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Abstract

The aim of this thesis is to introduce an equilibrium insurance market model
and study its properties and possible applications in risk class management.
First, an insurance market model based on an equilibrium approach is de-
veloped. Depending on the premium, the insured will choose the amount of
coverage they buy in order to maximize their expected utility. The behavior
of the insurer in different market regimes is then compared. While the pre-
miums in markets with perfect competition are calculated in order to make
no profit at all, insurers try to maximize their margins in a monopolistic
market.
In markets modeled in this way several phenomena become evident. Perhaps
the most important one is the so-called push-out effect. When customers
with different attributes are insured together, insurance might become so
expensive for one type of customers that those agents are better off with
buying no insurance at all. The push-out effect was already shown for the-
oretical examples in the literature. We present a comprehensive analysis of
the equilibrium insurance market model and the push-out effect for differ-
ent insurance products such as life, health and disability insurance contracts
using real-life data from different sources. In a concluding chapter we for-
mulate indicators when a push-out can be expected and when not.
Machine learning regression approaches such as neural networks have gained
vast popularity in recent years. The exponential growth of computing power
has enabled larger and more evolved networks that can perform increasingly
complex tasks. In our feasibility study about the use of neural networks
in the regression of equilibrium insurance premiums it is shown that this
regression is quite robust and the risk of overfitting can almost be excluded
– as long as the regression is performed on at least a few thousand data
points.
Grouping customers of different risk types into contracts is important for
the stability and the robustness of an insurance market. This motivates the
study of the optimal assignment of risk classes into contracts, also known
as rating classes. We provide a theoretical framework that makes use of
techniques from different mathematical fields such as non-linear optimiza-
tion, convex analysis, herding theory, game theory and combinatorics. In
addition, we are able to show that the market specifications have a large
impact on the optimal allocation of risk classes to contracts by the insurer.
However, there does not need to be an optimal risk class assignment for each
of these specifications.
To address this issue, we present two different approaches, one more theoret-
ical and another that can easily be implemented in practice. An extension
of our model to markets with capacity constraints rounds off the topic and
extends the applicability of our approach.



Zusammenfassung

Ziel dieser Arbeit ist die Einführung eines Gleichgewichtsmodells zur Prämienbe-
rechnung in Versicherungsmärkten und dessen Eigenschaften sowie mögliche An-
wendungen auf das Risikoklassenmanagement zu untersuchen.
Zunächst wird ein Versicherungsmarktmodell entwickelt, das auf einem Gleichge-
wichtsansatz basiert. Abhängig von der Prämie wählen die Versicherten die Höhe
der Versicherung die sie kaufen, um ihren erwarteten Nutzen zu maximieren. An-
schließend wird das Verhalten der Versicherer in verschiedenen Marktregimen ver-
glichen. Während die Prämien in Märkten mit vollständigem Wettbewerb so kalku-
liert werden, dass sie keinerlei Gewinn machen, versuchen die Versicherer in einem
monopolistischen Markt ihre Gewinnmargen zu maximieren.
In den so modellierten Märkten zeigen sich verschiedene Phänomene. Das vielle-
icht wichtigste ist der so genannte Push-Out-Effekt. Wenn Kunden mit unter-
schiedlichen Merkmalen gemeinsam versichert werden, kann die Versicherung für
eine Art von Kunden so teuer werden, dass es für sie besser ist, überhaupt keine
Versicherung abzuschließen. Der Push-Out-Effekt wurde in der Literatur bere-
its in theoretischen Beispielen gezeigt. Wir präsentieren eine umfassende Analyse
von Versicherungsmärkten mit Gleichgewichtsmodells und untersuchen den Push-
Out-Effekts für verschiedene Versicherungsprodukte wie Lebens-, Kranken- und
Berufsunfähigkeitsversicherungen unter Verwendung realer Daten aus verschiede-
nen Quellen. Darüber hinaus formulieren wir Indikatoren, wann ein Push-Out zu
erwarten ist und wann nicht.
Regressionsansätze des maschinellen Lernens wie neuronale Netze haben in den
letzten Jahren stark an Popularität gewonnen. Das exponentielle Wachstum der
Rechenleistung ermöglicht größere und besser entwickelte Netzwerke, die immer
komplexere Aufgaben erfüllen können. In unserer Machbarkeitsstudie über den
Einsatz neuronaler Netze bei der Regression von Versicherungsprämien in unserem
Gleichgewichtsmodell zeigt sich, dass diese Regression recht robust ist und das
Risiko von Overfitting annähernd ausgeschlossen werden kann – zumindest solange
man einige tausend Datenpunkte für die Regression berechnet.
Die Gruppierung von Kunden unterschiedlicher Risikotypen in Verträgen ist wichtig
für die Stabilität und Robustheit eines Versicherungsmarktes. Dies motiviert die
Untersuchung der optimalen Zuordnung von Risikoklassen zu Verträ- gen, auch
bekannt als Ratingklassen. Wir liefern ein theoretisches Rahmenwerk, das sich
Techniken aus verschiedenen mathematischen Bereichen wie nicht-linearer Opti-
mierung, konvexer Analysis, Herdenverhalten, Spieltheorie und Kombinatorik zu-
nutze macht. Darüber hinaus können wir zeigen, dass die Marktspezifikationen
einen großen Einfluss auf die optimale Zuordnung der Risikoklassen in die Verträge
durch den Versicherer haben. Es lässt sich zeigen, dass es nicht für jede dieser
Spezifikationen eine optimale Risikoklassenzuordnung geben muss.
Um dieses Problem zu beheben, stellen wir zwei verschiedene Ansätze vor, einen
eher theoretischen und einen weiteren, der in der Praxis leicht umgesetzt werden
kann. Eine Erweiterung unseres Modells auf Märkte mit Kapazitätsbeschränkungen
rundet das Thema ab und erweitern den praktischen Nutzen unseres Ansatzes.
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1 Introduction

Motivation and Research Goals

For thousands of years, people have used insurances or insurance-like con-
tracts to share and pool risks. There is evidence of Greek marine loans and
Italian burial insurances, see [Pru15]. The first known insurance contract
dates back to 1347 in Genoa. In the 16th and 17th century, the first insur-
ance companies were founded. They operated in the field of fire insurances.
The Hamburger Feuerkasse (Hamburg fire fund) was founded in 1676 and
is the oldest insurance company that still exists today. The Equitable Life
Assurance Society, founded in 1765, was the first insurance company to use
mathematical methods for pricing insurances. Over the years, insurance
markets have grown continuously, leading to new methods in pricing and
increasingly diverse insurance markets with ever more complex contracts.
Also the legal basis of insurance markets has changed over time. For exam-
ple, since 2009 the EU Solvency II Directive [Eur09] has been regulating the
capital requirements for insurance companies in order to minimize the risk
of insolvency.
New regulations on the pricing of (life) insurance products heralded a paradi-
gm shift. On March 1, 2011 the European Court of Justice ruled that insur-
ers could no longer differentiate between the genders of their policyholders
by setting up different premiums for men and women [Eur11]. This new law
came into force on December 21, 2012, and is a consequence of the 2004 EU
Gender Equality Directive [Eur04]. The ruling made the classic pricing for
(life) insurance products no longer directly applicable, since life insurance
premiums are calculated based on survival and death probabilities which
are strongly related to gender. Under the same circumstances, women are
generally more likely to survive a given date than men. This led to different
premiums for men and women, which is easily recognizable.
Sass and Seifried (2014) [SS14] examine the impact of this regulation on the
premiums and the general market behavior and conclude that mandatory
unisex tariffs could reduce the market welfare. This reduction arises from
the effect that some customers might be priced out of the insurance markets,
also known as a market push-out. Rothschild and Stiglitz showed as early as
1976 [RS76] that if the insurer is not able to observe some characteristics of
the insured, the low-risk customers might be worse off than if the high-risk
customers would be absent. This motivates our first research goal: the ques-
tion whether these push-out effects can be observed in real-life settings, such
as life, health or disability insurance markets. In addition, it is of particular
interest to formulate indicators when a push-out can be expected and when
not.
To approach this question, we first need to introduce an insurance market
model. In this thesis, we make use of an equilibrium market model. The
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idea behind this type of models is that in almost all market specifications,
the price the insurer sets affects the quantity of insurance bought which
vice versa has an influence on the price of insurance. The concept of equi-
libriums in insurance markets gained popularity due to a paper presented
by Rothschild and Stiglitz [RS76]. Their work on equilibriums in insurance
markets with price-quantity competition became one of the most important
papers on actuarial science in the last century. It is shown that under in-
complete information this equilibrium might fail to exist. Their concepts
have been extended in several papers in the literature. An example is Sass
and Seifried [SS14]. They present an equilibrium insurance market model
under price and price-quantity competition, compare their results with those
in [RS76] and perform some calculations on the welfare of the market. We
focus on generalizing this equilibrium market model under price competi-
tion so that it is able to handle complex insurance products from different
insurance markets, such as life, health or disability insurance. Then, this
model can be applied to real-life data to analyze the effects in these insur-
ance markets.
Calculating premiums using this equilibrium approach can become quite
time-consuming if the contract duration is long. This raises the question
whether machine learning techniques can help us regress premiums from a
smaller set of data points. Of course, the parameter specifications have a
large impact on the quality of training. Thus, as a second research goal, we
are interested in conducting a feasibility study on different machine learning
methods along with their parameter specifications.
Insurance products and markets are becoming increasingly complex. In
practice it seems reasonable to divide the set of customers into risk classes,
where all customers in one class have (almost) the same risk. We have seen
in real-life insurance markets that the division of customers into these classes
became more distinguished over the years. In addition, grouping customers
of different risk classes into rating classes which subsume these customers
in contracts gained importance. It is crucial for insurers to do this grouping
properly in order to ensure the feasibility of the insurance contracts while
deriving policies that are attractive to as many customers as possible. This
motivates the third major goal of this thesis: We are interested in find-
ing a way to model this risk class management problem and to decide which
assignment of risk classes into contracts is the best. To this end, a character-
ization of the term “better” must be developed in this setting. Afterwards,
we aim for finding an algorithm to perform this optimization task. Note
that it is not clear whether an optimal allocation of risk coalitions exists for
each market specification.
Tools from different fields of mathematics are needed to formulate and solve
this problem. First, our problem formulation is connected to convex op-
timization problems. This research field in the area of mathematical op-
timization is well studied. Various books such as the one of Bertsekas
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(1999) [Ber99] provide us with a large number of tools to tackle these prob-
lems. Since the model depends on the behavior of customers in a market,
results from herding theory can find application in our model as well. In
2011, Irle et al. [IKLM11] use a Markov chain approach to model behavioral
agent-based models. Although they focus on statistical regularities of finan-
cial returns, their concepts and results can be applied to our setting. In the
1960s and 1970s, game theory and its various applications gained popular-
ity. Borch has explored the use of game theoretical methods in insurance.
Of particular relevance to our market scenario is his 1962 paper [Bor62],
in which he presents an application of game theory to several problems in
automobile insurance. When it comes to finding the number of possible al-
locations of customers into contracts, combinatorial arguments such as they
can be found in Bell (1934) [Bel34], Dobinski (1877) [Dob77] or Berend and
Tassa (2010) [BT10] are useful.
Finally, we are also interested in insurance markets with capacity con-
straints. These constraints can apply due to market regulations or strategic
decisions made by the insurer. One market regulation that finds application
here is the EU Solvency II Directive [Eur09] mentioned earlier. This regu-
lation forces insurers to hold risk capital. Even if most insurers hold twice
the required amount or even more securities, the amount of risk capital is
of course finite. In consequence, the insurance company might want some
branches not to grow too large.
It is also interesting to consider markets with capacity constraints because
insurance policies are not traded like commodities. Instead, customers must
consult an intermediary before signing their contract. These intermediaries
may be on the payroll of an insurance company or work for independent
agencies. Of course, intermediaries must be paid and there is a limit to
the number of contracts they can process in a given amount of time. This
provides a second motivation for analyzing constrained markets.

Related Literature and Data Sources

Basic definitions and concepts of insurance mathematics are developed in
Olivieri and Pitacco (2011) [OP11]. The insurance market model which we
use is based on Sass and Seifried (2014) [SS14] which is in line with Roth-
schild and Stiglitz (1976) [RS76]. It has already been used in the Master’s
thesis of Oheim (2020) [Ohe20].
As mentioned before, the paper of Rothschild and Stiglitz can be considered
as one of the most important papers on insurance mathematics from the
last century. This motivated several authors to extend their model. Wilson
(1977) [Wil77] provides a similar analysis as Rothschild and Stiglitz by in-
troducing two new types of equilibriums and analyzing how they behave in
different market scenarios. Crocker and Snow (1986) [CS86] extend the anal-
ysis of [RS76] and determine the effect of categorization in markets with in-
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complete information. They conclude that in some market scenarios costless
discrimination always increases efficiency. Wambach (2000) [Wam00] aug-
ments the model of Rothschild and Stiglitz by adding unobservable wealth
and analyzes how this affects the pooling of the different risk and wealth
types. Dubey and Geanakoplos (2002) [DG02] modify the analysis of Roth-
schild and Stiglitz by developing a model of competitive pooling.
In 1970, Akerlof [Ake70] published a paper analyzing so-called markets
for “Lemons”. Since this paper analyzes car markets under uncertainty,
a “Lemon” is not a fruit but a used car of low quality. He shows that asym-
metrical information can cause the market to fail.
Hoy and Polborn (2000) [HP00] study the effect of genetic information in
the life insurance market.
Schmeiser et al. (2014) [SSW14] consider the impact of mandatory unisex
tariffs on consumer perceptions as well as their market implications.
In the 19th century Gompertz (1824) [Gom24] and Makeham (1860) [Mak60]
began to provide foundations for mortality modeling. These models have
evolved over the years. We use the Lee-Carter mortality model (1992) [LC92]
in this thesis. Their model along with various model extensions is widely
used in insurance practice.
One of the reasons the Lee-Carter model has become so popular is that it
is able to deal with the longevity risk, i.e. with a change in the distribution
of mortality. Chen et al. (2022) [CLS22] approach the longevity risk differ-
ently by introducing so-called collective longevity swaps to distribute this
risk between the insurers and a reinsurer.
Patton et al. (2009) [PCS+09] study global patterns of mortality among
young people. Casiglia et al. (1993) [CSG+93] describe the mortality for
people aged 80 and above, Gavrilov and Gavrilova (2011) [GG11] present
results on mortality measurement at advanced ages and the late-life mortal-
ity deceleration, a phenomenon that describes the behavior of death proba-
bilities at very old ages.
Chen and Vigna (2017) [CV17] present a new stochastic approach on model-
ing unisex mortality to comply with the EU Gender Directive [Eur04, Eur11].
To do so, they find a way to mix the gender-specific mortality probabilities.
In some cases, it might be useful to model the interest rates using an interest
rate model rather than assuming them to be constant. For our calculations,
we use the CIR model named after its developers Cox, Ingersoll and Ross
(1985) [CIR85]. A detailed analysis of a broad variety of interest rate models
can be found in Brigo and Mercurio (2007) [BM07].
There is quite a number of papers working on the pricing of classic life in-
surance products such as (pure) endowment and term insurances or pension
products, see for example Aase and Persson (1994) [AP94] or Young and
Zariphopoulou (2002) [YZ02]. Bacinello et al. (2009) [BBM09] price life in-
surance products which have an early exercise option.
A life insurance product which is about to gain further popularity is the ton-
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tine, which can be described as a hybrid between an annuity and a mortality
lottery. Several papers can be found on this topic, e.g. Sabin (2010) [Sab10]
or more recently Chen and Rach (2023) [CR23].
As mentioned earlier, insurers are required to hold sufficient amounts of
risk capital based on the EU Solvency II Directive [Eur09]. This implies
that insures must be particularly careful in managing their balance sheet.
Boot and Thakor (1991) [BT91] provide research about capital regulations
and off-balance sheet liabilities. Berdin and Gründl (2015) [BG15] examine
the impact of low interest rate environments on life insurers. Diehl et al.
(2022) [DHRS22] present an application of an asset-liability management
model and analyze its influence on the long-term stability of a life insurer’s
balance sheet.
Géron (2019) [Gé19] is a well-known introduction to machine learning meth-
ods such as neural networks. We refer to this book for detailed explanations
of state-of-the-art machine learning tools.
In Hainaut (2018) [Hai18] these methods are applied to predict mortality.
Other (less mathematical) papers from clinical research like Simpson et al.
(2015) [SLC+15] or Lee et al. (2018) [LHG+18] also use neural networks to
predict mortality probabilities. Another use case of neural networks in the
insurance industry can be found in works such as Yeo et al. (2001) [YSWB01]
and Yu et al. (2021) [YGL+21] who use neural networks for forecasting claim
sizes or (changes in) insurance premiums.
For basic definitions of health insurance products and related actuarial tech-
niques, Pitacco (2014) [Pit14] is used as a reference. Riedel (2006) [Rie06]
shows how unisex tariffs can be calculated in health insurance and examines
the effect of premium refund systems on the equilibriums.
Haberman and Pitacco (1999) [HP99] provide foundations about actuar-
ial models and methods in disability insurance. Niemeyer (2015) [Nie15]
presents an analysis of disability insurance markets using safety margins.
For our modeling the use of real-life data is of particular interest. The mor-
tality data we use is French Data that originates from the Human Mortality
Database (HMD)1. For analyzing health insurance policies we use health ex-
penditure data from the German Robert Koch Institute [Rob17a, Rob17b]
and the German Federal Supervisory Authority2. Finally, the disability in-
surance data originates from the social security administration of the U.S.
government3. More details about the data sources can be found in Ap-
pendix B at the end of the thesis.

1https://mortality.org/, visited November 2020
2Bundesanstalt für Finanzdienstleitungsaufsicht (BaFin)https://www.bafin.de/DE/

PublikationenDaten/Statistiken/PKV/wahrscheinlichkeitstafeln_node.html,
visited May 2022

3https://www.ssa.gov/oact/NOTES/ran6/, visited August 2021

5

https://mortality.org/
https://www.bafin.de/DE/PublikationenDaten/Statistiken/PKV/wahrscheinlichkeitstafeln_node.html
https://www.bafin.de/DE/PublikationenDaten/Statistiken/PKV/wahrscheinlichkeitstafeln_node.html
https://www.ssa.gov/oact/NOTES/ran6/


Outline

The structure of this thesis is outlined below. First, Chapter 2 establishes
a basic insurance market model. As introduced earlier, the core idea of the
model is to calculate premiums on an equilibrium approach. Different mar-
ket settings and regulatory regimes are investigated.
In Chapter 3 the insurance market model is refined to make it suitable
for life insurance products. After building a mortality and an interest rate
model, the market effects for various life insurance and pension products are
examined. The chapter concludes with the introduction of so-called mixing
parameters. On one hand these parameters can be used to gain a deeper
understanding of the underlying market effects. On the other hand, they
help developing an approach for using the type-specific premium model to
calculate aggregate premiums. After a conceptualization, we provide differ-
ent real-life examples. Furthermore, we compare the results in [CV17] with
our approaches of finding a mixing parameter for unisex premiums.
Computations can get quite time-consuming for contracts with long dura-
tions. In Chapter 4 it is therefore analyzed how various regression tech-
niques, particularly neural networks, can be applied to the life insurance
products from Chapter 3. In addition, a feasibility study on the parameter
choices of the different models and approaches is presented.
The key part of this thesis is Chapter 5. Instead of limiting to only two types
of customers, the model is extended in order to study an arbitrary number
of differently risky customers. All customers with the same risk are grouped
into what is called a risk class. Insurers are now free to assign risk classes
to rating classes, with all customers in one rating class being provided with
the same contract. Depending on the risk class allocations chosen by the
various insurance companies, customers can decide for the company from
which they wish to purchase insurance. The target of an insurer is assumed
to be attracting as many customers as possible in its company. After estab-
lishing a theoretical framework, an algorithm to determine the optimal risk
allocation strategy is presented. We examine markets and their phenomena
when the algorithm is applied to a selection of real-life examples. In both,
theoretical examples and in practice, an optimal risk allocation might fail to
exist. Two different approaches are presented to mitigate this problem. An
extension of our model to markets with capacity constraints, i.e. markets
where the amount of insurance that can be sold by the insurers is limited,
rounds up the topic and the applicability of our approach.
In Chapter 6, we apply our basic insurance market model from Chapter 2
to health insurance markets. The specialty about these markets is that the
insured cannot choose the amount of coverage they wish to purchase. In-
stead, our model is redesigned so that the insurance price now effects the
amount of customers buying insurance from a company or heading of to an
other one. The newly derived market model is first applied to modeled data
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and in a second step to real-life data of German health insurers.
Afterwards, in Chapter 7, different disability insurance products are investi-
gated. After getting disabled, customers can recover and also fall back into
disability. The impact of this peculiarity is highlighted in different numeri-
cal simulations using the disability insurance data from the social security
administration of the U.S. government.
The analysis of the push-out effect is one of our main research objectives
and looked at in detail in Chapter 8. Based on the market studies for life,
health and disability insurance, we formulate indicators when to expect a
push-out and when not. Additional numerical examples are provided to il-
lustrate these rules.
Our work together with our key findings is summarized in a conclusion in
Chapter 9.
The notation used in this thesis is summarized in Appendix A. Afterwards,
the data sources used in the calculations and numerical examples of this
thesis are summed up in Appendix B.
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2 Basic Model

We start by defining a mathematical model of an insurance market, which
we use in this thesis. The model is a modified version of the model given
in [Ohe20], which is in line with Rothschild and Stiglitz (1976) [RS76] and
Sass and Seifried (2014) [SS14]. The model is based on an equilibrium
principle to find premiums and optimal insurance coverages. We assume
knowledge of the basic definitions of life insurance. These can be found in
the literature, e.g. in Olivieri and Pitacco (2011) [OP11].
This chapter is based on [Ohe20], especially on Chapters 2 and 4. We start
by setting up an insurance market together with an economy in Section 2.1.
Before we are able to model insurance products, we need to include the
possibility to buy and sell insurance products in our market. This is done in
Section 2.2, demand and supply for insurance are discussed in Sections 2.3
and 2.4. We continue by presenting an analysis of our market in Section 2.5.
This analysis is substantiated by numerical examples in different market
settings. The chapter is concluded by an analysis of the optimal coverage
under different utility functions in Section 2.6.

2.1 Insurance Market and the Economy

We consider a possibly uncountable set of agents, which we identify as the
interval [0, 1]. Each agent is represented by one point on the interval. Ob-
viously, in many applications a finite set of agents is sufficient. This can be
regarded as a special case of our model. All agents try to maximize their
expected utility. To measure the utility, we introduce the concept of a utility
function.

Definition 2.1. A real-valued function which is increasing, concave and
twice continuously differentiable is called a utility function.

The concavity of the utility functions causes that the customers behave risk
averse. Contrariwise, insurance companies are modeled risk neutral.
Utility functions can be defined for arbitrary domains. In this thesis we use
functions of the form u : ]0,∞[→ R and u : R → R.

Example 2.2. Prominent examples for utility functions are functions with
constant absolute risk aversion (CARA), where the utility function is of the
form u : R → R, x 7→ −e−ρx with a risk aversion parameter ρ > 0. To be
more precise, a utility function is said to be of constant absolute risk aver-

sion if its Arrow-Pratt measure of absolute risk aversion A(c) = −u′′(c)
u′(c) is

constant in c. One can show that exponential utility (and affine transfor-
mations of it) is unique in exhibiting constant absolute risk aversion. One
could also regard functions with constant relative risk aversion (CRRA),
where the utility function is of the form u : ]0,∞[→ R, x 7→ 1

1−ρx
1−ρ with a
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risk aversion parameter ρ > 0. Note that the utility function is not defined
for ρ = 1. In this case we set u(x) = ln(x) to avoid dividing by zero. In
[Ohe20] it is shown that this is a reasonable choice. The class of power util-
ity functions belongs to the class of utility functions which have a constant

Arrow-Pratt measure of relative risk aversion R(c) = cA(c) = − cu′′(c)
u′(c) .

For CARA and CRRA functions it is easy to verify that they indeed fulfill
the definition of a utility function. The higher the risk aversion parameter ρ
is, the faster the absolute value of the utility function is decreasing to zero
(for CRRA utility functions we need to assume that ρ > 1 to ensure that
the function is bounded). This property can be interpreted as follows: A
customer with a higher risk aversion parameter is less willing to take risks.

(a) CARA utility (b) CRRA utility

Figure 1: CARA and CRRA utility functions for different risk aversion
parameters ρ

In Figure 1, CARA and CRRA functions are plotted for different risk aver-
sion parameters ρ. As mentioned above, a higher value of ρ ensures that the
absolute values of the function are smaller and the function converges faster
to zero.
In general, the risk aversion parameters of CARA and CRRA utility func-
tions are difficult to compare. As we see later, we are much more interested
in the change of utility than in its value itself, therefore this difficulty does
not have a big impact on our analysis. Note that CARA functions are
specifically useful when we are dealing with losses of unknown or possibly
unbounded height, as the function is also able to deal with negative inputs,
compare e.g. the modeling of health insurance in Chapter 6.

In our model we equip all agents with a utility function u and an initial
wealth a > 0. The initial wealth is assumed to be the wealth or amount of
money a customer has at his disposal initially, i.e. before damage occurs.
Besides the utility function and the initial wealth, the agents are identical
in all but one attribute. Namely, the customers are grouped in two classes

9



regarding this attribute, the ⊕-agents, which constitute a fraction of w⊕
of the total population and the ⊖-agents, which constitute a fraction of
w⊖ = 1− w⊕ of the total population.

Remark 2.3. The symbols ⊕ and ⊖ represent different risk types from the
view of the insurer. To be more precise, ⊕-agents are supposed to be of lower
risk for the insurer than ⊖-agents. For example, ⊕ could indicate female
and ⊖ male in the setting of a term insurance, while for a pure endowment
insurance ⊕ would indicate male and ⊖ female, compare Remark 3.6.

Every agent faces an external idiosyncratic risk, where the size and the
probability of the damage is determined by the agent’s type. Idiosyncratic
risks are also called diversifiable or unsystematic risks. With this term we
categorize those risks, which can be reduced by the insurer by pooling risks
but no cluster risks. To meet this condition we assume that the risk of each
customer is independent of the other risks.

Definition 2.4. Let (Ω,F ,P) be a probability space. Each individual of
type ⊕/⊖ faces a risk Z⊕/⊖. The risks are modeled as discrete non-negative
random variables, which are independent. The risks of all agents of one risk
type are independent and identically distributed with

P(Z⊕/⊖ = zk⊕/⊖) = pk⊕/⊖,

with k ∈ N0, z
k
⊕/⊖ ≥ 0 and pk⊕/⊖ ≥ 0 for all k as well as

∑∞
k=0 p

k
⊕/⊖ = 1.

Furthermore we assume zk⊕/⊖p
k
⊕/⊖ > 0 for at least one k and that Z⊕/⊖ is

not a.s. constant. The values zk⊕/⊖ can be understood as the height of loss in

case of damage, which occurs with a probability of pk⊕/⊖ for agents of type
⊕ and ⊖, respectively.

Remark 2.5. Note that Z⊕/⊖ is not one random variable but a compressed
notation for the two random variables Z⊕ and Z⊖ which are independent.

Remark 2.6. The risk variables are modeled on a probability space (Ω,F ,P).
Usually we take discrete sets or R as the state space and equip it with its
standard σ-algebra. We assume that all risk variables in this thesis are
(Lebesgue-)integrable.

We assume that the losses given damage zk⊕/⊖ and the damage probabilities

pk⊕/⊖ are known in advance. While [SS14] assumes the risk to be Bernoulli
distributed, we extended it to arbitrary discrete distributions.

Remark 2.7. We focus on a one-period setting. At time zero, each agent
can decide whether to purchase insurance for a given premium or not. At
time one, the losses for each agent are revealed and insurance coverage is
paid if the agent has decided to purchase insurance. One could interpret our
one-period model also as one with infinitely many periods by revealing the
risk probabilities one after another. In this case, whether the agent suffers
the loss zk⊕/⊖ with probability pk⊕/⊖ is revealed at time k.
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Remark 2.8. Since Z⊕/⊖ is used to model the non-deterministic risk an agent
faces, respectively the damage an agent suffers, it is reasonable to model it
as a non-negative random variable. The advancement zk⊕/⊖p

k
⊕/⊖ > 0 for at

least one k ensures that the expected loss is non-zero. As mentioned before,
⊕ and ⊖ denote the risk types, where ⊕ indicates good/low and ⊖ bad/high
risk for the insurer. The easiest approach to decide, whether a type of agent
is of good or bad risk, is to compare the expected loss or the net premium of
the contracts, which is defined in Definition 2.12. More formally, we assume
E[Z⊕] ≤ E[Z⊖].
We know that p⊕ and p⊖ are stochastic vectors, i.e. their entries are non-
negative and sum up to one. Therefore, it is not possible to have zk⊕ ≤ zk⊖
and pk⊕ ≤ pk⊖ for all k, where strict equality holds at least for one k in both
equations. This would be closer to the classification in [SS14]. Nonetheless,
it is not relevant for the calculations, which group of agents is assigned to
which risk class. Instead, we suppose the ⊕-agents to have a lower expected
loss than the ⊖-agents.

Remark 2.9. As mentioned above, in [SS14] it is assumed that the risks
are Bernoulli distributed. We revisit two of the examples presented in that
paper shortly in Examples 2.29 and 2.31. Most examples in Chapter 5 focus
on the case where the risk variables are Bernoulli distributed as well.

