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Abstract

Understanding human crowd behaviour has been an intriguing topic of interdisciplinary research

in recent decades. Modelling of crowd dynamics using differential equations is an indispensable

approach to unraveling the various complex dynamics involved in such interacting particle systems.

Numerical simulation of pedestrian crowd via these mathematical models allows us to study

different realistic scenarios beyond the limitations of studies via controlled experiments.

In this thesis, the main objective is to understand and analyse the dynamics in a domain shared

by both pedestrians and moving obstacles. We model pedestrian motion by combining the social

force concept with the idea of optimal path computation. This leads to a system of ordinary

differential equations governing the dynamics of individual pedestrians via the interaction forces

(social forces) between them. Additionally, a non-local force term involving the optimal path and

desired velocity governs the pedestrian trajectory. The optimal path computation involves solving a

time-independent Eikonal equation, which is coupled to the system of ODEs. A hydrodynamic

model is developed from this microscopic model via the mean-field limit.

To consider the interaction with moving obstacles in the domain, we model a set of kinematic

equations for the obstacle motion. Two kinds of obstacles are considered - “passive”, which move in

their predefined trajectories and have only a one-way interaction with pedestrians, and “dynamic”,

which have a feedback interaction with pedestrians and have their trajectories changing dynamically.

The coupled model of pedestrians and obstacles is used to discern pedestrian collision avoidance

behaviour in different computational scenarios in a long rectangular domain. We observe that

pedestrians avoid collisions through route choice strategies that involve changes in speed and path.

We extend this model to consider the interaction between pedestrians and vehicular traffic. We

appropriately model the interactions of vehicles, following lane traffic, based on the car-following

approach. We observe how the deceleration and braking mechanism of vehicles is executed at

pedestrian crossings depending on the right of way on the roads.

As a second objective, we study the disease contagion in moving crowds. We consider the influence

of the crowd motion in a complex dynamical environment on the course of infection of pedestrians.

A hydrodynamic model for multi-group pedestrian flow is derived from the kinetic equations based

on a social force model. It is coupled along with an Eikonal equation to a non-local SEIS contagion

model for disease spread. Here, apart from the description of local contacts, the influence of contact

times has also been modelled. We observe that the nature of the flow and the geometry of the

domain lead to changes in density which affect the contact time and, consequently, the rate of

spread of infection.

Finally, the social force model is compared to a variable speed based rational behaviour pedestrian

model. We derive a hierarchy of the heuristics-based model from microscopic to macroscopic



xii

scales and numerically investigate these models in different density scenarios. Various numerical

test cases are considered, including uni- and bi-directional flows and scenarios with and without

obstacles. We observe that in low-density scenarios, collision avoidance forces arising from the

behavioural heuristics give valid results. Whereas in high-density scenarios, repulsive force terms

are essential.

The numerical simulations of all the models are carried out using a mesh-free particle method

based on least square approximations. The meshfree numerical framework provides an efficient

and elegant way to handle complex geometric situations involving boundaries and stationary or

moving obstacles.



Abstrakt

Das Verhalten von Menschenmengen zu verstehen, war in den letzten Jahrzehnten ein wichtiges

Thema der interdisziplinären Forschung. Die Modellierung der Dynamik von Menschenmengen

mit Hilfe von Differentialgleichungen ist ein wesentlicher Ansatz, um die verschiedenen komplexen

Dynamiken zu entschlüsseln, die an solchen interagierenden Teilchensystemen beteiligt sind. Die

numerische Simulation von Fußgängerströmen mit Hilfe dieser mathematischen Modelle ermöglicht

es uns, verschiedene realistische Szenarien zu untersuchen, die über die Grenzen von Studien mit

kontrollierten Experimenten hinausgehen.

In dieser Arbeit geht es in erster Linie darum, die Dynamik in einem Gebiet zu verstehen und zu

analysieren, das sowohl von Fußgängern als auch von sich bewegenden Hindernissen genutzt wird.

Wir modellieren die Bewegung von Fußgängern, indem wir das Konzept der sozialen Kräfte mit

der Idee der optimalen Pfadberechnung kombinieren. Dies führt zu einem System gewöhnlicher

Differentialgleichungen, das die Dynamik der einzelnen Fußgänger über die Interaktionskräfte

(soziale Kräfte) zwischen ihnen steuert. Zusätzlich regelt ein nichtlokaler Kraftterm, der den

optimalen Pfad und die gewünschte Geschwindigkeit einbezieht, die Trajektorie des Fußgängers.

Die Berechnung des optimalen Pfades beinhaltet die Lösung einer zeitunabhängigen Eikonal-

Gleichung, die mit dem System der gewöhnlichen Differentialgleichungen gekoppelt ist. Aus

diesem mikroskopischen Modell wird über das Mean-Field-Limit ein hydrodynamisches Modell

entwickelt.

Um die Interaktion mit beweglichen Hindernissen im Gebiet zu berücksichtigen, modellieren wir

die Bewegung der Hindernisse mit einer Reihe kinematischer Gleichungen. Es werden zwei Arten

von Hindernissen betrachtet: „passive“, die sich auf ihren vordefinierten Bahnen bewegen und

nur in eine Richtung mit den Fußgängern interagieren, und „dynamische“, die eine Rückkopplung

mit den Fußgängern haben und deren Bahnen sich dynamisch ändern. Das gekoppelte Modell

von Fußgängern und Hindernissen wird verwendet, um das Kollisionsvermeidungsverhalten von

Fußgängern in verschiedenen Berechnungsszenarien in einem langen rechteckigen Gebiet zu un-

tersuchen. Wir beobachten, dass Fußgänger Kollisionen durch Routenwahlstrategien vermeiden,

indem sie die Geschwindigkeit und den Weg ändern. Wir erweitern dieses Modell, um die In-

teraktion zwischen Fußgängern und Fahrzeugverkehr zu berücksichtigen. Wir modellieren die

Interaktionen von Fahrzeugen, die dem Verkehr auf der Fahrbahn folgen, auf der Grundlage des

Car-Following-Ansatzes. Wir beobachten, wie die Verzögerungs- und Bremsmechanismen der

Fahrzeuge an Fußgängerüberwegen je nach Vorfahrtsregelung auf den Straßen ausgeführt werden.

Als zweite Anwendung untersuchen wir die Ansteckung von Krankheiten in sich bewegenden

Menschenmengen. Wir untersuchen den Einfluss der Bewegung der Menschenmenge in einer

komplexen dynamischen Umgebung auf den Verlauf der Ansteckung von Fußgängern. Aus den
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kinetischen Gleichungen, die auf einem sozialen Kraftmodell basieren, wird ein hydrodynamisches

Modell für den Fluss von Fußgängern in mehreren Gruppen abgeleitet. Es wird zusammen mit einer

Eikonal-Gleichung an ein nicht-lokales SEIS-Ansteckungsmodell für die Krankheitsausbreitung

gekoppelt. Hier wurde neben der Beschreibung lokaler Kontakte auch der Einfluss von Kontak-

tzeiten modelliert. Wir stellen fest, dass die Art der Strömung und die Geometrie des Gebiets zu

einer Änderung der Dichte führen, die sich auf die Kontaktzeit und folglich auf die Ausbreitungsrate

der Infektion auswirkt.

Abschließend wird das Modell der sozialen Kräfte mit einem auf variabler Geschwindigkeit

basierenden Modell für rationales Verhalten von Fußgängern verglichen. Wir leiten eine Hierarchie

des auf Heuristiken basierenden Modells von mikroskopischen zu makroskopischen Skalen ab und

untersuchen diese Modelle numerisch in verschiedenen Dichteszenarien. Es werden verschiedene

numerische Testfälle betrachtet, darunter uni- und bidirektionale Strömungen sowie Szenarien

mit und ohne Hindernissen. Wir stellen fest, dass in Szenarien mit geringer Dichte die aus den

Verhaltensheuristiken resultierenden Kollisionsvermeidungskräfte sinnvolle Ergebnisse liefern. In

Szenarien mit hoher Dichte sind abstoßende Kräfte jedoch unerlässlich.

Die numerischen Simulationen aller Modelle werden mit einer gitterfreien Partikelmethode auf der

Grundlage von Kleinste-Quadrate-Näherungen durchgeführt. Der gitterfreie numerische Rahmen bi-

etet eine effiziente und elegante Möglichkeit, komplexe geometrische Situationen mit Begrenzungen

und stationären oder beweglichen Hindernissen zu behandeln.
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1 Introduction

1.1 Background and Motivation
Human behaviour is an extremely complex phenomenon governed by a myriad of factors, both

from the external environment and from the internal mental landscape of individuals. Social and

behavioural scientists have spent decades researching various individual or crowd behavioural

tendencies in diverse contexts. Each individual’s physiological behaviour is influenced by their

perception of the environment and their physiological and safety needs. Research shows that

decisions or actions are taken by individuals based on these factors and are not entirely unpredictable.

A thorough understanding of the basic rules of human behaviour is a necessary ingredient for

modelling at all scales.

The modelling of such systems involving many interacting particles, here humans/pedestrians,

has been a widely active area of research amongst mathematicians, physicists and engineers

alike. The modelling problem of such complex living systems is quite challenging and has hence

intrigued researchers over the last few decades. These systems involve entities which not only

have individual strategies but also interact with other entities and evolve cooperative strategies to

regulate their overall dynamics. The particles may be influenced by physical forces such as gravity,

electrostatics, or friction, or they may interact through more complex mechanisms such as diffusion,

chemical reactions, or social interactions. The emergence of spontaneous self-organised patterns

in space and phase transitions arising out of such interactions is a typical feature of such systems.

Pedestrian groups exhibit patterns like lane formation in bi-directional flow, stripe formation in

intersecting flows and oscillations at bottlenecks. It is crucial to study these phenomena and gain an

understanding of the underlying mechanisms to predict the behaviour of the system under various

scenarios.

An important aspect of the human crowd is a sense of social identity which induces collective

behaviours. These herd behavioural inclinations can, many a time, overpower individual judgement

and lead to destructive behaviour. For example, during a panic situation, people may rush to avoid

danger but, in turn, may fall and trample upon each other, causing a stampede, or they might

get disoriented and run in the wrong direction as a group and hence not find the way to safety.

Throughout history, we see that such crowd behaviours have led to large disasters around the world,

like the Love Parade Disaster in 2010 (Fig. 1.1) or the recent Halloween stampede in Seoul in 2022;

see [96] for a review of crowd stampedes in India. Hence, crowd behaviour in any mass event has

been of particular research interest, considering the information we need to obtain to prevent such

crowd disasters. An understanding of crowd behaviour in normal as well as panic situations is

essential to devise safety measures and evacuation planning in large public spaces like stadiums or
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Figure 1.1 – Crowd Disasters - Love Parade Disaster in 2010 1 ( [131])

Figure 1.2 – Religious Gatherings - Hajj Pilgrimage 2 (left: [112]) , Kumbh Mela3 (right: [78])

arenas, airports, railway platforms and buildings consisting of office spaces or schools or hospitals.

Collision avoidance in pedestrian flow is an indispensable problem in urban planning, crowd

management and transportation engineering. Pedestrians follow different strategies for collision

avoidance with other pedestrians and obstacles in the environment. Some involve reactive strate-

gies, like separation and stop-and-go waves, where individuals react to the cues from immediate

surroundings. On the other hand, proactive strategies include signs and signals to guide pedestrians

or infrastructure like columns to demarcate opposing walking directions. Apart from this, obstacles

can be used to regulate the flow and improve evacuation efficiency too [59, 79]; for example,

cylindrical obstacles near a narrow exit improve evacuation efficiency [176]. Hence, it is essential

to formulate pedestrian models that investigate pedestrian-obstacle interactions for both stationary

and moving obstacles.

Information regarding possible congestion, jams or high-density areas in a public area is essential

for evacuation planning and crowd control during any public event, for instance, during religious

1Photograph “Entry and exit ramp of the Loveparade 2010” © Arne Müseler under a CC BY-SA 3.0 license via

Wikimedia Commons.
2Photograph “Mecca Saudi Arabia” © Konevi under a CC0 license.
3Photograph “Kumbh Mela in Allahabad (Indien)” © Lars Hanf under a CC BY-NC-SA 3.0 license.

https://commons.wikimedia.org/wiki/File:Loveparade_2010_duisburg_tunnel_ramp.jpg
http://www.arne-mueseler.com/
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://pxhere.com/en/photo/1596771
https://pxhere.com/en/photographer/2768442
https://creativecommons.org/publicdomain/zero/1.0/
https://www.larsreisen.de/2019/04/06/besuch-der-kumbh-mela-in-allahabad-indien-das-groesste-pilgertreffen-der-welt/
https://www.larsreisen.de/author/lars/
https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
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Figure 1.3 – Woonerf Principle - Living Streets or Shared Spaces (left4: [58], right5: [53])

gatherings, as shown in Fig. 1.2, like Kumbh Mela or Hajj [69] or festive celebrations like New

Year’s Eve. Such information is also essential to manage smaller public spaces like shopping areas

in malls, outside schools or peak office hours in a metro. Lately, there has been the intervention

of technology, say, the use of sensors and cameras, which provide real-time data to identify

collision risks. In this regard, robots are also used to navigate and regulate the flow in evacuation

environments.

The concept of ‘shared spaces’ has taken over urban planning in recent years. The philosophy of

space sharing originated with ideas in the West [97, 120] which were developed and implemented,

for example, via the woonerf concept in Europe (see Fig. 1.3 (left)), which started in the Nether-

lands [76]. Shared spaces (see Fig. 1.3 (right)) are gaining popularity in every major city - with

more and more streets in the city centres becoming pedestrian friendly. The concept of “streets for

people” in place of “streets for traffic” has been a major shift of focus in urban mobility. In such

areas, both the vehicles and the pedestrians are given equal priority, contrary to the usual roads.

Also, the traffic responsibility falls directly on the road users rather than through any interventions

like signals or signs. This concept is another prominent reason to study pedestrian-moving obstacle

interactions, where we consider the moving obstacles as entities which have decision-making capa-

bilities like those of pedestrians. Such a framework indeed can be extended for direct applications

in autonomous vehicle as well as robot navigation.

Apart from the inconveniences and challenges caused by dense crowds, either in the form of

incidence of injuries and fatalities during mass events or the congestion caused in smaller domains,

say in public transport or malls, the transmission of diseases which can spread through physical

contact is another concern. During the recent pandemic, controlling the spread of COVID-19

infection involved measures like social distancing and restrictions on mass gatherings. These

circumstances promptly led to a need to study the dynamics of virus spread in crowds, focused

chiefly on the movement of people in indoor public spaces, that is, closed domains. Though there

have been several attempts to understand various aspects of disease spread in crowds [173], there is

a lack of niche mathematical models versatile enough to capture the information in dense moving

4Photograph “Nederlands Woonerf (Dan Burden)” © Erauch under a CC BY-SA 3.0 license via Wikimedia Commons.
5Photograph “Fishergate Shared Space, Preston, Lancashire, England” © David Dixon under a CC BY-SA 2.0

license.

https://commons.wikimedia.org/wiki/File:Dutch_woonerf.jpg
https://nl.wikipedia.org/wiki/Gebruiker:Erauch
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://www.geograph.org.uk/photo/4313459
https://www.geograph.org.uk/profile/43729
https://creativecommons.org/licenses/by-sa/2.0/legalcode
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crowds. Moreover, the effect of obstacles in the domain has only been explored in the context of

designing of spaces as preventive responses. However, specific dynamics and flow patterns which

affect disease transmission under the influence of obstacles are seldom studied and hence our goal.

1.2 Overview
Pedestrians’ actions are, most often than not, patterns of motion based on learnt behaviour and

individuals illicit rather automatic responses in most standard situations. The deterministic mod-

elling of pedestrians follows this notion. Microscopic models using force terms reflecting the

different social factors, internal and external, were developed initially in [82] and later extended and

studied further. The primary assumption in such ‘social force’ based models is the superposition

of the different forces, which leads to an easy formulation of differential equations governing the

system. Social or behavioural force based models have been revolutionary amongst agent-based

models, not only because of their ease of formulation and solution through existing numerical

methods but also due to the fact that they are able to illustrate several spatiotemporal patterns of

self-organisation phenomenon. But these physics based models do have their limitations - first, in

the flawed homogeneous assumption; second, in the difficulty involved in the calibration of the

numerous parameters; and third, the criticised superposition principle of non-Newtonian, non-linear

forces. Meanwhile, agent-based models based on simple heuristics (simple and fast cognitive

decisions) derived from the rational behaviour of pedestrians also provide a route to describe

pedestrian motion. Such cognitive heuristics based on vision was described in [129]. This idea was

further developed to make a model, in [15], involving a heuristics-based perception phase followed

by a decision phase modelled as a dynamically varying cost potential reflecting the behavioural

outcomes from their interactions. We observe in our work that the latter model, though is able to

reproduce self-organising patterns, only works well in low-density scenarios, while the social force

type models are better when we are dealing with larger densities. More often, larger densities are

not handled efficiently by microscopic models. They involve a large number of equations and hence

are computationally expensive. To deal with high-density crowds, we need models at the kinetic or

macroscopic level.

Deriving macroscopic physics from the microscopic dynamics of the elementary entities is the

foundation of statistical mechanics, and it involves the kinetic theory of gases for mathematical

formulation. Pedestrians are self-propelled ‘active’ particles whose actions are governed by

different social strategies, in contrast to inert matter. In continuum mechanics, a point particle in

the continuum is part of the system, negligible with respect to its size, but quite large compared to

the molecular length. We note that meso or macro scale approaches involve a continuum hypothesis

which is valid only when the density is high such that the distances between the pedestrians are quite

small. This translates directly to how we view packing capacity and mean free path in gases; that

is, how low the Knudsen number is. Also, in dilute gases where kinetic theory is applied, particle

collisions are one-to-one, and particles spend very little time on collision. But in fluids/dense gases,

this is not the same [114]. For such systems, gas kinetic theory can be used to model the dynamics
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using probability distribution functions while the interactions are still modelled at a particle level.

The structure depends on how the interactions are modelled; long-range leads to Vlasov type

equations and localized leads to Boltzmann type equations. The kinetic models act as a bridge

between the microscopic and macroscopic scale of models. These models assume a homogeneous

crowd and consider the average behaviour. This assumption, as well as the continuum assumption,

has been widely criticized, but still, the models work well and provide an array of qualitative and

quantitative information along with a huge advantage in computational efficiency.

Macroscopic models are more focused on aggregate behaviour rather than individual behaviour of

the pedestrians. A large crowd displays attributes of a fluid, and hence a fluid-dynamic approach

can be used for modelling the pedestrians at this scale. Such a formulation enables analytical

analyses of macro variables as well as parameters in the model, allowing a better understanding

of the flow dynamics, for example, through flow-density diagrams. This information at the global

level and macroscopic scale is essential because it is not the individual dynamics but the overall

dynamics which can be seen and interpreted easily from empirical studies. Both first and second-

order macroscopic models can be defined independently by direct formulation of fluid equations of

continuity and momentum and appropriate closure relations. On the other hand, the macroscopic

model can be derived from the kinetic models by asymptotic methods, like taking hydrodynamic

limits. In either case, the continuum model involves the evaluation of pedestrian density, mean

velocity and flow variables. Additionally, hyperbolic structures rather than parabolic ones are

preferred since it is then possible to write the equations in conservation form and analyse them.

Nevertheless, macroscopic models are highly computationally efficient when dealing with larger

crowds and provide the necessary information on the flow conditions to use in various crowd

management tasks. Hence our focus falls mostly on macroscopic models for pedestrian flow in this

thesis.

The introduction of desired velocity, the speed and direction that a pedestrian entity decides to take

to reach the target or exit if there were no external influences, was an important step in changing

the modelling structures of all scales. Most often, people move in bounded domains towards a

certain destination. This defines a ‘desired velocity field’ in the domain which essentially gives the

velocity each pedestrian would take if they were alone. Pedestrians typically try to move at a speed

that is comfortable and efficient for them while also avoiding collisions and navigating around

obstacles. Final velocity field is a combination of desired velocity and the interaction velocity. A

desired acceleration term is often used to describe how pedestrians adjust their speed and direction

of movement based on the behaviour of the crowd around them and in response to changes in the

environment, such as the presence of a bottleneck or the opening of a new exit.

An important aspect of any model is how the pedestrians choose their route dynamically. There are

two different route choice behaviours modelled in literature - one via a predictive dynamic user

equilibrium (PDUE) and the other via a reactive dynamic user equilibrium (RDUE). In PDUE [88,

89, 91], the pedestrians are assumed to have complete information of the environment, which

they might have accumulated by frequently using the same space for travel over a period of time

or have received via other sources. Then the decision making involves a strategy to choose the
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route minimizing the total travel cost (time/distance). They predict the future direction along the

route to the destination based on current information. While in RDUE, the pedestrians choose a

route that minimizes instantaneous travel costs as they have only the immediate flow information

available. Huang et al. [92] explains how the potential function in [94] provides an instantaneous

cost (calibrated by both the speed and discomfort factor), and hence the model follows a reactive

route choice strategy. The pedestrian models in this thesis also satisfy the reactive user equilibrium

principle via the eikonal equation. We note that both in predictive and reactive models, the space is

fully visible to the pedestrians, either first-hand by direct vision or second-hand through the leader

agent they follow.

