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Abstract
When considering complex systems, identifying the most important actors is often of relevance. When the system is mod-
eled as a network, centrality measures are used which assign each node a value due to its position in the network. It is often 
disregarded that they implicitly assume a network process flowing through a network, and also make assumptions of how 
the network process flows through the network. A node is then central with respect to this network process (Borgatti in Soc 
Netw 27(1):55–71, 2005, https ://doi.org/10.1016/j.socne t.2004.11.008). It has been shown that real-world processes often 
do not fulfill these assumptions (Bockholt and Zweig, in Complex networks and their applications VIII, Springer, Cham, 
2019, https ://doi.org/10.1007/978-3-030-36683 -4_7). In this work, we systematically investigate the impact of the measures’ 
assumptions by using four datasets of real-world processes. In order to do so, we introduce several variants of the betweenness 
and closeness centrality which, for each assumption, use either the assumed process model or the behavior of the real-world 
process. The results are twofold: on the one hand, for all measure variants and almost all datasets, we find that, in general, 
the standard centrality measures are quite robust against deviations in their process model. On the other hand, we observe a 
large variation of ranking positions of single nodes, even among the nodes ranked high by the standard measures. This has 
implications for the interpretability of results of those centrality measures. Since a mismatch of the behaviour of the real 
network process and the assumed process model does even affect the highly-ranked nodes, resulting rankings need to be 
interpreted with care.

Keywords Network analysis · Centrality measures · Network process · Network flow · Process model

1 Introduction

Networks have been proven to be a natural and conveni-
ent representation for many complex systems, thus, systems 
consisting of entities interacting with each other: entities are 
represented by nodes, and their interactions are represented 
by edges. An often occurring question in the analysis of 
those networks is: which node is the most important one 
due to its position in the network? This question has led to 
the notion of centrality. Since the first mention of structural 
centrality by Bavelas (1948), a large number of centrality 
measures, i.e., functions that assign a value of importance 

to each node based on the structure of the graph, have been 
proposed. The most well known are probably degree central-
ity (Nieminen 1974), closeness centrality (Freeman 1978), 
betweenness centrality (Freeman 1977; Anthonisse 1971), 
eigenvector centrality (Bonacich 1972) and Katz central-
ity (Katz 1953). An overview is provided by Koschützki 
et al. (2005).

Although all those centrality measures solely use the 
structure of the graph, as it is required for structural indi-
ces (Sabidussi 1966), they all implicitly assume the presence 
of a process flowing through the network. This is already 
stated by Freeman (1977) for betweenness-based centrality 
measures: “Thus, the use of these three measures is appro-
priate only in networks where betweenness may be viewed 
as important in its potential for impact on the process being 
examined. Their use seems natural in the study of communi-
cation networks where the potential for control of communi-
cation by individual points may be substantively relevant.”
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Borgatti (2005) made an important contribution by 
arguing that centrality measures do contain not only the 
assumption about the presence of a network process, but also 
assumptions about the properties of the process. In other 
words, each centrality measure incorporates a model of a 
flow process with certain properties. He identified two cat-
egories by which those process models differ: node-to-node 
transmission mechanism and the type of used trajectories. 
For the latter, he differentiates between shortest paths, paths 
(not necessarily shortest, but nodes and edges can only occur 
at most once in it), trails (edges might occur several times in 
it), and walks (in which nodes and edges might occur several 
times). For the mechanism of node-to-node transmission, 
Borgatti (2005) differentiates between transfer processes (an 
indivisible item is passed from node to node, such as physi-
cal goods) and duplication processes (the process entity is 
passed to the next node while also staying at the current 
node, such as information or infections).

Consider betweenness centrality as an example. For a 
node v, its betweenness centrality is defined as

where �st denotes the number of shortest paths from node 
s to node t and �st(v) the number of those containing node 
v. Borgatti (2005) points out that the model of process flow 
contained in the betweenness centrality only uses shortest 
paths (since only those are counted), and is a transfer pro-
cess (since one process entity can only use one shortest path 
and not several simultaneously). He furthermore points out 
that the measure considers an equal amount of flow between 
each pair of nodes since each node pair contributes a value 
between 0 and 1 to the overall measure value.

As a consequence, a centrality measure can only give 
interpretable results if the specific process matches with 
its assumed properties: Applying betweenness centrality in 
order to determine a node’s importance for an information 
spreading process will yield uninterpretable results.

When examining the widely used centrality measures, 
such as degree, closeness, and betweenness centrality, for 
their assumptions about the process properties, Borgatti 
(2005) finds that they are only appropriate for processes 
using shortest paths or for processes with a parallel duplica-
tion mechanism. It is clear that most processes which might 
be of interest are not of these types. For this reason, many 
adaptions of the classic centrality measures have been pro-
posed: Freeman et al. (1991) proposed a betweenness cen-
trality based on maximal flow, Newman (2005) one based 
on random walks instead of shortest paths, Stephenson 
and Zelen (1989) propose a betweenness centrality which 

(1)
B(v) =

∑

s ∈ V ,

s ≠ v

∑

t ∈ V ,

s ≠ t ≠ v

�st(v)

�st

includes all paths (not only shortest) between the pairs of 
nodes, for only naming a few examples.

Our approach is different: instead of incorporating a dif-
ferent process model into the centrality measures, we use 
datasets of real-world network flows and incorporate the 
real-world information into the centrality measure. This 
approach enables us to analyze the impact of the assump-
tions on the centrality measure values: 

1. Does it matter that real-world processes do not fulfill 
the assumptions that classic centrality measures contain 
about them?

2. Which assumptions do matter and which do not?
3. If there are nodes whose centrality value changes con-

siderably, can we explain this effect?

Let us give a small motivating example for this approach: 
Sect. 6 will introduce a dataset containing trajectories of 
humans navigating through the Wikipedia article network 
by following the hyperlinks in the articles (the dataset was 
provided by West and Leskovec (2012)). The humans are 
playing a game in which they aim at navigating from a given 
start article to a given target article within as least clicks as 
possible. The resulting trajectories, humans moving from 
node to node by using the edges as fast as possible, actually 
constitute a network flow which–in theory–comes close to a 
flow assumed by the betweenness centrality: a set of indivis-
ible entities who aim at using shortest paths between their 
start and end node.

Figure 1 shows a small example from this dataset, namely 
all (five) observed human navigation paths from the node 
Train to the node Apple. Included in the figure are all nodes 
which were used by any of the navigation paths or are 
included in any shortest path from Train to Apple, or in a 
shortest path from an used node to the node Apple. For a 
clearer presentation, edges which are not used by any of 
the considered navigation paths and which do not decrease 
the distance to the node Apple are removed. The nodes are 
grouped by their distance to the target node Apple: it can be 
reached from the start node Train within 3 links, for exam-
ple by taking the path Train → Horse → Scientific classifi-
cation → Apple. The five actually taken trajectories by the 
humans are shown by colored edges. Although this is only a 
tiny extract of the whole dataset, it can serve as an illustra-
tive example. We observe that none of the navigation paths 
reaches the target node within the optimal number of steps, 
and thus, none of the optimal paths is actually used by the 
humans. Furthermore, there are nodes and edges which are 
used more frequently in the navigation paths than others. 
This is true for nodes and edges which are on an optimal 
paths as well as for nodes and edges which are not on any 
optimal path: while the node Food is not on any optimal 
path between Train and Apple, it is included in all five 
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considered trajectories, several nodes on optimal paths, such 
as Scientific classification, are not included in any observed 
trajectory.

The example illustrates that also network flows for which 
the assumptions of transfer mechanism and shortest paths 
might be expected, can exhibit a different behaviour by 
real-world data. When applying a centrality measure on a 
network which assumes the network process using shortest 
paths, it is questionable whether it is able to identify the 
most important node with respect to the actual process tak-
ing place on the network.

Consider a second example depicted in Fig. 2: It shows 
a simple undirected network where two exemplary network 
flows are sketched by colored edges. Consider first the 
example network flow sketched by blue edges. Note that 
the network flow is directed although the network is undi-
rected. The flow depicted by blue edges starts in the left 
subgraph and ends in the right subgraph, though it does not 
use the shortest path between them, but a detour instead. The 
standard betweenness centrality would assign high values to 
the nodes A and B since they are contained in (almost) all 
shortest paths between the left and right subgraph. If, how-
ever, the actual network flow (here depicted by blue edges) 
does not use shortest paths, standard betweenness centrality 

cannot recognize the most important node with respect to the 
actual network flow. A different case occurs for the network 
flow sketched by orange edges. This network flow does use 

Fig. 1  Extract from Wiki trajectories: all observed human navigations 
from Train to Apple. The extract contains all nodes which are con-
tained in any trajectory from Train to Apple or in any shortest path 

from those nodes to the target node Apple. Nodes contained in any 
of the trajectories are colored black, the other grey. The nodes are 
grouped by their distance to the target node Apple 

Fig. 2  An exemplary network with a simple network flow illustrated 
by colored edges. Standard betweenness centrality would assign a 
high value to the nodes A and B because their position is between 
the two larger subgraphs and all shortest paths between the subgraphs 
contain the nodes A and B. If, however, an exemplary network flow 
such as the one sketched by blue edges, does not use those edges, 
standard betweenness centrality is not able to identify the most 
important node with respect to the existing network flow
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shortest paths, but it is only relevant for the right subgraph. 
Standard betweenness centrality expects an equal amount of 
flow between each pair of nodes. If the actual network flow 
is only relevant for a small subset of nodes, the standard 
betweenness centrality does not identify the most important 
nodes with respect to the network flow at hand.

The main goal of this work is to find out whether those 
statements are only true for the shown toy examples, but 
also for real-world examples. For this purpose, we intro-
duce flow-based centrality variants which partly use the 
simple process model contained in the standard centrality 
measure, and partly use the real-world information. The dif-
ferent variants can be thought of switching on and off the 
different assumptions of the process model, for example, 
one variant keeps the assumption of shortest paths, but does 
not keep the assumption of equal amount of flow between 
all node pairs—instead it uses the actual amount of network 
flow contained in the real-world dataset. We perform this 
approach for the classic centrality measures closeness and 
betweenness and for four different datasets of real-world net-
work flows. It is clear that our newly introduced flow-based 
centrality measures are no centrality measures in the strict 
sense: they actually use more information than the network 
structure. However, we actually do not aim at introducing 
new centrality measures, but aim to investigate to which 
extent the existing centrality measures are robust against 
perturbations in their process model. Informally speaking, 
how much do the results of centrality measures change if 
certain assumptions of them are replaced by real-world flow 
properties?

Preliminary results with a similar approach only con-
cerning the betweenness centrality have been published in 
Bockholt and Zweig (2018). In this work, the approach is 
extended to other types of centralities, and a detailed analy-
sis explaining the changes of rankings is provided.

This work is structured as follows: Sect. 2 introduces nec-
essary definitions and notations as well as formal definitions 
of the classic centrality measures. Section 3 reviews existing 
studies and contributions relevant for our work. Section 4 
discusses the assumptions of the introduced centrality meas-
ures in details and also points to previous empirical results 
of real-world network processes–to which extent they fulfill 
the common assumptions. Section 5 introduces flow-based 
closeness and betweenness variants. Section 6 introduces 
the used datasets of real-world network processes. For all 
data sets, all flow-based closeness and betweenness variants 
as well as the standard centrality measures are computed. 
The results are described in Sects. 7 and 8, structured by 
the questions: 

1. How robust are the standard centrality measures against 
deviations in their process model? Section 7 therefore 
compares the rankings of the flow-based centrality 

measures with the rankings of the corresponding stand-
ard centrality measure.