2.2 Insurance Contracts

Insurance companies offer normalized contracts. This means that the in-
surance company is willing to cover the whole loss z in case of damage in
exchange for a premium π > 0. Note that π is used as a variable for the
insurance premium and should not be confused with the mathematical con-
stant π = 3.14 . . .. The premium has to be paid in a single payment at the
start of the contract. Various papers in the literature such as Chen and
Vigna (2017) [CV17] or Aase and Persson (1994) [AP94] analyze markets
with periodic premium payments.
An analysis of equilibrium insurance markets under Bernoulli distributed
risks is presented in [SS14]. We have already analyzed the effect of periodic
premium payments in this market type in [Ohe20].
Customers are allowed to choose the quantity λ of insurance coverage they
want to purchase. This means that by paying a premium of λπ, the insurance
company is refunding a loss of λz. We usually restrict λ to be non-negative,
to rule out short-selling of insurance contracts. The restriction λ ≥ 0 does
not rule out overinsurance, i.e. choosing λ > 1. This is meaningful as the
loss z is often chosen as an arbitrary reference point, for example when we
analyze life or disability insurance products, see Chapters 3 and 7. Nev-
ertheless, overinsurance is ruled out for many insurance types, like health
insurance, which we investigate in Chapter 6. While we restrict λ to be in
the interval [0, 1] in these markets, we only require λ ≥ 0 in the general

11



market setting.
We now consider an insurance contract with premium π and suppose that
individuals of type ⊕/⊖ purchase coverage λ⊕/⊖. Be aware that we some-
times omit the agents type if it is not relevant, which type the agent actually
has.

Remark 2.10. Note that λ⊕/⊖ is a function depending on π, the agent’s
initial wealth a and the utility function u. We do not denote the dependency
here and write λ⊕/⊖ instead of λ⊕/⊖(π, a, u). Also the equilibrium amount

of coverage λ̂⊕/⊖ defined in Definition 2.17 depends on the utility function
and in most cases also on the initial wealth, compare Remark 2.36.

Remark 2.11. We could model the initial wealth of the agents as a real-valued
random variable and choose the utility function for each agent randomly
from a set of possible utility functions. Then, the average demand λ̃(π) can
be defined as

λ̃(π) := E[λ(π, a, u)].

The expectation can be understood as the expectation under the joint distri-
bution of the initial wealth and the (risk aversion parameter of) the utility
function. When one computes examples for different insurance products
one can see that this only complicates the calculations while there are no
structural differences in the behavior of the model. All observable effects
are qualitatively similar to a model where all agents have the same initial
wealth a and utility function u. To ease further computations, we therefore
do not use average demands in this thesis but focus on deterministic ones.

Definition 2.12. We define the net expected value of a contract as

λ⊕/⊖(π) · (π − π0⊕/⊖),

where λ⊕/⊖(π) is the optimal amount of coverage given the premium π and

π0⊕/⊖ := E[Z⊕/⊖] =
∞∑
k=0

pk⊕/⊖z
k
⊕/⊖ > 0.

The expected value of the risk π0⊕/⊖ is also called the net premium.

Remark 2.13. We restrict the set of possible risks to those with bounded
expected loss, i.e. with π0⊕/⊖ = E[Z⊕/⊖] <∞. If this would not be the case,
the expected loss and therefore also the premium would be infinitely large.
While the expectation is supposed to be finite, the variance of the risk might
be infinite, see Section 6.2 where we use the discretized Pareto distribution
with parameters that lead to infinite variance.

Definition 2.14. The insurance contract is said to be feasible for the insurer
if it does not make expected loss on the aggregate level, i.e. if

E[w⊕λ⊕(π − Z⊕) +w⊖λ⊖(π − Z⊖)] = w⊕λ⊕(π − π0⊕) +w⊖λ⊖(π − π0⊖) ≥ 0.

12



Remark 2.15. Feasibility of an insurance contract does not only depend on
the premium charged, but also on the amount of coverage the agents decide
to purchase. From π0⊕ ≤ π0⊖ we know that π−π0⊕ ≥ 0 is a necessary condition
for the feasibility of a contract, as an insurer needs to make profit with at
least one type of insured. We might have π − π0⊖ < 0 if enough low-risk
customers buy the contract and subsidize the high-risk customers with their
premium payments.

In our model we assume that an insurance company that sells only feasible
contracts will almost never go bankrupt. As we are dealing with idiosyn-
cratic (independent) risks, this can be justified by the strong law of large
numbers. Of course, the probability of default is never zero, but can be re-
garded as so low that it has no practical impact on the choices of the agents
or the market behavior and can therefore be ignored for our model. This
risk pooling argument is a standard argument in insurance mathematics, see
e.g. [OP11]. Later on, in Definition 5.74, we also add a safety loading to the
contracts to reduce the default probability even further.

Remark 2.16. Our model describes the setting of price competition, where
the insurance company is only allowed to specify the price per unit of cov-
erage, but not the amount of coverage an insured is allowed to purchase.
Under the market mechanism of price-quantity competition, the customer
can no longer choose the amount of coverage he wants to purchase. In-
stead, the insurance company offers contracts with a fixed premium and a
fixed coverage. While price competition is common for life and disability
insurance products, price-quantity competition can often be found in theft,
health or car insurance.
If purchasing multiple insurances is possible or price-quantity competition
is ruled out by law, it is reasonable for the insurance company to offer con-
tracts for which the fraction of coverage is linearly scalable. This exact kind
of contract was described in this section. We investigate equilibriums under
price competition in Section 2.5.

2.3 Demand for Insurance

We recall that each agent is equipped with a utility function u and an
initial wealth a > 0. Since each ⊕- and ⊖-agent wants to maximize his
utility function, the decision how much insurance to purchase is given by
the optimization problem

max
λ⊕/⊖≥0

E[u(a− λ⊕/⊖π − (1− λ⊕/⊖)Z⊕/⊖)]. (1)

Definition 2.17. The maximizer λ̂⊕/⊖ of Equation (1) is called the equi-
librium insurance coverage of customers of type ⊕/⊖.

13



Note that the premium π is given by the insurance company, but the in-
sured can choose an arbitrary non-negative amount of coverage they want
to purchase. As mentioned in Remark 2.16, this is also known as a market
with price competition. If overinsurance is ruled out, we need to restrict our
optimization problem so that we maximize over λ⊕/⊖ ∈ [0, 1].

Remark 2.18. The essential supremum esssupZ of a random variable Z is
defined as the smallest number α such that the set

{ω : Z(ω) > α}

has a probability of zero. If Z is discrete, it is the highest value taken by
Z with positive probability. Assume that the premium π is greater or equal
than this essential supremum of the risk variable Z but Z < α a.s. This
implies

argmax
λ≥0

E[u(a− λπ − (1− λ)Z)] = 0,

as suffering from a loss that is higher than the premium π happens with
probability zero. Hence, agents are better of if they just take the risk. This
is known as the no rip-off property for premium functions in insurance
mathematics.

We can reformulate Equation (1) using the discreteness of the random vari-
able Z⊕/⊖ and obtain the problem

max
λ⊕/⊖≥0

∞∑
k=0

pk⊕/⊖ · u(a− λ⊕/⊖π − (1− λ⊕/⊖)z
k
⊕/⊖). (2)

Remark 2.19. It is not clear that this maximizer always needs to exist. We
can derive some criterions which ensure the existence of the maximizer.
When we have π > essinfZ and the utility function u is bounded from above
and satisfies limx→0 u(x) = −∞, a maximizer needs to exist. The conditions
on the utility function are satisfied e.g. for CRRA utility with ρ > 1 which
ensures the existence for most examples in this thesis. In other cases, the
maximizer might fail to exist, as it could be the best to buy an infinitely
large amount of insurance. Nonetheless, these extreme cases are not relevant
in practice, an optimizer exists for all examples in this thesis.

We can then use the first-order condition to find the maximum by solving
the equation

∞∑
k=0

pk⊕/⊖ · u′(a− λ̂⊕/⊖π − (1− λ̂⊕/⊖)z
k
⊕/⊖) · (−π + zk⊕/⊖) = 0 (3)

in λ̂⊕/⊖. Note that we need to be careful that the solution is non-negative. In
the case that the optimal coverage turns out to be negative, we stick to solv-
ing the problem in Equation (1) instead.The interchangeability of differenti-
ation and summation can be shown e.g. by Theorem 11.2 in Forster [For12].
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Due to the structure of the above equation, we cannot obtain a closed solu-
tion for CARA and CRRA utility functions in general. Hence, we have to
solve Equation (1) or (3) numerically on the set of non-negative reals.
The expected profit of the insurer is given by the term

E[w⊕λ⊕(π⊕ − Z⊕) + w⊖λ⊖(π⊖ − Z⊖)],

where w⊕ and w⊖ represent the corresponding fractions of ⊕- and ⊖-agents
in the portfolio. As we have already seen in Definition 2.14 we can calculate
the expectation explicitly and conclude

E[w⊕λ⊕(π⊕−Z⊕)+w⊖λ⊖(π⊖−Z⊖)] = w⊕λ⊕(π⊕−π0⊕)+w⊖λ⊖(π⊖−π0⊖).
(4)

Recall that we set π0⊕/⊖ = E[Z⊕/⊖] =
∑∞

k=0 p
k
⊕/⊖z

k
⊕/⊖.

Remark 2.20. If Z⊕/⊖ is Bernoulli distributed, this optimization problem can
be solved explicitly using the first-order condition, where we even obtain a
closed-form solution for CARA and CRRA utility. Calculating the derivative
is in this case very simple, due to the simple distribution of Z⊕/⊖, see [SS14].

Before continuing our investigation, we show that as long as λ̂ is strictly
positive, it is always differentiable in the premium π. This property eases
later computations when it comes to calculating optimal premiums, see Sec-
tion 2.5. To prove the differentiability, we recap the implicit function theo-
rem.

Proposition 2.21. Let U, V ⊆ R open and

F : U × V → R

continuously differentiable. Assume furthermore that (x0, y0) ∈ U×V satis-
fies F (x0, y0) = 0 as well as ∂F

∂y (x0, y0) ̸= 0. Then there exists an open subset
U0 × V0 ⊆ U × V containing (x0, y0) together with a unique continuously
differentiable function

f : U0 → V0

satisfying f(x0) = y0 such that

F (x, y) = 0 ⇔ y = f(x)

holds for all (x, y) ∈ U0×V0. Furthermore, the derivative y′ = f ′(x) is given
by

y′ = f ′(x) = −Fx

Fy
,

where Fx and Fy denote the partial derivatives of F satisfying Fy ̸= 0.

Proof. A proof can be found in Chapter 8 in Forster (2008) [For08].
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Using this proposition, we can show under very mild conditions that λ̂ is
indeed continuously differentiable in π.

Proposition 2.22. Assume that the utility function u is not only concave
but strictly concave. Then λ̂ given by Equation (1), i.e.

max
λ⊕/⊖≥0

E[u(a− λ⊕/⊖π − (1− λ⊕/⊖)Z⊕/⊖)]

is continuously differentiable in π if λ̂ > 0.

Proof. Recall that using Equation (3) λ̂ can also be calculated as the solution
of

∞∑
k=0

pk · u′(a− λ̂π − (1− λ̂)zk) · (−π + zk) = 0,

as long as λ̂ ≥ 0. Here, we dropped the dependence on the agents type to
increase the readability. We define F : R>0 × R>0 → R by

F (π, λ̂) =
∞∑
k=0

pk · u′(a− λ̂π − (1− λ̂)zk) · (−π + zk).

In the next step we apply Proposition 2.21 to F .
The function F is a composition of functions that are continuously dif-
ferentiable in π and λ̂. As before, summation and differentiation can be
interchanged. Hence, F is again continuously differentiable in π and λ̂.
Furthermore, we calculate

∂F

∂λ̂
=

∞∑
k=0

pk · u′′(a− λ̂π − (1− λ̂)zk) · (−π + zk)2.

In order to show that this derivative is non-zero,we make the following ob-
servations:

• All pk are non-negative, where pk > 0 for at least one k.

• The second derivative of the utility function satisfies u′′ < 0 as u is
strictly concave.

• By the non rip-off condition we know that

π ≤ sup
k
{zk : pk > 0},

see Remark 2.18. We assume that Z is not a.s. constant, compare
Definition 2.4. This implies that the above inequality is strict which
yields (−π + zk)2 > 0.
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Taking everything together implies ∂F
∂λ̂

̸= 0 for all (π, λ̂).

Choose a tuple (π0, λ̂0) that satisfies F (π0, λ̂0) = 0. By Equation (3) we
know that λ̂0 is the optimal choice of coverage given a premium π0. Using
Proposition 2.21 we know that there exists a continuously differentiable
function λ̂ : U0 → V0 on an open subset U0 ⊆ R>0 which is continuously
differentiable with λ(π0) = λ̂0 and

F (π, λ̂) = 0 ⇔ λ̂ = λ̂(π)

holds for all (π, λ̂) ∈ U0 × V0.

Remark 2.23. We used the strict concavity in Proposition 2.22 to ensure
that the derivative ∂F

∂λ̂
is non-zero. Both utility functions we use in this

thesis, namely the CARA and the CRRA utility function from Example 2.2
are strictly concave. If we would use a utility function that is not strictly
concave, the proposition still holds for all points satisfying ∂F

∂λ̂
(π, λ̂) ̸= 0.

Remark 2.24. In the proof of Proposition 2.22 we assumed that F is defined
on R>0 × R>0. Since π ≥ E[Z] > 0 the premium has to be positive. We
assumed furthermore that there is no short-selling of insurance, i.e. λ̂ ≥ 0.
As mentioned, we assumed not only that λ̂ ≥ 0 but λ̂ > 0 in Proposi-
tion 2.22. On one hand, this assumption is of technical nature to ensure
that the function is defined on an open set. On the other hand, we can
see that the optimal coverage function might indeed not be differentiable in
points where it is optimal to buy no coverage. In Example 2.37 we calculate
the equilibrium insurance coverage and its derivative as functions of the pre-
mium π. It can be seen that the coverage might indeed not be differentiable
in zero and the above proposition cannot be applied to this case.

2.4 Supply for Insurance

For the supply side of the insurance market, i.e. the insurance companies,
we investigate a market with price competition. We study two different
scenarios:

• (M) a monopolistic insurance market;

• (C) a market with perfect competition.

All insurance companies are assumed to be risk neutral. The behavior of the
insurer depends on the underlying scenario. While the insurance company
maximizes its profit in the monopolistic setting by an optimization problem,
this is not possible in a market with perfect competition. In such a market
the expected profits on any contract an insurer offers are zero. If a company
would make profit, an other company could offer the same products with
a smaller profit resulting in a lower price that attracts all customers. This
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means that the expected profit as given in Definition 2.14 vanishes.
Besides these two competition scenarios, we consider two different regulatory
regimes:

• (E) mandatory equal tariffs (i.e. a ban on discriminative policies);

• (F) free contract design (i.e. no ban on discriminative policies).

In regime (E), insurance companies have to offer the same premium π = π⊙
for all customers. In regime (F), insurance companies are allowed to differ
between the different risk classes, in our case denoted by ⊕ and ⊖, by setting
up two different premiums π⊕ and π⊖, respectively. In both regimes, the
insured can choose the amount of coverage they would like to purchase.
The insurance market we currently have in most countries may be considered
as almost perfect competitive and is therefore subsumed in scenario (C). Of
course, one could argue that firms make profits in real-life insurance markets.
Customer choices are not fully rational and the selection of an insurance
company is more complex than just looking on prices.
If we interpret the customers of the two risk classes ⊕ and ⊖ as female and
male customers, the ruling of the European Court of Justice [Eur04], [Eur11]
changed the market setting from (F) to (E). In this case we speak of unisex
premiums in regime (E) and gender-specific premiums in regime (F). As we
stay in the general case for the rest of this chapter, we make use of the terms
aggregated premium and type-specific premiums instead.

2.5 Equilibrium with Price Competition

In this section we analyze the equilibrium premium and equilibrium insur-
ance per coverage in scenarios (M) and (C). We illustrate our analysis with
some examples. The analysis as well as the corresponding examples are
based on [SS14].

Monopolistic Insurance Market

We first focus on scenario (M). We know that in this setting the premiums
can be determined by a simple optimization problem. As we have seen in
Definition 2.14 and Equation (4), the expected payoff for the insurer is given
by the term

E[w⊕λ⊕(π⊕−Z⊕)+w⊖λ⊖(π⊖−Z⊖)] = w⊕λ⊕(π⊕−π0⊕)+w⊖λ⊖(π⊖−π0⊖),

which has to be non-negative to satisfy feasibility. Remember that π0⊕/⊖
denotes the expected value of the loss for the insurer for an agent of type
⊕/⊖, i.e. π0⊕/⊖ = E[Z⊕/⊖] =

∑∞
k=0 p

k
⊕/⊖z

k
⊕/⊖. In regime (E) the two type-

specific premiums π⊕ and π⊖ are substituted by an aggregated premium
π⊙. Be reminded that the insurer is allowed to determine the premiums
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π⊕/⊖ and π⊙. The amount of coverage λ⊕/⊖ the agents buy are functions of
the corresponding premiums, i.e. we have λ⊕/⊖ = λ⊕/⊖(π⊕/⊖) and λ⊕/⊖ =
λ⊕/⊖(π⊙), compare Remark 2.10. Remember that λ⊕/⊖(π⊙ − π0⊕/⊖) should

be understood as a product of λ⊕/⊖(π⊙) and (π⊙ − π0⊕/⊖), not as the value

of the function λ⊕/⊖(·) evaluated at (π⊙ − π0⊕/⊖).

In regime (E), the optimal or equilibrium (aggregate) premium π̂⊙ is given
by

π̂⊙ = argmax
π⊙

{w⊕λ̂⊕(π⊙ − π0⊕) + w⊖λ̂⊖(π⊙ − π0⊖)}, (5)

i.e. the insurer tries to maximize its expected payoff. The first-order condi-
tion for this equation yields

π̂⊙ = −
w⊕[−π0⊕λ̂′⊕(π̂⊙) + λ̂⊕(π̂⊙)] + w⊖[−π0⊖λ̂′⊖(π̂⊙) + λ̂⊖(π̂⊙)]

w⊕λ̂′⊕(π̂⊙) + w⊖λ̂′⊖(π̂⊙)
, (6)

where we need to have λ̂⊕/⊖(π̂⊙) ̸= 0 to ensure differentiability, see Propo-

sition 2.22, and w⊕λ̂
′
⊕(π̂⊙) + w⊖λ̂

′
⊖(π̂⊙) ̸= 0 to avoid dividing by zero.

For CARA and CRRA utility functions, λ̂⊕/⊖(π̂⊙) ̸= 0 already implies

λ̂′⊕/⊖(π̂⊙) ̸= 0 and therefore w⊕λ̂
′
⊕(π̂⊙) + w⊖λ̂

′
⊖(π̂⊙) ̸= 0. Analogously

in regime (F), the optimal or equilibrium (type-specific) premiums π̂⊕ and
π̂⊖ are given by

(π̂⊕, π̂⊖) = arg max
(π⊕,π⊖)

{w⊕λ̂⊕(π⊕ − π0⊕) + w⊖λ̂⊖(π⊖ − π0⊖)}. (7)

In regime (F), the first-order condition delivers a much simpler equation
for the optimal premium. The simplification is due to the fact that we can
analyze high- and low-risk customers separately, i.e. we have w⊖ = 1 and
w⊕ = 0 or w⊖ = 0 and w⊕ = 1. We obtain

π̂⊕/⊖ = π0⊕/⊖ −
λ̂⊕/⊖(π̂⊕/⊖)

λ̂′⊕/⊖(π̂⊕/⊖)
. (8)

Similarly, we need to have λ̂⊕/⊖(π̂⊕/⊖) ̸= 0 and λ̂′⊕/⊖(π̂⊕/⊖) ̸= 0 to ensure
differentiability and avoid dividing by zero.

Remark 2.25. The no rip-off condition from Remark 2.18 ensures that the
functions we are maximizing over in Equations (5) and (7) have compact
support. Using Proposition 2.22 we know that λ̂ is differentiable as long as it
is strictly greater than zero and monotonously decreasing, as its derivative
is negative. Furthermore, the intermediate value theorem ensures the for
each λ̂ there exists a π such that F (π, λ̂) = 0, so λ̂(π) indeed converges
continuously to zero. Hence, the functions from Equations (5) and (7) are
continuous and bounded on a compact set, so a maximum needs to exist.
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Remark 2.26. Note that if we set w⊕/⊖ to one for one type of agents, Equa-
tion (6) simplifies to Equation (8).

Remark 2.27. Proposition 2.22 ensures that λ̂ is indeed differentiable in all
points where it is strictly positive. Note that the proof of this proposition
makes use of the implicit function theorem which gives us an opportunity to
calculate the derivative, see Proposition 2.21. We compute the formula for
the derivative together with some examples in Section 2.6. Unfortunately,
λ⊕/⊖ and its derivative can usually not be given in closed form.

Remark 2.28. Due to the restrictions on λ̂ and its derivative respectively on
the denominators of the fractions, we do not use the above representations
for the monopolistic case, but stick to the original maximization problem
given in Equations (5) and (7) instead.

Example 2.29. In this example, we illustrate the values of the equilibrium
insurance premiums and the corresponding equilibrium insurance coverages
for concrete values of the parameters. Therefore we assume the risk variables
Z⊕/⊖ to be Bernoulli distributed. We set the loss probabilities to p1⊕ = 5%
and p0⊕ = 1− p1⊕, vary p

1
⊖ between 5% and 60% and set p0⊖ = 1− p1⊖. The

damage in case of loss is set to z1⊕ = z1⊖ = 1, z0⊕ = z0⊖ = 0 and all other
pi⊕/⊖ and zi⊕/⊖ to zero. The initial wealth for all agents is set to a = 2

and the share of ⊕- and ⊖-agents in the portfolio to w⊕ = w⊖ = 50%.
Furthermore, we equip all agents with CRRA utility functions with a risk
aversion parameter of ρ = 3, i.e. u(x) = − 1

2x2 .
Now we calculate the premiums π⊙, π⊕ and π⊖ for these parameters. As
our choice does not admit a closed form, we have to solve Equations (5)
and (7), respectively. Recall that these equations depend on the equilibrium
insurance coverages λ̂ which are functions of the premium. To determine
the corresponding insurance demands, we plug the optimal premium into
the optimal coverage function. The results are plotted in Figure 2 below.

(a) Eq. insurance coverage λ̂⊕/⊖ (b) Eq. premium per coverage π̂⊕/⊖

Figure 2: Equilibrium insurance coverage λ̂⊕/⊖ and equilibrium premium
per coverage π̂⊕/⊖ as functions of the high-risk agents loss probability p1⊖ in
scenario (M)
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In Figure 2, we plot the equilibrium insurance coverage and the equilibrium
premium per coverage over the value of the high-risk customers loss prob-
ability p1⊖, while we keep the low-risk customers loss probability constant
at p1⊕ = 5%. We are interested in investigating the effects of the high-risk
agent’s damage probability on the behavior of the agents. As the damage
probability of the low-risk agents does not change, the effects are based more
on the (relative and absolute) difference of the probabilities between the two
types of agents rather than its actual value.
In Figure 2b we can see that the premium per unit of coverage, which can
be understood as the relative price of the insurance, rises with an increasing
value of p1⊖. This should not be surprising, as the expected loss for the
insurer ascends with p1⊖, which results in higher premiums.
If the damage probability of the ⊖-agents exceeds a certain level (for our
specifications if p1⊖ ≥ 14%, can be noted by the jump in the function at that
point), the low-risk customers are pushed out of the insurance market. If so,
the low-risk customers choose not to buy any insurance, and the high-risk
customers end up paying exactly the same as before. Then, the only differ-
ence between regimes (E) and (F) is that the low-risk agents do not purchase
any insurance in regime (E), as they are driven out of the insurance market.
If p1⊖ is below the push-out level, low-risk agents subsidize high-risk agents
with their premium payments. A higher value of p1⊖ causes the aggregate
premium to rise, which results in a higher subsidy. This happens until the
push-out level is reached.

Remark 2.30. From Figure 2 we can see that there are two local maximums
for the insurer’s optimization problem in regime (E) formulated in Equa-
tion (5). If the high-risk agent’s damage probability p1⊖ is low enough, we
are in the first local maximum (if p1⊖ < 0.14). Here, the insurance is bought
by both types of agents. Buying insurance in the second local maximum
(if p1⊖ ≥ 0.14) is only attractive for high-risk customers, as the premium is
too high for the low-risk customers. The jump in the equilibrium insurance
coverage and equilibrium premium per coverage denotes the change from
the first to the second local maximum, which coincides with the point where
the low-risk customers are driven out of the insurance market.

Competitive Insurance Supply

In contrast to the monopolistic insurance scenario (M) we now assume that
there is perfect competition in the market, i.e. that we are in market sce-
nario (C). In Equation (4), we calculated the profit of the insurer. As noted
in Section 2.4, this profit given by

E[w⊕λ⊕(π⊕/⊙ − Z⊕) + w⊖λ⊖(π⊖/⊙ − Z⊖)]

= w⊕λ⊕(π⊕/⊙ − π0⊕) + w⊖λ⊖(π⊖/⊙ − π0⊖)
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must equal zero. Note that the insurer can charge a type-specific premium
π⊕/⊖ or an aggregate premium π⊙ depending on whether the market allows
for free contract design or not, i.e. if we are in regime (F) or (E).
We first look at regime (F). The premiums are required to be non-negative
and the contracts for the ⊕- and the ⊖-agents have to be seen as separate
contracts, which both need to be feasible. As we are pricing the two groups
of customers separately, the ⊕-agents cannot subsidize the ⊖-agents as de-
scribed in Remark 2.15. As a result, both contracts need to be feasible.
Furthermore, we assume hat the insurer does not set the premiums so high
that no coverage is bought. Therefore, the only non-trivial solution to the
above equation is given by

π̂⊕ = π0⊕, π̂⊖ = π0⊖. (9)

Recall that π̂⊕ and π̂⊖ denote the optimal type-specific premiums for ⊕-
and ⊖-agents, respectively.
In regime (E), the insurer is not allowed to differ between ⊕- and ⊖-agents
when it sets the premiums. Given the equilibrium insurance demand func-
tions λ̂⊕ and λ̂⊖, the optimal aggregate premium can be computed as

π̂⊙ =
w⊕λ̂⊕

w⊕λ̂⊕ + w⊖λ̂⊖
· π0⊕ +

w⊖λ̂⊖

w⊕λ̂⊕ + w⊖λ̂⊖
· π0⊖. (10)

Recall that the functions λ̂⊕/⊖ depend on the premium π̂⊙, compare Re-
mark 2.10. Therefore, the optimal premium π̂⊙ can be calculated by solving
Equation (10) numerically.

Example 2.31. We examine the setting of Example 2.29 again, but this
time in scenario (C). We use the same parameters as in Example 2.29:
loss probabilities p1⊕ = 5%, p0⊕ = 1− p1⊕, vary p1⊖ between 5% and 60%,
p0⊖ = 1− p1⊖, damage in case of loss z1⊕ = z1⊖ = 1, all other pi⊕/⊖ and zi⊕/⊖
to zero, initial wealth a = 2, CRRA utility with ρ = 3, equal share of ⊕-
and ⊖-agents.
Based on these parameters, we calculate the equilibrium insurance coverage
λ̂⊕/⊖ and the equilibrium premium per coverage π̂⊕/⊖ in the competitive
insurance market. The results are given in Figure 3 below.
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(a) Eq. insurance coverage λ̂⊕/⊖ (b) Eq. premium per coverage π̂⊕/⊖

Figure 3: Equilibrium insurance coverage λ̂⊕/⊖ and equilibrium premium
per coverage π̂⊕/⊖ as functions of the high-risk agents loss probability p1⊖ in
scenario (C)

Similar to the monopolistic insurance market, the premium per coverage
increases with a rising value of p1⊖. In competitive insurance supply, the
growth is linear for higher values of p1⊖ in regime (E) and generally for
⊖-agents in regime (F). This is easy to explain as π̂⊖ and π̂⊙ in the second
local maximum (compare Remark 2.30) are given as π0⊕/⊖ = z1⊕/⊖p

1
⊕/⊖.

Again, low-risk customers are driven out of the insurance market, but in this
scenario, the phenomenon turns out to be much weaker. This effect may be
explained by the fact that the point where only high-risk customers remain
in the portfolio is reached at a higher value of p1⊖. In a market with free
competition, this critical value is 30% instead of 14% for the monopolistic
insurance market. Furthermore, for competitive insurance supply, there is no
drop-off, at which the equilibrium insurance coverage for the ⊖-agents drops
to zero. Instead, the equilibrium insurance coverage decreases continuously
to zero in this market. We take a second look on the push-out probabilities
in this market in Example 5.79.
If p1⊕ and p1⊖ are sufficiently close to each other, we can see that ⊖-agents
buy insurance coverage in excess of their losses. This is due to the fact that
overinsurance in this case is a gamble with positive expectation. As the
⊕-agents subsidize the ⊖-agents with their premium payments, the coverage
is affordable. Thus the additional payment in case of loss is higher than the
cost due to a higher premium. If overinsurance is prohibited, i.e. the high-
risk insurance demand is bounded by z1⊖, we can obtain similar results as
above, but with the high-risk agents coverage capped to z1⊖ = 1.
Furthermore, we note that all agents in regime (F) buy full coverage, i.e. we
have λ̂⊕ = λ̂⊖ = 1. This can be understood quite easily, as the insured solve

max
λ≥0

E[u(a− λπ − (1− λ)Z)]
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which becomes
max
λ≥0

E[u(a− λE[Z]− (1− λ)Z)]

in our setting. Buying full coverage leaves us with the (fully deterministic)
utility u(a−E[Z]). As the premium equals the expected loss, buying more or
less coverage just adds variance to the utility. Using Jensen’s inequality, the
concavity of utility functions shows that with the same expectation this is
less favorable than choosing full coverage where we end up in a deterministic
setting with zero variance.

Remark 2.32. Again, there are two equilibriums. One, where both types of
agents purchase insurance and one, where only high-risk customers choose
to purchase insurance. We switch from the first to the second equilibrium
at p1⊖ = 30%.