The challenge in modelling increases when there are obstacles and boundaries in the environment to

take care of. Evaluation of desired direction of motion via the Eikonal equation is an effective and

brilliant way to incorporate geometry-related information, like the presence of walls and obstacles,

into the pedestrian models. This leads to non-local information being available while route choice

decisions are made.

To avoid collisions, individuals might adjust their speed or path or both. Collision avoidance is

implemented in models in different ways - through force based terms in social force models, by

calculating safe directions in velocity-based models and by a future predictive decision-making in

anticipation-based models. Providing the geometric information related to stationary or moving

obstacles using the Eikonal equation, in the models discussed in this thesis, allows for an easy

implementation of collision avoidance via adjustment of path as well as speed. Herein, we have

an interplay between trajectory changes using the non-local information about the geometry and

velocity changes through interpersonal interactions. Though the social force-based approach has

been used widely in pedestrian models, such an approach to consider moving obstacle interactions

between themselves and with other pedestrians has not been explored before but is strikingly apt.

On the other hand, when the obstacles are dynamic, that is, they have a mechanism to sense or

visually see the pedestrians and try to avoid collisions themselves by suitable adjustments of speed.

A protracted way to consider pedestrian interaction with moving obstacles is to recognise that

the moving obstacles could be vehicles, with drivers or driver-less and automated. So the whole

framework developed to couple obstacle kinematics with the pedestrian model can be extended to

consider vehicles following lane-traffic. Then the pedestrian-dynamic obstacle interaction model

serves in studying shared spaces. Further extension of the framework can be made to multiple

vehicles and change of domain to linear roads with lane-traffic. Once the interactions between the

vehicles are modelled via the principles discussed in literature, like the car-following or follow-

the-leader models, then we have a pedestrian-vehicular traffic coupled model. We observe that the

main mechanism of collision avoidance followed by vehicles is deceleration and braking. Most

vehicular traffic models in literature are for lane-based traffic, whereas our model’s feature for

handling multiple moving obstacles can be utilised for vehicles which do not follow any absolute

lanes, like in shared spaces as well as those that follow lane-based traffic.

The pedestrian model can be enhanced to incorporate disease transmission dynamics to allow us

to analyse viral spread in dense crowds. Through numerical studies, which allow us to consider
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the mobility patterns under the influence of different contact rates and flow conditions in the

presence and absence of obstacles, insights into how the disease spreads can be obtained. The

effectiveness and efficiency of the model in handling various scenarios and complex geometries are

given prominence in this thesis.

An indispensable part of the research in crowd modelling is identifying efficient mathematical

tools to analyse the models. In general, numerical methods used in macroscopic simulations are

grid-based, which can be laborious to adopt to problems involving complex geometries and moving

interfaces. Meshfree methods are hence more suitable for crowd dynamics problems in order to

easily handle crowd deformations and the different domain configurations. Moreover, interacting

particle systems like crowds have an inherent granular nature and hence a Lagrangian formulation

used in meshfree methods such as the Finite Pointset Method (FPM) is apt.

The numerical algorithm involved in solving the pedestrian models in this thesis always involves

two major components. First is solving the eikonal equations using a fast marching method over

the entire domain of consideration. The solution of the same generates the desired direction of

motion for pedestrians, obstacles or vehicles. Second is the solution of the evolution equations for

pedestrians and the kinematic equations of obstacles or vehicles coupled to them in a Lagrangian

framework. FPM based on Taylor series and least square approximations is applied to solve the

model equations, both microscopic and macroscopic. FPM transforms the PDEs (in hydrodynamic

model), by approximating the field variables (like density and velocity) and their derivatives, into a

system of ODEs that can be solved by time integration algorithms.

As a modification of classical Generalised Finite Difference Method (GFDM), FPM is used to solve

Navier-Stokes equations in [164]. It has been extended to problems in solid and fluid mechanics.

For example, FPM has been applied to simulations of two-phase immiscible flows in [165], the

liquid-liquid flow field in an extractor in [55] and has been used in free surface flows [163] and soil

mechanics [127].

In computational fluid dynamics, immersed boundary methods (IBMs) are often used to handle

moving geometries in the fluid domain. Since the moving boundaries may not always conform to a

structured grid, handling such geometries is a challenging task in grid-based methods. Remeshing

is a costly technique, and so IBMs were a necessary development to handle such problems [141].

Moving boundaries are easily handled in meshfree methods since we can independently populate

the boundaries with grid points. This allows for the direct implementation of boundary conditions.

The numerical code for the simulations in this thesis is written in Fortran. MATLAB has been used

for post-processing the data and creating figures used.

1.3 Aims and Objectives
The objective of this thesis is divided into three parts -

1. Develop a mathematical model based on social forces to study pedestrian interaction with

moving obstacles and to adapt the meshfree numerical framework to investigate scenarios
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with moving geometries. Further, extend this model to include vehicular-pedestrian traffic

interaction.

2. Develop a multi-group hydrodynamic model coupled to disease contagion equations to

analyze the disease spread in pedestrian crowds. The focus is to study the impact of the

presence of stationary or moving obstacles, with special emphasis on the influence of contact

times for air-borne diseases.

3. Derive a macroscopic model from a microscopic rational behaviour model and numerically

investigate the model and compare it with social force-based models under various density

scenarios.

1.4 Structure of the Thesis
Following the objectives outlined above, the thesis is structured as follows :

Chapter 2 reviews the different modelling approaches of pedestrian flow - microscopic (particles-

based), mesoscopic (gas-kinetic) and macroscopic (fluid-dynamic) models. The individual based

social/behavioural force model and the hydrodynamic Hughes model are explained in detail as they

form the basis for the pedestrian models we have considered in the chapters that follow in this thesis.

Particular emphasis is given to outlining the bottom-up approach of developing a meso/macro

model from a micro model. Further to this, a general idea on meshfree methods, their advantages

and limitations, and the purpose of using the method for interacting particle problems are discussed.

The finite pointset method (FPM)based on least square approximations is described in detail. Also,

we recount the fast marching method (FMM) used for solving Hamilton-Jacobi equations and

explain how the eikonal equation can be solved using FMM in the context of meshfree grids.

Chapter 3 describes a mathematical framework to study pedestrian interaction with moving

obstacles. We prescribe the hydrodynamic pedestrian model coupled with either passive (one-way

coupling) or dynamic (two-way coupling) obstacle kinematics. We explain in detail how this

coupling is handled in the numerical framework. The meshfree formulation of equations, the

grid management for moving geometries and the procedure to implement boundary conditions are

construed. Numerical examples of classical test cases are considered to exhibit pedestrian dynamics

in shared spaces.

In Chapter 4, we extend the framework developed in Chapter 3 to a pedestrian-vehicular interaction

model. The described model is illustrated for different numerical test cases involving one-lane and

two-lane roads and various pedestrian crossing scenarios.

Chapter 5 establishes a coupled model to analyse disease contagion in pedestrians. A hydrodynamic

multi-group pedestrian model is described starting from a kinetic approach and coupled to an SEIR-

based disease model. Scenarios involving uni-directional and bi-directional flow of pedestrians

in the absence as well as the presence of static or dynamic obstacles are analysed. The influence

of contact time on the infection spread, i.e., for the susceptible to become exposed, is examined

thoroughly.
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Chapter 6 is a comparative numerical study on models involving social force based interactions

against that modelled on cognitive heuristics-based force terms. We show how a macroscopic

equivalent of the microscopic rational behaviour model is formally derived via mean-field kinetic

theory and moment methods. The interaction force terms in the microscopic and macroscopic

models are scrutinised by analysing them in multiple cases - involving just two pedestrians or a

group of pedestrians (varying density cases) and obstacles.

Chapter 7 briefly discusses and draws conclusions on the work in this thesis.
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2 Preliminaries

2.1 Pedestrian Models
Mathematical models for pedestrians can be formulated with different methodologies and cate-

gorised based on technicalities and phenomenological observations. For instance, depending on the

scale of the independent variable, they are either discrete or continuous. Based on how the process

is described, they are either stochastic or deterministic. And based on the scale of the system and

level of description, they are either microscopic, mesoscopic or macroscopic. In the work in this

thesis, only continuous models of the deterministic type are considered. Continuous models provide

information at every instance of time (which is the independent variable in our models); that is,

time is regarded as a continuous variable. And deterministic models do not involve any randomness

or stochasticity. We use models at different scales of description - micro, meso and macro - in the

chapters that follow. To provide a preliminary idea to the reader, we review below the different

modelling scales and some models from the literature necessary for our work.

2.1.1 Microscopic Models

Microscopic modelling involves describing the dynamics of every single pedestrian, also called an

agent, by considering the influence of their interactions with other pedestrians or the environment

and also their own internal motivation to act. These models are also known as individual based

models (IBM) or agent based models. The individuals are usually treated as homogeneous particles.

Microscopic models are expressed as systems of ordinary differential equations or difference

equations, usually non-linear. The position and velocity of each pedestrian act as the dependent

variables and define its state in the system. The general form of such second-order systems of ODE

for N pedestrians is given as,

˙⃗xi(t) = v⃗i(t) , ˙⃗vi(t) = acceleration terms , i = 1,2, ...,N . (2.1)

Cellular Automata Models

Cellular Automata (CA) models were introduced over two decades ago [27, 67, 130]. Inspired

by the motion of ants via chemotaxis [25], floor field CA models were developed, see Refs. [36],

[107] and [134]. In these models, the domain is modelled as a regular grid, and the pedestrians

are simulated as entities occupying the cells. Rules based algorithms are devised to update the

distribution of pedestrians in these cells. Each pedestrian, at any given discrete time step, has a

choice to either stay in the same cell or move out of its current cell in any of the directions (usually

8 in a rectangular grid) depending on the probability assigned for the same using a preference

matrix. The probability distribution for each pedestrian (entity) is defined and modified according
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to the effects of interaction with other entities and obstacles.

Social Force Models

The concept of social forces to model pedestrian dynamics was introduced by [82]. It is based on

the theory that pedestrian crowd moves in a social field [117] and they are subject to non-Newtonian

forces - the so-called ‘social’ forces - which describe the self-propelling force towards a target,

interaction forces between each other and interactive forces with the environment. The prototypical

equations for such a model are the kinematic equations. The temporal change of location rα of

pedestrian α obeys the equation:
drα(t)

dt
= vα(t). (2.2)

And the velocity changes are given by the acceleration equation:

dvα(t)
dt

= Iα(t)+ηα(t), (2.3)

where Iα(t) denotes the sum of social forces influencing the pedestrian α and ηα(t) are individual

fluctuations reflecting unsymmetrical behavioural variations.

Helbing formulated a social force model based on the following observations:

1. Each pedestrian α is trying to reach his or her destination by the shortest possible polygonal

path in a desired direction e0
α with a desired speed v0

α . The actual velocity vα gets adapted to

the desired velocity in a certain time τα .

2. The pedestrians interact with the other pedestrians in their vicinity. In particular, they keep

a distance from the others to avoid collisions. This repulsive force is given by appropriate

potentials.

3. They repel away from obstacles such as walls and are attracted by objects like window

displays and artists.

Thus, the systematic part Iα(t) of acceleration force is given by:

Iα(t) =
1

τα

(v0
αe0

α − vα)+ ∑
β ̸=α

Iαβ (t)+∑
B

IαB(t)+∑
k

Iαk(t), (2.4)

where Iαβ (t), IαB(t) are the repulsive forces towards other pedestrians and obstacles, respectively,

and Iαk(t) are the attractive forces towards other objects. The distance-dependent interaction force

can be given a simple circular or elliptical specification. For panicking pedestrians, additional

physical interaction forces due to friction during collision exists.

The model is capable of handling uni- and multi-directional flows, including intersecting flows.

Numerous self-organisation phenomena, like lane formation, stop-and-go flows and stripe for-

mation in intersecting flows, have been described using this model. The spatiotemporal patterns

observed emerge due to the nonlinear interactions of pedestrians, while there are no strategies or

communication or imitation of behaviour by pedestrians. Moreover, though the model is completely

symmetric, all the collective behaviour, like freezing by heating and faster is slower effect, are
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symmetry-breaking phenomena. The model has since been revised and extended further to study

various events, such as evacuation [80] and panic [81]. A comprehensive review of the different

dynamical patterns and phenomena is provided in [40].

Some other microscopic modelling techniques include magnetic force models [135], queuing

network models [162], optimal velocity models [132] and heuristics or vision-based models [129].

We observe that the system under consideration is a discrete system with a finite number of

particles. Hence, microscopic scale provide the perfect framework for modelling them. But the

main drawback of such models is the fact that they are suitable to study only small systems. As

the number of pedestrians increases, the models become increasingly computationally expensive

and infeasible. Further, deterministic knowledge of minute details of individual behaviour is not

practically available for modelling; there are always fluctuations or randomness involved, say in

terms of initial conditions.

2.1.2 Kinetic Models

The mesoscopic scale models involve deriving Boltzmann-like equations for the evolution of the

probability distribution function of the position and velocity of pedestrians, f (t, x⃗, v⃗), where f is

totally integrable. This is motivated by the kinetic theory of gases [19, 24]. But while in the kinetic

theory of classical particles, the interactions are reversible and follow the conservation of mass,

momentum and energy, the interactions in self-propelled particle systems are non-conservative,

irreversible, non-linearly additive and non-local. They are hence called ‘active’ particles [18,

21]], whose motion is dictated by individual/collective social strategies. This is observed in other

non-equilibrium systems as well, for instance, biological systems [12]. The collision integral or

operator in the Boltzmann equations here is defined using particles’ number density balance in

any given control volume, which is determined by the microscopic modelling of interactions of

any given test particle with the field particles. The macroscopic quantities like density and mean

velocity are obtained as moments of the distribution function f . A prototype of kinetic models is

given by the following equation:

∂t f + v.∇x f +∇v.(F f ) = J [ f ]

The kinetic theory approach, in most cases, involves a continuity assumption, as the state of a

system is described using continuous probability density functions. Such an assumption would be

valid only in large or medium-sized systems; that is, the pedestrian density should be large enough.

To deal with the criticisms on the continuous velocity models, discrete velocity models have been

developed too [19]. Further, the kinetic approach has been developed to study dynamics in bounded

domains with [102] and without obstacles [8].

2.1.3 Macroscopic Models

The macroscopic approach approximates the system as a continuum flow and describes it using

systems of partial differential equations. Herein, the conservation laws for mass and linear momen-

tum provide the evolution equations for macroscopic quantities like density and mean velocity. A
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general structure is given as :

∂tρ +∇x.(ρU⃗) = 0 ,

∂tU⃗ +(U⃗ .∇x)U⃗ = F⃗ [ρ,U⃗ ] . (2.5)

We need to note that the continuum hypothesis is not entirely realistic in such systems. Further

corrections need to be incorporated since they do not, in reality, conserve momentum and energy.

Also, the hypothesis is strictly restricted to high-density scenarios.

Classically, if only a continuity equation (conservation of mass) is involved, with an appropriate

closure equation linking velocity and density, we have a first-order model [43, 90, 95]. While

second-order models involve the continuity and momentum equation coupled together, along with

the suitable phenomenological model for the acceleration term F⃗ . Three classes of second-order

models differing on how the acceleration term is defined and their qualitative analysis is detailed

in [23] and [54]. The distinction revolves around the term either involving acceleration towards an

optimal velocity/path or involving a pressure-like density gradient.

Henderson initiated the macroscopic modelling by conjecturing that pedestrian crowds behave

similarly to gases or fluids. Henderson’s fluid dynamic approach, see [83], was later extended by

Hughes via the idea of a potential function in the domain to incorporate more geometric information

in a first-order model, see [94, 95]. Additional developments of the same were attempted by [52]

and [92].

Hughes Model

Hughes proposes a simple first-order model by considering a homogeneous group of pedestrians

in a bounded domain. The 2D model is described using the continuity equation (conservation of

mass) of fluid mechanics, given by the first equation of Eqn. (2.5). Hughes makes the following

three hypotheses on pedestrian behaviour -

Hypothesis 1 : The walking speed of pedestrians is a function of density of the flow; thatis,

u = V (ρ)φ̂x , v = V (ρ)φ̂y ,

where φ̂x and φ̂y are the direction cosines.

Hypothesis 2 : Pedestrians have a common purpose-oriented potential φ and the motion is always

in a direction perpendicular to it, that is,

φ̂x =
−∂φ

∂x√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
, φ̂y =

−∂φ

∂y√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

Hypothesis 3 : Pedestrians try to find the shortest time of travel but also try to avoid high-density

regions. This is translated to the distance between potentials being proportional to the
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pedestrian speed, that means,

1√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
= D(ρ)

√
u2 + v2 ,

where D(ρ) factors in discomfort at high densities.

Hence, the governing equation is:

−∂ρ

∂ t
+

∂

∂x

(
ρD(ρ)V 2(ρ)

∂φ

∂x

)
+

∂

∂y

(
ρD(ρ)V 2(ρ)

∂φ

∂y

)
= 0 . (2.6)

This equation is supplemented with appropriate boundary conditions, and the relations V (ρ) and

D(ρ) are defined via simple theories following traffic flow. Also, we note the model can be

extended for inhomogeneous crowds easily. Hughes also discusses the mathematical properties

of the system, flow conditions - supercritical or subcritical and conformal invariance of equations.

The model is similar to the Lighthill–Whitham–Richard (LWR) model of traffic flow [118]. The

major limitation in such first-order models is the predefined formulation of speed-density relations.

It is quite restrictive to assume that speed only depends on the macroscopic quantity. In reality,

various factors affect the walking speed of pedestrians. In [92], Huang et al. reformulated this

model and described how the potential function could be interpreted as an instantaneous total cost

to the destination and hence essentially the hypotheses translates to -

||∇φ ||=C(ρ,x,y, t) , (2.7)

the so-called “Eikonal Equation” with cost functional C with

C (ρ,x,y, t) :=
1

D(ρ)V (ρ)
.

We later describe in Chapter 3 how this idea of potential functions is explored in the model(s) we

use.

More macroscopic models are seen in [60] and [143]. Elaborate reviews of the different models,

along with a discussion of their advantages and limitations, can be found in [22] and [81].

Modelling at each scale has its own advantages and limitations, as discussed above. The appropriate

modelling scale for each scenario depends on several factors, like the size of the system and what

sort of information is required from the system. We refer to [10] for a recent review on the models

on kinetic and macroscopic scales.

2.1.4 Hierarchy of Models - Bottom-up Approach

The inquiry into deriving the macroscopic properties of physical systems from the microscopic

properties of their constituents (molecules, atoms etc.) led to the foundations of statistical mechanics.

The problem was solved mathematically via the kinetic theory of gases, pioneered by [29] and [124].

Kinetic models, which describe the density distribution of particles, act as a bridge between the

microscopic and macroscopic scales of models.
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For N interacting particles, the Liouville equation governs the evolution of N-particle distribution

(probability density function (pdf) fN) in the phase space of position and velocity. Using integra-

tion by parts, the Liouville equation can be converted into a chain of equations called BBGKY

(Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, where any s-particle pdf is related to the

s+1-particle pdf. Since these equations are coupled and not closed, we need a closure relation to

make sense of the full Liouville equation. In a special case for the one-particle pdf f , the Boltzmann

equation is obtained from the Liouville equation by a limiting process using the Boltzmann-Grad

limit (radius of hard sphere δ → 0 and N → ∞). Here, the particle interactions enter the equation

via collision operators. There are other approximations which can also truncate the chain and render

a solution to the BBGKY form.

Similar to the Boltzmann equation, mean-field approximations for N-body problem leads to an

evolution equation for the probability density distribution of a single particle under appropriate

scaling and in the limit N → ∞. Under the empirical measure, we get the the mean-field kinetic

model, wherein the interactions are modeled through the kernel mappings. A proof of the global

existence of the weak solution to the mean-field kinetic equation is provided in [177].

Formal derivation of the fluid models via the hydrodynamic limits of the Boltzmann equations can

be provided by applying different perturbation techniques - due to Hilbert [86] or Chapman [39], or

Enskog [57]. Later, a method of moments was proposed by Grad [73], which involved deriving the

conservation laws by multiplying the kinetic model with v0, v , v2 etc. and integrating w.r.t. v. The

zeroth moment of f is bulk density ρ , the first moment is momentum ρ u, and the second moment

is energy. A system of equations is obtained through this method, and a state relation is required

to close the system. This method of moments is employed in this thesis to derive the continuous

macroscopic model from their kinetic equivalents in Chapter 5. The whole idea of a hierarchy of

models starting from the individual IBM to the CM discussed here is demonstrated via the detailed

derivation in Chapter 6. A similar derivation has been employed in [60] to derive the macroscopic

pedestrian model in Section 3.2. We also refer to [49] and [50].

