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Abstract
We propose a universal method for the evaluation of generalized standard materials that greatly simplifies the material
law implementation process. By means of automatic differentiation and a numerical integration scheme, AutoMat reduces
the implementation effort to two potential functions. By moving AutoMat to the GPU, we close the performance gap to
conventional evaluation routines and demonstrate in detail that the expression level reverse mode of automatic differentiation
as well as its extension to second order derivatives can be applied inside CUDA kernels. We underline the effectiveness and
the applicability of AutoMat by integrating it into the FFT-based homogenization scheme ofMoulinec and Suquet and discuss
the benefits of using AutoMat with respect to runtime and solution accuracy for an elasto-viscoplastic example.

Keywords Automatic differentiation · Generalized standard materials · Numerical methods for ODEs · FFT-based
homogenization · GPU computing

Mathematics Subject Classification G.1.4 · G.1.7 · G.4 · J.2

1 Introduction

In recent years, the improving quality of micro x-ray com-
puted tomography (CT) images led to a digitalization of the
material characterization process for composites. Nowadays,
standard CT-devices have a maximum resolution below one
μm and produce 3D images of up to 40963 voxels. This
permits a detailed view of the microstructure’s geometry
of composite materials up to the point where continuum
approaches are still reasonable. In the context of material
characterization, the physical description of the body leads
to a partial differential equation (PDE) in which the behav-
ior of the material itself is modeled in terms of a material

B Johannes Blühdorn
johannes.bluehdorn@scicomp.uni-kl.de

Nicolas R. Gauger
nicolas.gauger@scicomp.uni-kl.de

Matthias Kabel
matthias.kabel@itwm.fraunhofer.de

1 Chair for Scientific Computing, Technische Universität
Kaiserslautern, Kaiserslautern, Germany

2 Department of Flow and Material Simulation, Fraunhofer
ITWM, Kaiserslautern, Germany

law. Traditionally, a finite element (FEM) discretization is
applied, and during the solution procedure, the material law
is evaluated locally at quadrature points. To solve problems
of this size with conventional FEM, large computing clusters
are required to handle the global stiffness matrices [3,4].

In the last two decades, the FFT-based homogenization
scheme of Moulinec and Suquet [40,41] emerged as a mem-
ory efficient matrix-free alternative that was adapted to
operate on structured finite element meshes [33,54,55,65].
Besides the smallmemory footprint, themost favorable prop-
erty of the so-called basic scheme is a tangent-free treatment
of nonlinear material behavior. However, its required itera-
tion count is proportional to the material contrast, i. e. the
maximum of the quotient of the largest and the smallest
eigenvalue of the consistent tangential stiffness field. Thus,
for certain practical applications such as the homogeniza-
tion of plastifying materials, the convergence behavior can
be exceedingly slow [53].

To accelerate the solution process, Zeman et al. [67] and
Brisard andDormieux [8,9] appliedKrylov-subspace solvers
to FFT-based homogenization. These methods are extremely
fast, but they are restricted to linear problems. By combi-
nation with inexact Newton-methods, they were extended
to the physically [18] and geometrically [27] nonlinear case
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and exhibited excellent performance [34,35]. The drawback
of this approach consists in either loosing the small memory
footprint or the need to calculate the tangential stiffness of the
material laws in every iteration of the linear solver. Further-
more, the analytic derivation of the tangent can be tedious and
its implementation may require considerable programming
effort, and is thus prone to errors. This gave rise to apply-
ing Quasi-Newton methods in FFT-based micromechanics
[10,11,52,53,57,64]. There,material tangents are replaced by
suitable approximations. To sum up, the choice of the solver
is driven by compromises between runtime efficiency, mem-
ory efficiency and the implementational effort of an accurate
material tangent.

Especially during prototyping and modeling, it might be
necessary to assess different material laws. Clearly, it is
impractical to derive the material tangent from scratch for
every material law under consideration. However, it is also
undesirable to be restricted to tangent-free solvers during this
phase. Motivated by the work of Rothe and Hartmann [45],
we started the development of AutoMat, which leverages
automatic differentiation and GPU computing to simultane-
ously address issues of flexibility, accuracy and performance.

GPU acceleration for FEM codes often uses the well-
known coloring method which partitions the mesh such that
no elements of the same color share any common node. The
GPU kernel then performs elemental stiffness calculations
for the elements of the same color in parallel and assembles
them into the global stiffness matrix. In [36], the results show
a speedup of 3 to 19 for the matrix assembly on an Nvidia
GeForce 8800 GTX card. The authors of [42] additionally
accelerated the sparse matrix solver and could reduce the
execution time of the entire FEM application from 44.65 s on
a CPU (Nehalem architecture, 4 cores, OpenMP) to 17.52 s
on a CPU with a GPU (Nvidia Tesla C2050). Recently, [30]
made use of the warp shuffle feature of CUDA to optimize
numerical integration for the evaluation of elemental stiffness
matrices. For different mesh sizes, a speedup between 6.73
and 8.21 was demonstrated on an Nvidia Tesla K40 card.

Automatic differentiation (AD) refers to techniques for
the automatic acquisition of machine accurate derivatives of
computer codes [19]. These have applications in, e. g., the
setup of adjoint solvers [50], parameter identification [6],
shape optimization [17], and machine learning [21]. There,
AD is applied to a full simulation. Here, we use AD locally
for the automatic setup of solvers and eliminate the incon-
venience of hand-computed derivatives. For classical CPU
architectures, several mature AD tools are available by now,
for exampleADOL-C [63], dco/c++ [31] andCoDiPack [47].
Advances in the direction of AD for GPU codes are more
recent, examples include dco/map with applications in com-
putational finance [32]. In [45], Rothe and Hartmann use
the source transformation tool OpenAD [60] for the auto-
matic computation of material tangents and the assembly of

Jacobians for implicit solvers in the context of a multi-level
Newton algorithm. In this work, the automatic differentiation
ansatz is advanced in several directions.

We focus on the class of generalized standard mate-
rials (GSM) [24], which we introduce in Sect. 2. There,
AD enables us to recover the constitutive equations of the
material law automatically from given implementations of
two potentials, resulting in a fully automatic solver setup.
This allows for a highly usable and convenient integra-
tion of GSMs into mechanical solvers. We demonstrate this
by integrating AutoMat into the FFT-based homogenization
scheme ofMoulinec and Suquet [41] as implemented in Feel-
Math1. As our benchmark example for AutoMat, we use an
elasto-viscoplastic material model with material parameters
adjusted to measurements of a metal-matrix composite. The
precise setup is taken fromMichel and Suquet [37] and sum-
marized in Sect. 3.

The consistent tangent operator is the algorithmic deriva-
tive of the stress as it is computed from the strain according
to the material law. Its computation requires a differentia-
tion through an integration scheme for ordinary differential
equations (ODEs). The conventional backward Euler step
is differentiated in [58] by hand. We show in Sect. 4.1 that
this procedure can be fully automatized. To understand the
numerical properties of the tangent computation,we interpret
it in Sect. 4.2 as a single implicit Euler step applied to anODE
for the derivative. Since this ODE depends on the chosen
loading step size, convergence of the tangent for decreas-
ing step size is not guaranteed. This motivated us to explore
schemes with adaptive time steps instead. It was noted in
[13] that the differentiation of ODE integration schemes in a
blackbox manner, that is, without consideration of the struc-
ture of the integration algorithmand its approximative nature,
usually leads to incorrect or inaccurate derivatives. A partic-
ular focus of [13] is on the role of adaptive time steps and an
aposteriori error correction. In [62], fixed step size explicit
Runge–Kutta methods are applied for the discretization of
optimal control problems and it is shown that the sensitivi-
ties obtained by blackbox forwardAD are consistent with the
corresponding tangent linear model. [15] reports on an appli-
cation of AD to explicit Runge–Kutta methods with adaptive
step size control. Further research on AD of ODE integra-
tion schemes was conducted in an optimal control context
with a focus on the reverse mode of AD [48,49], including
adaptive step sizes [2] and reverse mode specifics such as
interpolation strategies for the forward solution [1]. In this
work, we refine forward differentiation strategies for a class
of integration schemes that contains Rosenbrock methods as
well as both explicit and implicit Runge–Kutta schemes. We
show that two modifications suggested in [13] together with
an appropriate treatment of equation solves are sufficient to

1 https://www.itwm.fraunhofer.de/feelmath.
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turn blackbox forward differentiation into a procedure that
is equivalent to applying the same scheme simultaneously to
an ODE for the derivatives. With the results, we can guar-
antee that the consistent tangent operator is as accurate as
the stress tensor. The overall robustness and accuracy of the
proposed scheme is assessed in Sect. 4.3. We achieve further
robustness with respect to the choice of the ODE solver by
employing a stress-driven error control, which we present in
Sect. 4.4.

