
Computational Mechanics (2021) 67:583–600
https://doi.org/10.1007/s00466-020-01950-x

ORIG INAL PAPER

Meshmoving techniques in fluid-structure interaction: robustness,
accumulated distortion and computational efficiency

Alexander Shamanskiy1 · Bernd Simeon1

Received: 19 June 2020 / Accepted: 16 November 2020 / Published online: 12 December 2020
© The Author(s) 2020

Abstract
An important ingredient of any moving-mesh method for fluid-structure interaction (FSI) problems is the mesh moving
technique (MMT) used to adapt the computational mesh in the moving fluid domain. An ideal MMT is computationally
inexpensive, can handle large mesh motions without inverting mesh elements and can sustain an FSI simulation for extensive
periods of time without irreversibly distorting the mesh. Here we compare several commonly used MMTs which are based
on the solution of elliptic partial differential equations, including harmonic extension, bi-harmonic extension and techniques
based on the equations of linear elasticity. Moreover, we propose a novel MMT which utilizes ideas from continuation
methods to efficiently solve the equations of nonlinear elasticity and proves to be robust even when the mesh undergoes
extreme motions. In addition to that, we study how each MMT behaves when combined with the mesh-Jacobian-based
stiffening. Finally, we evaluate the performance of different MMTs on a popular two-dimensional FSI benchmark reproduced
by using an isogeometric partitioned solver with strong coupling.

Keywords Isogeometric analysis · Arbitrary Lagrangian–Eulerian methods · Mesh-Jacobian-based stiffening · Nonlinear
elasticity · Continuation methods

1 Introduction

Fluid-structure interaction (FSI) constitutes a class of prob-
lems involving two-way dependence between structural
objects and a fluid. As such, FSI is a vast topic with
applications spanning a spectrum from aerospace and civil
engineering [1] to biomechanical and cardiovascular sim-
ulations [9]. In FSI problems, the fluid exerts a force on
the structure which deforms in response. As the structure
moves, it changes the shape of the domain occupied by the
fluid together with the fluid motion and, as a result, the force
that the fluid exerts on the structure. This two-way coupling
between the fluid and structure behavior as well as the neces-
sity to accommodate the fluid domain motion in both the
continuous and discrete formulations of the problem is what
makes FSI so notoriously complex.
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Since FSI problems rarely admit analytical solutions,
computational methods are widely adopted in FSI research.
Here, one can distinguish between the static-mesh and
moving-mesh methods. While the former attempt to resolve
the motion of the fluid domain implicitly, for example by
means of a stationary background Cartesian mesh [21], the
latter deal with the motion of the fluid domain by tracking
its boundary and adapting the computational mesh corre-
spondingly. In thiswork,we study and compare variousmesh
moving techniques (MMTs) which can be used to adapt the
fluid mesh if the moving-mesh methods are used. The main
focus here lies on the robustness of a given MMT, that is,
how much mesh distortion it introduces and howmuch mesh
motion it can handle without entangling or inverting mesh
elements. Additionally, we pay attention to computational
complexity of MMTs, which can significantly increase the
overall FSI simulation time if left unchecked.

To study performance of MMTs in their natural habitat,
we employ a popular two-dimensional FSI benchmark from
[33]. In the benchmark, an unstable flow of a viscous fluid
leads to development of the vortex shedding phenomenon
which results in oscillations of a flexible beam structure.
The oscillations grow in magnitude until they reach a stable
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periodic regime which lends itself well to studying possible
long-term effects of MMTs on the fluid mesh. One of such
long-term effects is accumulatedmesh distortionwheremesh
elements increasingly become permanently distorted, dete-
riorating the simulation accuracy. In addition to the original
benchmark, we employ its simplified version with no fluid
mechanics involved to perform a large number of computa-
tionally inexpensive tests. In this way, we can concentrate on
mesh motion and conduct a detailed analysis of the behavior
of MMTs.

To reproduce the FSI benchmark, we use a partitioned
solver with strong coupling and Aitken relaxation [17].
Although modern space-time (ST) methods are becoming
increasingly common in FSI [1,25,32], we resort to classi-
cal arbitrary Lagrangian–Eulerian (ALE) methods [1,12,20]
which are more straightforward in implementation. Our
choice in favor of a basic partitioned ALE solver is justi-
fied since both ST and ALE methods make use of the same
MMTs, so we can focus on mesh motion in this paper.

All MMTs we consider here are based on solution of
elliptic partial differential equations. These include existing
techniques such as harmonic extension [8,35], bi-harmonic
extension [19] and a widely adopted technique based on
linear elasticity theory [14,31].Moreover,we propose an effi-
cientMMTbased on the equations of nonlinear elasticity and
a logarithmic neo-Hookeanmaterial lawwhich we refer to as
tangential incremental nonlinear elasticity (TINE). Although
techniques based on the equations of nonlinear elasticity have
been proposed before [24,26,27], TINE is novel in that it
uses the idea of a tangential continuation method [7,22] to
efficiently solve the corresponding nonlinear equations. As a
result, TINE is only slightlymore computationally expensive
than the linear-elasticity-based techniques which are linear
in nature. On the other hand, it can handle as much mesh
motion but does not suffer from the accumulated distortion
effect.

Robustness of any MMT can be increased by additional
augmentations. Probably the most popular one is the mesh-

Jacobian-based stiffening (MJBS) [14,23,30,31] which turns
individual mesh elements stiffer or softer depending on their
size and shape. In this work, we study how different MMTs
react to the MJBS. Although not considered here, further
possible MMT augmentations include solid layer extension
[29] and element relaxation [26,27].

The research we present in this work has been conducted
in the framework of isogeometric analysis (IGA) [6,11].
Despite that, the results are applicable to classical finite ele-
ments methods or any other mesh-based method for solving
partial differential equations.

The rest of this paper is structured as follows. Section 2
outlines geometry and settings of the FSI benchmark and
fixes the necessary notation. In Sect. 3, we describe vari-
ous MMTs considered in this work as well as the MJBS. In
Sect. 4, we consider the simplified benchmark and conduct a
detailed analysis of the short-term and long-term behavior of
different MMTs in artificial FSI-like conditions. After that,
we proceed to performing a full FSI simulation of the bench-
mark in Sect. 5. We study the performance of the MMTs and
check if the choice of a particular technique affects the sim-
ulation results. Finally, we discuss the results of the MMT
analysis and FSI simulations, draw conclusion and outline
further research directions in Sect. 6.

2 Benchmark description

In this section, we describe the geometry and mathematical
model of the FSI benchmark from [33]. It studies the flow of
an incompressible Newtonian fluid through a 2D channel as
the fluid interacts with a submerged structure. The channel
is a rectangle [0, 2.2] × [0, 0.41]. The structure consists of
a rigid disk B0.05(0.2, 0.2) and a flexible beam [0.2, 0.6] ×
[0.19, 0.21]\B0.05(0.2, 0.2) which is attached at its left end
to the boundary of the disk. Figure 1 illustrates the setting;
note that the geometry is intentionally non-symmetric.