Remark 2.33. Note that the difference between the equilibrium premium
per coverage in scenarios (M) and (C) is very high. For example, ⊕-agents
in regime (F) pay up to three times more if there is only one monopolistic
insurer as they would pay in a market with perfect competition.

Remark 2.34. The plots in Figures 2 and 3 are based on 551 data points
for each function. For the figures in the other chapters of this thesis corre-
sponding remarks and explanations can be found in the according chapters,
compare Remarks 3.9, 5.11, 6.4, 7.1 and 8.1.

Remark 2.35. The calculations in Examples 2.29, 2.31 and all other exam-
ples in Chapters 2, 3, 5 and 8 were implemented in MATLAB using the
fminsearch optimizer. For the aggregate premium in the competitive sce-
nario this optimizer appears to perform better than MATLAB’s equation
solving algorithm solve. It is easy to see that solving x = f(x) is equiva-
lent to minimizing |x − f(x)| or (x − f(x))2 in x, as long as we make sure
that the solution we found indeed fulfills x = f(x).
For the monopolistic market setting, we decided to solve the original max-
imization problem given by Equations (5) and (7) instead of solving Equa-
tions (6) and (8) derived by the first order condition. This is due to the
restrictions on the differentiability of λ̂.

2.6 Optimal Coverage under CARA and CRRA Utility

When it comes to analyzing phenomena in our insurance market model, it is
crucial to understand the behavior of the optimal coverage problem defined
in Equation (1).
Before providing an analysis of the equilibrium insurance coverage, we illus-
trate that the equilibrium insurance coverage (and therefore also the premi-
ums) in a market with CARA utility does not depend on the height of the
initial wealth a of the agents.
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Remark 2.36. In Examples 2.29 and 2.31 we use the CRRA utility function
(power utility, u(x) = 1

1−ρx
1−ρ) defined in Example 2.2. Performing the

analysis of the two above examples with an other value for the initial wealth
leads to (slightly) different results. This is due to the fact that insurance
becomes less important for people with higher wealth in this market setting,
compare Figure 65. For CARA utility (exponential utility, u(x) = −e−ρx),
this is not the case. As one can already guess from the abbreviation CARA
(constant absolute risk aversion, compare the explanation for the CRRA
utility function in Example 2.2), the absolute risk aversion given by

A(c) = −u
′′(c)

u′(c)
= − ρ2u(c)

−ρu(c)
= ρ

is constant in x. Using exponential law we get

max
λ⊕/⊖≥0

E[u(a′ − λ⊕/⊖π − (1− λ⊕/⊖)Z⊕/⊖)]

= u(a′ − a) max
λ⊕/⊖≥0

E[u(a− λ⊕/⊖π − (1− λ⊕/⊖)Z⊕/⊖)],

where a, a′ ∈ R≥0 denote two different values for the initial wealth. Note
that u(a′ − a) can be taken out of the expectation and maximization, as
it does not depend on Z or λ. Hence, the maximization procedure and
therefore also its result are independent of the initial wealth.

In Proposition 2.22 we have shown that the equilibrium insurance coverage
λ̂ is differentiable in the premium π as long as λ̂ is strictly positive. The
implicit function theorem from Proposition 2.21 equips us with an explicit
way to calculate the coverage. As in the proof of Proposition 2.22 we define
F : R>0 × R>0 → R by

F (π, λ̂) =
∞∑
k=0

pk · u′(a− λ̂π − (1− λ̂)zk) · (−π + zk).

Using this definition together with Proposition 2.21, the derivative of λ̂ in
π can be calculated as

λ̂′ = λ̂′(π) = −Fπ

Fλ̂

,

where we need to assume that λ̂ > 0. Later in the proof we calculated

Fλ̂ =
∂F

∂λ̂
=

∞∑
k=0

pk · u′′(a− λ̂π − (1− λ̂)zk) · (−π + zk)2.

We furthermore obtain

Fπ =
∂F

∂π
=

∞∑
k=0

pk · (−u′(a− λ̂π− (1− λ̂)zk)− λ̂ ·u′′(a− λ̂π− (1− λ̂)zk) · (−π+zk)).
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Combining these equations reads

λ̂′(π) = −
∑∞

k=0 p
k · (−u′(a− λ̂π − (1− λ̂)zk)− λ̂ · u′′(a− λ̂π − (1− λ̂)zk) · (−π + zk))∑∞

k=0 p
k · u′′(a− λ̂π − (1− λ̂)zk) · (−π + zk)2

.

(11)

We can use this representation to calculate the equilibrium insurance cov-
erage and its derivative for an example.

Example 2.37. We consider a setting as in Examples 2.29 and 2.31. Dif-
ferent from these examples we assume there is one type of agents with a
damage probability of p = 5% and a loss in case of damage of z = 1. All
agents are equipped with an initial wealth of a = 2. In two different calcula-
tions we assume the agents to have CRRA or CARA utility, respectively. In
both cases, the risk aversion parameter is set to ρ = 3. Based on these pa-
rameters, we compute the equilibrium insurance coverage and its derivative
using Equation (11). As a comparison we provide the numerical derivative
of the coverage using the midpoint rule.

(a) Eq. insurance coverage λ̂⊕/⊖ (b) Derivative of eq. ins. coverage λ̂′⊕/⊖

Figure 4: Equilibrium insurance coverage λ̂ and its derivative λ̂′ as functions
of the premium π for CRRA utility
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(a) Eq. insurance coverage λ̂⊕/⊖ (b) Derivative of eq. ins. coverage λ̂′⊕/⊖

Figure 5: Equilibrium insurance coverage λ̂ and its derivative λ̂′ as functions
of the premium π for CARA utility

When we compare the values of the analytical derivative from the implicit
function theorem with its numerical approximation, we can see that the
analytical approach indeed only works if λ̂ > 0. If λ̂ = 0, the derivative is
either not defined or zero, but not strictly negative, as the analytical formula
would suggest. Hence, we need to pay attention, that the purchased coverage
is indeed strictly positive before we differentiate implicitly.
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3 Life Insurance

In this chapter, we apply the basic model we have introduced in a theo-
retical setting in Chapter 2 to real-life data and insurance products. Life
insurance policies are more complex than the products from our theoretical
examples. This is not an issue as we have defined our basic model for general
non-negative discrete risk variables. Nonetheless, some preparatory work is
needed before we can price life insurance policies.
We start this chapter by investigating different life insurance products.
These policies are defined in Section 3.1. To set up these contracts, we
need an appropriate mortality and interest rate model. All these compo-
nents come together in Section 3.2, where we provide different numerical
examples to analyze the parameter dependencies. As stated in Chapter 1,
an analysis of the push-out effect is of special interest for our research. We
conclude the chapter with Section 3.3, where we define different mixing
parameters to be able to compute unisex premiums like gender-specific pre-
miums. The according numerical analysis serves for a deeper understanding
of the structure of our model and its application to life insurance policies.
For basic definitions in life insurance mathematics and their related actuarial
concepts we refer to Olivieri and Pitacco (2011) [OP11].

3.1 Life Insurance Products

We start this section by introducing four basic life insurance products which
we investigate in the following. In this regard, we introduce the Lee-Carter
mortality model in Section 3.1.1. The big advantage of using this model
is that it is able to deal with the so-called longevity risk, i.e. the risk that
the distribution of mortality changes over the years. As the insurance con-
tracts usually need to be paid at the beginning of the contract duration
that often lasts several years, an interest rate for discounting the premium
payment is necessary. To do so, the CIR interest rate model is introduced
in Section 3.1.2.

Example 3.1. A pure endowment insurance pays one unit of money after a
maturity T if the policyholder survives until then. We set z1⊕/⊖ = B(0, T ),

where B(0, T ) is the time-T -discount factor, see Section 3.1.2. As the pay-
ment by the insurance is made at the maturity but the premium needs to
be paid at the start of the contract, the insurance company can invest the
premium in the money market. Also the insured could decide to invest the
money in the market instead of buying insurance.

The according damage probability is set to p1⊕/⊖ = T p
⊕/⊖
x , where T p

⊕/⊖
x

is the time-T -survival probability of an ⊕/⊖-agent with initial age x. All
other zk⊕/⊖ are set to zero. The net expected value of the contract is given
by

π0⊕/⊖ = B(0, T ) · T p⊕/⊖
x .
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Example 3.2. A term insurance is an insurance contract that pays out one
unit of money at the end of the year if the insured does not survive until
maturity T . We therefore set zk⊕/⊖ = B(0, k+1) for k = 0, . . . , T −1, where

B(0, k + 1) is the discount factor from zero to k + 1. We are discounting
until k + 1 instead of k because the insurance is always paid out at the end

of the year. Furthermore, pk⊕/⊖ = k|1q
⊕/⊖
x holds, where k|1q

⊕/⊖
x is the k-year

deferred death probability of an agent of type ⊕/⊖. In other words, k|1q
⊕/⊖
x

describes the probability of death during year k (but before year k+1). This

time period is given by the interval (k, k+1], so k|1q
⊕/⊖
x = kp

⊕/⊖
x −k+1p

⊕/⊖
x .

This leads to the net expected loss

π0⊕/⊖ =
T−1∑
k=0

B(0, k + 1) · k|1q
⊕/⊖
x .

Example 3.3. An endowment insurance is a combination of a term in-
surance with a pure endowment insurance: it pays out one unit of money
at the end of the year if the insured does not survive until maturity T .
If the policyholder survives until then, it pays one unit of money after a
maturity T . Similar to the term and the pure endowment insurance we
set zk⊕/⊖ = B(0, k + 1) for k = 0, . . . , T − 1 and zT⊕/⊖ = B(0, T ). As be-

fore, B(0, k + 1) is the discount factor from zero to k + 1. Furthermore,

pk⊕/⊖ = k|1q
⊕/⊖
x holds and we set pT⊕/⊖ = T p

⊕/⊖
x . This leads to the net

expected loss

π0⊕/⊖ =
T−1∑
k=0

B(0, k + 1) · k|1q
⊕/⊖
x +B(0, T ) · T p⊕/⊖

x .

Remark 3.4. The pure endowment part of the endowment insurance could
also be understood as a “money-back guarantee” for the premium of the
term insurance for the case that the policy holder survives the contract.

Example 3.5. An immediate lifetime annuity is a pension product that
pays out one unit of money at the end of each year which the policyholder

survives. We have zk⊕/⊖ =
∑k−1

j=0 B(0, j + 1) and pk⊕/⊖ = k|1q
⊕/⊖
x . All other

zk⊕/⊖ are set to zero. The net expected value of the contract is given by

π0⊕/⊖ =

ω−x−1∑
k=0

k−1∑
j=0

B(0, j + 1)

(
kp

⊕/⊖
x − k+1p

⊕/⊖
x

)

=
ω−x−1∑
k=1

B(0, k) · kp⊕/⊖
x ,

where ω denotes the maximal age (we assume ω = 110).
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Remark 3.6. We already mentioned in Remark 2.3 that ⊕ and ⊖ could
indicate males and females. In all of our numerical examples in Section 3.2,
we use males and females as the ⊕- and ⊖-agents. Based on our model,
⊕-agents are of lower risk for the insurance company. Given our mortality
model from Section 3.1.1 below and positive interest rates (e.g. interest rates
modeled by the CIR model from Section 3.1.2), we receive the following
correspondences.

⊕-agents ⊖-agents

pure endowment insurance males females

term insurance females males

endowment insurance females males

immediate lifetime annuity males females

Table 1: Correspondence between agent type and gender for four different
life insurance products

Remember that we always assumed that the premium is paid in a single
payment at the beginning of the contract duration. The endowment insur-
ance is certainly paying out one unit of money, the only question is when
the insurance company needs to pay, compare Remark 3.4. Given that our
interest rate is positive, it is advantageous for the insurer to delay the pay-
ment as long as possible. Hence, customers with lower death probabilities
are preferable for the insurer.
As we can see in Section 3.1.1, women are more likely to survive a given
time point than men. Hence, the number of years which they survive and
therefore also the number of years in which the annuity needs to be paid is
higher. This makes females less attractive for the insurer for the immediate
lifetime annuity.
If the interest rate is negative the males can be identified as the ⊕-agents for
the endowment insurance, while the females become the ⊖-agents. For the
other insurance products it is not clear which gender is assigned to which
type of agents. This motivates us to use an interest rate model that ensures
positive interest rate, such as the CIR model from Section 3.1.2, compare
also Remark 3.8.

In this thesis we assume that there are only two genders. The mortality of
transgenders, i.e. how a “change of gender” affects the death probabilities of
this person is little explored so far. While the exposure to genetically driven
and gender dependent illnesses is not changed, the behavior of the person
might be closer to a person of the lived instead of the biological gender.

Remark 3.7. Another interesting life insurance product is the tontine, which
is kind of a mixture between an (immediate) lifetime annuity and a mortality
lottery. When signing the contract, a customer pays a premium that entitles
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him for an annuity payment. Each time a customer in this contract dies, his
payments are split upon the other customers in that contract who are still
alive. The contract ends after the last customer had died. We do not inves-
tigate tontines further but refer to the literature, e.g. Sabin (2010) [Sab10]
or more recently Chen and Rach (2023) [CR23].

3.1.1 Mortality Models

To determine the net expected values and the premiums of our life insurance
products, we need to model mortality. By setting up a convenient model,
we can calculate the (deferred) death and survival probabilities which are
required for later calculations.
We use the Lee-Carter model which was first presented by Lee and Carter
in 1992 [LC92]. With this model we can calculate the so-called centralized
death probabilities, i.e. the deaths in one year normalized by the average
population within that year. In the Lee-Carter model, the centralized death
probabilities tmx are given by

ln(tmx) = ax + κtbx + εx,t.

Here (ax)x and (bx)x are age dependent factors, while (κt)t models the evo-
lution of mortality over time. With εx,t we add an error term. Follow-
ing [LC92], this error is said to have mean zero and a variance of σ2ε and is
introduced to reflect the particular age- and time-specific influences not cap-
tured by the model. Other sources speak of εx,t being white noise, which is
then defined as a vector of statistically independent random variables with a
mean of zero and finite variance. This definition coincides with the require-
ments in [LC92] and should not be mixed up with the definition of white
noise in the sense of the (generalized) derivative of a Brownian motion. For
the vectors (bx)x and (κt)t the conditions∑

x

bx = 1 and
∑
t

κt = 0

have to hold. Given the centralized death probabilities tmx we obtain the
one-year death probabilities qx,t at time t by

qx,t =
tmx

1 + 1/2 · tmx
.

Different to the centralized death probabilities, we use death probabilities
that depend on the population at the beginning of a year instead of the aver-
age population of that year for normalizing the one-year death probabilities,
which delivers us tmx ≥ qx,t for all t and x. All other probabilities we need
for modeling can be calculated from the one-year death probabilities.
We can calibrate the parameters using life tables. The data we use for
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calibration are French life tables that origin from the Human Mortality
Database (HMD)4. The calibration can be performed using singular value
decomposition (SVD), see [LC92], or by various other approaches. We use
a MATLAB toolbox5 for calibration, but apply it on French data instead of
U.S. data.
We continue by performing a quadratic polynomial regression on the vector
(κt)t, to be able to forecast the mortality data. As (ax)x and (bx)x are age
dependent and not time dependent factors, we do not need to perform a
regression on them.
In Figure 6 below, the three parameters (ax)x, (bx)x and (κt)t are plotted.
As (ax)x and (bx)x are age dependent, they are plotted over the age, while
(κt)t is plotted over the birth year.

Figure 6: Parameters of the Lee-Carter model for males and females

We can clearly observe that the life expectancy rises over the years as the
parameter (κt)t decreases over time. Also the mortality shocks due to World
War II or pandemics can be seen in the data, compare Figures 7 and 8 below
for the according mortality and survival probabilities. Another interesting
observation is that the parameter (bx)x for males has a local maximum

4https://www.mortality.org/, visited November 2020
5https://github.com/mrockinger/Matlab-Longevity-Toolbox, visited February

2021
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around the age of 28. As already analyzed in different studies like Patton et
al. (2009) [PCS+09], the reason for this peak is that young males are often
risk-loving and adventurous. This results in higher mortality rates for males
between 20 and 35, mainly due to (traffic, sports,. . . ) accidents. This effect
can also be observed for the females, but is much weaker in this case.
One advantage of the Lee-Carter model is that it uses a time dependent fac-
tor (κt)t and is able to manage the longevity risk. This risk describes that
not only the probabilities, but also the distribution of mortality changes over
time, see Figures 7 and 8.

(a) Females (b) Males

Figure 7: Number of females and males lx that still lived at age x from an
initial population of 100,000 for different years

As one can see, the shapes of the curves in Figure 7 change over time. Our
model is able to deal with this change in the distribution of mortality.

(a) Females (b) Males

Figure 8: Number of females and males dx that died at age x from an initial
population of 100,000 for different years
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Longevity is a serious risk for insurance companies, not taking this risk
into account might result in too high or (even worse) too low premiums
and in extreme cases to the bankruptcy of the whole company. There are
other approaches to mitigate this risk for the insurer in addition to using a
mortality model capable of dealing with longevity risk. One possibility is
to consider reinsurance and set up collective longevity swaps between the
insurers and the reinsurer, as it is done in Chen et al. (2022) [CLS22].

3.1.2 Interest Rate Models

We model the time-T -discount factor B(0, T ) by

B(0, T ) = exp

(
−
∫ T

0
r(s)ds

)
,

where r is given as the (instantaneous) short-rate. To model the short-rate,
we use the CIR model, named after their developers Cox, Ingersoll and Ross
(1985) [CIR85]. Based on their approach, r is given by r0 > 0 and

drt = a(b− rt)dt+ σ
√
rtdWt.

Here, (Wt)t is a standard Brownian motion and a, b and σ are (deterministic)
parameters. The stochastic differential equation above can be solved by
various methods. We make use of the built-in MATLAB CIR solver.

Remark 3.8. The CIR model ensures mean reversion to the long-term mean
b, where the parameter a controls the adjustment speed. If a and b are both
positive, the CIR model guarantees non-negative interest rates, the condi-
tion 2ab ≥ σ2 grants strict positivity, see for example Brigo and Mercurio
(2007) [BM07] for more details. This has the advantage that it is clear,
which gender can be identified with which group of insured (⊕ or ⊖), see
Remark 3.6. We furthermore know that the CIR model has an affine term
structure.

3.2 Numerical Examples

We continue by providing some numerical examples for the gender-specific
and unisex premiums for the four life insurance products which we intro-
duced in Section 3.1. We regard a portfolio consisting of the same number
of males and females, all equipped with a CRRA utility function with risk
aversion parameter ρ = 3, i.e. u(x) = − 1

2x2 and an initial wealth a = 2
(a = 45 for the immediate lifetime annuity). We assume all customers have
an initial age of 30 and we choose the parameters of the CIR model such
that we have a (long-term) risk-free interest rate of 3%. As the interest rate
does not play a relevant role for the pure endowment insurance, there is only
one possible time point for payoff, we assume a (constant) risk-free interest
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rate of 0% for the pure endowment insurance. We assume that the contract
duration is 20 years for all insurance products but the immediate lifetime
annuity, as there is no such contract duration for this pension product. The
premiums and corresponding optimal coverages are then given as functions
of the birth year. The corresponding figures are displayed below.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 9: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the birth year in
scenario (C)

We can observe the following phenomena:

• First, we compare the premiums in scenario (C) with those in scenario
(M), take for example Figures 9 with 10 for the pure endowment insur-
ance. As expected, we see that the monopolistic premiums always lie
above the corresponding competitive premiums. Therefore, the equi-
librium insurance coverages in a monopolistic market always lie lower
than in a corresponding competitive market.

• As a second observation from this comparison, the relative difference
between the coverages in markets with free contract design and manda-
tory unisex tariffs is much higher in scenario (M) than it is in sce-
nario (C). Also the push-out effect is stronger, compare e.g. Figure 13
with 14.

• In competitive markets with free contract design, customers always
buy full coverage, see e.g. Figure 9a and compare the argument in
Example 2.29.
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(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 10: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the birth year in
scenario (M)

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 11: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a term insurance as functions of the birth year in scenario (C)

• As already argued in Section 3.1.1, the life expectation has risen over
time, compare Figures 7 and 8. Over the (birth) years, this naturally
leads to rising premiums for the pure endowment and endowment in-
surance as well as for the immediate lifetime annuity and to falling
premiums for the term insurance.

• For the pure endowment insurance (Figures 9 and 10) and the immedi-
ate lifetime annuity (Figures 15 and 16), females pay more than males
in regime (F), while it is the other way round for the term insurance
(Figures 11 and 12) and the endowment insurance (Figures 13 and 14).
This relation was already addressed in Remark 3.6.
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• The unisex premium always lies between the male and the female pre-
mium. For the term insurance and the immediate lifetime annuity
for monopolistic markets (Figures 12 and 16) as well as for the en-
dowment for both market settings (Figures 13 and 14) we can see a
push-out of one gender out of the insurance market. In Examples 2.29
and 2.31 this phenomenon is already obtained in some theoretical ex-
amples. These examples originate from [SS14], where it is argued that
one can obtain two different equilibriums, compare Remark 2.30. In
one equilibrium, agents of both genders purchase insurance. In the
other one only the agents with the higher risk purchase insurance. It
is concluded that the push-out point corresponds to the point where
we switch from the first to the second equilibrium. This argument
transfers to our extended model as well.

• We have seen the effect of World War II in the mortality data, com-
pare Figures 7 and 8. Of course, this impacts the premiums, e.g. by
adding some roughness to them, especially to the male one. For the
endowment insurance in monopolistic markets this even drives the fe-
males to return to the market after there was a push-out for some
birth years, regard Figure 14. When it comes to regressing the life in-
surance premiums in Chapter 4, the regressions of the male premiums
cause higher training errors for the female and unisex ones. It can be
assumed that extra roughness is one of the reasons for this, as taking
the according birth years out of the regression leaves us with training
errors for the males that are approximately as high as for the females.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 12: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a term insurance as functions of the birth year in scenario (M)
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(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 13: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of an endowment insurance as functions of the birth year in
scenario (C)

• As mentioned before, the strength of the push-out effect depends
highly on the underlying product. As one can see in Figures 13 and 14,
especially the endowment insurance is very susceptible for the push-
out effect. This can be explained by the fact that the time point where
the agent is dying only determines when, but not if he is paid out by
the insurance company, compare also Remark 3.4. Therefore the risk
has a much lower variance and the demand for insurance is reduced
as well. One can also see from the diagrams that the gender-specific
premiums lie much closer together.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 14: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of an endowment insurance as functions of the birth year in
scenario (M)
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(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 15: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of an immediate lifetime annuity as functions of the birth year
in scenario (C)

• Interestingly, the unisex premium often lies relatively closer to the
lower premium in scenario (M) than it does in scenario (C), see e.g.
Figures 18 and 19 from the next section. Sometimes, the unisex pre-
mium is lower than the weighted average of the gender-specific premi-
ums, compare also Figure 25 in Section 5.1. An explanation for this
could be the structure of the optimization problem in the monopo-
listic market. By setting the unisex premium comparably low, more
insurance is bought in total and the profit of the insurer might rise.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 16: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of an immediate lifetime annuity as functions of the birth year
in scenario (M)
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Remark 3.9. All functions in the figures of this chapter and Section 3.3 are
functions of the birth years. Hence, the number of points we use for each
function in a plot is just the number of birth years we are plotting over. For
all figures besides Figures 6, 7 and 8, we use the birth years between 1900
and 1950, so 51 data points have to be computed.

Remark 3.10. In real-life insurance markets, insurers will charge different
types of costs. In life insurance, these costs can usually be grouped into

• α-costs, i.e. acquisition costs (costs for signing the contract like provi-
sion for the sales agent, costs of a medical test,. . . ),

• β-costs, i.e. collection expenses (banking fees, investment costs),

• γ-costs, i.e. administration expenses (wages, buildings, costs for data
processing,. . . ) and

• κ-costs, i.e. the annual fixed costs of an insurer, often included in the
γ-costs.

While α- and γ-costs are charged as a fraction of the insured sum (e.g.
α = 1% and γ = 0.2%), β-costs depend on the premiums (e.g. β = 3%).
When it comes to calculations, we can see that it is easy to integrate these
costs into our model, but the observed effects do not change qualitatively.
To ease further computations, we therefore do not regard costs in our model.

3.3 Mixing Parameters

Instead of calculating the unisex premiums directly by the approach used in
Section 2.5, we could try to find a mixing parameter according to which the
gender-specific premiums or model parameters have to be mixed to com-
pute the unisex premium. The actual premium calculation could then be
performed by using the gender-specific formulas only. This procedure has
the advantage that the gender-specific approach needs much lower computa-
tional effort than to compute unisex premiums. Especially when it comes to
products with very long contract durations, such as the immediate lifetime
annuity, an approach using mixing parameters could save some computation
time.
A second target for this section is to gain a better understanding of the
behavior of this model. The equilibrium approach we are using is based on
two connected optimization problems that rely on each other. Therefore,
predicting the exact output for a given specification of parameters is not
straightforward.
The conceptualization of the mixing parameter approach is done in Sec-
tion 3.3.1. By setting up different mixing parameters in Definitions 3.11,
3.12 and 3.13, we try to create a better understanding of the market model
itself. In Section 3.3.2, we study numerical examples where our definitions
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are applied, recognizing some phenomena from Section 3.2 but also making
new observations.

3.3.1 Conceptualization

We present three different approaches for defining a mixing parameter.

a) The easiest approach to set up a mixing parameter is to define it by the
weight given to the males when one computes the unisex premium as
a weighted sum of the gender-specific premiums. Of course, one could
also choose the weight given to the females instead. More formal, we
receive the following definition.

Definition 3.11. The mixing parameter based on premiums is defined
as the parameter ξ1 that solves the equation

Πu = ξ1 ·Πm + (1− ξ1) ·Πf .

Here, Πu, Πm and Πf denote the unisex, male and female premium,
respectively.

b) All of our insurance products depend – implicitly or explicitly – on
survival probabilities. We denote this dependency by writing Π(S).
Therefore we could also define a mixing parameter based on the sur-
vival probabilities.

Definition 3.12. We can find the mixing parameter based on proba-
bilities as the parameter ξ2 solving the equation

Πu = Π(ξ2 · Sm + (1− ξ2) · Sf ).

Here, Sm and Sf denote male and female survival probability, respec-
tively. Furthermore, Π(·) denotes the gender-specific premium based
on a given survival probability.

It is easy to show that the mixing parameters calculated by the first
two approaches coincide if we are in market scenario (C), see Propo-
sition 3.15.

c) As explained in Section 3.1.1, we are using the Lee-Carter mortality
model [LC92]. This model uses three parameters, (ax)x, (bx)x and
(κt)t. We can now replace one or more unisex model parameters by
the weighted sum of the gender-specific parameters. If we do not
replace all parameters accordingly, a push-out of one gender out of
the market would not (necessarily) result in the mixing parameter to
be zero or one. This is a desirable property of the mixing parameter,
which is also fulfilled by the first two approaches.
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Definition 3.13. We define themixing parameter based on parameters
as the parameter ξ3 that solves the equation

Πu =Π(S(ξ3 · amx + (1− ξ3) · afx,

ξ3 · bmx + (1− ξ3) · bfx, ξ3 · κmt + (1− ξ3) · κft )).

Here, aix,b
i
x and κit denote the male and female parameters of the Lee-

Carter model for i = m, f and S(·) denotes the (Lee-Carter) survival
probability given the corresponding parameters.

Remark 3.14. The above definition is of course only one approach of
defining a mixing parameter based on parameters. Instead of mixing
all three parameters of the Lee-Carter model, we could also mix only
one or two and let the remaining parameter(s) unchanged. As argued,
we want a push-out of one gender to result in the mixing parameter
being zero or one. Furthermore, for being able to model both, the age
and the time dependent factors which behave differently for males and
females in practice, it does not seem meaningful to mix only one or
two parameters. Another option would be to mix the parameters bx
and κt with

√
ξ3 and

√
1− ξ3 instead of ξ3 and 1− ξ3. The reasoning

to follow this approach would be that the parameters bx and κt get
multiplied in the Lee-Carter model, see Section 3.1.1. By using the
root, the product κtbx gets mixed by ξ3 and 1 − ξ3 instead of their
squares. In practice, this leads to a mixing parameter that is highly
unstable and not robust. Hence, we decided to model the parameter
according to Definition 3.13.

Before continuing, we give a short proof that the mixing parameters based
on premiums and probabilities coincide for scenario (C).

Proposition 3.15. Assume a competitive insurance market, where we have
an insurance product corresponding to a risk Zm/f . As in Definition 2.4,
the risks are assumed to be discrete, non-negative random variables with

P(Zm/f = zkm/f ) = pkm/f ,

where k ∈ N0, z
k
m/f ≥ 0 and pkm/f ≥ 0 for all k as well as

∑∞
k=0 p

k
m/f = 1.

Moreover we assume that zkm = zkf for all k = 0, 1, . . . , i.e. the damage
amounts of the two risks are equivalent, Zm and Zf only differ in the prob-
ability that this damage occurs.
In this market setting, the mixing parameters based on premiums ξ1 and
probabilities ξ2 coincide.

Proof. We need to show that ξ1 = ξ2 holds. From Section 2.5, namely
Equation (9), we know that the gender-specific premiums are given by the
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net value of the contract, i.e. by

Πm/f = E[Zm/f ] =

∞∑
k=0

pkm/fz
k
m/f .

Note that in our setting, zkm = zkf holds for all k = 0, 1, . . . , so we can write

zk instead of zkm and zkf .
The mixing parameter by premiums is given as the solution of the equation

Πu = ξ1 ·Πm + (1− ξ1) ·Πf

= ξ1 ·

( ∞∑
k=0

pkmz
k

)
+ (1− ξ1) ·

( ∞∑
k=0

pkfz
k

)
.