In FFT-based homogenization, the computationally costly
simulation components are the Fourier transform and mate-
rial law evaluation [20]. For nonlinear materials, the latter
tends to dominate the overall runtime [29] and is hence
performance critical. The spatial independence of material
law evaluations allows for parallelization, which is typically
used in an efficient implementation. Throughout Sect. 4, we
compare parallelized material law evaluations on the CPU
with GPU accelerated material law evaluation. We achieve
a notable speedup for conventional material law evaluation,
but particularly for the computationally more involved auto-
matic evaluation strategies presented in this paper, there are
significant performance gains. In our example and setup, we
were able to close the performance gap between conven-
tional material law evaluation on the CPU and automatic
material law evaluation on the GPU. The good performance
would not be possible without an efficient implementation of
automatic differentiation on the GPU. Therefore, we devel-
oped an operator overloading AD tool specifically for the
application presented in this paper. It is based on expression
template techniques; previously in AD, these were success-
fully applied for the treatment of right hand sides in the
forward mode [43] and in Jacobi taping [26] as well as pri-
mal value taping [46] in the reverse mode. The details of the
implementation and its further optimizations are presented in
Sect. 5. In Sect. 6, remaining influence factors on the perfor-
mance are discussed. We analyze the performance limiters
of AutoMat, present design choices and optimizations of the
GPU implementation and discuss overlap of CPUworkloads,
GPU workloads, and data exchange as well as reductions of
thememory footprint. This is complemented by scaling stud-
ies in Sect. 7.

Finally, we summarize and conclude our work in Sect. 8.

2 Generalized standardmaterials

The notion of generalized standard materials is originally
introduced in [24]; a compact introduction to the subject can
be found in [37]. Let ε ∈ R

6 denote the right Cauchy-Green
strain tensor2, σ ∈ R

6 the Cauchy stress tensor2 and a ∈

2 Note that the Voigt notation [61] for symmetric second order tensors
∈ R

3×3 is applied.

R
m the vector of internal variables, all depending on time

and space. The constitutive equations of the material law are
given in terms of a Helmholtz free energy density ω : R6 ×
R
m → R : (ε, a) �→ ω(ε, a) and a force potentialΨ : Rm →

R : A �→ Ψ (A) and read

σ = ∂ω

∂ε
(ε, a), (1)

ȧ = ∂Ψ

∂A

(
−∂ω

∂a
(ε, a)

)
. (2)

A ∈ R
m is referred to as generalized stresses and if both

ω and Ψ are convex functions of their arguments, we speak
of a generalized standard material. The dissipation potential
which is the convex dual ofΨ is not used in the present study.
We use these identifiers throughout the paper.

After space discretization, evaluations of above stress-
strain relationship and evolution of internal variables are
required in the quadrature points. We drop the x depen-
dency in the notation as the specific location does not change
throughout a single material law evaluation. After time dis-
cretization, the material law inputs at a quadrature point
consist of a strain tensor εn and internal variables an at time
tn as well as a strain tensor εn+1 which is usually only a pre-
diction of the actual strain tensor at time tn+1 in the context
of the surrounding elasticity solver. Then, in each quadrature
point, the material law can be evaluated as follows.

1. Solve the ODE for the internal variables (2) with initial
data (tn, an) on the time interval [tn, tn+1]. Recover ε(t)
by means of linear interpolation between εn and εn+1.
This way, obtain an+1.

2. Compute σn+1 via (1) from εn+1 and an+1.

Additionally, the consistent tangent operator Cn+1 ∈ R
6×6

which is the algorithmic derivative of σn+1 with respect to
εn+1 is usually computed along with the material law [59].
It is used in the FFT-based homogenization scheme to deter-
mine the optimal reference material.

In view of the decision for an integration scheme for
(2), negative eigenvalues of the Jacobian of the ODE’s right
hand side indicate that explicit solversmight display unstable
behaviour [22], that is, require extremely small steps. The fol-
lowing theorem states that evolution equations arising from
GSMs are subject to this issue. Following [66], M ∈ C

m×m

is called positive semi-definite if ∀x ∈ C
m : x∗Mx ∈

R and x∗Mx ≥ 0. This definition implies that each positive
semi-definite complex matrix is Hermitean.

Theorem 1 Let a GSM be specified by ω and Ψ and assume
that both are C2. If λ is an eigenvalue of the Jacobian with
respect to a of the right hand side of (2), then λ ∈ R and
λ ≤ 0.
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Proof The Jacobian with respect to a of the right hand side
of (2) reads

d

da

(
∂Ψ

∂A

(
−∂ω

∂a
(ε, a)

))

= −∂2Ψ

∂A2

(
−∂ω

∂a
(ε, a)

)
∂2ω

∂a2
(ε, a). (3)

As Hessians of C2 functions, both ∂2Ψ
∂A2 and ∂2ω

∂a2
are symmet-

ric. Since both ω and Ψ are convex and C2, ∂2Ψ
∂A2 and ∂2ω

∂a2
are

also positive semi-definite as real matrices, that is,

∀x ∈ R
m : xTMx ≥ 0,

where M denotes any of both Hessians. Symmetric and posi-
tive semi-definite realmatrices are also positive semi-definite
as complex matrices. By Theorem 2.2 in [66], the product of
positive semi-definite complex matrices is similar to a pos-
itive semi-definite complex matrix, that is, there exists an
invertible complex matrix T such that T−1 ∂2Ψ

∂A2
∂2ω
∂a2

T is a
positive semi-definite complex matrix. All eigenvalues of a
positive semi-definite complex matrix lie in R≥0. As simi-
larity preserves eigenvalues, all eigenvalues of the product
∂2Ψ
∂A2

∂2ω
∂a2

are contained in R≥0; hence all eigenvalues of (3)
are contained in R≤0. 	


Another example for an eigenvalue proof based on defi-
niteness and convexity in the context of material simulation
can be found in [12]. There, a time-marching scheme for the
solution of a viscoplastic problem is identified as a system of
ODEs for the stresses at integration points and the eigenval-
ues of the Jacobian of the right hand side are used to assess
stability properties.

Whether explicit solvers (with adaptive step size control)
or implicit solvers are faster depends on the specific material
law, internal variable values, applied strain and integration
interval length. In Sect. 4, we refine both explicit and implicit
solution strategies.

3 Example

Throughout the paper at hand, we perform our numerical
studies for a uni-axial tension-compression test of a short
fiber reinforced metal-matrix composite (MMC) taken from
[37].

Microstructure The MMC consists of 10.2 vol% Al203
fibers embedded in an aluminum matrix. In our periodically
generated micro-structure (see Fig. 1), the planar isotropic
distributed fibers have a diameter of 9 μm and a length of
135 μm. This volume element of 150× 150× 150μm3 was
discretized by 150 × 150 × 150 voxels.

Fig. 1 Microstructure of the MMC generated with GeoDict (https://
www.geodict.com/)

Material Model The Al203 fibers are modeled linear elastic
with Young’s modulus E and Poisson’s ratio ν and the alu-
minum matrix as the elasto-viscoplastic GSM given by the
Helmholtz free energy density

ω(ε, a) = ω(ε, εvp, α) =
1

2
εTe C

eεe + 1

3
εTvpHεvp +

∫ α

0
K(q) dq, (4)

where H = diag
(
H , H , H , H

2 , H
2 , H

2

)
and εe = ε − εvp,

and the force potential3

Ψ (A) = Ψ (Avp, Aα) =

σd ε̇0

n + 1

⎛
⎜⎝

(∥∥dev Avp
∥∥
eq + Aα

)+

σd

⎞
⎟⎠

n+1

(5)

with viscoplastic strain εvp and equivalent plastic strain α

as internal variables. Ce is an elastic stiffness matrix given
in terms of a second (E, ν) pair and K(α) describes the
isotropic hardening and H the (linear) kinematic hardening,
whereas the viscous effects are given by the drag stress σd ,
the rate sensitivity n and the reference strain rate ε̇0. For
computational efficiency, the Voigt notation [61] is used for
strain and stiffness tensors.

For the studied example, the nonlinear parameters of the
aluminum matrix were calibrated without isotropic harden-
ing, i. e. K(α) was assumed to be equal to the initial yield
stress σY , K(α) ≡ σY . The complete set of material param-
eters is reproduced in Table 1.

3 For n > 1, Ψ is C2. Note that in later parts of this paper, n denotes
the time step index.
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Table 1 Parameters for elasto-viscoplastic GSM [37]

Parameter Unit Aluminum Al203

E GPa 55 300

ν 1 0.33 0.25

σY MPa 25 –

H GPa 1.8 –

ε̇0 1/s 1 –

σd MPa 130 –

n 1 3.6 –

Fig. 2 Mixed boundary conditions [28] for the uni-axial experiment.
(Color figure online)

Boundary Conditions As described in detail by Michel
and Suquet, the volume element is submitted to a uni-axial
tension-compression test at constant strain rate with alternat-
ing sign in loading direction,

ε̇xx = ±1.4 · 10−3 s−1,

− 3.48441 · 10−3 ≤ εxx ≤ 3.58454 · 10−3.

For our studies, we use the tension part that is displayed
in Fig. 2. The loading path is discretized in an equidistant
manner with a granularity between 20 and 320 steps. If not
mentioned otherwise, 80 loading steps are used.