2. For which reason do certain nodes gain importance or 
drop in importance? Section 8 focuses on the nodes 
which are ranked high by any of the centrality measures 
and explains why some nodes gain or lose importance 
significantly for some measure variant.

Section 9 concludes the article with a summary of the main 
results and an outlook to possible future work.

2  Definitions

2.1  Graph definitions

Let G = (V ,E,�) be a directed simple weighted graph with 
a vertex set V, an edge set E ⊆ V × V  and a weight function 
� ∶ E → ℝ

+ that assigns positive weights to the edges. A 
walk is an alternating (finite) sequence of nodes and edges, 
P = (v1, e1, v2,… , ek−1, vk) with vi ∈ V and ej = (vj, vj+1) ∈ E 
for all i ∈ {1,… , k} and j ∈ {1,… , k − 1} , respectively. If 
the edges are pairwise distinct, P is called a trail. If nodes 
and edges of P are pairwise distinct, P is called a path. Since 
we only consider simple graphs, P is uniquely determined 
by its node sequence and the notation can be simplified to 
P = (v1, v2,… , vk) . The length of a walk P is denoted as |P| 
and is defined as �P� = ∑k−1

i=1
�(ei) . The start node of the path 

P is denoted as s(P) = v0 , the end node as t(P) = vk . If a node 
v is contained in a walk P, we write v ∈ P.

In graph G, let d(v, w) denote the length of the shortest 
path from node v to node w. If w cannot be reached from v, 
we set d(v,w) ∶= ∞.

Section 6 will introduce datasets containing real-world 
network flows where the trajectory of each process entity 
can be modeled as walk in the graph. We will denote the set 
of (actually taken) walks in G by P = {P1,… ,P

�
} . In order 

to distinguish between actually taken walks contained in the 
dataset and possible walks in the graph, we will use the term 
trajectory for an actually taken walk.

2.2  Centrality measures

In general, a centrality measure is a function c ∶ V → ℝ 
which assigns a value to each node. Normally, a high value 
of c(v) indicates a great importance of node v in the graph.

Closeness centrality The closeness centrality measures 
the average distance of a node v to all other nodes.

A common motivating example for closeness-like cen-
trality measures is a facility location problem: for a given 
environment, a facility is to be placed such that the total 
distance from all other places to it is minimal. In his original 
work, Freeman (1977) defined the closeness centrality as
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the inverse of the average distance from all other nodes to v. 
A node is considered as central if the average distance to all 
other nodes is small, i.e., all other nodes can reach v quite 
fast–on average.

However, if there are nodes v,w ∈ V for which there does 
not exist any path between them, computing the closeness 
centrality by the above formula is problematic which is why 
we use the following common adaption:

with the convention 1
∞

= 0.
If the graph is directed, it makes a difference whether the 

distance from or to a node is considered. Therefore, depend-
ing on the use case, another common variant of the closeness 
centrality is

We will refer to the former as out-closeness C→ and to the 
latter as in-closeness C←.

Betweenness centrality Betweenness centrality was 
introduced by Freeman (1977) (independently proposed by 
Anthonisse (1971) as rush in a never published work) and is 
supposed to measure to which extent a node v lies “between” 
the other nodes. The common motivation is the identifica-
tion of so-called gatekeeper nodes which are able—due to 
their position—to control the flow between the other nodes. 
For this purpose, for each node pair s, t ∈ V  , it is counted 
how many shortest paths exist from s to t and how many of 
them contain node v. Formally, let �st denote the number of 
shortest paths from s to t where �st = 1 if s = t . For a node 
v, �st(v) denotes the number of shortest paths from s to t that 
pass through v. The betweenness centrality for a node v is 
then defined as

3  Related work

The concept of centrality in graphs is already known for sev-
eral decades. It was originally introduced by Bavelas (1948) 
for human communication networks. In the following dec-
ades, a large number of different centrality indices emerged, 
each suited for a specific application scenario in mind (see 

C(v) =
�V� − 1

∑
w∈V d(w, v)

,

(2)C←(v) =
∑

w≠v∈V

|V| − 1

d(w, v)

(3)C→ =
∑

w≠v∈V

|V| − 1

d(v,w)
.

(4)
B(v) =

∑

s ∈ V ,

s ≠ v

∑

t ∈ V ,

s ≠ t ≠ v

�st(v)

�st
.

Koschützki et al. 2005 for an overview of the most common 
centrality indices). Based on the work of Freeman (1978), 
the three classic centrality measures are still degree, close-
ness, and betweenness centrality, additionally to Eigenvector 
centrality (Bonacich 1972), Katz centrality Katz (1953) or 
Google’s PageRank centrality (Page et al. 1999). A recent 
contribution to this field has been made by Schoch and 
Brandes (2016) proposing a unifying framework of central-
ity indices based on path algebras.

Borgatti (2005) points out that those centrality measures 
are all tied to a process flowing through the network, most 
of them assuming that the process uses shortest paths. It is 
obvious that this assumption is not necessarily true for many 
relevant processes. For this reason, several variants of the 
classic centrality measures have been proposed which either 
relax the restriction of shortest paths or incorporate a differ-
ent process model into the measure.

Freeman et al. (1991) suggested a flow-betweenness cen-
trality which is based on the idea of maximum flow between 
all pairs of nodes. In this model, edges of the graph can be 
understood as pipes with a capacity and instead of count-
ing the (proportion of) shortest paths through a node v, the 
maximum possible flow passing through v is considered for 
the flow betweenness centrality. This implies that the flow 
betweenness centrality also integrates the contribution of 
non-shortest paths. However, Newman (2005) argues that 
flow betweenness centrality yields unintuitive results since 
in realistic situations, the process of interest usually does not 
take any ideal path from a source to a target (which is still an 
assumption of the flow betweenness centrality because it is 
assumed that information travel on ideal paths in the sense 
of maximum flow). Newman (2005) notes that “in most 
cases a realistic betweenness measure should include non-
geodesic paths in addition to geodesic ones” which is why he 
introduces a betweenness centrality based on random walks 
through the network. The idea of developing a centrality 
measure based on random walks through the network existed 
before, though. Bonacich (1987) proposed the power central-
ity which measures the expected number of times that a ran-
dom walk with a fixed probability of stopping in each step, 
passes through a node, averaged over all possible starting 
points for this walk. The random walk centrality introduced 
by Noh and Rieger (2004) and the information centrality 
from Stephenson and Zelen (1989) are also based on random 
walks on the network and can be seen as the “random-walk 
version of closeness centrality” (Newman 2005).

Other variants—just naming a few—allow to incorporate 
both, shortest paths and paths up to a certain length (Bor-
gatti and Everett 2006); or even all possible walks, weighted 
inversely by their length (Borgatti and Everett 2006). Dolev 
et al. (2010) propose a generalized variant of flow between-
ness centrality incorporating flows generated by arbitrary 
routing strategies.
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Systematically incorporating real-world process informa-
tion into centrality measures has—to our best knowledge—
not been done before. Meiss et al. (2008) use the recorded 
user traffic in the Web to rank single pages by their impor-
tance. They use the real user traffic to validate the random 
surfer model contained in the PageRank algorithm and ana-
lyze for which assumptions of the random surfer behaviour 
the real users’ behaviour differs. Dorn et al. (2012) use the 
passenger flow data in the US air transportation network 
to introduce a stress betweenness centrality counting on 
how many passenger journeys an airport is contained in and 
compare the resulting rankings to rankings of the standard 
betweenness centrality. They find that the results signifi-
cantly change when the centrality considers the number of 
actually taken paths instead of all possible shortest paths.

Ghosh and Lerman (2012) make a connection between 
Borgatti’s work and the centrality measures PageRank and 
Alpha Centrality. Since PageRank assumes a transfer process 
(which they call conservative process) and Alpha Central-
ity assumes a parallel duplication process (which they call 
a non-conservative process), they test this assumption on 
two real-world datasets. They use two datasets containing a 
non-conservative process, and can show that for them, Alpha 
Centrality assuming a non-conservative process yields bet-
ter results than PageRank which assumes a conservative 
process.

Real-world process information, however, has been used 
before to infer other kind of knowledge about the network 
or the system. West et al. (2009) used human trajectories 
through the Wikipedia network (as in the introductory exam-
ple) for deducing a semantic similarity between the articles. 
Rosvall et al. (2014) developed a method for deriving com-
munities by the network’s usage pattern. Weng et al. (2013) 
use the pattern of information diffusion as a predictor for 
future network evolution, i.e., the formation of new edges. 
GPS trajectories of travelers or taxis have been used to iden-
tify popular places (Zheng et al. 2009) or to compute the 
effectively quickest route between places (Yuan et al. 2010).

4  Assumptions of centrality measures

All introduced centrality measures are somehow based on 
paths or walks in the graph (Borgatti and Everett 2006): 
degree centrality counts paths of length 1 from node v, close-
ness centrality is based on the length of the shortest paths 
from v to the other nodes, while the betweenness centrality 
counts the number of shortest paths through node v. This 
implies that something is flowing through the network and 
uses these paths. A node central with respect to one of the 
centrality measures is then only central with respect to the 
network flow (Borgatti 2005; Zweig 2016). As already intro-
duced in Sect. 1, all centrality measures do not only contain 

the assumption about the existence of a network flow, but 
also about the properties of the flow process (Borgatti 2005) 
which we will review for the introduced measures in the 
following.

Flowing on shortest paths All introduced measures 
consider shortest paths, assuming that whatever flows 
through the network uses shortest paths. This also implies 
that the flow actually has a target to reach (and knows 
how to reach this target). This is certainly not true for all 
network flows of interest.
Parallel usage of paths (Borgatti 2005) differentiates dif-
ferent mechanisms of node-to-node transmissions con-
cerning how the network flow moves through the net-
work: by a transfer mechanism, by serial or by parallel 
duplication. In a network flow with a transfer mechanism, 
indivisible items actually move from node to node, while 
for network flows with duplication mechanisms, the flow 
is copied to the next node as for example the spreading 
of an infection. This duplication mechanism can happen 
in serial (one neighbor at a time) or in parallel (all neigh-
bor nodes at once). Since closeness centrality counts the 
length of the shortest paths, it is meaningful to apply for 
networks where the network flow uses shortest paths or 
diffuses via parallel duplication where all possible paths 
are taken in parallel (Borgatti 2005). This does not hold 
for betweenness centrality: this measure assumes that the 
network flow uses shortest paths, but moves via a transfer 
mechanism and hence can only use one shortest path at 
a time.
Equal amount of flow between any node pair Due to the 
calculation of the centrality values, each pair of nodes 
contributes to the value: for the closeness centrality, it 
is assumed that there exists flow from all other nodes 
w to v where each pair (w, v) contributes its distance to 
the measure. For the betweenness centrality of node v, it 
is assumed that there is a flow between any two nodes s 
and s where each node pair (s, t) can contribute a value 
between 0 and 1 to the centrality value of v. In both cases, 
it is assumed that (i) there exists a flow between any node 
pair, and (ii) the flow between the node pairs is equally 
important. This is certainly not true for many real-world 
processes.
Graph distance is meaningful Closeness centrality incor-
porating the graph distances between nodes in the cal-
culation contains the assumption that graph distance is 
actually a meaningful concept for the network and net-
work flow. In networks serving as infrastructure for trans-
portation flows for example, such as road networks and 
humans traveling from one place to another, distances of 
10 km or 1000 km do have different qualities. In other 
networks, however, it might not be the case: Friedkin 
(1983) described a so-called horizon of observability in 
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communication networks, a distance beyond which mem-
bers of the network are not aware of each other. Depend-
ing on the concrete network flow, it is possible that a 
distance of 10 or 1000 is actually of the same quality, if 
they lie both beyond the horizon distance.
All edges are available When computing shortest paths 
or any variant of random walks for a centrality meas-
ure on a static network, an essential assumption is taken 
for granted: the permanent availability of all edges. This 
assumption is not given in temporal networks where 
edges have a timestamp because the corresponding con-
nection in the system is only available at certain points 
in time. Scholtes et al. (2016) proposed temporal vari-
ations of centrality measures which only incorporate 
time-respecting paths, i.e., paths in which the order of 
the contained edges respects their timing order.