2.1.5 Eikonal Equation

Eikonal equation is a first order partial differential equation describing the propagation of wavefronts

in a medium with varying refractive index. The equation takes the form of a Hamilton-Jacobi

equation, and its solution gives the phase of the wavefronts, which can be used to determine the

direction of wave propagation and the intensity of the wave. Mathematically, the classical eikonal

equation is given by,

||∇φ(x)||2 = n2(x) ,

where n(x) is the refractive index of the medium at point x and φ is the wavefront phase. Eikonal

equations arise in the study of non-linear Maxwell’s equations and provide a link between wave

optics and geometric ray optics. Another prominent application of eikonal equations is in approx-

imating the travel times of seismic waves in geophysics [106, 148]. For this formulation, if we
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consider an open set Ω with boundary ∂Ω, then the solution φ to the equation

||∇φ(x)||2 = 1
F (x)

,x ∈ Ω , φ(x) = q(x)x ∈ ∂Ω ,

where F is speed and q is a Lipschitz continuous cost function and , gives the shortest time of

travel from x to ∂Ω. The eikonal equation has many applications in image processing, robotic path

planning and in differential games.

2.2 Mesh-free Methods
Numerous methods have been developed over the years to solve partial differential equations

(PDEs), many of them being general methods and some being special to the class of PDEs, say

hyperbolic or elliptic, we have to solve. There are two main approaches for these numerical methods

- one direct, called strong form methods and one indirect, called weak form methods. Strong form

methods discretise and solve the PDEs directly, and weak form methods establish an equivalent

system, usually in integral form, that governs the physical problem and solves them. The finite

difference method (FDM), finite volume method (FVM) and collocation method are examples of

strong form methods, while the finite element method (FEM) is a weak from method. Methods like

FDM and FVM use fixed grids for the discretisation, with the dependent variables being evaluated

at grid points (also called cell centres in the case of FVM).

On the other hand, meshfree methods do not involve predefined meshes. They essentially use

a set of scattered nodes within the problem domain and the boundaries. The functional values

are approximated locally using these nodes. And a set of algebraic equations are devised for the

domain. To approximate the unknown function, ‘shape (basis) functions’ are used. These basis

functions are locally supported, only a small set of nodes in the immediate neighbourhood are

used for evaluation and the shape function is considered zero outside this local neighbourhood.

Such shape functions are said to have ‘compact support’, and the local neighbourhood is called

the support domain or influence neighbourhood. The shape functions can be defined in integral,

differential or even series form. In meshfree methods, both strong and weak forms exist. There

are a variety of meshfree methods using local nodes for function approximation, like Smooth

Particle Hydrodynamics (SPH) method, meshless local Petrov–Galerkin (MLPG) method, the point

interpolation method etc. See [119] for details on different kinds of meshfree methods. One of

the categories of meshless methods is particle methods, and the one described here has a strong

formulation.

Meshless methods have numerous advantages over grid-based methods. Grid-based methods

typically require a structured or unstructured grid, and this process of grid generation can be time-

consuming, especially for complex geometries. Meshless methods are better suited for handling

complex geometries, and they lead to fewer problems with accuracy or stability around irregular

boundaries or regions with strong gradients. Additionally, they are more easily adaptable to moving

boundary problems, such as those involving fluid-structure interaction. Further to this, meshless

methods utilize less memory than mesh-based methods, and this proves beneficial when we need
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to scale the grid to higher dimensions. Mesh-based methods are quite impractical, as they lead to

an exponential growth in the number of grid points required to maintain accuracy in such cases.

Moreover, meshfree methods are better suited for parallel computing and cause lesser issues, like

load balancing between nodes involved in distributed computing, in large-scale problems. All of

these factors make meshfree methods computationally less expensive than traditional grid-based

methods. Apart from this, we see that meshless methods do not have connectivity constraints,

that is, nodes can be located anywhere, and hence they can easily handle singularities. The use of

interpolation techniques leads to smoother solutions and also helps in handling discontinuities.

While meshless methods offer a significant number of advantages over mesh-based methods, they

have limitations too. They may lead to higher computational costs for some particular problems, as

they can involve numerical integration over unstructured domains. Since these methods are often

dependent on smoothing parameters that determine the size of the influence domain, the choice

of these parameters can have an impact on the accuracy and stability. Moreover, finding optimal

values of these parameters is a challenge. Similarly, as the method relies heavily on the distribution

of data points and their sampling density, it is prone to errors if the data distribution is not reflective

of the underlying system. Lastly, as these methods are relatively new, they lack well-established

standards and conventions like traditional methods. Hence, it is sometimes difficult to establish

practices for using it in different applications.

2.2.1 Finite Point Set Method

The finite point set method is a generalised finite difference method. In this method, a point cloud

in the computational domain acts as numerical grid points. FPM is a strong formulation and models

differential equations by the direct approximation of differential operators.

Point Cloud

Let Ω be a computational domain with boundary Γ. We discretise the interior of the domain with

a set of particles, called interior particles or interior points/nodes, and the boundary with a set of

particles, called boundary particles or boundary points/nodes. The initial distribution of the point

cloud is typically random (can be structured too), but whose resolution is prescribed by a smoothing

length, h = h(x, t).

The boundary is discretised first, by considering it as piece-wise linear segments (lines or triangles

or quadrilaterals) and populating these segments starting from their midpoint. Once the boundary

is discretised, layer of interior particles are initialised inside the domain in accordance with the

distance criterion. We successively create such layers of particles from the already available layers

of points till the centre of the domain is reached.

Approximations

Let x be an arbitrary point in the domain where we need to evaluate an unknown function Z(x)

and its spatial derivatives from the neighbouring particles. We consider a weight function w with

compact support, such that the particles closer to x have a larger influence than those away from it.
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Here, we use a truncated Gaussian weight function,

w(x j) =

 exp
(
−

α ||x j − x||2

h2

)
, ifx j ≤ h

0 , elsewhere

where α is a positive constant and x j ∈ N (x) with N (x) being the set of ‘m′ neighbours of x.

Consider the Taylor series approximations of Z(x j) , j = 1,2, ...m about x:

Z(x j) = Z(x)+
2

∑
k=1

Zk(x)(xk j − xk)+
1
2

2

∑
k,l=1

Zkl(x)(xk j − xk)(xl j − xk)+ e j . (2.8)

These can be written in matrix form as: Ma = b− e, that is,

M =



1 1 1 1 1 1

1 dx11 dx21
1
2 dx2

11 dx11dx21
1
2 dx2

21

1 dx12 dx22
1
2 dx2

12 dx12dx22
1
2 dx2

22
...

...
...

...
...

...

1 dx1m dx2m
1
2 dx2

1m dx1mdx2m
1
2 dx2

2m


,

and

a =



Z(x)

Z1(x)

Z2(x)

Z11(x)

Z12(x)

Z22(x)


,b =


Z(x1)

Z(x2)
...

Z(xm)

 ,e =


e1

e2
...

em

 .

Since in most cases we ensure that m > 6, this is an over-determined system if we consider to

take e = 0. So, to find the unknowns, method of weighted least squares is used. We minimize the

functional (quadratic form):

J =
m

∑
j=1

w je2
j .

If we considered a weighted matrix W = δi jw j, then

J = (Ma−b)TW (Ma−b) .

The minimization of J gives,

a = (MTWM)−1(MTW )b .

Each row of a gives the derivatives’ values as a linear combination of the known values of the

function at the neighbouring points in N (x). The neighbour lists are usually large, i.e. m is large,

and so we have a sparse linear system. And the system can be solved by any of the iterative solvers.
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Neighbour Searching

The efficiency of neighbour-searching algorithms is imperative in particle methods. For each

particle xi, the set of nodes at a distance less than h from it are considered the nearest neighbours.

But the crude way of computing pairwise distances for each pair of particles and then finding the

neighbour list is extremely expensive. In order to avoid this, the domain is split into cells such that

each particle is assigned a cell. Neighbours are then detected by only considering the nodes within

the same cell or adjacent ones sharing an edge.

Addition and Deletion/Merging of Points

In order to establish the quality and initial density of the cloud, it is ensured that no two points are

closer than rminh distance apart and that every sphere of radius rmaxh has at least one point. This

implies that the distance between any point and its nearest neighbour (inter-point distance) lies

within the range (rmin, rmax). But the movement of the point cloud according to the dynamics of

the fluid may sometimes result in them coming too close, forming clusters, or moving far apart,

creating holes in the domain. To emend such anomalies, we include additional particles in the

holes or remove particles from the clustered ones. On addition of particles, we need to approximate

the physical quantities there. Again, we use interpolation from the neighbouring particles for this.

Removing particles is pretty straightforward; we either add one particle at the centre of mass of

the two particles or remove one out of them. Also, we mention that when a particle needs to be

removed, boundary (rigid or free surface) particles have a higher preference to be retained than the

interior ones. For further details, we refer to [164], [159] and [158].

2.3 Solving the Eikonal Equation
Eikonal equation can be solved via different approaches depending on the specific problem being

solved. One approach involves converting the eikonal equation into a time-dependent level-set

equation which can be solved by higher-order methods. Finite volume methods [6], Galerkin

methods [17] or non-oscillatory methods [138] can be used to solve this time-dependent Hamilton-

Jacobi equation. These methods are conditionally stable and require a lot of time for convergence

in the entire domain due to the finite speed of propagation. Convergence to a weak solution

can be seen as limits of viscosity solutions for Hamilton-Jacobi equations [44]. The level set

method was developed to solve these higher-order equations in [137]. A second approach is to

consider the equation as a stationary boundary value problem and devise algorithms to solve the

non-linear system of equations on discretisation. In this case, finite difference methods can be

applied directly for upwind approximations, and the discretised equations can be solved iteratively.

Fast level set techniques for solving stationary problems have been developed. Amongst the various

methods available in literature for solving the eikonal equation, the front marching methods like

fast sweeping method [178, 179] and fast marching methods are popular because they are fast and

unconditionally stable. The fast sweeping method is an iterative algorithm and uses non-linear

upwinding along with Gauss-Seidel like iterative procedure for alternating sweeping in predefined
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directions. We use the fast marching method, as described below, in the numerical computations in

this thesis work.

We mention that solving the Eikonal equation by the classical method of characteristics is possible

in the local sense. But global solutions cannot be obtained due to intersecting characteristics causing

shocks. Hence, we devote to finding viscosity solutions. A crucial feature of the Eikonal equation

is that the trajectory of characteristics and the gradient lines of the viscosity solution coincide. With

respect to the numerical approximations of solutions, this feature has helped with the development

of Dijkstra-like algorithms, such as, the level set method.

2.3.1 Fast Marching Method

Fast marching method (FMM) is a single-pass algorithm for solving the Eikonal equation without

any iteration. It uses the “causality” principle where information propagates in a single direction

from smaller values of the function to larger ones, from one grid point to another. The solution is

obtained by moving “upwind” from the boundary. The technique involves upwind finite difference

approximations of the eikonal operators in such a way that the causality relationship is reflected.

The algorithm is fast because of computations being restricted to a narrow band around the front.

The narrow band is marched forward while the evaluated points are frozen, and new points are

added to the band. The algorithm, as described in [153], involves the following steps:

1. Tag all the points in boundary where value is known as ‘Known’.

2. Add all the neighbours of points in ‘Known’ to the ‘Narrow’ band. Add all other points to

‘Far’ band.

3. Let A be the trial point with the minimum value.

4. Add A to ‘Known’, remove it from ‘Narrow’ band.

5. Update ‘Narrow’ band - find neighbours of A , if any of them is in ‘Far’, remove them from

‘Far’ and add to ‘Narrow’.

6. Recompute the values at all the points in ‘Narrow’.

7. Return to Step 3.

The efficiency of the algorithm depends heavily on the method used to identify the grid point

with the smallest value in the ‘Narrow’ band. A min-heap data structure is an efficient scheme

discussed in [155] and utilised here. Given Mn points in the heap, this data structure sorts the heap

in O(logMn) steps. So the total computational time of the FMM for a mesh with Mn points is

O(Mn logMn) steps as each mesh point is visited once to add to ‘Known’ and every time the heap is

reordered. The fast marching method was introduced for solving static Hamilton-Jacobi equations

in rectangular or triangulated grids. We describe below how the least square approximations

of the FPM approach can be adapted to solve the Eikonal equation on any grid - orthogonal,

non-orthogonal or meshfree.
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2.3.2 Using FPM

Consider the Eikonal equation:

||∇Φ(x)||2 = F 2(x) ,x ∈ Ω . (2.9)

Suppose the domain Ω is discretised by m points X1,X2, ...,Xm. Let A be the set of nodes where

the solution Φ is already available or computed. Consider a node X̃ where we need to compute Φ.

Let NX̃ be the set of neighbours of X̃ in a ball of radius h and NX̃A = NX̃ ∩A .

If |NX̃A |= 1, say, NX̃A = {X1}, then the value of Φ at X̃ is given as

Φ(X̃) = Φ(X1)+F (X̃)||X̃ −X1|| .

If |NX̃A | ≥ 2, say, NX̃A = {X1,X2,X3, ...,Xm}, then we can approximate the value of Φ at X̃ via

Taylor series similar to the description in Section 2.2.1. For j = 1,2, ...,m , denote Φ(X j) = Φ j and

Φ(X̃) = Φ̃, then we have,

Φ j = Φ̃+
2

∑
k=1

Φ̃kdXk j + e j,

where dXk j = Xk j − X̃k, e j is the error and Φ̃1 and Φ̃2 are x− and y− partial derivatives of Φ̃,

respectively.

Now, we can write the equation in matrix form as:

M.a = b, (2.10)

where

M =


dX11 dX21

dX12 dX22
...

...

dX1m dX2m

 ,b =


Φ1 − Φ̃

Φ2 − Φ̃

...

Φm − Φ̃

 ,a =

(
Φ1

Φ2

)
.

Now, we multiply both sides of Eqn. (2.10) with MTW , where W = diag(w1,w2, . . . ,wm), with

Gaussian weights. Then, we get the equation,

P.a = b̃,

where

P =

(
∑ j w jdX2

1 j ∑ j w jdX1 jdX2 j

∑ j w jdX1 jdX2 j ∑ j w jdX2
2 j

)
and b̃ =

(
∑ j w jdX1 j(Φ j − Φ̃)

∑ j w jdX2 j(Φ j − Φ̃)

)
.

Let Q = P−1. Then, we get, a = Q.b̃, so that,

Φ̃1 = l11 + l12Φ̃andΦ̃2 = l21 + l22Φ̃ ,

where

l11 = ∑
j

w j(Q11dX1 j +Q12dX2 j)Φ j , l12 = ∑
j

w j(Q11dX1 j +Q12dX2 j) ,
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and

l21 = ∑
j

w j(Q21dX1 j +Q22dX2 j)Φ j , l22 = ∑
j

w j(Q21dX1 j +Q22dX2 j) .

Substituting in the Eikonal equation, we get the quadratic equation in Φ̃,

(l2
12 + l2

22)Φ̃
2 +2(l11l12 + l21l22)Φ̃+ l2

11 + l2
21 = F 2.

The quadratic equation has two solutions. Considering the upwind structure of the equation and

method, the information propagates from smaller to larger values of Φ. So, we take the larger value

out of the two solutions, which would be the front moving outwards from the NX̃A . Moreover, we

need to check the causality conditions :

Φ̃ ≥ Φ j and∇Φ̃.∇Φ j > 0 ∀X j ∈ NX̃A .

2.4 Velocity-Density Relation / Fundamental Diagrams
A fundamental relation between the macroscopic variables flow rate, density and mean velocity :

q = vρ , is an important equation in the modelling of traffic and crowd flow. If flux q is plotted as a

function of density ρ , we have what is referred to as the ‘fundamental diagram’. And the plot of

velocity v as a function of density ρ is called the ‘velocity diagram’.

In the context of traffic modelling, this equation serves as a closure relation for the first-order

macroscopic models, which are often obtained from conservation laws. Also, the equilibrium

velocity is modelled via such velocity-density relations in homogeneous equilibrium traffic flow.

We mention some simple models from literature here [110, 151].

Greenshield’s model: A linear model proposed by Greenshield [75] -

V (ρ) =Vmax

(
1− ρ

ρmax

)
. (2.11)

Greenberg’s model: Greenberg, in [74], proposed a logarithmic relation -

V (ρ) = λ ln
(

1
ρ

)
. (2.12)

Bonzanni-Mussone’s model from [30] -

V (ρ) = exp
[
−α

(
ρ

1−ρ

)]
. (2.13)

Kühne’s model from [115]

V (ρ) =Vmax

(
1−
(

ρ

ρmax

)n1
)n2

. (2.14)

The above models were deduced from experimental studies for different traffic situations. As the

macroscopic modelling of pedestrian crowd followed from the traffic models, these relations are

employed in the speed-density relations for pedestrian models, for example, the relation f in the
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Hughes model. Also, the fundamental diagram is a quantitative benchmark for pedestrian models.

Virkler and Elayadath [167] studied the fundamental relation and compared various speed-density

models - Greenshields, Greenbreg, bell shape, 2- and 3-regime linear - using video recordings

in a pedestrian tunnel. Lam et al. [116] investigated speed-density-flow conditions for different

pedestrian facilities such as walkways, crosswalks and stairways in transit stations. Their studies

concluded that no single model fits all facilities, and different kinds of speed–density models should

be adopted for different pedestrian facilities.



3 Pedestrian Obstacle Interaction

3.1 Introduction
In a social environment, humans encounter stationary or moving obstacles while manoeuvring

various spaces to reach their destinations. Different voluntary and involuntary strategies are used

by humans to avoid collisions in such scenarios. An understanding of when and whether a collision

will occur is essential; see [47]. This information forms the basis of collision avoidance models,

as seen in [35]. Numerous experimental studies have been conducted to understand pedestrian

collision avoidance behaviour [108].

A major problem which led to the research into obstacle avoidance was the improvement of

evacuation efficiency. It has been seen via experimental studies that the presence of a stationary

obstacle at bottlenecks can improve evacuation efficiency [156]. The obstacle’s position, size and

shape all play a role in the evacuation strategy. Moving obstacles have a similar effect [174]; now,

their speed also plays a factor. These moving obstacles, such as robots, are used to regulate the flow

or navigate to proper exits [169, 175]. Extensive research on pedestrian interactions with moving

obstacles is still limited.

Agent-based models taking inspiration from robot motion planning techniques have been used for

collision avoidance in literature [64]. Such a velocity-obstacle-based approach models the obstacle

as a region to be avoided and makes velocity-based predictions to prevent collisions [46]. The

concept of a dynamic potential field to navigate a domain with obstacles without explicit collision

avoidance was proposed in [166].

In this work, we propose a model to study such interactions in shared environments. The macro-

scopic model for pedestrian motion is combined with the proposed kinematic equations of obstacle

motion wherein the feedback force terms are modelled via Hughes’s approach of potential functions

obtained through an eikonal equation. For the numerical solutions, an immersed boundary approach

is used along with the mesh-free particle method, as seen in [60].

The chapter is organised as follows: in Sections 3.2 and 3.3, we describe the models for pedestrian

and obstacle motion; Section 3.4 explains the numerical method in detail, and we see some results

of the numerical simulation for different cases in Section 3.5.

3.2 Pedestrian Model
We consider the pedestrian model developed in [60], which combines a social force model [82] to a

Hughes-type model [94]. See Sections 2.1.1 and 2.1.3 for a brief description of these models.
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3.2.1 Microscopic Model

The microscopic model for N pedestrians with positions xi, i = 1,2, . . .N and velocities vi, i =

1,2, . . . ,N is

dxi = vi dt,

dvi = ∑
i ̸= j

I(xi − x j,vi − v j)dt +G(xi,vi,ρi)dt. (3.1)

The function I denotes the interaction force term between the pedestrians. I is given as the gradient

of an interaction potential. And the function G is the desired acceleration term which is based on

the eikonal solution φ . Here, as the eikonal solution dictates the trajectory of the pedestrians, G is

given as,

G(x,v,ρ) =
1
T

(
−V (ρ(x))

∇φ(x)
∥∇φ(x)∥

− v
)
. (3.2)

These equations are coupled to an eikonal equation,

V (ρ(x)) ||∇φ ||= 1 , x ∈ Ω , (3.3)

where V is a density dependant velocity function (cf. Section 2.4).

Interaction Forces

The interaction forces between pedestrians, I, in Eqn. (3.1), are modelled similar to the social forces

concept as described in Section 2.1.1. I(xi − x j,vi − v j) is the interaction force between pedestrians

at positions xi and x j moving with velocities vi and v j, respectively. The force can be modelled as a

pure repulsive force so that,

I(x,v) =
Cr

lr
exp
(
−∥x∥

lr

)
n̂ , (3.4)

where Cr is a repulsive strength and lr a length scale. Or it could be a linearly varying repulsive

force combined with dissipative effects, similar to that given in [60] as below:

I(x,v) =
(

kn(2Rr − x)n̂−µn⟨v,n⟩n̂−µt⟨v,n⊥⟩n⊥
)

H(2Rr − x), (3.5)

where H is a Heaviside function and Rr is an interaction radius. kn is the interaction strength. µn and

µt are the frictional coefficients, and n̂ and n⊥ are the unit vectors, in the normal and perpendicular

directions, respectively.