Fig. 1 Top: the flow channel
and the submerged structure in
the initial configuration. Bottom:
close-up on the structure
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The top and bottom walls of the channel are impermeable
to the fluid. The fluid enters the channel through the left wall
with a prescribed velocity and exits through the right wall
freely. The presence of the submerged structure changes the
flow of the fluid and, in response, the fluid exerts a certain
force on the structure. Thus, this is an FSI problem. Depend-
ing on the prescribed material parameters of the fluid and
beam as well as on the inflow fluid velocity, this fluid force
can result in a noticeable deformation of the beam. The beam
deformation alters the shape of the flow channel, the flow
itself and, as a consequence, the force exerted on the struc-
ture by the fluid. Such systems with a two-way interaction
between components are called coupled systems.

In what follows, when we use the word “structure”, we
refer to the flexible beam only. If the rigid disk is also
considered, we explicitly mention it. Throughout this work,
we use subscripts s and f to distinguish between objects
related to the structure and fluid respectively. Moreover,
we use subscript a when dealing with ALE mappings and
related objects. Let � f (t) ⊂ R

2 and �s(t) ⊂ R
2 denote

domains occupied by the fluid and structure respectively at
time t ∈ [0, T ]. Additionally, we use �0

f = � f (0) and

�0
s = �s(0) to denote the fluid and structure domains at time

t = 0. Furthermore, we use �(t) to denote the FSI interface
∂� f (t)∩∂�s(t)where the interaction between the fluid and
structure takes place. Correspondingly, �0 = �(0) denotes
the FSI interface at time t = 0. In the rest of this section,
we briefly formulate the equations that we use to describe
the motion of the beam and the fluid as well as their interac-
tion. The main goal here is to fix the notation necessary for
the ensuing description of MMTs. We encourage the reader
to consult the following references for more information on:
finite element discretization for the Navier–Stokes equations
for incompressible flows [13]; finite element discretization
for nonlinear elasticity problems [2,34]; ALE formulation of
FSI problems [1,19]; partitioned solution approach to FSI
problems [17].

2.1 Structure motion

We assume that the structure behavior can be characterized
as elastic and compressible. Let the structure in its initial
(undeformed) configuration occupy the domain �0

s . We can
describe the structure motion in terms of a displacement field
us : �0

s × [0, T ] → R
2. Note that displacement us can

describe a rigid body motion with no deformation involved.
Information onwhether actual deformation of�0

s takes place
is contained in the deformation gradient Fs = I+ ∇us . Two
important objects derived from the deformation gradient are
the Green–Lagrange strain tensor Es = (FT

s Fs − I)/2 and
the Jacobian determinant Js = det Fs .

For thematerial behavior,we use the St.Venant–Kirchhoff
constitutive law which links the second Piola–Kirchhoff
stress tensor Ss to the Green–Lagrange strain tensor Es :

Ss = λs tr(Es)I + 2μsEs . (1)

Thematerial law (1) includes theLaméparametersλs andμs ,
which are constitutive parameters describing physical prop-
erties of the material. They can be computed from Young’s
modulus Es and Poisson’s ration νs as

λs = νs Es

(1 + νs)(1 − 2νs)
and μs = Es

2(1 + νs)
. (2)

Second Piola–Kirchhoff stress tensor Ss measures forces
appearing in the deformed structure with respect to its initial
configuration �0

s . In FSI applications, it is important to have
an ability to express these forces with respect to the deformed
configuration �s(t). This can be achieved by means of the
Cauchy stress tensor σσσ s , which is related to Ss by

σσσ s = 1

Js
FsSsFT

s . (3)

In the presence of a given external acceleration g : �0
s ×

[0, T ] → R
2, the displacement us should satisfy the local

conservation equations of linear momentum

ρs üs = divPs + ρsg in �0
s . (4)

Here, ρs is the structure density which we assume to be con-
stant in �0

s , and Ps = FsSs is the first Piola–Kirchhoff stress
tensor. Note that Eq. (4) are formulated in the stationary
domain �0

s .

2.2 Fluidmotion

To describe the fluidmotion, we use the Navier–Stokes equa-
tions for incompressible flows. If a computational domain
� f does not change with time, the Navier–Stokes equations
have the following form:

ρ f v̇ f + ρ f ∇v f · v f = divσσσ f + ρ f g, (5)

div v f = 0 in � f . (6)

Here, v f : � f × [0, T ] → R
2 is a vector field describing

the fluid velocity at a given point in �, ρ f is a constant fluid
density, and σσσ f denotes a Cauchy stress tensor. Behavior of
an incompressible Newtonian fluid is characterized by the
following constitutive law:

σσσ f = −p f I + ρ f ν f (∇v f + ∇vTf ), (7)
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where p f : � f × [0, T ] → R is a pressure field, and ν f

denotes the kinematic viscosity of the fluid.
In FSI applications, one has to account for the motion

of the fluid domain. In this work, we consider a common
strategy based on ALE mappings. Put simply, an ALE map-
ping is nothing else but a motion of the computational
mesh in the fluid domain described in terms of an auxil-
iary displacement field ua : �0

f × [0, T ] → R
2 such that

� f (t) = �0
f + ua(·, t). With an ALE mapping, the Navier–

Stokes equations can be formulated in the moving domain
� f (t):

ρ f v̇ f + ρ f ∇v f · (v f − u̇a) = divσσσ f + ρ f g, (8)

div v f = 0 in � f (t). (9)

Since the fluid domain motion is driven by the structure
deformation, the ALE displacement ua has to comply with
the structure displacement us on the FSI interface:

ua = us on �(t). (10)

Inside the fluid domain, ua can be chosen arbitrary, hence the
term ALE. The only condition is that the ALE displacement
should define an invertible deformation of the fluid domain.
This means that the following condition has to hold:

Ja = det Fa = det(I + ∇ua) > 0. (11)

The scope of this work is to compare different options for
defining the ALE displacement in the fluid domain provided
the structure displacement on the FSI interface.

2.3 Interaction conditions

Physical interaction between the fluid and structure takes
place on the FSI interface �(t). It is characterized by the
following two coupling conditions: the kinematic continuity

v f = u̇s on �(t), (12)

which assures that the fluid stays attached to the structure;
and the dynamic continuity

σσσ s · n = σσσ f · n on �(t) ⇔
Ps · n = Jaσσσ f F−T

a · n on �0, (13)

which maintains the balance of forces on the FSI interface.
If a partitioned approach to FSI is used, one has to enforce
the coupling conditions by exchanging information between
the fluid and structure solvers.