While it might be true for many processes that they have 
a target that they try to reach as fast as possible, it is not 
necessarily true that they actually use shortest paths. One 
example is human navigation in networks which exists in 
two variants: in the first, a human needs to navigate in a 
complex network by physically or virtually moving from 
node to node; in the second, some item has to reach a tar-
get in a social network while it is forwarded by each node 
individually—by only having a local view on the network 
structure. A famous example of the latter setting is the small-
world experiment by Milgram (1967) in the late 1960s. In 
this experiment, Milgram asked randomly selected people 
to send a letter to a target person by forwarding it to their 
own personal contacts—who then would repeat this, until 
the letter eventually reaches the target person. Although the 
structure of the underlying social network is not known to 
the involved persons, the letters reached the target person 
within five intermediate stations.1 This type of experiment 
has been repeated on a larger scale: The experiment con-
ducted by Dodds (2003) involved more than 60,000 users 
who were asked to forward an email to their acquaintances 
in order to reach one of 18 target persons.

For the other variant of human navigation in networks 
where the human themselves travel through the network, 
there has been a lot of evidence that humans are surprisingly 
efficient in finding short paths—they are, however, rarely 
optimal. Sudarshan Iyengar et al. (2012) and Gulyás et al. 
(2020) investigated human paths in a word morph game: a 
player is given two English words, and the player needs to 
transform the first word into the second word by substituting 
single letters while intermediate words need to be existing 
English words. The player’s sequence can be seen as a walk 

through the word network where there is an edge between 
two existing words if their Hamming distance is exactly one. 
Sudarshan Iyengar et al. (2012) found that the players’ solu-
tions are in average 1.7 times longer than the shortest path 
between the words. When considering only the solutions of 
experienced players, the solutions’ length even decreases 
to 1.1–1.2 times the optimal solution length (Gulyás et al. 
2020).

This observation is supported by the results of West and 
Leskovec (2012) who analyzed human paths through the 
Wikipedia article network where a node represents a Wiki-
pedia article and there is an edge from one node to another 
if there is a link from the one article pointing to the other 
article. In an online-based experiment, West asked his par-
ticipants to navigate through this network by giving them 
a source and a target article. He was able to collect more 
than 30,000 paths and could show that human wayfinding 
in this network is surprisingly efficient (albeit not optimal) 
although the complete structure of the network is not known 
to the participants.

This finding also holds for humans moving in physical 
environments: Zhu and Levinson (2015) considered human 
travel patterns within cities and found that they do use short 
paths, but no shortest paths, Manley et al. (2015) analyzed 
trajectories of minicabs in London and found a preference 
of anchor-based routes: it seems that drivers select certain 
locations as landmarks and use those for constructing their 
route. This yields short, but non-optimal paths. Also for non-
human transfer processes, studies have found similar results: 
Gao and Wang (2002) show that also routes of packages in 
the Internet involve non-shortest paths due to routing strate-
gies, Csoma et al. (2017) provide a comparative analysis of 
paths of different domains pointing to the same direction.

In recent work, we have shown that several real-world 
processes do not satisfy the assumption of equal amount of 
flow (Bockholt and Zweig 2019): we have shown that there 
are few hub nodes and edges which are used heavily by the 
process, while the majority of the nodes is visited at most 
once by the process. The same holds for node pairs: a few 
node pairs are the source and target of many process entities, 
while there is no real flow between many node pairs.

5  Flow‑based centrality measures

The question arises whether it actually matters that the 
assumptions of the centrality measures are not met. For 
investigating this question, we present the following 
approach: For each of the centrality measures, we introduce 
flow-based variants which—instead of theoretically existing 
shortest paths in the graph—incorporate the observed walks 
of real-world processes. By introducing different variants, 
we are able to “switch on or off” the different assumptions 

1 To be fair, over all different runs of the experiment, only 15–35% of 
all dispatched letters actually reached the target person.
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and replace them by the properties of the real-world process. 
Our goal is not to introduce further centrality measures, but 
to investigate to which extent the included assumptions have 
an impact on the results if they are not met.

5.1  Flow‑based betweenness measures

The following four variants of flow-based betweenness 
measures have been proposed in Bockholt and Zweig (2018), 
and their definitions are given here again since they are 
needed in the following.

As a general framework for introduced flow-based 
betweenness measures, we introduce a weighted between-
ness centrality by

with a weight function w ∶ V × V × V → ℝ . The standard 
betweenness centrality introduced in Sect. 2 is obtained by 
inserting the weight function w(s, t, v) = 0 if s = t or s = v 
or v = t , and w(s, t, v) = 1 otherwise.

We will introduce four variants of flow-based between-
ness measures (for an overview, see Table 1): two will keep 
the assumption of shortest paths (indicated by a subscripted 
S vs. a subscripted R when real trajectories are incorpo-
rated), and two will keep the assumption of equal amount 
of flow between any node pair (a subscripted W will indicate 
that the real amount of flow is incorporated in the weight 
function).

(5)Bw(v) =
∑

s∈V

∑

t∈V

w(s, t, v) ⋅
�st(v)

�st

For all variants, a set of observed trajectories by the real-
world process, denoted by P = {P1,P2,… ,P

�
} , is used 

(Fig. 3).
Betweenness variant BS Keeping the assumption that the 

process is flowing on shortest paths, this variant will only 
count (shortest) paths between node pairs for which there 
is real-world flow. Consider again Fig. 2 as a motivating 
example. Standard betweenness centrality would assign the 
highest value to nodes A and B because it lies on (almost) 
all shortest paths between the left and the right node group. 
However, assume that a real-world process only flows within 
the two groups, such as the orange flow in the figure. Then, 
there is no reason why nodes A and B would be assigned 
an important role as mediator or “gatekeeper” between the 
two groups. Therefore, the present variant will only count 
shortest paths between nodes s and t for which there is a 
real-process trajectory from s to t. We define

with the weight function

Betweenness variant BSW In this variant, the assumption 
that the process is flowing on shortest paths is kept, but the 
assumption of equal amount of flow is dropped. The idea is 
that a node will be assigned a higher value if it is on many 
shortest paths between highly demanded node pairs than a 

(6)BS(v) =
∑

s∈V

∑

t∈V

wS(s, t, v) ⋅
�st(v)

�st

wS(s, t, v) =

{
1 if ∃P ∈ P ∶ s(P) = s and t(P) = t

0 otherwise

Table 1  Categorization of 
the introduced flow-based 
betweenness centralities

Count How? Sum over Weight

B
S

Shortest s, t: ∃P ∈ P ∶ s(P) = s → t = t(P) 1
B
SW

Shortest s, t: ∃P ∈ P ∶ s(P) = s → t = t(P) #P ∶ s → t

B
R

Real → s → v → t → All nodes 1
B
RW

Real s → v → t s, t: ∃P ∈ P ∶ s(P) = s → t = t(P) #P ∶ s → t

Fig. 3  Application of the flow-based betweenness measures on 
an example graph with the set P = {P

1
,P

2
,P

3
,P

4
,P

5
,P

6
} with 

P
1
= (10, 1, 2, 3, 4, 6),P

2
= (7, 3, 4, 6),P

3
= (8, 7, 2, 3, 9, 4, 6),P

4
= (7, 3, 9, 4, 6) , 

P
5
= (1, 2, 3, 9, 4) , and P

6
= (7, 2, 3, 9, 4, 6) . Size and color of the 

nodes correspond to their centrality value, and the values of the cen-
trality measures are shown in the grey box next to each node
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node on many shortest paths between node pairs which are 
never used as source and target. The weight function will 
hence be proportional to the number of real-process paths 
starting and ending in those node pairs. We define

with the weight function

Note that this measure might still yield low values for nodes 
contained in many observed trajectories, if they are not on 
the shortest path between the highly demanded node pairs.

Betweenness variant BR Unlike the previous two measure 
variants which are counting in how many shortest path a 
node v is contained, the following two variants will count 
in how many observed trajectories a node is contained. A 
motivating example can been seen in Fig. 2: assume there is 
a real process flow between the two groups, such as the one 
depicted by blue edges, but all process entities use the path 
via nodes C, D and E and not the shortest path via nodes A 
and B. Standard betweenness centrality would assign nodes 
A and B the highest values, the following variant counting 
the real paths would assign a higher value to nodes C, D 
and E than to nodes A and B. For this reason, we define a 
flow-based variant of �st and �st(v) counting the number of 
real trajectories from s to t (containing v). Since we want 
to keep the assumption of equal amount of flow between 
all node pairs as much as possible, we define �P

⋅st⋅
 as the 

number of paths P ∈ P containing s and t. Otherwise, if 
�P

⋅st⋅
 was defined as the number of paths P from s to t, node 

pairs which are not start and end node of any real process 
trajectory will not contribute to the centrality measure, and 
the assumption of equal amount of flow would already been 
dropped. It is clear that also with the introduced definition 
of �P

⋅st⋅
 , not all node pairs will contribute, since not for all 

node pairs, there will a exist a real trajectory containing 
both nodes. But this is the best we can do. We hence define

with the weight function wR(s, t, v) = 1 for all s, t, v ∈ V with 
s ≠ t and also here the convention 0

0
= 0.

Betweenness variant BRW  The last measure variant 
drops both the assumption of shortest paths (by count-
ing observed trajectories) and the assumption of equal 
amount of flow between all node pairs (by introducing a 
weight function proportional to the number of observed 
trajectories from s to t). In this case, since the weight 
function will yield 0 for node pairs between which there 
is no real process flow, a flow-based version of �st can be 

(7)BSW (v) =
∑

s∈V

∑

t∈V

wSW ⋅
�st(v)

�st

wSW (s, t, v) = |{P ∈ P|s(P) = s, t(P) = t}|

(8)BR(v) =
∑

s∈V

∑

t∈V

wR ⋅
�P

⋅st⋅
(v)

�P
⋅st⋅

used which counts the real process trajectories from s to t: 
�P

st
= |{P ∈ P|s(P) = s, t(P) = P}| . With this (and the cor-

responding definition for �P

st
(v) ), we define

with the weight function

This yields a sort of stress betweenness centrality since it 
simply counts the number of process trajectories a node v is 
contained in (at least once).

5.2  Flow‑based closeness measures

For the closeness centrality, similar assumptions than for 
the betweenness centrality are included: the process is using 
shortest paths, and there is an equal amount of flow to (from) 
each node v from (to) all other nodes. In order to derive 
closeness variants which drop or keep those assumptions 
separately, we introduce also here a generalized closeness 
centrality as framework. For a better readability, we will 
introduce the variants as in-closeness, the corresponding 
out-closeness can be easily derived in the same way. Let

be a generalized weighted closeness centrality with a weight 
function � ∶ V × V → ℝ , a normalization factor N ∶ V → ℕ , 
a distance function � ∶ V × V → ℝ , and v-based subset of 
nodes.

