W\sn)⊥ inTE∨\{s∨n }. Use (2.11)
and Lemma 4.42.(a) to identify

(M\sn)⊥ = M⊥/s∨n = M/rn, E∨\{s∨n
} = E\{rn},

and consider (W\sn)⊥ as a realization W ′ of M/rn . By the above, �W ′ is integral
with generic point in TE\{rn}. Thus, �W\sn has a unique generic point q in TE\{sn}.
To summarize,

Min�W\sn =
{
q, q′

}
, q ∈ TE\{sn}, q′ ∈ V (yn−1, yn). (4.23)

By Lemma 4.42.(b) and Theorems 4.25 and 4.36, �W and �W\sn are equidimen-
sional of codimension 3 and reduced. It suffices to show that�W is irreducible. Byway
of contradiction, suppose that p �= p′ for some p, p′ ∈ Min�W . By Corollary 4.27,
Min�W ⊆ TE ⊆ D(sn). By Lemma 4.30 and (4.23), it follows that

�W =
{
p, p′

}
.

By (4.11) in Lemma 4.30, we may assume that
√
p̄ = q and

√
p̄′ = q′ where Ī :=

(I + 〈zn〉)/〈zn〉.
Consider first the casewhereM = Wn with n ≥ 4. ByRemark 3.22, wemay assume

thatW is the realization from Lemma 2.27. By Lemma 4.39, the cyclic groupZn acts
on
{
p, p′

}
by “turning the wheel.” If it acts identically, then

√
p′ + 〈zi 〉 ⊇ 〈yi−1, yi 〉

for all i = 1, . . . , n and hence

√
p′ + 〈z1, . . . , zn〉 = 〈z1, . . . , zn, y1, . . . , yn〉.

Then height(p′ + 〈z1, . . . , zn〉) = 2n which implies height p′ ≥ n > 3 by
Lemma 4.1.(b) , contradicting Theorem 4.25 (see Lemma 4.8). Otherwise, the gener-
ator 1 ∈ Zn switches the assignment p �→ q and p �→ q′ and n = 2m must be even.
Then

√
p+ 〈z2i 〉 ⊇ 〈y2i−1, y2i 〉 for all i = 1, . . . ,m and hence

√
p+ 〈z2, z4, z6, . . . , zn〉 ⊇ 〈z2, z4, z6, . . . , zn, y1, . . . , yn〉.
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This leads to a contradiction as before.
Consider now the case where M = Wn with n ≥ 5. For i = 1, . . . , n, denote by qi

and q′i the generic points of �W\si as in (4.23). By the pigeonhole principle, one of p
and p′, say p, is assigned to q′i for 3 spokes si . In particular, p is assigned to q′i and q′j
for two non-adjacent spokes si and s j . Then

√
p+ 〈zi , z j

〉 ⊇ 〈zi , z j , yi−1, yi , y j−1, y j
〉
.

This leads to a contradiction as before. The claim follows. ��
Theorem 4.37 proves the “only if” part of the following conjecture.

Conjecture 4.44 (Irreducibility and 3-connectedness). Let M be a matroid of rank
rkM ≥ 2 on E. ThenM is 3-connected if and only if, for some/any realizationW ⊆ KE

of M, both �W and �W⊥ are integral.

5 Examples

In this section, we illustrate our results with examples of prism, whirl and uniform
matroids.

Example 5.1 (Prism matroid). Consider the prism matroidM (see Definition 2.1) with
its unique realization W (see Lemma 2.25). Then

ψW = x1x2(x3 + x4)(x5 + x6)+ x3x4(x1 + x2)(x5 + x6)+ x5x6(x1 + x2)(x3 + x4)

by Example 3.17. By Lemma 4.28, �W has the unique generic point

〈x1 + x2, x3 + x4, x5 + x6〉

in T6. By Corollary 4.26, there can be at most 3 more generic points symmetric to

〈
x1, x2, ψW\{1,2}

〉 = 〈x1, x2, x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6〉.

OverK = F2, their presence is confirmed by a computation in Singular (see [14]).
It reveals a total of 7 embedded points in �W . There is 〈x1, . . . , x6〉, and 3 symmetric
to each of

〈x3, x4, x5, x6〉 and 〈x1, x2, x3 + x4, x5 + x6〉.

Moreover, �W is not reduced at any generic point. Since the above associated primes
are geometrically prime, the conclusions remain valid over any fieldKwith chK = 2.

A Singular computation overQ shows that�W has exactly the above associated
points for any field K with chK = 0 or chK % 0. We expect that this holds in fact
for chK �= 2.
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To verify at least the presence of these associated points in �W for chK �= 2, we
claim that

〈
x1, x2, ψW\{1,2}

〉 = JW : 2((x3 + x4)x
2
5 − (x3 + x4)x

2
6 ),

〈x3, x4, x5, x6〉 = JW : 2(x1 + x2)
2x4x6,

〈x1, x2, x3 + x4, x5 + x6〉 = JW : 2x2(x3 + x4)x
2
6 ,

〈x1, . . . , x6〉 = JW : 2(x1 + x2)(x3 + x4)x6.