2.4 Initial and boundary conditions

To complete the definition of the benchmark,we provide suit-
able initial and boundary conditions. The system is initialized
with zero initial conditions for the fluid velocity, structure
displacement and structure velocity:

v f (·, 0) = 0 in �0
f ,

us(·, 0) = 0 in �0
s , u̇s(·, 0) = 0 in �0

s . (14)

The main energy source of the system is an inflow boundary
condition on thefluid velocity prescribed on the left end of the
channel ∂�in

f . The condition prescribes a parabolic velocity
profile

vpar =
(

vmax
( 2
0.41

)2
y(0.41 − y)
0

)
(15)

with the maximum inflow velocity vmax serving as an
adjustable parameter. In order to comply with the initial con-
ditions, vpar is made time-dependent by scaling it with time:

vin(t) =
{
vpar

1−cos(π t/2)
2 if t < 2s,

vpar if t � 2s.
(16)

The resulting time-dependent inflow boundary condition
v f = vin provides a smooth warm-up phase for the simu-
lation. On the right wall of the channel ∂�out

f , a do-nothing
condition σσσ f · n = 0 is prescribed. Additionally, a no-slip
boundary condition v f = 0 is set on the rest of the channel
wall ∂�ns

f = ∂�0
f \∂�in

f \∂�out
f \�0. Finally, the structure is

fixed (us = 0) on its left end ∂�0
s\�0.

2.5 Geometry parametrization

In the spirit of IGA, we model computational domains as
collections of tensor-product NURBS patches [18]. For the
structure, we use a single quadratic NURBS patch, whereas
the fluid domain is modeled with seven patches. Figure 2
illustrates the isoparametric mesh in the fluid domain after
several applications of uniform h-refinement. For simplic-
ity, we use matching parametrizations for neighboring fluid
patches as well as for the structure patch and the surrounding
fluid patches. This choice does not restrict the applicabil-
ity of our results; however, it significantly simplifies the
exchange of coupling information between the fluid and
structure solvers.

Let us consider one of the NURBS patches forming the
initial configuration of the fluid domain. Its parametrization
G0

f : [0, 1]2 → �0
f can be written in terms of control

points ck ∈ R
2 and tensor-product NURBS basis functions
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Fig. 2 Computational mesh in
the fluid domain. Three patches
adjacent to the beam are allowed
to move

Nk : [0, 1]2 → R as

G0
f (ξ, η) =

n∑
k=1

ck Nk(ξ, η). (17)

In IGA, we use the same NURBS basis functions to approx-
imate solutions to PDEs. In our case, we use Nk to discretize
the ALE displacement ua in space. Assuming that we use
time moments t0 = 0, . . . , ti , . . . , tN = T for the time dis-
cretization, we denote the ALE displacement at time ti by
uia . Its NURBS representation can be written as

uia(ξ, η) =
n∑

k=1

dik Nk(ξ, η), (18)

where dik are the corresponding control points. Given u
i
a , we

can easily construct a NURBS parametrization Gi
f of the

deformed fluid domain �i
f = � f (ti ) = �0

f + uia as

Gi
f (ξ, η) =

n∑
k=1

(ck + dik)Nk(ξ, η). (19)

NowGi
f can be used to discretize theNavier–Stokes Eqs. (8–

9) in the deformed configuration of the fluid domain.
As a final comment, let us mention that it is possible to

let only a portion of the fluid domain move while keep-
ing the rest fixed. An obvious advantage of this approach
is a considerable reduction in computational cost associated
with construction of ALE mappings. In this work, only three
patches of the fluid domain that are directly adjacent to the
FSI interface are allowed to move. In Fig. 2, they are high-
lighted in red. In our experience, these three patches aremore
than capable of absorbing deformation of the structure that
appears in this benchmark.

3 Meshmoving techniques

In this section, we introduce several commonly used MMTs
as well as propose certain variations to them. All considered
MMTs achieve the same goal: provided a displacement of
the FSI interface at a given time, they extend it into the fluid
domain. Note that although we present these techniques in

a 2D setting, one can readily apply them in 3D. When com-
paring different MMTs, we largely pay our attention to the
maximum amount of mesh motion a particular technique can
handle. That is, how much the mesh can move before the
bijectivity condition (11) is violated. A secondary measure
is of course the overall computational cost associated with
computing ALE mappings using a given MMT.

After MMTs, we describe theMJBSwhich we use to aug-
ment each of the considered techniques. Finally, we discuss
practical ways to checkwhether the bijectivity condition (11)
is satisfied.

3.1 Harmonic extension (HE/IHE)

Probably the simplest way to extend displacement of the FSI
interface into thefluid domain is bymeans of harmonic exten-
sion (HE) [8,19,35]. Given the interface displacement uis at
time ti , the ALE displacement uia is computed by solving
Laplace’s equation in the initial configuration of the fluid
domain �0

f for every displacement component:

�uia = 0 in �0
f , (20)

uia = uis on �0, (21)

uia = 0 on ∂�0
f \�0. (22)

The interface displacement uis serves as a Dirichlet boundary
condition on the FSI interface�0. At the rest of the boundary,
the prescribed displacement is zero. Note that the method
does not take into account information about the interface or
ALE displacement from the previous time step.

The HE technique is the least computationally expensive
way to construct ALE mappings. Let N be the number of
inner control points in the fluid domain. Since all displace-
ment components satisfy the same equation, they can be
computed by solving a single linear system with an N × N
matrix and an N × d right-hand side. Here, d is the problem
dimension; in our case, d = 2. Moreover, once the matrix is
assembled, it can be reused for all time steps, which drasti-
cally reduces the computational cost associated with matrix
assembly in IGA.At each time step, oneonlyhas to update the
right-hand side to take the current FSI interface displacement
into account. This can be performed efficiently by storing
a Dirichlet elimination matrix when assembling the main
matrix.
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Despite its computational efficiency, theHE technique has
serious disadvantages. First of all, it treats displacement com-
ponents as completely independent variables and does not
promote bijectivity of the ALE mapping in any way. Sec-
ond, solutions of Laplace’s equation in the vicinity of corners
behave like rπ/ω, where r is the distance to the corner and ω

is the corner angle. For reentrant corners, that is for ω > π ,
solutions do not belong to H1(�0

f ) since their derivatives
tend to infinity. As a consequence, the corresponding ALE
mapping may lose its bijectivity. Due to these two problems,
the HE technique usually is only able to handle rather small
mesh motions.

We propose a slight improvement to the HE technique
achieved by turning it into an incremental algorithm.Assume
that the ALE displacement uia at time ti is known. We can
use it to deform the initial configuration of the fluid domain
�0

f and obtain the deformed configuration�i
f = �0

f +uia as
Eq. (19) describes. We can then compute an ALE displace-
ment increment δui+1

a by solving Laplace’s equation in the
deformed configuration:

�δui+1
a = 0 in �i

f , (23)

δui+1
a = ui+1

s − uis on �i , (24)

δui+1
a = 0 on ∂�i

f \�i . (25)

And finally, we define the ALE displacement ui+1
a at time

ti+1 as uia + δui+1
a . Note that the resulting incremental har-

monic extension (IHE) technique is not equivalent to the HE
technique since ALE increments are computed in deformed
configurations of the fluid domain.