Relaxation Time

The relaxation time T denotes how fast the pedestrians can correct their current velocity to the

desired velocity.

Remark 3.1 The values for the parameters maximal density ρmax, maximal velocity Vmax and

relaxation time T in the above model are chosen from the literature on experimental studies [34].
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3.2.2 Hydrodynamic Model

The basic hydrodynamic model for pedestrian motion, comprising of the continuity and momentum

equations, coupled to the eikonal equation in Eqn. (3.3), is:

∂tρ +∇x.(ρU) = 0 ,

∂tU +(U.∇x)U = G(x,U,ρ)+ Î(ρ,U) ,

V (ρ(x)) ||∇φ || = 1 , x ∈ Ω . (3.6)

The macroscopic variables ρ and U here denote the density and average velocity of the pedestrians

(as a fluid). The detailed derivation from the microscopic model in Eqn. (3.1) to the macroscopic

model in Eqn. (3.6) via mean-field kinetics is provided in [60].

3.3 Equations for Moving Obstacle
We classify the obstacles into two - passive and dynamic and model their dynamics using simple

ODEs governing the movement of their centre of mass.

3.3.1 Passive Obstacles

For the purpose of our study, we consider those obstacles as “passive”, which do not have a feedback

interaction. That is, these obstacles move along fixed trajectories and do not change their path or

speed depending on the presence/absence of the pedestrians in their vicinity. It means that there is

no need to provide any self-driven force to these obstacles. Their motion, as the motion of centre of

mass of the rigid obstacle, can be modelled independently as:

dx = veltot dt ,

veltot = Acos(ωt), (3.7)

where A is the amplitude and ω , the frequency of oscillatory motion of the obstacle, which defines

the velocity veltot of the obstacle.

3.3.2 Dynamic Obstacles

We consider those obstacles as “active”, which have a feedback interaction. They intake the

information from the environment and change their path and speed in order to avoid collisions with

other obstacles and pedestrians while moving towards a predefined and specific target/exit. Here,

the interaction between the pedestrians and moving active obstacle(s) is additionally modelled by

kinematic equations using a repulsive potential similar to the pedestrian-pedestrian interactions.

Also, a second eikonal equation is integrated for computing the path of the obstacle towards its

destination. The velocity update equation for the obstacle in this case based on these forces is given

as:

dxO
i = vO

i dt ,

dvO
i = ∑

j∈Np

IO(xO
i − x j,vO

i − v j)dt +GO(xO
i ,v

O
i ,ρi)dt , (3.8)
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where xO
i and vO

i are the position and velocity of the ith obstacle’s centre of mass (see Fig. 3.3),

Np is a neighbour list of pedestrians in the immediate vicinity of the obstacle, x j and v j are the

position and velocity of the jth pedestrian neighbour and ρi is the interpolated density of pedestrians

at xO
i . IO is specified as a negative gradient of an interaction potential IO = −∇PO and desired

acceleration GO is obtained from the gradient of the eikonal solution φ O for the obstacle. For a

density dependant velocity function V O, we have,

GO(xO,vO,ρ) =
1

T O

(
−V O(ρ(xO))

∇φ O(xO)

||∇φ O(xO)||
− vO

)
,

coupled to the eikonal equation

V O(ρ(x)) ||∇φ
O||= 1 , x ∈ Ω . (3.9)

Here, we take, PO as a pure repulsive Morse potential:

PO(x) =CO
r exp

(
−||x||

lO
r

)
, (3.10)

so that, we have IO similar to Eqn. (3.4),

IO(x,v) =
CO

r

lO
r

exp
(
−∥x∥

lO
r

)
n̂ . (3.11)

The coupling of the kinematic equations of the moving obstacle to the hydrodynamic model of

pedestrian motion is through the eikonal equation solving for φ O with density ρ of pedestrians.

3.4 Numerical method
For the purpose of the numerical simulation of the described model(s), we use a meshfree particle

method which is based on least square approximations [164], as described in Section 2.2.1.

3.4.1 Space and Time Discretization

For the numerical simulations, a Lagrangian formulation of the hydrodynamic equations in

Eqn. (3.6) is used in this method with the material derivatives as below:

dxi

dt
= Ui ,

dρi

dt
= −ρi ∇x.Ui ,

dUi

dt
= G(xi,Ui,δ ⋆ρ) + I ⋆ρ . (3.12)

And this system is coupled to the obstacle’s kinematic equations Eqn. (3.8). The convolution

integral of the interaction potential is evaluated by a first order integration rule:

Î(ρ,U) = I ⋆ρ ≈ ∑
j∈N

I(x− x j,U −U j)ρ j dVj,

where dVj is the local area around a particle. The resultant equations are solved by an explicit Euler

time discretization method in our simulations.



3.4 Numerical method 33

3.4.2 Grid

A mesh-free cloud of particles (mesh-free grid) is used to solve the pedestrian flow equations in

Lagrangian form, as described above. A separate fixed structured or unstructured grid is used to

solve the eikonal equation in the domain considered. The information from the irregular point

cloud, like density and velocity, is interpolated to the stationary eikonal grid to solve the eikonal

equation. See Section 2.3 for details on solving the eikonal solution. And the spatial derivatives of

the eikonal equation at any grid point of the mesh-free cloud are computed from the values of its

neighbouring grid points of the eikonal grid, using a weighted least-squares method as described in

Section 2.2.1.

To handle the moving obstacle, we use an immersed boundary approach. The grid points are

activated or deactivated according to the position of the moving obstacle, as shown in Fig. 3.1. The

points of the eikonal grid, which are completely inside the boundary of the obstacle, are deactivated

for calculations, and the points outside the boundaries are activated.

Figure 3.1 – Eikonal Grid with a Rectangular Obstacle (left) and Mesh-free Cloud (right)

3.4.3 Eikonal Equation

The eikonal equation is solved by a fast marching method [154] on the separate structured mesh,

see Section 2.3.1.

In the case of the passive obstacle, one eikonal equation pertaining to the pedestrian motion is

solved (see Eqn. (3.6)), while in the case of the active obstacle, two eikonal equations, one for

pedestrians and one for obstacle(s) (see Eqn. (3.9)), are solved.

The eikonal solution essentially incorporates the model’s hypothesis that the information about the

environment is available to the pedestrians/obstacles at any given time. This information includes

the position of the pedestrian cloud or obstacle/vehicles, the position of the walls, the position of

the exit doors and the edges of the roads. These pieces of information are mathematically provided

either as boundary condition(s), say for exit space in the domain, or via the density-dependant

function V (ρ) and V O(ρ). A cost to avoid higher density regions in the crowd is provided via

V/V O.
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Figure 3.2 – Eikonal Solution for pedestrians (left) and for obstacles (right)

Velocity-Density Relations

While solving for φ , the eikonal solution for pedestrians, as in Fig. 3.2 (left), we take (see Green-

shield’s model in Eqn. (2.11)),

V (ρ(x)) =Vmax(1−ρ(x)/ρmax) .

Here, ρ(x) is the density of pedestrians interpolated at a given location x or it is the artificial density

at a given location x if x is a point on the boundary walls or edges of the obstacle.

While solving for φ O, the eikonal solution for obstacle, as in Fig. 3.2 (right), we take for n1 > 0

(see Kühne’s model in Eqn. (2.14)),

V O(ρ(x)) =V O
max(1− (ρ(x)/ρmax)

n1) .

Here, ρ(x) is again the value of the density of pedestrians interpolated at a given location x or it is

the artificial density at a given location x if x is a point on the boundary walls.

The choice of this relation reflects the hypothesis that even if the density of the pedestrians is

very low at a given location, the obstacle changes its path or slows down to avoid the potential

collision. This is because a moving obstacle colliding with a pedestrian is far more dangerous

than a pedestrian-pedestrian collision. For example, the collision would be catastrophic in a real

situation with a vehicle as a moving obstacle, .

Boundary conditions for eikonal equation

1. Pedestrians: The inflow boundary of pedestrians is assigned a free boundary condition. The

outflow boundary is assigned a Dirichlet boundary condition with the value of φ assigned

to zero. The other boundaries of the domain and the boundaries of the obstacles are either

assigned Dirichlet boundary conditions with a high value for φ or considered as a no-slip

boundary after assigning a high artificial density on the boundaries to be reflected in the

velocity-density relations. The domain of the eikonal equation and, correspondingly, the

boundaries vary depending on the simulation scenario under consideration.
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Figure 3.3 – Centre of Mass

2. Obstacle: The inflow boundary of the obstacle(s) is assigned free boundary condition. The

outflow boundary is assigned a Dirichlet boundary condition with the value of φ O assigned to

zero. The boundaries of the obstacles are not considered for solving φ O. The other boundaries

are treated similarly to how they are treated while solving for φ .

3.4.4 Velocity Assignment of Active Obstacle

The motion of the rigid obstacle is mathematically considered as the motion of its centre of mass.

Here, we consider the centre of mass of the obstacle or vehicle to be the midpoint of the leading

edge of the moving obstacle, that is, the edge of the moving rectangular or square obstacle with

its outward normal same as the x−component of the unit velocity vector at a given instant of time.

Although physically, the centre of mass of the solid obstacle is different. For an obstacle moving to

the left direction, the centre of mass (xO,yO) is shown in Fig. 3.3.

The model equations for the obstacle or vehicle(s) are essentially the equations for the position and

velocity of their individual centre of mass. In our model, the gradient of the eikonal solution φ O for

the force term GO is evaluated at the centre of masses. While evaluating the interactive force IO,

we can either evaluate it at the centre of mass directly or take an average of the same around the

boundary of the obstacle.

3.4.5 Solution Procedure

To numerically solve the hydrodynamic pedestrian model coupled with the obstacle dynamics, we

use the following procedure -

1. Initialise the structured eikonal grid with initial conditions and boundary conditions for φ .

And initialise the meshfree particle cloud in the interior of the domain with initial density

and velocity. Further, initialise the boundary particles with the boundary conditions. In the

presence of dynamic obstacles, a second set of initial and boundary conditions for φ O is

assigned.

2. Activate or deactivate the eikonal grid based on the position of the obstacle(s), treating it like

an immersed boundary.
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3. Interpolate the density of pedestrians ρ from the meshfree particles onto the eikonal grid. For

each eikonal grid point, only the nearby neighbours are used for interpolation.

4. Solve the eikonal equation for pedestrians Eqn. (3.3) and find φ . For moving obstacles, find

φ O by solving Eqn. (3.9).

5. Evaluate the gradient values ∇φ at the meshfree particle points i = 1,2, ...,N in the interior

of the domain to evaluate the acceleration term G in the RHS of Eqn. (3.12).

6. Also, evaluate the interaction force I at each particle i.

7. Update Ui using Eqn. (3.12).

8. Update the density ρi using Eqn. (3.12).

9. Update the position of particles xi using Eqn. (3.12).

10. Update the position of moving obstacle(s). If the obstacle(s) are passive, update its position

and velocity using Eqn. (3.7). If we have dynamic obstacle(s), update using Eqn. (3.8).

11. Update time (here, fixed time steps are used). Repeat steps 2−10 for moving obstacles until

the final time is reached. For static obstacles, perform steps 2−5 only once at the initial time.

And then repeat steps 6−9 until the final time.

3.5 Numerical Results
Using the numerical method described above, we solved the model equations in Section 3.2 to

analyze the collision-avoidance behaviour of pedestrians and moving passive or dynamic obstacles.

In all the figures representing numerical simulations, note that the mesh-free particles used in

solving the hydrodynamic equations are shown as green circles. These do not represent pedestrians

physically.

In all our simulations, we consider a two-dimensional domain, a platform or corridor which is 100m

long and 50m wide. The top and bottom boundaries are rigid walls without any entry or exit. The

right boundary is the exit for pedestrians, and the left boundary is the exit for obstacles. Initially,

pedestrians are, for simplicity, concentrated in a rectangular region in the domain near the left

boundary and they intend to move towards the exit. And the obstacles considered are rectangular in

shape, 20m long and 10m wide for the passive case. The dynamic obstacles are 10m×5m. The

initial density of the pedestrians is taken as ρ = 1 ped/m2. For the present simulations, we do not

consider any continuous inflow of pedestrians. The computational details are as given in Table 3.1,

if not otherwise stated. We initialize the pedestrians with a distance of 2.1m. The mesh size for the

eikonal grid is ∆x = 1.0m. Explicit time integration with a fixed time step size of 0.002s is used in

our simulations.
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Parameter Value Parameter Value

Vmax 2 m/s V O
max 3 m/s

T 0.001 s T O 0.1 s

ρmax 10 ped/m2 Cr 4 m2/s2

n1 0.1 lr 1 m

Table 3.1 – Computational Details for Results in Section 3.5

3.5.1 Case 1: Passive Obstacle

Passive moving obstacles do not have a feedback interaction with the pedestrians and follow

predefined trajectories. We considered two different scenarios, pure translation (A ̸= 0,ω = 0)

and translation combined with oscillation (A ̸= 0,ω ̸= 0), and compared them with the case of a

stationary obstacle (A = 0,ω = 0). The left and middle subfigures in Fig. 3.4 show the case where

a pedestrian group interacts with a passive obstacle in translation.

We observe that when pedestrians interact with a passive obstacle(s), they adjust their path to avoid

collision with the obstacle. When the position of the static obstacle is available, the potential given

by the eikonal equation adjusts the path of the pedestrians. In the case of a moving obstacle, while

computing the numerical solution, the velocity of the obstacle is prescribed at each time step, and

the obstacle position is updated as in Eqn. (3.7). The pedestrians again gain information about

the moving obstacle through the eikonal solution in the domain. And they navigate the domain

accordingly. The path adjustment is made well in advance than the time instance of a head-on

collision, using the information available via the eikonal solution.

The presence of a moving obstacle slows down the pedestrians in terms of the time taken to navigate

the domain when compared to their behaviour in the presence of a static obstacle. This implies

that the pedestrians exit the domain faster in the presence of a stationary obstacle. Hence, the total

number of pedestrians in the domain decreases faster with time, as seen in the plot in Fig. 3.4. This

is expected as they have to adjust their path and speed continuously to move forward. Also, a larger

area around the moving obstacle (in the direction of its oscillation) is avoided by pedestrians.
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Figure 3.4 – Pedestrian interaction with a passive moving obstacle shown as red rectangle at time
t = 10s (left) and t = 20s (middle). (Right) Number of pedestrians-time graph for the three different
cases - stationary obstacle, passive obstacle in translation, passive obstacle in translation and oscillation.
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3.5.2 Case 2: Dynamic Obstacle

In the case of a dynamic moving obstacle, both the obstacle and pedestrians actively try to avoid

collisions with each other since there is a feedback interaction via the force terms (cf. Eqn. (3.6)

and Eqn. (3.8)). Fig. 3.5 shows a scenario wherein a group of pedestrians interact with a dynamic

obstacle. We observe that, though pedestrians and obstacles undergo path and speed changes, the

collision avoidance mechanism is primarily via a change of path by pedestrians and a change of

speed by obstacles. It is observed that when the obstacle faces the pedestrian crowd head-on, it first

avoids the collision and then later moves ahead on a direct path and with a constant speed when the

pedestrians have cleared the space ahead. Owing to the two-way interactions here, in comparison to

one-way interaction in the case of passive obstacle, the changes in trajectory of pedestrians is more

smoother, continuous and less abrupt. This leads to a lesser tendency of having a high-density of

pedestrian crowd near the corners of the leading edge of the obstacle, relative to a passive obstacle.

Nevertheless, the presence of any obstacle involves the crowd leading to high density near their

corners.
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Figure 3.5 – Pedestrian interaction with a dynamic moving obstacle (red rectangle) at time t = 5s (left),
t = 20s (middle) and t = 30s (right). Note that the green markers denote the Lagrangian mesh-free grid
points and not the physical pedestrians.

3.6 Grid Convergence
In order to understand the accuracy of our numerical method for the pedestrian model, we consider

the numerical simulation of pedestrian interaction with a static obstacle for different initial meshfree

particle spacing (see Fig. 3.6 ), say (∆x)p, keeping the mesh size of eikonal grid fixed at ∆x = 1.0m

and smoothing length h varying according to (∆x)p. We consider a reference mesh and evaluate

the errors relative to the values of the concerned function/variable on this reference grid. For

our purposes, we choose a reference particle spacing with (∆x)p = 0.25m and h = 0.625. The

density profiles for the different cases are compared at various time instances in Fig. 3.7. We

see that the densities match quite well for the finer and coarser grids of sizes (∆x)p = 0.25m and

(∆x)p = 0.5m/1.0m.
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Figure 3.6 – Density plots for pedestrian interaction with a static obstacle at time t = 20s for different
particle spacing.
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3.7 Conclusion
We have successfully coupled a hydrodynamic model for pedestrian motion with simple kine-

matic equations for moving obstacles via eikonal equations. Our model satisfactorily replicates

the collision-avoidance patterns observed in experimental scenarios like in [93]. But being a

macroscopic model, only moderate to high-density scenarios can be studied, and it is not possible

to analyze microscopic behavioural patterns. We can further study the path and speed changes

observed and make quantitative comparisons with other data, for example, in [68] and [160].

Also, exhaustive studies by changing the size or shape of the obstacle and of the domain can be

conducted. We note here that the numerical method used is particularly efficient to employ in

complex environments and changes in geometries. For more accurate results, parameters need to

be estimated from experimental or real data.
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4 Pedestrian Vehicular-Traffic Interac-
tion

4.1 Introduction
‘Shared spaces’ is rapidly becoming an inevitable part of urban street design and safety. Under-

standing how pedestrians and vehicles interact in such realms is hence essential for ensuring the

proper functioning of such facilities [11]. Additionally, with the automation of vehicles, challenging

research problems in this area are numerous and waiting to be tackled by mathematicians and

engineers alike. Hence, it is imperative to develop modelling techniques to combine pedestrian

and vehicular traffic models to arrive at hybrid models and demonstrate methods to analyse them

analytically or computationally.

Traffic flow modelling approaches can vary depending on how we choose to define the time

scale, continuous or discrete, as well as the description detail - microscopic, mesoscopic or

macroscopic. At the microscopic scale, the long-established way is the car following theory,

wherein each individual vehicle’s acceleration is prescribed in accordance with the stimulus

provided via interaction with the other vehicles analogous to particles in Newtonian mechanics.

Different models, either first or second-order ODEs, arise based on how the interactions are defined

using speed of vehicles, relative distance or relative velocity between vehicles, see Refs. [37, 38, 66,

70, 84, 144]. Follow-the-leader models assume that the acceleration response of a driver depends

only on the velocity of the leading vehicle. However, these models have difficulty distinguishing

the free flow and congested flow behaviour of traffic. In optimal velocity models, the desired speed

of each vehicle is a function of the headway-distance [16]. See [32] for a review of car-following

models. Cellular automata models describe the vehicles by discrete lattice points and discrete

speeds, see [98]. In our work, we postulate the interaction terms based on a generalised follow-the-

leader approach with the anisotropic assumption, wherein each vehicle interacts with all (not just

one) of the vehicles leading it but do not interact with the ones behind it.

The notion of viewing traffic flow as analogous to fluid flow, and describing the vehicle density via

the Euler/Navier-Stokes equation(s), was proposed in the early works of [118] and [150]. Some

of the early models had deficiencies, for example, presence of negative speeds and violation of

anisotorpy principle in [140, 171], as critiqued in Refs. [48] and [14]. Refined first-order (only

continuity equation) and second-order (equations for evolution of both density and mean velocity)

models have been developed ever since [101, 172]. Moreover, an attempt to develop a macroscopic

model from the microscopic theories is seen in [13]. The macroscopic equations, though similar to

fluid equations, have ancillary terms to describe properties specific to vehicular interactions. For

instance, vehicles accelerate to achieve a desired velocity, and their interactions do not conserve

energy or momentum.
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Models based on statistical mechanics, that is, kinetic models for traffic, were developed initially

in [146] and [139], who modelled the collision operator based on a relaxation term and an interaction

term. Later in [133], a kinetic description was developed for acceleration in place of the relaxation

type term used in the earlier models. Further to this, Enskog-type kinetic model was introduced

in [109], which can handle inhomogeneous traffic as well, in contrast to the earlier models,

which handled only homogeneous flows and restricted backward propagation of perturbations.

Early kinetic descriptions faced criticisms related to the continuity assumption of the probability

distribution function over the space and velocity variable [48]. A novel approach to consider a

discrete velocity space to elucidate the granular nature of vehicular traffic was developed by [51].

Further, a framework with double discretization of both velocity and space variables is seen in [63].

A comprehensive review of the continuum models, both kinetic and macroscopic, is provided

in [142].

The objective presented in this chapter is to develop a model to study the interaction between

pedestrians and vehicles in lane-traffic at intersections. A non-local macroscopic pedestrian

dynamics model is coupled to a microscopic vehicular traffic model in 1D through eikonal equations.