Material Law Evaluations In each loading step, a station-
ary elastic problem is solved by FFT-based homogenization
[41]. This method is relying on an FFT-based preconditioner
[27] defined by the constant coefficient linear elastic problem
div

(
C refε

) = 0, where C ref is called the reference stiffness
andhas to be chosen depending on the locally varying tangen-
tial stiffness of the material laws [27]. The reference stiffness
can be either fixed at the beginning of the time dependent
simulation by using only the initial elastic stiffness of the
material laws or it can be adjusted in each loading step to the
current tangential stiffness to reduce the number of iterations
necessary for convergence. In the first case, this involves one
material law evaluation per voxel with tangent at the begin-
ning of the initial loading step and in the latter case at the
beginning of each loading step. The (matrix-free) FFT-based
solver itself only performs one material law evaluation with-

out tangent per iteration and voxel. The performance impact
of the reference material setup prior to the first loading step
is negligible; therefore, whenever we display time spent on
material law evaluations with tangent, the configuration at
hand updates the referencematerial.Then,material law eval-
uations with and without tangent are timed separately. In
order to indicate the impact on the overall simulation time,
we usually display the accumulated time spent on material
evaluations with and without tangent, respectively, during
one run of the simulation. We use the types of error control
explained in Sect. 4.4 throughout.

Parallelization We perform our tests on a dual-socket clus-
ter node with two Intel Xeon Gold 6132 processors (Skylake
architecture) at 2.6GHz (2 × 14 cores) and an Nvidia V100
graphics card (Volta architecture, 5120 CUDA cores). As
this card has uncapped double precision performance, we
keep the elasticity solver’s double precision also for material
law evaluations on the GPU. Nonetheless, single precision
seems to work well for the material law presented above.
This is of importance on GPUs without good double pre-
cision performance, and can also speed up computations
in general; especially material law evaluations with tangent
seem to benefit performance-wise from single precision. We
use OpenMP4 for CPU parallelization; on the graphics card,
CUDA5 is used. We used version 9.0 of the CUDA SDK.
Details on the computational layout can be found in Sect. 6.

4 Automatic evaluation

Conventionally, efficient methods for the evaluation of spe-
cific material laws are derived by hand. For example, GSMs
such as (4), (5) are discretized in Chapter 3 of [58] by
means of a single backward Euler step. With the help of
an explicit formula for the flow direction, the resulting non-
linear system of equations is reduced to a scalar equation
that is then solved by Newton’s method. For the computa-
tion of Cn+1, the derivative of the corresponding nonlinear
equation solve is recovered in an implicit function theorem
fashion. Numerical integration and algorithmic differentia-
tion are both carried out by hand.We refer to this approach as
conventional evaluation strategy—it ismaterial law specific.
For our performance studies, it serves as a baseline. In this
work,we explore several flavours of the automatic evaluation
strategy depicted in Fig. 3 that relies on AD to evaluate the
various partials of ω and Ψ , to assemble Jacobians (usually
of size Rm×m) as required for ODE integration schemes and
finally, to compute thematerial tangentCn+1, which involves
a differentiation of the whole algorithm depicted in Fig. 3.

4 https://www.openmp.org/.
5 https://developer.nvidia.com/cuda-zone.
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Fig. 3 Automatic evaluation
strategy

The strategy can easily be adapted to other material laws by
exchanging the implementations of the potentials. We also
explore the performance benefits of providing hand-derived
implementations of the partials of ω and Ψ for an otherwise
automatic evaluation;we refer to this as semi-automatic eval-
uation strategy.

4.1 Single implicit Euler step

AD allows us to turn the conventional scheme from [58]
into an automatic evaluation strategy that is not specific to a
certain GSM and requires only implementations of ω and Ψ .
Let h = tn+1 − tn be the loading step size and

f (ε, a) = ∂Ψ

∂A

(
−∂ω

∂a
(ε, a)

)
,

that is, the right hand side of the ODE (2). An application of
a single implicit Euler step yields

an+1 = an + h · f (εn+1, an+1),

that is, the nonlinear system of equations

an+1 − h · f (εn+1, an+1) − an︸ ︷︷ ︸
=: F(εn+1, an+1)

= 0 (6)

for an+1, which we solve with Newton’s method. We initial-
ize a(0)

n+1 = an and iterate a(k+1)
n+1 = a(k)

n+1 − Δa(k)
n+1 where

Δa(k)
n+1 =

(
∂F

∂a

(
εn+1, a

(k)
n+1

))−1

F
(
εn+1, a

(k)
n+1

)
.

The application of AD is twofold. Each evaluation of f (or
F) involves evaluations of the partials ∂Ψ

∂A and ∂ω
∂a . This can be

automatized by first order automatic differentiation. Second,
the evaluations of the Jacobian ∂F

∂a can be realized likewise
by AD but require — due to the already involved partials —
an additional derivative order. Note ∂F

∂a = I − h · ∂ f
∂a , so it

suffices to apply AD to f . The material tangent

Cn+1 = dσn+1

dεn+1
= ∂2ω

∂ε2
(εn+1, an+1)

+ ∂2ω

∂a∂ε
(εn+1, an+1)

dan+1

dεn+1
(7)

requires the derivative of the evolved internal variables with
respect to the predicted strain. Assuming — similar to the
derivation of the scheme in [58] — that the primary system
of equations was solved exactly, it holds by differentiating
(6) with respect to a single strain component

dan+1

dεn+1, i
= h · ∂ f

∂εn+1, i
(εn+1, an+1)

+ h · ∂ f

∂a
(εn+1, an+1)

dan+1

dεn+1,i
,

that is,

(
I − h · ∂ f

∂a
(εn+1, an+1)

)
dan+1

dεn+1, i

= h · ∂ f

∂εn+1, i
(εn+1, an+1).

Hence, the required derivative values can be obtained in a
postprocessing step by six additional linear system solves,
one for each Voigt component of the strain and with the
same coefficient matrix the next Newton iteration would use.

∂ f
∂εn+1, i

can be evaluated with AD analogously to ∂ f
∂a . Since
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Table 2 Total time spent on
both types of material law
evaluations with implicit Euler
strategies

Architecture Evaluation strategy Material law, no tangent [s] Material law, tangent [s]

CPU Conventional 901.53 52.92

CPU Automatic 4726.82 327.24

CPU Semi-automatic 1281.32 90.86

GPU Conventional 489.29 21.92

GPU Automatic 523.64 27.50

GPU Semi-automatic 488.57 22.23

One row of the table displays the accumulated time spent onmaterial law evaluationswith andwithout tangent,
respectively, during one run of the simulation

dεn+1
dεn+1

= I , it is then straightforward to propagate the deriva-
tives with respect to the strain with AD through an evaluation
of the stress relationship (1) to obtain both σ and Cn+1. As
before, this involves also a partial of ω and requires second
order AD capabilities.

Table 2 provides an overview over time spent with the
implicit Euler variants on material law evaluations with and
without tangent in our running example. Here, all displayed
configurations perform the exact same number of both types
of material law evaluations, and the timings are immediately
comparable. We should also mention that here, all simula-
tion results obtained are identical up to machine precision.
The timings reveal two important trends. First, the automa-
tization on the CPU is costly. Given the significant runtime
improvements from switching to the semi-automatic evalua-
tion strategy, part of this cost is due to AD and the automatic
computation of the partials of ω and Ψ . Another part of the
cost is due to the generality.Unlike in the conventional imple-
mentation, we lack additional knowledge about the roles of
internal variables. We have no formula for the flow direction
and solve a full system of nonlinear equations with Newton’s
method instead. All evaluation strategies are notably acceler-
ated by the GPU, and here, most important, even keeping the
full automatization does not incur major performance costs.
This is due to overlap of CPU andGPUworkloads as detailed
in Sect. 6.

4.2 Rosenbrock and Runge–Kutta schemes with
adaptive step size

With a single implicit Euler step, there is no direct form of
error control for the involved material law evaluations. The
surrounding elasticity solver cannot compensate this lack of
accuracy and will therefore solve the time discretized elas-
ticity problem with potentially wrong stress (and stiffness)
input. This regards nonlinear effects in particular. Since we
cannot know in advance if and when these take place, we
have to discretize the whole loading path with small load-
ing steps. As we detail in the following, while this improves
the accuracy of stresses, the accuracy of tangents can not
necessarily be guaranteed this way.

To that end, we first establish an interpretation of the algo-
rithmic derivative of a single implicit Euler step as introduced
in the previous section as a single implicit Euler step applied
to anODE for the derivative. Let a parameter dependentODE
system

ẏ = f (y, p) (8)

be given. We differentiate both sides of (8) with respect to p
and formally interchange the order of derivatives on the left
hand side to obtain

d

dt

(
dy

dp

)
= ∂ f

∂ y
(y, p)

dy

dp
+ ∂ f

∂ p
(y, p). (9)

Assuming sufficient smoothness [44], the derivative of ywith
respect to p is the unique solution to (9) together with an ini-
tial value. The implicit Euler scheme with step size h applied
to the coupled system formed by (8) and (9) yields

yn+1 = yn + h f (yn+1, p), (10)
dyn+1

dp
= dyn

dp
+ h

∂ f

∂ y
(yn+1, p)

dyn+1

dp
+ h

∂ f

∂ p
(yn+1, p).