The colon ideals on the right hand side can be read off from a suitable Gröbner basis
(see [17, Lems. 1.8.3, 1.8.10 and 1.8.12]). Using Singular we compute such a
Gröbner basis over Z which confirms our claim. There are no odd prime numbers
dividing its leading coefficients. It is therefore a Gröbner basis over any field K with
chK �= 2 and the argument remains valid.

Example 5.2 (Whirl matroid). Consider the whirl matroid M := W3 (see Exam-
ple 2.26). It is realized by 6 points in P2 with the collinearities shown in Fig. 4.
SinceM contracts to the uniform matroid U2,4,M is not regular (see [26, Thm. 6.6.6]).
The configuration polynomial reflects this fact. Using the realization W of M from
Lemma 2.27 with t = −1, {s1, s2, s3} = {1, 2, 3} and {r1, r2, r3} = {4, 5, 6}, we find

ψW = x1x2x3 + x1x3x4 + x2x3x4 + x1x2x5 + x1x3x5 + x1x4x5
+ x2x4x5 + x3x4x5 + x1x2x6 + x2x3x6 + x1x4x6 + x2x4x6
+ x3x4x6 + x1x5x6 + x2x5x6 + x3x5x6 + 4x4x5x6.

Replacing in ψW the coefficient 4 of x4x5x6 by a 1 yields the matroid polynomial ψM
(see Remark 3.6).

By Theorem 4.25, the configuration hypersurface XW defined by ψW has 3-
codimensional non-smooth locus �red

W . Using Singular (see [14]) we compute
a Gröbner basis over Z of the ideal of partial derivatives of ψM. The only prime num-
bers dividing leading coefficients are 2, 3 and 5. For chK �= 2, 3, 5, it is therefore a
Gröbner basis over K. From its leading exponents we calculate that the non-smooth
locus of the hypersurface defined by ψM has codimension 4 (see [17, Cor. 5.3.14]).
By further Singular computations, this codimension is 4 for chK = 2, 5, and 3
for chK = 3.

Fig. 4 Points in P2 defining the
whirl matroid W3

s1 s2

s3

r1

r2r3
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Example 5.3 (Uniform rank-3 matroid). Suppose that chK �= 2, 3. Then the configu-
ration W = 〈w1, w2, w3

〉 ⊆ K3 defined by

(wi
j )i, j =

⎛

⎝
1 0 0 1 2 3
0 1 0 2 3 4
0 0 1 2 6 12

⎞

⎠

realizes the uniform matroid U3,6 (see Example 2.20). The entries of Qw = (qi, j )i, j
satisfy the linear dependence relation (see Remark 3.21)

q1,2 + q1,3 = q2,3.

By Lemma 3.23, ψW thus depends on fewer than 6 variables. More precisely, a
Singular computation shows that �W has Betti numbers (1, 5, 10, 10, 5, 1), is
not reduced and hence not Cohen–Macaulay.

Now, takeW ′ to be a generic realization ofU3,6. Then the entries of QW ′ with indices
(i, j) where i ≤ j are linearly independent (see [5, Prop. 6.4]), and �W ′ is reduced
Cohen–Macaulay with Betti numbers (1, 6, 8, 3). So basic geometric properties of the
configuration hypersurface XW are not determined by the matroid M, but depend on
the realization W .

Example 5.4 (Uniform rank-2 matroid). Suppose that chK �= 2 and consider the
uniform matroid U2,n for n ≥ 3 (see Examples 2.2 and 3.7.(c)). A realization W of
U2,n is spanned by two vectors w1, w2 ∈ Kn for which (see Example 2.20)

cW ,{i, j} = det

(
w1
i w1

j
w2
i w2

j

)2

�= 0,

for 1 ≤ i < j ≤ n. Then

ψW =
∑

1≤i< j≤n
cW ,{i, j} · xi · x j ,

and the ideal JW is generated by n linear forms. These forms may be written as the
rows of the Hessian matrix

HW := HψW = (cW ,{i, j})i, j ,

where by convention cW ,{i,i} = 0. Since uniform matroids are connected, Theo-
rem 4.25 implies that HW has rank exactly 3.

For n ≥ 4, this amounts to a classical-looking linear algebra fact: suppose that
A = (a2i, j )i, j ∈ Kn×n is a matrix with squared entries. Then its 4× 4 minors are zero
provided that the numbers ai, j satisfy the Plücker relations defining the Grassmannian
Gr2,n . An elementary direct proof was shown to us by Darij Grinberg (see [18]).
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