We again use the mesh-free particle method to solve the hydrodynamic equations in Lagrangian

form, which can then be easily combined with the kinematic equations. The numerical method is

as explained in Section 3.4. We demonstrate the model by solving it numerically in three traffic

scenarios; one, at an uncontrolled crossing in a single-lane road; second, at a zebra crossing in a

single-lane road and finally, at a crossing with a traffic island in a two-lane road.

In this chapter, we describe a microscopic one-dimensional system of equations for vehicular

traffic in Section 4.2. These are combined with the pedestrian evolution equations described in

Section 3.2.2. The numerical results are detailed in Section 4.3.

4.2 Vehicular Traffic Model
The model for interaction with active moving obstacles in Chapter 3 can be further extended to

consider pedestrian-vehicular interaction. For the simplest case, we consider a single-lane vehicular

traffic scenario modelled by appropriate interaction terms as in [31]. Like in the case of moving

obstacles, the information of the environment (road) and the destination of the obstacles (here

vehicles) is provided via the boundary conditions of the eikonal equation. The difference is that

here we need only solve a one-dimensional eikonal equation for the single-lane vehicular motion.

The interaction between the pedestrians and vehicle(s) is modelled in the eikonal force itself via the

velocity-density function. The kinematic equations for the vehicles are:

dxV
i = vV

i dt ,

dvV
i = ∑

j<i
IV (xV

i − xV
j ,v

V
i − vV

j )dt +GV (xV
i ,v

V
i ,ρi)dt , (4.1)

where xV
i and vV

i are the position and velocity of the ith vehicle’s centre of mass and ρi is the

interpolated density of pedestrians at xV
i . Note that xV

i and vV
i are in 1D here and are taken as the
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Figure 4.1 – Interaction Lengths between vehicles

midpoint of the leading edge of the respective vehicle instead of its physical centre of mass, similar

to the moving obstacle in Fig. 3.3. For the interaction between vehicles of length HV , the force

term IV with interaction range rV is given as,

IV (xV
j − xV

i ,v
V
i − vV

j ) = cV vV
j − vV

i

|xV
j − xV

i −HV |

 1
rV
√

π
exp

−

(
(xV

j − xV
i )− rV/2

rV

)2
 .

The desired acceleration term GV similar to the obstacle’s case is given here as:

GV (xV ,vV ,ρ) =
1

TV

(
−VV (ρ(xV ))

∇φV (xV )

||∇φV (xV )||
− vV

)
,

VV (ρ(x)) ||∇φ
V ||= 1 , x ∈ Ω . (4.2)

Note that here ∇φV is just a 1D derivative, and we take for n1 > 0, the velocity-density relation

similar to obstacle’s case in Section 3.4.3 as:

VV (ρ(x)) =VV
max(1− (ρ(x)/ρmax)

n1).

Here, ρ(x) is obtained as an average of interpolated density of pedestrians along the perpendicular

direction within the boundaries of the road.

Remark: V /VV is chosen based on the assumption that the velocities should be low when the density

of pedestrians is high at a particular location. The additional factor n1 appears in VV because we

want the velocity of vehicles to be significantly lower compared to the velocity of pedestrians given

by V . Also, note that other choices of functions can be made instead of a linearly varying V , see

Section 2.4.

4.3 Numerical Results
To study the pedestrian interaction with vehicular traffic, we consider for simplicity vehicular traffic

in one dimension. We consider three different scenarios based on different right of way on the road

– a single-lane road with an uncontrolled crossing, a single-lane road with a zebra crossing and a

two-lane road with a traffic island. Similar to the description in Section 3.4.1, the hydrodynamic

model is written in a Lagrangian form and coupled to the system of equations for vehicles Eqn. (4.1)

(2m equations for m vehicles in the domain).
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As explained in Section 3.4.2 and Section 3.4.3, the eikonal equations are solved by a fast marching

method on the structured grid. In the case of vehicles, a 1D eikonal equation is solved, see Eqn. (4.2),

in the domain of the road. The eikonal equation for the pedestrians Eqn. (3.3) is solved on the whole

domain with appropriate boundary conditions identifying the edges of the road. In the case of zebra

crossing, only a vertical strip of crossing on the road is part of the eikonal domain for pedestrians,

while the rest of the road is neglected. For the case of two-way traffic flow, two sets of eikonal

equations (for pedestrians and vehicles) are solved on the two different halves of the domain of

the road, one above the traffic island and another below the traffic island. The information on the

environment, like the position of vehicles, edges of the road and exit for the pedestrians/vehicles,

are provided via the boundary conditions of the eikonal equations. For Eqn. (3.3), high boundary

values of eikonal variable φ are assigned to the edges of roads and boundaries of vehicles to ensure

repulsion from them and a low value to the exit at the bottom of the domain (green) for attraction

towards it. While for the vehicles, high boundary values of eikonal variable φ are assigned to the

edges of roads and a low value to the exit (red) at the left or right of the domain.

Moreover, similar to the obstacle’s scenario, an immersed-boundary like method is used to identify

and activate or deactivate the eikonal grid points based on the vehicle’s position on the road. At

each time step, the eikonal grid points falling within the boundaries of any vehicle are deactivated

while the points outside are active. Also, any point outside the boundaries of the road is either

deactivated throughout the simulation or not considered as a part of the eikonal domain at all.

A solution procedure similar to the one in Section 3.4.5 is used here. The parameter values for the

below numerical cases are provided in Table 4.1. We have chosen here VV
max = 10km/h ≈ 3m/s as

we are more interested in the dynamics of slow-moving traffic usually observed in traffic-restricted

areas or shared spaces. The equations are solved using an explicit Euler time discretization with a

fixed time step of 0.001s in all cases.

In all scenarios, we consider a domain 100 units long and 50 units wide. In the first two cases with

only one-way traffic, the centre of the domain consists of a road which is 20 units wide, and the

traffic flows from the right boundary to the left in a single lane. In the two-way traffic case, the

domain consists of a road which is 30 units wide with single-lane traffic flow in opposite directions

on either side of the road. The single-lane traffic flows are modelled in 1D as given in Eqn. (4.1).

The boundaries of the road are marked by black dashed lines, and the exit for vehicles is marked by

red on the left boundary of the domain. A group of pedestrians are occupying the domain on one

side of the road (on the top of the domain) with the intention of crossing the road and arriving at

the exit (marked in green) at the bottom of the domain on the other side of the road.

4.3.1 Pedestrian interaction with single-lane traffic – uncontrolled crossings

In this scenario, as shown in Fig. 4.2, both the vehicles and pedestrians have equal right of way on

the road. The pedestrians avoid collisions by adjusting their path, and the vehicles slow down to

avoid collisions. A plot of the velocity changes of the vehicles against time is shown in Fig. 4.4 (left).

The initially accelerating vehicles slow down when the pedestrian group enters the road, a little after

25 s. The vehicles do not stop completely. They move slowly at a constant low velocity between
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Parameter Value Parameter Value

Vmax 2 m/s VV
max 3 m/s

T 0.001 s TV 0.1 s

R 0.1 m HV 4 m

ρmax 10ped/m2 rV 4 m

n1 0.05 cV 1e3 m2/s2

Table 4.1 – Computational Details for Results in Section 4.3

the time 40 s and 100/120 s. They later accelerate again once the road ahead is clear of pedestrians.
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Figure 4.2 – Pedestrian interaction with single-lane traffic – uncontrolled crossings

4.3.2 Pedestrian interaction with single-lane traffic – Zebra crossing

In this case, the pedestrian group is trying to cross the road along the zebra crossing. A 20 units

wide zebra crossing is provided in the middle of the road, as shown in Fig. 4.3, with its boundaries

marked by blue dotted-dashed lines. Here, the pedestrians have the right of way on the road at

the zebra crossing. The velocity plot of the vehicles is shown in Fig. 4.4 (right). We see that the

accelerating vehicles slow down and come to a halt at the crossing. They wait while the pedestrian

group crosses the road and then later accelerate again towards the exit of the road.

4.3.3 Pedestrian interaction with two-way traffic and traffic island

Here, we consider a two-lane road with vehicles travelling in opposite directions on each lane of

width 10 units. A traffic island 20 units wide is in the middle of the two lanes, as shown in Fig. 4.5,
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Figure 4.3 – Pedestrian interaction with single-lane traffic – zebra crossing
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Figure 4.4 – Change in velocity of vehicles at uncontrolled crossing (left) and zebra crossing (right).
The leading vehicle at the left end of the simulation setup is Veh1 and they are numbered sequentially.

marked by a green line. In this case, the pedestrians and vehicles both have equal right of way. But

in most cases, the concept of a traffic island is to help the pedestrians stop in between the two lanes

for ease of crossing after checking the traffic. We again observe that the vehicles slow down and

allow the pedestrians to pass. The pedestrians tend to interact with each lane of traffic separately

and take a halt at the traffic island after crossing first lane. Vehicles in each lane wait while the

pedestrian group crosses that particular lane and then later accelerate again towards the exit of the

road.

4.4 Conclusion
We have efficiently coupled a hydrodynamic pedestrian model to a one-dimensional vehicular

interaction model. The coupling through eikonal equations is effective in incorporating the non-local

information about the domain, like the presence of boundary walls, the position of obstacles/vehicles
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Figure 4.5 – Pedestrian interaction with two lane traffic - traffic island

and the density of pedestrians via boundary conditions or source functions. We remark that the

microscopic equations for vehicular traffic presented here in Section 4.2 can be used to develop the

corresponding kinetic and macroscopic equations via an approach similar to [49] or [60].

We demonstrate through three different numerical test cases that the coupled model is successful

in replicating physically realistic scenarios. We note that since the pedestrian model is macro-

scopic, individual behavioural patterns cannot be extracted. However, it is particularly adequate for

high-density scenarios. Moreover, the mesh-free numerical method is computationally efficient

(see [111]) and robust to deal with high densities and complex geometries. Further quantitative

studies to understand the effect of vehicle speed and interaction range on the behaviour of pedes-

trians need to be carried out. We remark that the developed framework can be used to consider

pedestrian and automated vehicle interactions in future.





5 Disease Contagion in Pedestrian
Crowds

5.1 Introduction
The COVID-19 pandemic and the surge of infections caused havoc worldwide, with countries trying

to prevent their healthcare systems from complete collapse. Severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory infectious disease (RID) with a

high transmission rate. Before vaccines were invented, the major plans contrived for controlling

disease spread were wearing masks and social distancing as preventive measures, together with

extensive testing and quarantine of infectious individuals [41, 62]. While global initiatives to

control large-scale migration of the population within and between countries, like restrictions

on travel via flights or trains, were established, reducing contact through lockdown of cities or

towns and restrictions on social gatherings were the norms locally [168]. It hence is essential to

study disease spread dynamics in smaller domains as well as on a larger scale. This pandemic

clearly led to an increased interest in mathematical and statistical models of diseases, which can

present us with valuable information regarding the spatiotemporal dynamics of disease spread to

aid governmental agencies with appropriate assessment and decision-making in disease prevention,

detection, control, and treatment. The research efforts for the same have been multi-disciplinary,

involving epidemiologists, molecular biologists, computational scientists, applied mathematicians

and sociologists alike.

Various analytical approaches have been used in the literature to model the spread of infectious

diseases [85, 157]. Compartmental models are a class of deterministic models which are population-

based and non-spatial [33]. The seminal work(s) of [100] commenced this class of epidemiological

models, which divides the population into distinct categories (compartments) and provides a system

of ODEs for their masses (either in proportions or counts). Classically, the compartments used

are Susceptible(S), Exposed(E), Infected(I) and Recovered/Removed(R). Depending on which of

these compartments are chosen in a model and how the transition rates from one state to another

are defined in the set of differential equations, the models are named SIR, SEIR, SEIS, SEIRS

and others. For a recent review, refer [161]. We note that the major limitations of such models

are their unrealistic ‘well-mixed’ assumption and that they neglect the heterogeneity amongst the

individuals in their interactions or mobility patterns. Alternate modelling approaches to rectify

some limitations are explored, for example, in [26] and [72]. We refer to [28], [113] and [126] for a

small selection of papers related to the work presented in this chapter.

Recently, there have been some efforts to link epidemiological modelling and crowd modelling,
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which have heretofore been considered independent. Special interest has been shown in models

suited to explore infectious diseases transmitted via airborne particles and requiring proximity of

individuals to spread, e.g. influenza A, tuberculosis, pneumonia or COVID-19, which is our focus

too. On the microscopic scale, a social force model is combined with contact tracking to study the

spread of a highly infectious airborne disease amongst individuals moving in a confined environment

in [149]. Another notable agent-based approach developed in [65] combines a diffusion-based

contagion-immunity coupling and the pedestrian equations of motion to analyse the disease spread

and immune reaction of COVID-19 in moving crowds. It is crucial to study the disease spread

at this scale as it provides more intricate and low-level information essential for more targeted

responses towards disease control but in a small population.

For intermediate-size populations, a coupled kinetic model for pedestrians and disease contagion

was presented in [103]. Further, a kinetic theory approach using tools of game theory to model

interactions between individuals and with the surroundings was adopted to study such populations

occupying a confined environment for a short duration of time in [104] and [105]. [9] considers an

SEIR approach to provide a pure kinetic model for disease contagion in a crowd evacuation scenario

in a bounded domain, while we use an SEIS approach for our model in Section 5.2. We remark

here that the time scale for movement or evacuation from a room (bounded domain) is in the order

of minutes while the duration for an exposed individual to become infectious, called the disease

latency period, is usually in the order of days. Hence, a transition from exposed to infected usually

does not take place during the evacuation. Such features of the SEIS model we use are highlighted

appropriately wherever necessary in the text. The significance of our work is that we formulate

a multi-group hydrodynamic model which can handle larger densities of crowds and provide

macroscopic information. Indeed, the continuity assumption in such fluid-like crowd models is

still criticised. It would be ideal to look at multi-scale models like in [20]. The presented model

allows us to assess the effect of geometry on infection transmission by considering dynamics in the

presence of obstacles. Attempts have been made earlier in this regard, which has been more specific

to design and spatial layout of specific areas like restaurants [42] or offices [125] or hospitals [56].

However, the need is to discern the actual mechanism of disease transmission conditional to various

factors, including individual factors like the contact time and relative velocities as well as physical

factors like size of obstacles [45].

Our main objective is to include a kinetic disease spread model in the form of a multi-group equation

into a kinetic pedestrian dynamics model, derive hydrodynamic approximations and provide an

efficient numerical simulation of the coupled model for complex two-dimensional geometries. For

the pedestrian flow model, we consider a kinetic equation for multi-group pedestrian flow based

on a social force model coupled with an eikonal equation to model the geometry and goals of the

pedestrians. This model is coupled with a non-local SEIS contagion model for disease spread,

where local contacts, as well as the influence of contact time, are included. We also extend the

model to situations with more complex geometries and moving objects in the computational domain.

This follows from the way we detailed the interaction of pedestrians with larger geometrically

extended objects like cars in a shared space environment, as in Section 3.3.2 and Chapter 4. The
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numerical simulation is based on mesh-free particle methods for the solution of the Lagrangian

form of the hydrodynamic equations, similar to what is detailed in Section 3.4.

The chapter is organized in the following way: in Section 5.2, a kinetic model for pedestrian

dynamics with disease spread is presented. The section also contains the associated hydrodynamic

equations derived from a moment closure approach. In Section 5.3, numerical solutions of the

macroscopic equations are presented for different physical situations and parameter values, includ-

ing uni- and bi-directional flow in a two-dimensional passage without obstacles and with fixed and

moving obstacles.

5.2 Coupled Model for Disease Contagion
We use a kinetic model for the evolution of the distribution functions of susceptible, exposed and

infected pedestrians as a starting point and derive associated hydrodynamic equations.

5.2.1 Kinetic Evolution Equation for Disease

We consider an equation for the evolution of pedestrian distribution functions f (k) = f (k)(x,v, t),k =

S,E, I. Here f S stands for the distribution of susceptible pedestrians, f E for the exposed pedestrians

and f I for the infected pedestrians. The evolution equations are given by

∂t f k + v ·∇x f k +R f k = T k , (5.1)

with k = S,E, I. The operators R and T k are given by the following definitions.

R f k(x,v) = ∇v ·
(
[G(x,v,ρ)−∇xU ⋆ρ(x)] f k

)
,

with

ρ = ρ
S +ρ

E +ρ
I,

where

ρ
k(x) =

∫
f k(x,v)dv.

Here, U is an interaction potential describing the local interaction of the pedestrians and ⋆ denotes

the convolution. Common choices for the interaction potential are purely repelling potentials like

spring-damper potentials or attractive-repulsive potentials like the Morse potential. Here, we have,

for simplicity, considered a Morse potential without attraction given by

U =Crexp
(
−|x− y|

lr

)
, (5.2)

where Cr is the repulsive strength and lr the length scale. The part of the forcing term involving G

describes the influence of the geometry on the pedestrian’s motion and a potentially long-range

interaction between the pedestrians; see below for a detailed description. The operators T k are

defined using a SEIS-type kinetic disease spread model leading to
T S = ν f I −βI f S

T E = βI f S −θ f E

T I = θ f E −ν f I

(5.3)
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with constants ν ,θ , see Remark 5.3 below, and the non-local infection rate βI = βI(x,v; f S(·), f E(·), f I(·))
depending in a non-local way on the rate of infected persons; compare Refs. [28] and [103] for

similar approaches. We define

βI =
∫ 1

ρ(y)

∫
Kφ (x− y,v−w) f I(y,w)dwdy. (5.4)

The kernel Kφ in the infection rate is chosen as

Kφ = Kφ (x,v) = ioφX(x)φV (v). (5.5)

with
∫

φX(x)dx = 1 =
∫

φV (v)dv. Here, φX is determined as a decaying function of |x| to take into

account the effect that infections between pedestrians are more probable the closer pedestrians are

approaching each other. φV is chosen in a similar way depending on |v| to take into account the fact

that infections are more probable the longer the interacting pedestrians stay close to each other, that

is, the smaller their relative velocities are. The parameter io is determined by the infectivity. We

refer to the section on numerical results for the exact definition of these kernels.

Finally, G is given, as in Eqn. (3.2), by

G(x,v,ρ) =
1
T

(
−V (ρ(x))

∇φ(x)
∥∇φ(x)∥

− v
)
, (5.6)

where φ is determined by the coupled solution of the eikonal equation

V (ρ)∥∇φ∥= 1. (5.7)

This describes the tendency of the pedestrians to move with a velocity given by a speed V (ρ) and a

direction given by the solution of the eikonal equation. The eikonal equation essentially includes

all information about the boundaries and the desired direction of the pedestrians via the boundary

conditions. These boundary conditions for the eikonal equation are chosen in the following way,

as also described in Section 3.4.3. For walls or the boundaries of obstacles in the domain, we set

the value of φ at the boundary to a numerically large value. For inflow boundaries, free boundary

conditions for φ are chosen. Whereas for outflow boundaries, where the pedestrians aim to go, we

set φ = 0.

We note again that, on the one hand, the eikonal equation includes the geometrical information via

boundary conditions. On the other hand, it models a global reaction of pedestrians to avoid regions

of dense crowds via the term V (ρ) in Eqn. (5.7).

Remark 5.1 The parameters in the above formulas, particularly in the definition of Eqn. (5.7)

and Eqn. (5.2) have to be chosen consistent with empirical data [24, 99].
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Remark 5.2 Instead of the social force model used here, one could use more sophisticated

interaction models; see, for example, Refs. [15], [49] and [121]. We note that the differences

between these models in the present hydrodynamic context are small. The behaviour of the

solutions is rather dependent on the choice of the parameters. In this context, Chapter 6 provides

a numerical study to anlayse differences between the social force based model used here and the

model presented in [15].

Remark 5.3 The dynamical system called the SEIS model with constant infection rate is given

by 
dS̃
dt =−β ĨS̃+νI
dẼ
dt = β ĨS̃−θ Ẽ
dĨ
dt = θ Ẽ −ν Ĩ

where β is the infection rate, ν the recovery rate and θ the rate with which exposed pedestrians

are becoming infected. Pedestrians are potentially becoming exposed when they are in contact

with infected pedestrians.However, exposed pedestrians are only becoming infectious at a certain

rate θ . Exposed pedestrians do not infect other pedestrians. Usually, in the situations and on

the time scales under consideration here, ν and θ are very small and set to zero in numerical

simulations such that the number of infected pedestrians remains constant during the simulation.

Remark 5.4 A key difference between other agent-based models [28] is the dependence of the

infection on the relative velocity of the agents. This has direct implications on the process of

infection during the dynamics, as can be seen in the case studies.

5.2.2 Multi-group Hydrodynamic Model

Integrating the kinetic equation against dv and vdv and using a mono-kinetic distribution function

to close the resulting balance equations, i.e. approximating f k as:

f k ∼ ρ
k(x)δU(x)(v) ,

one obtains a continuity equation for group k

∂tρ
k +∇x · (ρkU) =

∫
T kdv (5.8)

and the momentum equation

∂tU +(U ·∇x)u = G(x,U,ρ)−∇xU ⋆ρ (5.9)

with the total density ρ given as

ρ = ρ
S +ρ

E +ρ
I.