B y  i n s e r t i n g  N(v) = |V| − 1  f o r  a l l 
v ∈ V , �(v,w) = d(v,w) , �(v,w) = 1 for all v,w ∈ V  , and 
V(v) ∶= V ⧵ {v} , the standard (in-)closeness centrality can 
be derived.

As in the previous section where the flow-based between-
ness variants were introduced, the following closeness vari-
ants can also keep or drop the assumption of shortest paths 
(indicated by a subscripted S or R), and keep or drop the 
assumption of equal amount of flow (indicated by a sub-
scripted W if weights are proportional to the actual number 
of real paths). For an overview of the variants, see Table 2.

In the following, when introducing closeness variants or 
illustrating properties, we will use the in-closeness as exam-
ple for a better readability.

Closeness variant CS In the first variant, the assumption 
of shortest paths is kept while only distances between those 

(9)BRW (v) =
∑

s∈V

∑

t∈V

wWR ⋅
�P

st
(v)

�P
st

(10)= |{P ∈ P|v ∈ P}|

wRW (s, t, v) = wSW (s, t, v)

= |{P ∈ P|s(P) = s, t(P) = t}|.

(11)C�(v) =
∑

w∈V(v)

N(v)

�(w, v)�(w, v)
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nodes are considered between which there is a real process 
flow. We hence define

with the weight function

Furthermore, the normalization factor is defined as

and VS(v) = {w ∈ V|�S(w, v) ≠ 0} . In other words, for cal-
culating C←

S
(v) , we consider the shortest distances from all 

nodes w to v for which there exists a observed trajectory 
starting in w and ending in v.

Closeness variant CS′ The previous variant is very restric-
tive: only the distance from those nodes w are considered for 
which there is a observed trajectory starting in w and ending 
in v. This implies that all nodes that are not the end node of 
any node are not assigned any closeness value. In order to 
relax this restriction, we introduce the variant CS′ where the 
distances from all nodes w to node v are considered which 
are contained in the same real trajectory: We define

with the weight function

and the normalization factor

and the node subset VS� (v) = {w ∈ V|w ≠ v,�S� (w, v) ≠ 0}.
It is clear that all intermediate nodes between any w and 

v will also contribute to the centrality value, similarly to the 
standard closeness centrality. Also similarly to the standard 

(12)C←

S
(v) =

∑

w∈VS(v)

NS(v)

�S(w, v)d(w, v)

�S(w, v) =

{
1 if ∃P ∈ P ∶ s(P) = w, t(P) = v

0 otherwise

NS(v) = |{w ∈ V|∃P ∈ P ∶ s(P) = w, t(P) = v}|

(13)C←

S�
(v) =

∑

w∈VS� (v)

NS�(v)

�S� (w, v)d(w, v)

�S� (w, v) =

{
1 if ∃P ∈ P ∶ P = (… ,w… , v,…), v ≠ w

0 otherwise

NS� (v) = |{w ∈ V ∣ ∃P ∈ P ∶ P = (… ,w… , v,…), v ≠ w}|

closeness centrality, the node itself does not contribute to its 
own centrality value.

Closeness variant CSW

Like the previous variant, this variant also considers the 
length of the shortest paths, but paths between node pairs 
which are used often by the real process contribute more to 
the centrality value. Hence, the weight function is propor-
tional to the number of real process trajectories from w to v. 
The closeness variant is then defined as

with

and the normalization factor

and VSW (v) = {w ∈ V|w ≠ v,�SW (w, v) ≠ 0}.
Closeness variant CR In this and the following variants, 

the assumption of shortest paths is dropped, and instead, the 
“real” path length is considered. For this reason, we need 
to define a flow-based path length dP(v,w) . Since different 
observed process trajectories containing both v and w can 
take different paths of different lengths in order to reach w 
from v, those different “real” lengths need to be aggregated. 
We decided to average those, but also other aggregations 
might be plausible. Formally, for nodes v,w ∈ V  occurring 
in a real trajectory P, we define their P-distance dP(v,w) as 
the sum of the weights of the edges in P between the occur-
rence of v and w in P. The flow-based distance of two nodes 
is then the average over all occurrences of v before w in 
trajectories in P . Consider the example shown in Fig. 4 with 
six real trajectories. For the nodes 3 and 6 with a graph dis-
tance of 2, we obtain the following P-distances dP1(3, 6) = 2 , 
dP2(3, 6) = 2, dP3(3, 6) = 3, dP4 (3, 6) = 3 , dP6(3, 6) = 3 , while 
dP5(3, 6) is not defined. By averaging those values, this yields 
an flow-based path length of dP(3, 6) = 13

5
= 2.6 . The close-

ness variant is then defined as

(14)C←

SW
(v) =

∑

w∈VSW (v)

NSW (v)

�SW (w, v)d(w, v)

�SW (w, v) = |{P ∈ P|P = (… ,w,… , v,…)}|

N(v) =
∑

w∈V

�SW (w, v)

Table 2  Categorization of the introduced flow-based (out-)closeness centralities

Which distances? To which nodes? Weight Description: inverse of average...

C
S

Shortest ∃P ∶ s(P) = v → w = t(P) 1 Shortest distance of v to all strictly relevant nodes
C
S′

Shortest ∃P ∶→ v → w → 1 Shortest distance of v to all relevant nodes (less strictly)
C
SW

Shortest ∃P ∶→ v → w → #P ∶→ v → w → Weighted shortest distance of v to all relevant nodes (less strictly)
C
R

Real ∃P ∶→ v → w → 1 Real distance of v to all relevant nodes (less strictly)
C
RW

Real ∃P ∶ s(P) = v → w = t(P) #P ∶ v → w Weighted real distance of v to all strictly relevant nodes
C
RW ′ Real ∃P ∶→ v → w → #P ∶→ v → w → Weighted real distance of v to all relevant nodes (less strictly)
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with

and

and VR(v) = {w ∈ V|w ≠ v,�R(w, v) ≠ 0}

Closeness variant CRW In analogy to the previous vari-
ants, we extend the previous variant by dropping the assump-
tion of equal amount of flow and introducing a weight func-
tion proportional to the amount of flow from w to v. Then,

with

and the normalization factor

(15)C←

R
(v) =

∑

w∈VR(v)

NR(v)

�R(w, v)d
P(w, v)

�R(w, v) =

{
1 if ∃P ∈ P ∶ P = (… ,w,… , v,…), v ≠ w

0 otherwise

NR(v) = |{w ∈ V|∃P ∈ P ∶ P = (…w… v…)}|

(16)C←

RW
(v) =

∑

w∈VRW (v)

NRW (v)

�RW (w, v)d
P(w, v)

�RW (w, v) = |{P ∈ P|s(P) = w, t(P) = v}|

and VRW (v) = {w ∈ V|w ≠ v,�RW (w, v) ≠ 0}.
Closeness variant CRW ′

We again loosen the restriction of the previous variant by 
counting the distances of all nodes pairs which are both con-
tained in at least one common observed trajectory instead of 
counting only distances between node pairs which are source 
and target of at least one observed trajectory. Then, we get

with

and

and VRW � (v) = {w ∈ V|w ≠ v,�RW � (w, v) ≠ 0}.
For all introduced variants, the in-closeness was intro-

duced, and the corresponding out-closeness can be derived 
easily.

NRW (v) =
∑

w∈V

�RW (w, v)

(17)C←

RW � (v) =
∑

w∈VRW� (v)

NRW � (v)

�RW � (w, v)dP(w, v)

�RW � (w, v) = |{P ∈ P|v,w ∈ P, v ≠ w}|}

NRW � (v) =
∑

w∈V

�RW � (w, v)

Fig. 4  Application of the flow-based closeness (out-)measures on 
an example graph with the set P = {P
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out-variants are shown here
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6  Datasets

Datasets appropriate for testing the introduced flow-
based centrality measures need to satisfy the following 
requirements 

1. a process is flowing through the network by moving 
from node to node by using the underlying network 
structure

2. the process spreads through the network by actually 
moving from node to node, i.e., there is an entity which 
hops from node to node and that can only be present at 
one node in one moment in time,

3. the process does not spread randomly, but is moving 
through the network with a target, i.e., a pre-determined 
node to reach

We therefore used the datasets which are described in the 
following. Tables 3 and 4 show basic properties of the data-
sets used, Fig. 5 shows example trajectories for each dataset.

Airline transportation (DB1B) The US Bureau of 
Transportation Statistics publishes the Airline Origin and 
Destination Survey (DB1B) for every quarter year (RITA 
TransStat 2016). This database contains 10% of all air-
line tickets of passenger journeys within the USA (of all 
reporting carriers). We used the databases of the years 
2010 and 2011 to extract passengers’ airline itinerar-
ies including start and destination airports as well as all 
intermediate stops. If an itinerary contains an outbound 
and return trip, the itinerary is split into two trips. We 
construct a network in the following way: A node again 
represents a city, and airports with the same Market City 
ID in the data are merged into one node; for example, the 
airports Chicago O’Hare International Airport and Chi-
cago Midway International are both assigned to the city 
node of Chicago. We set a threshold for the insertion of 
nodes and edges: a node is only inserted in the network if 
it is contained in at least 100 passenger itineraries and an 
edge from v to w is inserted if the data contain at least 10 

passenger itineraries with a flight from an airport in v to 
an airport in w. This procedure yields a network with 415 
nodes. Since for almost all node pairs v, w, both edges 
(v, w) and (w, v) exist, the network is simplified to an 
undirected network where the undirected edge (v, w) is 
inserted if the directed edge (v, w) or the directed edge 
(w, v) exists. This yields a network with 5141 undirected 
edges.
London Transport (LT) Transport of London, the gov-
ernmental authority responsible for the public transport 
in the area of London yearly publishes the Rolling Origin 
and Destination Survey (Transport for London 2017), a 
5% sample of all passengers’ journeys using an Oyster 
Ticket, an electronic ticket, in one week in November 
2017. The database contains for each trip the station 
where the trip started and ended as well as stations of 
train changes. We used the timetables of the London 
transport system to reconstruct which means of transpor-
tation (with which stations in between) the passengers 
used. If there are more than one possibility to reach sta-
tion B from station A, we assumed that the passenger took 
the connection with the smallest traveling time. Note that, 
in this approach, we did not take into account the time 
schedule of the lines; hence, potential waiting times of 
the passenger are not considered. We construct two dif-
ferent networks from this data: each station is represented 
by a node, in the first version (line graph), an edge from 
station v to w with weight w is inserted if there is a train 

Table 3  Overview of the used datasets

Data set Nodes Edges Flow

Airline transportation (DB1B) Airports Non-stop airline connections Passengers
(Source: RITA TransStat (2016))
London Transport (LT) Public transport stations Public transport connections Passengers
(Source: Transport for London (2017))
Wikispeedia Wikipedia articles Hyperlinks Players
(Source: West and Leskovec (2012))
Wordmorph 3-letter words Hamming distance of 1 Players
(Source: Kőrösi et al. (2018))

Table 4  Properties of the used datasets. |V| and |E| denote the cardi-
nality of node and edge set of the underlying graph, |P| the number of 
observed trajectories

