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Abstract
Introducing parallelism and exploring its use is still a fundamental challenge for the
computer algebra community. In high-performance numerical simulation, on the other
hand, transparent environments for distributed computing which follow the principle
of separating coordination and computation have been a success story for many years.
In this paper, we explore the potential of using this principle in the context of computer
algebra. More precisely, we combine two well-established systems: The mathematics
we are interested in is implemented in the computer algebra system Singular, whose
focus is on polynomial computations, while the coordination is left to the workflow
management system GPI-Space, which relies on Petri nets as its mathematical mod-
eling language and has been successfully used for coordinating the parallel execution
(autoparallelization) of academic codes as well as for commercial software in appli-
cation areas such as seismic data processing. The result of our efforts is a major step
towards a framework for massively parallel computations in the application areas of
Singular, specifically in commutative algebra and algebraic geometry. As a first test
case for this framework, we have modeled and implemented a hybrid smoothness test
for algebraic varieties which combines ideas from Hironaka’s celebrated desingular-
ization proof with the classical Jacobian criterion. Applying our implementation to
two examples originating from current research in algebraic geometry, one of which
cannot be handled by other means, we illustrate the behavior of the smoothness test
within our framework and investigate how the computations scale up to 256 cores.

Keywords Computer algebra · Singular · Distributed computing · GPI-Space · Petri
nets · Computational algebraic geometry · Hironaka desingularization · Smoothness
test · Surfaces of general type
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1 Introduction

Experiments based on calculating examples have always played a key role in
mathematical research. Advanced hardware structures paired with sophisticatedmath-
ematical software tools allow for far reaching experiments which were previously
unimaginable. In the realm of algebra and its applications, where exact calculations
are inevitable, the desired software tools are provided by computer algebra systems.
In order to take full advantage of modern multicore computers and high-performance
clusters, the computer algebra community must provide parallelism in their systems.
This will boost the performance of the systems to a new level, thus extending the scope
of applications significantly. However, while there has been a lot of progress in this
direction in numerical computing, achieving parallelization in symbolic computing is
still a tremendous challenge both from a mathematical and technical point of view.

On the mathematical side, there are some algorithms whose basic strategy is inher-
ently parallel, whereas many others are sequential in nature. The systematic design
and implementation of parallel algorithms (see, e.g., [5–7]) is a major task for the
years to come. On the technical side, models for parallel computing have long been
studied in computer science. These differ in several fundamental aspects. Roughly,
two basic paradigms can be distinguished according to assumptions on the underlying
hardware. The shared memory-based models allow several different computational
processes (called threads) to access the same data in memory, while the distributed
models run many independent processes which need to communicate their progress
to one or several of the other processes. Creating the prerequisites for writing par-
allel code in a computer algebra system originally designed for sequential processes
requires considerable efforts which affect all levels of the system.

In this paper, we explore an alternative way of introducing parallelism into com-
puter algebra computations. This approach is non-intrusive and allows for distributed
computing. It is based on the principle of separating coordination and computation,
a principle which has already been pursued with great success in high-performance
numerical simulation. Specifically, we rely on the workflowmanagement systemGPI-
Space [43] for coordination,while themathematicswe are interested in is implemented
in the computer algebra system Singular [15].

Singular is under development at TU Kaiserslautern, focuses on polynomial
computations, and has been successfully used in application areas such as algebraic
geometry and singularity theory. GPI-Space, on the other hand, is under development
at Fraunhofer ITWM Kaiserslautern and has been successfully used for coordinating
the parallel execution (autoparallelization) of academic codes as well as for commer-
cial software in application areas such as seismic data processing. As its mathematical
modeling language, GPI-Space relies on Petri nets, which are specifically designed
to model concurrent systems and yield both data parallelism and task parallelism. In
fact, GPI-Space is not only able to automatically balance, to automatically scale up
to huge machines, or to tolerate machine failures, but can also use existing legacy
applications and integrate them, without requiring any change to them. In our case,
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Singular calls GPI-Space, which, in turn, manages several (many) instances of Sin-
gular in its existing binary form (without any need for changes). The experiments
carried through so far are promising and indicate that we are on our way towards a
convenient framework for massively parallel computations in Singular.

One of the central tasks of computational algebraic geometry is the explicit con-
struction of objects with prescribed properties, for instance, to find counterexamples
to conjectures or to construct general members of moduli spaces. Arguably, the most
important property to be checked here is smoothness. Classically, this means to apply
the Jacobian criterion: If X ⊂ A

n
K

(respectively, X ⊂ P
n
K
) is an equidimensional

affine (respectively, projective) algebraic variety of dimension d with defining equa-
tions f1 = · · · = fs = 0, compute a Gröbner basis of the ideal generated by the fi
together with the (n− d)× (n− d) minors of the Jacobian matrix of the fi in order to
check whether this ideal defines the empty set. The resulting process is predominantly
sequential. It is typically expensive (if not unfeasible), especially in cases where the
codimension n − d is large.

In [8], an alternative smoothness test has been suggested by the first and third author
(see [9] for the implementation inSingular). This test builds on ideas fromHironaka’s
celebrated desingularization proof [26] and is intrinsically parallel. To explore the
potential of our framework, we have modeled and implemented an enhanced version
of the test (see Remark 28 for a description of the most significant improvements).
Following [8], we take our cue from the fact that each smooth variety is locally a
complete intersection. Roughly, to check the smoothness of a given affine variety
X ⊂ A

n
K
, the idea is then to apply Hironaka’s method of descending induction by

hypersurfaces of maximal contact (in its constructive version by Bravo, Encinas, and
Villamayor [13]). This allows us either to detect non-smoothness during the process,
or to finally realize a finite covering of X by affine charts such that in each chart, X
is given as a smooth complete intersection. More precisely, at each iteration step, our
algorithm starts from finitely many affine charts Ui ⊂ A

n
K
whose union contains X ,

together with varieties Wi ⊂ A
n
K
and embeddings X ∩ Ui ⊂ Wi ∩ Ui such that each

Wi ∩ Ui is a smooth complete intersection in Ui . Providing a constructive version of
Hironaka’s termination criterion, the algorithm then either detects that X is singular in
one Ui , and terminates, or constructs for each i finitely many affine charts U ′

i j ⊂ A
n
K

whose union contains X ∩ Ui , together with varieties W ′
i j ⊂ Wi and embeddings

X ∩ U ′
i j ⊂ W ′

i j ∩ U ′
i j such that each W ′

i j ∩ U ′
i j is a smooth complete intersection

in U ′
i j whose codimension is one less than that of X ∩ Ui in Wi ∩ Ui . Since at each

step, the computations in one chart do not depend on results from the other charts, the
algorithm is indeed parallel in nature. Moreover, since our implementation branches
into all available choices of charts in a massively parallel way and terminates once
X is completely covered by charts, it will automatically determine a choice of charts
which leads to the smoothness certificate in the fastest possible way.

In fact, there is one more twist: As experiments show, see [8], the smoothness test
is most effective in a hybrid version which makes use of the above ideas to reduce
the general problem to checking smoothness in finitely many embedded situations
X ∩U ⊂ W ∩U of low codimension, and applies (a relative version of) the Jacobian
criterion there.
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Ourpaper is organized as follows. InSect. 2,webriefly reviewsmoothness and recall
the Jacobian criterion. In Sect. 3, we summarize what we need from Hironaka-style
desingularization and develop our smoothness test. Section 4 contains a discussion of
GPI-Space and Petri nets which prepares for Sect. 5, where we show how to model
our test in terms of Petri nets. This forms the basis for the implementation of the test
using Singular within GPI-space. Finally, in Sect. 6, we illustrate the behavior of
the smoothness test and its implementation by checking two examples from current
research in algebraic geometry. These examples are surfaces of general type, one of
which cannot be handled by other means.

We would like to thank the anonymous referees for their valuable remarks.

2 Smoothness and the Jacobian Criterion

We describe the geometry behind our algorithm in the classical language of algebraic
varieties over an algebraically closed field. Because smoothness is a local property,
and each quasiprojective (algebraic) variety admits an open affine covering, we restrict
our attention to affine (algebraic) varieties.

Let K be an algebraically closed field. Write A
n
K
for the affine n-space over K. An

affine variety (overK) is the common vanishing locus V ( f1, . . . , fr ) ⊂ A
n
K
of finitely

many polynomials fi ∈ K[x1, . . . , xn]. If Z is such a variety, let

IZ = { f ∈ K[x1, . . . , xn] | f (p) = 0 for all p ∈ Z} ⊂ K[x1, . . . , xn]

be its vanishing ideal, let K[Z ] = K[x1, . . . , xn]/IZ be its ring of polynomial func-
tions, and let dim Z = dimK[Z ] be its dimension.

Given a polynomial h ∈ K[x1, . . . , xn], we write

D(h) = A
n
K
\V (h) = {p ∈ A

n
K

| h(p) �= 0}

for the principal open subset of A
n
K
defined by h, and OZ (Z ∩ D(h)) for the ring of

regular functions on Z∩D(h). If p ∈ Z is a point, wewriteOZ ,p for the local ring of Z
at p, andmZ ,p for themaximal ideal ofOZ ,p. Recall that both ringsOZ (Z∩D(h)) and
OZ ,p are localizations ofK[Z ]: Allow powers of the polynomial function defined by h
on Z and polynomial functions on Z not vanishing at p as denominators, respectively.

Relying on the trick of Rabinowitch, we regard Z ∩ D(h) as an affine variety: If
IZ = 〈 f1, . . . , fs〉, identify Z ∩ D(h) with the vanishing locus

V ( f1, . . . , fs, ht − 1) ⊂ A
n+1
K

,

where t is an extra variable.
The tangent space at a point p = (a1, . . . , an) ∈ Z is the linear variety

TpZ = V (dp( f ) | f ∈ IZ ) ⊂ A
n
K
,
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where dp f is the differential of f at p:

dp f =
n∑

i=1

∂ f

∂xi
(p)(xi − ai ) ∈ K[x1, . . . , xn].

We have

dim TpZ ≥ max{dim V | V is an irreducible component of Z through p},

and say that Z is smooth at p if these numbers are equal. Equivalently,OZ ,p is a regular
local ring. Otherwise, Z is singular at p. The variety Z is smooth if it is smooth at
each of its points.

Recall that a variety Z is equidimensional if all its irreducible components have the
same dimension. Algebraically, this means that the ideal IZ is equidimensional; that
is, all associated primes of IZ have the same dimension.