5.2 Coupled Model for Disease Contagion 56

Moreover,

G(x,U,ρ) =
1
T

(
−V (ρ(x))

∇φ(x)
∥∇φ(x)∥

−U
)
,

where φ is determined by solving the eikonal equation Eqn. (5.7):

V (ρ)∥∇φ∥= 1.

The continuity equations are explicitly written as
∂tρ

S +∇x · (UρS) = νρ I −βIρ
S

∂tρ
E +∇x · (UρE) = βIρ

S −θρE

∂tρ
I +∇x · (Uρ I) = θρE −νρ I

(5.10)

with βI = βI(x;ρS(·),ρE(·),ρ I(·),U(·)), where now

βI =
∫

Kφ (x− y,U(x)−U(y))
ρI(y)
ρ(y)

dy. (5.11)

Remark 5.5 Multi-group models for pedestrian flows have also been used in different contexts.

For example, a hydrodynamic multi-group model for pedestrian dynamics with groups of

different sizes has been developed and analysed in [122].

5.2.3 Hydrodynamic model using volume fractions

For numerical computations, this is rewritten using volume fractions, that means we solve the

continuity equation

∂tρ +∇x · (ρU) = 0 (5.12)

and the momentum equation

∂tU +(U ·∇x)U = G(x,U,ρ)−∇xU ⋆ρ. (5.13)

Then, we compute the volume fractions αS,αE ,α I with αS +αE +α I = 1 as
∂tα

S +U ·∇xαS = να I −βIα
S

∂tα
E +U ·∇xαE = βIα

S −θαE

∂tα
I +U ·∇xα I = θαE −να I

(5.14)

with βI = βI(x;α I(·),U(·)) defined by

βI =
∫

Kφ (x− y,U(x)−U(y))α I(y)dy. (5.15)

Finally, one computes

ρ
I = α

I
ρ,ρS = α

S
ρ,ρE = α

E
ρ.
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5.3 Numerical Results
We have performed numerical simulations of equations Eqn. (5.12) to Eqn. (5.15) and Eqn. (3.8) for

different scenarios. Like in the earlier chapters, we solve the hydrodynamic model by combining

the Lagrangian formulation with the obstacle’s kinematic equations, if necessary. The numerical

method follows the same ideas described in Section 3.4 regarding handling the grid and solving the

eikonal equation. In all our simulations, we consider a computational domain given by a platform

or corridor of size 100 m × 50 m. The top and bottom boundaries are rigid walls without any entry

or exit. Right and left boundaries are exits for pedestrians and obstacles depending on the situation

under consideration. We consider uni- as well as bi-directional flow of pedestrians. Initially, the

pedestrian particles are distributed as shown in Fig. 5.1 with a distance of 1.575 m from each other.

We consider the cases with and without obstacles, which are either fixed or moving. We initialize

the infected pedestrians (coloured in red) with αI = 1,αS = 0,αE = 0 and the susceptibles (coloured

in green) by αI = 0,αS = 1,αE = 0. Note that we refer to the meshfree Lagrangian particles as

‘pedestrians’ and ‘particles’ interchangeably. The macroscopic particles in the numerical setup are

not physical pedestrians; rather, they are grid points carrying the information of averaged quantities

like pedestrian density and velocity at that particular position in the domain.
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Figure 5.1 – Initial situation at t = 0. Top row: Uni-directional (left) and bi-directional (right) flow.
Bottom row: Fixed obstacle (left) and moving obstacle (right). Red indicate infected, green indicate
susceptible pedestrians.

We have used for the infection rate βI , the functions φX = exp(−|x− y|4) and φV = exp(−|u− v|6).
Moreover, we choose V (ρ) = Vmax

(
1− ρ

ρmax

)
, and V O(ρ) is chosen in the same way with Vmax
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substituted by V O
max. For the parameters, we have used the values given in Table 5.1.

Variable Value Variable Value

Vmax 2 m/s ρmax 10 ped/m2

V O
max 3 m/s T 0.001 s

Cr =CO
r 50 m2/s2 lr 2 m

lO
r 1 m io 0.04 m2/s2

Table 5.1 – Computational Details for Results in Section 5.3

During the evolution, infected pedestrians are coloured in red, susceptibles in green and exposed

pedestrians in blue according to the values of αk. If αE > 0.05, the colour switches from green

to blue, meaning that the probability of being exposed has exceeded a certain threshold. The red

pedestrians remain red throughout the simulations since the recovery rate ν is set equal to 0 in the

simulations. Moreover, since θ is also set to 0, exposed pedestrians are not becoming infected and

cannot infect others in the simulations.

The fixed and the moving obstacle considered are rectangular in shape and initially located as

shown in Fig. 5.1.

Explicit time integration of the equations in Lagrangian form is done with a fixed time step size of

0.001 s in our simulations.

5.3.1 Test-case 1: Fixed Obstacle

In this first test case, we considered a fixed obstacle and compared the results to a situation without

an obstacle. We consider bi-directional flow without an obstacle and uni- and bi-directional flow

with an obstacle. This is done for the case φV = 0 (no influence of contact time) and the case where

φV is chosen as defined above, which means for a situation where the influence of the contact time

is included. The present initial configuration, i.e. the initial distances between the pedestrians, is

chosen in such a way that there is no increase in the number of probably exposed pedestrians if a

uni-directional flow without obstacle is considered with or without the influence of the contact time.

Figures 5.2 to 5.5 show the time evolution of the moving grid particles and the associated infection

labels with influence (left column) and without influence (right column) of contact time. Row 1

shows bi-directional flow without an obstacle; row 2 shows uni-directional flow around an obstacle

and row 3 shows bi-directional flow around an obstacle. Red indicates infected, green susceptible

and blue exposed pedestrians.

Here one observes, e.g. in Fig. 5.4 or 5.5, that in situations with bi-directional flow (top- and

bottom row), the number of exposed pedestrians is strongly reduced if the contact time is taken into

account. For uni-directional flow, the differences are much smaller. A more detailed discussion is

given below.

Comparing row 2 in Fig. 5.4 or 5.5, i.e. the uni-directional flow with an obstacle and the uni-

directional case without an obstacle (no exposed pedestrians), one observes that the number of

exposed pedestrians is considerably increased due to the denser pedestrian crowd surrounding the
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obstacle. A similar observation can be made comparing row 1 and row 3 in these figures. The

flow is becoming denser due to the pedestrians surrounding the obstacle, increasing the number of

exposed pedestrians. The results show that the geometry of the domain plays a major role in the

infection rate.
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Figure 5.2 – Pedestrian dynamics at time t = 10 with influence (left) and without influence (right)
of contact time. Row 1: Bi-directional flow. Row 2: Uni-directional flow around obstacle. Row 3:
Bi-directional flow around obstacle. Red indicate infected, green indicate susceptibles and blue indicate
probably exposed pedestrians.

In Fig. 5.6, we have plotted the number of pedestrians with a higher probability of being exposed

versus time. One can again observe that, in bi-directional flows, the number of these pedestrians

is much higher if the influence of the contact time is neglected. This is as expected since, even if

pedestrians are coming close to each other, they pass each other quickly, and the contact time is

short such that contagion is less probable. On the other hand, in the case of unidirectional flow,
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pedestrians are walking in the same direction, such that the effect of neglecting the contact time is

comparably small.

In general, we mention that the contagion model is based on very simple assumptions, and the

above findings are purely qualitative. Obviously, for more accurate results, the parameters of the

contagion model have to be adapted to experimental findings. We refer again to Ref. [103] for

similar investigations.

Finally, in Fig. 5.7, we show the macroscopic density of the pedestrians at times t = 10 s,20 s,30 s

and 40 s for the flow around the obstacle.

5.3.2 Test-case 2: Moving Obstacle

In this subsection, we consider the interaction of pedestrians with a moving obstacle, e.g. a

vehicle in a shared space. We consider the same computational domain as in test-case 1 with

pedestrians, which are initially located as in Fig. 5.1 (right bottom). Their destination is the right

exit. The moving obstacle of size 4 m × 8 m is located on the right, with the left exit as the

destination. Typically in a restricted traffic area, the vehicle has a low speed limit. We have chosen

10 km/h ∼ 3 m/s. The maximum speed of the pedestrians is chosen as 2 m/s.

In Fig. 5.8, we have plotted the positions of pedestrians and the obstacle at different times t =

8 s,14 s,18 s and 22 s. We observe an interaction of pedestrians and the obstacle between times

t = 14 s and t = 22 s. Moreover, one observes a slight increase in the number of exposed pedestrians,

which is less pronounced than in the case of the larger fixed obstacle studied in test-case 1.

Moreover, in Fig. 5.9, we have plotted the x-velocity component of the obstacle along its centre

of mass. One observes that the obstacle (coming from the right) accelerates and maintains almost

its maximum speed. When it encounters the pedestrian crowd, it reduces its speed. Finally, it

accelerates again when there are no pedestrians anymore in its surroundings.

5.4 Conclusion
We have presented a multi-group macroscopic pedestrian flow model combining a dynamic macro-

scopic model for pedestrian flow and an SEIS compartmental-based kinetic disease spread model.

The mesh-free particle method to solve the governing equations is used for the computation of

several numerical examples analyzing different situations and parameters. The dependence of the

solutions and, in particular, the dependence of the number of exposed pedestrians on geometry and

parameters is investigated and discussed and shows qualitatively consistent results.

Findings indicate that, particularly in bi-directional flow, it is important to take into account the

contact time for a realistic description of the flow. This is expected since pedestrians pass each

other quickly and the contact time is short, such that contagion is, in reality, less probable. For

uni-directional flow, the effect of neglecting the contact time is comparably small. Moreover, we

find that for flow with an obstacle, the number of exposed pedestrians is considerably increased due

to the denser pedestrian crowd surrounding the obstacle. Since the density in these flow situations

increases, the number of exposed pedestrians increases. The numerical results show the importance
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of the geometry of the domain for the rate of infection.

Finally, we mention that the awareness of contagion might change the trajectories computed by the

eikonal equation and the preferred distances between the pedestrians. Incorporating such aspects

leads to changes in the definition of the eikonal equation and the interaction potential.
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Figure 5.3 – Pedestrian dynamics at time t = 20 with influence (left) and without influence (right)
of contact time. Row 1: Bi-directional flow. Row 2: Uni-directional flow around obstacle. Row 3:
Bi-directional flow around obstacle. Red indicate infected, green indicate susceptibles and blue indicate
probably exposed pedestrians.
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Figure 5.4 – Pedestrian dynamics at time t = 30 with influence (left) and without influence (right)
of contact time. Row 1: Bi-directional flow. Row 2: Uni-directional flow around obstacle. Row 3:
Bi-directional flow around obstacle. Red indicate infected, green indicate susceptibles and blue indicate
probably exposed pedestrians.
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Figure 5.5 – Pedestrian dynamics at time t = 40 with influence (left) and without influence (right)
of contact time. Row 1: Bi-directional flow. Row 2: Uni-directional flow around obstacle. Row 3:
Bi-directional flow around obstacle. Red indicate infected, green indicate susceptibles and blue indicate
probably exposed pedestrians.
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Figure 5.6 – Number of pedestrian with an increased probability of being exposed (in %) vs time. First
row bi-directional flow without obstacle (left) and with obstacle (right). Second row: uni-directional
with obstacle.
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Figure 5.7 – Macroscopic density ρ of pedestrian dynamics at times t = 10,20,30,40 with influence of
contact time for uni-direction flow with fixed obstacle.
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Figure 5.8 – Positions of pedestrian and obstacle at t = 8s,14s (first row) and t = 18s,22s (second row).
Red indicate infected, green indicate susceptibles, blue indicate probably exposed pedestrians.
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Figure 5.9 – The velocity of the obstacle along the center of mass.





6 Rational Behaviour Model in different
density scenarios

6.1 Introduction
The question of how humans interact with the environment and make decisions to move through

their environment has motivated research in the direction of behavioural dynamics. Any evolved

behavioural pattern is preceded by a dynamics of perception and action. Perception involves the

interaction of an agent with its environment and collection of information via ‘laws of ecological

optics’ [71] and processing that information into actionable behaviour via ‘laws of control’ [170]. A

dynamical model was developed in [61] based on these principles to predict route choice behaviours.

A recent attempt to include rational behaviour of pedestrians in an agent based model was made

by the development of a heuristics based rational behaviour model in [129] and later improved

in [15] based on vision based models as developed in [136]. In these works, as well as in [49], the

rational behaviour interaction models have been investigated. A hierarchy of models ranging from

microscopic, over kinetic models to macroscopic models has been established in [49].

In the present chapter, we consider the extended rational behaviour model from [15] and state a

related kinetic and hydrodynamic model following and extending slightly the procedure outlined

in [49], we also refer to Section 2.1.4. Section 6.2 discusses these models and also how geometries

and moving obstacles are included via a coupling to an eikonal equation. The hierarchy of rational

behaviour models is numerically investigated for different density situations with fixed and moving

geometries in Section 6.3. We investigate the differences between the rational behaviour interaction

model and interaction models based on the classical social force based models [82], [87] and

compare the different models on the microscopic and the macroscopic level. For the numerical

experiments we use the mesh-free particle method [111, 164] to solve the macroscopic model

equations in a Lagrangian sense. The microscopic equations are solved using the same numerical

framework. See Section 3.4 for the details on using the numerical method for solving the pedestrian

models.

6.2 Pedestrian Flow Model based on rational behaviour
We consider here a slightly modified version of the hierarchy of pedestrian models formulated

in [49] and [15] . The microscopic pedestrian model formulated in [49] and [15] is based on a

collision avoidance model combined with a social force type environmental coercion term. The

collision avoidance model consists of two stages - perception stage and decision stage. The
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perception stage is described by an interaction region for each pedestrian and the definition of two

functionals, the distance to interaction and the distance of closest approach as defined below.

Consider a pair of pedestrians i and j. Assume that agent i is aware of it’s own position xi and

velocity vi and can also perceive j’s x j and v j accurately. In the perception stage, the observables

are:

• Time to interaction of i and j, τi, j :

Time that minimizes the distance di, j between the pedestrians.

τi, j =−
(x j − xi) .(v j − vi)

||v j − vi||2

• Point of closest approach of i to j, pi, j :

The point along the trajectory of i where the agents will be closest.

pi, j = xi + vi τi, j

• Distance to interaction (DTI) of i and j , Di, j :

The distance of i to pi, j.

Di, j =−
(x j − xi) .(v j − vi)

||v j − vi||2
||vi||

• Distance of closest approach (or minimum distance (MD)) of i and j , Ci, j :

Ci, j =

(
||x j − xi||2 −

(x j − xi) .(v j − vi)

||v j − vi||2

)1/2

6.2.1 Time-continuous Model

In the decision stage, a decision on the velocity is made based on the above observables via a

decision potential Φ and an associated cost functional. With some simplifications, this leads to the

collision avoidance term Fi in the model described below. The so called environmental coercion

effects are included in the model via a social force type approach and lead to the term Ei below.

The resulting time-continuous model for N pedestrians (i = 1,2, ...,N) with location xi = xi(t) and

velocity vi = vi(t) at time t is

dxi

dt
= vi , (6.1)

dvi

dt
= Fi +Ei ,

where

Fi =−∇ṽ Φi(vi) (6.2)

and

Ei = Eg,i(xi)+Eµ,i(xi,vi). (6.3)

Note that here and in the following, we do not explicitly write the dependencies on t for the sake of

a simpler presentation.
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The decision potential Φ is defined as follows. Define first

Xi j = x j − xi, Vi j = v j − vi.

Let Ti be the set of pedestrians approaching the pedestrian at xi and belonging to the ith pedestrian

interaction region defined as the angular sector centred at xi, with axis vi, semi-angle ν/2 and radius

ri, which means

Ti =
{

j ∈ {1,2, ...,N}, i ̸= j | ||Xi j|| ≤ ri and (6.4)

Xi j · vi

||Xi j|| ||vi||
> cos(ν/2) and Xi j ·Vi j < 0

}
.

For every j ∈ Ti, we compute the distance to interaction (DTI) of i and j, denoted by Di j and the

distance of closest approach or minimum distance (MD) of i and j, denoted as Ci j, as given in [15],

as

Ci j = min

{[
||Xi j||2 −

(Xi j ·Vi j)
2

||Vi j)||2

]1/2

,R

}
and

Di j = min
{
−Xi j ·Vi j

||Vi j||2
||vi||,L

}
,

where the constant parameters L and R are the maximal DTI and the maximal MD, respectively.

The expressions for Ci j and Di j are obtained by considering the distance of two pedestrians with the

respective locations and velocities versus time and determining the time to interaction as well as the

point of closest approach. We refer to [15] for details. As in [49], we define the overall heuristics

considering the harmonic average to approximate the minimum DTI:

D−1
i =

1
#Ti

∑
j∈Ti(t)

D−1
i j . (6.5)

Moreover, slightly changing the expression in [15], we define the weighted average of the MD as

Ci =
1

#Ti
∑
j∈Ti

Ci j wi j, (6.6)

where the weights are given by

wi j =
D−1

i j

D−1
i

.

Then the ith pedestrian potential function is given by,

Φi(ṽ) =
k
2
||DiCiṽ−LRv∗i ||2 +

k̃
2
(
||ṽ||2 −||v∗i ||2

)2
, (6.7)

where v⋆i is the target velocity associated with the ith pedestrian.

The environmental coercion terms are as in classical social force models [82] on the one hand given

by an interaction potential and the related force Eg is given as,

Eg,i(xi) := ∑
j ̸=i

g(||Xi j||)ni j
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with the interaction normal

ni j =
Xi j

||Xi j||
.

Here, g denotes the absolute value of a radial repulsive force depending on the distance of the

interacting pedestrians. On the other hand the friction term including tangential and normal friction

during an encounter is given by,

Eµ,i(xi,vi) :=−∑
j ̸=i

(
µnVi j ·ni jni j +µtVi j ·n⊥i jn

⊥
i j

)
wµ(∥Xi j∥).

Here, µn,µt are normal and tangential friction coefficients during the interactions and wµ con-

centrates the interaction friction to particles undergoing an interaction, see the discussion in [15]

and [60].

Finally, for future use, we define the microscopic number density as,

ρi =
#Si

πs2
i
, (6.8)

where

Si =
{

j ∈ {1,2, ...,N} | ||Xi j|| ≤ si

}
with an observation radius si.

6.2.2 Mean-field Kinetic Model

For the passage from the microscopic model to the mean-field equation, we simplify the following

considerations by assuming that the target velocity v⋆i (t) is given by a function v⋆(x, t) via v⋆i (t) =

v⋆(xi(t), t), that means it depends only on the location. Then, we describe the system using a

number density distribution f (x,v) with x,v ∈ R2, where we again neglect the dependence on t

for simplicity of presentation. Let f (x,v)dxdv be the number density of pedestrians in a small

physical volume dx around the point x, within an angular neighbourhood dv of v. Then f formally

satisfies the Fokker-Planck equation:

∂t f + v.∇x f +∇v.(F f )+∇v.(E f ) = 0, (6.9)

compare, for example, [49] and [60].

The force term F is given by the continuous equivalent of Eqn. (6.2) and written as,

F(x,v) =−∇ṽΦ(x,v)(v),

where the potential Φ is given by,

Φ(x,v)(ṽ) =
k
2
||D(x,v)C(x,v)ṽ−LRv∗||2 + k̃

2
(
||ṽ||2 −||v∗||2

)2
.

To compute DTI denoted by D(x,v) and MD denoted by C(x,v) of pedestrians located at position x

with velocity v, we first define the interaction region

T (x,v) =
{

y ∈ R2,u ∈ R2 | ||y− x|| ≤ r(x) ,

y− x
||y− x||

.
v

||v||
≥ cos(ν/2)and (y− x) · (u− v)< 0

}
.
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Now the continuous equivalents of Eqns. (6.5) and (6.6) are

D−1
(x,v) =

∫
T (x,v) D̃−1

(x,v)(y,u) f (y,u)dydu∫
T (x,v) f (y,u)dydu

and

C(x,v) =

∫
T (x,v) C̃(x,v)(y,u)D̃

−1
(x,v)(y,u) f (y,u)dydu

D−1
(x,v)

∫
T (x,v) f (y,u)dydu

,

which is equal to ∫
T (x,v) C̃(x,v)(y,u)D̃

−1
(x,v)(y,u) f (y,u)dydu∫

T (x,v) D−1
(x,v) f (y,u)dydu

.

The quantities D̃x,v(y,u) and C̃x,v(y,u) are the elementary DTI and MD of a pedestrian located at

position x and velocity v in the encounter with a particle located at y and having velocity u. They

are given by,

C̃x,v(y,u) = min

{[
||y− x||2 − ((y− x).(u− v))2

||u− v||2

]1/2

,R

}
and

D̃x,v(y,u) = min
{
||(y− x).(u− v)||

||u− v||2
||v||,L

}
.