Dataset |V| |E| |P| Path length

Range Mean

DB1B 415 5141 86 m [1, 12] 1.4
LT (lines) 268 626 4.8 m [2, 49] 8.2
LT (transitive) 268 13,172 4.8 m [2, 49] 8.2
Wiki 4589 119,804 51,306 [1, 82] 5
Wordmorph 1008 8320 11,651 [3, 55] 5.0
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that contains v and w as consecutive stops, needing w 
minutes. In the second version (transitive graph), an edge 
from station v to station w is inserted if it is possible to 
reach station w from station v within w minutes without 
changing the line. The second version hence contains the 
transitive closures of the graph of each single line. An 
example is shown in Fig. 6. Passengers’ journeys in the 
transitive graph then contain only the stations of train 
changes, while passengers journeys in the first version 
also contain stations which the passenger only passes 
while sitting in the train. Both versions are valid mod-
els of the system depending on the application scenario: 
consider node G in the example shown in Fig. 6. A failure 
of this station such that no train can pass through this sta-
tion anymore would leave H isolated from the remaining 
graph and hence affect the transportation flow of the sys-
tem. On the other hand, passengers traveling from H to C 
do not enter the station G, they only drive through. Hence, 
if we are interested in the flow of passengers instead of 
trains, a representation as transitive graph might be more 

appropriate. Both versions lead to a network with 268 
nodes, once with 626 edges, once (the transitive version) 
with 13172 edges.
Wikispeedia West analyzed human navigation paths 
in information networks. For this project, he collected 

(a) Wikispeedia: Exemplary player path

Atlanta, Georgia, USA
Charlotte,

North Carolina, USA
Washington/Baltimore,

USA

(b) DB1B: Exemplary passenger journey

Victoria Westminster Baker Street
King’s Cross
St.Pancras

District line

3minutes

Jubilee line

6minutes

Metropolitan line

5minutes

(c) London Transport (transitive graph): exemplary journey. Only stations
where the passenger changed the train are included in the path.

Victoria

St. James
Park

Westminster

Green
Park

Bond
Street

Baker Street

Great
Portland
Street

Euston
Square

King’s Cross
St.Pancras

1minute 2minutes 2minutes 2minutes 2minutes 2minutes 1minute 2minutes

(d) London Transport (line graph): exemplary journey. Intermediate stops which are passed by the train are included
in the path.

CRY DRY DAY DAD DID

(e) Word morph: exemplary player solution

Fig. 5  Illustration of the datasets used. For each dataset, an example trajectory is shown

Fig. 6  Example for two different representations of the same trans-
portation system
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more than 50,000 trajectories of players playing the game 
Wikispeedia (West and Leskovec 2012; West et al. 2009). 
In this game, a player is given (or chooses) a pair of Wiki-
pedia articles and needs to navigate from the one article 
to the other by following the hyperlinks in the article. 
The node set of the network is a (sub-)set of Wikipedia 
articles, and directed edges represent hyperlinks. This 
network contains 4589 nodes and almost 120,000 edges. 
We consider only game logs reaching their target article 
and exclude moves which were revoked by the player via 
an Undo button. We furthermore exclude solutions longer 
than 30 steps.
Wordmorph We use a second dataset containing game 
logs, from humans playing the game word morph. In 
this game, a player is given two (English) words of the 
same length and needs to transform the one word into the 
other by changing the single letter one by one—where 
all intermediate words need to be meaningful English 
words. A valid transformation is for example cry→dry→
day→dad→did. The corresponding network consists thus 
of nodes representing English words, and there exists an 
undirected edge between two nodes if the correspond-
ing words have a Hamming distance of 1, i.e., they can 
transformed into each other by changing one letter. The 
network consists of 1008 nodes and 8320 (undirected) 
edges. We use a dataset provided by Kőrösi et al. (2018) 
who collected human game logs by their publicly availa-
ble app. We restrict our analysis to 3-letter English words 
(official English Scrabble words from WordFind)2 and 
only consider solved game logs. This results in approxi-
mately 11,000 game logs being used for analysis.

7  Robustness of standard centrality 
measures

For all datasets, all flow-based centrality variants as well 
as the corresponding standard centrality measures are com-
puted. The first question which we want to investigate is how 
robust the standard centrality measures are against devia-
tions of their incorporated process model. If the standard 
centrality measure and the flow-based measure were very 
similar to each other, the standard centrality measures 
would actually be good proxies for the flow-based measures: 
although the assumptions of the standard centrality measures 
are not met by the real-world processes, they still would be 
able to yield sufficiently good results. If, however, the results 
of the flow-based variants were considerably different from 
the standard centrality measures, this would imply that the 
assumptions do have a significant impact on the results. In 

order to answer this question, we compare the results of 
standard centrality measures to the results of the flow-based 
centrality measures.

7.1  Correlation of measures and rankings

We compare the measure values and the corresponding rank-
ings of the flow-based variants to the values and rankings of 
its corresponding standard centrality value. For the meas-
ure values, we computed their Spearman correlation (see 
Table 5). The measure values can be used for deducing a 
ranking by assigning each element of V its position num-
ber in the node sequence ordered by the measure value: the 
node with the highest measure value is assigned rank 1 and 
so forth. There are several strategies for handling ties, i.e., 
elements of V with equal measure values. In the following, 
we will use fractional and random ranking. For fractional 
ranking, nodes with the same measure value are assigned 
the average rank which they would have gotten without the 
tie. For random ranking, nodes with equal measure values 
are assigned distinct rankings where the positioning of these 
nodes is done randomly. For comparing the resulting rank-
ings, we introduce a metric which we call weighted overlap. 
The reason why we do not use existing measures, such as 
Kendall rank correlation (Kendall 1938) or any variant of 
edit distances (Damerau 1964; Hannak et al. 2013), is their 
ignorance whether differences in the rankings occur among 
higher ranked nodes or lower ranked nodes: particularly for 
centrality indices, a difference in ranking positions among 
the highest ranked nodes should be penalized more by a 
metric than a difference among the low-ranked nodes. Fur-
thermore, we are often not interested in the exact ranking 
position of a node: as long as it is ranked high or low in both 
rankings, a metric for comparing rankings, should yield a 
high value. Metrics used for the evaluation of search engine 
rankings, such as the normalized discounted cumulative 
gain (Järvelin and Kekäläinen 2002), are also not directly 
applicable. These are designed to evaluate the quality of 
a search engine result with respect to the actual relevance 
of the documents in the resulting ranking. Adapting this 
measure in order to use it for the comparison of two rank-
ings will yield a non-symmetric evaluation measure which 
is not desirable. For these reasons, we introduce a metric 
weighted overlap of rankings �w . Based on the idea that the 
first x elements of both rankings do not need to be in perfect 
order to get a high value, but should contain nearly the same 
elements, we consider the overlap of the top x nodes of the 
two rankings, i.e., the number of elements which are both 
contained in the top x positions of both rankings. Let �1 

2 http://www.wordfi nd.com/3-lette r-words .

http://www.wordfind.com/3-letter-words
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and �2 be functions assigning the ranking to each node. We 
define their overlap of the first x positions as

Based on this, we first introduce a preliminary measure 
for comparing two rankings, from which the weighted over-
lap measure will be derived in the following. The prelimi-
nary measure will be referred to as unweighted overlap and 
is defined as

The idea is the following: for each position in the ranking, 
i.e., from 1 to n, the overlap of the two rankings up to this 
position is computed. Two identical rankings would yield an 
overlap of x for each x ∈ {1,… , n} ; two maximally different 
rankings, where one is the reverse of the other, would yield 
an overlap of 0 for x from 1 to ⌊n∕2⌋ , and an overlap of 2x − n 
for the positions x from ⌊n∕2⌋ + 1 to n (assumed there are no 
ties). This can be explained by a simple graphic argument 
(see Fig. 7): when plotting the overlap of two rankings up 
to position x as a function of x, the introduced measure � 
considers the area between the overlap curve and the identity 
line ( x − ov(�1, �2, x) , colored in red). The maximal possi-
ble area between the overlap curve and the identity line is, 
assumed there are no ties, colored grey in the figure. This 
is due to the fact that from any x to x + 1 , the overlap can 
increase by at most 2 which implies that the slope of the 
overlap curve cannot exceed 2. Together with the fact that 
the overlap of two rankings for x = n is equal to n implies 
that the maximal possible area between the identity line and 
any overlap curve is n

2

4
 , depicted as grey area.

For the preliminary measure � , the main described prob-
lems described for the Kendall rank correlation coefficient 
are still present: Swaps of ranking positions have the same 
impact on the value of � , regardless whether the swap affects 
high-ranked or low-ranked elements. This is why we intro-
duce a weight function w(x) which weights the difference 
x − ov(�1, �2, x) dependent on x. We chose a weight function 
w(x) = n − x which is linearly decreasing with x, but also 
other variants might be applicable.

A further modification is the introduction of a normaliza-
tion factor �(x) for each position x. Introducing �(x) is due to 
the counterintuitive behaviour of the measure that each posi-
tion x can contribute different values to the sum: Consider 
the maximal value of each summand x − ov(�1, �2, x) . For 
values of 1 ≤ x ≤ n∕2 , each summand x − ov(�1, �2, x) can 
contribute at most x to the sum; for values of n∕2 < x ≤ n , 
each summand can contribute at most n − x to the sum. This 
is why each summand is normalized by its maximal value, 
realized by a normalization function �(x) . These modifica-
tions lead to the weighted overlap measure:

ov(�1, �2, x) = |{v ∈ V|�1(v) ≤ x} ∩ {v ∈ V|�2(v) ≤ x}|.

�(�1, �2) =
4

n2

n∑

x=0

(x − ov(�1, �2, x)).

with

and

The factor 2

n(n−1)
 scales the value to the interval [0, 1] where 

identical rankings yield a value of 0, and reverse rankings 
yield a value of 1. For other rankings, �w penalizes differ-
ences in the rankings more if they occur for higher-ranked 
nodes than for lower-ranked nodes. Figure 7 shows two 
examples.

For each flow-based centrality variant and its correspond-
ing standard centrality, we compute the weighted overlap of 
their rankings, �w , and the Spearman correlation coefficient 
of their values. The results are displayed in Table 5. Note 
that for �w a value of 0 means a high similarity (equality) of 
the rankings, while a value 1 means a high dissimilarity of 
the rankings.

Betweenness measures The Spearman correlation of the 
standard betweenness centrality to the flow-based variants is 
positive for all variants and data sets. The correlations of the 
flow-based betweenness measures to the standard between-
ness measures are high, most above 0.7. This suggests that 
the standard betweenness centrality seems to be quite robust 
against deviations in its assumed process model in general. 
Although in all datasets, only a fraction of all node pairs are 
actually source and target of any observed process trajec-
tory (< 50% for DB1B and London Transport, <1 % for 
Wikispeedia), it seems that the standard betweenness cen-
trality is robust against a violation of this assumption. For 
DB1B, it strikes that the correlations as well as the weighted 
overlap are approximately equal for all measure variants. 
This could have been expected for the variants BR and BS 
since the observed trajectories are very close to the shortest 
paths. This is, however, surprising for the variants BSW and 
BRW incorporating weights since the source-target frequency 
distribution is skewed: a few node pairs are used very fre-
quently while the majority of node pairs is used rarely or 
never. When considering the rankings and their weighted 
overlap, it can be seen that for all other data sets, the rank-
ings from the flow-based betweenness variants incorporating 
observed trajectories instead of shortest paths, i.e., BR and 
BRW , differ more from the ranking of the standard between-
ness centrality, than the other two flow-based variants, i.e., 
BS and BSW . Here, we observe values of the weighted overlap 
up to 0.48. This means that although the observed trajecto-
ries do not deviate much from shortest paths, this does have 

(18)�w(�1, �2) =
2

n(n − 1)

n∑

x=1

w(x) ⋅
x − ov(�1, �2, x)

�(x)

w(x) = n − x

�(x) =

�
x x ≤ ⌊n∕2⌋
n − x otherwise
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an observable effect on the betweenness measure. The effect 
is not large—there is still a positive correlation of more than 
0.5—but already small deviations from shortest paths do 
have an impact on the measure value.