Theorem 1 (Jacobian Criterion) Let K be an algebraically closed field, and let Z =
V ( f1, . . . , fs) ⊂ A

n
K

be an affine variety which is equidimensional of dimension
d. Write In−d (J ) for the ideal generated by the (n − d) × (n − d) minors of the

Jacobian matrix J =
(

∂ fi
∂x j

)
. If In−d (J )+ IZ = 〈1〉, then Z is smooth, and the ideal

〈 f1, . . . , fs〉 ⊂ K[x1, . . . , xn] is equal to the vanishing ideal IZ of Z. In particular,
〈 f1, . . . , fs〉 is a radical ideal.

IfY ⊂ Z ⊂ A
n
K
are twoaffinevarieties, the vanishing ideal IY ,Z ofY in Z is the ideal

generated by IY inK[Z ]. If Z is equidimensional,wewrite codimZ Y = dim Z−dim Y
for the codimension of Y in Z , and say that Y is a complete intersection in Z if
IY ,Z can be generated by codimZ Y = codim IY ,Z elements (then Y and IY ,Z are
equidimensional as well).

3 A Hybrid Smoothness Test

In this section, we present the details of our hybrid smoothness test which, as already
outlined in Introduction, combines the Jacobian criterion with ideas from Hironaka’s
landmark paper on the resolution of singularities [26] in which Hironaka proved that
such resolutions exist, provided we work in characteristic zero.

For detecting non-smoothness and controlling the resolution process, Hironaka
developed a theory of standard bases for local rings and their completions (see [23,
Chapter 1] for the algorithmic aspects of standard bases). Based on this, he defined
several invariants controlling the desingularization process. The so-called ν∗-invariant
generalizes the order of a power series. As some sort of motivation, we recall its
definition in the analytic setting: Let (X , 0) ⊂ (An

K
, 0) be an analytic space germ over

an algebraically closed field K of characteristic zero, let K{x1, . . . , xn} be the ring of
convergent power series with coefficients in K, and let IX ,0 ⊂ K{x1, . . . , xn} be the
defining ideal of (X , 0). If f1, . . . , fs form a minimal standard basis of IX ,0, and the
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fi are sorted by increasing order ord( fi ), then set

ν∗(X , 0) = (ord( f1), . . . , ord( fs)).

This invariant is the key to Hironaka’s termination criterion: The germ (X , 0) is sin-
gular iff at least one of the entries of ν∗(X , 0) is > 1.

In the algebraic setting of this paper, let X ⊂ A
n
K
be an equidimensional affine

variety, with vanishing ideal IX ⊂ K[x1, . . . , xn], where K is an algebraically closed
field of arbitrary characteristic.Working in arbitrary characteristic allows for a broader
range of potential applications and is not a problem since we will only rely on results
from Hironaka’s papers which also hold in positive characteristic.

To formulate Hironaka’s criterion in the algebraic setting, we first recall how to
extend the notion of order:

Definition 2 If (R,m) is any local Noetherian ring, and 0 �= f ∈ R is any element,
then the order of f is defined by setting

ord( f ) = max{k ∈ N | f ∈ mk}.

Definition 3 ([26,27])With notation as above, let p ∈ X . If f1, . . . , fs form aminimal
standard basis of the extended ideal IXOA

n
K

,p with respect to a local degree ordering,
and the fi are sorted by increasing order, set

ν∗(X , p) = (ord( f1), . . . , ord( fs)).

Lemma 4 ([26,27]) The sequence ν∗(X , p) depends only on X and p.

Remark 5 Note that ν∗(X , p) can be determined algorithmically: A minimal standard
basis as required is obtained by translating p to the origin and applyingMora’s tangent
cone algorithm (see [23,36,39,40]).

Hironaka’s criterion can now be stated as follows:

Lemma 6 ([26], Chapter III) The variety X is singular at p ∈ X iff

ν∗(X , p) >lex (1, . . . , 1) ∈ N
codim X , (1)

where >lex denotes the lexicographical ordering.

Note that if X is singular at p, then the length of ν∗(X , p) may be larger than
codim(X), but at least one of the first codim(X) entries will be > 1.

Hironaka’s criterion is not of immediate practical use for us: We cannot examine
each single point p ∈ X . Fortunately, solutions to this problem have been suggested
by various authors while establishing constructive versions of Hironaka’s resolution
process (see, for example, [4,13,18,50]). Here, we follow the approach of Bravo,
Encinas, and Villamayor [13] which is best-suited for our purposes. Their simplified
proof of desingularization replaces local standard bases at individual points by the
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use of loci of maximal order. These loci are obtained by polynomial computations in
finitely many charts (see [19, Section 4.2]). Loci of maximal order can be used to find
so-called hypersurfaces of maximal contact, which again only exist locally in charts.
In a Hironaka style resolution process, hypersurfaces of maximal contact allow for
a descending induction on the dimension of the respective ambient space. That such
hypersurfaces generally do not exist in positive characteristic is a key obstacle for
extending Hironaka’s ideas to positive characteristic [24].

In our context, we encounter a particularly simple special case:

Notation 7 From now on, we suppose that we are given an embedding X ⊂ W, where
W is a smooth complete intersection in A

n
K
, say of codimension r. In particular, W is

equidimensional of dimension

d = n − r .

The idea is then to first check whether the locus of order at least two is non-empty.
In this case, X is singular. Otherwise, we can find a finite covering of X by affine
charts and in each chart a hypersurface of maximal contact whose construction relies
only on the suitable choice of one of the generators of IX together with one first-order
partial derivative of this generator.1 In each chart, we then consider the hypersurface
of maximal contact as the new ambient space of X and proceed by iteration.

The resulting process allows us to decide at each step of the iteration whether
there is a point p ∈ X such that the next entry of ν∗(X , p) is ≥ 2. To give a more
precise statement, we suppose that X has positive codimension in W (otherwise, X is
necessarily smooth). Crucial for obtaining information on an individual entry of ν∗ is
the order of ideals:

Definition 8 If (R,m) is any local Noetherian ring, and 〈0〉 �= J = 〈h1, . . . , ht 〉 ⊂ R
is any ideal, then the order of J is defined by setting

ord(J ) = max{k ∈ N | J ⊂ mk} = min {ord(hi ) | i = 1, . . . , t} .

In our geometric setup, we apply this as follows: Given an ideal 〈0〉 �= I ⊂ K[W ] and
a point p ∈ W , the order ordp(I ) of I at p is defined to be the order of the extended
ideal IOW ,p. For 0 �= f ∈ K[W ] we similarly define ordp( f ) as the order of the
image of f in OW ,p.

Definition 9 With notation as above, for any integer b ∈ N, the locus of order at least
b of the vanishing ideal IX ,W is

Sing(IX ,W , b) = {
p ∈ X | ordp(IX ,W ) ≥ b

}
.

Remark 10 ([26], Chapter III) Note that the loci Sing(IX ,W , b) are Zariski closed since
the function

X → N, p �→ ordp(IX ,W ),

1 As a result, the difficulties of resolution of singularities in positive characteristic do not occur in our
setting, see Lemma 21.
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is Zariski upper semi-continuous.

Remark 11 With notation as above, let a point p ∈ X be given. Then, the first r
elements of a minimal standard basis of IXOA

n
K

,p as in Definition 3 must have order 1
by our assumptions on W , that is, the first r entries of ν∗(X , p) are equal to 1. On the
other hand, if ordp(IX ,W ) ≥ 2, then the (r + 1)-st entry of ν∗(X , p) is ≥ 2. Hence,
in this case, X is singular at p since the codimension of X in A

n
K
is at least r + 1 by

our assumptions.

In terms of loci of order at least two, this amounts to:

Lemma 12 With notation as above, X is singular if

Sing(IX ,W , 2) �= ∅.

Proof Clear from Remark 11. ��

To determine the loci Sing(IX ,W , b) in a Zariski neighborhood of a point p ∈ X
explicitly, derivatives with respect to a regular system of parameters ofW at p are the
method of choice: See [13, p. 404] for characteristic zero, and [22, Sections 2.5 and
2.6] for positive characteristic usingHasse derivatives. For amore detailed description,
fix a point p ∈ W . According to our assumptions, the local ring OW ,p is regular of
dimension d. So we can find a regular system of parameters X1,p, . . . , Xd,p forOW ,p.
That is, X1,p, . . . , Xd,p form a minimal set of generators for mW ,p. By the Cohen

structure theorem, we may, thus, think of the completion ÔW ,p as a formal power
series ring in d variables (see [17, Proposition 10.16]): The map

Φ : K[[y1, . . . , yd ]] → ÔW ,p, yi �→ Xi,p,

is an isomorphism of local rings. In particular, the order of an element f ∈ K[W ] at p
coincides with the order of the formal power series Φ−1( f ) ∈ K[[y1, . . . , yd ]]. The
latter, in turn, can be computed as follows:

Lemma 13 ([13,22]) Let R = K[[y1, . . . , yd ]], let m = 〈y1, . . . , yd〉 be the maximal
ideal of R, and let F ∈ R\{0}. Then,

ord(F) = min

{
m ∈ N

∣∣ ∂a F

∂ ya
/∈ m for some a ∈ N

n with |a| = m

}
,

where the derivatives denote the usual formal derivatives in characteristic zero and
Hasse derivatives in positive characteristic.

As we focus on the locus Sing(IX ,W , b) with b = 2, only first-order formal deriva-
tives play a role for us. Since these derivatives coincide with the first-order Hasse
derivatives, we do not need to discuss Hasse derivatives here.
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Definition 14 In the situation above, we use the isomorphismΦ of the Cohen structure
theorem to define first-order derivatives of elements f ∈ ÔW ,p with respect to the
regular system of parameters X1,p, . . . , Xd,p: Set

∂ f

∂X j,p
= Φ

(
∂Φ−1( f )

∂ y j

)
∈ ÔW ,p, for j = 1, . . . , d.

We summarize our discussion so far. If IX ,W is given by a set of generators
fr+1, . . . , fs ∈ K[W ]\{0}, and if p ∈ X , then p ∈ Sing(IX ,W , 2) iff ordp( fi ) > 1 for
all i ∈ {r+1, . . . , s}. In this case, X is singular at p. Furthermore, if 0 �= f ∈ K[W ] is
any element, p ∈ W is any point, and X1,p, . . . , Xd,p is a regular system of parameters
for OW ,p, then ordp( f ) > 1 iff

1 /∈ Δp( f ) :=
〈
f ,

∂ f

∂X1,p
, . . . ,

∂ f

∂Xd,p

〉

ÔW ,p

⊂ ÔW ,p. (2)

Now, as before, we cannot examine each point individually. The following arguments
will allow us to remedy this situation in Lemma 20. We begin by showing that there
is a locally consistent way of choosing regular systems of parameters:

Lemma 15 As before, let IW = 〈 f1, . . . , fr 〉 ⊂ K[x1, . . . , xn] be the ideal of the

smooth complete intersectionW. LetJ =
(

∂ fi
∂x j

)
be the Jacobianmatrix of f1, . . . , fr .