One advantage of the IHE technique is that it uses the
ALE displacement from the previous time step. Therefore,
IHE can be expected to perform slightly better than the HE
technique, meaning that it can handle larger mesh motions.
On the other hand, each step of the IHE technique is for-
mulated in a different configuration of the fluid domain than
the previous one. As a result, the technique requires matrix
assembly at every time step, which makes it more computa-
tionally expensive than HE.

In what follows, we apply the same ideas to other MMTs
and consider both their non-incremental and incremental
versions, which often share the same advantages and dis-
advantages as the HE and IHE techniques.

3.2 Bi-harmonic extension (BE/IBE)

The HE technique is weak when it comes to large mesh
motions. To overcome this problem, one can search for the
ALE displacement as a solution to the bi-harmonic equation:

�2ua = 0 in � f . (26)

Solutions of the bi-harmonic equation are known to be more
regular in comparison to Laplace’s equation and do not have
problems at reentrant corners [19].

However, this bi-harmonic extension (BE) technique is
often dismissed as too computationally expensive. Indeed, in
order to solve the bi-harmonic equation, one has two options:
either use C1-conforming elements, which in IGA requires
G1-continuity between patches [3,5]; or use mixed elements
with an auxiliary variable q to replace the bi-harmonic equa-
tion with two Laplace’s equations [4]:

�ua = �q, �q = 0 in � f . (27)

In this work, we consider only the latter option since it is
easier to implement for multi-patch geometries.

In our interpretation, the BE technique has the following
form: given the interface displacement uis at time ti , the ALE
displacement uia is computed by solving the following linear
system in the initial configuration of the fluid domain �0

f :

�uia = �q, �q = 0 in �0
f , (28)

uia = uis on �0, (29)

uia = 0 on ∂�0
f \�0, (30)

∇q · n = 0 on ∂�0
f . (31)

TheBE technique sharesmany similarities withHEwhich
make both techniques very efficient: it does not use infor-
mation from previous time steps; the linear system has to be
assembled only once; themultiple-right-hand-sides approach
can be used to compute all displacement components at once.
However, the resulting linear system is twice the size of the
HE linear system: the matrix is of size 2N × 2N , and the
right-hand size is of size 2N × d. Moreover, the linear sys-
tem has a saddle-point structure, so specialized linear solvers
are necessary to solve it efficiently.

Just like with the HE technique, we propose an incre-
mental variation of the bi-harmonic extension (IBE). An
increment δui+1

a is computed by solving the following sys-
tem in the deformed configuration �i

f :

�(δui+1
a ) = �q, �q = 0 in �i

f , (32)

δui+1
a = ui+1

s − uis on �i , (33)

δui+1
a = 0 on ∂�i

f \�i , (34)

∇q · n = 0 on ∂�i
f . (35)

After that, the ALE displacement ui+1
a at time ti+1 is defined

as uia + δui+1
a .

The IBE technique requires matrix assembly at each time
step but can potentially handle larger mesh motions than the
BE technique.
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3.3 Linear elasticity (LE/ILE)

The next MMT we consider is based on structural mechan-
ics. It is widely used in FSI applications and belongs to the
state-of-the-art in the field [1,23,32]. The core idea is to treat
the fluid domain as an elastic body and to construct ALE dis-
placement as a solution to the equations of linear elasticity:

divσσσ a(ua) = 0 in � f . (36)

Here, σσσ a is the Cauchy stress tensor related to the linearized
strain tensor εεεa = (∇ua + ∇uTa )/2 by the Hooke’s law:

σσσ a = λa tr(εεεa)I + 2μaεεεa . (37)

TheLamé parametersλa andμa depend onYoung’smodulus
Ea and Poisson’s ratio νa . Since we do not apply volumetric
or surface force to the fluid domain, Young’s modulus does
not affect the resultingALEdisplacement. On the other hand,
Poisson’s ratio is important because it regulates resistance of
the fluid mesh to volumetric changes. A too high value (close
to 0.5) would result in an almost incompressible behavior,
which could lead to excessive distortion of themesh elements
and numerical instabilities. In contrast to that, a too low value
(close to 0 or even negative) can reduce resistance of the
fluidmesh to bijectivity violation. Therefore, we recommend
choosing a value between 0.3 and 0.45. We refer to [22] for
a more thorough analysis of the effects of Poisson’s ratio on
the mesh motion.

Unlike the techniques based on harmonic and bi-harmonic
extension, the linear-elasticity-based MMT is best known in
its incremental version. That is, given the ALE displacement
uia at time ti , an increment δui+1

a is computed by solving the
linear elasticity equations in the deformed configuration of
the fluid domain �i

f :

divσσσ a(δui+1
a ) = 0 in �i

f , (38)

δui+1
a = ui+1

s − uis on �i , (39)

δui+1
a = 0 on ∂�i

f \�i . (40)

After that, the ALE displacement ui+1
a at time ti+1 is defined

as uia + δui+1
a . We refer to this technique as incremental

linear elasticity (ILE). The ILE technique is known for its
robustness and an ability to withstand large mesh motions.
However, little to no research has been conducted to explain
its superior behavior.

With respect to computational cost, the ILE technique
involves solving a linear system with a matrix of size
dN × dN and a right-hand size of size dN × 1. The lin-
ear system has to be reassembled at each time step. Note that
the size of the linear system depends on a dimension of the

problem. Therefore, it scales worse from 2D to 3D than the
IHE and IBE techniques.

For the sake of completeness, let us also study a non-
incremental version of the ILE technique. TheALE displace-
ment uia at time ti is computed by solving the equations of
linear elasticity in the initial configuration of the fluid domain
�0

f :

divσσσ a(uia) = 0 in �0
f , (41)

uia = uis on �0, (42)

uia = 0 on ∂�0
f \�0. (43)

Wecall this the linear elasticity (LE) technique.Althoughone
can only expect it to performwell for small deformations, it is
rather computationally inexpensive. Similarly to the HE and
BE techniques, the LE technique requires matrix assembly
only once and lets one reuse the matrix for every time step.

3.4 Nonlinear elasticity (TINE)

The last MMT we present in this paper is based on the equa-
tions of nonlinear elasticity. The idea is to construct the ALE
displacement at each time step as an approximate solution to
the local balance equations of linear momentum

divPa(uia) = 0 in �0
f , (44)

wherePa = FaSa . To ensure bijectivity of theALEmapping,
we use a logarithmic variation of the neo-Hookean material
law

Sa = λa ln JaC−1
a + μa(I − C−1

a ), (45)

where Ca = FT
a Fa is the right Cauchy–Green strain tensor.

Similarly to the LE and ILE techniques, the Lamé parameters
λa and μa can be computed from Young’s modulus Ea and
Poisson’s ratio νa , of which only Poisson’s ratio affects the
solution of Eq. (44).