Closeness measures For the closeness measures, we 
find a Spearman correlation of ≥ 0.47 between the standard 
closeness centrality and each of the flow-based measures for 
all datasets. Except for Wikispeedia, the correlations do not 
show large variations when comparing in- and out-closeness. 
For the Wikispeedia dataset, the flow-based closeness meas-
ures and the standard closeness measure show a correlation 
of around 0.7 for all in-closeness variants, but seem to be 
less correlated for all out-closeness variants. When consid-
ering the weighted overlap of the rankings for Wikispeedia, 
the in- and out-variants show a considerable difference to the 
standard closeness rankings, more than 0.3 for all variants 
and up to 0.6. For the datasets DB1B and LT (Transitive), 
the correlations of the flow-based closeness variants to the 
standard closeness centrality do not vary considerably, they 
are around 0.88 for all variants for DB1B, and around 0.5 
for LT (Transitive).

There is an notable peculiarity concerning the network 
variants of London Transport for the betweenness and close-
ness measures: while the correlations of the flow-based 
variants to the standard centrality is roughly constant (and 
constantly low) among the variants for the transitive graph, 
this is different for the lines network: the correlation to the 
standard centrality is high for the variants considering short-
est paths between actually used node pairs, i.e., BS and CS 
and CS′ , but the correlation drops for the variants which 
incorporate a weight, i.e., all variants with a subscripted W.

7.2  Ranking deviations

Figures 8 (for betweenness measures) and 9 (for closeness 
measures) show the ranking position of each node over all 
measure variants: each point represents a node, its position 
on the x-axis is the same for all panels and is determined 
by its ranking position with respect to the standard central-
ity measure. For each node, its span of ranking positions 
is computed by computing the difference of its minimal to 
its maximal ranking position over all measure variants. In 
Figs. 8 and 9, for each node, its minimal and maximal rank-
ing position over all measure variants is depicted as vertical 
grey line, thus, the span of ranking positions of a node is 
the length of the corresponding grey line. Table 6 shows 
the mean value of the nodes’ spans of ranking positions in 
absolute ranking positions and relative to the total number 
of nodes, as well as the range of the nodes’ spans of rank-
ing positions. From Figs. 8 and 9, it can be seen that the 
rankings of the flow-based centrality measures are clearly 
positively correlated with its standard centrality measure, 
for both, betweenness and closeness measures. But there 

is a considerable deviation of ranks for many nodes when 
comparing the standard centrality to the flow-based variants. 
This effect is, however, differently strong for the single data-
sets for the measure variants. It strikes that the deviation is 
larger for the game datasets than for the transportation data-
sets. For Wikispeedia, the mean span of ranking positions 
is almost 2000 for closeness (out of more than 4000 ranking 
positions), meaning that on average, the nodes have a varia-
tion of ranking positions of almost 2000 positions. The effect 
is smallest for DB1B, but also there, the average span of 
ranking positions is around 60 positions which accounts for 
almost 15% of all ranking positions (see Table 6). Note that 
a high average value of the nodes’ spans of ranking positions 
could also be caused by a situation in which only one meas-
ure variant produces a ranking which is very different from 
all others. This is, however, not the case here as it can be 
seen in Figs. 8 and 9. For DB1B, it strikes that despite a few 
nodes which are among the top 100 nodes with respect to the 
standard centrality and drop in importance with respect to at 
least one flow-based variant, the general ranking deviation 
is larger for the less highly ranked nodes with respect to the 

Fig. 7  A graphical explanation of the introduced overlap measure �
w
 : 

when plotting the overlap of two rankings �
1
 and �

2
 as a function of 

x, for x ∈ [0, n] , we are interested in the (red) area between the iden-
tity line and the overlap function: an area of size 0 implies identical 
rankings, an area as large as the grey area implies rankings reverse of 
each other. The example illustrates that the Kendall rank correlation 
�
K

 is not affected by the position of ranking differences: differences 
in ranking positions between �

1
 and �

2
 have the same effect whether 

they occur in the top x or bottom x elements. This undesired behav-
iour is modified by the introduction of a weight which penalizes dif-
ferences in rankings more when they occur in the top ranked elements 
(yielding a weighted overlap measure �

w
)
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standard centrality. This holds for betweenness and close-
ness. For both variants of the London Transport system, it 
strikes that there are several nodes which are not central with 
respect to the standard centrality measure, but gain in impor-
tance with respect to all flow-based variants—except BS.

7.3  Comparison with external variables

Although centrality measures are functions based on the net-
work representation, the ultimate goal is to identify the most 
important entities of the system represented by the network. 
Hence, when available, we use properties of the system (and 
not of the network) which seem to be reasonable proxies for 
the importance of a system’s entity, for comparison with 
the ranking results of the flow-based centrality variants. It 
is clear that in cases when the importance of a system’s 
entity can directly derived by system’s properties, no proxy 
methods such as centrality measures on the graph represen-
tation are needed. However, in order to evaluate those proxy 
methods, a comparison with system properties is needed.

In Fig. 10, we show the rankings of the centrality meas-
ures and their variants with the corresponding comparison 
variable: the x-axis shows the ranking position of the nodes 
where a position on the left corresponds to a high impor-
tance ranking position. For each ranking position, the com-
parison variable of this node is shown by the color at this 
position.

DB1B For the air transportation dataset, we use data pro-
vided by the Federal Aviation Administration (FAA), part 
of the United States Department of Transportation. They 
categorize airports into commercial service airports (pub-
licly owned airports with a scheduled passenger service and 
at least 2500 passenger boardings each year), cargo service 
airports (airports served by cargo aircrafts, might also be 
commercial service airport), reliever airports (airports to 
relive congestion at Commercial Service Airports, not rel-
evant here), and General Aviation Airports (airports without 
scheduled passenger service or with less than 2500 passen-
ger boardings each year) (Federal Aviation Administration 
2017). Commercial Service airports are further categorized 
into several sub-types, depending on the annual passenger 
boardings: non-primary airports (between 2500 and 10000 
passengers each year), primary large hubs (more than 1% 
of all passengers), primary medium hubs (at least 0.25%, 
but less than 1% of all passenger boardings), primary small 
hubs (at least 0.05%, but less than 0.25% of all passenger 
boardings), and primary non-hubs (more than 10,000 pas-
sengers yearly, but less than 0.05% of all boardings). Our 
dataset contains 23 primary large hubs, 27 primary medium 
hubs, 66 primary small hubs, 228 primary non-hubs, 52 
cargo service airports, and 19 general aviation airports. A 
node representing a city containing more than one airport 
is then categorized by its largest airport. Figure 10a shows 

Fig. 8  Betweenness measures. The ranking positions of the nodes 
for the standard betweenness and all flow-based betweenness meas-
ures. Each point represents one node and its ranking position, and the 
nodes’ order on the x-axis is determined by its ranking position with 
respect to the standard betweenness measure. The grey area illustrates 
the variation of each node’s ranking position over all measure variants
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Fig. 9  Closeness measures. Ranking positions of the nodes for the 
standard in- and out-closeness and all flow-based closeness measures. 
Each node’s position on the x-axis is determined by its ranking posi-

tion with respect to standard in-closeness. For each node, its minimal 
and maximal ranking position with respect to any flow-based variant 
is depicted by a grey line
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the rankings of the flow-based betweenness variants in com-
parison with the airport categorization by the FAA which 
is based on the number of passenger boardings. Since the 
measure BRW counts in how many passenger journeys of the 
dataset an airport is contained in, the ranking with respect 
to BRW and the airport categorizations based on passenger 
boardings are in great accordance. Airports categorized as 
large or medium hubs are ranked constantly high over all 
measure variants. Airports categorized as non-primary air-
ports are ranked constantly low, also for all variants. Only 
small primary airports (small or no hub) show a stronger 
variation in their rankings. There is one airport in Saipan 
located in the Northern Mariana Islands in the Pacific ocean 
which is low ranked by all variants, but is categorized as 
small hub by the FAA. The same observation holds for the 
ranking with respect to BSW since for the passenger journeys, 
shortest paths and actually taken routes do match in most 
cases.

Conversely, there is an airport, Orlando Sanford Inter-
national in Florida, which is categorized as a small hub by 
FAA, but is ranked high by the measure BR (on position 11 
out of 415 nodes). Though, in general, the rankings of the 
flow-based betweenness measures do show a high segrega-
tion of the airport categories, this is not the case for the 
other datasets.

Wikispeedia For the Wikispeedia dataset, we use a graph-
based comparison variable, the article’s number of outgoing 
links, i.e., its out-degree. This is a good comparison variable 
in this case since for humans trying to navigate from one 

article to another, it is a good strategy to first navigate to an 
article with a high out-degree and then use the large number 
of possible links to approach the target article.

The categorization of the articles due to their degree 
was performed such that the categories very small, small, 
medium and large contain roughly the same number of arti-
cles (ca 1k), the category very large only contains almost 
100 articles.

We observe that among the top 500 nodes for all between-
ness variants, there are mainly articles with very large or 
large number of outgoing links. Only a few articles with 
an out-degree smaller than 32 appears in the top 500 nodes 
of any ranking. The ranking of BR contains most nodes 
medium, small and very small degree nodes among the top 
500 nodes.

London Transport For London Transport, we use the 
zones in which the London transport system is divided 
where zone 1 contains the city center of London and zones 
2 to 9 are areas concentric around the city center. Note that 
the zones do not contain a similar number of stations: while 
zones 1 and 2 contain more than 60 stations, each, zones 7 
to 9 contain 7 stations in total. Figure 10b shows the rank-
ings of the flow-based betweenness measures of the lines 
network of the London transportation system (results for 
the transitive variant are not shown, they look similar). For 
all variants, only stations of zone 1 are among the highest 
ranked nodes; otherwise, we observe a strong mixing. The 
highest segregation is found for the ranking of BRW—which 
is intuitive since the stations in the city center are used more 
frequently.

As a “non-graph based closeness measure,” we use the 
average travel time for trips starting or ending in a station, 
also provided by the authority of London Transport (Trans-
port for London 2017). The in-closeness variants are com-
pared to the average travel time of passengers exiting a sta-
tion and vice versa, see Fig. 11 showing the corresponding 
plot for the lines variant of the London transportation sys-
tem. We observe that there is a positive correlation between 
all measures’ rankings and the corresponding average travel 
time, and it is though different for the different measures.