Then, there is a finite covering of W by principal open subsets D(h) of A
n
K
such that:

1. Each polynomial h is a maximal minor of J .
2. For each h, the variables x j not used for differentiation in forming the minor h

induce by translation a regular system of parameters for every local ring OW ,p,
p ∈ W ∩ D(h).

For each h, we refer to such a choice of a local system of parameters at all points of
W ∩ D(h) as a consistent choice.

Proof Consider a point p0 ∈ W . Then, by the Jacobian criterion, there is at least one
minor h = det(M) of J of size r such that h(p0) �= 0 (recall that we assume that
W is smooth). Suppose for simplicity that h involves the last r columns of J , and let
p = (a1, . . . , an) be any point of W ∩ D(h). Then, the images of x1 − a1, . . . , xd −
ad , f1, . . . , fr in OA

n
K

,p are actually contained in mA
n
K

,p and represent a K-basis of

the Zariski tangent space mA
n
K

,p/m
2
A
n
K

,p. Hence, by Nakayama’s lemma, they form a

minimal set of generators for mA
n
K

,p. Since f1, . . . , fr are mapped to zero when we
pass to OW ,p, the images of x1 − a1, . . . , xd − ad in OW ,p form a regular system of
parameters for OW ,p. The result follows because W is quasi-compact in the Zariski
topology. ��
Notation 16 For further considerations, we retain the notation of the lemma and its
proof. Fix one principal open subset D(h) ⊂ A

n
K

as in the lemma. Suppose that
h = det(M) involves the last r columns of the Jacobian matrix J . Furthermore, fix
one element 0 �= f ∈ K[W ].
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We now show how to find an ideal Δ( f ) ⊂ OW (W ∩ D(h)) such that

Δ( f )ÔW ,p = Δp( f ) for each point p ∈ W ∩ D(h),

where Δp( f ) is defined as in (2). Technically, we manipulate polynomials, starting
from a polynomial in K[x1, . . . , xn] representing f . By abuse of notation, we denote
this polynomial again by f .

Construction 17 We construct a polynomial f̃ ∈ K[x1, . . . , xn] whose image in

OW (W ∩ D(h)) coincides with that of f , and whose partial derivatives ∂ f̃
∂x j

, j =
d +1, . . . , n, are mapped to zero inOW (W ∩ D(h))/〈 f 〉. For this, let A be the matrix
of cofactors of M. Then,

A · M = h · Er ,

where Er is the r×r identity matrix.Moreover, if I ⊂ K[x1, . . . , xn] is the ideal gener-
ated by the entries of the vector ( f̃1, . . . , f̃r )T = A · ( f1, . . . , fr )T , then the extended
ideals IOA

n
K
(D(h)) and IWOA

n
K
(D(h)) coincide since h is a unit in OA

n
K
(D(h)).

Let J̃ =
(

∂ f̃i
∂x j

)
be the Jacobian matrix of f̃1, . . . , f̃r . Then, the matrix obtained

by restricting the entries of J̃ to W ∩ D(h) can be written as

J̃ |W∩D(h) = ( ∗ | h · Er
)

(apply the product rule and reducemodulo f1, . . . , fr ). InOA
n
K
(D(h)), the polynomial

f̂ = h · f represents the same class as f . Moreover, modulo f , each partial derivative
of f̂ is divisible by h. Hence, after suitable row operations, the partial derivatives in
the lower right block of the Jacobian matrix of f̃1, . . . , f̃r , f̂ restricted to W ∩ D(h)

are mapped to zero in OW (W ∩ D(h))/〈 f 〉:
⎛

⎜⎜⎜⎜⎜⎜⎜⎝

h 0

∗
. . .

0 h

∂ f̂
∂x1

. . .
∂ f̂
∂xd

∂ f̂
∂xd+1

. . .
∂ f̂
∂xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

mod f�−−−−→

⎛

⎜⎜⎜⎜⎜⎜⎝

h 0

∗
. . .

0 h

H1 . . . Hd 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎠

The row operations correspond to subtracting K[x1, . . . , xn]-linear combinations of
f̃1, . . . , f̃r from f̂ . In this way, we get a polynomial f̃ as desired: The images of f̃

and f in OW (W ∩ D(h)) coincide, and for j = d + 1, . . . , n, the ∂ f̃
∂x j

are mapped to

zero in OW (W ∩ D(h))/〈 f 〉. In fact, we have

(
∂ f̃

∂x1
, . . . ,

∂ f̃

∂xn
) = (H1, . . . , Hd , 0, . . . , 0) (3)

as an equality over OW (W ∩ D(h))/〈 f 〉.
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Lemma 18 With notation as above, consider the extended ideal

Δ( f ) = 〈 f , H1, . . . , Hd〉OW (W ∩ D(h)).

Then,

Δ( f )ÔW ,p = Δp( f ) for each point p ∈ W ∩ D(h).

Proof Let a point p = (a1, . . . , an) ∈ W ∩ D(h) be given. Write x − a = {x1 −
a1, . . . , xn − an} and x = {x1, . . . , xn}. Then,

ÔW ,p ∼= K[[x − a]]/IWK[[x − a]],

and the natural map

Ψ : K[x] −→ K[[x − a]] −→ K[[x − a]]/IWK[[x − a]]

factors through the inclusion K[W ] → ÔW ,p. Moreover, by our assumptions in Nota-
tion 16, the isomorphism of the Cohen structure theorem reads

K[[y1, . . . , yd ]] Φ−→ K[[x − a]]/IWK[[x − a]],
yi �−→ xi − ai .

The inverse isomorphism Φ−1 is of type

yi ←−� xi − ai if 1 ≤ i ≤ d,

mi (y1, . . . , yd) ←−� xi − ai if d + 1 ≤ i ≤ n.

Then, Φ−1 ◦ Ψ is the map

g �→ g( y + a′,m( y) + a′′)),

where a′ = {a1, . . . , ad}, a′′ = {ad+1, . . . , an}, and y = {y1, . . . , yd}. Hence, for
each g ∈ K[x], the vector of partial derivatives

(
∂Φ−1(Ψ (g))

∂ y1
, . . . ,

∂Φ−1(Ψ (g))
∂ yd

)

is obtained as the product

(
∂g
∂x1

( y + a′,m( y) + a′′), . . . ,
∂g
∂xn

( y + a′,m( y) + a′′)
)

·

⎛

⎜⎜⎜⎜⎜⎝

Ed

∂md+1
∂ y1

. . .
∂md+1
∂ yd

...
...

∂mn
∂ y1

. . . ∂mn
∂ yd

⎞

⎟⎟⎟⎟⎟⎠
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(apply the chain rule). Taking g = f̃ with f̃ as in Construction 17, we deduce from
Equation (3) that

∂Φ−1(Ψ ( f̃ ))

∂ y j
= Φ−1(Ψ (Hj ))

as an equality over K[[y1, . . . , yd ]]/〈Φ−1(Ψ ( f ))〉, for j = 1, . . . , d. The result fol-
lows by applying Φ since Ψ ( f̃ ) = Ψ ( f ) by the very construction of f̃ . ��

Notation 19 In the situation of Lemma 18, motivated by the lemma and its proof, we
write

∂ f

∂X j
:= Hj ∈ K[x1, . . . , xn], for j = 1, . . . , d.

Summing up, we get:

Lemma 20 Let IW = 〈 f1 . . . , fr 〉, IX = 〈 f1, . . . , fr , fr+1, . . . , fs〉 ⊂ K[x1, . . . , xn]
be as before, with fr+1, . . . , fs ∈ K[x1, . . . , xn] representing a set of generators for
the vanishing ideal IX ,W . Then, Sing(IX ,W , 2) ∩ D(h) is the locus

V

(
IX +

〈
∂ fi
∂X j

∣∣∣∣r + 1 ≤ i ≤ s, 1 ≤ j ≤ d

〉)
∩ D(h)

which is computable by the recipe given in Construction 17.

If the intersection of Sing(IX ,W , 2) with one principal open set from a covering as
in Lemma 15 is non-empty, then X is singular by Lemma 12, and our smoothness test
terminates. If all these intersections are empty, we iterate our process:

Lemma 21 ([13]) Let fr+1, . . . , fs ∈ K[x1, . . . , xn] represent a set of generators for
the vanishing ideal IX ,W . RetainingNotation 16, suppose thatSing(IX ,W , 2)∩D(h) =
∅. Then, there is a finite covering of X∩D(h) by principal open subsets of type D(h ·g)
of A

n
K
such that:

1. Each polynomial g is a derivative ∂ fi
∂X j

of some fi , r + 1 ≤ i ≤ n.

2. If we set W ′ = V ( f1, . . . , fr , fi ) ⊂ A
n
K
, then W ′ ∩ D(h · g) is a smooth complete

intersection of codimension r + 1 in D(h · g).
3. We have X ∩ D(h · g) ⊂ W ′ ∩ D(h · g).

Proof Let p0 ∈ X ∩ D(h). Then, since Sing(IX ,W , 2) ∩ D(h) = ∅ by assumption,
we have ordp0( fi ) = 1 for at least one i ∈ {r + 1, . . . , s}. Equivalently, one of the
partial derivatives of fi , say

∂ fi
∂X j

, does not vanish at p0. Then, if we set g = ∂ fi
∂X j

and
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W ′ = V ( f1, . . . , fr , fi ), properties (1) and (3) of the lemma are clear by construction.
With regard to (2), again by construction, we have ordp( fi ) = 1 for each p ∈ D(h ·g).
This implies for each p ∈ D(h · g):
(a) We have ν∗(W ′, p) = (1, .., 1, 1) ∈ N

r+1.
(b) The image of fi in OW ,p is a nonzero non-unit.

Then,W ′∩D(h·g) is smoothby (a) andHironaka’sCriterion6. Furthermore, each local
ringOW ,p is regular and, thus, an integral domain. Hence, by (b) and Krull’s principal
ideal theorem, the ideal generated by the image of fi in OW ,p has codimension 1.
We conclude that W ′ ∩ D(h · g) is a complete intersection of codimension r + 1 in
D(h · g).

The result follows since the Zariski topology is quasi-compact. ��
Remark 22 In the situation of the proof above, Hironaka’s criterion actually allows us
to conclude that the affine scheme

Spec
(
OA

n
K
(D(h · g))/〈 f1, . . . , fr , fi 〉OA

n
K
(D(h · g))

)

is smooth. In particular, 〈 f1, . . . , fr , fi 〉OA
n
K
(D(h · g)) is a radical ideal.