On the other hand, the mixing parameter by probabilities is given as the
solution of

Πu = Π(ξ2 · Sm + (1− ξ2) · Sf )

=
∞∑
k=0

(ξ2 · pkm + (1− ξ2) · pkf )zk.

= ξ2 ·

( ∞∑
k=0

pkmz
k

)
+ (1− ξ2) ·

( ∞∑
k=0

pkfz
k

)

As the sums in the equations are non-zero and finite by definition (see Def-
inition 2.4 and Remark 2.13), we finally obtain

ξ1 = ξ2.

Remark 3.16. In Chen and Vigna (2017) [CV17], the term of the unisex
fairness principle is introduced. Therefore, we regard a given portfolio that
consists of m males and n females with premiums Πm and Πf , respectively.
The unisex premium Πu is calculated according to the unisex fairness prin-
ciple if

Πu = w ·Πm + (1− w) ·Πf ,

where
w =

m

m+ n

is the fraction of males in the portfolio. In other words, a premium is said
to fulfill the principle if the unisex premium is given as the weighted average
of the two gender-specific premiums. This implies that changing the regime
from (F) to (E), the amount of premium, the insurance company earns does
not change if the amount of coverage purchased by the insured does not
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change. As we have seen and continue to see in various examples, this
assumption does not hold in our insurance market model.
If the unisex fairness principle is fulfilled, they call the premium Πu the
unisex fair premium. According to Definition 3.11, this is the case if ξ1 = w.
As we can see in Section 3.3.2, we almost always have ξ1 ̸= w, i.e. the unisex
fairness principle from [CV17] is almost never satisfied in our setting.

Remark 3.17. Sticking to the unisex fairness principle from the last re-
mark, [CV17] use this principle to define a so-called fair unisex mortality
intensity. This mortality intensity is chosen in such a way that the resulting
unisex premium fulfills the unisex fairness principle. Note that the mixing
parameter based on probabilities ξ2 from Definition 3.12 of our approach
turns out to be the closest to the approach in [CV17]. Nonetheless, there
are two differences, where the second one is indeed of fundamental kind:

a) While our modeling deals with survival rates, [CV17] uses the mor-
tality intensities. This difference is more of a technical kind and does
not result in a big difference in the computations. If one takes the
death probability (i.e. the integrated mortality intensity), the two ap-
proaches are the same. This can be seen in the calculation below.
Therefore we consider arbitrary survival probabilities pm and pf of
males and females, respectively. With qm = 1−pm and qf = 1−pf we
denote the corresponding death or death probabilities. If we receive
the unisex survival probability by mixing the gender-specific survival
probabilities by a mixing parameter ξ, i.e. by setting

pu = ξpm + (1− ξ)pf ,

we equivalently obtain

qu = 1− pu

= 1− (ξpm + (1− ξ)pf )

= 1− (ξ(1− qm) + (1− ξ)(1− qf ))

= ξqm + (1− ξ)qf

and vice versa.

b) Our approach sets the focus to find the mixing parameter such that the
unisex premium using the equilibrium approach from Chapter 2 is the
same as calculating it as a gender-specific premium with accordingly
mixed survival probability. Contrariwise, [CV17] models it in such
a way that the total amount of premium paid in the two insurance
markets with regimes (F) and (E) are the same. Note that the amount
of coverage purchased by the customers is assumed to be equal in both
regimes. Different to the first point, this makes indeed a different
approach.
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Remark 3.18. The values of the mixing parameters highly depend on the
values of the model parameters. To use this approach for the calculation of
unisex premiums, we need to perform a regression on the values of the mixing
parameters. We can then use them for pricing unisex premiums of parameter
specifications we do not know so far. One can assume that the regression
works much better if the premiums and therefore the mixing parameters
do not have jumps, as most of the classic regression approaches perform
better, the smoother the function we want to regress is. As we have seen in
Figure 13, a push-out of one gender out of the market does not necessarily
result in a jump of the premiums. In Chapter 4 different regression methods
for regressing equilibrium insurance premiums are presented.

3.3.2 Numerical Examples

In the next step, we compare the values of the mixing parameters from the
three approaches for our four life insurance products. Some observations for
the given examples can be found in Remark 3.19. In a further step, we could
perform a regression on the data and compare the quality of the regression
for the different approaches.
As in Section 3.2, we present examples for the pure endowment insurance
defined in Example 3.1, the term insurance introduced in Example 3.2, the
endowment insurance from Example 3.3 and the immediate lifetime annuity
introduced in Example 3.5. For all examples, we use the standard parame-
ters from Section 3.2. There we assumed a portfolio that consists of equal
shares of males and females. The agents are said to have CRRA (power)
utility with ρ = 3 and an initial wealth of a = 2 (a = 45 for the immediate
lifetime annuity). The initial age of the customers is assumed to be 30 years
while the contract duration for all products but the immediate lifetime an-
nuity is 20 years. While we assume the interest rate to be constant r = 0%
for the pure endowment insurance, we use the CIR model such that we have
a (long-term) risk-free interest rate of r = 3% for the other three insurance
products. The results are displayed in the figures below.
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(a) Scenario (C) (b) Scenario (M)

Figure 17: Mixing parameters (mp) ξ1, ξ2 and ξ3 for the pure endowment
insurance in scenarios (C) and (M) as functions of the birth year

In Figure 17 above, the three mixing parameters we defined before are cal-
culated and plotted for the pure endowment insurance. The corresponding
premiums and coverages on which the calculations depend implicitly and
explicitly can be found in Figures 9 and 10 but are not given here again.

(a) Scenario (C) (b) Scenario (M)

Figure 18: Mixing parameters (mp) ξ1, ξ2 and ξ3 for the term insurance in
scenarios (C) and (M) as functions of the birth year

Remark 3.19. We summarize our observations from the last figures in the
following:

• If one gender is pushed out of the insurance market, all three mix-
ing parameters are zero or one, respectively, compare e.g. Figure 20b
or 18b. This is meaningful, as a market where one gender is pushed
completely out equals a market where only customers of one gender
sign contracts.
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(a) Scenario (C) (b) Scenario (M)

Figure 19: Mixing parameters (mp) ξ1, ξ2 and ξ3 for the endowment insur-
ance in scenarios (C) and (M) as functions of the birth year

(a) Scenario (C) (b) Scenario (M)

Figure 20: Mixing parameters (mp) ξ1, ξ2 and ξ3 for the immediate lifetime
annuity in scenarios (C) and (M) as functions of the birth year

• As proven in Proposition 3.15, the mixing parameter based on premi-
ums ξ1 and the mixing parameter based on probabilities ξ2 coincide
in the competitive case, see for example Figure 17a. For our examples
in the monopolistic market, the mixing parameter based on premiums
is always bigger than the mixing parameter based on probabilities in
the monopolistic case, see e.g. Figure 17b. When one plays around
with the market and product specifications, one can realize that this
is true for most but not all settings. It seems that the higher the con-
tract duration or the initial ages are, the bigger the difference becomes.
Only for specifications with really low initial ages, say 15 or less, ξ2
sometimes is larger than ξ1.

• In most examples, the mixing parameter ξ3 based on parameters lies
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clearly above the two other mixing parameters. Nonetheless, there
are market settings in which it is opposite. As we have seen for the
monopolistic case of the immediate lifetime annuity (Figure 20b), ξ3
can also lie between the other two parameters. In general, it does not
seem to be possible to formulate a proposition about the behavior of
ξ3 in comparison to the other parameters.

• If there is no push-out, the mixing parameters in a competitive market
are often higher than in a monopolistic one, compare for example
Figure 18a with 18b.

• One would expect that the unisex premium lies closer to the higher
gender-specific premium. Therefore, one would expect the mixing pa-
rameters when there is no push-out to be smaller than 0.5 for the pure
endowment insurance and the immediate lifetime annuity, and to be
greater than 0.5 for the term and the endowment insurance. As we
can see, these expectations are not always met, compare Figures 17a
and 20b.

• In general, the mixing parameters are growing over time. Nonetheless,
it is also possible to obtain a reduction of the values. While a negative
trend is rare (ξ1 and ξ2 in Figure 17b), a temporary reduction due
to the effect of World War II can be observed in many examples,
especially in Figure 19a. We already noticed this effect in most of
the examples in Section 3.2, where we calculated the premiums and
equilibrium insurance coverages of the life insurance products.

Remark 3.20. In [CV17], a proposition is presented which assumes that the
male force of mortality is greater than the female one at each time point. If
this is true, their mixing parameter ξ∗ for the pure endowment insurance is
always lower or equal the fraction of males in the portfolio.
As long as it is assumed that the mixing parameter is constant over time,
it always lies close to the fraction of males in the portfolio. This changes
as soon as one starts to analyze their mixing parameter time dependently.
Based on the insurance product, the difference between the mixing pa-
rameter and the fraction of males in the portfolio can become quite large.
Nonetheless, the difference vanishes over the contract time, reaching almost
zero at the end of the duration time. For more details we refer to [CV17].

Example 3.21. As a last example of this section, we visualize how the
fraction of males in a portfolio changes over the years. We therefore model
six different portfolios with initial ages of 0, 20, 40, 60, 80 and 100. All the
portfolios consist of equal shares of males and females at the beginning of
the contract. The evolution of this fraction over time is shown in Figure 21
below. The data used in this plot is the French data from the HMD for the
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2016 cohort.
As expected, the fraction of males never surpasses 0.5. The decline of the
fraction accelerates over the years. Interestingly it slows down again at
very old ages. While the exact behavior is highly affected by the small
portfolio size, this deceleration in the decline can be observed for almost
all birth years. There is some research going on for mortality at very high
ages which might explain this phenomenon, see for example Gavrilov and
Gavrilova [GG11] or Casiglia et al. (1993) [CSG+93]. The International
Database on Longevity (IDL)6 collects information about supercentenarians,
i.e. people that lived at least until age 105.

Figure 21: Evolution of the fraction of males wm for portfolios with different
initial ages over the time

6https://www.supercentenarians.org/en/
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4 Regression of Life Insurance Premiums

The calculation of premiums, especially for more complex products like the
endowment insurance or the immediate lifetime annuity can become very
time-consuming as two connected optimization problems or equations need
to be solved for each parameter specification. Therefore, we want to generate
only a small amount of data points and fit a regression through them to gain
the premiums for a large amount of parameter specifications. More details
about the used methods can be found e.g. in Géron (2019) [Gé19].
In this chapter, we perform some regressions on the life insurance premiums
we obtained earlier in Section 3.2. We can see in Section 4.1 that neural
networks are indeed a quite promising tool to perform this task. Nonetheless,
we are going to analyze and compare other classic regression approaches in
Section 4.2.

4.1 Neural Networks

A promising approach for regressing life insurance premiums are neural net-
works. We implement the neural networks which we use for regression with
the keras package of Python and focus on deep neural nets with dense
layers.

Remark 4.1. An (artificial) neural network is a method in machine learn-
ing trying to rebuild a neural network which can be found in the brains of
animals and humans. A network consists of some input neurons, different
layers of neurons, so-called hidden layers in between and one or more output
neurons. If each neuron of one layer is connected with all the neurons of
the next one, we speak of a network with dense layers. The term of a deep
neural network is not clearly defined, usually one refers to a network with
more than one hidden layer. From layer to layer, each neuron calculates an
output as a weighted sum of the inputs. We then apply a so-called activa-
tion function to this sum. Examples for different activation functions can
be found in Figure 23 below.
Before being able to use a neural network for regression, we need to train
it. This is done using a method called backpropagation. Therefore, one uses
data inputs, one already knows the output for. These inputs are passed dur-
ing the network performing a so-called forward pass. In the next step, the
difference between the calculated and the real output is measured using a
loss function, often the mean squared error function is taken for this purpose.
The actual backpropagation step is then performed by traveling backwards
through the layers to measure the error contribution of each connection.
In a final step, the weights are adjusted by an optimizer. The intensity of
changing can be controlled by the learning rate of the optimizer.
Not only the specifications of the neural network, like its size, used activa-
tion function etc. are important for the quality of training. Also the size
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of the training set, i.e. the number of points used for training is relevant.
Furthermore, the number of epochs, i.e. how many training cycles are per-
formed for each point plays a fundamental role. More details together with
some algorithms can be found in [Gé19].

In Figure 22 below7 a visualization of a neural network with three hidden
layers is given.

Figure 22: Neural network with three hidden layers

In the following, we investigate the effect of several network specifications
on the goodness of our approximation. Of course, the results presented in
this section have to be understood only as a feasibility study. As the quality
of approximation is strongly related to the underlying data set, one cannot
say, which network specification is generally better for the given problem.
This is not a specific issue for our setting but a general characteristic of
neural network regression.
For our training, we use a set of data points generated using the calcu-

lation method from Chapter 3. The insurance product we are focusing on
is the pure endowment insurance in scenario (C). For scenario (M) as well
as for other insurance products such as the term insurance, the observable
phenomena and effects are similar to the pure endowment insurance in a
competitive market. Therefore we decided to analyze the product, where
the data points are the easiest to generate. The set of data points contains
all combinations of birth years between 1900 and 1950, initial ages between
20 and 70 and contract durations between 1 and 50 years. In total, our

7Figure is based on https://www.spotfire.com/glossary/what-is-a-neural-netwo

rk
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complete data set contains

51 (diff. birth years) · 51 (diff. initial ages) · 50 (diff. contract durations)

= 130, 050 (data points)

from which we usually only use a small share for training, validating and
testing our network, as explained below.
In the following, we compare a variety of neural net regression approaches
which differ in only one network specification. All other specifications are
set to their standard values. With “standard neural network” we address a
network with

• three hidden layers consisting of 150, 100 and 30 neurons,

• the Adam optimizer with learning rate 0.001 (standard value for the
Adam optimizer) and 1000 epochs,

• the elu activation function and

• the mean-squared error loss function.

The sizes of the train, validation and test sets are 1000, 100 and 10000,
respectively. The test set is chosen to be so large to ensure that the loss
does not depend too much on the choice of the test set.
The test set is chosen at random, also the network is initialized randomly.
To avoid being too dependent on chance, it is state of the art to calculate the
average root-mean squared errors over ten networks or data sets. To reduce
the effect of the choice of the test set even further, we train ten different
neural networks with a new and randomly chosen test set for each network.
All ten networks are trained from scratch.

The Network Size

One important question when it comes to neural networks is the number of
layers and the number of neurons per layer which the neural network should
have. Below, the errors are given for different neural network sizes.

network size males females unisex

200-150-100-30-1 0.00324212 0.00205556 0.00243482

150-100-30-1 0.00344637 0.00284644 0.00240020

100-30-1 0.00372505 0.00230863 0.00337127

30-1 0.00413402 0.00229974 0.00272141

100-100-100-1 0.00377898 0.00275292 0.00259546

200-200-200-1 0.00407800 0.00179374 0.00244923

30-100-150-200-1 0.00369453 0.00216836 0.00256288

Table 2: Average root-mean-squared errors of different neural network sizes
for the pure endowment insurance in scenario (C)
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Here, e.g. 200-150-100-30-1 means that we have a neural network with four
hidden layers consisting of 200, 150, 100 and 30 neurons, respectively. The
final “1” represents the output neuron.
We can see that the size of the neural network does not really matter. Also
the shape of the network, i.e. if we vary the numbers of neurons for different
layers does not seem to have a big impact on the quality of training. As the
size of the network did not have a big influence on our training times for our
examples, we decided to keep the “standard neural network” at a medium
size of 150-100-30-1.

The Optimizer

Next, we take a look at eight of the optimizers which are implemented in
keras.

optimizer males females unisex

SGD 0.00581211 0.00472995 0.00509333

Adam 0.00344637 0.00284644 0.00240020

Nadam 0.00455761 0.00229244 0.00265699

Adamax 0.00381995 0.00275219 0.00328929

Adadelta 0.01465838 0.01162739 0.01238723

Adagrad 0.00844584 0.00798959 0.00826941

Ftrl 0.01747911 0.01018802 0.01175904

RMSprop 0.00724953 0.00577141 0.00452675

Table 3: Average root-mean-squared errors of different optimizers for the
pure endowment insurance in scenario (C)

One can see that Adadelta and Ftrl perform the worst on our data set, while
Adam, Nadam and Adamax work the best.
The Adam optimizer got his name from the abbreviation of “adaptive mo-
ment estimation” and uses exponentially decaying averages of (the l1- and
the l2-norm of) past and squared gradients.
Adamax uses the same approach as Adam but with the l∞-norm instead of
the l2-norm. As the gradients are of finite dimension, we can speak of the
maximum norm instead of the l∞-norm. This variant of the optimizer was
developed to ensure a more stable optimization. Indeed, for our examples
the variance of the root-mean-squared errors is lower for the Adamax opti-
mizer.
Finally, the Nadam optimizer is another variant of Adam making use of the
so-called “Nesterov trick”, which might result in a slightly faster conver-
gence. In our examples, the differences are marginal.
Explanations for the other optimizers and further details as well as the exact
algorithms can be found in Chapter 11 of [Gé19].
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The Size of the Training Set

Of course, the size of the training set enormously affects the goodness of the
approximation. We try different sizes of training sets, while keeping the test
set fixed to 10,000 data points and the validation set to 10% of the size of
the training set.

size of training set males females unisex

10 0.24052890 0.26863978 0.17851720

100 0.05509833 0.04385099 0.04788966

1000 0.00344637 0.00284644 0.00240020

10,000 0.00141310 0.00101410 0.00102928

109,136 0.00130531 0.00107693 0.00112867

Table 4: Average root-mean-squared errors of different test set sizes for the
pure endowment insurance in scenario (C)

We can see that the neural network needs approximately 1000 data points
for training to work properly. It also seems that there is no increase in
approximation quality, if the training set consists of more than 10,000 data
points. In some cases, the results turn out to be even worse.
For the last example we used all available data points. By reserving 10,000
of our 130,050 data points for testing we are left with 120,050 points for
training and validation. As mentioned above we use 10% of the points for
validation leaving us a set of size 120, 050 · 10

11 = 109, 136 for training.

The Number of Epochs and the Learning Rate

The number of epochs and the learning rate have a fundamental effect on
the quality of training.

epochs, learning rate males females unisex

100, 0.0001 0.00867770 0.00869722 0.00803047

1000, 0.0001 0.00427497 0.00415512 0.00430157

10000, 0.0001 0.00193950 0.00127069 0.00143566

100, 0.001 0.00910728 0.01346069 0.01082322

1000, 0.001 0.00344637 0.00284644 0.00240020

10000, 0.001 0.00148179 0.00088758 0.00109058

100, 0.01 0.00704989 0.00539653 0.00567253

1000, 0.01 0.02846418 0.01525617 0.01988522

10000, 0.01 0.03003984 0.01552650 0.01904158

Table 5: Average root-mean-squared errors of different learning rates and
epochs for the pure endowment insurance in scenario (C)
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We can see that if the learning rate is not too high, more epochs result in a
lower error. This keeps to be true if one takes even higher number of epochs.
Hence it does not seem to be needed to develop a soft stopping rule if the
learning rate is low enough. For a learning rate of 0.01, this is not longer the
case. Here we are overfitting the training set for larger amounts of epochs
which results in a poorer performance of the network on our test set.

The Activation Function

Finally, we look at different activation functions. As the activation func-
tion defines the output of a neuron given its inputs, also the choice of the
activation functions used plays a crucial role for the performance of the re-
gression. We try the nine different functions which are provided by keras,
where the learning rate is set to the standard value chosen by keras. Us-
ing the exponential activation function results in infinite training, validation
and test losses most of the time. We therefore do not display the values for
this activation function in the table. If the regression terminates, it delivers
root-mean-squared errors around 0.01. In Figure 23 we can see that the ex-
ponential function takes quite high values compared to the other activation
functions, which might explain this problem.

activation function males females unisex

relu 0.00226433 0.00142918 0.00159407

sigmoid 0.00400089 0.00244167 0.00306375

softmax 0.00345298 0.00275257 0.00281909

softplus 0.00444880 0.00240328 0.00392410

softsign 0.00359321 0.00222828 0.00249798

tanh 0.00425666 0.00376827 0.00395937

selu 0.00351502 0.00390210 0.00315989

elu 0.00344637 0.00284644 0.00240020

Table 6: Average root-mean-squared errors of different activation functions
for the pure endowment insurance in scenario (C)

We can see that all activation functions perform quite similar. In our calcu-
lation, the relu activation function, i.e. f(x) = max(0, x), provides the best
results. In Figure 23 below, the nine different activation functions we used
are plotted. For a detailed discussion and definitions for all functions we
refer once more to [Gé19]. Note that some of the functions use parameters
as their input. We set all these parameters to their default value. For the
selu function we take λ = 1.0507 and α = 1.6733, all other parameters are
set to one.
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Figure 23: nine different activation functions

General Remarks

The goodness of the unisex approximation can be improved by using the
gender-specific premiums as input.

input premium

standard input 0.00240020

standard input and male premium 0.00175024

standard input and female premium 0.00117153

standard input, male and female premium 0.00101441

male and female premium 0.00078625

Table 7: Average root-mean-squared errors of the unisex premiums for the
pure endowment insurance in scenario (C) using different inputs

With “standard input” we mean the input used for regressing the gender-
specific and unisex premiums before, i.e. the initial age, birth year and
contract duration. Interestingly, we obtain the best approximation if we
only use the two gender-specific premiums as the input.
For most examples one can observe that the female error is lower than the
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male one. This comes due to the effect of World War II we observed in
Section 3.2. By taking out the birth years until 1920, this effect is removed
and one can no longer observe a structural difference in the errors.
All neural networks used for this section make use of the mean-squared error
loss function. This function performed much more stable and robust than
other loss functions, so we decided to stick to the mean-squared error loss
for performing the backpropagation.

4.2 Other Regression Approaches

Neural networks clearly outperform all other classic regression approaches
in terms of the (average) root-mean-squared error. Even if the training of
a neural network takes longer than performing the regression for most of
the approaches presented here, we consider them to be the overall preferred
regression tool, as they have several other useful properties. We have seen
that by choosing the learning rate sufficiently low, we can avoid overfitting,
see Table 5. Furthermore, the disadvantage of longer training times are not
a big issue, as once the network is trained, it can be used without taking
further time for training.
We therefore do not present details for the other regression approaches here
but summarize them shortly. To make the results comparable, we calculate
the 10-fold cross-validation score based on root-mean-squared errors for sev-
eral regression methods. The so-called k-fold cross-validation is a common
technique in machine learning. To make use of it, we randomly shuffle the
data and split it up in k shares of equal size. We then perform k independent
regressions, where we use k−1 of the shares for training and the last one for
validation, each share is used for validation once. To obtain the k-fold cross-
validation score, we simply average over the according (root-mean-squared)
errors.
The data set on which the regressions are performed is again a set of male,
female and unisex pure endowment insurance premiums in scenario (C), re-
spectively. Just like before, it contains 130,050 data points, all combinations
of birth years between 1900 and 1950, initial ages between 20 and 70 and
contract durations between 1 and 50 years are regarded. We use Python’s
Scikit-learn package for implementation. The scores are presented in the
following table.
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regression method males females unisex

linear regression 0.11918597 0.15409744 0.13613016

squared regression 0.06172708 0.06105916 0.05253646

degree 10 polynomial regression 0.01370156 0.02403878 0.01854339

linear SVR 0.14486327 0.16314460 0.14619527

squared SVR 0.11760384 0.15261114 0.13759061

degree 10 SVR 0.07741539 0.07333816 0.07022085

SGD regression 0.14838842 0.16500266 0.15445413

decision tree regression 0.03952165 0.03618673 0.03661325

Table 8: 10-fold cross-validation scores based on root-mean-squared errors
of different regression methods for the pure endowment insurance in sce-
nario (C)

If the regression method has hyperparameters which can be chosen by the
user, we used a grid search approach on a suitable parameter grid to de-
termine the optimal parameter choice. SVR stands for support vector re-
gression and SGD regression for regression by stochastic gradient decent.
Details about the methods can be found in the literature, e.g. in [Gé19].
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5 Risk Classes and Risk Relations

In this chapter we are going to investigate markets with more than two risk
classes. This extension opens a window for a deep analysis of risk class and
contract management in insurance markets. A possible application for this
type of markets lies in life or disability insurances. An analysis of different
life insurance products can be found in Chapter 3. More details about
disability insurances for two risk classes (males and females) using real-life
data of the social security administration of the U.S. government can be
found in Chapter 7.
We start by generalizing our basic model from Chapter 2 such that it can
deal with more than two risk classes in Section 5.1. In a next step, we
assign the risk classes to rating classes, where customers of each rating class
share the same policy. This is done in Section 5.2. We derive a concept
for managing these risk and rating classes in insurance markets. Different
criterions for optimality of rating class vectors are presented and analyzed.
The section is rounded up by presenting an algorithm and its application to
real-life examples. In Section 5.3 we present an extension of our model by
including capacity constraints into the market. Here, we include the option
to cap the maximal amount of contracts that can be sold by each insurance
company.

5.1 Risk Classes

A natural extension for our basic model is to allow for more than two risk
classes. As stated in Equation (4) in Section 2.5, the expected profit of the
insurer is given by the term

E[w⊕λ⊕(π⊕ − Z⊕) + w⊖λ⊖(π⊖ − Z⊖)]

=w⊕λ⊕(π⊕ − E[Z⊕]) + w⊖λ⊖(π⊖ − E[Z⊖]),

which can, after replacing ⊕ and ⊖ by the numbers 1 and 2, respectively,
be rewritten as

2∑
i=1

wiλi(πi/⊙ − E[Zi]).

As we had E[Z⊕] ≤ E[Z⊖], we have after renaming E[Z1] ≤ E[Z2]. In prac-
tice we assume that the equality is strict. From the representation above,
we can see that the most straightforward and meaningful way of extend-
ing the model for more risk classes is to increase the number of summands.
We therefore define a new set of risk classes and adapt our model of the
insurance market to it.

Definition 5.1. The set of risk classes is modeled as a set C, where C ⊆ N
or an interval C ⊆ R. Furthermore, (wi)i∈C are the corresponding fractions
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or the density of i-agents in the market. As before, we assume that wi ≥ 0
holds for all i and

∑
i∈C wi = 1 or (wi)i∈C is (Lebesgue-)integrable with∫

C widi = 1, respectively. All agents of one risk class face a risk with the
same distribution denoted by the random variable Zi for agents of class
i ∈ C. We assume that the risks of one class are i.i.d. and independent
of the risks of the other classes. The expected risk is increasing with the
number of the risk class, i.e. E[Zi] is increasing in i. All random variables
are (Lebesgue-) square-integrable. Finally, the number of customers in the
corresponding risk class is given by ηi ∈ N0.

While we assumed that all random variables are integrable in Chapter 2,
compare Remark 2.6, we now assume square-integrability. This is needed,
as we are need the variances of the random variables later, in Definition 5.74.
Definition 5.1 leads us to a new definition of the profit of the insurer.

Definition 5.2. We define the expected insurer’s profit as

n∑
i=1

wiλi(πi/⊙ − E[Zi]), n ∈ N ∪ {∞}

for the discrete case and ∫
C
wiλi(πi/⊙ − E[Zi])di

for the continuous case.

By setting n = 2 the above equation simplifies to Equation (4). With
N∪{∞} we include the case that we might have infinitely many risk classes.
Remember that λ is a function that depends on π, see Remark 2.10, so one
actually has wi · λi(πi/⊙) · (πi/⊙ − E[Zi]) as the summands/integrand.

Remark 5.3. Similar to Chapter 2, the equilibrium demand for insurance λ̂
can be obtained by solving the problem

max
λ≥0

E[u(a− λπ + (1− λ)Z)],

see Definition 2.17. Similar to Chapter 2, it is not clear in general, why
this maximizer needs to exist. As mentioned, one can work out criterions
for some special cases and the maximizer exists for all of our examples,
compare Remark 2.19.
As before, the solution to the problem of the insured can often not be given
in closed form. Nonetheless, we are again able to find some closed form
representations for the insurer’s problem, as we can see in Proposition 5.6.

Similar to Chapter 2, we introduce the optimal premiums for the different
market scenarios by the following definition.
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Definition 5.4. In a competitive market with equal tariffs (scenario (C)
and regime (E)), the optimal premium π̂⊙ is given as the solution of

n∑
i=1

wiλ̂i(π⊙ − E[Zi]) = 0

or ∫
C
wiλ̂i(π⊙ − E[Zi])di = 0.

Under free contract design (regime (F)), the optimal premium for i-agents
is given as the solution of

wiλ̂i(πi − E[Zi]) = 0.

In a monopolistic market (scenario (M)) the optimal premium in regime (E)
is given by

π̂⊙ = argmax
π⊙

{
n∑

i=1

wiλ̂i(π⊙ − π0i )

}
where n ∈ N ∪ {∞} and

π̂⊙ = argmax
π⊙

{∫
C
wiλ̂i(π⊙ − π0i )di

}
.

Furthermore, the optimal premium for i-agents is given by

π̂i = argmax
πi

{
λ̂i(πi − π0i )

}
.

Similar to Chapter 2, π0i is defined as π0i := E[Zi] and the equilibrium
insurance demand λ̂i depends on the premium π.
If we are in regime (F), where the optimization in scenario (M) is performed
for each risk class individually, we speak of a risk class specific premium or
type-specific premium. The same applies in case of scenario (C) where we
solve the equation individually. If we are in regime (E), where this is done
for all risk classes at the same time, we speak of a global premium or an
aggregate premium.

Remark 5.5. The no rip-off property from Remark 2.18 ensures the existence
of the (argument of the) maximums in Definition 5.4, see also Remark 2.25.