The continuous equivalent of the environmental coercion term is E = E(x,v) with E = Eg +Eµ .

Here, Eg is

Eg(x) =
∫

y∈R2

∫
u∈R2

g(||y− x||)n(x,y) f (y,u)dydu (6.10)

=
∫

y∈R2
g(||y− x||)n(x,y)ρ(y)dy,

where n(x,y) =
y− x

||y− x||
and ρ(x) is the local density

ρ(x) =
∫

v∈R2
f (x,v)dv.

Moreover, Eµ is given as,

Eµ(x,v) =
∫

y∈R2

∫
u∈R2

µ(x,y,v,u)wµ(∥y− x∥) f (y,u)du dy (6.11)

where

µ(x,y,v,u) = µn(u− v) ·n(x,y)n(x,y)+µt(u− v) ·n(x,y)⊥n(x,y)⊥.

Local Approximation of Kinetic Model

Assume that there exists a small dimensionless quantity η << 1 such that,

r = η r̂, R = η R̂, L = η L̂,

where all hat quantities are assumed to be of O(1). By the same assumptions as in [49] we have

η
2 k = k̂ = O(1).
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Now, since we have to consider only local interactions, let y = x+η ξ , with ξ ∈ R2, in the mean

field equations. In this scaling, our kinetic model with all unknowns now depending on η is:

∂t f η + v.∇x f η +∇v.(Fη f η)+∇v.(Eη f η) = 0, (6.12)

with

Fη(x,v) =−∇ṽΦ
η

(x,v)(v)

and

Eη(x,v) = Eη
g (x,v)+Eη

µ (x,v)

Now, y ∈ T (x,v)≡ ξ ∈ T̂v,ν ,r̂, where

T̂v,ν ,r̂ =

{
ξ ∈ R2 , u ∈ R2 | ||ξ || ≤ r̂ ,

ξ

||ξ ||
.

v
||v||

≥ cos(ν/2) , ξ .(u− v)< 0
}
.

Then we have, the elementary quantities

C̃(ξ ,u,v) =
1

η2 Ĉ(ξ ,u,v), D̃(ξ ,u,v) =
1
η

D̂(ξ ,u,v)

where

Ĉ(ξ ,u,v) = min

{[
||ξ ||2 − (ξ .(u− v))2

||u− v||2

]1/2

,R

}

D̂(ξ ,u,v) = min
{
||ξ .(u− v)||
||u− v||2

||v||,L
}
.

Consequently, we get,

D−1
(x,v) =

1
η

D̆−1
(x,v),C(x,v) =

1
η2 C̆(x,v)

where,

D̆−1
(x,v) =

∫
T̂v,ν ,r̂

D̂−1(ξ ,u,v) f (x+η ξ ,u)dξ du∫
T̂v,ν ,r̂

f (x+η ξ ,u)dξ du
(6.13)

C̆(x,v) =

∫
T̂v,ν ,r̂

Ĉ(ξ ,u,v)D̂−1(ξ ,u,v) f (x+η ξ ,u)dξ du

D̆−1
(x,v)

∫
T̂v,ν ,r̂

f (x+η ξ ,u)dξ du
(6.14)

Since, f is assumed to evolve on large scales and η << 1, we need only consider the leading order

term in the Taylor expansion of f in Eqns. (6.13) and (6.14). We have,

f (x+η ξ ,v) = f (x,v)+(η ξ ) fx(x,v)+O((η ξ )2) .

This leads to the following expressions of D̆−1 and C̆:

D̆−1
(x,v) =

∫
u∈R2

∫
ξ∈T̂v,ν ,r̂

D̂−1(ξ ,u,v)dξ f (x,u)du∫
ξ∈T̂v,ν ,r̂

dξ
∫

u∈R2 f (x,u)du
(6.15)

and

C̆(x,v) =

∫
u∈R2

∫
ξ∈T̂v,ν ,r̂

Ĉ(ξ ,u,v)D̂−1(ξ ,u,v)dξ f (x,u)du

D̆−1
(x,v)

∫
ξ∈T̂v,ν ,r̂

dξ
∫

u∈R2 f (x,u)du
. (6.16)
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Hence, the potential is:

Φ(x,v)(ṽ) =
k̂
2
||D̆(x,v)C̆(x,v)ṽ−LRv∗||2 + k̃

2
(
||ṽ||2 −||v∗||2

)2
.

The environmental coercion force terms are given as,

Eη
g (x,v) =

∫
ξ∈R2\{0}

∫
u∈R2

g(||ξ ||)n(ξ ) f (x+η ξ ,u)dξ du

=
∫

ξ∈R2\{0}

∫
u∈R2

g(||ξ ||)n(ξ ) f (x,u)dξ du

=
∫

ξ∈R2\{0}
g(||ξ ||)n(ξ )N(x)dξ

and

Eη
µ (x,v) =

∫
ξ∈R2

∫
u∈R2

µ(ξ ,v,u)wµ(∥ξ∥) f (x,u)dξ du ,

where,

µ(ξ ,v,u) = µn(u− v) ·n(ξ )n(ξ )+µt(u− v) ·n(ξ )⊥n(ξ )⊥

with n(ξ ) =
ξ

||ξ ||
.

Special Case:

If we consider the case when ν = 2π , that is, there is no blind zone. Then, T̂ is the disc:

Br̂ =
{

ξ ∈ R2 | ||ξ || ≤ r̂
}
.

Then, we get,

D̆−1
x =

∫
u∈R2

∫
ξ∈Br̂

D̂−1(ξ ,u,v)dξ f (x,u)du

Area(Br̂)
∫

u∈R2 f (x,u)du

and

C̆x =

∫
u∈R2

∫
ξ∈Br̂

Ĉ(ξ ,u,v)dξ D̂−1(ξ ,u,v) f (x,u)du

D̆−1
x Area(Br̂)

∫
u∈R2 f (x,u) du

.

Hence, potential Φ also does not depend on v and is written as:

Φx =
k̂
2
||D̆xC̆xṽ−LRv∗||2 + k̃

2
(
||ṽ||2 −||v∗||2

)2
.

The environmental coercion terms are:

Eη
g (x) =

∫
ξ∈R2\{0}

g(||ξ ||)n(ξ )N(x)dξ

and

Eη
µ (x,v) =−µ(ρ̃(x, t))vEη

µ (x) =
∫

ξ∈R2

∫
u∈R2

µ(ξ ,v,u)wµ(∥ξ∥) f (x,u)dξ du

with

ρ̃(x) =
2R2

r̂2 Area(Br̂)
∫

u∈R2
f (x,u)du
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6.2.3 Hydrodynamic Model

Proceeding as in [49] or [60], one derives the associated hydrodynamic model using a moment

closure method wherein we start with the mean field kinetic model and integrate it against functions

of particle velocity v. The equations we obtain involve the macroscopic quantities, density ρ(x)

and average velocity U(x) of pedestrians, where

U(x) =
1

ρ(x)

∫
v∈R2

v f (x,v)dv.

Integrating the kinetic model in Eqn. (6.9) against dv and vdv, we get the continuity equation

∂tρ +∇x · (ρU) = 0 (6.17)

and an equation for the momentum

∂t(ρU)+∇x.

(∫
v∈R2

v⊗ v f dv
)
=
∫

v∈R2
F f dv+

∫
v∈R2

E f dv . (6.18)

To close the equations we use the monokinetic closure Ansatz,

f (x,v) = ρ(x)δU(x)(v).

Then, Eqn. (6.18) changes to

∂t(ρU)+∇x · (ρU ⊗U) = ρFM
x +ρEM

x

with

FM
x =−∇ṽΦ

M
x (U(x)),

where ΦM
x is defined as

Φ
M
x (ṽ) =

k
2
||DM

x CM
x ṽ−LRv∗||2 + k̃

2
(
||ṽ||2 −||v∗||2

)2
.

And DM
x is given by

(DM
x )−1 =

∫
T M(x) D−1

(x,U(x))(y,U(y))ρ(y)dy∫
T M(x) ρ(y)dy

,

where

T M(x) =
{

y ∈ R2 | ||y− x|| ≤ r(x) ,

y− x
||y− x||

.
U(x)

||U(x)||
≥ cos(ν/2) and (y− x) · (U(y)−U(x))< 0

}
.

Analogously,

CM
x =

∫
T M(x)C(x,U(x))(y,U(y))D−1

(x,U(x))(y,U(y))ρ(y)dy∫
T M(x) D−1

(x,U(x))(y,U(y)))ρ(y)dy
.

Finally, we have,

EM
x = Eg +EM

µ

with Eg as in (6.10) and EM
µ as

EM
µ =−

∫
y∈R2

µ(x,y,U(x),U(y)) w(∥y− x∥)ρ(y) dy.
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6.2.4 Including geometries using the eikonal equation

In addition to the local interaction forces Fi and Ei, we add another component to the force for

the velocity update in Eqn. (6.1). In a scenario where there are other elements in the environment

which affect the movement of pedestrians, like walls/obstacles, we need a force which directs them

away from these and towards the target. A classical approach is given by using the eikonal equation

as in [94], [95] and [123]. We refer to [60] for a combination of social force models and the eikonal

equation in the context of a macroscopic equation.

The revised time-continuous model is:

dxi

dt
= vi ,

dvi

dt
= Fi +Ei +Gi , (6.19)

with Fi and Ei given by Eqn. (6.2) and Eqn. (6.3) as before and

Gi =
1
T

(
−V (ρi)

∇φ(xi)

||∇φ(xi)||
− vi

)
(6.20)

with ρi given in Eqn. (6.8). And, T is a reaction time, which is here assumed to be constant and φ

being the solution of the eikonal equation,

V (ρ(x)) ||∇φ(x)||= 1, (6.21)

with V a density dependent velocity function and ρ(x) is given by a continuous interpolation of ρi,

which is as defined in Eqn. (6.8). The geometry enters via the boundary conditions imposed on the

eikonal equation. For boundaries, one usually chooses a Dirichlet boundary condition with a very

large value. For exits, a Dirichlet condition with the value zero is chosen.

With the same procedure as before, we derive the continuity equation and the associated momentum

equation,

∂t(ρU)+∇x · (ρU ⊗U) = ρFM
x +ρEM

x +ρGM
x (6.22)

with FM
x and EM

x as above and GM
x as

GM
x =

1
T

(
−V (ρ(x))

∇φ(x)
||∇φ(x)||

−U(x)
)
, (6.23)

which is coupled to Eqn. (6.21).

Remark 6.1 We note that, there are several works discussing well-posedness for the Hughes

model, i.e. the continuity equation coupled to the eikonal equation. As an example, we refer

to [52]. However, we are not yet aware of any attempts to prove this for a hydrodynamic system

coupled to the eikonal equation.
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6.2.5 Determining the target directions

Instead of predefining the target directions v⋆i (t) = v⋆(x, t), it seems more reasonable to adapt them

as well via an eikonal equation and determine v⋆(x, t) via

dv⋆

dt
=

1
T ⋆

(
− ∇φ ⋆(x)
||∇φ ⋆(x)||

− v⋆
)
. (6.24)

with

||∇φ
⋆(x)||= 1. (6.25)

Here, the target directions can be adapted to the geometry via the eikonal equation and T ⋆ is again

a reaction time.

6.2.6 Modelling the motion of an obstacle

The motion of the obstacle is described similarly to the procedure outlined in Section 3.3.2. The

obstacle is moving towards a predefined and specific target/exit given by an eikonal equation.

Moreover, information from the environment is taken into account, and the moving obstacle

changes its path and speed in order to avoid collisions with pedestrians. The equation for the

obstacle is given as:

dxO

dt
= vO ,

dvO

dt
= EO(xO,vO)+GO(xO,vO) , (6.26)

where xO and vO are the position and velocity of the obstacle’s centre of mass and EO is computed

from the interaction with pedestrians with density ρ in the immediate vicinity of the obstacle. A

pure repulsion force of the form Eqn. (6.10) is used. The force GO is obtained from the gradient of

the eikonal solution φ O for the obstacle. Explicitly, we define

GO(xO,vO) =− 1
T O

(
V O(ρ(xO))

∇φ O(xO)

||∇φ O(xO)||
− vO

)
,

where φ O is the solution of

V O(ρ(x)) ||∇φ
O(x)||= 1 , x ∈ Ω.

Here, T O is chosen as constant and, rather than being a reaction, describes the weighting between the

reaction of the obstacle to neighbouring pedestrians and the importance of following its predefined

goal.

The model for the pedestrian motion is coupled to the moving obstacle’s kinematic equations via

the eikonal equation for the obstacle, which includes the density ρ of pedestrians, and also via

the interaction term in Eqn. (6.26). On the other hand, the moving obstacle model is coupled to

the pedestrian flow equations via the eikonal equation for pedestrians, which includes the moving

geometry into the model. Finally, we note that multiple obstacles could be described in a similar

way, including an interaction term between the obstacles.
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6.3 Numerical Investigation
6.3.1 Numerical Method

In our numerical studies, we compare the different models in detail on the microscopic as well

as the macroscopic level. For a comparison between microscopic and macroscopic results in the

case of a social force type interaction term, we refer to [111]. We also refer to [111] for a detailed

comparison of the computation times of microscopic and macroscopic simulations for social force

type interactions and the potential gain in CPU time using the macroscopic modelling.

For the microscopic model equations, pair-wise interactions are considered to evaluate the interac-

tion forces. It is computationally costly to consider and evaluate the force term for each possible pair

in a simulation scenario involving a large number of microscopic pedestrian particles. Hence, we

choose to consider only nearest neighbour interactions within a specific radius as considered in [60].

For the macroscopic equations, a meshfree particle method based on least square approximation is

used, see Section 2.2.1. The method is based on a Lagrangian formulation of the hydrodynamic

equations. These Lagrangian equations are then solved on a mesh-free cloud of particles, see

Section 3.4 for more details. Note that, physically speaking, the macroscopic grid particles do not

represent a single pedestrian but rather a local average of pedestrians. The gain in computational

efficiency of the macroscopic method versus the microscopic one is essentially due to the fact that

the number of macroscopic grid particles does not have to be chosen of the same size as the number

of microscopic particles. It is usually much smaller.

In both, microscopic and macroscopic cases, the eikonal equations are solved on a fixed structured

grid using a fast-marching method [154], see Section 2.3. Note that alternatively, a fast-sweeping

method could be applied [147]. The variable values like those of density are interpolated from

the mesh-free cloud onto this fixed grid. The spatial derivatives of the eikonal function are again

obtained from nearest neighbours via a weighted least square algorithm.

Including a moving obstacle requires a coupling of these equations to the obstacle’s kinematic

equations. In this case, one has additionally to activate and deactivate the eikonal grid points

depending on the obstacle’s position in a manner similar to an immersed boundary method, see

Section 3.4. When the obstacle is fixed, this needs to be done only once at the beginning of the

time evolution. Otherwise, the activation-deactivation of grid points needs to be performed at every

time step of evolution for moving obstacles. For the time discretization, we use an explicit scheme

with time step as specified in the results section for each case.

6.3.2 Interaction Models

To analyse the effect of different interaction potentials or forces on collision avoidance, we consider

various scenarios. First, a head-on two particle collision, then a collision avoidance scenario where

a particle is navigating a group, and finally, situations with boundaries and larger rigid obstacles

(stationary and moving).

We investigate and compare 4 types of interaction models. First, the model based on rational

behaviour presented above in Section 6.2 by Eqns. (6.1)-(6.3) and E = 0, i.e. without a repulsive
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force, is considered. Second, we consider the rational behaviour model combined with a repulsive

force E = Eg, where g is as in [15] given by,

g(∥x∥) =−Dr

(
2
s2

r
+

1
∥x∥2

)
exp
(
−∥x∥2

s2
r

)
. (6.27)

Here, Dr is a repulsive strength and sr a length scale. Third, a social force model as described

in [60] is considered, given by the equations Eqns. (6.1)-(6.3) with F = 0 and a purely repulsive

force E = Eg with

g(∥x∥) = Cr

lr
exp
(
−∥x∥

lr

)
. (6.28)

Again Cr is a repulsive strength and lr a length scale. As a final example, we use a social force

model with a repulsive force Eg given by a linearly varying force

g(∥x∥) = kn(2Rr −∥x∥)H(2Rr −∥x∥), (6.29)

where H is the Heaviside function and Rr an interaction radius. This force is used together with

an additional dissipative force Eµ given by nonzero friction coefficients µt ,µn and a function

wµ(∥x∥) = H(2Rr −∥x∥) restricting the friction to the interaction range. The parameters used in

the different models are collected in Tables 6.1 and 6.2. For a further discussion of the parameters

in social force models, we refer to [152]. Each of these models is considered with and without the

eikonal force term.

Interaction Force Parameters

Rep., E = Eg with g from (6.28) Cr = 2 m2

s2 , lr = 0.2m

Collision Avoidance F =−∇vΦ k = 2 1
sm4 , k̃ = 1 s

m2 , L = 2m, R = 1m

Rep.-Dissip., E = Eg +Eµ

with g from (6.29)

kn = 10 1
s2 ,Rr = 0.42m,

µn = 5 1
s , µt = 1 1

s

Collision Avoidance + Rep.,

F +Eg with g from (6.27)

k = 2 1
sm4 , k̃ = 1 s

m2 , L = 2m,

R = 1m, Dr = 1 m3

s2 , sr = 1m

Table 6.1 – Parameter list for the different interaction force terms for Sections 6.3.3 and 6.3.5. Parame-
ters not listed are set to zero.

6.3.3 Two particle collision avoidance

In this scenario, we consider two particles, one heading to the right with an initial velocity v(0)1 =

(1,0)m/s, and the second heading to the left with an initial velocity v(0)2 = (−1,0)m/s as shown in

Fig. 6.1(left). The target velocities in the collision avoidance model are accordingly v⋆1 = (1,0)m/s
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for the pedestrian moving to the right and v⋆2 = (−1,0)m/s for the one moving to the left. The

particles start at a distance of 1m between them. We study the collision avoidance behaviour for the

models described above in Section 6.3.2, including pure collision avoidance (rational behaviour),

pure repulsive force and the repulsive/dissipative social force model. Additionally, we study the

effects obtained from simulations with and without the eikonal force term in the different cases. For

the eikonal term Gi in Eqn. (6.20), we use V =Vmax(1− ρ

ρmax
) with Vmax = 1m/s, ρmax = 5 ped/m2

and T = 0.1s. For the calculation of microscopic number density ρi, as given in Eqn. 6.8, we use si

= 0.5m. The details of the other parameters used in the different cases are shown in Table 6.1 in

the first three rows. Explicit time integration with a fixed time step size of 0.01s is used for this

simulation.
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Figure 6.1 – Two-particle collision avoidance scenario
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Figure 6.2 – Velocity-time graphs of particle moving to the right for 3 different interaction rules
including pure repulsion, repulsion/dissipation and collision avoidance. In each case, the models are
used with and without eikonal force.

A sample plot of trajectories of the particles with the collision avoidance model, where a collision

is successfully avoided, is shown in Fig. 6.1(right). The velocity-time graphs of the particle moving
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to the right are shown in Fig. 6.2. We observe, from the x-velocity graphs in Fig. 6.2 (left), that

purely repulsive or repulsive and dissipative social force terms lead to pedestrians bouncing and

moving opposite to their desired direction once they encounter a potential collision from a distance.

On bouncing back, they either come to a stop or even move in the opposite direction, depending on

the strength of the residual social force. Hence the additional eikonal term is essential to counter

the social force and keep the particles moving forward. The eikonal terms are not essential in the

case of the collision avoidance models. In this case, the pedestrian keeps its speed and only changes

slightly its direction to avoid the collision, as can be seen from the y-velocity graphs in Fig. 6.2

(right). We also observe that for the pure social force models, there is no change in the y-direction

of the particle heading to the right to avoid a head-on collision.

Moreover, we see from the velocity-time graphs in Fig. 6.2 that for the case of social force models

combined with the eikonal equation, the collision is avoided. The particles initially slow down

when they predict the collision and then slowly modify their direction. Once the collision is avoided,

they accelerate again and move in the target direction. On the other hand, the rational behaviour

collision avoidance model guarantees collision avoidance while maintaining the target velocity

without relying on the eikonal equation. There is no abrupt bouncing or change of direction here,

but a gradual change in direction and velocity because of the anticipatory behaviour. Adding an

eikonal force term is not a necessity in this case.

In conclusion, purely repulsive or repulsive-dissipative social forces are not sufficient for a rea-

sonable collision avoidance behaviour, while using just the potential Φ in the collision avoidance

models as given in Eqn. (6.2) is enough to obtain a physically reasonable solution without addi-

tional eikonal or social force terms. The model works perfectly fine in the case considered in this

subsection.