Remark 23 At each iteration step of our process, we start from embeddings of type
X ∩ D(q) ⊂ W ∩ D(q) ⊂ A

n
K
rather than from an embedding X ⊂ W ⊂ A

n
K
. This is

not a problem:When we use the trick of Rabinowitch to regard X∩D(q) ⊂ W ∩D(q)

as affine varieties in A
n+1
K

, and apply Lemma 15 in A
n+1
K

, one can consider an open
covering such that the extra variable does not appear in the local systems of parameters.
Due to this crucial fact, all computations can be carried through over the original
polynomial ring: There is no need to accumulate extra variables.

Remark 24 (The Role of the Ground Field) Our algorithms essentially rely on Gröb-
ner basis techniques (and not, for example, on polynomial factorization). While the
geometric interpretation of what we do is concerned with an algebraically closed field
K, the algorithms will be applied to ideals which are defined over a subfield k ⊂ K

whose arithmetic can be handled by a computer. This makes sense since any Gröbner
basis of an ideal J ⊂ k[x1, . . . , xn] is also a Gröbner basis of the extended ideal
J e = JK[x1, . . . , xn]. Indeed, if J is given by generators with coefficients in k, all
computations in Buchberger’s Gröbner basis algorithm are carried through over k.
In particular, if a property of ideals can be checked using Gröbner bases, then J has
this property iff J e has this property. For example, if J is equidimensional, then J e is
equidimensional as well. Or, if the condition asked by the Jacobian criterion is fulfilled
for J , then it is also fulfilled for J e.

The standard reference for theoretical results on extending the ground field is [51,
VII, §11]. To give another example, if k is perfect, and J is a radical ideal, then J e is
a radical ideal, too.

Notation 25 In what follows, we consider a field extension k ⊂ K with k perfect and
K algebraically closed. If I ⊂ k[x] = k[x1, . . . , xn] is an ideal, then V (I ) stands
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for the vanishing locus of I in A
n
K
. Similarly, if q ∈ k[x], then D(q) stands for the

principal open subset of A
n
K
defined by q.

We are now ready to specify the smoothness test. We start from ideals

IW = 〈 f1, . . . , fr 〉 ⊂ IX = 〈 f1, . . . , fs〉 ⊂ k[x]

defining varieties X = V (IX ) ⊂ W = V (IW ) ⊂ A
n
K
and a polynomial q ∈ k[x] such

that

IX is equidimensional and radical,
(♦) IW OA

n
K
(D(q)) is a radical ideal of codimension r ,

W ∩ D(q) is smooth.

In particular, W ∩ D(q) is a complete intersection of codimension r in D(q). Our
algorithm arises then from composing the following four steps:

1. Convenient covering of X ∩ D(q) by principal open subsets of A
n
K
. Find a set L

of r × r submatrices M of the Jacobian matrix of f1, . . . , fr such that all minors
det(M) are nonzero, and such that

q ∈ √〈 f1, . . . , fs〉 + 〈det(M) | M ∈ L〉.

In describing steps (2)–(4), we address the individual open sets D(q · det(M)).

2. Consistent choice of a local system of parameters on D(q ·det(M)). By Lemma 15
and its proof, we can assume that M involves the variables xd+1, . . . xn and may
then choose the regular system of parameters to be induced by x1, . . . , xd on all
of D(q · det(M)).

3. Derivatives relative to the local system of parameters on D(q · det(M)). Find the
matrix of cofactors A of M with A · M = det(M) · Er and let

F̂ :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̃1
...

f̃r
f̂r+1
...

f̂s

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
A 0
0 det(M) · Es−r

)
·
⎛

⎜⎝
f1
...

fs

⎞

⎟⎠ .

By Lemma 20, the locus Sing(IX ,W , 2) ∩ D(q · det(M)) is empty iff

q · det(M) ∈
√
IX + 〈

∂ fi/∂X j | r + 1 ≤ i ≤ s, 1 ≤ j ≤ d
〉
.
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Here, the derivatives ∂ fi/∂X j introduced in Notation 19 are the entries of the left
lower block of the Jacobian matrix J (F̂) after row reductions as in Construc-
tion 17:

⎛

⎜⎜⎜⎜⎝

det(M) 0

∗ . . .

0 det(M)

∗ ∗

⎞

⎟⎟⎟⎟⎠

mod fr+1,..., fs�−−−−−−−−−−→

⎛

⎜⎜⎜⎜⎝

det(M) 0

∗ . . .

0 det(M)

∗ 0 · · · 0

⎞

⎟⎟⎟⎟⎠
.

Now suppose that Sing(IX ,W , 2) ∩ D(q · det(M)) = ∅ for all minors det(M), M ∈ L
(otherwise, X is singular).

4. Descent in codimension on D(q · det(M)). Consider a representation

(q · det(M))m ≡
∑

αi, j · ∂ fi/∂X j mod IX .

Letαi, j ·∂ fi/∂X j be a summandwhich is nonzeromodulo IX . Then, by Lemma 21
and its proof, we can pass to a new variety W ′ = W ∩ V ( fi ) ⊃ X and a new
principal open set D(q ′), with

q ′ = q · det(M) · ∂ fi/∂X j ,

such that W ′ ∩ D(q ′) ⊂ D(q ′) is a smooth complete intersection of codimension
r +1. That is, the codimension of X ∩ D(q ′) inW ′ ∩ D(q ′) is one less than that of
X∩D(q) inW∩D(q). In fact, the D(q ′) arising in thisway cover X∩D(q·det(M)).

Carrying this out for all minors det(M), M ∈ L , we obtain a covering of X ∩ D(q)

by principal open sets of type D(q ′) and may iterate the process.

We consider a simple example:

Example 26 Consider the ideals

IW = 〈y2 + z2 − 1〉 ⊂ IX = 〈y2 + z2 − 1, x2 + yz〉 ⊂ C[x, y, z]

and the polynomial q = 1. Then, condition (♦) is obviously satisfied.

(1) The Jacobian matrix of f1 = y2 + z2 − 1 is

(
0 2y 2z

)
.

We may, hence, take the set L = {(2y), (2z)} of 1 × 1-submatrices:

1 ∈
√

〈y2 + z2 − 1〉 + 〈y, z〉,

with corresponding explicit representation

1 = 1

2
(y · ∂ f1

∂ y
+ z · ∂ f1

∂z
− 2 f1).
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(2) Due to the symmetry of the initial situation in y and z, it is now enough to consider
the matrix M = (2z) ∈ L together with the local system of parameters x, y on
D(2z) = D(z).

(3) Since A = (1) is the matrix of cofactors of M = (2z), we get

F̂ :=
(
1 0
0 2z

)
·
(
y2 + z2 − 1
x2 + yz

)
=
(
y2 + z2 − 1
2x2z + 2yz2

)
,

which provides the Jacobian matrix

J (F̂) =
(

0 2y 2z
4xz 2z2 2x2 + 4yz

)
.

After a row reduction modulo f2 = x2 + yz, we get

(
0 2y 2z

4xz 2z2 2yz

)
mod f2�−−−−→

(
0 2y 2z

4xz 2z2 − 2y2 0

)
.

We now can verify that Sing(IX ,W , 2) ∩ D(z) is empty:

z ∈
√

〈y2 + z2 − 1, x2 + yz, 4xz, 2z2 − 2y2〉.

Explicitly,

z4 = 1

4
(2z2(2z2 − 2y2) + 4yz(x2 + yz) − xy(4xz).

(4) Since the codimension of X inW is one, there is no need for further computations:
step (4), if carried out, would necessarily yield a covering of X by principal open
subsets D(h) of A

3(C) such that X ∩ D(h) = W ∩ D(h), but the latter variety is
smooth.

Remark 27 To derive an explicit formula for the partial derivatives with respect to the
local system of parameters, one can proceed as follows. Consider the Jacobian matrix
J (F̂) as in step (3) of the above outline of the algorithm. Modulo f1, . . . , fs , using
the product rule, we have

J (F̂) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

[∑r
k=1 Aik

∂ fk
∂x j

]
i=1,...,r
j=1,...,n−r

⎡

⎢⎢⎢⎣

det(M) 0
. . .

0 det(M)

⎤

⎥⎥⎥⎦

[
det(M)

∂ fi
∂x j

]
i=r+1,...,s
j=1,...,n−r

[
det(M)

∂ fi
∂x j

]
i=r+1,...,s
j=n−r+1,...,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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After row operations eliminating the lower right block, the entry at position (i, j)with
i > r and j ≤ n − r is given by

∂ fi
∂X j

= det(M)
∂ fi
∂x j

−
r∑

m,k=1

∂ fk
∂x j

Amk
∂ fi

∂xm+n−r
.

This formula can easily be adjusted to each choice of columns of the Jacobian matrix
of f1, . . . , fr when building the submatrix M .

Algorithm 1 HybridSmoothnessTest collects the main steps of the smooth-
ness test. It callsAlgorithm2DeltaCheck to checkwhether Sing(IX ,W , 2)∩D(q) �=
∅. In this case, it returns false and terminates. Otherwise, it calls Algorithm 3
DescentEmbeddingSmooth which implements Lemma 21. The next step is
to recursively apply the HybridSmoothnessTest in the resulting embedded
situations. If the codimension dim(IW ) − dim(IX ) reaches a specified value, the
algorithm invokes a relative version of the Jacobian criterion by calling Algorithm 4
EmbeddedJacobian.

Algorithm 1 HybridSmoothnessTest
Input: Ideals IW = 〈 f1, . . . , fr 〉 ⊂ IX = 〈 f1, . . . , fs 〉 ⊂ k[x] and a polynomial q ∈ k[x] such that (♦)

holds; a nonnegative integer c.
Output: true if V (IX ) ∩ D(q) is smooth, false otherwise.
1: if dim(IW ) − dim(IX ) = 0 then
2: return true
3: if dim(IW ) − dim(IX ) ≤ c then
4: return EmbeddedJacobian(IW ,IX ,q)
5: if not DeltaCheck(IW , IX , q) then
6: return false
7: L = DescentEmbeddingSmooth(IW , IX , q)

8: for all (IW ′ , IX , q ′) ∈ L do
9: if not HybridSmoothnessTest(IW ′ , IX , q ′, c) then
10: return false
11: return true

Remark 28 (Enhancements ofHybridSmoothnessTest) In the above discussion,
for the convenience of the reader and a better understanding, we focus on highlighting
the main steps of the algorithms. Our implementation, however, is based on subtle
enhancements which, compared to its original implementation as presented in [8],
significantly improve its efficiency.