Wordmorph For the dataset containing human navigation 
paths through a network of words, we use a word frequency 
list of English words based on the Corpus of Contemporary 
American English which contains the frequency of each 
word in the text corpus, provided by Davis (2008). They 
provide a score (called frequency rank in the following) for 
each word which is a function of its frequency of occurrence 
in the text corpus and its dispersion (Juilland and Chang-
Rodriguez 1964), a measure for quantifying how evenly a 
word is distributed among the parts of the text corpus. We 
use the frequency rank as a comparison variable to the rank-
ing position by the flow-based centrality measures, where 
a low value of frequency rank implies a high frequency 

Table 6  Spans of ranking positions of the flow-based betweenness 
and closeness measures: for each node, its span of ranking is com-
puted by subtracting its maximal ranking position with respect to any 
flow-based variant from its minimal ranking position with respect to 
any flow-based variant

This is done separately for the betweenness and closeness variants. 
The table shows for each dataset the mean value of the spans of rank-
ings and the range of the ranking spans. The mean value is given in 
absolute ranking positions and, in parentheses, relative to the number 
of nodes

Data set Mean Range

Betweenness
LT (Lines) 69.1 (25%) [2, 197]
LT (Transitive) 61.5 (23%) [0, 218]
DB1B 62.1 (15%) [5, 348]
Wikispeedia 845.2 (18%) [0, 3743]
Wordmorph 288.1 (29%) [2, 815]
Closeness
LT (Lines) 97.0 (36%) [12, 221]
LT (Transitive) 74.3 (28%) [6, 234.5]
DB1B 57.0 (14%) [5, 313.5]
Wikispeedia 1988.0 (43%) [14, 4458]
Wordmorph 444.8 (44%) [11, 962]
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and a high dispersion. For words contained in the network 
which are inflected forms, such as are is an inflected form 
of the verb be, the score of its base form, here be, is used. 
For words which are contained several times in the word 

frequency list, such as use as noun and as verb, the one with 
the higher score is kept. Figure 10d shows that especially 
for BR (and also for BRW ), nodes with a higher frequency of 
rank occur more often among the highly ranked nodes than 

Fig. 10  Betweenness variants. A comparison of the rankings by the 
measure variants with external node attributes. The x-axis contains 
the ranking positions, each node is drawn as a thin vertical line at the 
corresponding x-position, colored by its external attribute. For DB1B, 
we color the nodes by the airport categorizations provided by the 
Federal Aviation Administration (FAA). For Wikispeedia, we com-

pare the nodes’ ranking positions with their number of outgoing links 
and only show the rankings positions up to 500. For London Trans-
port, the nodes are colored to the station’s zone of the public transport 
system, where zone 1 contains stations in the inner city center, and 
zones 2–9 lie concentric around it
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for the standard betweenness centrality. A possible reason 
could be—which is only a speculation at this point—that the 
players tend to navigate over words which are more familiar 
to them rather than over words which are not in their daily 
vocabulary.

8  Effect on high‑ranked nodes

In most situations when applying centrality measures on a 
network, we are interested in the most central nodes which is 
why the results of a centrality measure should be especially 
reliable for the highly ranked nodes. If a centrality is able 
to identify the most important nodes, evaluated by a suited 
criterion, the exact ranking positions on the lower ranking 
positions are less relevant. When considering the complete 
ranking induced by a centrality measure, as done in the pre-
vious section, this aspect is not regarded. We hence restrict 
the following analysis on those nodes which are among the 
10 most central nodes with respect to any of our introduced 
measure variants.

Figures 12 (for betweenness) and 15 (for closeness) show 
the ranking behavior of those nodes which are among the 
10 most central nodes with respect to any standard or flow-
based measure, separately for betweenness and closeness: 
for each of those nodes, its ranking position with respect to 
all variants is shown.

8.1  Betweenness measures

We find that for none of the datasets, the 10 highest ranked 
nodes are the same for all variants, and there are actually a 
lot of ranking position changes among those nodes.

DB1B For DB1B, we find that all considered nodes are at 
least among the top 60 of all measures, most even among top 
30 of all measures. All measure betweenness variants iden-
tify large airports as most central. There is one node, rep-
resenting the airport Anchorage in Alaska which is ranked 
as second most central node by the standard betweenness 
centrality, but drops in importance with respect to all flow-
based betweenness measures. When looking at the structure 
of the airport network, the reason for this effect can be seen. 
Anchorage serves as gateway between airports in the con-
tiguous United States, i.e, the adjoined US states, to several 
small airports in Alaska in some sense. It is not true that any 
airport in Alaska can only be reached via Anchorage—there 
are also direct flight connections from airports in contiguous 
US to Alaska, but the network consists of a densely con-
nected 46-core: a subgraph consisting of 56 nodes in which 
each node has a degree of at least 46. This 46-core almost 
forms a clique and hence all nodes within have a distance of 
1 to each other and a high betweenness value. All airports 
of this core are, however, located in the contiguous United 

States, no Alaskan airport is part of this core—and Anchor-
age is well connected to nodes in this core and to all Alaskan 
airports. Figure 13 shows the corresponding extract of the 
network: all airports in Alaska and their direct neighbors. 
The node colors indicate to which k-core the node belongs 
to. Red nodes are part of the large densely connected core. 
Anchorage is directly connected to 24 nodes within the core 
and more than half of all Alaskan airports can only reached 
via Anchorage. This is why the node Anchorage gets a high 
standard betweenness value. When, however, the observed 
passenger journeys are incorporated into the betweenness 
value, this high centrality value vanishes because only a 
small fraction of all passenger journeys involve Anchor-
age or any other Alaskan airport. This is especially the case 
when the flow-based betweenness centrality incorporates 
weights. Still, also for those variants, the node Anchorage 
is still among the 60 most central nodes.

Wikispeedia For Wikispeedia, we can make several 
observations: first, the set of nodes which are among the 
top 10 nodes for any variant is larger than for DB1B and the 
differences of the rankings is also larger: there are nodes 
which are not even among the top 1000 nodes with respect 
to some variants, but reach the top 10 with respect to another 
measure. At the same time, for all five measure variants, the 
5 most central nodes are rather stable in their ranking. The 
node of the article United States is the most central node 
for all measure variants. This reflects a popular strategy for 
playing Wikispeedia: using the article of United States as a 
landmark—first navigate to United States article, then from 
there to the target article). Furthermore, there are four nodes, 
namely the articles Brain, Viking, Asteroid, and Telephone 
which are boosted into the top 10 nodes for BSW and BRW , 
i.e., the weighted versions. This is actually due to the data 
collection method. West and Leskovec (2012) describe that 
there were four article pairs which were suggested to the 
players as source and target more often. This is why the 
node pairs (Asteroid,Viking) and (Brain,Telephone) have 
the highest frequency and the corresponding nodes gain in 
importance when incorporating the source-target-frequency. 
The four other nodes of the promoted source-target pairs 
show the same effect, but less strong such that they do not 
reach the top 10 nodes of any measure.

London Transport For London Transport datasets, we 
find different results for the two versions of the network. 
While for the transitive network version of the London trans-
portation system, London’s main station King’s Cross St. 
Pancras is ranked highest by all betweenness variants, this 
is not the case for the line graph version. Here, the node rep-
resenting King’s Cross St. Pancras is only the most central 
node for the flow-based variants incorporating real trajecto-
ries, i.e., BR and BRW . For the lines version, it is the node rep-
resenting the station Baker Street which is most central with 
respect to the standard betweenness centrality, but not with 
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respect to any of the flow-based betweenness variants. Both 
stations, King’s Cross St. Pancras and Baker Street, serve 
as junction point for the Underground network, they both 
serve a high number of different underground lines, namely 
six and five, respectively. Therefore, and due to the struc-
ture of the lines network—a more densely connected core 
with chain-like structures appended to it—these two nodes 
are contained in many shortest paths between node pairs. 
Because of its position in the lines network, the node Baker 
Street is contained in more shortest paths when considering 
all node pairs than the node King’s Cross St. Pancras3 which 
is why it is higher ranked by the standard betweenness cen-
trality. The top ranking position of the node Baker Street is 
lost when taking into account the real usage of the system, 
especially when considering the actual amount of passenger 

flow between the stations. Then, King’s Cross St. Pancras 
gains in importance.

An interesting effect caused by the modeling of the sys-
tem can be observed here. For the lines graph of the Lon-
don transportation system, the nodes Holborn and London 
Bridge, both with a standard betweenness ranking position 
lower than 100, get both a top 10 ranking position with 
respect to the flow-based betweenness variants BR and BRW . 
However, with respect to the variants BS and BSW , they do 
not reach the high ranking positions. It turns out that this 
is an effect of the modeling of the system: the system is 
modeled as one network where an edge represents an under-
ground connection between two stations; this can, however, 
be served by different underground lines. The edges are 
weighted by travel time, though, additional time necessary 
for changing a line (get off the line, change the platform, 
possibly waiting for the next line, enter the line) are not 
modeled, still. Therefore, an algorithm computing a short-
est path in this graph will—although considering the edge 
weights—may yield paths that might not be the fastest (or 
most convenient) in reality. The ranking behavior of the node 

Fig. 11  Closeness variants. A 
comparison of the rankings 
by the closeness variants with 
external attributes for London 
Transport. As a comparison var-
iable, we use the average travel 
time for passengers entering or 
exiting a station, provided by 
Transport for London (2017): 
in-closeness variants are com-
pared to the average travel time 
exiting the station (left panel), 
and ranking of out-closeness 
variants is compared to the aver-
age travel time entering a station 
(right panel). The average travel 
time which is a continuous vari-
able is plotted on the y-axis, and 
each node is represented as a 
dot at its ranking position

3 Note that the network edges are weighted by the travel time and 
there are rarely several different paths with exactly the same length 
which is why speaking of “the number of shortest paths” instead of 
the “fraction of shortest paths” is correct here.
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Holborn is a consequence of this effect: especially in the city 
center where many stations are served by more than one line 
and the stations are close to each other in means of travel 
time, the shortest path in the graph representation is not the 
realistically taken journey. Figure 14 shows a very small 
extract of the network where the edge colors indicate which 
underground line serves this connection, the correspond-
ing travel times are also shown. It shows the reason why 
the node Holborn gains in importance when real journeys 

are used for the measure computation: in the most cases, 
passengers will only change lines if this choice is—time 
for changing included—substantially faster. A betweenness 
measure using shortest paths on this graph representation, 
however, will yield paths with several line changes. Passen-
gers traveling from King’s Cross Pancras to South Kensing-
ton for example will mostly take the Piccadilly line which 
takes 13 min. But the shortest path in this graph is from 
King’s Cross St. Pancras to Green park by the Victoria line 

Fig. 12  Top 10 nodes (between-
ness) Ranking positions with 
respect to all betweenness cen-
trality variants of those nodes 
which are among the 10 most 
central nodes with respect to at 
least one centrality variant. Top 
nodes have rank 1 (top of each 
plot), the order of the line colors 
is due to the node’s standard 
betweenness centrality
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and then to Knightsbridge by the Piccadilly line length of 
which is 9 min in total. Depending on the weights of the 
edges, it can become worse: in the extreme case, the shortest 
path algorithm may return a path in which no consecutive 
two edges are of the same line. This effect occurs often with 
the real passenger journeys of the dataset and the described 
modeling of the system, particularly often concerning the 
node Holborn. This explains the finding that the node Hol-
born is not central with respect to any measure counting 
shortest paths in the graph, but is central with respect to any 
measure counting real trajectories it is contained in.

The same effect occurs for the transitive graph of the Lon-
don transportation system because also here, changes of the 
line are not penalized in the algorithm computing the short-
est paths. For the transitive graph, however, it can also have 
the opposite effect than before: nodes can lose importance 
when taking into account real passenger journeys instead 
of shortest paths, as it is the case for the station Moorgate. 
Moorgate is among the top 10 nodes with respect to the 
variants counting shortest paths, i.e., standard betweenness, 
BS , and BSW , but is only ranked on position 31 and 29 for the 
variants BR and BRW , respectively. For passengers, <>there 
is often no need to change train at Moorgate which is why 
their journey (in the transitive graph representation) does not 
contain this node. In the graph representation, though, there 
is a shorter path when using the node Moorgate. This is why 
it is contained in the shortest paths and is highly ranked by 
measures counting shortest paths.