(11)

Clearly, this can be solved in two stages. After a solve of the
nonlinear equation (10) for yn+1, one linear solve of (11) is
sufficient to recover the derivative dyn+1

dp . However, (11) can
equivalently be obtained in an algorithmic manner by differ-
entiating (10) with respect to p as long as dh

dp = 0. Hence,
the algorithmic derivative of a single implicit Euler step has
an interpretation as a single implicit Euler step applied to the
ODE for the derivative.

This holds likewise for the single implicit Euler step
applied in the schemes in Sect. 4.1 where we have already
seen the two-step solution procedure. Now we deduce prop-
erties of the numerical tangent approximation via the ODE
it approximates. Let f (ε, a) = ∂Ψ

∂A

(− ∂ω
∂a (ε, a)

)
denote the

right hand side of the evolution equation (2). In the setting
of Sect. 4.1, we have to consider the numerical ODE solve
in the context of a single material law evaluation with initial
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data an and dan
dεn+1

= 0 with step size h = tn+1 − tn over
the time interval [tn, tn+1]. Here, εn+1 plays the role of the
parameters. The evolution equation ȧ = f (ε(t), a) leads to
the ODE

d

dt

(
da

dεn+1

)
= ∂ f

∂a
(ε(t), a)

da

dεn+1

+ ∂ f

∂ε
(ε(t), a)

dε(t)

dεn+1
(12)

for the derivative. By the properties of the implicit Euler
scheme, the numerical solve of the undifferentiated evolution
equation is guaranteed to convergewith order one to the exact
solution as h → 0. Here, the user can influence accuracy by
choosing smaller loading steps.

For the ODE for the derivative (12), the situation is differ-
ent. Independent of the loading step size, εn+1 always refers
to the strain value at time tn+1. The linear interpolation

ε(t) = εn · tn+1 − t

h
+ εn+1 · t − tn

h

between the known strain values leads to

dε(t)

dεn+1
= t − tn

h
,

which is the linear interpolation between 0 and 1 over the
integration interval [tn, tn+1]. Therefore, the ODE for this
particular derivative changes its shape with h. As the ODE
is not invariant with respect to the integration interval, we
cannot expect convergence to the exact solution with h → 0
if only a single implicit Euler step is applied.

The following example illustrates that the relative error in
the differentiated internal variables might even increase for
h → 0. We compare the results obtained by single implicit
Euler steps to the results obtained by implicit Euler with a
simple step size control mechanism. Consider a single voxel
of the elasto-viscoplasticmaterial (4), (5)with the parameters
from Table 1. We use the mixed boundary conditions from
Fig. 2. This loading path is discretized by varying numbers of
equidistant loading steps. For each loading step, a material
law evaluation with or without substeps is performed. The
relative errors observed in the derivative dεvp, n+1, xx

dεn+1, xx
can be

seen in Fig. 4. Clearly, the relative error increases for h → 0.
This shows that an accurate tangent evaluation cannot be

performed without further discretization of the integration
interval [tn, tn+1] and serves as an additional motivation for
adaptive substeps that are otherwise studied e. g. in [5] in the
context of material law evaluation. Specifically, the material
law inputs and outputs still follow the global time discretiza-
tion, but locally, each material law evaluation uses a further
discretization of [tn, tn+1] to meet specified tolerances. In
this section, we analyze well-known integration schemes

with respect to automatic differentiation in the presence of
step size control.Note that implicit Euler with adaptive steps
is not used in the remaining parts of this paper; instead,
schemes with step size control via an embedded method are
considered.

For adaptive time step sizes, the computation of the mate-
rial tangent still requires the derivative of the evolved internal
variables with respect to the predicted strain. Even if it is
in principle possible to propagate those derivatives by AD
through multiple steps of an ODE integration scheme in a
blackbox manner, this corresponds to an algorithmic dif-
ferentiation of an approximation and comprises a risk of
inaccurate derivatives. The issues of blackbox differentia-
tion of ODE integration schemes and possible solutions are
discussed in [13]. Particularly, two problems are mentioned.
First, the step size is solely determined by the integration
of the primal equation. Hence, there are no guarantees for
the accuracy of the derivatives. Second, the differentiation
of the step size control mechanism spoils the result with dis-
cretization dependent components. In [13], the focus is on an
aposteriori error correction that recovers the desired deriva-
tives from quantities obtained by blackbox differentiation.
Here, we study the continuous approach to the problem in
greater detail and refine the strategy of solving simultane-
ously an ODE for the derivative for the case of Rosenbrock
methods and both explicit and implicit Runge–Kutta schemes
in the presence of step size control. In Theorem 2 and Corol-
lary 1, we show that the ansatz is equivalent to suitably
modified blackbox differentiation. Particularly, we guarantee
that the derivatives are as accurate as the primal solutions.

For the sake of notational simplicity, we develop the fol-
lowing theory for autonomous ODEs and require implicitly
that the used integration schemes satisfy the consistency con-
dition that they yield the same numerical solution before and
after transformation of the ODE to autonomous form.

Assuming sufficient smoothness [44], the derivative of y
with respect to p is the unique solution to (9). The combined
system (8) and (9) inherits the stability properties of (8) in
the sense that the Jacobian of the right hand side with respect
to the unknowns is of block type

∂

∂
[
y dy

dp

]
[

f (y, p)
∂ f
∂ y (y, p) dy

dp + ∂ f
∂ p (y, p)

]

=
[

∂ f
∂ y (y, p) 0

∗ ∂ f
∂ y (y, p)

]
(13)

and has the same eigenvalues as ∂ f
∂ y (y, p). The formula for

the lower left block — it does not influence the eigenvalues
— is displayed in the proof of Theorem 2.

For some classes of integration schemes, the simultaneous
solve of (8) and (9) can be realized by means of automati-
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Fig. 4 Influence of loading step
size on the relative error of a
differentiated internal variable.
Solution obtained by single
implicit Euler steps compared to
solution obtained by implicit
Euler with adaptive substeps

cally differentiating the numerical solve of (8) with respect
to p in a blackbox manner with some additional adaptions.
Let an integration scheme with s stages and both linear and
nonlinear implicit terms be specified by the update relations

ki = h f
(
y(i)
n , p

)
+ h J

s∑
j=1

γi j k j , (14)

yn+1 = yn +
s∑

j=1

b j k j (15)

where J = ∂ f
∂ y (yn, p) is the Jacobian of the right hand side

and

y(i)
n = yn +

s∑
j=1

ai j k j .

Theorem 2 Let initial data yn and dyn
dp be given. The algo-

rithmic derivative of a single step of the scheme (14), (15)
with step size h applied to (8) yields the same value dyn+1

dp as
an application of the same integration step to the combined
system (8) and (9) as long as dh

dp = 0 and as long as the
derivatives of equation solves are recovered according to the
implicit function theorem. In terms of automatic differentia-
tion, it is sufficient if h does not carry derivative values and
equation solves are treated as elementary operations.

Proof For notational simplicity, let p be scalar. Let y denote
the solution to (8), dy

dp its algorithmic derivative with respect

to p and
[
y ỹ

]
the solution to the combined system (8) and

(9). Likewise, we refer to the stage vectors for the solution
step of (8) as ki and to the stage vectors for the solution step of
the combined system as

[
ki k̃i

]
. By the linearity of (15) and

the initial value relation ỹn = dyn
dp , it is sufficient to ensure

that k̃i = dki
dp , i = 1, . . . , s. If we apply the integration step

to the combined ODEs (8) and (9), the equations for the stage

vector components k̃i read

k̃i = h
∂ f

∂ y

(
y(i)
n , p

)
ỹ(i)
n + h

∂ f

∂ p

(
y(i)
n , p

)

+ h J̃
s∑

j=1

γi j k j + h J
s∑

j=1

γi j k̃ j , (16)

where

J̃ = ∂

∂ y

(
∂ f

∂ y
(yn, p)ỹn + ∂ f

∂ p
(yn, p)

)

is the lower left block of (13) evaluated at yn , ỹn and p.
However, as long as dh

dp = 0, the same system of equations is
obtained if we differentiate both sides of (14) with respect to
p and identify k̃i = dki

dp . To that end, note J̃ = dJ
dp . Hence, if

we recover the algorithmic derivative of the ki from solves of
the equations obtained by implicit differentiation, we obtain
the same result as by solving an ODE for the derivative. 	


Like in [48], we assume that systems of equations are
solved exactly. In the case of prescribed step sizes, Theo-
rem 2 extends inductively to multiple subsequent integration
steps. Compared to forward mode results in [39] or [62], a
larger class of integration schemes is covered and a proof
with insights for an AD implementation is given. Theorem 2
extends to the case of automatic step size control, for exam-
ple via an embedded method according to [23], after small
additional modifications.

1. To meet the assumption dh
dp = 0 of Theorem 2 in terms

of AD, the step size control mechanism must remain
undifferentiated.

2. To achieve the same accuracy for the solution compo-
nents y and dy

dp , all of them must be regarded in the step
size control error measure.
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These additional modifications can also be found among the
general suggestions in [13]. Here, we have shown that they
are — together with the appropriate treatment of equation
solves — sufficient to turn blackbox differentiation of an
ODE integration scheme of the type (14), (15) into an algo-
rithm that is equivalent to solving an ODE for the derivative.