Modifying steps (3) and (4) of the outline discussed above, Algorithm 3 computes
the products det(M)· ∂ fi

∂X j
directly as appropriate (r+1)×(r+1)minors of the Jacobian

matrix in step 5 of Algorithm 3. This exploits the well-known fact that subtracting
multiples of one row from another one as in Gaussian elimination does not change the
determinant of a square matrix—or in our case the maximal minors of the (r + 1)× n
matrix.

Moreover, it is useful to first check whether there is an r × r minor, say N , of
the Jacobian matrix of IW which divides q. In this case, we can restrict ourselves in
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Algorithm 2 DeltaCheck for an affine chart
Input: Ideals IW = 〈 f1, . . . , fr 〉 ⊂ IX = 〈 f1, . . . , fs 〉 ⊂ k[x] and a polynomial q ∈ k[x] such that (♦)

holds.
Output: true if Sing(IX ,W , 2) ∩ D(q) = ∅, false otherwise.
{ First handle the case IW = 〈0〉, q = 1; then x1, . . . , xn induce }
{ a local system of parameters at every point of W }
1: if IW = 〈0〉 and q = 1 then
2: if 1 ∈ 〈 f1, . . . , fs ,

∂ f1
∂x1

, . . . ,
∂ fs
∂xn

〉 then
3: return true
4: else
5: return false

{ Initialization }
6: Q = 〈0〉
7: L = {r × r − submatrices M of Jac(IW ) | det(M) �= 0mod IX }

{Main Loop: Cover by complements of minors }
8: while L �= ∅ and q /∈ Q do
9: choose M ∈ L
10: L = L\{M}
11: qnew = det(M)

12: Q = Q + 〈qnew〉
13: compute the matrix of cofactors A of M with

A · M = qnew · Er
{ Test Sing(IX ,W , 2) ⊂ V (qnew) ∪ V (q) }

14: CM = IX + JX , where

JX =
〈

∂ fi
∂X j

∣∣∣∣∣ r + 1 ≤ i ≤ s, j not a column index of M

〉

is computed via Remark 27
15: if qnew · q /∈ √

CM then
16: return false
17: return true

steps 5 and 6 to those minors in Imin,i which involve N , since these minors already
form a generating system of Imin,i . In particular, if IW and q arise from (a single or
multiple) application of Algorithm 3, such divisibility is ensured by construction and
the respective minor N is known a priori. This leads to n − r generators of Imin,i as
opposed to

( n
r+1

)
generators in the general implementation.

Remark 29 In explicit experiments, we typically arrive at an ideal IX by using a spe-
cialized construction method which is based on geometric considerations. From these
considerations, some properties of IX might be already known. For example, it might
be clear that V (IX ) is irreducible. Then, there is no need to check the equidimension-
ality of IX . If we apply the algorithm without testing whether IX is radical, and the
algorithm returns true, then IX must be radical. This is clear from the Jacobian crite-
rion and the fact that Hironaka’s criterion checks smoothness in the scheme theoretical
sense (see Remark 22).
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Algorithm 3 DescentEmbeddingSmooth
Input: Ideals IW = 〈 f1, . . . , fr 〉 ⊂ IX = 〈 f1, . . . , fs 〉 ⊂ k[x] and a polynomial q ∈ k[x] such that (♦)

and D(q) ∩ Sing(IX , 2) = ∅ hold.
Output: Triples (IWi , IX , qi ) such that IWi ⊂ IX together with qi satisfy (♦), and such that V (IX ) ∩

D(q) ⊂ ⋃
i (V (IWi ) ∩ D(qi )).

{ Direct descent: no need to find an open covering of V (IX ) ∩ D(q) }
1: if Sing(IV ( fi ),W , 2) ∩ D(q) = ∅ and q /∈ √〈 f1, . . . , fr , fi 〉 for some i ∈ {r + 1, . . . , s} then
2: IW1 = 〈 f1, . . . , fr , fi 〉
3: return {(IW1 ,IX ,q)}

{ Descent by constructing an open covering of V (IX ) ∩ D(q) }
4: for i ∈ {r + 1, . . . , s} do
5: Imin,i = 〈(r + 1) × (r + 1) minors of the Jacobian matrix of f1, . . . , fr , fi 〉
6: from among the generators of the ideals Imin,1, . . . , Imin,s , find minors h1, . . . , ht �= 0mod IX such

that q ∈ √
IX + 〈h1, . . . , ht 〉

7: fix i1, . . . , it ∈ {r + 1, . . . s} with h j ∈ Imin,i j
8: for j = 1, . . . , t do
9: IW j = 〈 f1, . . . , fr , fi j 〉
10: return {(IW1 , IX , q · h1), . . . , (IWt , IX , q · ht )}

Algorithm 4 EmbeddedJacobian
Input: Ideals IW = 〈 f1, . . . , fr 〉 ⊂ IX = 〈 f1, . . . , fs 〉 ⊂ k[x] and a polynomial q ∈ k[x] such that (♦)

holds.
Output: true if V (IX ) ∩ D(q) is smooth, false otherwise.
1: Q = 〈0〉
2: L = {r × r − submatrices M of Jac(IW ) | det(M) �= 0mod IX }

{ Read off regular system of parameters for non-constant q }
3: if q |det(M) for some M ∈ L then
4: delete all other elements from L

{ Covering by complements of the minors }
5: while L �= ∅ and q /∈ Q do
6: choose M ∈ L
7: L = L\{M}
8: qnew = det(M)

9: Q = Q + 〈qnew〉
10: compute the matrix of cofactors A of M with

A · M = qnew · Er
{ Jacobian matrix of IX w.r.t. local system of parameters for IW }

11: Jac =
(

∂ fi
∂X j

)
∈ k[x](s−r)×(n−r) where r + 1 ≤ i ≤ s, j is not a column of M , and the partial

derivatives are computed via Remark 27

12: c = codimension of V (IX ) ∩ D(q) in V (IW ) ∩ D(q)

13: J = IX + Im , where Im = 〈c × c−minors of Jac〉
14: if qnew · q /∈ √

J then
15: return false
16: return true

Remark 30 If we do not have some specific pair (IW , q) in mind, we can always
start Algorithm 1 with (IW , q) = (〈0〉, 1). In this case, the algorithm determines
smoothness of the whole affine variety V (IX ) ⊂ A

n(K).
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4 Petri Nets and the GPI-Space Environment

4.1 GPI-Space and Task-Based Parallelization

GPI-Space [43] is a task-based workflow management system for high-performance
environments. It is based on David Gelernter’s approach of separating coordination
and computation [20] which leads to the explicit visibility of dependencies, and is
beneficial in many aspects. We illustrate this by discussing some of the concepts
realized in GPI-Space:

• The coordination layer ofGPI-Space uses a separate, specialized language, namely
Petri nets [42], which leaves optimization and rewriting of coordination activities
to experts for data management rather than bothering experts for computations in
a particular domain of application (such as algebraic geometry) with these things.

• Complex environments remain hidden from the domain experts and are managed
automatically. This includes automatic parallelization, automatic cost optimized
data transfers and latency hiding, automatic adaptation to dynamic changes in the
environment, and resilience.

• Domain experts can use and mix arbitrary implementations of their algorithmic
solutions. For the experiments done for this paper, GPI-Space manages several
(many) instances of Singular and, at the same time, other code written in C++.

• The use of virtual memory allows one not only to scale applications beyond the
limitations imposed by a single machine, but also to couple legacy applications
that normally can only work together by writing and reading files. Also, the switch
between low latency, low capacity memory (like DRAM) and high latency, high
capacity memory (like a parallel file system) can be done without changing the
application.

• Optimization goals like “minimal time to solution”, “maximum throughput”,
or “minimal energy consumption” are achieved independently from the domain
experts’ implementation of their core algorithmic solutions.

• Patterns that occur in the management of several applications are explicitly avail-
able and can be reused. Vice versa, computational core routines can be reused in
different management schemes. Optimization on either side is beneficial for all
applications that use the respective building blocks.

GPI-Space consists of three main components:

• A distributed, resilient, and scalable runtime system for huge dynamic environ-
ments that is responsible for managing the available resources, specifically the
memory resources and the computational resources. The scheduler of the runtime
system assigns activities to resources with respect to both the needs of the current
computations and the overall optimization goals.

• A Petri net-based workflow engine that manages the full application state and is
responsible for automatic parallelization and dependency tracking.

• Avirtualmemorymanager that allows different activities and/or external programs
to communicate and share partial results. The asynchronous data transfers areman-
aged by the runtime system rather than the application itself, and synchronization
is done in a way that aims at hiding latency.
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Of course, the above ideas are not exclusive to GPI-Space—many other systems
exist that follow similar strategies. In the last few years, task-based programming
models are getting much attention in the field of high-performance computing. They
are realized in systems such as OmpSs [34], StarPU [29], and PaRSEC [48]. All these
systems have in common that they do explicit data management and optimization in
favor of their client applications. The differences are in their choice of the coordination
language, in their choice of the user interface, and in their choice of how general or how
specific they are. It iswidely believed that task-based systems are a promising approach
to program the current and upcoming very large and very complex super computers
in order to enable domain experts to get a significant fraction of the theoretical peak
performance [16,47].

As far as we know, there have not yet been any attempts to use systems originating
from high-performance numerical simulation in the context of computational alge-
braic geometry, where the main workhorse is Buchberger’s algorithm for computing
Gröbner bases. Although this algorithm performs well in many practical examples of
interest, its worst case complexity is doubly exponential in the number of variables
[38]. This seems to suggest that algorithms in computational algebraic geometry are
too unpredictable in their time andmemory consumption for the successful integration
into task-based systems. However, numerical simulation also encounters problems of
unpredictability, and there is already plenty of knowledge on how to manage imbal-
ances imposed by machine jitter or different sizes of work packages. For example,
numerical state-of-the-art code to compute flows makes use of mesh adaptation.
This creates great and unpredictable imbalances in computational effort which are
addressed on the fly by the respective simulation framework.

The high-performance computing community aims for energy efficient computing,
just because themachines they are using are so big that it would be too expensive to not
make use of acquired resources. One key factor to achieve good efficiency is perfect
load balancing. Another important topic in high-performance computing is the non-
intrusive usage of legacy code. GPI-Space is not only able to automatically balance,
to automatically scale up to hundreds of nodes, or to tolerate machine failures, it can
also use existing legacy applications and integrate them, without requiring any change
to them. This turned out to be the great door opener for integrating Singular into
GPI-Space. In fact, in our applications, GPI-Space manages several (many) instances
of Singular in its existing binary form (without any need for changes).

Our first experience indicates that the tools used in high-performance computing
are mature, both in terms of operations and in terms of capabilities to manage complex
applications from symbolic computation. We therefore believe that it is the right time
to apply these tools to domains such as computational algebraic geometry.