Due to the term ln Ja in the neo-Hookean law (45), any
solution of Eq. (44) satisfies the bijectivity condition (11).
This fact makes any MMT based on Eqs. (44–45) uniquely
powerful since it explicitly enforces the bijectivity condition.
Unfortunately, Eq. (44) are nonlinear, and an MMT attempt-
ing to fully solve them at each time step would be rather
computationally expensive. However, since the ALE map-
ping should possess certain regularity in time, it is possible
to use a solution of Eq. (44) at time ti to efficiently con-
struct an approximate solution at time ti+1 [22]. We refer
to this technique as tangential incremental nonlinear elas-
ticity (TINE). The TINE technique can be seen as pseudo
time-stepping or an example of the continuation methods for
nonlinear problems [7].
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Let us look under the hood of TINE. It is based on a
Newton-like linearization of Eq. (44). To define it, we need to
transform Eq. (44) into a weak form, also known as variation
formulation. To that end, let us define a solution space V =
(H1(�0

f ))
d and a test space V0 = {w ∈ (H1(�0

f ))
d |w =

0 on ∂�0
f }. We can then write the weak form of Eq. (44) as

find ua ∈ V such that ∀w ∈ V0

R(ua,w) =
∫
�

Sa : δEa[w]dx = 0. (46)

Here, δEa[w] = 1
2

(
FT
a ∇w+∇wTFa

)
is the variation of the

Green–Lagrange strain tensor. The Taylor expansion at point
(ua,w) with an increment δua yields

R(ua + δua,w) = R(ua,w)

+ DR(ua,w) · δua + o(||δua ||), (47)

where DR(ua,w) · δua is a directional derivative. We refer
to [22,34] for details on computing DR(ua,w) · δua .

The idea of the TINE technique is to use one Newton-like
step

find δua ∈ V such that ∀w ∈ V0

DR(ua,w) · δua = −R(ua,w) (48)

per time step to compute an ALE increment and update the
ALE displacement. Concretely, given the ALE displacement
uia at time ti , we find an ALE increment δui+1

a as a solution
of the linear problem

DR(uia,w) · δui+1
a = −R(uia,w) ∀w ∈ V0, (49)

δui+1
a = ui+1

s − uis on �0, (50)

δui+1
a = 0 on ∂�0

f \�0. (51)

After that, we define the ALE displacement ui+1
a at time ti+1

as uia + δui+1
a .

It is natural to compare the TINE and ILE techniques
which are very similar at first glance. Both are incremental
techniques based on the structural mechanics theory; both
require solution of a linear system with a matrix of size
dN × dN and a right-hand side of size dN × 1; both require
matrix assembly at each time step. In general, one can expect
both techniques to be roughly equal in computational cost.
Unlike ILE, however, the TINE technique explicitly enforces
the bijectivity condition (11). Moreover, the TINE technique
is based in the initial configuration of the fluid domain. As
we show in Sects. 4 and 5, this last observation results in cru-
cial differences in behavior of the ILE and TINE techniques
when it comes to the accumulated distortion effect.

Let us also briefly compare TINE and the technique
introduced in [26] which is based on fiber-reinforced hyper-
elasticity (nonlinear elasticity) and optimized zero-stress
state (FRHE-OZSS). Although both rely on the equations
of nonlinear elasticity to construct ALE displacement fields,
FRHE-OZSS uses a smart anisotropic hyperelastic material
law to achieve an optimal behavior ofmesh elements. In com-
parison toFRHE-OZSS,TINE is rather basis and relies solely
on awell-known logarithmic neo-Hookeanmaterial law (45).
To the best of our understanding, however, the FRHE-OZSS
technique solves the nonlinear Eq. (44) at every time step,
whichmay be computationally expensive.Moreover, FRHE-
OZSS requires a good initial guess for the nonlinear solver
to converge, and in [26] this initial guess is constructed with
a (slightly ad-hoc) ramp-up extrapolation approach. Here,
TINE takes an alternative approach: it uses one Newton-like
step to update the ALE displacement field accordingly to the
motion of the FSI interface. The result is a good-quality ini-
tial guess for the ALE displacement at the next time step.
What is more, this initial guess is so close to the true solution
of Eq. (44) that it makes ensuing iterations of the nonlinear
solver unnecessary. It would be interesting to apply the same
ideas borrowed from the continuation methods in the context
of FRHE-OZSS. In this work, however, we do not deal with
the FRHE-OZSS technique any further.

3.5 Local stiffening

Most of the fluid mesh motion happens along the FSI
interface, where the structure displacement is applied as a
Dirichlet boundary conditions to the ALE displacement. On
the other hand, mesh elements in the vicinity of the sta-
tionary boundary of the fluid domain remain largely intact.
Therefore, their contribution into processing of the applied
interface displacement is negligible. If themeshmotion could
be redistributed away from the FSI interface towards the sta-
tionary boundary, the mesh could undergo larger motions
without becoming invalid. This is the idea behind local stiff-
ening, which changes the way different elements react to the
motion-induced deformation.

LetG : [0, 1]d → � be a parametrization of the computa-
tional domain �. Imagine that we have to compute integrals
corresponding to matrix entries of the discretized linear sys-
tem.One of the simplestways to implement local stiffening is
to drop the Jacobian determinant det∇G when transforming
the integrals from domain � to parametric domain [0, 1]d :
∫
�

(· · · )dx =
∫

[0,1]d
(· · · ) det∇Gdξξξ →

∫
[0,1]d

(· · · )dξξξ . (52)

This local stiffening method, initially called Jacobian-based
stiffening (JBS) and later renamed to mesh-Jacobian-based
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stiffening (MJBS), was first proposed in [31]. For elasticity
problems, the MJBS can be interpreted as a local change of
Young’s modulus

E → E

det∇ξξξG
, (53)

which makes elements with small values of det∇G stiffer
and elements with large values softer. Therefore, the former
elements undergo less motion and are less likely to become
invalid.

A more advanced version of the MJBS introduced in [23]
does not simply drop the Jacobian determinant but changes
the degree with which it enters the integrals:∫
�

(· · · )dx =
∫

[0,1]d
(· · · ) det∇Gdξξξ

→
∫

[0,1]d
(· · · )(det∇G)1−χdξξξ . (54)

Here, χ � 0 is called the stiffening degree. The higher the
stiffening degree is, the more local stiffening is achieved.
χ = 0 corresponds to no local stiffening, and χ = 1
corresponds to Jacobian dropping (52). Too high stiffening
degrees, however, may result in excessive mesh distortion.