Corollary 1 Theorem 2 generalizes to subsequent integration
steps also in the presence of automatic step size control as
long as step size control is excluded from differentiation and
derivative components are regarded in the errormeasure. The
obtained derivative is as accurate as the primal solution.

Theorem 2 and Corollary 1 cover various classes of well-
known integration schemes. If we choose ai j = 0 for j ≥ i
and γi j = 0 for j > i , (14) and (15) turn into a Rosenbrock
scheme [22]. There, only linear implicit terms are used and
(16) can be simplified to s linear solves

(I − γi i h J )k̃i = h
∂ f

∂ y

(
y(i)
n , p

)
ỹ(i)
n

+ h
∂ f

∂ p

(
y(i)
n , p

)
+ h J̃

i∑
j=1

γi j k j + h J
i−1∑
j=1

γi j k̃ j . (17)

The solve for k̃i can be performed immediately after the solve
for ki . For the choice γi j = 0 for all i and j , we obtain an
implicit Runge–Kutta scheme [23]. The implicit Euler step
discussed at the beginning of this section is an example for
this and hence a special instance of Theorem2. If additionally
ai j = 0 for j ≥ i , we obtain an explicit Runge–Kutta scheme
[23]. There, no equation solves are required and Theorem 2
simplifies to a straightforward application of forward AD
to the stage vector updates. Otherwise, AD can be used to
compute the derivatives required in the setup of (16).

In the GSM context, the components of εn+1 play the
role of the parameter p, an+1 corresponds to y and f is the
right hand side of (2). We apply Corollary 1 for the com-
putation of dan+1

dεn+1
. For each class of integration schemes, the

AD tool must be capable of computing various higher order
derivatives. For explicit Runge–Kutta schemes, as before, we
need one derivative order for the computation of the mate-
rial tangent and one for the evaluation of the partials. For
Rosenbrock methods, however, the computation of the Jaco-
bian of the right hand side requires an additional derivative
order. This is due to the term J̃ = dJ

dp = d
dp

∂
∂a

(
∂Ψ
∂A (. . . )

)
in (17). It is in principle possible to extend the AD tool pre-
sented Sect. 5 to third order derivatives. However, additional
derivative orders incur an exponential increase in memory
and/or runtime [19] and we do not expect reasonable perfor-
mance. Thus, to recover one derivative order, the user has
to implement the partials of ω and Ψ explicitly in this case,
i. e. only the semi-automatic evaluation strategy is available.

We consider the pair of explicit Runge–Kutta schemes
from [7] that is known from MATLAB’s6 routine ode23 and
a lower-order Runge–Kutta pair formed by the explicit Euler
scheme and Heun’s method. This pair is also used for DAE
integration in the context of material law evaluation in [25]
and we refer to it as ode12. Finally, we include the Rosen-
brock scheme from [56] that is behind MATLAB’s ode23s.
We implement all three with automatic step size control
according to [23] and keep the MATLAB default tolerances
atol = 10−6 and rtol = 10−3. If we solve additionally for the
derivatives, the solutions for the derivative of a with respect
to εn+1 enter the error measure in the same way as primal
solution components.

Table 3 displays the timings for Runge–Kutta and Rosen-
brock evaluation strategies. Compared to the previous tim-
ings in Table 2 without adaptive step size control, we take
notice that on the CPU, semi-automatic evaluations without
tangent with ode12 and especially ode23 can be performed
even faster than the conventional evaluation strategy. Often,
one or a few adaptive steps are sufficient, and Runge–Kutta
steps are computationally cheaper than those of implicit
schemes since no equation solves are involved. Note that
semi-automatic evaluation without tangent does not require
AD. Material law evaluations with adaptive step size and
tangent are quite expensive. This is attributed to the effort
of solving an ODE coupled with one for the derivative
components. Again, the GPU improves the performance sig-
nificantly, especially for evaluations with tangents. While
there are no significant performance differences without tan-
gent, ode23 is fastest with tangent, and is also competitive to
the implicit Euler scheme on the CPU. Also, semi-automatic
evaluation improves performance on the CPU, and automatic
evaluation has often no performance drawbacks on the GPU.
The bad tangent performance of ode23s is related to register
usage; this is explained in Sect. 6.

As can be seen in Table 4 for the case of 80 loading
steps, adaptive substeps tend to reduce the overall number
of elasticity solver iterations so that there are less material
law evaluations without tangent in total. Figure 5, however,
reveals that the loading step size remains — consistently
across all ODE solvers — the key influence factor on the
number of iterations per loading step.

In Fig. 6, the average number of substeps per loading steps
are visualized for the four different ODE solvers. By design,
implicit Euler always uses one substep per loading step. For
the other three solvers, the average number of substeps varies.
It is strongly increasing when nonlinear effects occur in the
composite. As expected, the first/second order solver ode12
needs themost substeps to reach the prescribed accuracy. The
second/third order solvers ode23 and ode23s need a compara-
ble number of substeps. Consequently, the semi-implicit and

6 https://de.mathworks.com/products/matlab.html.
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Table 3 Total time spent on both types of material law evaluations with Runge–Kutta and Rosenbrock schemes

Architecture ODE solver Evaluation strategy Material law [s] no tangent Material law [s] tangent

CPU ode12 Automatic 1398.49 7241.91

CPU ode12 Semi-automatic 506.66 1656.17

CPU ode23 Automatic 891.82 1340.88

CPU ode23 Semi-automatic 339.65 353.18

CPU ode23s Semi-automatic 1185.79 2704.99

GPU ode12 Automatic 463.76 117.74

GPU ode12 Semi-automatic 463.98 97.71

GPU ode23 Automatic 445.56 46.40

GPU ode23 Semi-automatic 454.85 42.17

GPU ode23s Semi-automatic 482.63 494.70

One row of the table displays the accumulated time spent on material law evaluations with and without tangent, respectively, during one run of the
simulation. Compare also Table 2

Table 4 Impact of ODE solver choice on number of elasticity solver
iterations

ODE solver Number of iterations

Impl. Euler 1733

ode12 1619

ode23 1575

ode23s 1602

The distinction CPU/GPU and the evaluation strategy types have no
influence in this regard

computationally more expensive ode23s cannot outperform
the explicit ode23.

4.3 Solution accuracy

FFT-based homogenization ofMoulinec-Suquet [41] applied
to materials with nonlinear behaviour is subject to a spa-
tial discretization error of the partial differential equation
div σ = 0 investigated in detail by Schneider [51] and
furthermore two types of time discretization errors. First,
the interaction between different regions of the material
(quadrature points) over time is neglected on thematerial law
evaluation level. Second, each integration of the ordinary dif-
ferential equations (2), that is, each material law evaluation,
introduces a local error in the internal variables.

For our example presented in Sect. 3, we study the influ-
ence of the adaptive time step size control on the overall error
by comparing the ODE solvers presented above.

The stress response in loading direction is shown in Fig. 7.
As expected, due to the error control, all ODE solvers with
adaptive time steps predict the same effective stress response
within the given tolerances. Moreover, as can be seen in
Fig. 8, the error for coarse loading steps is reduced to approx-
imately 30% of the error of the implicit Euler solver. Thus,

the error of the material law evolution, that is, the accuracy
of the ODE solver, is dominating the overall error of the
FFT-based based homogenization for this example.

For the tangential stiffness shown in Figs. 9 and 10, the
results dependon the timediscretization as explained in detail
in Sect. 4.2. Therefore, we cannot perform a convergence
analysis with respect to the loading step size. We observe
that all ODE solvers with adaptive time step size control
predict almost the same tangent due to the error control. The
differences observed between single implicit Euler steps and
schemes with adaptive substeps are in accordance with the
example on the relative error amplification in Sect. 4. Note
that the tangent formula (7) reads for the potentials (4) and
(5)

Cn+1 = Ce
(
I − dεvp n+1

dεn+1

)
,

that is, linear combinations of errors as depicted in Fig. 4
are substracted from the components of the elastic stiffness
matrix. This effect regards voxels that follow the Michel
Suquet law and can still be seen in the effective stiffness.

4.4 Stress-driven error control

Internal variables do not always have a physicalmeaning, and
the material law outputs that are of immediate relevance to
the elasticity solver are σn+1 and Cn+1. Its convergence test,
for example, amounts to an equilibrium check of the stress
field [41], and the material tangents are used to determine
a linear elastic reference material [14,27,38]. In the mate-
rial law evaluations, however, the tolerances specified for the
ODE solver relate to an error in the internal variables. We
control the error in an+1 and — if we apply Corollary 1 —
as well the error in dan+1

dεn+1
.
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Fig. 5 Iterations of FFT-based
homogenization per loading step
for the example of Sect. 3.
(Color figure online)

Fig. 6 Spatially averaged
number of ODE solver substeps
per loading step for the example
of Sect. 3. For each loading step,
the number of substeps is
plotted against the loading step’s
time. (Color figure online)

Fig. 7 σ̄xx for the example of
Sect. 3. (Color figure online)
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Fig. 8 Difference of σ̄xx to
finest time discretization (320
loading steps) for the different
ODE solvers. (Color figure
online)

Fig. 9 C11 for the example of
Sect. 3. (Color figure online)

Fig. 10 C12 for the example of
Sect. 3. (Color figure online)
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In the GSM given by Equations (4) and (5), for example,
the stress relationship (1) turns into σ = Ce(ε − εvp), that
is, any error in εvp enters σ multiplied by the elastic stiffness
tensor. Depending on the specific instance of Ce, it might be
necessary to adapt the tolerances of the ODE solver to end up
with stress values that are sufficiently accurate for the PDE
solver. This is avoided by an error control on the ODE level
that is directly tied to the accuracy of the stresses.