In GPI-Space, the coordination language is based on Petri nets, which are known
to be a good choice because of their graphical nature, their locality (no global state),
their concurrency (no events, just dependencies), and their reversibility (recomputation
in case of failure is possible) [49]. Incidentally, these are all properties that Petri
intentionally borrowed from physics for the use in computer science [12]. Moreover,
Petri nets share many properties with functional languages, especially their well-
known advantages of modularity and direct correspondence to algebraic structures,
which qualify them as both powerful and user friendly [1,28].
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The following section describes in more detail what Petri nets are and why they are
a good choice to describe dependencies.

4.2 Petri Nets

In 1962, Carl Adam Petri proposed a formalism to describe concurrent asynchronous
systems [42]. His goal was to describe systems that allow for adding resources to
running computations without requiring a global synchronization, and he discovered
an elegant solution that connects resources with other resources only locally. Petri nets
are particularly interesting since they have the following properties:

• They are graphical (hence intuitive) and hierarchical (so that applications can be
decomposed into building blocks that are Petri nets themselves).

• They are well suited for concurrent environments since there are no events that
require a (total) ordering. Instead, Petri nets are state-based and describe at any
point in time the complete state of the application. That locality (of dependencies)
also allows one to apply techniques from term-rewriting to improve (parts of)
Petri nets in their non-functional properties, for example, to add parallelism or
checkpointing.

• They are reversible and enable backward computation: If a failure causes the loss
of a partial result, it is possible to determine a minimal set of computations whose
repetition will recover the lost partial result.

The advantages of Petri nets as a mathematical modeling language have been sum-
marized very nicely by van der Aalst [49]: They have precise execution semantics
that assign specific meanings to the net, serve as the basis for an agreement, are inde-
pendent of the tools used, and enable process analysis and solutions. Furthermore,
because Petri nets are not based on events but rather on state transitions, it is possible
to differentiate between activation and execution of an elementary functional unit. In
particular, interruption and restart of the applications are easy. This is a fundamental
condition for fault tolerance to hardware failure. Lastly, van der Aalst notes the avail-
ability of mature analysis techniques that, besides proving the correctness, also allow
performance predictions.

4.2.1 Formal Definitions and Graphical Representation

Petri nets generalize finite automata by complementing them with distributed states
and explicit synchronization.

Definition 31 A Petri net is a triple (P, T , F), where P and T are disjoint finite sets,
the sets of places, respectively, transitions, and where F is a subset F ⊂ (P × T ) ∪
(T × P), the flow relation of the net.

This definition addresses the static parts of a Petri net. In addition, there are dynamic
aspects which describe the execution of the net.

Definition 32 A marking of a Petri net (P, T , F) is a function M : P → N. If
M(p) = k, we say that p holds k tokens under M .
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To describe a marking, we also write M = {(p, M(p)) | p ∈ P, M(p) �= 0}.
Remark 33 For our purposes here, given a Petri net (P, T , F) together with a marking
M , we think of the transitions as algorithms, while the tokens held by the places
represent the data (see Sect. 4.2.2 for more on this). Accordingly, given a place p and
a transition t , we say that p is an input (respectively, output) place of t if (p, t) ∈ F
(respectively, (t, p) ∈ F).

AmarkingM defines the state of a Petri net.We say thatM enables a transition t and

writeM
t−→, if all input places of t hold tokens, that is, (p, t) ∈ F impliesM(p) > 0.

APetri net equippedwith amarkingM is executed byfiring a single transition t enabled
by M . This means to consume a token from each input place of t , and to add a token
to each output place of t . In other words, the firing of t leads to a new marking M ′,
with M ′(p) = M(p)−|{(p, t)} ∩ F |+ |{(t, p)} ∩ F | for all p ∈ P . Accordingly, we

write M
t−→ M ′, and say that M ′ is directly reachable from M (by firing t). Direct

reachability defines the (weighted) firing relation R ⊆ M×T ×M over all markings

M by
(
M, t, M ′) ∈ R ⇐⇒ M

t−→ M ′. More generally, we say that a marking M ′
is reachable by t̂ from a marking M if there is a firing sequence t̂ = t0 · · · tn−1 such

that M = M0
t0−→ M1

t1−→ . . .
tn−1−→ Mn−1 = M ′. The corresponding graph is called

the state graph. Fundamental problems concerning state graphs such as reachability
or coverability have been subject to many studies, and effective methods have been
developed to deal with these problems [12,31,32,35,37,44].

The static parts of a Petri net are graphically represented by a bipartite directed
graph as indicated in the two examples below. In such a graph, a marking is visualized
by showing its tokens as dots in the circles representing the places. See Sect. 4.2.2 for
examples.

Example 34 (Data Parallelism in a Petri Net) The Petri net Φ = (P, T , F) with
P = {i, o}, T = {t} and F = {(i, t) , (t, o)} is depicted by the graph

i t o

Suppose we are given the marking M = M0 = {(i, n)} for some n > 0. Then, t is
enabled by M0, and firing t means to move one token from i to o. This leads to the new
marking M1 = {(i, n − 1) , (o, 1)}. Now, if n > 1, the marking M1 enables t again,
and Φ can fire until the marking M ′ = Mn = {(o, n)} is reached. We refer to this by

writing M
tn−→ M ′. Note that with this generalized firing relation, the n incarnations

of t have no relation to each other—conceptually, they fire all at the same time, that
is, in parallel. This is exploited in GPI-Space and makes much sense if we take into
consideration that in the real world, the transition t would need some time to finish,
rather than fire immediately (see Sect. 4.2.2 for how to model time in Petri nets). Data
parallelism is nothing else than splitting data into parts and applying the same given
function to each part. This is exactly what happens here: Just imagine that each token
in place i represents some part of the data.

Example 35 (Task Parallelism in a Petri Net)
Let Ψ be the Petri net depicted by the graph
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i s
f

g

l

r
j

and consider the marking M = {(i, 1)}. Then, Ψ can fire s and thereby enable f
and g. So this corresponds to the situation where different independent algorithms
( f and g) are applied to parts (or incarnations) of data. Note that f and g can run in
parallel. Just like for the net Φ from Example 34, multiple tokens in place i allow for
parallelism of s and thereby of f , g, and j as well. With enough such tokens, we can
easily find ourselves in a situation where s, f , g, and j are all enabled at the same
time (see again Sect. 4.2.2 for the concept of time in Petri nets).

To sum this up: Petri nets have the great feature to automatically know about all
activities that can be executed at any given time. Hence, all available parallelism can
be exploited.

4.2.2 Extensions of Petri Nets in GPI-Space

To model real-world applications, the classical Petri net described above needs to
be enhanced, for example, to allow for the modeling of time and data. This leads to
extensions such as timed and colored Petri nets. Describing these and their properties
in detail goes beyond the scope of this article. We briefly indicate, however, what is
realized in GPI-Space.

Time In the real world, transitions need time to fire (there is no concept of time in
the classical Petri net). In systems modeling, timed Petri nets are used to predict best
or worst case running times. In [25], for example, the basic idea behind including time
is to split the firing process into 3 phases:

1. The tokens are removed from the input places when a transition fires,
2. the transition holds the tokens while working, and
3. the tokens are put into the output places when a transition finishes working.

This implies that a marking as above alone is not enough to describe the full state of
a timed Petri net. In addition, assuming that phases 1 and 3 do not need any time, the
description of such a state includes the knowledge of all active transitions in phase 2
and all tokens still in use. Passing from a standard to a timed Petri net, the behavior
of the net is unaffected in the sense that any state reached by the timed net is also
reachable with the standard net (see again [25]).

Types and Type SafetyAs already pointed out, in practical applications, tokens are
used to represent data. In the classical Petri net, however, tokens carry no information,
except that they are present or absent. It is therefore necessary to extend the classical
concept by allowing tokens with attached data values, called the token colors (see
[30]). Formally, in addition to the static parts of the classical Petri net, a colored Petri
net comes equipped with a finite set Σ of color sets, also called types, together with
a color function C : P → Σ (“all tokens in a given place p ∈ P represent data of
the same type”). Now, a marking is not just a mapping P → N (“the count of the
tokens”), but a mapping Δ → N, where Δ = {(p, c) | p ∈ P, c ∈ C(p)}. Imagine,
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for example, that the type C(p) represents certain blocks of data. Then, in order to
properly process the data stored in c ∈ C(p), we typically need to know which block
out of how many blocks c is. That is, implementing the respective type means to
equip each block with two integer numbers. We will see below how to realize this in
GPI-Space.

Type safety is enforced in GPI-Space by rejecting Petri nets whose flow relation
does not respect the imposed types. More precisely, transitions are enriched by the
concept of a port, which is a typed place holder for incoming or outgoing connections.
Type safety is in general checked statically; for transitions relying on legacy code, it is
also checked dynamically during execution (“GPI-Space does not trust legacy code”).

Expression Language GPI-Space includes an embedded programming language
which serves a twofold purpose. On the one hand, it allows for the introduction and
handling of user-defined types. The type for blocks of data as discussed above, for
example, may be described by the snippet

<struct name="block">
<field name="num" type="uint"/>
<field name="max" type="uint"/>

</struct>

Types can be defined recursively. Moreover, GPI-Space offers a special kind of transi-
tion which makes it possible to manipulate the color of a token. In the above situation,
for instance, the “next block” is specified by entering

${block.num} := ${block.num} + 1

Again, all such expressions are type checked.
The second use made of the embedded language is the convenient handling of

“tiny computations”. Such computations can be executed directly within the work-
flow engine rather than handing them over to the runtime system for scheduling and
execution, and returning the results to the workflow engine.

Conditions In GPI-Space, the firing condition of a transition can be subject to a
logical expression depending on properties of the input tokens of the transition. To
illustrate this, consider again the net Ψ from Example 35, and suppose that the input
place i contains tokens representing blocks of data as above. Moreover, suppose that
the transition s is just duplicating the blocks in order to apply f and g to each block.
Now, the transition j typically relies on joining the blocks of output data in l and r
with the same number. This is implemented by adding the condition

${l.num} :eq: ${r.num}

to j . This modifies the behavior of the Petri net in a substantial way: The transition j
might stay disabled, even though there are enough tokens available on all input places.
This change in behavior has quite some effects on the analysis of the net: For example,
conflicts2 might disappear, while loop detection becomes harder. GPI-Space comes
with some analysis tools that take conditions into account. It is beyond the scope of this
paper to go into detail on how to ensure correctness in the presence of conditions. Note,

2 A conflict arises from a place p holding at least one token if p is an input place to more than one transition,
but does not hold enough tokens to fire all these transitions.
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however, that the analysis is still possible in practically relevant situations, that is, in
situations where a number of transitions formulate a complete and non-overlapping
set of conditions. (Hence, there are no conflicts or deadlocks.)