Proposition 5.6. Let n ∈ N∪{∞}. In scenario (C), the optimal premiums
are given by

π̂i = π0i

if we have free contract design and by

π⊙ =
n∑

i=1

wiλ̂i∑n
i=1wiλ̂i

· π0i
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or

π⊙ =

∫
C

wiλ̂i∫
C wiλ̂idi

· π0i di

if we have mandatory equal tariffs.
In scenario (M) the optimal premiums are given by

π̂i = π0i −
λ̂i(π̂i)

λ̂′i(π̂i)

for a setting with free contract design, where we need to have λ̂i(π̂i) ̸= 0 and
λ̂′i(π̂i) ̸= 0 for the formula to be well-defined. In a regime with mandatory
equal tariffs we calculate

π̂⊙ = −
∑n

i=1wi[−π0i λ̂′i(π̂⊙) + λ̂i(π̂⊙)]∑n
i=1wiλ̂′i(π̂⊙)

.

and

π̂⊙ = −
∫
C wi[−π0i λ̂′i(π̂⊙) + λ̂i(π̂⊙)]di∫

C wiλ̂′i(π̂⊙)di
.

Similar to the case with free contract design, we need to have λ̂i(π̂i) ̸= 0 as
well as

∑n
i=1wiλ̂

′
i(π̂⊙) ̸= 0 or

∫
C wiλ̂

′
i(π̂⊙)di ̸= 0 to ensure that the formula

is well defined.

Proof. We start by investigating the competitive case. If we have free con-
tract design, we have to solve

wiλ̂i(π − E[Z]) = 0.

First of all, we assume wi ̸= 0. Otherwise there would be no agents of this
type in the market and calculating the premium is obsolete. By setting
π = E[Z] = π0i we get that λ̂i(π) = 1, compare Example 2.31. This solves
the equation. As a second option, infinitely many solutions can be obtained
by choosing for such a high premium, that no insurance is bought at all, e.g.
by choosing πi > esssup[Zi]. As the insurer is interested in selling contracts,
this option can be ignored.
In a market with mandatory equal tariffs and perfect competition, we have
to solve

n∑
i=1

wiλ̂i(π⊙ − E[Zi]) = 0.
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Rearrangements of the equation shows

n∑
i=1

wiλ̂i(π⊙ − E[Zi]) = 0

⇔
n∑

i=1

wiλ̂iπ⊙ =

n∑
i=1

wiλ̂iE[Zi]

⇔ π⊙ =

n∑
i=1

wiλ̂i∑n
j=1wj λ̂j

· π0i .

The integral case can be proven analogously.
Let us continue by looking at a monopolistic market. If we have free contract
design, we need to solve

argmax
πi

{
wiλ̂i(πi) · (πi − π0i )

}
,

where we recall that λ̂ is a function that depends on the premium. This
function is continuously differentiable in all points in which the function is
strictly positive, as we have seen in Proposition 2.22. As before, we assume
wi ̸= 0. We apply the FOC and use the product rule to arrive at

wi(λ̂
′
i(πi)(πi − π0i ) + λ̂i(πi)) = 0

⇔ πi = π0i −
λ̂i(πi)

λ̂′i(πi)
.

Here we used λ̂i(π̂i) ̸= 0 to ensure the differentiability and λ̂′i(π̂i) ̸= 0 to
avoid dividing by zero. Note that for most utility functions, λ̂i(π̂i) ̸= 0
implies λ̂′i(π̂i) ̸= 0. Similarly we calculate for the case with mandatory
equal tariffs

n∑
i=1

wi(λ̂
′
i(π⊙)(π⊙ − π0i ) + λ̂i(π⊙)) = 0

⇔ π⊙ = −
∑n

i=1wi[−π0i λ̂′i(π⊙) + λ̂i(π⊙)]∑n
i=1wiλ̂′i(π⊙)

.

Alike in the case with free contract design λ̂i(π̂i) ̸= 0 ensures the differ-
entiability while

∑n
i=1wiλ̂

′
i(π̂⊙) (or

∫
C wiλ̂

′
i(π̂⊙)di) ensures that we are not

dividing by zero. As before, the proof works similarly for the integral case.
The interchangeability of the summation/integration with the differentiation
can be shown e.g. by Theorem 11.2 in Forster [For12].

Remark 5.7. If one breaks down Definition 5.4 and Proposition 5.6 to two
risk classes, one ends up with the same premiums as given in Equations (9)
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and (10) for a market with perfect competition, where the insurer’s profits
are zero. For scenario (M), the premiums from above coincide with the pre-
miums given by Equations (5) and (7) which maximize the insurer’s profit.
As in Chapter 2, the conditions on λ̂ and its derivative (or the denomina-
tor) limit the practical use of the above proposition for the monopolistic
case. To avoid problems later on, we do not use this proposition for calcula-
tions but stick to solving the maximization problem given in Definition 5.4
numerically.

Remark 5.8. As one can see in Section 5.2, it is meaningful to group some
risk classes to a so-called rating class, where all customers pay the same
premium, see Definition 5.14. Then the premiums can be calculated using
the formulas for the case with mandatory equal tariffs by taking only the
risk classes belonging to the corresponding rating class into account.

We illustrate this extension with an example:

Example 5.9. We reconsider the pure endowment insurance from Exam-
ple 3.1. We assume that our portfolio consists of males, which are either
of medium risk (same risk as before), or their risk is enlarged or reduced
by 5% (i.e. the loss in case of damage is multiplied by 0.95 or 1.05, respec-
tively). The customers with unchanged risk might also be called customers
with medium risk and are assumed to take a share of 60% of the customers,
while the high- and the low-risk customers take a share of 20% each. We
then compute the type-specific and the aggregate premiums and their cor-
responding equilibrium insurance coverages.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 24: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the birth year in
scenario (C) with three risk classes

As one would expect, the aggregate premium lies slightly above the weighted
average of the type-specific premiums, which would be exactly the premium
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of the risk neutral customers. Similar to our previous observations, the high-
risk customers are subsidized by the insured of lower risk, in this case the
medium- and low-risk customers. As the high-risk customers get subsidized
by two risk classes, their equilibrium coverage rises more than the coverages
of the other insured decreases.

Example 5.10. We investigate the setting of the last example in a monop-
olistic market.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 25: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the birth year in
scenario (M) with three risk classes

Most of the phenomena are similar to those which we have observed in the
last example. In monopolistic markets the aggregate premium lies slightly
below the average of the premiums in regime (E), compare also the figures
in Section 3.2. This is due to the structure of the underlying optimization
problem in the monopolistic market, see also Section 3.3.

Remark 5.11. All figures in this section are based on the birth years between
1900 and 1950, therefore all plots are based on 51 data points.

Example 5.12. Next, we analyze a product with more than one possible
loss size, namely the term insurance from Example 3.2.
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(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 26: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a term insurance as functions of the birth year in scenario (C)
with three risk classes

In Figure 26, we can obtain similar effects as for the pure endowment in-
surance from Example 5.9. Note that the differences in the equilibrium
amounts of coverage are generally bigger but do not change so much over
time. Compared to the example with two risk classes from Figure 11, the
coverage reduction for the low-risk customers is weaker in our setting with
three risk classes.

Neither in Example 5.9, nor in 5.10 or 5.12, a push-out was observable. As
we can see in Example 8.2 it is even possible to observe two push-outs in a
setting with three risk classes – one where the low-risk customers and a sec-
ond where the medium-risk customers are pushed out of the market. More
general, in a market with n risk classes, up to n− 1 push-outs are possible.
We now assume that there are multiple insurers operating in the same in-
surance market. It is then important to keep track what other insurers do
and how they set up their contracts. If an other insurance company has set
up a new contract, which is more favorable to low-risk customers (e.g. due
to lower premiums) but cannot be bought by the medium- and high-risk
customers, the amount of low-risk customers in our contract will shrink. If
this is not recognized in time, this can lead to the supposed equilibrium
aggregate premium no longer being the equilibrium aggregate premium in
reality. Instead, we end up with a premium that is too low, as the next
example illustrates.

Example 5.13. We use the setting of Example 5.9 but assume that the
distribution of the different risk classes in our contract has shifted from
20%, 60%, 20% for low, medium and high risk, respectively, to 10%, 70%,
20%. In the following figure we compare the equilibrium premium of our
contract in the old and the new setting.
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Figure 27: Equilibrium premium per coverage π̂ of a pure endowment in-
surance as functions of the birth year in scenario (C) in the old and the new
setting

As mentioned before, not recognizing the change in the risk class allocation
brings us in a situation where we are still charging the old premium plotted in
blue in Figure 27. Due to the change of the distribution of people in the risk
classes, we would need to charge an adapted premium plotted in orange. If
we continue charging the old (blue) premium instead, our insurance company
could fall bankrupt in the long run, as the premiums we are charging lie
below the expected losses of the new market scenario.

5.2 Rating Classes

Example 5.13 motivates us to take a closer look at how to choose the rating
classes, which group the different risk classes into contracts. Our goal for
this section is to provide tools for modeling this together with an analysis
of optimal risk class management in insurance markets.
After setting up the basic concept in Section 5.2.1, we provide a motivation
of the further modeling using a continuous-time Markov chain approach in
Section 5.2.2.
To be able to compare different rating class vectors, we present a preference
relation in Section 5.2.3. We define the (local) optimality of a vector with
respect to this relation in Section 5.2.4, and present an example in which no
optimizer exists.
We introduce an approach for mitigating the problem of non-existing opti-
mizers in Section 5.2.5 by providing an analysis of the properties of optimal
rating class vectors together with an approach for finding an optimizer in
convex sets. As the sets on which we are optimizing are usually not convex,
we need to find a way to apply these results on discrete sets. This is done
by defining an appropriate procedure using a metric in Section 5.2.6.
In Section 5.2.7 we concretize the approach of applying the preference rela-
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tion to rating class vectors and therewith present the last piece needed for
our model.
Before turning to real-life examples, we summarize the strategic decisions
that can be made by the insurance companies in our market in Section 5.2.8.
All our previous work of this chapter is summed up when we set up an al-
gorithm for finding optimal rating class vectors in Section 5.2.9, which is
getting applied in Section 5.2.10.

5.2.1 Basic Concept

Definition 5.14. Let f : C → N be a function taking values in the positive
integers. The sets of the form

rif = {c ∈ C : f(c) = i}, i ∈ N

are called rating classes where the function f is called the corresponding
rating class assignment function. The set of sets

Rf = {rif : rif ̸= ∅}

is called a set of rating classes or a rating class set. This set of sets of course
depends on the choice of f . The number of rating classes given f is denoted
by mf = |Rf |. Finally, we call the set

R = {Rf : f is a rating class assignment function}

the set of all possible rating class sets.

If it is clear from the context, which function f we use for the rating class
assignment, we might drop the dependence on f . Our interpretation of a
rating class is that we assume that all customers in one rating class get
assigned to one insurance contract and therefore pay the same premium.

Remark 5.15. We can calculate the (optimal) premium π̂k of the customers
in risk class k similarly to how we obtained π̂⊙ in Definition 5.4 and Propo-
sition 5.6. We just need to exchange the set of all risk classes C by the set
of the risk classes in rating class k.

Remark 5.16. As the term rating class already indicates, the classes rely on
an insurer that rates the risk classes into rating classes and are not coalitions
formed by the insured. By definition, the number of rating classes is always
lower or equal than the number of risk classes.

Remark 5.17. One could interpret the set R also as the set of possible
partitions of C. As we see in Remark 5.19 and later on, our definition has
the advantage that each element of a partition gets a naturally assigned
number.
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In the remainder of this chapter, C is going to be finite. W.l.o.g. we can
assume that C = {1, . . . , n} holds for n ∈ N. Instead of dealing with par-
titions, we work with vectors of the form {1, . . . , n}n, as illustrated in the
next definition.

Definition 5.18. Let C = {1, . . . , n}, n ∈ N be finite. Let furthermore
f : C → {1, . . . , n} be a function taking positive integer values up to n. A
vector of the form (f(1), . . . , f(n)) is called a vector of rating classes or a
rating class vector.

Remark 5.19. Definition 5.18 introduces a notation that complements Def-
inition 5.14. Each element Rf ∈ R with a rating class assignment func-
tion f that maps to the set {1, . . . , n} gets assigned a vector of the form
(f(1), . . . , f(n)) ∈ {1, . . . , n}n. Given a number i, all elements of this vector
that contain the same number f(c) = i form a rating class. Following our
interpretation, we assume that all risk classes with the same number pay
the same premium.

As the actual number a rating class gets assigned is not relevant, we define
an equivalence relation to characterize all relations that differ only in their
numeration.

Definition 5.20. The set of all possible rating class vectors modulo numer-
ation R′ is defined as the quotient set R′ := R/ ∼. The counting relation
∼ is an equivalence relation given on R×R by

Rf ∼ Rg :⇔ ∀(i, j) ∈ C2 : f(i) = f(j) ⇔ g(i) = g(j).

Here f and g are functions taking values in {1, . . . , n}, see Definition 5.18
and Remark 5.19.

Remark 5.21. It is not difficult to show that ∼ indeed defines an equivalence
relation. Knowing about the slight notation abuse, we are going to use R′

as a set of risk relations instead of as a set of equivalence classes of risk
relations in the following.

Let us illustrate the above definitions with an easy example.

Example 5.22. In the setting of the previous chapters, where we only had
two risk classes (i.e. n = 2, all ⊕- and ⊖-agents face the same risks Z⊕ and
Z⊖), the set of all possible rating class vectors R for the set C = {1, 2} is
given by

R = {(1, 1), (1, 2), (2, 1), (2, 2)}.

As already argued it is only interesting which risk classes are grouped up in
one contract by assigning the same number to them but not which number
is actually assigned to that contract. Note that for the rating class vectors
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in R it holds that (1, 1) ∼ (2, 2) as well as (1, 2) ∼ (2, 1) for our equivalence
relation ∼. We therefore obtain

R′ = {(1, 1), (1, 2)},

where one could also have chosen other representatives for the rating classes,
e.g. (2, 2) instead of (1, 1). Given our setting from Chapters 2 and 3, the
rating class (1, 1) indicates that we are in regime (E), i.e. in a regime where
all customers need to buy the same contract and the number of rating classes
is m = 1. Contrariwise, (1, 2) indicates that we are in regime (F), where
customers of each risk class are equipped with an individual contract and
we obtain m = 2.

Proposition 5.23. Suppose there are n risk classes. The number |R′| of
possible rating class vectors modulo numeration is given by the Bell number
Bn. These numbers can be calculated recursively by

Bn+1 =
n∑

k=0

(
n

k

)
Bk, B0 = 1.

Using Dobinski’s formula, we receive the closed form representation

Bn =
1

e

∞∑
k=0

kn

k!
.

Proof. With the n-th Bell number, we can describe the number of parti-
tions of a set with n elements, see Bell (1934) [Bel34]. As mentioned in
Remark 5.17, grouping risk classes in rating classes can also be interpreted
as a partitioning problem. Since we are regarding R′ instead of R the ac-
tual number a rating class gets assigned is not relevant at all, see also the
explanations in Example 5.22.
Over 60 years before Bell’s paper, Dobinski found a way for calculating the
series

∑∞
k=0

nm

n! in 1871. Without knowing, he derived an explicit formula
for calculating the Bell numbers. Using his results we get

Bn =
1

e

∞∑
k=0

kn

k!
.

His findings were published in a book [Dob77] that can now be found online,
available only in German.

Example 5.24. Let us assume that we have two insurers which compete
for the largest share of customers in a market. We consider an example,
where we assume that the market consists of 4000 customers in 20 risk
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classes where each customer faces a Bernoulli distributed risk. The damage
probability pk for risk class k ∈ {1, . . . , 20} is given by

pk = k · 0.1%

and all risks are independent. Each risk class k ∈ {1, . . . , 20} consists of
ηk = 200 customers, i.e. all risk classes are of the same size. The two
insurance companies can set up rating classes to group the customers of the
different risk classes such that each rating class is assigned its own premium.
In a next step we compare the equilibrium insurance coverages λ̂1k and λ̂2k
the customers of risk class k would buy from Company 1 and 2 for the given
premiums of their corresponding rating classes. Recall that both companies
independently set up their allocation of risk classes into rating classes. The
200 customers from each risk class are split proportional according to the
corresponding coverages. If, for example, the equilibrium insurance coverage
for one insurer is 0.5 and for the other insurer 1.5, we assume that 50 of
the 200 customers buy insurance from the first insurer, 150 from the second
insurer. These numbers can be calculated by (rounding)

ηk ·
λ̂1k

λ̂1k + λ̂2k
and ηk ·

λ̂2k
λ̂1k + λ̂2k

.

Indeed we calculate that 50 = 200 · 0.5
0.5+1.5 customers decide to purchase

insurance from Company 1, while 150 = 200 · 1.5
0.5+1.5 customers choose for

Company 2. If both premiums for one risk class are equal, then also the
equilibrium insurance coverage is equal and the customers of that risk class
split up equally. We justify and formalize this concept in the next section.

5.2.2 Modeling the Customer Flow using a Markov Chain Ap-
proach

Let us consider each risk class individually. Each risk class has a popu-
lation of N agents, N ∈ N, who need to decide from which of the two
companies on the market they wish to buy insurance. Following Irle et
al. (2011) [IKLM11], we can model the decision process of customers by a
continuous-time Markov chain. In our setting, the two types of customers
are not optimists and pessimists or chartists and fundamentalists in a finan-
cial market as assumed in [IKLM11], but customers buying insurance from
Company 1 or 2.
The number of customers purchasing from Company 1 can be modeled
as a continuous-time homogeneous Markov chain (ZN

t )t with state space
{0, . . . , N}. Agents can freely choose from which insurer they want to buy.
The switching process is modeled by a birth rate and a death rate. The
birth rate ν models the customer flow from Company 2 to Company 1 while
the death rate µ models the flow in the opposite direction. In other words,
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viewed from the perspective of insurance Company 1, the birth rate mod-
els the “new born” customers in the insurance company, while the death
rate models the customers who “die” and leave the insurance company by
switching to the other. [IKLM11] denotes the birth rate as λ instead of ν.
We changed this notation to avoid confusion with the insurance coverage.
Both rates depend on the number of customers currently buying insurance
from Company 1. First, we use an extensive, N -dependent approach, i.e.
Model 1 from [IKLM11]. This model looks at birth and death rates

νi = (N − i)

(
a1 + b

i

N

)
, µi = i

(
a2 + b

N − i

N

)
. (12)

In the above formulas, νi and µi are the birth and death rates if i of the N
customers currently buy insurance from Company 1. Following [IKLM11],
the (positive) parameters a1 and a2 describe the overall tendency to switch,
which is often conceptualized as the impact of new arriving customers. The
parameter b is positive and models the actual herding propensity among the
agents.

By setting XN
t :=

ZN
t
N , we define a standardized process with values in [0, 1],

which coincide with the fraction of customers in the market buying insurance
from Company 1 at time t.
It is shown in [IKLM11] that the standardized processes (XN

t )t converge to
a non-random limiting process (X(t))t given by

X(t) =
a1

a1 + a2
−
(
x0 −

a1
a1 + a2

)
e−(a1+a2)t

if the number of customersN in the market tends to infinity. Letting also the
time go to infinity, we see that X(t) converges to the deterministic fraction

a1
a1+a2

as t → ∞. We adapt the above formula to our setting by choosing

a1 = λ̂1k and a2 = λ̂2k as the equilibrium insurance coverages for customers
of risk class k in Company 1 and 2, respectively. We then obtain, similar to

Example 5.24 above, the fraction
λ̂1
k

λ̂1
k+λ̂2

k

as the limit of the limiting process

X(t). This limit can be interpreted as the fraction of customers in the market
buying insurance from Company 1. We formalize this in Definition 5.78.
This is done for all possible risk classes k. Hence, the total share of customers
insurance Company 1 and 2 get, is given by

1

n

n∑
k=1

λ̂1k
λ̂1k + λ̂2k

and
1

n

n∑
k=1

λ̂2k
λ̂1k + λ̂2k

,

where λ̂1 and λ̂2 are the vectors containing the equilibrium coverages for all
risk classes. Note that the above formula applies to the simplified case that
all risk classes are of equal size, which we assume for the remainder of this
chapter, unless stated otherwise.
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Remark 5.25. In the general case, one needs to multiply the fraction
λ̂1
k

λ̂1
k+λ̂2

k

by the number of customers ηk and divide the sum by the total amount
of customers in the market instead of the number of risk classes, see also
Remark 5.80. More formally we write

1∑n
i=1 ηi

n∑
k=1

ηk ·
λ̂1k

λ̂1k + λ̂2k
and

1∑n
i=1 ηi

n∑
k=1

ηk ·
λ̂2k

λ̂1k + λ̂2k

as the total share of customers buying insurance from Company 1 or 2,
respectively. This is indeed a generalization, as the numbers ηk simply
cancel if one has η1 = · · · = ηn.

Remark 5.26. As a possible model extension, we can take a second look
at [IKLM11]. Besides the extensive, N -dependent approach, there is a sec-
ond one – the non-extensive, N -independent case. In this model, the birth
and death rates are given by

νi = (N − i) (a1 + bi) , µi = i (a2 + b(N − i)) . (13)

We can reformulate Equation (13) by using y = i
N to obtain

νi = N2(1− y)
(a1
N

+ by
)
, µi = N2y

(a2
N

+ b(1− y)
)
. (14)

Following the argumentation in [IKLM11], we obtain two fundamental chan-
ges compared to the first model given by Equation (12). By using the
representation y = i

N again, the birth and death rate in this model can be
written as

νi = N(1− y) (a1 + by) , µi = Ny (a2 + b(1− y)) .

From this representation, the differences can be spotted quite easy. First of
all, the total number of switching per time period is now of order N2 instead
of order N . Secondly, the overall tendency of switching are now given by a1

N
and a2

N , instead of a1 and a2 decreasing the order to
1
N . These two differences

dramatically change the behavior of the model. The convergence of the
standardized process (XN

t )t to a non-random limiting process as before does
not hold any longer. Instead, (XN

t )t converges to a diffusion on [0, 1], where
the drift is given by

µ(y) = (1− y)a1 − ya2

while the diffusion term reads as

σ2(y) = 2by(1− y),

see [IKLM11] for more details. An introduction about diffusions can be
found in Karatzas and Shreve (1991) [KS91].
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While the first model provides us with a deterministic fraction for our cus-
tomer sharing problem, this model brings in a random factor. This is inter-
esting, as this additional randomness could be understood as the influence
of further factors to our model that effect the customers choices. As already
argued above, the variable b describes the herding propensity among the
agents. It opens the possibility to include factors that are not reflected by
the price of the insurance into the model such as how easy it is to get your
money from the insurer, whether the insurer is known to be reliable and so
on. It is not clear how to model this parameter and one needs to model
this factor carefully in order to have good control over its influence on the
model.

5.2.3 Preference Relations

To be able to compare two rating class vectors and decide which one is
preferable, we need to define a preference relation. The exact application of
the relation is explained in Definition 5.77 and Section 5.2.8.

Remark 5.27. To be more precise, we are going to use the preference relation
from the following definition to compare equilibrium coverage vectors, not
the rating class vectors themselves. More details about this can be found in
the later part of this section, see for example Definitions 5.74 and 5.77.

Definition 5.28. We consider a set of vectors of the same length n. All
entries of the vectors are non-negative. We then define a relation ⊑ and say
that vector a is smaller than b in terms of ⊑ if

a ⊑ b : ⇔
n∑

k=1

ak
ak + bk

≤
n∑

k=1

bk
ak + bk

,

where we set 0
0 = 0. In other words, a ⊑ b means that the sum of the (com-

ponent wise) normalized vector a is smaller than the sum of the normalized
vector b. If ai + bi > 0 for all i ∈ {1, . . . , n}, this is equivalent to

a ⊑ b⇔
n∑

k=1

ak
ak + bk

≤ n

2
.

Remark 5.29. In practice we might want to use the equivalent definition of
the relation ⊑ to compare two vectors which have a zero entry in the same
component, compare Example 5.87. In this case, we replace the ≤ n

2 by

≤ |{i∈{1,...,n}:ai+bi>0}|
2 in the original definition. Another option would be to

set the fraction 0
0 to 1/2 instead of to 0.

Remark 5.30. For n = 1 the relation ⊑ is equivalent to the relation ≤. This
is easy to see as a ⊑ b⇔ a

a+b ≤ b
a+b ⇔ a ≤ b if at least a or b are non-zero.
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Remark 5.31. For n = 2 we conclude using Proposition 5.32 that a ⊑ b ⇔
a1a2 ≤ b1b2, compare Remark 5.34. This delivers us a characterization and
structure of ⊑ in the two dimensional case, which corresponds to our basic
model from Chapter 2 extended by a safety loading, as we can see below,
e.g. in Example 5.79 and Proposition 5.56. In Proposition 5.45 we are going
to present an optimality criterion for sets for which all vectors have the same
component sum. Assume for example that we have the constraint b1+b2 = u
for some non-negative real-valued constant u. We then calculate that it is
optimal to set b1 = b2 =

u
2 if one wants to have a ⊑ b for all vectors a ∈ Rn

with a1+a2 = u. More details and a proof can be found in Proposition 5.45.

Proposition 5.32. Using the relation from Definition 5.28, we have that
for a, b ∈ Rn with a = (a1, . . . , an) and b = (b1, . . . , bn) it holds that a ⊑ b is
equivalent to

∑
{(k1,...,kn):ki∈{0,1}}

|{i : ki = 0}|
n∏

i=1

((1− ki)ai + kibi)

≤
∑

{(k1,...,kn):ki∈{0,1}}

n

2

n∏
i=1

((1− ki)ai + kibi). (15)

The weights of the form |{i : ki = 0}| in the left sum as well as the weights
of the form n

2 in the right sum add up to n · 2n−1.

Proof. The first part follows from rearranging the terms from the definition
of

a ⊑ b ⇔
n∑

k=1

ak
ak + bk

≤
n∑

k=1

bk
ak + bk

.

Therefore, we multiply both sides with
∏n

i=1 ai + bi and multiply all sum-
mands out. The weights can then be obtained by counting the number of
appearances of each summand. The notation with the Boolean vectors is
only needed to ensure that the counting is done correctly. If ai ̸= bi, we can
use the alternative formulation from Remark 5.33.
For the second part, we analyze both sides separately. Firstly, we note that
|{(k1, . . . , kn) : ki ∈ {0, 1}}| = 2n. From this we conclude that the sum of
the weights on the right-hand side is given by n

2 · 2n = n · 2n−1.
Secondly, we obtain by a combinatorial argument that

|{(k1, . . . , kn) : |{i : ki = 0}| = l}| =
(
n

l

)
.

Using the symmetry of the binomial coefficient, i.e. that
(
n
l

)
=
(

n
n−l

)
, it
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follows that∑
{(k1,...,kn):ki∈{0,1}}

|{i : ki = 0}| =
n∑

l=0

l ·
(
n

l

)

=

n/2∑
l=0

l ·
(
n

l

)
+

n∑
l=n/2+1

l ·
(

n

n− l

)

=

n/2∑
l=0

n ·
(
n

l

)
= n · 1

2
· 2n = n · 2n−1

if n is even, where we used the symmetry again. If n is odd, the computation
works similarly by taking ⌊n/2⌋ and ⌈n/2⌉ as the end and starting point of
the splitted sum.

Remark 5.33. If ai ̸= bi holds for all i, we can rewrite Equation (15) as

∑
{(k1,...,kn):ki∈{ai,bi}}

|{i : ki = ai}|
n∏

i=1

ki ≤
∑

{(k1,...,kn):ki∈{ai,bi}}

n

2

n∏
i=1

ki.

Remark 5.34. Proposition 5.32 derives an alternative definition for the re-
lation ⊑. It furthermore provides us with the insight that one can also
understand the relation as a weighted sum of the “mixed” vectors, where
a ⊑ b holds if the inequality from Equation (15) with shifted weights in the
sum is fulfilled. The weights are shifted in such a way that the weight is
larger if the proportion of a is higher.
If n is even, some of the terms on both sides of the inequality cancel. As
the left-hand side solely allows for integer weights, this is only possible for
the case that n is even.
Let us focus on the case that n = 2. We therefore consider two vectors,
a = (a1, a2), b = (b1, b2) ∈ R2

≥0. According to Proposition 5.32 we then
have that

a ⊑ b ⇔ 0 · b1b2 + 1 · a1b2 + 1 · a2b1 + 2 · a1a2 ≤ b1b2 + a1b2 + b1a2 + a1a2.

As already stated in Remark 5.31, elimination provides

a ⊑ b ⇔ a1a2 ≤ b1b2.

In order to improve our understanding of the relation, we calculate all vectors
which are equivalent in the sense of ⊑.

Definition 5.35. Two vectors a, b ∈ Rn are equivalent in the sense of ⊑ if
a ⊑ b and b ⊑ a holds. We denote this equivalence by a ≡ b.
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The set of vectors E(a) which are equivalent to the vector a is called the
indifference set (of a w.r.t. ⊑) and is defined by

E(a) :=
{
ã ∈ Rn

≥0 : ã ≡ a
}
.

Remark 5.36. Our definition of indifference sets is equivalent to defining it
by

E(a) = {ã : fã(a) = fa(ã)} =
{
ã : fa(ã) =

n

2

}
,

where

fb(a) =
n∑

i=1

ai
ai + bi

. (16)

This can easily be seen by the definition of the risk relation ⊑ from Defini-
tion 5.28. Furthermore, ai+bi > 0 needs to hold for all i or we need to set 0

0
to 1/2, if we use the set relying on the alternative definition of ⊑, compare
Remark 5.29.

Remark 5.37. By maximizing fb in a, we find the optimal respond to the
vector b in a set R̃:

for(b) = max
a

{fb(a) : a ∈ R̃}.

Of course, the maximizer does not need to exist in general. If R̃ is finite, the
maximum exists. The function fb is concave in a, compare Proposition 5.50.
This provides us with a lot of tools from convex optimization to find the
maximizer. Furthermore, if the maximizer exists and the vector b has only
strictly positive entries, fb is strictly concave and the maximizer is unique.