The step size control mechanism from [23] captures the
deviation between two ODE solutions of different order of
convergence in an error measure. Depending on the error,
steps are accepted or rejected and the step size is adapted
accordingly. Instead of using the internal variable approx-
imations directly in the error measure, we transform them
together with the adequate linear interpolation between εn
and εn+1 for the substep of interest via the relationship (1)
into a pair of stresses. If σ depends— as above— linearly or,
more generally, Lipschitz on the internal variables, this yields
a pair of stresseswith the analogous order relations. The ratio-
nale of the step size control carries over, and we evaluate the
errormeasure on the stresses instead. If we solve additionally
for the derivative dan+1

dεn+1
, the sameevaluation of (1) (performed

on forward AD types instead) transforms additionally the
approximations of the internal variable derivatives into a cor-
responding pair of material tangents that may then enter the
error measure in the sameway the derivative components did
before. This way, we control the error in σn+1 and Cn+1.

As can be seen in Fig. 11, stress-driven error control also
reduces the impact of the ODE solver choice on the effective
stress response for all numbers of loading steps.

Similar ideas can be employed for the convergence cri-
terion of Newton’s method in the schemes from Sect. 4.1.
Instead of iterating until convergence in a, we may compute
the stress resulting from the current iterate via (1) in each
Newton iteration and converge σ instead.

5 Automatic differentiation on GPUs

To summarize the basic ideas of automatic differentiation,we
viewafloatingpoint computationwith fully evaluated control
flow as a function x �→ y that is composed of elementary
mathematical operations like +, · or standard math library
functions like sin. If we differentiate the composed opera-
tions according to the chain rule, we obtain the algorithmic
derivative of the computer program. Automatic differentia-
tion deals with techniques that obtain algorithmic derivatives
in an automatic fashion. A comprehensive introduction is
given in [19].

As both ω and Ψ are scalar valued functions and have —
with respect to both ε and a — more inputs than outputs,
it seems appropriate to use the reverse mode of automatic
differentiation to evaluate the partial derivatives on the right
hand sides of the GSM constitutive equations (1) and (2).
Cn+1, on the other hand, arises as the derivative of σn+1 with
respect to εn+1, that is, six Voigt components with respect
to six Voigt components. We compute it with the forward
mode of automatic differentiation, possibly the forward vec-
tor mode. To compute both the partials and Cn+1 with AD
at the same time, we combine the forward and reverse mode
in an adjoints of tangents fashion [19]. While the compu-
tation is generally executed on a forward AD data type, all
local evaluations of partials are obtained by additional appli-
cations of the reverse mode. In the context of semi-automatic
ode23s, we use the second order forward (vector) mode for
the Jacobians and tangents.

The implementation of the first and second order forward
(vector) mode follows the same principles as CPU imple-
mentations like [47]. The reverse mode of AD, however,
is subject to a global information problem that is typically
solved by taping. The sequence of operations is first exe-
cuted in forward direction and remembered together with all
intermediate results. Then, the corresponding sequence of

Fig. 11 Difference of σ̄xx for
ode23 and ode23s compared to
ode12 at the same loading path
discretization and with the same
error measure for step size
control. (Color figure online)
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Fig. 12 Schematic
implementation of the reverse
mode of AD on the expression
level. _arg.back(bv * df
(_arg.v())) is the classical
backpropagation formula [19]

derivatives is evaluated according to the chain rule in reverse
order. On the GPU, this memory-intensive approach is pro-
hibitive. Since the reverse mode of AD is only needed in a
very localmanner, wemay replace taping by recomputations:
If an intermediate value is required during reverse evaluation,
the sequence of operations is partially re-evaluated in for-
ward direction up to the required point. Similar approaches
are pursued in [32].

This can be realized by an operator overloading ansatz
at low computational overhead on the expression level. We
employ expression template techniques that have previously
been shown to perform well for the treatment of right hand
sides in the forward mode of AD [43] and in Jacobi tap-
ing [26] as well as primal value taping [46] in the reverse
mode of AD. Here, we use expression templates to convert
a composite operation into a structured data type that rep-
resents the computational graph and allows for its traversal
in forward and reverse direction. This way, the structure of
the computation is fully exposed to the compiler and can be
optimized during compilation. The curiously recurring tem-
plate pattern is used to shift overhead due to the interface in
the inheritance tree in Fig. 12 from runtime to compile time.

Figure 12 showcases the reverse mode without addi-
tional tangents using the example of a unary elementary
operation f(). The interface ReverseExpression defines
a routine v() for forward evaluation and a routine back()

for backpropagation of derivatives. On the one hand, it is
implemented as a type ReverseBasic that contains actual
data, that is, a primal value _v and an adjoint value _bv. On
the other hand, there are derived types that stand for applied
elementary operations such as ReverseOpF. They are created
by operation overloads such as

ReverseOpF f(const ReverseExpression &expr)

{ return ReverseOpF(expr); }

that do not immediately apply f() but store a reference to the
arguments in the returned object. Types such as ReverseOpF

implement the interface in a way that allows for the for-
ward and reverse evaluation of the computational graph. A
call to v() causes the forward evaluation of _arg and sub-
sequent application of f(). A call to back() propagates
derivative values in reverse direction where df() stands for
the derivative of f() and must be implemented explicitly.
The call _arg.v() in ReverseOpF::back() causes forward
re-evaluations. This extends analogously to n-ary operations
and additional forward and reverse evaluation of tangents for
second order derivatives. Consider a code segment

// initialize primal components

// set derivative values to 0

ReverseBasic arg1 = ..., arg2 = ..., ...;

ReverseBasic result;

result._bv = 1.0; // seeding

result = CompositeExpression(

arg1, arg2, ...);

where CompositeExpression stands for a composition of
multiple elementary operations. Each elementary operation
must be implemented according to Fig. 12. The operation
overloads are used to build up the computational graph of
this right hand side and in the course of the assignment to
result, ReverseBasic::operator=() is used to trigger its
forward and subsequent reverse evaluation. In the end, argn
._bv carries the machine accurate derivative of result._v
with respect to argn._v where n = 1, 2, ....

The proposed AD tool can be implemented in C++ using
C++11 features that are supported both by standard com-
pilers such as g++ and by Nvidia’s CUDA compiler driver
nvcc. Particularly, the AD tool can be applied both inside
OpenMP threads and CUDA kernels.

We improve the performance of theAD tool by some adap-
tions that are specific to our problem and setting.
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1. During expression tree forward traversal, it is possible
to evaluate primal values only once and store them in
the nodes of the tree [43]. However, to consume as lit-
tle memory as possible, we use recomputations instead.
This is especially important for the GPU onwhichmem-
ory operations are costly and the number of registers used
per thread can limit parallel execution.

2. Instead of a recursive ansatz for higher order derivatives,
we implement second order expressions explicitly. This
helps the compilerwith the identification and elimination
of common subexpressions, which it cannot always do
automatically.

3. In the computation of the partials of ω, we are always
only interested in the derivative with respect to either ε

or a but never both. If we compute the derivative with
respect to one, there is no need to propagate derivative
values back to the other. Therefore, we provide mixed
order expressions that actively avoid reverse propagation
of derivative values to lower order type arguments.

The AD tool can only differentiate single expressions in
reverse order and is overall limited to first and second order
derivatives. Thefirst and secondorder forward (vector)mode,
however, are not restricted to single expressions and can be
applied to general codes, like the ODE solvers in the case of
AutoMat. In the presented design, automatic differentiation
takes exclusively place in GPU registers (sometimes spilled
but mostly actual, see Table 6).

To indicate the implementational effort of a potential-
based material law with the AutoMat framework and this
AD tool, Figs. 13 and 14 include example implementations
of theMichel-Suquet law (4) and (5) for the automatic evalua-
tion procedure. As needed for the solution process, AutoMat
instantiates these templates with different combinations of
primal and AD types.