4.2.3 Example: Reduction and Parallel Reduction

Parallelism can often be increased by splitting problems into smaller independent
problems. This requires that we combine (computer scientists say: reduce) the respec-
tive partial results into the final result. Suppose, for example, that the partial results
are obtained by executing a Petri net, say, Π , and that these results are attached as
colors to tokens which are all added to the same place p of Π . Further suppose that
reducing the partial results means to apply an addition operator+. Then, the reduction
problem can be modeled by the Petri net

p + s

which fits into Π locally as a subnet. The place s holds the sum which is updated as
long as partial results are computed and assigned to the place p. The update operation
executes si+1 = si + pi , where si is the current value of the sum on s and pi is one
partial result on p. Note that this only makes sense if+ is commutative and associative
since the Petri net does not guarantee any order of execution. Then, in the end, the
value of the sum on s is, say, s0 + p0 + · · · + pn−1, where s0 is the initial value of the
state. Note that s0 needs to be set up by some mechanism not shown here.

Often this is not what is wanted, for example, because it may be hard to set up an
initial state. The modified subnet

p + s

↓ •

computes p0+· · ·+ pn−1 on s, and does not require any initial state. The first execution
of this net fires the transition ↓ which just moves the single available token from p to
s, disabling itself. The transition + is not enabled as long as ↓ has not yet fired, so
there is no conflict between ↓ and +.

It is nice to see that Petri nets allow for local rewrites, local in the sense that no
knowledge about the surrounding net is required in order to prove the correctness of
the rewrite operation. Note, however, that both Petri nets above expose no parallelism:
Whenever + fires, the sum on s is used, and no two incarnations of + can run at the
same time. The modified subnet

→

→

•p

s

r

+

123



Foundations of Computational Mathematics (2021) 21:767–806 793

shows a different behavior. Now, the tokens from p are distributed on the two places
s and r . As soon as both s and r hold a token, one incarnation of + can fire. At the
same time, the transitions → can continue to move tokens to s and r , enabling +,
and finally leading to multiple incarnations of + running at the same time. Note that
the output of + is fed back to p, which makes much sense as it is just another partial
result.

Altogether, this example shows how Petri nets can be used for a compact and
executable specification of expected behavior, and then be changed gradually to obtain
different non-functional properties (for example, to introduce parallelism).

5 Modeling the Smoothness Test as a Petri Net

Using the inherently parallel structure of the hybrid smoothness test within GPI-Space
requires a reformulation of our algorithms in the language of Petri nets. This will also
emphasize the possible concurrencies, which will automatically be exploited by GPI-
Space.

The Petri net Γ below

i t

rt

d

j

s

hd

h j

r j

o

is a representation of the hybrid smoothness test as summarized in Algorithm 1. A
computation startswith one token on the input place i , representing a triple (IW , IX , q).
At the top level, wewill typically start with IW = 〈0〉 and q = 1, that is, withW = A

n
K
.

Transition t performs the check for (local) equality as in step 1 of Algorithm 1. Its
output token represents, in addition to a copy of the input triple, a flag indicating the
result of the check. By the use of conditions, it is ensured that the token will enable
exactly one of the subsequent transitions. If the result of the check is true, which
can only happen for tokens produced at the deepest level of recursion, then the variety
is smooth in the current chart, and no further computation is required in this chart.
In this case, the token will be removed by transition rt . If the result is false, then
the next action depends on whether the prescribed codimension limit c in step 3 of
Algorithm 1 has been reached.

If the codimension of X in W is ≤ c, then transition j will fire, which corresponds
to executing Algorithm 4 EmbeddedJacobian. If the Jacobian check gives true,
the variety is smooth in the current chart, and the token will be removed by transition
r j . If the Jacobian check gives false, then the variety is not smooth. The transition
h j will then add a token with the flag false to the output place o. Here, the letter
h stands for “Heureka”, the Greek term for “I have found”. If a Heureka occurs, all
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remaining tokens except that one on o are removed by clean-up transitions not shown
in Γ , no new tasks are started, and all running work processes are terminated.3

If the codimension of X in W is larger than c, then transition d will fire, which
corresponds to executing Algorithm 2 DeltaCheck (considered as a black box at
this point). The ensuing output token represents, in addition to a copy of (IW , IX , q),
a flag indicating the result of DeltaCheck. If this result is true, then a descent to
an ambient space of dimension one less is necessary. In this case, transition s fires,
performing Algorithm 3 DescentEmbeddingSmooth. This algorithm outputs a
list of triples (IW ′ , IX , q ′), each of which needs to be fed back to place i for further
processing. Note however, that in the formal description of Petri nets in Sect. 4.2, we
do not allow that a single firing of a transition adds more than one token to a single
place. To model the situation described above in terms of a Petri net, we therefore
introduce the subnet

s e i

x

between s and i . Now, when firing, the transition s produces a single output token,
which represents a list L of triples as above. As long as L is non-empty, transition
e iteratively removes a single element from L and assigns it to a token which is
added to place i . Finally, transition x deletes the empty list. These operations are
formulated with expressions and conditions (see Sect. 4.2.2) and can be parallelized
as in Example 4.2.3. If, on the other hand, DeltaCheck returns false, then the
variety is not smooth. Correspondingly, the transition hd fires, adding a token with the
flag false to the output place o and triggering a Heureka.

If all tokens within Γ have been removed, all charts have been processed without
detecting a singularity, and X is smooth. In this case, a token with flag true will
be added4 to the output place o. Together with the fact that the recursion depth of
Algorithm DescentEmbeddingSmooth is limited by the codimension of X inW
and that each instance of it only produces finitely many new tokens, it is ensured that
the execution of the Petri net terminates after a finite number of firings with exactly
one token at o. GPI-Space automatically terminates if there are no more enabled
transitions.

Note that, in addition to the task parallelism visible in Γ (see also Example 35), all
transitions in Γ allow for multiple parallel instances, realizing data parallelism in the
sense of Example 34.

So far, we have not yet explained how to model Algorithms 3 to 4, on which
Algorithm 1 is based. Algorithm 4 EmbeddedJacobian, for instance, has been
considered as a black box represented by transition j . Note, however, that this algo-
rithm exhibits a parallel structure of its own: Apart from updating the ideal Q in step
9 in order to use the condition q /∈ Q as a termination criterion for the while loop
in step 5, the computations within the loop are independent from each other. Hence,

3 Full support for the concept of a Heureka has been added only recently to GPI-Space. When writing this
paper, our implementation had to rely on a work-around instead.
4 This is done using some additional places and transitions not shown in Γ .
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waving step 9 and the check q /∈ Q is a trivial way of introducing data parallelism:
Replace the subnet

j

of Γ by the Petri net

p j ′

Here, the transition p generates tokens corresponding to the submatricesM of Jac(IW )

as described in step 2 of the algorithm. Transition j ′ performs the embedded Jacobian
criterion computations in steps 8 and 10 to 14.

Of course, in this version, the algorithm may waste valuable resources: There are
a potentially large number of tokens generated by p which lead to superfluous calcu-
lations further on. This suggests to exploit the condition q /∈ Q also in the parallel
approach. That is, transition j ′ should fire only until a covering of X ∩ D(q) has been
obtained and then trigger a Heureka for the EmbeddedJacobian subnet. However,
at this writing, creating the infrastructure for a local Heureka is still subject to ongo-
ing development. To remedy this situation at least partially, our current approach is
to first compute all minors and collect them in Q, and then to use a heuristic way5 of
iteratively dropping minors as long as q ∈ Q.

Remark 36 Both Algorithm 2 DeltaCheck (see step 8) and Algorithm 3
DescentEmbeddingSmooth (see step 6) can be parallelized in a similar fashion.

The logic in all transitions is implemented in C++, usinglibSingular, the C++-
library version of Singular, as the computational back-end. Some parts are written
in the Singular programming language, in particular those relying on functionality
implemented in theSingular libraries. In order to transfer themathematical data from
oneworkprocess to another one (possibly runningon adifferentmachine), the complex
internal data structures need to be serialized. For this purpose, we use already existing
functionality of Singular, which relies on the so-called ssi-format. This serialization
format has been created to efficiently represent Singular data structures, in particular
trees of pointers.6 The mathematical data objects communicated within the Petri net
are stored in files located on a parallel file-system BeeGFS,7 which is accessible from
all nodes of the cluster. Alternatively, we could also use the virtual memory layer
provided by GPI-Space. However, on the cluster used for our timings, the speed of the
(de)serialization is limited by the CPU and not the underlying storage medium.

The implementation of the hybrid smoothness test can be used through a startup
binary, which is suitable for queuing systems commonly used in computer clusters.
Moreover, there is also an implementation of a dynamical module for Singular,
which allows the user to directly run the implementation from within the Singular

5 Radical membership seems to offer a more conceptual way: With notation as in Algorithm 4, we have
gm ∈ Q+ IW for somem. Given a representation gm = ∑

i ai qi +
∑

j b j f j with minors qi = det(Mi ) ∈
Q, the D(qi ) with ai �= 0 cover X ∩ D(g). However, finding such representations relies on Gröbner bases
computations and is, hence, not effective.
6 See https://www.singular.uni-kl.de/Manual/4-1-2/sing_119.htm#SEC159.
7 See https://de.wikipedia.org/wiki/BeeGFS.
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user interface. It should be noted that neither the instance of Singular providing
the user interface nor libSingular had to be modified in order to cooperate with
GPI-Space.

6 Applications in Algebraic Geometry and Behavior of the
Smoothness Test

To demonstrate the potential of the hybrid smoothness test and its implementation
as described in Sect. 5, we apply it to problems originating from current research
in algebraic geometry. We focus on two classes of surfaces of general type, which
provide good test examples since their defining ideals are quite typical for those arising
in advanced constructions in algebraic geometry: They have large codimension, and
their rings of polynomial functions are Cohen–Macaulay and even Gorenstein. Due
to their structural properties, rings of these types are of fundamental importance in
algebraic geometry [14].

We begin by giving some background on our test examples and then provide timings
and investigate how the implementation scales with the number of cores.

6.1 Applications in Algebraic Geometry

The concept of moduli spaces provides geometric solutions to classification problems
and is ubiquitous in algebraic geometry where we wish to classify algebraic varieties
with prescribed invariants. There is amultitude of abstract techniques for the qualitative
and quantitative study of these spaces, without, in the first instance, taking explicit
equations of the varieties under consideration into account. Relying on equations
and their syzygies (the relations between the equations), on the other hand, we may
manipulate geometric objects using a computer. In particular, if an explicit way of
constructing a general element of a moduli space M is known to us, we may detect
geometric properties of M by studying such an element computationally. Deriving a
construction is the innovative and often theoretically involved part of this approach,
while the technically difficult part, the verification of the properties of the constructed
objects, is left to the machine.