Note that in its original form described in [31], the
MJBS relies not on the Jacobian determinant of the map-
ping between the parametric space and the physical domain.
Instead, it works with the mapping between the element
domain and the physical domain [6]. That is, for each element
�k in the physical domain, consider an element-specificmap-
ping Gk : �e → �k , where �e = [−1, 1]d is the element
domain, also known as the parent element. Mapping Gk and
the domain parametrization G are related via Gk = G ◦ Sk ,
where Sk is a scaling mapping between the element domain
and the imageof the element�k in the parametric space.Then
the MJBS is defined in the following element-wise way:∫
�k

(· · · )dx =
∫
�e

(· · · ) det∇Gkdξξξ e

→
∫
�e

(· · · )(det∇Gk)
1−χdξξξ e. (55)

In this formulation, theMJBS takes into account not only the
size and shape of elements in the physical domain but also
the size of the elements in the parametric space. As a result,
it produces expected local stiffening when local refinement
or non-uniform knot vectors are used, and formulation (55)
is widely adopted in the IGA community [26]. However, if
neither local refinement nor non-uniform knot vectors are
used (like in this work), the MJBS formulations (54) and

(55) are equivalent. Since the IGA code that we use performs
integration in the parametric space, the formulation (54) is
easier to implement and we resort to it in this work.

The MJBS acts differently depending on whether a par-
ticular MMT is formulated in the initial or in the deformed
configuration of the fluid domain. Namely, if the integrals
for matrix entries are computed in the initial configuration
�0

f , the MJBS is based only on the initial parametrization

G0
f . However, in the case of the deformed configuration

�i
f , the MJBS takes into account already applied motion

since the parametrization Gi
f of the deformed configuration

is defined as (I + uia) ◦ G0
f , see Eq. (19). This effect has

both advantages and disadvantages. From one point of view,
if a particular mesh element becomes ill-shaped after the
motion, its value of det∇Gi

f decreases. As a result, this
element receives more stiffening, which prevents it from
becoming even more ill-shaped or invalid. On the other
hand, in case of the ILE technique, this motion-aware stiff-
ening essentially makes material properties of the mesh
deformation-dependent, which can cause irreversible plastic
deformation. For other MMTs based in the deformed con-
figuration, namely IHE and IBE, the effect is similar. As we
show in Sects. 4 and 5, this irreversible deformation accu-
mulates over time and can significantly affect results of FSI
simulations.We refer to this effect as accumulated distortion.

Regardless if the MJBS is motion-aware or not, the initial
parametrizationG0

f of the fluid domain provides amajor con-
tribution to how much stiffening each element receives. Let
us consider the moving part of the fluid domain, see Fig. 3.
The top and bottom patches are perfect parallelograms, and
det∇G0

f is constant. Therefore, elements of these patches
receive no local stiffening with respect to each other. How-
ever, the right patch has a distinct tapered left side, where
det∇G0

f becomes very small in comparison to the surround-
ing elements of the top and bottom patches. As a result,
element on the left side of the right patch becomemuch stiffer
and maintain their shape. Consequently, angles of all three

Fig. 3 MJBS potential of the motion fluid mesh part
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mesh patches that are adjacent to the beam right end do not
change much during the mesh motion. In particular, they do
not exceed π , which would lead to det∇Gi

f becoming neg-
ative, which means that the bijectivity condition (11) is not
violated.

3.6 Bijectivity check

Let us briefly discuss ways to check the bijectivity condition
(11) in practice. A solution which takes the NURBS nature
of the ALE displacement ua into account is to express Ja
as a NURBS function [10]. If all coefficients in a NURBS
representation of Ja are positive, then the displacement ua
satisfies the bijectivity condition. Unfortunately, this condi-
tion is only sufficient and not a necessary one. Therefore, it
may often lead to false detection of bijectivity violation. In
practice, we resort to a less elegant solution of sampling Ja at
the Gaussian quadrature points associated with the NURBS
basis of ua .

Note that whichever method is chosen, it introduces a
certain computational overhead to construction of ALEmap-
pings. Nevertheless, we recommend doing some bijectivity
check at every time step, or at least with regular intervals.
An ALE mapping that does not satisfy the bijectivity con-
dition (11) quickly makes all ensuing computation results
meaningless.

4 Benchmark ALE: meshmotion

In order to test and compare all MMTs, we first consider a
simplified FSI-like test based on the benchmark introduced
in Sect. 2. Instead of solving a fully coupled FSI problem, we
ignore the fluid component and let the flexible beam oscillate
freely in the presence of external acceleration g = (0, l). We
use the beammotion to drivemotion of the three fluid domain
patches adjacent to the beam. By varying the parameter l, we
can regulate magnitude of the mesh motion. Although this
mesh motion test is artificial, it mimics real motion occur-
ring in the original benchmark well enough. Moreover, it is
significantly less computationally expensive, which allows
us to conduct more tests and better assess properties of each
MMT.

For this test, we refine the fluid domain parametrization
by applying uniform h-refinement thrice. Figure 4 shows the
corresponding computational mesh in the state of maximum
beam deflection for loading levels l = 1, 2, 3.We use the fol-
lowing parameters for the structuremotion:Young’smodulus
Es = 1.4×106 kg m−1 s−2, Poisson’s ratio νs = 0.4, density
ρs = 103 kg m−3. For the elasticity-based MMTs, we use
Poisson’s ratio νa = 0.3.At each time step,we checkwhether
the bijectivity condition (11) holds. We have implemented
this test and the original FSI benchmark within G+Smo—an

Fig. 4 Computational mesh with TINE in the state of maximum beam
deflection for loading levels l = 1, 2, 3 (top to bottom)

open-source C++ library for isogeometric analysis [15]—
using the gsElasticity submodule. As a linear system solver,
we use Pardiso—an efficient parallel direct linear solver [16].
For reference, all simulations have been performed on a lap-
top with a 7th generation Intel Core i7 CPU using eight
hyper-threads.

4.1 Single period test

First, we consider mesh motion over one period of beam
oscillations. The goal is to study how much motion each
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Fig. 5 Top: mesh motion with TINE for loading level l = 0.5 with
stiffening degree χ = 0. Bottom: mesh motion with TINE for l = 0.5
and χ = 2
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Fig. 6 Single oscillation period test: maximal achievable loading level
lmax vs the stiffening degree χ for different MMTs

MMT can handle. Here, the MJBS stiffening is of crucial
importance. Without it, most MMTs can handle only small
loading levels l. Usually, one of the patch corners adjacent
to the right end of the beam becomes larger than π , which
violates the bijectivity conditions (11). With the MJBS, all
MMTs can keep these angles below π at least for moderate
loading levels l, see Fig. 5.

Figure 6 shows a plot of the maximum achievable load-
ing level lmax versus the stiffening degree χ for each MMT.

0

0.5

1

1.5

2

Fig. 7 Single oscillation period test: computational time for eachMMT
split into the assembly, solving and bijectivity check parts

Immediately, we can split all MMTs into two groups, with
BE and IBE forming one group, and all other techniques
belonging to the second group. The main difference between
the two groups is that MMTs from the second group can
handle almost no deformation without the MJBS. However,
as the stiffening degree χ grows, these MMTs can handle
increasingly larger loading levelswithmaximum loading lev-
els achieved with χ ∈ [2, 3]. With χ > 3, we can observe
some formof performance deterioration for allMMTs,which
is likely caused by too much mesh distortion introduced by
the MJBS.