Wordmorph For the Wordmorph dataset (see Fig. 12e), 
we find a high accordance among the rankings of the stand-
ard betweenness centrality, and the flow-based variants BS 

and BSW , as well as among the rankings of BR and BRW . The 
accordance between those measures can be explained by the 
source-target distribution of the game logs: by far the most 
source-target pairs are used by exactly one player (more 
than 10,000 pairs) while only a few (less than 100) are used 
by two or three players. This explains why the rankings of 
the flow-based betweenness variants incorporating weights 
does not differ considerably from the corresponding flow-
based variants without weights. When changing from count-
ing shortest paths to counting real trajectories, i.e., from 
the variants BS⋅ to BR⋅ , we observe considerable changes in 
ranking positions: the nodes ART and ARE increase their 
ranking position 111 to 2 and 54 to 3, respectively. On the 
same time, the nodes OES, AYE and SOY drop in impor-
tance when real paths are considered. Interestingly, the node 
AIT is among the 3 most central nodes with respect to all 
measure variants. Gulyás et al. (2020) analyze the naviga-
tion paths of this dataset in detail and find that each player 
builds her own scaffold of the network which she uses in the 
following for finding short, but not optimal navigation paths. 
They find that the overlap of the individual scaffolds is very 
low, hence each player builds her own individual scaffold for 
effective navigation. Still, incorporating the navigation paths 
into the betweenness centrality does show a considerable 
effect on the node ranking.

8.2  Closeness measures

Figure 15 shows the ranking behaviors of the closeness vari-
ants. The plots contain those nodes which are among the 
top 10 with respect to any of the closeness variants, this is 

Fig. 13  An extract of the DB1B 
air transportation network: All 
Alaskan airports and their direct 
neighbors. The color shows to 
which k-core the nodes belong 
in the complete network: Red 
nodes belong to the largest core 
and most densely connected 
core of the network. Nodes rep-
resenting Alaskan airports are 
labeled as AK, nodes represent-
ing airports in the contiguous 
United States are labeled as US 
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done separately for the in- and out-variants. We only show 
the results for the out-closeness variants, the in-closeness 
variants show similar effects.

DB1B For the air transportation network (see Fig. 15a), 
we see that there is very limited variation of changes in rank-
ing positions among the considered nodes. Particularly the 
rankings of the standard closeness and the variants CS,CS′ , 
and CR , i.e., those variants which do not incorporate any 
weights, show a high similarity. This is not surprising since 
the actual observed trajectories are shortest paths in the 
most cases. The node rankings of the variants CSW and CRW ′ 
exhibit a noticeable behavior: a small set of nodes, i.e., the 
nodes representing the airports Denver, Minneapolis/St.Paul, 
Houston, and Phoenix, which are most central with respect 
to the other variants, drop in importance while other nodes 
such as Miami increase their ranking position by almost 
20 positions. This is due to the amount of passenger traf-
fic between the airports: Among all airport pairs, the pair 
(Miami, New York) has the second highest number of pas-
senger traffic between them (behind (San Francisco, Los 
Angeles)). On the same time, all nodes shown in Fig. 15a 
are part of 46-core of the network including all major US 
airports. All nodes contained in this 46-core have a distance 
1 to each other, and a distance of 2 to most of the remain-
ing nodes. No node contained in the 46-core has a distance 
larger than 3 to any other node, and particularly those nodes 
shown in the figure have a distance of larger of 2 to only very 
few nodes (in most cases, to exactly one node, and, for the 
case of Miami, to 5 other nodes). Hence, when incorporating 
the actual passenger traffic between the airports such that 
the distance between airports with a high passenger flow 
has a larger impact on the measure value than the distance 
between airports with a smaller passenger flow, this makes 
a difference: the highly demanded node pair (Miami, New 
York) with a distance of 1 boosts the closeness ranking of 
both, Miami and New York. When considering solely the 
network structure, Denver has a smaller average distance 
to the remaining nodes, and Denver even has a higher total 
passenger traffic than Miami. Anyhow, when weighting the 

distances by the corresponding passenger traffic, the nodes 
Miami and New York are ranked higher than Denver.

Wikispeedia For Wikispeedia, the effect on the nodes’ 
ranking of incorporating the actually observed trajecto-
ries into the closeness measure is much larger than for the 
other datasets. The effect is also clearly visible when only 
considering those nodes which are among the top 10 most 
central ones with respect to any variant. There are nodes 
in- or decreasing their ranking position by more than 1000 
positions. Interestingly, for Wikispeedia, there exists also 
two measure variants for which several nodes seem to switch 
their ranking positions, namely CR and CRW . This is how-
ever not the same variant for which this effect occurred for 
DB1B. Regarding the measure variants for which DB1B 
showed this behavior, the ranking behavior of Wikispeedia is 
rather stable. For CS and CRW , though, a few nodes’ central-
ity value increases considerably compared to the remaining 
measure variants. For CRW , i.e., a measure variant taking 
into account real observed trajectories and their frequency 
of occurrence, we find–as for the betweenness variants–an 
impact of the data collection method. The source of those 
four node pair which were suggested to the players with 
an increased frequency, can be found ranked highly with 
respect to CRW : Brain, Asteroid, Theatre and Pyramid are 
all among top 8 nodes. Furthermore, when considering the 
node pairs used most often by the players, it seems that the 
article Batman was a popular start article. This is reflected in 
the ranking of CRW , it is ranked as second node. Regarding 
the ranking with respect to CS , we observe that for the in- 
and out-version of CS the articles of Adolf Hitler and Jesus 
to be among the three highest ranked nodes. This seems to 
be due to the game variants 5-clicks-to-Jesus and Clicks to 
Hitler which are believed to be the original forms of the 
game where the player needs to navigate from a randomly 
chosen Wikipedia article to the article of Jesus or Adolf 
Hitler, respectively. We speculate that due to the prominence 
of those two game versions, players of Wikispeedia often 
chose those articles as source and especially as target. This 
would explain the rise in ranking of these articles for CS . A 

Fig. 14  A small extract of the 
lines graph for the London 
transportation system. The edge 
labels indicate the travel time 
between the stations which 
are taken as edge weights, and 
the edge colors indicate which 
underground lines serve the cor-
responding connection
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further interesting effect concerns the articles Driving on 
the left or right, List of countries, and List of circulating 
currencies. These articles all include links to the articles 
of all countries which leads to a high ranking position for 
the standard out-closeness centrality. However, since these 
articles were not used at all (Driving on the left or right) or 
only a few times by the players for navigating through the 
network, their ranking position drops massively for the flow-
based closeness variants.

London Transport For the two network versions of the 
London Transport system, we find—as for the betweenness 
measures—that the nodes’ ranking behaviour for the close-
ness variants differs considerably between the lines graph 
and the transitive graph. As before for the betweenness cen-
trality, the rankings of the top 10 nodes of the flow-based 
closeness variants are rather stable for the transitive graph, 
while there are large changes in ranking positions for the 
lines graph. But while the standard betweenness centrality 

Fig. 15  Top 10 nodes (close-
ness). Ranking positions with 
respect to all centrality variants 
of those nodes which are among 
the 10 most central nodes with 
respect to at least one central-
ity variant. Top nodes have 
rank 1 (top of each plot), the 
order of the line colors is due to 
the node’s standard closeness 
centrality
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and the flow-based betweenness variants showed a similar 
ranking behaviour, this is not the case for the closeness vari-
ants (see Fig. 15d): Most nodes ranked high by the standard 
closeness drop in importance when measured by the flow-
based variants–and vice versa.

Wordmorph For the closeness measure variants, the 
game datasets, Wikispeedia and Wordmorph show similar 
effects: for both datasets, the variation of rankings is quite 
large: their average span of ranking positions (see Table 6) 
is 44% of all ranking positions. Among the nodes which are 
among the 10 most central nodes with respect to at least one 
measure variant, we find nodes with a span of ranking posi-
tions of more than 700 positions: the node ARE for example 
increases its ranking position from 813 (standard closeness) 
to 3 and 4 for several flow-based measures. Interestingly, for 
both game datasets, the rankings of CR,CRW ′ ,C′

S
 , and CSW 

are quite stable for these selected nodes, while the measures 
CS and CRW yield totally different central nodes. All flow-
based variants, however, yield different central nodes than 
standard closeness centrality.

9  Conclusion

Centrality measures such as closeness and betweenness 
centrality contain an implicit process model: they assume 
the presence of something flowing through the network and 
make assumptions of how it is flowing through the network. 
It is clear that a centrality measure can only measure the 
importance of the nodes with respect to a process with those 
properties. For example, classic closeness and betweenness 
centrality both assume the process moving on shortest paths. 
Furthermore, an equal frequency of communication between 
all node pairs is assumed since for both measures, the rel-
evant quality, fraction of the number of shortest paths in 
the case of betweenness and distance in the case of close-
ness, is equally aggregated for all node pairs. That those 
assumptions are not true for most real-world processes is 
not new. For this reason, other centrality measures have been 
introduced which use different process model, for example 
random walk betweenness or flow betweenness. In this work, 
we aimed at answering the following question: how much 
does it matter in reality that those assumptions are not met? 
In order to answer this question, we collected four datasets 
of real-world transfer processes and replaced the simple pro-
cess model of the centrality measures by the behaviour of the 
real-world process. We introduced several variants of flow-
based closeness and betweenness centrality measures which 
partly use the simple process model and partly the real-world 
process. For example, one flow-based betweenness variant 
keeps the assumption of shortest paths and counts those, 
but only between node pairs which were actually source and 
target of the real-world process.

For the betweenness centrality, we find a high correlation 
of the standard betweenness centrality to all flow-based vari-
ants indicating that for the used datasets, the betweenness 
centrality seems to quite robust against deviations from its 
process model. On the same time, we find a considerable 
number of nodes in all datasets whose ranking position 
changes substantially. For the closeness centrality, the cor-
relation of the flow-based variants to the standard closeness 
is generally lower than for betweenness. Also here, in all 
datasets, we find nodes with large ranking variations.

Comparing the datasets, we find that there is a larger vari-
ation of rankings for the two datasets containing game logs 
than for the two datasets containing passenger journeys. This 
might be due to the fact that for passenger journeys, the 
assumption of shortest paths is a better approximation than 
for human navigation paths in games. Nevertheless, also for 
those datasets, the changes in rankings are remarkable.

When examining the resulting rankings in detail, we 
are able to detect several anomalies of the datasets or the 
standard measures. As an example, standard betweenness 
centrality assigns a high value to the node representing the 
airport Anchorage in the US airport network. This is due to 
its position in the network being on all almost shortest paths 
between airports in the contiguous states and Alaska. When 
incorporating the actual passenger journeys into the meas-
ure, the centrality value of the node Anchorage decreases 
because most airline traffic takes place within the densely 
connected airports in the contiguous states and only a small 
fraction of passenger journeys involve any Alaskan airport.

Whether this effect is desired or not depends on the appli-
cation scenario. The presence of this effect, however, shows 
that a violation of the assumptions contained in the centrality 
measures does have an impact on the measure results. This 
is relevant for the applicability of centrality measures: when 
applying a centrality measure on a network, we are interested 
in identifying the most important nodes with respect to a 
certain process. If the corresponding process violates the 
measure’s assumptions, the results need to be interpreted 
with care.
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