Arguably, the most important property to be tested here is smoothness. To provide
a basic example of how smoothness affects the properties of the constructed variety,
note that a smooth plane cubic is an elliptic curve (that is, it has geometric genus one),
whereas a singular plane cubic is a rational curve (which has geometric genus zero).

The studyof (irreducible smooth projective complex) surfaceswith geometric genus
and irregularity pg = q = 0 has a rich history and is of importance for several
reasons, with surfaces of general type providing particular challenges (see [2,3]).
The self-intersection of a canonical divisor K on a minimal surface of general type
with pg = q = 0 satisfies 1 ≤ K 2 ≤ 9, where the upper bound is given by the
Bogomolov–Miyaoka–Yau inequality (see [2, VII, 4]). Hence, these surfaces belong
to only finitely many components of the Gieseker moduli space for surfaces of general
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type [21]. Interestingly enough, Mumford asked whether their classification can be
done by a computer.

Of particular interest among these surfaces are the numerical Godeaux and numer-
ical Campedelli surfaces, which satisfy K 2 = 1 and K 2 = 2, respectively. As Miles
Reid puts it [45], these “are in some sense the first cases of the geography of surfaces
of general type, and it is somewhat embarrassing that we are still quite far from having
a complete treatment of them”. Their study is “a test case for the study of all surfaces
of general type”.

For our timings, we focus on two specific examples, each defined over a finite prime
field k. Though, mathematically, we are interested in the geometry of the surfaces in
characteristic zero, computations in characteristic p (which are less expensive) are
enough to demonstrate the behavior of the smoothness test.

The first example is a numerical Campedelli surface X with torsion group Z/6Z,
which has been constructed in [41] (we work over the finite field k = Z/103Z which
contains, as required by the construction, a primitive third root of unity). The construc-
tion yields X as a Z/6Z-quotient of a covering surface X̃ which, in turn, is realized as
a subvariety of the weighted projective space PK(1, 1, 1, 1, 1, 2, 2, 2), where K = k.
That is, the homogeneous coordinate ring of the ambient space is a polynomial ring
with 5 variables of degree 1 and 3 variables of degree 2, and the codimension of X
in that space is 5. In fact, X̃ is constructed from a hypersurface in projective 3-space
P
3
K
using Kustin–Miller unprojection [33]. This iterative process increases in every

iteration step the codimension of a given Gorenstein ring by one, while retaining the
Gorenstein property. See [10,11] for an outline and implementation.We use the hybrid
smoothness test to verify the quasi-smoothness of X̃ , that is, the smoothness of the
affine cone over X̃ outside the origin. This amounts to apply the test in each of the 8
(affine) coordinate charts of A

8
K
\{0}. Note that in general, quasi-smoothness does not

automatically guarantee smoothness due to the singularities of the weighted projective
space. In our case, however, the smoothness of both surfaces X̃ and X follows from
the quasi-smoothness of X̃ by a straightforward theoretical argument.

The second example is a numerical Godeaux surface with trivial torsion group. It is
taken from ongoing research work by Isabel Stenger, who uses a construction method
suggested by Frank-Olaf Schreyer in [46]. The resulting surface is a subvariety of
P
13
K

(of codimension 11) which is cut out by 38 quadrics (and is again realized over
the finite field Z/103Z). Using our implementation, we verify the smoothness of the
surface by verifying smoothness in each of the 14 coordinate charts of P

13
K
. Note that

to the best of our knowledge, this cannot be done by other means.

6.2 Behavior of the Smoothness Test

The timings in this subsection are taken on a cluster provided by Fraunhofer ITWM
Kaiserslautern. This cluster consists of 192 nodes, each of which has 16 Intel Xeon
E5-2670 cores running at 2.6 GHz with 64 GB of RAM (so the cluster has a total of
3072 cores and 12 TB of RAM). The nodes are connected via FDR Infiniband. Note
that the cores are utilized by GPI-Space in a non-hyperthreading way, that is, with a
maximum of 16 jobs per node.
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Table 1 Runtimes of the hybrid
smoothness test when applied to
the numerical Campedelli
surface

Number of cores Time/s Number of cores Time/s

1 2686.98 48 68.64

2 1350.67 64 51.98

4 684.77 80 39.64

6 466.96 96 32.30

8 356.18 112 27.56

10 290.75 128 26.15

12 245.19 160 21.36

14 215.46 192 19.10

16 191.65 224 18.52

32 99.06 256 18.41

In the case of the numerical Campedelli surface, we apply the hybrid smoothness
test with a descent in codimension to minors of size 2 × 2. Timings are given in
Table 1 for 1 up to 256 cores (the powers of two are shown in bold), where we always
take the average over 100 runs. See also Fig. 1 for a visualization, where the data
points correspond to the entries of Table 1, and the plotted curve is a least-square fit
of the runtimes using a hyperbola. In Fig. 2, we show how the implementation scales
with the number of cores by plotting the speedup factor (relative to the single core
runtime) versus the number of cores. We observe a linear speedup up to 160 cores.
Figure 3 visualizes the parallel efficiency (speedup divided by number of cores) of the
computation.

To give some explanation for this observation, we note that starting from the 8 affine
coordinate charts of A

8
K
\{0}, the hybrid smoothness test in its current implementation

may branch into up to 323 charts at the leaves of the resulting tree of charts. As it
turns out, however, already a proper subset of the coordinate charts is enough to cover
the affine cone over X̃ outside the origin, and the algorithm will terminate once this
situation has been achieved. Typically, the algorithm finishes with a total of about 240
charts. Hence, we cannot expect any scaling beyond this number of cores. Note that
the descent in codimension involves a smaller number of charts, which also limits
the scaling. Applying the projective Jacobian criterion, that is, computing the ideal J
generated by the codimension-sized minors of the Jacobian matrix and saturating the
ideal IX + J with respect to the irrelevant maximal ideal (which is generated by all
variables), takes about 580s on one core and uses about 15 GB ofmemory.We observe
that while single runs of the massively parallel implementation take more than these
580s, by passing to a larger number of cores, we can achieve a speedup of at least
factor 30 compared to the projective Jacobian criterion. We also remark that while
the computation of the minors in the Jacobian criterion can be done in parallel, the
subsequent saturation (which takesmost of the total computation time) is an inherently
sequential process. With regard to memory usage, each of the individual Jacobian
criterion computations in Algorithm 4 EmbeddedJacobian does not exceed 450
MB of RAM (due to the small size of minors after the descent).
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Fig. 1 Display of the runtimes from Table 1 for the numerical Campedelli surface (in seconds)
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Fig. 2 Scaling with the number of cores of the runtimes from Table 1 for the numerical Campedelli surface
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Fig. 3 Parallel efficiency determined from runtimes in Table 1 for the numerical Campedelli surface

Table 2 Runtimes of the hybrid
smoothness test when applied to
the numerical Godeaux surface

Number of nodes Number of cores Time/s

1 16 53,000

2 32 33,000

4 64 12,200

8 128 3100

16 256 2460

In case of the numerical Godeaux surface, we apply the hybrid smoothness test
with a descent in codimension down to minors of size 3×3. So far, smoothness of this
surface could not be verified by the projective Jacobian criterion, which runs out of
memory exceeding the available 384 GB of RAM of the machine we used. The hybrid
smoothness test easily handles this example, using a maximum of 3.1 GB of RAM for
one of the individual Jacobian criterion computations after the descent. Timings are
given in Table 2

for 16 up to 256 cores, where we always take the average over 10 runs. See also
Fig. 4 for a visualization, where the data points correspond to the entries of Table 2
and the plotted curve is again a least-square fit of the runtimes using a hyperbola.

We observe that in this example, we actually get a super-linear speedup; that is,
when doubling the number of cores used by the algorithm, the computation time drops
by more than a factor of two. We have identified two reasons for this effect.

One reason is purely technical: If more cores than tasks are available to the algo-
rithm, that is, the load factor is smaller than one, then each individual computation
can use a larger memory bandwidth, which speeds up the computation. To indicate the
impact of the workload on the performance, Fig. 5 shows the time used for parallel
runs of a given number of copies of a single Jacobian criterion computation on a single
node. While the load factor of the smoothness test is close to 1 when executed on less
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Fig. 4 Display of the runtimes from Table 2 for the numerical Godeaux surface (in seconds)

than 64 cores, it drops to about 0.7 on 256 cores, which amounts to a speedup of about
30%.

More important is the second reason, which stems from the structure of the algo-
rithm and the mathematics behind the surface under consideration: The smoothness
of this surface is determined by considering (on the first level of the algorithm) all
14 affine charts of the ambient projective space P

13
K
. The algorithmic subtrees of 4

of these charts do not terminate during the descent in codimension within 50,000s,
while the final covering obtained by the algorithm will always consist of the same 4 of
the remaining 10 charts: Since the implementation branches into all available choices
in a massively parallel way and terminates once the surface is completely covered
by charts, it will automatically determine that choice of charts which leads to the
smoothness certificate in the fastest possible way. Note that the 10 remaining charts
above involve a total of 115 subcharts, so we cannot expect much scaling beyond this
number of cores.
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Fig. 5 Runtimes for parallel individual Jacobian criterion computations on one node (in seconds)

We have done a simulation of this behavior of the Petri net using the actual computa-
tion times of the individual substeps of the algorithm for all available choices (sampling
all timings for the substeps in the same environment). The simulated scaling with the
number of cores matches very well the actual behavior of the implementation on the
cluster, see Fig. 6 for the synthetic timings (normalized to value one for 8 cores): With
up to 4 available cores, all cores will run into an unfavorable chart with probability
almost 1, while for 8 to 128 cores, we observe a super-linear speedup. As expected
from the geometric structure of the specific problem, the simulation does not show a
significant further speedup beyond 128 cores.

To summarize, when working with charts, we have the flexibility of choosing a
coveringwhich leads to fast individual computations that arewell balancedwith regard
to their runtime, resulting in a good performance of the overall parallel algorithm.
Due to the unpredictability of the individual computations, this choice cannot be
made a priori in a heuristic way. However, with a massively parallel approach, the
best possible choice is found automatically by the algorithm. The chart-based nature
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Fig. 6 Simulated timings for determining smoothness of the numerical Godeaux surface via the hybrid
smoothness test

of the smoothness test reflects a fundamental paradigm of algebraic geometry, the
description of schemes and sheaves in terms of charts. One can, hence, expect that a
similar approach will also be useful for further applications in algebraic geometry, for
example, in the closely related problem of resolution of singularities.
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