Example 5.38. In the case of n = 2, calculating the indifference sets is an
easy task: We can compute all vectors ã = (ã1, ã2) that are equivalent to a
by letting ã1 be arbitrary and setting ã2 = a1a2

ã1
. Therefore we obtain the

indifference set

E(a) =
{
(ã1, ã2) : ã1 ∈ R>0, ã2 =

a1a2
ã1

}
.

In Figure 28 the indifference sets E((0.3, 0.1)), E((0.2, 0.2)), E((0.3, 0.3)),
E((0.3, 0.5)) and E((0.5, 0.5)) are shown.
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Figure 28: Indifference sets E(a) for five different vectors a

5.2.4 (Non-)existence of an Optimizer

Returning to the original problem, we aim to find a vector b, which is the
maximizer of the set A of all vectors in the sense that a ⊑ b for all a ∈ A.
Looking at Figure 28 above one could assume that in the case of n = 2
one can find a unique optimizer if the set A is convex, see Proposition 5.56
below. In the proof of this proposition we use that the intersection of two
convex sets in Rn needs to have zero, one or infinitely many points. Before
continuing we formalize the concept of a maximizer of a set A.

Definition 5.39. A vector b is called (globally) optimal or a (global) max-
imizer of A if it holds that a ⊑ b for all a ∈ A. Furthermore, a set O ⊆ A
is called a set of locally optimal vectors if for all a ∈ A there exists a vector
b ∈ O such that a ⊑ b. The smallest such set in terms of cardinality is called
a minimal set of locally optimal vectors.

Remark 5.40. If a vector b is globally optimal, the set {b} is also a one-
elemental set of locally optimal vectors and therefore also the minimal set
of locally optimal vectors. Of course, we are not interested in finding an
arbitrary set of locally optimal vectors, but the smallest set of optimal vec-
tors. Indeed, finding a set of locally optimal vectors is trivial, as A itself is
by definition always a set of locally optimal vectors.

A definition for a coverage relation ⊑cov to compare the coverage vectors
given the corresponding risk class vectors is given in Definition 5.77, see also
Definition 5.74. After defining the coverage relation we introduce a concept
for optimality that is similar to the concept derived in Definition 5.39.
It is easy to show that a global maximizer does not need to exist in general.

Example 5.41. Consider the set

A1 := {(1, 2, 0), (0, 1, 2), (2, 0, 1)}.
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Then

(0, 1, 2) ⊑ (1, 2, 0),

(1, 2, 0) ⊑ (2, 0, 1),

(2, 0, 1) ⊑ (0, 1, 2),

but not vice versa and therefore a global maximizer cannot exist.

As we can see in Example 5.87, also in a real-life example it is possible that
an optimal vector does not exist.
In a next step, we are interested in conditions which are sufficient and nec-
essary for the existence of a maximizer. Additionally, in case of existence,
we aim for finding a way to find this maximizer.

5.2.5 Optimizing on Convex Sets and Hulls

We try to mitigate the problem of a possibly non-existing (global) maximizer
by optimizing on the convex hull convA instead of A. This is one step of
our procedure to find optimal points of non-convex sets presented in the
beginning of Section 5.2.6. A second approach to overcome the issue of
non-existing optimizers is given in Section 5.3, compare Remark 5.104.

Definition 5.42. The convex hull convX of a set X which is the subset of
a real or complex vector space V is given as the (unique) smallest convex
set containing X.

Remark 5.43. Numerous equivalent definitions for the convex hull can be
found in the literature, e.g. by defining it as the intersection of all convex
sets containing X or as the set of all convex combinations of points in X.

Example 5.44. The set A1 from Example 5.41 is of course not convex. The
convex hull of A1, the set convA1 is given by the triangle spanned by the
points (1, 2, 0), (0, 1, 2), (2, 0, 1). More formally we write

convA1 = {δ1(1, 2, 0) + δ2(0, 1, 2) + δ3(2, 0, 1) :

3∑
i=1

δi = 1, δ1, δ2, δ3 ≥ 0}.

To ease further computations we now consider

A2 := {(1, 2, 0), (2, 1, 0), (0, 1, 2), (0, 2, 1), (2, 0, 1), (1, 0, 2)}

instead of A1. The set A2 contains all possible permutations of 0, 1 and 2
in one vector. It is then easy to show that the equality

convA2 = {(x, y, z) : x+ y + z = 3, 0 ≤ x, y, z ≤ 2}

holds.
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Before continuing with the example, we state a proposition which helps us
to find the maximizer of the set convA2 from the example above.

Proposition 5.45. For u ∈ R≥0 we consider the set

A = {x ∈ Rn : xi ≥ 0 for all i, ∥x∥1 = u},

i.e. the set of all vectors with the same component sum u and non-negative
entries. In this set, the optimal vector problem under ⊑ is uniquely solved
by the vector (u/n, . . . , u/n). In other words, a ⊑ (u/n, . . . u/n) holds for
all a ∈ A.

Proof. Firstly, we notice similar to Remark 5.36 that for b ∈ A the condition
a ⊑ b for all a ∈ A is equivalent to the condition that b maximizes the
function fb given by

fb(a) =

n∑
i=1

ai
ai + bi

in A with b ∈ Rn
≥0. Note that the parameter of fb and its optimizer are

indeed the same vector. This follows directly by the definition of a ⊑ b as

a ⊑ b ⇔
n∑

i=1

ai
ai + bi

≤ n

2
=

n∑
i=1

bi
bi + bi

.

In a second step we need to show that the vector (u/n, . . . , u/n) is the unique
optimizer of

f(u/n,...,u/n)(a) =
n∑

i=1

ai
ai +

u
n

in A. To do so, we use the condition ∥a∥1 = u from the definition of A.
This condition is equivalent to

∑n
i=1 ai = u, as all ai are real-valued and

non-negative. We reformulate this condition to obtain an = u−
∑n−1

i=1 ai. By
plugging this into the definition of f(u/n,...,u/n) we conclude that maximizing
f(u/n,...,u/n) in A is equivalent to maximizing the function

f̃(a1, . . . , an−1) =

n−1∑
i=1

ai
ai +

u
n

+
u−

∑n−1
i=1 ai

u−
∑n−1

i=1 ai +
u
n

in the set Rn−1
≥0 , where also u−

∑n−1
j=1 aj ≥ 0.

This maximization is performed by a classic first-order-condition approach.
For the i-th component we receive the equation

∂

∂ai
f̃(a1, . . . , an−1) =

u
n(

ai +
u
n

)2 −
u
n(

u−
∑n−1

j=1 aj +
u
n

)2 = 0.
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This equation is equivalent to

(
ai +

u

n

)2
=

u−
n−1∑
j=1

aj +
u

n

2

. (17)

We now remove the squares from both sides in Equation (17). By taking the
root, we need to make sure that the expressions that are squared on either
sides are non-negative. We therefore conclude that

a) The expression ai +
u
n is non-negative as all ai are non-negative.

b) Also the expression u−
∑n−1

j=1 aj +
u
n is non-negative, as

∑n−1
j=1 aj ≤ u.

Hence, Equation (17) is equivalent to

ai +
u

n
= u−

n−1∑
j=1

aj +
u

n

⇔
n−1∑
j=1

aj + ai = u.

From the system of equations
∑n−1

j=1 aj +ai = u for i = 1, . . . n−1 we obtain
a1 = · · · = an−1 = u

n . Checking the second derivatives delivers that the

(n− 1)-dimensional vector (u/n, . . . , u/n) is indeed a maximizer of f̃ . From
the definition of an above we can conclude that the n-dimensional vector
(u/n, . . . , u/n) is a maximizer of f(u/n,...,u/n).
Finally, we prove that the vector (u/n, . . . , u/n) is a global optimizer. There-
fore we need to check the edge cases, i.e. the points (a1, . . . , an) where at
least one ai equals zero. Due to symmetry, we can choose w.l.o.g. a1 to be
zero. Note that f(u/n,...,u/n)(u/n, . . . , u/n) =

n
2 . If we have that a1 = 0, it is

optimal to choose a2 = · · · = an = u
n−1 with the same argument as above.

We then compute

f(u/n,...,u/n)(0, u/(n− 1), . . . , u/(n− 1)) =(n− 1) ·
u

n−1
u

n−1 + u
n

=(n− 1) · u
un+u(n−1)

n

=(n− 1) · un

un+ u(n− 1)

<(n− 1) · un

u(n− 1) + u(n− 1)

=
n

2
= f(u/n,...,u/n)(u/n, . . . , u/n),
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so (0, u/(n− 1), . . . , u/(n− 1)) cannot be optimal as

f(u/n,...,u/n)(0, u/(n− 1), . . . , u/(n− 1)) < f(u/n,...,u/n)(u/n, . . . , u/n)

holds. With a similar argument we can also show that if two or more ai
are zero, one can only achieve smaller function values than n/2. Hence,
(u/n, . . . , u/n) is the unique optimizer of f(u/n,...,u/n) in the set A, so the
optimal vector problem under ⊑ is solved by (u/n, . . . , u/n).

Remark 5.46. As an alternative proof, one could use a Lagrange multiplier
approach instead of reformulating the constraint and plugging it into the
function.

Remark 5.47. The result from Proposition 5.45 is in line with our charac-
terization for the two-dimensional case in Remark 5.31.

Example 5.48. According to Proposition 5.45, we find that the point
(1, 1, 1) is the unique maximizer of the set {x ∈ R3

≥0 : ∥x∥1 = 3}. Indeed,
the point (1, 1, 1) also fulfills the condition that each entry of the vector lies
in the interval [0, 2] which implies (1, 1, 1) ∈ convA2, so (1, 1, 1) is also the
unique optimizer of the set convA2 from Example 5.44. Note that we can
represent (1, 1, 1) in convA2 (and also in convA1) by taking

(1, 1, 1) =
1

3
(1, 2, 0) +

1

3
(0, 1, 2) +

1

3
(2, 0, 1).

Furthermore, we can show that for a point (x, y, z) ∈ convA2 the smaller
the distance in the sense of Definition 5.66 between (x, y, z) and (1, 1, 1) is,
the greater the value f(1,1,1)(x, y, z) becomes. Recall that we defined fb in
Equation (16) by

fb(a) =
n∑

i=1

ai
ai + bi

.

All points with the same distance to (1, 1, 1) have the same function value. In
other words, the intersection between the indifference sets of different points
and the set convA2 are the circles around (1, 1, 1) (intersected with convA2).
Note that the circles do not look like the circles induced by the Euclidean
norm but more like a “crumbled” version of them. In Figures 29 and 30
below, two circles of points satisfying f(1,1,1)(x, y, z) =

8
6 or f(1,1,1)(x, y, z) =

7
6 are given. The hexagonal surface in the two figures is the set convA2.
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Figure 29: Indifference set (blue curve) around (1, 1, 1) (red) for function
value 8

6 under the constraint x+ y + z = 3

Figure 30: Indifference set (blue curve) around (1, 1, 1) (red) for function
value 7

6 under the constraint x+ y + z = 3

It can be seen that some points of the indifference sets (blue curves) lie
outside the set convA2 (rainbow shaded hexagon). Therefore, one needs to
intersect convA2 with the indifference circles to obtain the points in convA2

that are indifferent for a given function value. We decided to plot the whole
indifference sets in Figures 29 and 30 and not only the intersections with
convA2 so that one gets a feeling how the curves actually look. If we opti-
mize in {(x, y, z) ∈ R3

≥0 : x + y + z = 3} instead of in convA2, taking the
intersection is not needed.
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Remark 5.49. One can analyze the setting presented here also from a game
theoretical point of view. The set A1 from the Examples 5.41 and 5.44 can
be seen as three possible strategies of a game. We compare the setting of
these examples with the analysis of the game “Rock, Paper, Scissors”. Two
players choose their strategy from the set {Rock, Paper, Scissors}. Each
strategy wins and loses against one other strategy: Paper beats Rock, Rock
beats Scissors and Scissors beats Paper. A strategy ties if both players
decide to pick the same symbol. By using convA1 instead of A1 we allow for
mixed strategies instead of only pure ones. Various sources from the game
theory literature show that it is a Nash equilibrium to play each symbol
randomly, where each symbol is played on average every three moves. This
strategy coincides with our point (1, 1, 1), where every “pure strategy” of
the original set A1 receives a weight of δ1,2,3 =

1
3 .

Proposition 5.50. The function fb : Rn
≥0 → R defined in Equation (16) by

fb(a) =
n∑

i=1

ai
ai + bi

,

b ∈ Rn
≥0 is concave in a. If one restricts b to only have strictly positive

entries, fb is strictly concave.

Proof. Similar as in the proof of Proposition 5.45 we can show that fb is
twice continuously differentiable with

∂

∂ai
fb(a) =

bi
(ai + bi)2

for each i = 1, . . . , n. Furthermore,

∂2

∂a2i
fb(a) = − 2bi

(ai + bi)3

and
∂2

∂aiaj
fb(a) = 0

for i, j = 1, . . . , n with i ̸= j. Therefore the Hessian matrix of fb is given by

Hfb(a) = diag

(
− 2b1
(a1 + b1)3

, . . . ,− 2bn
(an + bn)3

)
.

Due to the non-negativity of a and b, Hfb is therefore negative semi-definite
and hence fb is concave. If b is strictly positive, Hfb is even negative definite
and therefore fb is strictly concave in this case.
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Remark 5.51. Similar to Proposition 5.50 one can show that fb(a) is convex
in b. Alternatively one can argue that fb(a) has to be convex in b, as fa(b)
is concave in b and

fb(a) = |{i ∈ {1, . . . , n} : ai + bi > 0}| − fa(b)

holds, see also Remark 5.36.

Remark 5.52. The (strict) concavity of fb (i.e. convexity of −fb) in a en-
sures that finding a rating class vector which is the optimal response to the
choice of a competing insurer is a maximization problem on a concave func-
tion (minimization problem on a convex function), see also Remark 5.37
Section 5.2.8. This type of problems has some useful properties, e.g. we
know that a local optimizer is always a global optimizer which is unique if
fb is strictly concave. There is a broad literature about convex optimization
providing us with various tools to tackle this problem.

The convexity of −fb can be used to apply the following theorem known
from the literature, e.g. Proposition 2.1.2 in Bertsekas (1999) [Ber99].

Proposition 5.53. Let X be a non-empty and convex set and f : Rn → R
be continuously differentiable over X. If x∗ is a local minimum of f over X,
then

∇f(x∗)′(x− x∗) ≥ 0

for all x ∈ X.
If furthermore f is convex on X, the above condition is also sufficient for x∗

to be a local minimum of f over X.

Remark 5.54. Using the convexity of −fb and the fact that the set

A = {x ∈ Rn : xi ≥ 0 for all i, ∥x∥1 = u}, u ∈ R≥0,

from Proposition 5.45 is convex, we can apply Proposition 5.53 on −fb to
obtain an alternative proof for Proposition 5.45.

For dimension two, i.e. a market where there are only two risk classes, say
males or females, there exists a closed-form solution for the problem of
finding a global optimizer for our optimal vector problem in convex sets. To
find it, recall a proposition where we use the convexity of a function f to
show that the epigraph of f , i.e. the set of all points lying on or above the
graph, is convex as well. More formally, we state the following proposition
which can be found in standard analysis literature, e.g. in Section 3.1.7 in
Boyd and Vandenberghe (2004) [BV04].

Proposition 5.55. Let the epigraph epif of f : X → R be defined by

epif := {(x, µ) ∈ X × R : f(x) ≤ µ} ⊆ X × R.

Then a function is (strictly) convex if and only if epif is a (strictly) convex
set.
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This leads us to the following proposition.

Proposition 5.56. Set n = 2 and let A ⊆ R2
≥0 be compact and convex.

Then, the optimal vector problem has a unique solution in A which is given
by the vector that has a maximal product of components, i.e. the solution
is given by

argmax{a1a2 : a = (a1, a2) ∈ A}.

Proof. We already know from Example 5.38 that the indifference sets for
n = 2 are given by the sets

E(a) =
{
(ã1, ã2) : ã1 ∈ R≥0, ã2 =

a1a2
ã1

}
,

i.e. by the graphs of the function family gz(a) =
z
a , where the function pa-

rameter z is given by z = a1a2. The function gz is strictly convex for all z,
hence the epigraph epigz is also strictly convex.
We assumed that the set of vectors A ⊆ R2

≥0 we are optimizing over is com-
pact and convex. It is easy to show that the intersection of two (closed)
convex sets is either empty, one-elemental or has uncountably many ele-
ments. As A is compact, we know that the function h(x, y) = xy has a
maximizer (x̃, ỹ) on A. Choose z = x̃ỹ. Then (x̃, ỹ) ∈ epigz and therefore
(x̃, ỹ) ∈ epigz ∩A.
All the points on the boundary of epigz have the same product z of their
two components. Assume now, there are two (or more) points a1 and a2 in
A which maximize h, i.e. with component product z. Due to the structure
of A and h, the points need to lie on the boundary of A. Then, a1 and a2
both lie in epigz ∩A, which is convex. Due to the convexity, also a1+a2

2 lies
in epigz ∩ A. The strict convexity of epigz ensures that a1+a2

2 does not lie
on the boundary, but in the interior of epigz. Hence, the product of the
components of a1+a2

2 is greater than z. This implies that a1 and a2 do not
maximize the product function h, which is a contradiction.

Remark 5.57. The results from Propositions 5.45 and 5.56 coincide, if we
optimize on the set A = {b ∈ R2

≥0 : b1+b2 = u}, where u ≥ 0. While Propo-
sition 5.45 guarantees that (u/2, u/2) is optimal in A, Proposition 5.56 en-
sures optimality for the vector in A which maximizes its component product.
Indeed, the vector (u/2, u/2) is the vector with the maximum component
product in A.

For spaces with higher dimension, we could not find a closed form solution
as Proposition 5.56. Nonetheless, we can provide some analysis to overcome
the restriction from Proposition 5.45, i.e. that all vectors in our set need to
have the same component sum.
Suppose we optimize over a set A which contains a vector of the form
(u/n, . . . , u/n). By Proposition 5.45 we know that for this vector it holds
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that (u/n, . . . , u/n) ⊒ x for all vectors x with ∥x∥1 ≤ u. Nonetheless, there
might be a vector y ∈ A with ∥y∥1 = w > u which satisfies x ⊑ y or
equivalently fx(y) ≥ n

2 . We are interested in characterizing these vectors.

Proposition 5.58. Suppose there are two vectors, x, y ∈ Rn
≥0 with ∥x∥1 = u

and ∥y∥1 = w, where w > u. Let us furthermore assume that x is given by
x = (u/n, . . . , u/n). Then x ⊑ y can only hold if

yi ∈ [a, b] ,

where

a =
−
(
−nw

2 + nu
2 − u

)
−
√(

−nw
2 + nu

2 − u
)2 − (wu(2− n) + (n+ 1)u2)

n

and

b =
−
(
−nw

2 + nu
2 − u

)
+
√(

−nw
2 + nu

2 − u
)2 − (wu(2− n) + (n+ 1)u2)

n
.

Proof. We prove the condition for i = 1, the proof for all other yi can be
done equivalently. Let us fix y1 and set

y2 = · · · = yn =
w − y1
n− 1

.

By construction it holds that ∥y∥1 = w. Furthermore, y is defined in such
a way that (y2, . . . , yn) maximizes f(u/n,...,u/n) in Rn−1

≥0 . This can be argued
by following an equivalent argument as in the proof of Proposition 5.45.
It is of interest how big or small we can choose the components of y such
that

f(u/n,...,u/n)(y) ≥
n

2

still holds. Pay attention that the vector (u/n, . . . , u/n) we use as a reference
point for f(u/n,...,u/n) can have n− 1 or n elements in this proof. Of course,
the length is chosen such that the function is well defined and fits to the
length of the given input. Based on our previous argumentation, we need
to solve f(u/n,...,u/n)(y) ≥ n

2 . By construction of y we obtain

f(u/n,...,u/n)(y) =
y1

y1 +
u
n

+

n∑
i=2

w−y1
n−1

w−y1
n−1 + u

n

=
y1

y1 +
u
n

+ (n− 1)

w−y1
n−1

w−y1
n−1 + u

n

.

Hence, we need to solve

y1
y1 +

u
n

+ (n− 1)

w−y1
n−1

w−y1
n−1 + u

n

=
n

2
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in y1. The above equation is equivalent to finding the roots of a quadratic
polynomial, i.e. to solving

n

2
y21 +

(
−nw

2
+
nu

2
− u
)
y1 +

(
wu(2− n)

2n
+
u2

2
+
u2

2n

)
= 0

in y1. We can use the quadratic formula that provides us with the solutions

a =
−
(
−nw

2 + nu
2 − u

)
−
√(

−nw
2 + nu

2 − u
)2 − (wu(2− n) + (n+ 1)u2)

n

and

b =
−
(
−nw

2 + nu
2 − u

)
+
√(

−nw
2 + nu

2 − u
)2 − (wu(2− n) + (n+ 1)u2)

n
.

If y1 /∈ [a, b], we even receive f(u/n,...,u/n)(y) <
n
2 when we decide for the

optimal choice y2 = · · · = yn = w−y1
n−1 , for all other choices the function value

of f(u/n,...,u/n) is even smaller. With the same argument we can show that

yi ∈ [a, b]

needs to hold for all i.

Remark 5.59. Proposition 5.58 above states that the entries of a vector
y with ∥y∥1 > ∥(u/n, . . . , u/n)∥1 need to be “sufficiently equal” such that
y ⊒ (u/n, . . . , u/n) can hold. We can see in Example 5.61 that this condition
is only necessary but not sufficient for having y ⊒ (u/n, . . . , u/n).

Remark 5.60. Depending on the parameter choice, a as defined in Propo-
sition 5.58 might be negative. As yi needs to be non-negative for each i
by definition, one could shrink the interval by requiring yi ∈ [min{0, a}, b]
instead of yi ∈ [a, b].

Let us illustrate Proposition 5.58 with an easy example.

Example 5.61. Assume we are trying to find the optimizer in a set A with
(1, 1, 1) ∈ A. A vector y with ∥y∥1 = 4 needs to fulfill

yi ∈

[
9−

√
57

6
,
9 +

√
57

6

]
≈ [0.24, 2.76]

for each i. For example y1 = (0.24, 1.88, 1.88) and y2 = (2.76, 0.62, 0.62)
fulfill

f(1,1,1)(y
1) = f(1,1,1)(y

2) =
3

2
= f(1,1,1)(1, 1, 1)
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while all components of y1 and y2 lie in [0.24, 2, 76]. Keep in mind that the
above condition is only necessary but not sufficient for (1, 1, 1) ⊑ y. For
example, for y3 = (2.75, 0.25, 1) we obtain

2.75

3.75
+

0.25

1.25
+

1

2
=

43

30
<

3

2
,

i.e. (1, 1, 1) ⊒ y3.

From a practical standpoint, Proposition 5.58 is more useful to detect whe-
ther a rating class vector is not optimal than to ensure that a rating class
vector is optimal. In this regard, we develop a second proposition in the
style of Proposition 5.58 which ensures that a given rating class vector is at
least better than all possible rating class vectors with a 1-norm up to u. Of
course, the boundaries for the proposition with the sufficient condition need
to be more narrow than in the one with the necessary condition.

Proposition 5.62. Suppose again there are two vectors, x, y ∈ Rn
≥0 with

∥x∥1 = u and ∥y∥1 = w, where w > u and x = (u/n, . . . , u/n). Then

yi ∈
[
w − b

n− 1
,
w − a

n− 1

]
for at least all but one i ∈ {1, . . . , n} implies that x ⊑ y. As before,

a =
−
(
−nw

2 + nu
2 − u

)
−
√(

−nw
2 + nu

2 − u
)2 − (wu(2− n) + (n+ 1)u2)

n

and

b =
−
(
−nw

2 + nu
2 − u

)
+
√(

−nw
2 + nu

2 − u
)2 − (wu(2− n) + (n+ 1)u2)

n
.

Proof. In Proposition 5.58 we have shown that choosing y1 = a or y1 = b
and yi =

w−y1
n−1 ensures f(u/n,...,u/n)(y) =

n
2 . Based on the choice of y1 this

implies yi =
w−a
n−1 or yi =

w−b
n−1 , where a < b implies w−b

n−1 <
w−a
n−1 .

Note that for most examples it holds that

a, b /∈
[
w − b

n− 1
,
w − a

n− 1

]
,

see e.g. Example 5.64 below. Since we assumed

yi ∈
[
w − b

n− 1
,
w − a

n− 1

]
for at least all but one i ∈ {1, . . . , n} this is not a problem.
As we already know, the function g(y) = y

y+b monotonously increases in y
while its derivative monotonously decreases. Hence, reducing y1 = b while
enlarging some other yi or enlarging y1 = a while reducing some other yi
preserves the inequality f(u/n,...,u/n)(y) ≥ n

2 .
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Remark 5.63. Instead of using the result of Proposition 5.58, one could also
follow the exact same argument as in the proof of this proposition but fix
y2 = · · · = yn which implies

y1 = w − (n− 1)y2.

Recall that we fixed y1 and set

y2 = · · · = yn =
w − y1
n− 1

when we proved Proposition 5.62. Of course, y2 has to be chosen such that
y1 ≥ 0, which is equivalent to y2 ≤ w

n−1 .

Example 5.64. Let us continue Example 5.61, where we calculated

a =
9−

√
57

6
and b =

9 +
√
57

6
.

Remember that we are in a setting where we want to find a vector y with
∥y∥1 = 4 satisfying y ⊒ (1, 1, 1). Using Proposition 5.62 we calculate further
that all vectors with

yi ∈

[
15−

√
57

12
,
15 +

√
57

12

]
≈ [0.62, 1.88]

for all but one i satisfy y ⊒ (1, 1, 1).

Remark 5.65. Let us summarize the results of Propositions 5.58 and 5.62.
These two propositions deliver some criterions to compare vectors with dif-
ferent component sum. While Proposition 5.58 is useful to prove that a
vector following the optimal allocation given by Proposition 5.45 is indeed
the optimum, Proposition 5.62 might be used as a tool to disprove it. The
proofs of the two propositions show that the given bounds are indeed sharp.

Note that it might not always be possible to find a unique optimizer on
convA. Nonetheless, it is often easier to work on the convex hull.

5.2.6 Returning to Non-Convex Sets Using a Metric

After some analysis for the case that the set A we are optimizing on is
convex, we return to the non-convex case. If the set A is not convex, we
proceed as follows:

1. Calculate the convex hull convA of our set A.

2. Perform the optimization on the (convex) set convA.

3. Return to the original set by finding a point of A lying close to the
calculated optimum.
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To be able to perform the third step, we need to derive a concept what
“close” means in our setting. Therefore we introduce a metric db on the
set Rn

≥0. As we can see in Proposition 5.69, the metric should furthermore
satisfy some stylized facts, compare also Remark 5.71.

Definition 5.66. Let b be a real-valued vector of length n with non-negative
entries and choose ε > 0. We define the metric db(·,·) induced by fb by

db(x, y) = |fb(x)− fb(y)|+ ε · 1{x ̸=y},

where x, y ∈ Rn
≥0 and fb is defined as in Equation (16) by

fb(a) =
n∑

i=1

ai
ai + bi

.

Remark 5.67. The vector b serves as the reference point of our optimization
problem. If the optimizer is known, one should choose the reference point
b to be the optimizer, see Proposition 5.45 or 5.56 for finding it. If it is
clear from the context, we might drop the dependency on b and write d(·,·)
instead of db(·,·).
Furthermore, we need to decide how to choose ε. We added this term in
the definition above to ensure that db(·,·) is a metric, see Proposition 5.68
for more details. In practice we often use db(·,·) to measure the distance
between the optimum and other points. In these cases, the positive definite-
ness property is needed to avoid dividing by zero later on. Unless stated
otherwise, we fix ε to be a very small but positive value.

To be able to use db(·,·) for measuring distances we show that it is a metric
on Rn

≥0.

Proposition 5.68. The function db(·,·) defined in Definition 5.66 is a metric
on Rn

≥0.

Proof. We need to check the three properties of a metric:

Positive definiteness: By definition we have db(x, x) = 0 for all x ∈ Rn
≥0.

Let us assume that x ̸= y. We then have db(x, y) > 0 since the absolute
value is non-negative and ε · 1{x ̸=y} is strictly positive.

Symmetry: The symmetry follows directly from the properties of the ab-
solute value | · | and the symmetry of the inequality in the indicator
function.

∆-inequality: Let x, y, z ∈ Rn
>0. Then we have

db(x, z) = |fb(x)− fb(z)|+ ε · 1{x ̸=z}

≤ |fb(x)− fb(y)|+ |fb(y)− fb(z)|+ ε · (1{x ̸=y} + 1{y ̸=z})

= db(x, y) + db(y, z).
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Hence, all the properties are fulfilled and db(·,·) defines a metric on Rn
≥0.

There are a few stylized facts that our metric db(·,·) needs to satisfy. They
are summarized in the next proposition.

Proposition 5.69. Choose b ∈ Rn
>0 as the optimizer of the optimal vec-

tor problem. The metric db(·,·) from Definition 5.66 satisfies the following
stylized facts:

1. Equality: For x, y ∈ Rn
≥0 we have

fb(x) = fb(y) ⇔ db(x, b) = db(y, b),

i.e. all points with the same function value have the same distance to
b.

2. Inverse proportionality: For x, y ∈ Rn
≥0 the equality

fb(x) < fb(y) ⇔ db(x, b) > db(y, b)

is fulfilled. In other words, all points with a lower function value have
a larger distance to b.

3. Positivity: For all x ∈ Rn
≥0 with x ̸= b it holds that db(x, b) > 0.

Proof. The positivity is just one of the properties of the metric, see Propo-
sition 5.68. For the two other facts we reconsider the definition of db(·,·),
which was given by

db(x, y) = |fb(x)− fb(y)|+ ε · 1{x ̸=y},

see Definition 5.66 for more details. The optimality of b ensures fb(b) ≥ fb(x)
for all x ∈ Rn

≥0. Therefore, we can drop the absolute value and receive

db(x, b) = fb(b)− fb(x) + ε,

if b ̸= x. From this equation we directly obtain

fb(x) = fb(y) ⇔ db(x, b) = db(y, b)

and
fb(x) < fb(y) ⇔ db(x, b) > db(y, b).