For the BE and IBE techniques, the behavior is radically
different. Already without the MJBS, they can handle larger
loading levels than some MMTs from the second group can
achieve even with high values of the stiffening degrees χ .
However, as we increase the stiffening degree, BE and IBE
show almost no response for χ < 1 and start to slowly per-
form worse for χ > 1.

Overall, MMTs can be ranged with respect to their capa-
bility to handle largemeshmotion in the followingway: IBE,
ILE and TINE are the most powerful and can handle loading
levels up of to 2.8–3; BE occupies the second place with the
maximum loading level of 2.2; and HE, IHE and LE are the
least powerful with maximum loading levels of 1.6–1.9.

Figure 7 presents an analysis of computational complexity
of eachMMT.Wehavemeasured time required for linear sys-
tem assembly, linear system solution and an ensuing check of
the bijectivity condition (11). Note that this is real time and
not CPU time. Although not a perfect measure of algorithm
performance, real time still allows us to compare relative effi-
ciency of different MMTs since we have implemented them
in the same framework of G+Smo.

The time analysis shows that the HE, BE and LE tech-
niques are significantly faster than their incremental versions.
This result is not surprising because non-incremental tech-
niques do not require matrix assembly at each time step.
The BE and IBE techniques take the largest amount of time
to solve the linear system due to the saddle-point structure
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Fig. 8 Long-term behavior test. L2-norm of ALE displacement over
time

of the system. At the same time, relative complexity of the
elasticity equations makes the assembly time of the ILE
and TINE techniques significantly larger than for other tech-
niques. Overall, the HE, IHE and LE techniques are the most
efficient. The ILE and TINE are the most computationally
expensive, and the BE and IBE techniques fall in between.
All techniques include a small overhead associated with the
bijectivity check. This overhead can be reduced by not per-
forming the check at every time step.

Fig. 9 Long-term behavior test. Accumulatedmesh distortion with ILE
and χ = 2 after 20 oscillation periods with l = 2

4.2 Long-term behavior test

In the second test, we study the long-term behavior of dif-
ferent MMTs and their effect on the fluid mesh. To that
end, we perform the simulation over a time period of 20s,
which includes roughly 22 periods of beam oscillations. A
quantity of interest is the L2-norm of the ALE displacement
measured in the initial configuration of the fluid domain. A
perfect MMT should return the fluid mesh to its initial state
once the beam is not deformed. Therefore, the ALE norm
||ua(t)||L2(�0

f )
should be close to zero at the end of each

oscillation period. Figure 8 shows behavior of the ALE norm
over time for each MMT with the loading level l = 1.5. We
have used the MJBS with χ = 2 for all MMTs with the
exception of the BE and IBE techniques. These techniques
are able to handle the loading level l = 1.5 without local
stiffening.

As Fig. 8 shows, the ALE norm behaves periodically and
returns to zero at the end of each oscillation period with the
HE,BE,LEandTINE techniques.On the other hand,with the
IHE, IBEand ILE techniques theALEnormat the endof each
oscillation period grows in amonotonous fashion. This effect
has been previously reported in [28], and we refer to it as
accumulated distortion. It appears only for MMTs which are
based in the deformed configuration of the fluid domain. As a
result, mesh motion becomes path-dependent, the fluid mesh
does not return to its initial state, and its quality deteriorates
over time. Figure 9 illustrates the state of the mesh at the end
of the simulation with the ILE technique.

The accumulated distortion effect becomes even more
prominent as the magnitude of mesh motion grows. To study
it in more details, we perform the long-term behavior test for
the IHE, IBE and ILE techniques with varying values of the
loading level and stiffening degree. In Fig. 10, we plot values
of the ALE norm at the end of each oscillation period. We
can observe that both parameters seem to increase the rate of
accumulated distortion.
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Fig. 10 Long-term behavior test. Accumulated distortion for incremen-
talMMTs. Top: fixed loading level l = 1.5 and varying stiffening degree
χ . Bottom: fixed stiffening degree χ = 2 and varying loading level l

5 Benchmark FSI2: flow-induced vibrations

In this section, we perform the FSI simulation described
in Sect. 2. From several simulation scenarios proposed in

[33], we choose a scenario titled FSI2 since it corresponds
to the largest magnitude of beam displacement and mesh
motion. Using this FSI simulation, we test and compare dif-
ferent MMTs introduced in Sect. 3. We use stiffening degree
χ = 2.5 for all MMTs but BE and IBE. To them, we apply
no local stiffening.

For the analysis, we refine the geometry parametrization
five times using uniform h-refinement and perform the sim-
ulation for 15 s with a time step �t = 0.0025 s. For time
integration, we use the Newmark method [34] with β = 0.5
and γ = 1 for the structure and the IMEX scheme [13] with
θ = 0.5 and no stabilization for the fluid. We achieve the
coupling of fluid and structure by means of the partitioned
Fluid–Dirichlet–Structure–Neumann algorithm [8].

The FSI2 scenario is characterized by the following
parameters: fluid density ρ f = 103 kg · m−3, fluid kinetic
viscosity ν f = 10−3 m2 · s−1, maximum inflow velocity
vmax = 1.5 m · s−1, structure density ρs = 104 kg · m−3,
structure Young’s modulus E = 1.4 × 106 kg · m−1 · s−2,
structure Poisson’s ratio νs = 0.4, gravitational acceleration
g = (0, 0)T m · s−2 and mesh Poisson’s ratio νa = 0.3
(where applicable). The corresponding Reynolds number is
Re = 100, which results in an unstable flow and develop-
ment of vortex shedding. Alternating downward and upward
forces exerted on the structure by the fluid lead to oscillations
of the beamwhich grow in magnitude until they reach a fully
periodic regime. Figure 11 illustrates typical fluid velocity
field and beam deformation when the oscillations are fully
developed.