6 Computational layout, profiling and
performance limiters

The fields for the internal variables, the current strain field
and the predicted strain field, that is, the material law inputs
for all voxels, reside in host memory. In general, GPU mem-
ory is not large enough to hold all of them at the same time
and the elasticity solver still runs on the CPU. Furthermore,
data might reside in host memory in an array-of-struct layout
that does not suite GPU computing and due to the heterogen-
ity of the material, data for all voxels of a specific material
law might be arranged in memory in a non-contiguous man-
ner. Therefore, we divide the workload into multiple chunks
of fixed size, in a way that GPU memory can at least hold
the material law inputs and outputs of one or few chunks. In
host memory, we allocate at least one staging area of chunk

size and page-locked type that allows for fast CPU-GPU data
exchange. On the host side, we copy the material law inputs
of a chunk into the staging area in an OpenMP parallel man-
ner. In doing so, we arrange them in a contiguous manner in a
struct-of-arrays layout, andmight convert from double to sin-
gle precision. Then,we process the staging areawithmultiple
CUDA streams. Each stream copies part of the inputs to the
GPU and issues the corresponding material law evaluations.
We use one CUDA thread per material law evaluation and a
small multiple of 32 as block size for the computational grid.
Once the evaluations are done, the stream copies the material
law outputs back to the staging area. The purpose of multi-
ple streams is an overlap of CPU-GPU data exchange with
GPUcomputations.Once the entire staging area is processed,
the material law outputs are collected from the staging area,
transformed back to the original layout and otherwise post-
processed as required by the elasticity solver in an OpenMP
parallel manner. Bymeans of multiple staging areas, an over-
lap of CPU and GPU workloads can be achieved: During
GPU computations, transformations of inputs and outputs
involving other staging areas can already take place on the
host side. We observed no benefits for more than two staging
areas.

The CPU-GPU overlap becomes evident in Table 5. For
material law evaluations without tangent, the time spent on
material law evaluation is determined by the time it takes
to stage and collect the data. CPU-GPU data exchange and
GPU computations overlap almost completely with the CPU
workloads. The minimum time needed for exchange of the
combined data over the PCI Express bus (assuming full band-
width and perfect overlap of both transfer directions) gives
an impression of the amount of time that is at least hidden
behind CPU workloads. The exemplary profilings presented
in Fig. 15 show that the GPU compute time is in turn domi-
nated byCPU-GPUdata exchange, and due to overlapmostly
hidden behind it.

For material law evaluations with tangent, the observa-
tions are different. Here, staging and collecting cannot hide
all GPU workloads, in particular the GPU computations
which are also more expensive than the CPU-GPU data
exchange. This has two reasons. First, the postprocessing
step for the tangent or solving the coupled ODE system,
respectively, is in itself computationallymore expensive. The
derivative components, however, also increase the memory
footprint of the GPU kernels, in particular the number of
registers used per thread. This can be seen in Table 6. This
limits the overall number of threads that can run in parallel,
and it is important to keep that number small. To that end,
all ODE solvers with adaptive step size among the GPU con-
figurations with tangent are subject to another performance
optimization. Instead of propagating all six tangent directions
simultaneously through one material law evaluation with the
forward vector mode, we re-evaluate each material law six
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Fig. 13 Example
implementation of ω from (4),
double precision. For reverse
mode differentiation of ω with
our AD tool, the translation
from inputs to outputs must take
place in a single expression. To
minimize the memory footprint,
the implementation eliminates
the redundant internal variable
εvp 3 = −εvp 1 − εvp 2, see
Sect. 6 for details. The
parameters are named as in
Sect. 3 for readability and are
assumed to be global variables;
a generic implementation,
however, will use a parameter
array instead

Fig. 14 Example
implementation of Ψ from (5),
double precision. The test for
‖dev Aν‖eq + Aα ≤ 0 requires a
precomputation of the primal
expression as indicated by the
v() calls. In the if-case, this
expression is then repeated to
enable differentiation.
Analogously to a, one
component of A is eliminated

Fig. 15 Profilings performed for material law evaluations without
tangent and implicit Euler — conventional (1), semi-automatic (2),
automatic (3) — and automatic ode23 (4). Indicates overlap and rel-
ative duration within configurations, time scales vary between (1)–(4).

Staging area processed with two CUDA streams. CPU-GPU data
exchange brown, computations blue (GeneratedwithNvidiaVisual Pro-
filer, https://developer.nvidia.com/nvidia-visual-profiler.) (Color fig-
ure online)
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Table 5 Refinement of timings for GPU configurations from Tables 2 and 3 into CPU workloads and non-overlapped GPU workloads

ODE solver Eval. strategy Tangent Staging [s] Wait for GPU [s] Collecting [s] PCIe bound [s]

impl. Euler Conventional No 236.99 0.60 215.87 44.05

impl. Euler Semi-automatic No 236.24 0.65 212.24 44.05

impl. Euler Automatic No 237.14 0.64 213.25 44.05

ode12 Automatic No 225.14 0.63 198.87 41.16

ode12 Semi-automatic No 225.15 0.63 197.37 41.16

ode23 Automatic No 220.07 0.63 193.51 40.04

ode23 Semi-automatic No 219.48 0.62 191.49 40.04

ode23s Semi-automatic No 221.21 0.65 197.31 40.72

impl. Euler Conventional Yes 10.51 0.03 11.37 2.37

impl. Euler Semi-automatic Yes 10.66 5.03 11.79 2.37

impl. Euler Automatic Yes 10.53 0.07 11.62 2.37

ode12 Automatic Yes 10.65 90.27 16.81 2.37

ode12 Semi-automatic Yes 10.52 70.56 16.62 2.37

ode23 Automatic Yes 10.52 19.14 16.72 2.37

ode23 Semi-automatic Yes 10.49 15.05 16.62 2.37

ode23s Semi-automatic Yes 10.50 466.05 18.14 2.37

Each row displays accumulated timings spent on material law evaluations either with or without tangent during one run of the simulation. Includes
also lower time bound for the PCIe data exchange. Some variations between material law evaluations without tangent are due to differences in the
number of elasticity solver iterations. The variations in the PCIe bounds indicate this extent

Fig. 16 Profilings performed for automatic material law evaluations
with tangent — implicit Euler (1), ode12 (2), ode23 (3) — and semi-
automatic ode23s (4). Time scales vary between (1)–(4). Note the six
evaluation steps between data transfer in (2)–(4). Staging area processed

with two CUDA streams. CPU-GPU data exchange brown, compu-
tations blue/purple (Generated with Nvidia Visual Profiler, https://
developer.nvidia.com/nvidia-visual-profiler). (Color figure online)

times, each with the standard forward mode and one tangent
direction, i. e. we computeCn+1 column by column. This can
also be seen in Fig. 16. Note that this has no influence on stag-
ing, collecting or the amount of CPU-GPU data exchange.
We trade memory for computations on the GPU, and the per-
formance benefits of kernels with smaller memory footprint
outweigh the additional effort incurred by the re-evaluations.

Interestingly, the CPU-GPU data exchange is—due to
overlap and the cost of staging and collecting—in none of
the configurations discussed above a key limiting factor.

Nonetheless, our implementation of the material law from
Sect. 3 reduces that data. Material law evaluations with tan-
gent, for example, copy back Cn+1 but neither stresses nor
internal variables. Specifically for the GSM given by (4), (5),
we exploit εvp ∈ range(dev), i. e. one component of the vis-
coplastic strain can be eliminated and is computed on the fly
in the implementations of ω and Ψ from the others instead.

The effect of using AutoMat on the total runtime of FFT-
basedhomogenization is summarized inTable 7.On theCPU,
ode23 is the best choice. It needs approximately the same
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Table 6 ptxas info for configurations from Table 5 (double precision)

ODE solver Eval. strategy Tangent Stack frame [bytes] Spill stores [bytes] Spill loads [bytes] Registers

impl. Euler Conventional No 0 0 0 73

impl. Euler Semi-automatic No 656 0 0 184

impl. Euler Automatic No 656 0 0 186

ode12 Automatic No 0 0 0 156

ode12 Semi-automatic No 0 0 0 136

ode23 Automatic No 0 0 0 206

ode23 Semi-automatic No 0 0 0 174

ode23s Semi-automatic No 944 224 392 255

impl. Euler Conventional Yes 0 0 0 114

impl. Euler Semi-automatic Yes 960 0 0 173

impl. Euler Automatic Yes 960 0 0 198

ode12 Automatic Yes 0 0 0 246

ode12 Semi-automatic Yes 0 0 0 215

ode23 Automatic Yes 368 320 424 255

ode23 Semi-automatic Yes 168 88 136 255

ode23s Semi-automatic Yes 4416 4196 3952 255

Indicates resources consumed per CUDA thread

time as our conventional implementation and givesmore pre-
cise results according to Sect. 4.3. On the GPU, the choice
of the ODE solver does not influence the total runtime sig-
nificantly with the notable exception of ode23s. For all other
ODE solvers, AutoMat accelerates the FFT-based homoge-
nization method by a factor of more than two on the GPU.
For ode23s, this holds only true if the reference material is
not updated. In all other cases, the ODE solver can be chosen
without performance considerations on the GPU.

7 Scaling studies

To investigate the speedup of our GPU implementation for
directly implemented material laws as well as for automat-
ically evaluated material laws, we conduct two types of
performance studies. The first investigates the dependency of
the speedup due to using a GPU on the number of OpenMP
threads on the CPU. The second investigates the influence of
the size of the geometry.

For the first study, we simulate the example of Sect. 3 for
different numbers of OpenMP threads with and without one
GPU. Since the compute time of the graphics card is inde-
pendent of the number of used OpenMP threads, the speedup
decreases with increasing number of OpenMP threads as
soon as the GPU time cannot be hidden behind increasingly
parallel CPU computations anymore.