6.3.4 Comparison with experimental data - one pedestrian avoiding a stationary pedes-
trian

We consider the controlled experiment of a pedestrian avoiding a stationary pedestrian (at the

centre) in a corridor of length 7.88m and width 1.75m, as described in [128]. In Fig. 6.3, the

averaged trajectory of the pedestrian from experiments is compared against the trajectory predicted

from the model in Eqn. (6.1) with collision avoidance force F . For our numerical setup, we consider

the initial position of the pedestrian as in the experiment. The parameter for the relaxation time in

the eikonal equation is chosen as T = 0.5s and Vmax = 1.3m/s, as considered in the model in [128].

That means we do not fit the parameters to the experimental trajectory but rather use experimentally

determined parameter values. We see that for the chosen parameters, the trajectory agrees well. The

largest displacement from the centre, corresponding to the peak in the trajectory from experimental

data, is 0.411m and in the simulated trajectory is 0.526m.

6.3.5 Collision avoidance - one particle against a group of particles

To study how collision avoidance behaviour is affected when there is a higher density of pedestrians

rather than a one-to-one head-on scenario, we consider a group of pedestrians described by the
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Figure 6.3 – Comparsion of average trajectory from controlled experiment (labeled Exp) in [128] with
the trajectory obtained from the model (labeled Coll) in Eqn. (6.1) using collision avoidance from
Eqn. (6.2) with parameter values k = 2 1

sm4 , k̃ = 1 s
m2 , L = 3.5m, R = 0.5m. The data for the average

trajectory was extracted, from the figure in the publication [128], using the online tool - [145]

microscopic equations moving to the right, each with an initial velocity v(0)i = (1,0)m/s, i =

2, . . .N and a single pedestrian heading to the left with an initial velocity v(0)1 = (−1,0)m/s (see

Fig. 6.4(left)). The target velocities are chosen accordingly.

We consider again the models described at the beginning in Section 6.3.2 with parameters given in

Table 6.1. For the eikonal term Gi, we use V =Vmax(1− ρ

ρmax
) with Vmax = 1m/s, ρmax = 5 ped/m2

and T = 0.1s. For the calculation of microscopic number density ρi, as given in Eqn. (6.8), we use

si = 0.6m. A fixed time step size of 0.01s is used for the explicit time integration. The rational

behaviour model is considered with and without repulsive force and eikonal force term. The social

force models are considered with an eikonal force term. Fig. 6.4 shows a sample plot of the particles

obtained from the model with repulsive social force term.
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10

Figure 6.4 – Interaction of a group of pedestrians with a single pedestrian - plots at t = 0s (left) and
t = 8.1s (right) .

The velocity-time graphs in Fig. 6.5 of the particle heading towards the left boundary reveal that

the single pedestrian avoids collision with the oncoming group by both path and speed adjustment.

There is always a forward movement (i.e. the velocity does not become positive at any time), while

there is also a gradual change in speed (by changes in x-velocity) and direction (by y-velocity

changes) to avoid collisions particle by particle.

We observe that the collision avoidance model with and without repulsive force Eg leads to an
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Figure 6.5 – Velocity-time graphs - x-velocity (left), y-velocity (right) - of the pedestrian moving
towards left from t = 0s to t = 15s. Color of the plots denote the various interaction forces - pure
repulsion, repulsion-dissipation and collision avoidance/rational behaviour - used in the model.

accelerated movement of the particle (indicated by larger negative x-velocity) with small direction

changes (indicated by changes in y-velocity). This acceleration is reduced for the case of the

rational behaviour model, including the eikonal force. In this case, the pedestrian velocities remain

near the maximum speed of 1m/s. This is expected as the eikonal term is a relaxation towards the

desired velocity.

When pure social forces are considered, a repulsion-dissipation force Eg +Eµ , coupled with an

eikonal force, leads to strong deceleration as the pedestrian approaches the group, followed by

continuous speed and direction adjustments. On the other hand, using the pure repulsive force

Eg coupled with an eikonal force leads to a less pronounced deceleration of particles along with

direction changes during the collision avoidance phase, followed by an acceleration to the maximum

velocity (magenta plots). Moreover, the collisions seem to be resolved more quickly, and velocity

remains more bounded after the initial collision avoidance, which happens between t = 6s and

t = 7s.

Thus, using either a rational behaviour force and a repulsion or a pure repulsion together with an

eikonal force gives physically reasonable results in these scenarios. We remark that although the

collision-avoidance potential Φ with an additional repulsive force term Eg also produces favourable

results, the parameters are very sensitive to any change in geometry or density of pedestrians or

even the starting positions and velocities of the particles considered.

6.3.6 Collision avoidance - one group of particles navigating a stationary obstacle and
walls

Now, we consider a corridor of length 100m and width 50m and a group of pedestrians consisting of

231 pedestrians described by the microscopic equations moving to the right with an initial velocity

v(0)i = (1,0)m/s initially uniformly distributed in a rectangular region near the left boundary, see
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Figs. 6.6 for the initial setup. The target velocity v⋆i is here chosen via Eqn. (6.24) using T ⋆ = 0.1s.

The top and bottom are boundary walls, and there is a stationary obstacle, which the group of

pedestrians has to avoid. Further parameters are given in Table 6.2. For the eikonal term Gi, we

use V =Vmax(1− ρ

ρmax
) with Vmax = 2m/s, ρmax = 10 ped/m2 and T = 0.1s. Note that even higher

maximal densities have been measured in emergency situations, see [7]. A fixed time step of 0.001s

is used for explicit time integration.

Interaction Force Parameters

Rep., E = Eg with g from (6.28) Cr = 4 m2

s2 , lr = 0.5m

Collision Avoidance F =−∇vΦS k = 2 1
sm4 , k̃ = 1 s

m2 , L = 3m, R = 0.4m

Rep.-Dissip., E = Eg +Eµ

with g from (6.29)

kn = 100 1
s2 ,Rr = 0.42m,

µn = 50 1
s , µt = 10 1

s

Collision Avoidance + Rep.,

F +Eg with g from (6.27)

k = 2 1
sm4 , k̃ = 1 s

m2 , L = 3m,

R = 0.4m, Dr = 10 m3

s2 , sr = 1m

Table 6.2 – Parameter list for the different interaction force terms for Sections 6.3.6 to 6.3.9. Parameters
not listed are set to zero.

In this case, the focus is not only to avoid collisions with other pedestrians but also to keep a

minimum distance between the pedestrians in order to avoid overcrowding. A simple collision

avoidance force given by Φ, as in Eqn. (6.2), is, in this case, not enough to guarantee this unless

the coefficients are tuned to provide a high repulsion effect, which is impractical. An additional

repulsive force Eg, which acts as a distance keeping term for the particles within the group, is more

efficient in this scenario and more adaptable to density changes.

We note that in [15], for scenarios involving boundaries, the interactions of pedestrians with

boundary walls are dealt with by additional distance keeping or frictional terms particular to wall

interactions. Here, we include the information on the boundaries via the forcing term G and, in

particular, via the boundary conditions for the eikonal equation Eqn. (6.21).
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Figure 6.6 – Initial positions of 231 pedestrians for a geometry with a fixed obstacle.
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Figure 6.7 – Variation of minimum pair-wise distance between particles with time (left). Fraction of
pedestrians vs. time graph showing the evacuation times (right)

In this scenario, the main point of concern is whether the pedestrians maintain their distance while

navigating around the obstacle since there is a tendency to crowd near the edges of the obstacle.

We analyse the overall minimum distance amongst all possible pairs of pedestrians at a particular

time instant. The plot in Fig. 6.7 (left) shows the minimum distance for various possible interaction

forces. We observe that using the collision avoidance potential Φ and no social force term leads to a

lot of crowding. The minimal distance is near zero in this case. Hence Φ needs to be always paired

with a distance keeping term Eg to maintain a minimal distance between pedestrians in the group.

Meanwhile, a simple repulsive force or dissipative forces, like Eg or Eg +Eµ , are also enough to

guarantee distance keeping. At the same time, the non-local eikonal force guarantees the navigation

around the large obstacle while moving towards the target direction and maintaining the target

speed.

Fig. 6.7 (right) shows the evacuation times for the various interaction forces. We see that collision

avoidance Φ with or without additional repulsive force leads to shorter evacuation times, as

compared to the pure social force type models. This is because pedestrians maintain higher

velocities closer to the maximum velocity in the collision avoidance models, as we observed in the

cases in Section 6.3.3 and Section 6.3.5 for the chosen parameters. The social forces slow down the

pedestrians significantly while navigating the obstacles.

6.3.7 Group of pedestrians navigating a stationary obstacle: hydrodynamic simulations

For the hydrodynamic simulations, we consider a corridor of length 100m and width 50m with a

static obstacle in the domain. The top and bottom boundaries are rigid walls. A group of particles

with an initial density of ρ0 = 1 ped/m2 start near the left boundary and are moving towards the

right boundary.

We consider the hydrodynamic model, Eqn. (6.17) and Eqn. (6.22) with force terms given by the

models mentioned previously. They are, in all cases, combined with the eikonal term. We keep the

parameters in the eikonal force term uniform across all simulations with parameter values as in the

previous microscopic simulation in Section 6.3.6. The time step used in this case is again 0.001s.

Time snapshots at t = 10s and t = 20s of the densities in the domain for the different cases are
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shown in Figs. 6.8 and 6.9. The density plots show that higher densities are observed around

the edges of the obstacle. We observe that, as in the microscopic case, the highest densities are

observed for the model with collision avoidance Φ without any repulsion term in comparison to the

other models. Moreover, we see that the addition of a repulsive term, Eg ensures more diffusion

and hence reduces overcrowded states considerably. The corresponding density plots at different

vertical strips of the domain are shown in Fig. 6.10.

We conclude that when the interaction forces are used in combination with an eikonal force, which

is essential to have a robust model capable of handling geometry changes easily, the qualitative

results are not highly sensitive to the local pairwise interaction or collision avoidance forces

between pedestrians. However, the pure rational behaviour model tends as before to unphysical

overcrowding.
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Figure 6.8 – Density (color denotes number of pedestrians/m2) plots for the different interaction
forces - pure repulsion,collision avoidance, repulsion-dissipation and collision avoidance with repulsion.
Snaphot at t = 10 s.

6.3.8 Comparison of microscopic and macroscopic model

For the comparison of a microscopic and a macroscopic model considered in Section 6.3.6 and

Section 6.3.7, respectively, we consider the numerical setup in the corresponding sections using

720 pedestrians initially separated by a distance of 1m. Correspondingly, we consider a grid

of 720 macroscopic particles and assign them an initial density of 1 ped/m2 in each 1m2 cell

corresponding to the pedestrian positions considered in the domain. We restrict ourselves to the

repulsion-dissipation interaction model. The other models show similar behaviour. We numerically

solve the microscopic and macroscopic models with parameter values as in Table 6.2. For the

eikonal term Gi, we use V =Vmax(1− ρ

ρmax
), with Vmax = 2m/s, ρmax = 10 ped/m2 and T = 0.1s.

Fig. 6.11 compares the microscopic simulation (location of pedestrians) with the macroscopic

density at time t = 20s. For a more detailed comparison of microscopic and macroscopic models,

we refer to [60] and [111]. In particular, in [111], a discussion and numerical comparison of the
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Figure 6.9 – Density (color denotes number of pedestrians/m2) plots for the different interaction
forces - pure repulsion,collision avoidance, repulsion-dissipation and collision avoidance with repulsion.
Snapshot at t = 20s.
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Figure 6.10 – Density plots at different vertical strips of the domain at different time instances for the
stationary obstacle.

computation times for microscopic and macroscopic models is given. There, it is shown that a major

gain in computation time can be obtained by using the macroscopic model as long as the number

of involved pedestrians is large and a suitable discretization method is used for the macroscopic

equations.

6.3.9 Effect of changing relaxation time T

In order to understand the effect of the value of the relaxation time T , we consider the hydrodynamic

model considered in Section 6.3.7 with two different interaction forces, i.e. repulsion-dissipation

and rational behaviour with repulsion. The numerical setup is the same as above, with a static

obstacle in a rectangular corridor. The parameters for the interaction forces are chosen as given

in Table 6.2, and the parameters for the eikonal force term G are as in Section 6.3.7. We vary the

relaxation time T in the eikonal forcing term in Eqn. (6.23). Three values of T are considered in
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Figure 6.11 – Microscopic (left) and macroscopic (right) simulation with a fixed obstacle - snapshots at
t = 20 s with repulsion-dissipation force Eg and eikonal term G.

Fig. 6.12. Firstly, we have set the relaxation time to T = 0.001s which is equal to the time step for

numerical integration. This ensures immediate acceleration of the particles to the desired velocity.

Using this value of T implies giving a high weight to the eikonal force term. We compare these

results against the ones for T = 0.1s and T = 0.5s. We observe that increasing T leads to more

diffusion and hence lower densities (compared to the case of T = 0.001s).
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Figure 6.12 – Comparison of the density for different relaxation times T = 0.001 s, 0.1 s, 0.5 s for the
interaction forces - repulsion-dissipation (left) and rational behaviour with repulsion (right). The data is
plotted for a vertical strip at x = 49m of the domain at t = 20 s for a stationary obstacle.

6.3.10 Pedestrian interaction with moving obstacles

Finally, we have performed numerical simulations of the collision avoidance model, with a repulsive

term, under the influence of a moving obstacle, i.e. we consider Eqns. (6.17), (6.22) and (6.26). We

consider, as before, a domain which is 100 m long and 50 m wide. The top and bottom boundaries

are rigid walls without any entry or exit. The right boundary is the exit for pedestrians, and the left

boundary is the exit for the obstacle. The initial pedestrians are concentrated in a rectangular region

in the domain. The obstacle considered is rectangular in shape, 8 m long and 4 m wide. The initial

density of the pedestrians is taken as ρ0 = 1 ped/m2. The motion of the obstacle is described by

Eqn. (6.26) with V O =V O
max(1−

ρ

ρmax
), where V O

max = 3m/s.

Further computational details are given in Table 6.3. We initialize the pedestrians with a distance of

1m. Explicit time integration with a fixed time step size of 0.001s is used in our simulation. The

densities at various time instances t are shown in Fig. 6.13. We observe that the model involving
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repulsion along with collision avoidance also gives physically reasonable results in such a moving

obstacle scenario.
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Figure 6.13 – Density (color denotes number of pedestrians/m2) plots at different time instances -
t = 0s (left), t = 20s (middle), t = 30s (right) - for a moving obstacle scenario

Force terms Parameters

Coll. avoidance, F R = 0.5 m, L = 2 m, k = 2 1
sm4 , k̃ = 1 s

m2

Repulsive force, Eg Dr = 1 m3

s2 , sr = 0.1 m

Eikonal, G T = 0.001 s, Vmax = 2 m
s , ρmax = 10 ped/m2

Table 6.3 – Computational Details for the moving obstacle simulation

6.4 Conclusion
In the present chapter, we give a numerical investigation of a hierarchy of models to describe

pedestrian flow starting from an agent based model following the work in [49] and [15]. While

in [49], the authors considered an agent based model with constant speed as formulated in [129],

we refer in the present chapter to the improved and more elaborate rational behaviour model with

variable speeds developed in [15]. This makes the model more practically suitable for higher density

scenarios and scenarios with obstacles compared to that described in [129]. A mean field kinetic

model and its hydrodynamic approximation via a moment closure method using a monokinetic

closure follows readily from the time continuous microscopic definitions.

Moreover, a numerical comparison has been made to highlight the similarities and differences

between the current approach of using a cost potential for the velocity update and that of using

explicitly defined interaction potential/force terms as in social force models. The limitations of the

pure social force models is brought out by the consideration of the head-on collision scenario of

Section 6.3.3. On the other hand the limitations of the pure collision avoidance approach in dealing

with higher density cases is reflected in the scenarios considered in Section 6.3.5 and 6.3.6. In

particular, this is shown by the fact that minimal distances are not maintained in dense situations.

This requires adding additional social force type terms to the collision avoidance model as already

done in [15].
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To deal with walls or boundaries, [15] suggest incorporating local terms based on repulsion in

the collision avoidance model. The same can be achieved in a more natural and robust way using

the non-local eikonal term Gi as given by Eqn. (6.19). It is to be noted that the addition of the

eikonal term implies that there are three non-local force terms in the model equations, one based on

pedestrian-pedestrian collision avoidance in a vision cone, the second one on the environmental

coercion terms and the last one based on the eikonal term which is responsible for avoiding

boundaries and obstacles and dense regions of pedestrians.

As we see from the numerical results, in low density situation, the advantage of the pure collision

avoidance approach is clearly observed. It leads to physically consistent trajectories in contrast

to the social force models. However, in denser density scenarios, the addition of a social force

type term is required due to the tendency of overcrowding as has been already observed in [15]. In

the macroscopic simulations all models compare well qualitatively and quantitatively as long as a

repulsive term is included in the collision avoidance model.

In conclusion, we have investigated microscopic and macroscopic pedestrian models based on

the heuristics defined in [15]. We presented a detailed numerical investigation of these models

and compared them to pure social force type models. Moreover, a preliminary comparison with

a simple experiment is given. Further comparisons with experimental data can be made in future

work. Also, the parameters need to be estimated to build more concrete conclusive remarks from

such comparisons. The work also demonstrates the extension of the model to implement (moving)

obstacle instances. This necessitates further studies to reveal the correlations between velocities or

shape of obstacles and the dynamics of pedestrians.
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7 Conclusion

The field of crowd dynamics is diverse and heterogeneous, composed of several subdomains of

research areas. We have, through our work, contributed to two particular areas - pedestrian-moving

obstacle interactions and disease contagion in crowds.

A primary objective that the work in this thesis has achieved is to develop a modelling framework

and the associated numerical framework, which allows us to investigate moving pedestrian crowds

in a variety of geometrical and environmental scenarios. The framework allows us to conduct

numerical studies in diverse domain configurations involving boundaries and obstacles, both

stationary and dynamic. Moreover, various flow conditions, uni- and bi-directional flows, low- and

high-density flows and more are analysed. To the best of current knowledge, such a simplistic

framework to easily cater to an array of interaction scenarios will prove to be a remarkable addition

to the existing literature.

We are aware that the pedestrians by themselves are heterogeneous, varying by physical factors like

age, height and weight and social factors like ethnicity and cultural differences. However, most

pedestrian models, including the one in this thesis, consider a homogeneous population and the

model parameters are chosen by considering their average behaviour observed in empirical studies

and the real world. We remark that the parameter values should be reflective of the chosen scenario.

For example, the interaction radius for the repulsive forces between pedestrians should be chosen

smaller for a scenario in an Asian country than in a European country, the reason being that Asian

population is more used to crowds and hence would have a higher tolerance for inter-personal

distances. A more efficient model in future should try to incorporate the heterogeneity as much as

necessary.

The modelling framework provides a useful tool for analysing efficient design of various pedestrian

facilities and public spaces with the goal of preventing adverse conditions and providing effec-

tive evacuation strategies. For example, the model can be used to analyse how an ambulance or

emergency vehicle can efficiently navigate a crowded stadium in an emergency scenario. Through

numerical results, we can visualise the evolution of the pedestrian densities and movement trajecto-

ries along with their interactions within any given domain, which will be useful for the evaluation

of the design and the identification of critical locations that require special attention.

The question of the well-posedness of the model is innate and needs to be answered in the context of

coupling a hydrodynamic model to the Eikonal equation. In the context of coupling a macroscopic

model with the microscopic kinetic equations for obstacles, we can argue that the Lagrangian

formulation of the hydrodynamic model for numerics allows for an easy coupling. But the same

needs to be studied for stability and well-definedness. We also remark that multiscale models can
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provide efficient modelling frameworks for dealing with complex problems.

The FPM is highly efficient and robust in dealing with a variety of physical problems, including

those in fluid dynamics, interacting particle systems like swarms and granular media and here

crowds. In this thesis, we have demonstrated how FPM is used in handling coupled models and

complex geometries. We note that the extension to multiple moving obstacles may sometimes

require solving multiple eikonal equations. This can significantly increase the computational time

unless the eikonal fast marching algorithm is highly efficient. This is where heap sorting becomes

imperative. Moreover, the advantages of using meshfree methods overpowers that of using mesh

based methods in such interacting particle systems, especially its robustness in complex geometries.

It is common knowledge that for any mathematical model, calibration of parameters from empirical

studies or from real-world data is a basic requirement. There are numerous experimental studies that

have been conducted to analyse specific flow patterns amongst pedestrians. A comprehensive list

and review is provided in [77]. While the experiments cater to specific scenarios (like intersecting

flows or bottlenecks) or to analyse specific parameters (fundamental diagrams), it is not possible to

conduct experiments for a general model calibration. Further, processing real world data is still a

huge computational task. Moreover, access to real data from highly crowded situations, especially

of crowd disasters, from where valuable information can be extracted, is limited. Hence there is

still a huge gap between models and the real world, chiefly for high-density situations.

It is quite an irony that modelling a physical system can never reach the level to satisfy the curiosity

of any applied mathematician. There is always some simplification or hypothesis that one might

feel the need to change or discard; that is, there is always room for improvement. Particularly in the

case of complex systems, additional work is almost always essential for developing mathematical

frameworks to capture, reproduce and analyse the myriad patterns and complexities that are inherent

to the system.
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