Remark 5.70. Note that by the first stylized fact we expect all points on
the indifference circles in Example 5.48 to have equal distance to the point
(1, 1, 1). As desired, we derive by construction that d(1,1,1)(x, (1, 1, 1)) =

1
6+ε

or d(1,1,1)(x, (1, 1, 1)) =
1
3 + ε for all points on the circles, respectively.
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Remark 5.71. There are more approaches to define the metric db which are
different to the one we presented in Definition 5.66. One way would be to
define a metric related to the one induced by the 1-norm and set

db(x, y) =
n∑

i=1

∣∣∣∣ xi
xi + bi

− yi
yi + bi

∣∣∣∣ ,
for x, y ∈ Rn

≥0. This approach indeed sets up a metric, as one can easily
show. Nonetheless, the desired equality property

db(x, b) = db(y, b) ⇔ fb(x) = fb(y)

from Proposition 5.69 as well as the inverse proportionality property does not
hold for this approach. Take for example the points x = (0.6218, 0.4, 1.9782)
and y = (0.8158, 0.3, 1.8842) on the indifference set around b = (1, 1, 1) for
function value 8

6 , see Figure 29. For these points it holds that fb(x) = fb(y)
but

db(b, x) = 0.4951 ̸= 0.4732 = db(y, b).

In a similar way we can construct a counterexample for the other implication
and for the inverse proportionality. These flaws make the above definition
practically useless for the next step of our procedure.
Another approach is to follow the idea of the SNCF-metric by defining

db(x, y) =

{
|fb(x)− fb(y)| , if x and y lie on a half-line with b,
fb(x) + fb(y), else.

With a half-line we mean a (straight) line going from b first through x and
then to y or vice versa. In other words, we want x or y to be able to be
displayed by a convex combination of y and b or x and b, respectively. Also
this defines a metric. As we are only calculating distances of the form db(b, x)
in the next step, the case distinction does not limit the practical use of this
approach. Nonetheless, we prefer to use the metric from Definition 5.66.

After setting up a metric to measure distances, we present different ap-
proaches to return from convA to A if the optimizer we found on convA
does not lie in A:

a) Simply choose the point that lies closest to the optimum b, i.e. solve

min
x∈A

db(b, x).

If this point is not uniquely defined, choose one of the points that mini-
mize this problem at random. The stylized facts from Proposition 5.69
ensure that we choose a point where fb is maximal.
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b) Choose a point out of the set A at random, where the probabilities are
inversely proportional to their distance to the optimizer. For example
one could find the probabilities by normalizing the terms

1

db(b, x)
,

where b is the optimizer found in convA. The normalization is needed
to ensure that we end up with a probability density. Note that the
third stylized fact, i.e. the positivity from Proposition 5.69 holds. To-
gether with the assumption that the optimizer does not lie in A this
ensures that we are not dividing by zero. Furthermore, the first two
facts, equality and proportionality, guarantee that points with the
same value of fb are picked with the same probability. In addition,
the greater the function value of a point is, the higher its probability
to be chosen becomes.

c) Instead of taking 1
db(b,x)

, one could also use the (normalization of the)
terms

1

g(db(b, x))
,

where g : R>0 → R>0 is monotonously increasing. Examples for a
reasonable choice of g would be g(x) = xn for n ∈ N (n = 1 yields
the second approach) or g(x) = exp(x). Compared to the previous
approach, this increases the preference of points with a small distance
to the optimizer. As for the second approach, the desired properties
are ensured by our stylized facts.

Remark 5.72. Let us come back to our application, where two insurance
companies compete for the biggest share of customers in their company.
Following a probabilistic instead of a deterministic strategy might be ad-
vantageous for an insurer, as the competing company does not know in
advance which strategy is picked. As we have seen before, knowing the cho-
sen strategy of your opponent in advance leaves you with an advantage, as
finding the best response is much easier than finding the best strategy in
general.

Example 5.73. Let us continue with Example 5.48 from before. All six
points from our set A2 have the same distance from the optimum (1, 1, 1),
namely ∣∣f(1,1,1)(1, 1, 1)− f(1,1,1)(x)

∣∣+ ε · 1{(1,1,1)̸=x}

=
9

6
− 7

6
+ ε

=
1

3
+ ε.
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Therefore it does not make a difference which of our approaches from above
we apply. All three correspond to choosing one of the six points in A2 with
equal probability. This is indeed a desired result, compare also Remark 5.49.

5.2.7 Preference Relations for Rating Class Vectors

We now apply the strategy to determine an optimal vector in terms of ⊑
to the optimal coverage vectors λ̂ from Definition 5.74. By doing so, we see
that it is optimal to insure each risk class individually. The reason for this
is that grouping up different risk classes results in a lower total equilibrium
coverage, compare Section 3.2. Recall that those customers which subsidize
other customers with higher risk reduce their coverage compared to a market
where they are equipped with an own contract. This reduction is larger
than the additional coverage purchase of the subsidized customers. The
effect shows up due to the concavity of the utility function u, we refer to
Example 5.79 as well as Examples 2.29 and 2.31 for more details. This
motivates us to apply an extension to our model, which also helps to make
our model more realistic.
Similar as in Borch (1962) [Bor62] we therefore assume that we need to add a
safety loading to all insurance contracts which are issued by an insurer. We
assume the safety loading to be the standard deviation of the (compound)
risk. Note that [Bor62] assumes the safety loading to be three times the
standard deviation. The safety loading in a contract is split proportionally to
the purchased coverage among all customers in this contract. We formalize
this approach by the following definition.

Definition 5.74. Given a rating class vector b, the loaded premium vector
γ is given as the sum of the premium vector π plus the safety loading s, i.e.
γ = π + s. To be able to define these two quantities we assume that the
rating class vector b contains mb rating classes. Rating class k consists of
ek risk classes, where 1 ≤ ek ≤ n and

∑mb
k=1 ek = n. In order to define the

safety loading, we need to introduce the concept of premium and optimal
coverage vectors first.

• The premium vector π ∈ Rn is a vector that contains the premiums
for each risk class according to the vector of rating classes b, see Defi-
nition 5.14. The premium πi of the customers in risk class i is given as
the premium of its according rating class which can be calculated as
explained in Remark 5.15 with the help of Definition 5.4 and Propo-
sition 5.6.

• Given a loaded premium vector γ, the optimal coverage vector λ̂ ∈ Rn

is given by λ̂ = (λ̂1, . . . , λ̂n) with

λ̂i = λ̂i(γi),
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for each i ∈ {1, . . . , n}, where λ̂i(·) is the equilibrium insurance de-
mand/coverage of the customers in risk class i.

• The safety loading s ∈ Rn is a vector that contains the amount of
safety loading per customer for each risk class. The safety loading si
of each customer of risk class i from rating class k is given by solving
the following equation in si.

si = λ̂i(πi + si) ·

√∑ek
l=1V(Xkl) · ηkl · λ̂kl(πkl + skl)∑ek

l=1 ηkl · λ̂kl(πkl + skl)
. (18)

Here we denote the risk of the customers of risk class kl by Xkl and
the corresponding number of customers in that risk class by ηkl .

Remark 5.75. Let us provide some additional details regarding the definition
of the safety loading in Equation (18). As mentioned before, the safety load-
ing of a contract is supposed to be the standard deviation of the compound
risk. This risk is given by

ek∑
l=1

Xkl · ηkl · λ̂kl(γkl),

where we used the same notation as in Definition 5.74 above. In Equa-
tion (18) we used π + s instead of γ to illustrate the dependency of s of
the right hand-side. Note that the compound risk depends on the amounts
of coverage bought by the customers of each risk class. Keeping in mind
that the risk variables are all independent, we can use Bienaymé’s identity
to calculate the safety loading of the contract as the standard deviation of
the compound risk by √√√√ ek∑

l=1

V(Xkl) · ηkl · λ̂kl(γkl).

This safety loading is supposed to be split among all customers in the con-
tract proportional to their purchased coverage. This finally provides us with
Equation (18) to compute the safety loading per head.

Remark 5.76. The loaded premium vector is given as the premium plus
a safety loading. All other costs such as signing fees, bank costs etc. are
assumed to be zero, compare e.g. Remark 3.10 or 6.9. Introducing these costs
and including them into the loaded premium vector would not structurally
change the phenomena we can observe in our model.

We calculate the safety loading for each contract and not for the whole insur-
ance company to make sure that each contract the insurance company sells
is not going to make loss, compare the term of feasibility in Definition 2.14.
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The amount of safety loading each customer needs to pay decreases with
convergence rate 1/2 for a rising number of customers in the contract and
vanishes if the number of customers tends to infinity. Hence, a larger amount
of risk classes in a contract often results in a lower amount of safety loading
for each customer, especially when the risks of the risk classes do not differ
too much. At the same time, larger rating classes lead to less attractive
premiums for some customers and therefore to a lower total equilibrium in-
surance purchase, as we have argued before. Therefore, it is not trivial to
decide which of the two effects is larger. In Examples 5.79 and 5.85 we are
going to analyze the strength of the effects in a real-life setting.

Definition 5.77. We define the coverage relation ⊑cov on the set of possible
rating class vectors R′ modulo numeration such that a ⊑cov b if λ̂a ⊑ λ̂b for
the corresponding optimal coverage vectors. We call the rating class vector
b (globally) optimal rating class vector if a ⊑cov b for all possible vectors of
rating classes (modulo numeration) a ∈ R′, i.e. if it is the global maximizer
in the set of all coverage vectors corresponding to a risk coalition vector in
R′, see Definition 5.39. Furthermore, a set of rating class vectors O ⊆ R′

is called a set of locally optimal rating class vectors, if for all rating class
vectors a ∈ R′ there exists a vector b ∈ O such that a ⊑cov b holds. The
smallest such set in terms of cardinality is called a minimal set of locally
optimal rating class vectors, see also Remark 5.40.

Generally, we never compare two rating class vectors by ⊑ but only by ⊑cov

in this thesis, see also Remark 5.27.

Definition 5.78. Given two insurance companies 1 and 2 with optimal
coverage vectors λ̂a and λ̂b, we call ψ the fraction vector of customers in
Company 1 given by

ψ =
λ̂a

λ̂a + λ̂b
,

where the division is performed element wise.

In the next step, we provide an example to illustrate the effect of the safety
loading to the optimal choice of a rating class vector. We therefore recon-
sider the very easy setting of Examples 2.29 and 2.31. In these examples
we constituted a market consisting of equal shares of two different types of
customers and varied the damage probability of the high-risk agents. We
combine this setting with our thoughts from Example 5.22, where we con-
cluded that the two possible rating class vectors are (1, 1) (one contract for
all customers) and (1, 2) (two different contracts). Which one is preferable
does not only depend on (the difference between) the damage probabilities
but also on the number of customers in the market.

Example 5.79. We look (again) at an insurance market which consists of
equal shares of two types of customers. These customers are facing Bernoulli
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distributed risk variables Z1/2 with loss probability p1 = 5% and p2 between
5% and 60%. Furthermore, the loss in case of damage is considered to be
z1 = z2 = 1, the initial wealth of the customers is a = 2 and the utility
function is a CRRA utility function with risk aversion parameter ρ = 3, i.e.
u(x) = − 1

2x2 . Based on the number of customers in the market we can then
calculate the optimal contract setup.
The closer the two risk probabilities lie together, the more favorable it is to
group the two risk classes in one contract. Assume that the total number of
customers in the market is low and therefore the safety loading per customer
is high, compare Definition 5.74. This implies that the point at which it is
optimal to split up the customers into two different contracts is reached
for higher values of the high-risk customers damage probability p2. In the
following table, the splitting probabilities are given: If the high-risk agent’s
damage probability is higher than this value, it is better for the insurer to
group the insured in two contracts based on the number of customers in the
market. Furthermore, the push-out probability quantifies at which value of
p2 the low-risk customers are completely pushed out of the market in case
there is only one contract given. Both calculations are done in scenarios (M)
and (C).

splitting probability push-out probability

number of customers (M) (C) (M) (C)

2 – 11.07% – 14.73%

20 8.52% 9.75% 10.82% 24.10%

200 7.60% 7.84% 13.83% 27.87%

2000 6.52% 6.59% 13.83% 29.08%

20000 5.84% 5.89% 13.83% 29.46%

∞ 5.00% 5.00% 13.83% 29.63%

Table 9: Splitting and push-out probabilities based on the number of cus-
tomers in the market in scenarios (M) and (C)

Note that the results from the last row correspond to the results from Fig-
ures 2 and 3. In the case of a market with an unbounded amount of cus-
tomers in the market, the per customer amount of safety loading vanishes
and we are back in the exact setting of Examples 2.29 and 2.31.
With a rising number of customers, the per customer safety loading is re-
duced which leads to lower premiums and therefore to higher push-out prob-
abilities (i.e. the push-out occurs later). Interestingly, the push-out proba-
bility in scenario (M) is only affected if the number of customers is very low.
Reducing the amount of safety loading per person lowers the benefit of
grouping both risk classes into one contract, as the net reduction of safety
loading per person becomes smaller. Therefore, the splitting probability de-
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creases if the number of customers in the market increases. As we can see,
there are cases in which it is better to have only one contract in a compet-
itive scenario, while one should insure each type of customers individually
in a corresponding monopolistic market.
In a monopolistic market with only two customers, one of high and one of
low risk, no insurance is bought at all, so no probabilities are given for this
market setting.

5.2.8 Strategic Decisions and the Insurer’s Game

Before continuing, we summarize our model approach from the sections be-
fore. The procedure of choosing the rating classes and calculating the cus-
tomer flows is described below. From a game theoretical standpoint we are
modeling a game between two insurers which can choose for allocations of
the customers into contracts called rating class vectors in order to maximize
the number of customers in their company.

0. First of all, the market specifications need to be fixed:

• if we are in scenario (C) or (M);

• the number of risk classes n together with their sizes ηk and the
risk Zk for each k ∈ {1, . . . , n};

• the specifications of the agents, i.e. their utility function u and
their initial wealth a.

Note that scenario (M) is actually duopolistic. We assume that the
two insurers agree on charging the monopolistic premiums to maximize
their profits.

1. At the same time, insurance Company 1 fixes its rating class vector
a, Company 2 its rating class vector b from the set of possible rating
class vectors modulo numeration R′. As mentioned, this decision is
made by the insurers, not the agents, and forms the (only) strategic
decision the insurance companies can make.

2. Based on these rating class vectors, the premium vectors πa and πb
are calculated according to Definitions 5.4 and 5.74 as well as Propo-
sition 5.6. We then obtain the loaded premium vectors γa and γb by
solving Equation (18) in Definition 5.74. Following this definition, we
can use the loaded premium vectors to calculate the optimal coverage
vectors λ̂a and λ̂b in a final step.

3. After all these steps we can finally decide which rating class vector
is better in the sense of ⊑cov. According to Definitions 5.78, we can
calculate the fraction vector ψ of customers in Company 1. Each
entry ψk of ψ describes the fraction of customers from risk class k
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buying insurance from Company 1. As we have seen in Definitions 5.28
and 5.77, a ⊑ b holds if and only if

∑n
i=1 ψi ≤ n

2 , where we assumed
for simplification that all risk classes are of equal size.

Remark 5.80. In the more general case that there are n risk classes

with sizes η1, . . . , ηn, λ̂a ⊑ λ̂b holds if and only if
∑n

i=1 ηiψi ≤
∑n

i=1 ηi
2 ,

compare Remark 5.25. If η1 = · · · = ηn, this condition simplifies to∑n
i=1 ψi ≤ n

2 . As the observable phenomena in markets with different
class sizes do not differ structurally from those in markets with equal
class sizes, we stick to risk classes of equal size to ease the notation
and the computations.

The insurers try to find a rating class vector such that the agents buying
insurance from their company is maximized. Viewed from a game theoretical
standpoint, we are seeking for a Nash equilibrium, i.e. a state of the game,
where no insurance company can enlarge the amount of customers in its
insurance company by deciding for a different rating class vector in the first
step. As the game is symmetrical, in a Nash equilibrium it always needs to
hold that

∑n
i=1 ψi = n

2 if an equilibrium exists. This can be understood,
as the company gaining less customers due to the choice of its rating class
vector can always choose for the vector of the other company to raise its
customer share to be half of the total amount of customers.

Remark 5.81. If we restrict our problem to the choice of only one insurer,
where the rating class vector of the other insurer is known in advance, we end
up in a convex optimization problem that is therefore easy to solve, compare
Remark 5.52. Depending on the assignment the other insurer made, this
problem might even have a unique solution.

Remark 5.82. We could easily extend our model and the corresponding risk
class management problem to a setting with more than two insurance com-
panies. All extensions are straightforward and most of the results carry over
to this extended model.

5.2.9 The Optimal Rating Class Algorithm

We continue by investigating the findings and phenomena described in Ex-
amples 5.22 and 5.79 for a setting with more than two risk classes. Therefore,
we make some observations.
Firstly, we can note that in practice it is not optimal to set up rating classes
which are not connected. For all of our examples, it was preferable to choose
connected rating classes. For some easy examples we can derive an argument
for this. Assume for example we are in a market with three sufficiently large
risk classes, where we assume as usual E[Z1] < E[Z2] < E[Z3]. The rating
class vector (1, 2, 1) with a non-connected rating class cannot be optimal,
as it holds that (1, 2, 1) ⊑cov (1, 1, 2). This can be seen as the push-out
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effect and the aggregated coverage bought is lower, the higher the difference
between the damage probabilities is. In Remark 5.83 we see that choosing
for connected rating classes drastically reduces the computational effort.
Secondly, it is easy to see that the preference relation is not transitive, see
Example 5.41. This makes further computations more complicated, as it
is not sufficient to go through the set of all possible rating class vectors
(modulo numeration) and compare all vectors with the currently largest in
terms of ⊑cov. Nonetheless, comparing each vector only with the current
maximizer and not with all other vectors is a strategy that often works in
practice, see Example 5.85.
Thirdly, one can see from numerical examples that it is not optimal to
assume the rating classes to be of the same size. The lower the relative
difference between the risks are, the larger the rating classes are going to
be.
Next, we present an idea which ensures that each rating class vector with
connected classes is considered but the rating classes are not necessarily of
the same size. Our idea is the following: We travel systematically through
the set

R∗ = {(a1, . . . , an) ∈ Nn : 1 = a1 ≤ · · · ≤ an and ai−ai−1 ≤ 1 for all i = 2, . . . , n},

which is according to our restrictions the set of all possible rating class
vectors. As we are considering monotonously increasing integer vectors with
a one as the first value and a maximum increase of one in each element, every
vector of rating classes can also be represented by a {0, 1}n−1 vector, which
describes if there is an increase in entry 2, . . . , n or not. Hence, traveling
through R∗ is equivalent to traveling through

{(b2, . . . , bn) ∈ {0, 1}n−1},

where we set bi = ai − ai−1 to make the connection between the two sets
clear. Our algorithm makes use of the set R∗, which can be traveled much
easier, as we can make use of the binary representation of numbers, see
Remark 5.84.

Remark 5.83. Our algorithm allows us to restrict to |R∗| = 2n−1 rating
class vectors instead of |R| = nn ones. Proposition 5.23 already showed
that it is sufficient to regard |R′| = Bn instead of |R| = nn rating class
vectors, where Bn is the n-th Bell number. Below, we compare these three
numbers for some examples. The sequence of Bell numbers together with
many interesting literature sources and comments can be found as sequence
A000110 in the OEIS.8

8Online Encyclopedia of Integer Sequences, https://oeis.org/A000110
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n 2n−1 Bn nn

2 2 2 4
3 4 5 27
4 8 15 256
5 16 52 3125
10 512 115,975 10,000,000,000
20 ≈ 5 · 105 ≈ 5 · 1013 ≈ 1026

Table 10: Number of rating class vectors to check for a market with n risk
classes using different approaches

This table provides us with a first intuition how the Bell numbers evolve.
To analyze the asymptotics and therefore the computing time of an algo-
rithm comparing the vectors in R, R′ and R∗ we refer to Berend and Tassa
(2010) [BT10]. They show different bounds for the Bell numbers, e.g.

Bn <

(
0.792n

ln(n+ 1)

)n

∀n ∈ N.

The constant 0.792 can be lowered to exp(−0.6+ε) which is for small choices
of ε even smaller than 0.55. Lowering this constant implies that the bound
for Bn only holds if n lies beyond a certain threshold, see [BT10] for details.
All together, we can see that the number of rating class vectors we need to

check can be lowered by the factor
(
ln(n+1)
0.792

)n
if we regard the set R′ instead

of R. As already mentioned, the constant in the factor can be lowered to
exp(−0.6 + ε).
Considering R∗ instead of R we can lower the number of rating class vectors
we need to check even further, compare Table 10. In this case the factor of
cardinalities between the sets is given by n ·

(
n
2

)n
.

Let us formalize our considerations in the following algorithm.
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Algorithm 1 Optimal Rating Class Algorithm

Input: Set of risk classes with the corresponding risk variables and
class sizes, parameters to compute the premiums and coverages according
to Section 5.1 (Definition 5.4 and Proposition 5.6) and Definition 5.74

Output: (possibly one elemental) locally optimal set of rating class
vectors O for the given risk classes

O = ∅
bopt = (1, . . . , 1)
calculate the loaded premium vector γopt according to Definition 5.74
for bopt
λ̂opt = (λ̂1(γopt1), . . . , λ̂n(γoptn))
for (b2, . . . , bn) in {0, 1}n−1 do

bsum = (1, 1 + b2, 1 + b2 + b3, . . . , 1 +
∑n

k=2 bk)
calculate the loaded premium vector γsum according to Defini-

tion 5.74 for bsum
λ̂sum = (λ̂1(γsum1), . . . , λ̂n(γsumn))
if λ̂opt ⊑ λ̂sum then

bopt = bsum
λ̂opt = λ̂sum
O = O ∪ {bopt}

end if
end for
if O = ∅ then

O = {bopt}
end if
return O

Remark 5.84. The for loop needs us to somehow travel through the set
{0, 1}n−1. This can be done by using a for loop that goes from 1 to 2n−1

and transforming this number into its binary representation written in a
vector, where the k-th entry of the vector corresponds to the k-th digit of
the binary number.

5.2.10 Numerical Analysis

Now, we apply our newly developed algorithm to the example we threw up
in the beginning of this section.

Example 5.85. We consider a similar setting as in Example 5.24 and as-
sume there is an economy in a competitive market with 4000 customers
which consists of 20 risk classes with equal size. All agents face Bernoulli
distributed risks. We compare four different scenarios which differ in the
risk probabilities of the agents:

(a) risk probabilities of 0.1%, 0.2%, . . . , 2%;
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(b) risk probabilities of 1.1%, 1.2%, . . . , 3%;

(c) risk probabilities of 2.1%, 2.2%, . . . , 4%;

(d) risk probabilities of 0.2%, 0.4%, . . . , 4%.

All agents of all risk classes in all examples are assumed to have a loss in
case of damage of z = 1. Furthermore, all agents are equipped with an
initial wealth of a = 2 and CRRA utility with ρ = 3.
In Table 11 below, the optimal rating class vectors for these four examples
are given. It is easy to check that all of our given rating class vectors are
global optimizers for the corresponding example.

risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example (a) 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

Example (b) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Example (c) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Example (d) 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4

Table 11: Optimal rating class vectors for customers of 20 different risk
classes for four examples in scenario (C)

For Example (a), we end up with three rating classes, one for the two classes
with the lowest risk, one for the next six and a final one for the rest.
Shifting the risk probabilities up results in a lower relative difference be-
tween the risks and therefore (as expected) in a reduced number of rating
classes. For example if the risks lie between 1.1% and 3% we only receive
two rating classes, one for the first eight risk classes and one for the rest
(Example (b)). Shifting even more, e.g. to 2.1% til 4% results in only one
big rating class (Example (c)).
Contrariwise, multiplying the original risks by a factor such that the risk
probabilities are spread over a larger interval, e.g. 0.2%, 0.4%,. . . ,4% (Ex-
ample (d)) or even by larger factors results in a higher number of rating
classes.
When it comes to the number and the size of the rating classes, there are two
opposing effects working against each other, which we already explained be-
fore. To emphasize the importance of these two effects, we investigate them
again for this real-life example.
First of all there is the push-out effect, we already observed in theoretical
and real-life examples in the last chapters, see e.g. Example 2.31 or the ex-
amples in Section 3.2. This effect wants us to choose the number of risk
classes m to be large and the classes itself to be small. This is due to the
reason that the average amount of coverage bought reduces, the more risk
classes there are in one rating class.
On the other hand, we have added a variance based safety loading to the
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premium of each contract, which reduces its cost per head with a rising
number of customers in a rating class. This effect pushes towards a small
number of large rating classes. Which of these effects is stronger highly de-
pends on the market specifications.
As a thumb rule one can say that the bigger the (absolute and relative)
difference between the damage probabilities of the different risk classes is,
the higher the number of risk classes m becomes. Note that we were already
observing similar effects as these described here in Example 5.79.

Example 5.86. In a monopolistic market the rating class get more evolved.
Generally, the optimal number of rating classes m in a monopolistic market
is higher than in the corresponding competitive market. Furthermore, it is
no longer the case that the number of risk classes in each rating class needs
to get larger. In the following table we can find the four optimal rating class
vectors for the Examples (a) to (d) from the last example, Example 5.85, in
this case for the monopolistic market.

risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example (a) 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3

Example (b) 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Example (c) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Example (d) 1 1 1 1 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5

Table 12: (Element of a set of locally) Optimal rating class vectors for
customers of 20 different risk classes for four examples in scenario (M)

Recall that we assume the two insurance companies in scenario (M) to decide
for a price fixing on the monopolistic premiums which impedes competition
but ensures that their profits are maximized.
The effects we have observed for the competitive case in Example 5.85 show
up for monopolistic markets as well. We have already seen that the push-out
effect in monopolistic markets is stronger than in competitive ones, compare
e.g. Example 2.29 with 2.31. This leads to a larger number of smaller rating
classes compared to competitive markets.
As we can see in the next example, Example 5.87, there is no globally optimal
rating class vector for Example (d). In this case we give one of the locally
optimal rating class vectors. For all other examples, the given optimizer is
a global optimizer.

Example 5.87. Let us reconsider Example 5.86. We take a second look at
part (d), i.e. risk classes with risk probabilities of 0.2%,. . . ,4% in a monop-
olistic market. Therefore, we analyze the rating class vectors listed in the
table below.
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risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rating class vector (1) 1 1 1 1 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5

rating class vector (2) 1 1 1 1 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5

rating class vector (3) 1 1 1 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5 5

rating class vector (4) 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5

rating class vector (5) 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5

rating class vector (6) 1 1 1 1 2 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5

rating class vector (7) 1 1 1 1 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5

rating class vector (8) 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5

Table 13: Rating class vectors for customers of 20 different risk classes in
scenario (M)

We can then show that for the rating class vectors it holds (1) ⊑cov (2), (2)
⊑cov (3), . . . , (8) ⊑cov (1) but not vice versa. For example we obtain that
λ̂1 =

1
100(0, 12, 28, 41, 23, 31,21,27,32,37,25,29,32,36, 25, 28, 31, 33, 36, 38),

λ̂2 =
1

100(0, 12, 28, 41, 23, 31,23,29,34,23,27,31,34,38, 25, 28, 31, 33, 36, 38),

where the coverages are rounded to full percent. The differences in two vec-
tors above are displayed bold. It is easy to calculate that λ̂1 ⊑ λ̂2 and
therefore (1) ⊑cov (2). This can be seen as we obtain that 9.4982 < 9.5018,
where we omitted the calculation for the first entry of the vector, as we
would get a division by zero. These calculations imply that there cannot be
an optimal rating class vector in terms of ⊑cov for this example. Nonetheless,
the rating class vectors from the above table form a set O = {(1), . . . (8)} of
locally optimal rating class vectors.
By defining

λ̂ :=
λ̂1 + · · ·+ λ̂8

8
,

we find a vector in conv{λ̂1, . . . , λ̂8} which satisfies

λ̂i ⊑ λ̂

for all i = 1, . . . , 8.
As we can show later, using Algorithm 3, a refined version of Algorithm 1,
Vector (3) seems to be the “best” rating class vector out of the eight locally
optimal ones. The reason for this is that it is considered to be in the locally
optimal set with a probability of over 90% if we travel through the set of all
rating class vectors at random instead of in order. The second best rating
class vector, Vector (2), only appears with a probability of about 80%. We
refer to Remark 5.104 and also Section 5.3.2 for more details about the used
algorithm.
All eight locally optimal rating class vectors share that the first four risk
classes are grouped in one rating class. Note that the first risk class does
not purchase any insurance. Hence, one could ask why one does not choose
for one rating class with the first risk class and another one with the second
to the fourth risk class. Nonetheless, the safety loading per customer for the
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first risk class is so high that the agents do not purchase any insurance at
all, even if they are insured alone. Hence, we end up lying in the exact same
situation as by choosing only one risk coalition for the first four risk classes.

5.3 Capacity Constraints

Until now, we have assumed insurance markets to have an infinite capacity.
In practice, it might be possible that the market has only a limited capacity
c. The conceptualization of capacity constrained markets is done in Sec-
tion 5.3.1. After evolving the optimal rating class algorithm we apply it to
different numerical examples in Section 5.3.2.
Capacity constraints could apply due to market regulations or strategic de-
cisions made by the insurer. The reason for the latter could be that an
insurance company wants to ensure all branches of its insurance portfolio
to be more or less equally occupied. Note that the insurer has only a cer-
tain amount of risk capital, so some branches cannot become bigger than a
certain threshold. Furthermore, a lot of insurances are sold via insurance
intermediaries. Because the number (and of course also the working speed)
of these intermediaries is bounded, this might result in a limitation of the
market capacity due to a limited insurance distribution.
The capacity constraints could either apply to the whole market, single risk
classes or contracts (i.e. rating classes). As each risk class consists of a fixed
amount of customers, the most meaningful way would be to set a limit for
the amount of contracts that can be sold, i.e. to cap the proportion of the
coverages respectively the fraction vector ψ to a capacity constraint, com-
pare Remark 5.98. To cap the coverages themselves instead does not really
make sense. We are going to present an analysis of our approach shortly.