Fig. 11 Benchmark FSI2: fully
developed oscillation regime.
Fluid velocity field for the
maximal upward and downward
beam deflection

Table 1 Benchmark FSI2:
simulation results with TINE
(�t = 0.0025 s, 44122 DoFs)
vs reference results
(�t = 0.001 s, 304128 DoFs)

FD (N) FL (N) uxs (A) (10−3m) uy
s (A) (10−3m) Fr (1/s)

Results 203.19 ± 63.88 1.22 ± 223.35 −12.75 ± 11.37 1.24 ± 74.55 1.94

Reference 208.83 ± 73.75 0.88 ± 234.2 −14.58 ± 12.44 1.23 ± 80.6 2.0
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Fig. 12 Benchmark FSI2: drag
and lift behavior with different
MMTs
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Fig. 13 Benchmark FSI2:
displacement of the middle
point of the beam right end with
different MMTs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.03

-0.02

-0.01

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.1

-0.05

0

0.05

0.1

Fig. 14 Benchmark FSI2:
portion of simulation completed
by different MMTs before the
ALE mapping becomes invalid
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Fig. 16 Benchmark FSI2: accumulated distortion of the fluid mesh
during the last oscillation period with the ILE technique

To assess the simulation accuracy, we study the following
quantities of interest when the beam oscillations are fully
developed : x- and y-displacement components uxs (A) and
uy
s (A) of the point A located in the middle of the beam right

end; and drag and lift forces FD and FN exerted on the struc-
ture by the fluid which are defined as

(FD, FN ) =
∫

�(t)

σσσ f (v f , p f ) · nds. (56)

Here, �(t) is the entire boundary of the submerged solid,
including the rigid disk and the flexible beam, at time t . Since
we expect the quantities of interest to behave periodically,
we report them in terms of their mean

(
(∗)max + (∗)min

)
/2,

amplitude
(
(∗)max − (∗)min

)
/2 and frequency. In Table 1,

we compare the simulation results obtained with the TINE
technique against the reference results from [33]. Overall,
our results seem to undershoot the reference values by about
5%, which can be expected since we use much fewer degrees
of freedom and a larger time step than the reference simu-
lation. Despite this discrepancy, we are more than capable
of reproducing a qualitatively correct behavior of the system
and can use it to study theMMTs. Figures 12 and 13 illustrate
behavior of the lift, drag and beam displacement.

Fig. 17 Benchmark FSI2: fluid mesh with during the last oscillation
period with the TINE technique

Let us now focus on thefluidmeshmotion.Whenperform-
ing the FSI simulation, we apply each of the seven MMTs
(HE, IHE, BE, IBE, LE, ILE and TINE) and study how a
particular MMT handles the mesh motion occurring during
the simulation. Figure 14 illustrates what portion of the sim-
ulation can be completed using different MMTs. As we can
observe, simulations with the HE, IHE and IBE techniques
had to be terminated before they could reach the end. All
three techniques have failed to maintain bijectivity of the
ALEmapping; however, different reasons have led to the fail-
ure. In the case of HE and IHE, the simulations have stopped
at the 9th second—when the oscillations in the system start
to develop. As the applied mesh motion grows, the HE and
IHE techniques fail due to their intrinsic inability to handle
large motions.

On the other hand, the IBE technique is able to handle
mesh motions occurring in the simulation but suffers from
the accumulated deformation effect described in Sect. 4.
As a result, the simulation fails at the 14th second. Fig-
ure 15 depicts behavior of the ALE norm for all MMTs.
We can observe that the ILE technique suffers from even
stronger accumulated deformation than IBE but still man-
ages tomaintain a bijectiveALEmappinguntil the simulation
end. Unfortunately, the highly distorted mesh produced by
the ILE technique (see Fig. 16) affects the simulation results,
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Table 2 Benchmark FSI2: computational time comparison for MMTs
which successfully completed the simulation

ALE time Total time

BE 2 h 10 m (−48%) 23 h 55 m (−7.3%)

LE 1 h 39 m (−60%) 23 h 20 m (−9.6%)

ILE 4 h 7 m (+0%) 25 h 48 m (+0.0%)

TINE 4 h 52 m (+18%) 26 h 27 m (+2.5%)

The ILE technique time is used as a reference point for comparison

see Figs. 12 and 13. Instead of a stable periodic behavior in
the fully developed oscillation regime, we observe signs of
damping. We observe a similar effect when using the IBE
technique: the accumulated mesh distortion results in spuri-
ous amplification of the oscillations.

Of the seven MMTs considered in this work, only three—
BE, LE and TINE—were able to handle mesh motions
occurring in the simulation and maintain high mesh qual-
ity until the simulation end. Most importantly, the BE, LE
and TINE techniques have demonstrated no signs of accu-
mulated distortion. Using these techniques, we were able to
reproduce a stable periodic behavior of the system and cor-
rect simulation results. Figure 17 depicts the fluidmesh at the
end of the simulation deformed using the TINE technique.
Of course, the BE, LE and TINE techniques differ a lot in
terms of their computational cost. However, since construc-
tion of the ALEmapping corresponds only to a small portion
of a total computational effort required to perform an FSI
simulation, the choice of MMT does not affect the total com-
putational cost too much. Table 2 compares computational
cost of BE, LE and TINE against the ILE technique which is
often considered a default option in the FSI community.

6 Discussion and conclusion

In this work, we have described and compared severalMMTs
which can be used within moving-mesh methods for FSI
problems. To evaluate each MMT, we have used a 2D FSI
benchmark and its simplified version where the focus lies on
mesh motion. Based on the tests performed in Sects. 4 and 5,
we can make the following conclusions:

– Out of seven MMTs that we have considered, two most
robust are the BE and TINE techniques. Both MMTs can
handle large mesh motions and do not suffer from the
accumulated distortion effect.

– BE is easier to implement, performswell evenwithout the
MJBSand is about two times less computationally expen-
sive than TINE. Provided that the saddle-point structure
of the linear system is accounted for, we recommend the

BE technique as the first method to try inmany FSI appli-
cations.

– The TINE technique is the most computationally expen-
sive of all considered MMTs. However, it can also
handle the largest magnitude of mesh motion when com-
bined with the MJBS. Given its high computational cost
and implementation complexity, we recommend TINE
for FSI applications where extreme mesh motions are
expected.

– The IBE and ILE techniques can handle as much mesh
motion as TINE and are slightly less computational
expensive. Unfortunately, both techniques suffer from
the accumulated distortion effect which can affect the
simulation results over long periods of time. We urge the
reader to exercise caution when applying this techniques.
Detrimental effects of accumulated distortion can be reset
by a costly remeshing operation.

– Although not suitable for large mesh motions, the HE
and LE techniques can be applied if only small mesh
motions are expected. The exceptional implementation
simplicity and low computational cost make HE and LE
viable options in certain situations.

– Finally, the IHE technique can handle only small motions
and suffers from accumulated distortion. We do not rec-
ommend using this technique.

We would like to emphasize that the performance of all
MMTs is dependent on the chosen parametrization of the
fluid domain. However, it is unlikely that the MMT behav-
ior will be qualitatively different if a different geometry
parametrization is used.

With respect to the further research directions, we see
the following possibilities. One could study the effect of
different geometry parametrizations on the MMT behavior.
Moreover, isogeometric methods in FSI could benefit from
alternative local stiffening approaches. The commonly used
MJBS has no effect if a uniform geometry parametrization
is used. It would also be interesting to combine BE and
TINE with additional augmentation techniques such as the
solid layer extension and mesh element relaxation. Finally,
one could try to apply the continuation ideas used in the
TINE technique to improve the efficiencyof theFRHE-OZSS
technique.
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