For our example, the speedup for automatically evaluated
material laws ranges between 4.52 and 2.00 for one resp.
28 threads, see Fig. 17. The computationally more demand-

ing reference material calculation, which needs second order
derivatives, has a maximal speedup of 63.33 for sequential
CPU usage and only a speedup of 28.9 for 28 threads. Con-
sequently, in the case of the automatically evaluated material
law, the total runtime speedup decreases from 7.66 to 3.69.
For conventionally implemented material laws, the speedup
does not depend as strongly on the number of threads. While
the material law evaluation itself has a similar speedup of
3.95 for one thread and 1.84 for 28 threads, the reference
material calculation exhibits an almost constant speedup of
2.61 for one thread and 2.41 for 28 threads. Therefore, we
observe for the total runtime only a decrease of the speedup
from 3.12 for one thread to 1.75 for 28 threads.

To understand the dependency on the number of OpenMP
threads t better, let

totCPUGPU(t) = GPU − ovl(t)︸ ︷︷ ︸
wait(t)

+CPU(t)

denote the splitting of the total runtime when using both
a CPU and a GPU into CPU, GPU and overlap parts. The
GPU runtime is independent of t . The time wait(t) spent on
waiting for the GPU is measured in AutoMat, see Table 5.
The overlap time

0 ≤ ovl(t) ≤ stag(t) + coll(t)

is furthermore limited by the sum of staging the input for
the GPU and collecting its results on the CPU. Under the
assumption of perfect scaling of the CPU calculations if a
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Table 7 Total runtime of FFT-based homogenization with and without updated reference material for different settings of AutoMat on the CPU
and GPU

Architecture ODE solver Evaluation strategy Time with update [s] Time without update [s]

CPU Implicit Euler Conventional 1220.83 1218.48

CPU Implicit Euler Automatic 5702.26 5529.76

CPU Implicit Euler Semi-automatic 1642.23 1596.68

CPU ode12 Automatic 8919.11 1731.27

CPU ode12 Semi-automatic 2346.24 724.29

CPU ode23 Automatic 2460.59 1163.06

CPU ode23 Semi-automatic 856.44 485.08

CPU ode23s Semi-automatic 4154.99 1477.61

GPU Implicit Euler Conventional 695.78 707.79

GPU Implicit Euler Automatic 743.02 746.40

GPU Implicit Euler Semi-automatic 695.94 706.20

GPU ode12 Automatic 765.57 666.40

GPU ode12 Semi-automatic 740.66 692.89

GPU ode23 Automatic 667.43 664.80

GPU ode23 Semi-automatic 674.70 641.23

GPU ode23s Semi-automatic 1157.55 642.98

Fig. 17 Runtime and GPU
speedup for varying number of
OpenMP threads. (Color figure
online)
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Fig. 18 Microstructure of the
MMC at different resolutions

GPU is used, i. e.

CPU(t) = CPU(1)

t
,

stag(t) = stag(1)

t
,

coll(t) = coll(1)

t
,

as well as perfect scaling of the total time if only a CPU is
used, i. e.

totCPU(t) = totCPU(1)

t
,

the speedup by using a GPU

speedup(t) = totCPU(t)

totCPUGPU(t)

that is plotted in Fig. 17 can be expressed as

speedup(t) = totCPU(1)

GPU · t − ovl(t) · t + CPU(1)
.

For either of the extremes

∀t : 0 = ovl(t) ⇒ GPU = wait(1),

i. e. no overlap, and

∀t : ovl(t) = stag(t) + coll(t)

⇒ GPU = wait(1) + stag(1) + coll(1),

i. e. maximal overlap, the speedup formula simplifies to

speedup(t) = totCPU(1)

GPU · (t − 1) + totCPUGPU(1)
.

These curves have been added for both extremes to the plots
of the GPU speedup.

For the automatically evaluated material laws, the CPU
runtime is increased whereas we do not observe an increased
wait time for the GPU. Consequently, the speedup is higher
for this case. Additionally, the decrease of the speedup is
stronger because for the computationally more demanding
material law, the ratio GPU/totCPUGPU(1) is bigger. Further-
more, an overall speedup can only be observed for material
laws where totCPU(1)/totCPUGPU(1) > 1, which is the case for
material laws with a high computational complexity com-
pared to theirmemory footprint. To put this in perspective,we
observed no speedup for linear elastic or viscoelastic mate-
rial laws. For the latter, a potential-based formulation and
example parameters can be found in [16].
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Fig. 19 Runtime and GPU
speedup for varying geometry
size. (Color figure online)

In our second performance study, we investigate the influ-
ence of the size of the geometry on the GPU speedup. The
four different geometries shown in Fig. 18 were obtained
by discretization of the analytical description of the (peri-
odic) geometry at different resolutions 75 × 75×75, 150 ×
150×150, 300×300×300, and 600×600×600. The result-
ing runtimes are plotted in Fig. 19. As expected, the GPU
speedup is mostly independent of the size of the geometry.

When using not only one but g GPUs, the assumption of
perfect GPU scaling

GPU(g) = GPU(1)

g

leads to the following similar relation

totCPU(1)

GPU(1) ·
(
t
g − 1

)
+ totCPUGPU(1, 1)

for the speedup due to using the CPUwith t OpenMP threads
and gGPUs compared to using only the CPUwith t OpenMP
threads. Our approach can be extended to multiple GPUs by
means of an MPI implementation with which we hope to
observe this behaviour. The details of this are beyond the

scope of this paper and will be discussed in a follow-up pub-
lication.

8 Conclusion

In this article, we have introduced and studied a universal
method for evaluatingGSMs.With automatic differentiation,
the material law setup is reduced to the implementation of
two potentials. This eliminates the inconvenience of hand-
computed derivatives and greatly simplifies the material law
implementation process.

In a first step, we automatized the conventional implicit
Euler approach and were able to reproduce the solution of
the elasticity problem up to machine accuracy. However,
we also demonstrated that its tangent computation is sub-
ject to general accuracy issues. As these can be resolved
by an integration of the evolution equation for the state vari-
ableswith adaptive time step sizes, we detailed howblackbox
automatic differentiation of Rosenbrock and Runge–Kutta
methods must be modified in the presence of time step size
control to obtain derivatives that are as accurate as the pri-
mal solution. Material law evaluations with adaptive time
steps improved the solution accuracy of the elasticity prob-
lem significantly for large loading steps, especially when
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stress and stiffness error measures are used for time step size
control. Thus, we have a method at hand to assess the time
discretization error disregarding contributions from solving
the evolution equation.

To make the method applicable to CT-scale problems, we
finallymoved thematerial lawevaluation to theGPU.Various
kinds of overlap resulted in runtimes for the stress response
that are independent of the chosen integration scheme and are
moreover much faster than our conventional implementation
on the CPU. Especially automatic evaluation strategies are
accelerated significantly, which would not be possible with-
out our efficient implementation of automatic differentiation
on theGPU. For example, using ode23, the overall simulation
with material law evaluations on the GPU was over 7 times
faster for sequential CPU usage and still almost 4 times faster
for 28 OpenMP threads. In our test scenario, automatic mate-
rial law evaluation becomes feasible due to using the GPU.
In future work, further material laws will be considered. In
general, the speedups are material law specific and driven
by the ratio between computational complexity and memory
footprint.

Weconclude that the framework for integratingGSMs into
mechanical solvers presented in this article is promising due
to its simultaneous flexibility, accuracy and performance. It is
particularlywell suited to improve and acceleratematrix-free
solvers like FFT-based homogenization. The resulting user-
friendly and fast method is a useful tool for the investigation
of the non-linear material behavior of composites on a single
workstation.
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67. Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-
based solver for numerical homogenization of periodic media by
conjugate gradients. J Comput Phys 229(21):8065–8071. https://
doi.org/10.1016/j.jcp.2010.07.010

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s00466-020-01849-7
https://doi.org/10.1007/s00466-020-01849-7
https://doi.org/10.1002/nme.5008
https://doi.org/10.1002/nme.5336
https://doi.org/10.1002/nme.5336
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1016/j.ijplas.2014.02.006
https://doi.org/10.1016/j.ijplas.2014.02.006
https://doi.org/10.1007/b98904
https://doi.org/10.1007/b98904
https://doi.org/10.1016/0045-7825(85)90070-2
https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1007/978-3-663-15884-4
https://doi.org/10.1007/s10589-006-0397-3
http://drops.dagstuhl.de/opus/volltexte/2009/2084
https://doi.org/10.1002/nme.6283
https://doi.org/10.1016/j.crme.2014.12.005
https://doi.org/10.1016/j.crme.2014.12.005
https://doi.org/10.1016/0024-3795(88)90051-1
https://doi.org/10.1016/0024-3795(88)90051-1
https://doi.org/10.1016/j.jcp.2010.07.010
https://doi.org/10.1016/j.jcp.2010.07.010

	AutoMat: automatic differentiation for generalized standard materials on GPUs
	Abstract
	1 Introduction
	2 Generalized standard materials
	3 Example
	4 Automatic evaluation
	4.1 Single implicit Euler step
	4.2 Rosenbrock and Runge–Kutta schemes with adaptive step size
	4.3 Solution accuracy
	4.4 Stress-driven error control

	5 Automatic differentiation on GPUs
	6 Computational layout, profiling and performance limiters
	7 Scaling studies
	8 Conclusion
	Acknowledgements
	References