5.3.1 Conceptualization

We start by presenting a three-part definition of constrained vectors.

Definition 5.88. A vector a ∈ Rn
≥0 is called element wise constrained by a

capacity constraint c ∈ R≥0 if it fulfills

ai ≤ c for all i ∈ {1, . . . , n}.

The vector a is said to be contract wise constrained by the capacity con-
straint c and contract vector d ∈ {1, . . . , n}n if it fulfills

n∑
i=1

ai · 1{di=j} ≤ c for all j ∈ {1, . . . , n}.

Finally, the vector is called globally constrained by c if

n∑
i=1

ai ≤ c.
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Remark 5.89. From a practical standpoint a globally constrained market is
the most important type of constrained markets. To include the argument
with the risk capital in the market, one could add weights to the summands
leaving us with the condition

n∑
i=1

wi · ai ≤ c,

where (w1, . . . , wn) is a vector taking real non-negative values. We can see
later on, in Example 5.100, that adding a global constraint on an insurance
market does not have a big influence on the market behavior.

Remark 5.90. If it is clear from the context, in which kind a vector a is
constrained by a capacity constraint c, we simply write that a is constrained
by c.

It is also of interest what happens to the customers who are not able to
buy an insurance contract from one company due to a capacity constraint.
The behavior of the affected customers depends on the fact, whether the
insurance is compulsory (like health insurance in Germany) or not. We
model the decisions of the customers by a changing parameter h ∈ [0, 1]. It
describes how many customers, who are not able to buy insurance from one
company due to the lack of capacity, switch to the other insurance company.
Hence, 1− h describes the amount of customers vanishing from the market.

Remark 5.91. As mentioned before, in case of a compulsory insurance we
need to set the changing parameter to h = 1.

The impact of the value of the changing parameter on the optimal risk
class allocation is not to be underestimated, an analysis of this parameter
is presented in Example 5.108.
In the case that the capacity constraint applies not only to one risk class, but
to a contract or even the whole market, we need to model in which order the
possible customers are not served. One way would be to reduce the amount
of customers equally, i.e. by proportionally reducing the customers of each
risk class until the constraint is met. Another approach would be to reduce
the classes with the highest or lowest volumes first. As the equilibrium
amount of coverage is lower, the higher the premium is the customers need
to pay, it might be meaningful to reduce the risk classes with the high
coverages first, as they make less profit for the insurer. Of course, one needs
to pay attention that changing the ratio between the risk classes in one
contract could imply further changes in the contract, as it might become
more or less attractive for some types of customers. We therefore reduce the
coverages proportional to their purchased coverage. Let us formalize our
previous thoughts.
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Definition 5.92. Let a, b be vectors in Rn and c be a real-valued capacity
constraint such that a is not capacity constrained by c in the sense of Def-
inition 5.88. Let furthermore h ∈ [0, 1]. We then call the vectors ã and b̃
defined in the following as the capped vectors a and b.
If we are in the setting of element wise constrained vectors we define

ã, b̃ ∈ Rn by ãi = min(ai, c) and b̃ = b+ h · (a− ã).

Furthermore, if we are in the setting of contract wise constrained vectors
with a contract vector d, we define

ã, b̃ ∈ Rn by

ã =
n∑

j=1

c

max
(∑n

i=1 ai · 1{di=j}, c
) · (a1 · 1{d1=j}, . . . , an · 1{dn=j}

)
and

b̃ = b+ h · (a− ã).

Finally, if we are in the setting of globally constrained vectors we define

ã, b̃ ∈ Rn by ã =
c

max (
∑n

i=1 ai, c)
· a and b̃ = b+ h · (a− ã).

Remark 5.93. The vector ã is defined in such a way that it is now con-
strained by c (see Proposition 5.95), where the constraint is exactly met.
The vector b̃ is defined such that it contains the amounts of customers of
each risk class which were insured before we applied the constraint to vector
a. Furthermore, we add the amount of customers that changes from the
other insurance company, which are not able to be insured there, according
to the changing parameter h.

Remark 5.94. Of course, high changing parameters in combination with a
too small capacity constraint could result in an error, as customers would be
sent forth and back infinitely often. Hence, one needs to choose the capacity
constraint and the changing parameter accordingly to prevent this problem.
Nonetheless, if h < 1 and not all customers can be insured, the amount of
agents bouncing between the two insurance companies reduces in each step.
After a significantly large time interval, all uninsurable customers have left
the market, so we end up with the capacity constraints being fulfilled.
As an alternative, we could mitigate this problem by extending our model
like we did it in Remark 2.11. There we assumed that the risk aversion
varies among the customers in each risk class, leading to different optimal
amounts of coverage between the agents in one risk class. Hence, some
customers might be willing to leave the insurance market, as there benefit
of insurance is comparably small. The implementation of this extension is
not straightforward and therefore left for future research.

109



Proposition 5.95. Following the procedure in Definition 5.92, the vector
ã is chosen such that it is capacity constrained by the capacity constraint c
and the vector b̃ is minimal with respect to the 1-norm.

Proof. We need to show the proposition for the three possible types of con-
straints. Before we start, we note that b̃ = b + h · (a − ã) is minimal w.r.t.
the 1-norm if and only if a− ã is minimal w.r.t. the 1-norm.

a) element wise constrained vectors: It is clear from the definition that
the capacity constraint is met and a− ã is minimal.

b) globally constrained vectors: Let c̃ be the sum of the vector a. If c̃ ≤ c,
then a is already capacity constrained by c and we obtain ã = a and
b is obviously minimal. If c̃ > c, then c

max(c̃,c) = c
c̃ and therefore the

sum of ã equals c
c̃ · c̃ = c. Hence, ã is capacity constrained by c.

Furthermore, as the sum of ã equals exactly c, a− ã is minimal w.r.t.
the 1-norm.

c) contract wise constrained vectors: Note that by definition ã is a vector,
which is a sum of n vectors. For each entry of the vector ã exactly one
of the entries of the n vectors which are summed up is non-zero. Now
we can easily apply the argument from the last paragraph to show
that also in this case the proposition is fulfilled.

5.3.2 Evolution of the Optimal Rating Class Algorithm and Nu-
merical Examples

After building the theoretical background, we illustrate our model with some
examples. Before we do so, we are going to present an adapted version of
Algorithm 1, our optimal rating class algorithm. The adaption introduces
the opportunity to deal with capacity constraints and changing parameters.
Keep in mind that Algorithm 2 is indeed a generalization of Algorithm 1 from
the last section, since setting the capacity constraint high enough reflects
an unconstrained market.
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Algorithm 2 Optimal Rating Class Algorithm under Capacity Constraints

Input: Set of risk classes with the corresponding risk probabilities and
class sizes, parameters to compute the premiums and coverages according
according to Section 5.1 (Definition 5.4 and Proposition 5.6) and Defini-
tion 5.74, capacity constraint c, changing parameter h

Output: (possibly one elemental) locally optimal set O of rating class
vectors for the given risk classes

O = ∅
bopt = (1, . . . , 1)
calculate the loaded premium vector γopt according to Definition 5.74
for bopt
λ̂opt = (λ̂1(γopt1), . . . , λ̂n(γoptn))
for (b2, . . . , bn) in {0, 1}n−1 do

bsum = (1, 1 + b2, 1 + b2 + b3, . . . , 1 +
∑n

k=2 bk)
calculate the loaded premium vector γsum according to Defini-

tion 5.74 for bsum
λ̂sum = (λ̂1(γsum1), . . . , λ̂n(γsumn))
Calculate the capped fraction vectors ψoptcc and ψsumcc according

to Definition 5.92 using c and h and with regard to the desired type of
capacity constraint

if
∑n

i=1 ψ
optcc
i ≤

∑n
i=1 ψ

sumcc
i then

bopt = bsum
λ̂opt = λ̂sum
O = O ∪ {bopt}

end if
end for
if O = ∅ then

O = {bopt}
end if
return O

Remark 5.96. As the capacity constraint is applied to the fraction vectors
and not the coverage vectors itself, we now compare the sums of the capped
fraction vectors by ≤ instead of the coverage vectors by ⊑. If the capacity
constraint is so high that it does not get applied, it makes no difference
whether we compare the sums of the capped fraction vectors by ≤ or the
coverage vectors by ⊑, see Definitions 5.78 and 5.28. Therefore, Algorithm 2
is indeed a generalization of Algorithm 1.

As we can see in the following examples, the problem discussed in Exam-
ple 5.87 that a maximizer does not need to exist is very relevant for capacity
constrained markets.

Example 5.97. We begin by examining the market for element wise con-
strained vectors. We fix the changing parameter for all calculations in this
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example to h = 2
3 . Similar to part (a) of Example 5.85, we consider 20 risk

classes of equal size and Bernoulli distributed risk with damage probabil-
ities of 0.1%, 0.2%,. . . ,2%. Furthermore, the agents of all risk classes are
assumed to have a loss in case of damage of z = 1. All agents are equipped
with an initial wealth of a = 2 and CRRA utility with ρ = 3. The rating
class vectors for different capacity constraints are presented in the following
table.

risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c = 0.4 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

c = 0.45 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

c = 0.5 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

c = 0.55 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

c = 0.6 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

c = 0.65 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

Table 14: (Element of a set of locally) Optimal rating class vectors for cus-
tomers of 20 different risk classes for varied element wise capacity constraints
in scenario (C)

For all values of c greater than 0.65 we receive the same results as for
c = 0.65. It is not surprising that this rating class vector coincides with
the rating class vector for the corresponding unconstrained case. As we
have already argued, the constrained case with c = 1 is equivalent to the
unconstrained case. Note that we have set the changing parameter to h = 2

3
to avoid that there are customers that cannot be insured at all, compare
Remark 5.94.
As we can see, the capacity constraint does not have a big influence on
the optimal rating class vectors. For small capacity constraints, the rating
classes seem to get a bit bigger. Be reminded that bigger rating classes result
in lower coverages for the customers with lower risk. Hence the fraction of
agents signing contracts at this company is lowered. Nonetheless this is not
such a big deal, as the (small) capacity constraint would cap the fraction
anyway.
Especially when one takes ridiculously small values such as c = 0.1 or even
smaller, one ends up with a market where it is optimal to have only two rat-
ing classes. In this case, one rating class consists of the first two or three risk
classes, while the other contains the rest. Note that such small constraints
are not meaningful in practice and are therefore not analyzed further.

Remark 5.98. Keep in mind that if a fraction ψk = 1 of customers buy
insurance from Company 1 would imply that all 200 customers of that risk
class k sign their contract at Company 1, see Definition 5.78. A smaller
fraction ψ′

k implies that 200 · ψ′
k (rounded) customers sign the contract at

the corresponding company. Hence, a capacity constraint of c′k caps the
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number of contracts that can be signed at one company to 200 · c′ and vice
versa.

We continue with an example, where we investigate contract wise con-
strained markets.

Example 5.99. We look at a market with the same settings as in Exam-
ple 5.97 which is now contract wise and not element wise constrained. This
means that the maximum amount of policies that can be sold for one rating
class respectively contract is capped. The capping is applied to the sum
of the fractions, i.e. the total amount of customers, in one contract. For
element wise capacity constraint markets, a fraction of ψk = 1 for risk class
k implies that all 200 customers of risk class k sign the contract at one com-
pany. Also in this setting, one can easily transform the capacity constraint
to the number of customers that are allowed to sign the contract by mul-
tiplying it with 200. The optimal rating class vectors for different capacity
constraints can be found in the table below.

risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c = 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

c = 2 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6

c = 3 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

c = 4 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4

c = 5 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

c = 6 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

Table 15: (Element of a set of locally) Optimal rating class vectors for
customers of 20 different risk classes for varied contract wise capacity con-
straints in scenario (C)

Again, for capacity constraints larger than c = 6 we end up in a market that
is de facto unconstrained. In these cases the rating class vector is the one
we obtain for c = 6 or from part (a) of Example 5.85.
It should not be surprising that small capacity constraints lead to small risk
classes, as deciding for bigger ones would end in large amounts of customers
getting capped out of the insurance company. The smaller the constraint is,
the stronger this effect becomes.

Before continuing with the presentation of a refined version of Algorithm 2,
we investigate a third example, this time for a globally constrained market.
Actually, it was quite hard to find an example, where the (global) capacity
constraint has an influence on the optimal rating class vector. For most ex-
amples, especially all other examples we have investigated so far, there is no
difference between a constrained and an unconstrained market. This is not
very surprising, as this type of constraining affects the whole market instead
of single risk classes or contracts. As an insurance company can never per-
form better than the capacity constraint of the market, it might be favorable
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to choose for a risk allocation that is not optimal to avoid losing customers
to the other company. Nonetheless, the insurance company also harms itself
which makes this strategy not optimal for most market specifications, so we
often get the same results as for an unconstrained market.

Example 5.100. Let us consider a market similar to those from the last
examples, but this time with customers facing damage probabilities of 0.25%,
0.5%, . . . , 5% in a monopolistic market. As before, each risk class consists
of 200 people. Using different capacity constraints together with a changing
parameter of h = 1 we obtain:

risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c = 10 1 1 1 2 2 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6

c = 10.2 1 1 1 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5

c = 10.4 1 2 2 3 3 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6

c = 10.6 1 1 1 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5

Table 16: (Element of a set of locally) Optimal rating class vectors for
customers of 20 different risk classes for varied global capacity constraints
in scenario (M)

For all capacity constraints larger than c = 10.6, we end up for the same
optimal rating class vectors as for this value. Interestingly, the strength of
the effect of the capacity constraint does not seem to be monotone. This
comes due to that the algorithm we are using is not very robust when we
are dealing with capacity constraints. Hence, it seems meaningful to derive
a new, improved algorithm which is more robust.

As mentioned in Example 5.100, the issue we addressed in Example 5.87
is getting even more relevant in the case of capacity constrained insurance
markets. Let us therefore focus on the capacity constraint c = 0.55 from
Example 5.97 above. Depending on the value of the changing parameter
h algorithm provides us with a set of up to 900 locally optimal vectors.
Hence, we need to refine our optimal rating class algorithm under capacity
constraints, Algorithm 2, to receive better results.
In Remark 5.84 we mentioned that we systematically travel through the set
{0, 1}n−1 by using the binary representations of the set of integers from 1
to 2n−1. This leads to the fact that we often compare rating class vectors
that differ in few entries only. Instead of going from 1 to 2n−1 in order, we
now shuffle the integers randomly and use this random shuffled numbers.
This already leads to a significantly smaller set of locally optimal vectors,
often the size shrinks by factor two or more, as the rating class vectors that
get compared are more distinct. To shrink this set further, we apply our
algorithm k times to receive the locally optimal sets O1, . . . ,Ok. We can
then count how often each rating class vector shows up in the sets. These
ideas are formalized in the definition below.
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Definition 5.101. Consider a (finite) set of rating class vectors R̃, which is
ordered in the sense that each element ri of R̃ has a uniquely assigned num-
ber i ∈ {1, . . . , |R̃|}. Furthermore, we consider k (locally optimal) subsets
O1, . . . ,Ok of R̃. By freq we define the frequency vector given O1, . . . ,Ok

as
freqi = |{j : ri ∈ Oj}|,

i.e. the number of sets Oj in which the i-th element of R̃ occurs.

The ideas are summarized in a new algorithm, Algorithm 3, below.

Algorithm 3 Counting Algorithm under Capacity Constraints

Input: Set of risk classes with the corresponding risk probabilities and
class sizes, parameters to compute the premiums and coverages according to
Section 5.1 (Definition 5.4 and Proposition 5.6) and Definition 5.74, capacity
constraint c, changing parameter h, repetition value k

Output: (absolute) frequency vector freq of all rating class vectors

freq = (0, . . . , 0)
for i in {1, . . . , k} do

calculate the (locally optimal set of rating class vectors) O accord-
ing to Algorithm 2, where the set of all possible rating class vectors is
traveled at random instead of in order

update the freq by setting freqj = freqj + 1 if rating class vector j
appears into the set O
end for
return freq

Remark 5.102. Algorithm 3 requires to travel the set of all possible rating
class vectors at random. As mentioned in Remark 5.84, the original approach
is to set up a for loop from 1 to 2n−1 and transform this number into binary
representation. Instead of doing this one can shuffle the set {1, . . . , 2n−1}
before traveling through it.

Remark 5.103. Algorithm 3 is a generalization of Algorithm 2 (which is a
generalization of Algorithm 1, see Remark 5.96). This can easily be seen by
setting the repetition value in Algorithm 3 to k = 1 and browse the set in
order instead of at random.

Remark 5.104. By setting the capacity constraint large enough, we can use
this algorithm for unconstrained markets as well. Since we might not able to
find a unique optimizer in some examples, we can use Algorithm 3 to derive
which of the rating class vectors appears in locally optimal setsO most often.
This equips us with an easy approach for mitigating the non-existence of an
optimizer, see Example 5.87.

We illustrate the procedure of Algorithm 3 with an example where we con-
sider an element wise capacity constrained market with c = 0.55 and h = 1.

115



Example 5.105. We consider a competitive market with the specifications
from Example 5.97 together with a capacity constraint of c = 0.55 and a
changing parameter of h = 1. The agents face Bernoulli distributed risks
with damage probabilities between 0.1% and 2% with a loss in case of dam-
age of z = 1, initial wealth of a = 2 and CRRA utility with ρ = 3. For
this setting, we calculate ten locally optimal sets of rating class vectors
O1, . . . ,O10. Interestingly, all these sets are almost of same size and contain
between 400 and 450 vectors (compared to about 900 when we use Algo-
rithm 2). The intersection of all sets contain just one vector, the rating class
vector (1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3).

The capacity constraints c = 0.4 and c = 0.45 in Example 5.97 lead to signif-
icantly large sets of locally optimal vectors if we set the capacity constraint
to h = 1. In Example 5.106 we use our newly derived Algorithm 3 from
above to calculate the rating class vectors, which are locally optimal for the
most sets.
As we already stated in Remark 5.94, these parameter choices actually would
not work in reality, as some customers are just unable to be insured, while
the insurance is compulsory. Here, we just assume that all customers who
cannot be insured at one company insure at the other. The capacity con-
straint is not applied there. Example 5.106 does not really have a practical
relevance and is just included to show how big the optimal sets can become
if one does not choose the parameters carefully. Choosing the capacity con-
straint and the changing parameter careless can cause tremendously big
locally optimal sets containing almost half of all rating class vectors.

Example 5.106. We consider a competitive market with the specifications
from Example 5.97 with a capacity constraint of c = 0.4 and set the chang-
ing parameter to h = 1. For this setting, we calculate 25 locally optimal
sets of rating class vectors O1, . . . ,O25. Interestingly, all these sets are al-
most of same size and contain between 109,000 and 111,000 vectors. The
intersection of all sets is empty, while two vectors, the rating class vectors
(1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) and
(1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) show up in all but one set. In
Figure 31 below, the number of vectors for each frequency from 0 to 25 is
plotted. As mentioned above, there is no vector included in all 25 sets.
It is easy to see that the number of rating class vectors which appear in
exactly k sets of locally optimal vectors is decreasing in k. The total amount
of possible rating class vectors is 219 = 524, 288. Hence, about every seventh
rating class vector is not contained in any local optimal set, less than 0.1%
of the rating class vectors is contained in 20 or more of the 25 sets.
If we keep the changing parameter at h = 1, enlarge the capacity constraint
to c = 0.45 and calculate 50 optimal sets (containing about 200,000 vectors
each), the vector (1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5) is contained
in all sets for our example.
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Figure 31: Absolute frequencies of appearance of different rating class vec-
tors for each possible frequency from 0 to 25 in an element wise capacity con-
strained insurance market with capacity constraint c = 0.4 in scenario (C)

Remark 5.107. The number of locally optimal sets we calculate for an exam-
ple is based on the size of the underlying sets of locally optimal rating class
vectors. As mentioned before, the sizes of the different locally optimal sets
for each capacity constraint are quite similar, in our examples between about
400 to 450 for c = 0.55 in Example 5.105 and about 200,000 for c = 0.45
in the above example. The smaller the average set size is, the less sets we
need to calculate to reach the point where there are only few vectors which
are contained in all or all but one set. The examples also show that using
small capacity constraints together with large changing parameters cause
for markets that are not robust at all.

After analyzing how the market behaves under different capacity constraints
c, we finally examine how the value of the changing parameter h affects the
market.

Example 5.108. We look at a competitive market with element wise con-
strained vectors. In this example, we are reconsidering part (d) from Exam-
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ple 5.85. This means, we have a market with 4000 customers in 20 risk classes
of equal size, suffering from damage probabilities of 0.2%, 0.4%,. . . ,4%.
While our capacity constraint is fixed to be c = 0.5, the changing parameter
h is varied in order to analyze its effect.

risk class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

h = 0 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4

h = 0.2 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4

h = 0.4 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

h = 0.6 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

h = 0.8 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4

h = 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4

Table 17: (Element of a set of locally) Optimal rating class vectors for
customers of 20 different risk classes for varied changing parameters in sce-
nario (C)

We use our counting algorithm under capacity constraints, Algorithm 3, for
this example as well. Compared to Examples 5.105 and 5.106, our locally
optimal sets are quite small. All sets contain between 30 and 50 rating
class vectors, resulting in a low number of only five repetitions to choose an
optimizer.
We can see that a larger changing parameter tends to result in smaller risk
classes, especially for the low-risk customers. This can be explained by
the fact that larger rating classes lead to more cases, where the capacity
constraint is reached. The higher the changing parameter is, the worse
this becomes for the insurer, as more and more customers change to the
concurring insurance company.
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6 Health Insurance

In this chapter we apply our basic model from Chapter 2 to health insurance
markets. In Section 6.1 we provide some adjustments in order to make
our model applicable to health insurance data. We continue by applying
our model to simulated data after modeling the risk in Section 6.2. In a
further step, in Section 6.3, we look at real-life data. The provided data
and the adjusted model are based on expected losses and do not take the
loss distributions into account. In Section 6.4, we model different possible
risk distributions and adjust our model to be able to deal with them. We
illustrate these extensions with some numerical examples. Health insurance
products are usually life-long contracts, where the customer pays a so-called
flat premium, i.e. a premium which is constant over lifetime. We therefore
need to model reserves, which are first built up and then consumed in later
ages. This modeling is done in Section 6.5. For basic definitions and concepts
of health insurance together with related actuarial techniques we refer to
Pitacco (2014) [Pit14].

6.1 Adjustments of the Basic Model

In contrast to life insurance contracts, health insurance contracts do not
allow the customer to choose the amount of coverage he wants to purchase.
Speaking in terms of our basic model from Chapter 2, this means that
the amount of coverage, the agent purchases, is set to λ̂ = 1. Of course,
the demand of insurance in the market still depends on the price of it. It
affects the number of customers which are willing to purchase insurance for
a given price. In Chapter 2 we have seen that customers in life insurance
markets purchase full coverage if the price of the insurance is equal to the net
expected loss of the insured. Therefore the point where the market premium
corresponds to the net expected loss is used as a reference point.
We model the relative amount of customers purchasing health insurance of
price π by

e
−ρ−1

π−π0
⊕/⊖

π0
⊕/⊖ ,

where π0⊕/⊖ denotes the net expected loss of an insured of type π0⊕/⊖ and ρ
is the risk aversion parameter of our demand function.
From the representation

e
−ρ−1

π−π0
⊕/⊖

π0
⊕/⊖ =

−e
−ρ−1

π−π0
⊕/⊖

π0
⊕/⊖

−e
−ρ−1

π0
⊕/⊖−π0

⊕/⊖
π0
⊕/⊖

(19)

we can see that our new demand function originates from a CARA utility
function. As desired, the function decreases with an increasing value of π.
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Note that taking the inverse of the risk aversion parameter ensures that a
higher risk aversion parameter models a higher risk aversion. If we would
take the parameter itself instead of its inverse, a higher risk aversion param-
eter would result in a lower risk aversion and vice versa.
As we already know, the value of the equilibrium insurance coverage func-
tion λ̂ does not depend on the initial wealth of the customers a if one equips
the agents with CARA utility, see Remark 2.36. As adding or subtracting
an initial wealth in the exponential functions in the nominator and the de-
nominator of Equation (19) does not change the value of the fraction, also
the values of the new demand function are independent of the initial wealth
of the customers.
Note that this adjustment takes the distribution of the risk completely out
of the computation, as the value of the demand function solely depends on
the expected value of the risk but not on the distribution of the risk. We
return to that problem later, in Section 6.4.
Using

λ̂⊕/⊖(π) = e
−ρ−1

π−π0
⊕/⊖

π0
⊕/⊖

as an optimal demand function, we can perform a similar analysis as in
Chapter 2. Let us summarize this procedure shortly. To do so, we switch
the notation from ⊕- and ⊖-agents to males and females. This comes due
to the fact that we do not know which gender is generally more favorable
to the insurance company without knowing the exact market specifications
but always deal with data that relies on genders.

1. We start by setting up all parameters that characterize the insurance
market. This is done by choosing the fraction of males wm in the
insurance market as well as the risk aversion parameter ρ for our de-
mand function. As mentioned above, this function is independent of
the agents initial wealth a. For the risk variables of the males and
females Zm/f we calculate the net premiums π0m/f = E[Zm/f ]. Note
that the risks of the agents of each gender are i.i.d. and independent
of the other gender.

2. We set λ̂m/f (π) = e
−ρ

π−π0
m/f

π0
m/f as the (optimal) demand function λ̂ that

depends on the premium π.

3. The optimization problems are now the same as in Chapter 2. If we
are in a monopolistic market, we solve

π̂⊙ = argmax
π⊙

{wmλ̂m(π⊙ − π0m) + wf λ̂f (π⊙ − π0f )}

in regime (E) and

(π̂m, π̂f ) = arg max
(πm,πf )

{wmλ̂m(πm − π0m) + wf λ̂f (πf − π0f )}
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in regime (F). The exponential structure of the equations ensures the
existence of the maximizers. In a market with perfect competition we
solve

π⊙ =
wmλ̂m

wmλ̂m + wf λ̂f
· π0m +

wf λ̂f

wmλ̂m + wf λ̂f
· π0f

in regime (E) and set

π̂m = π0m, π̂f = π0f

in regime (F). For more details we refer to Section 2.5. From the defini-
tion of λ̂ we can easily see that this demand function is differentiable
in the premium π. Hence, no involved argument with the implicit
function theorem as in Proposition 2.22 is needed.

Remark 6.1. Instead of replacing the equilibrium coverage by an optimal de-
mand function, we could model the market as a market with price-quantity
competition. Therefore we would need to set markets with different cov-
erages and corresponding premiums and perform a similar analysis such as
in [SS14].

Remark 6.2. There are not many papers which try to investigate health
insurance markets in a regime with mandatory unisex tariffs. The closest
paper to this topic might be Riedel (2006) [Rie06]. Especially the effect of
premium refund systems are investigated there. Unfortunately, the formulas
used lack some details and it is not clear how the parameters were chosen.
Hence, the numerical results cannot be recalculated and therefore also not
be used as a comparison in this thesis.

6.2 Modeling the Health Insurance Risk

In this section we model an ambulant and stationary health insurance. We
then use our simulated data to calculate premiums according to our adjusted
model.
The risk for the insurance company is supposed to consist of two compo-
nents: A normally distributed component to model medical consultations
and a Pareto distributed component to model hospitalization expenses. To
be more precise, we use

Xdoctor ∼ N (100, 25) and Xhospital ∼ Par

(
1000,

4

3

)
.

Here, the first parameter of the Pareto distribution is its scale parameter,
i.e. the minimal value the distribution can take, and the second parameter is
its shape parameter. Hence E(Xhospital) = 4000 and V(Xhospital) = ∞. Like
already mentioned in Remark 2.13, the expectation of the risk is bounded
as desired, but not so the variance. It is not uncommon in practice to use
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heavy tailed distributions like the Cauchy or Pareto distribution for model-
ing, e.g. for fire insurances. Because the expenses for medical treatments in
a hospital might be unbounded as well, we chose to use a Pareto distribution
here. Note that our model from Section 6.1 is not taking the distribution or
variance into account. We will return to that problem later, in Section 6.4.
Depending on age and gender, we model the frequency of the claim occur-
rence for hospital stays and doctor’s consultations. This is done in two steps.
First we include the probability that an agent needs medical treatment dur-
ing one year. The probabilities we use for this part of our model are based
on data sets of the German Robert Koch Institute (RKI) [Rob17a, Rob17b]
from 2017 (only available in German) and are summarized in the following
tables.

age doctor’s visit hospital stay

18-29 0.784 0.087

30-44 0.776 0.095

45-64 0.850 0.159

older than 65 0.937 0.258

Table 18: Probabilities of males to have at least one doctor’s visit or hospital
stay during one year given the age

age doctor’s visit hospital stay

18-29 0.904 0.151

30-44 0.878 0.114

45-64 0.908 0.144

older than 65 0.940 0.259

Table 19: Probabilities of females to have at least one doctor’s visit or
hospital stay during one year given the age

We assume that a 20-year old person is having 1.5 doctor’s visits on average
each year, given that he has seen a doctor at least once during the year.
This number is modeled to increase exponentially with the age, doubling
each 20 years.
Furthermore, we assume that a 20-year old person is having one hospital
stay per year if this person has to stay in the hospital during the year.
Again we assume that this number is increasing exponentially with the age.
As the probability for staying in a hospital at least once per year is already
increasing with the age (especially for men), we assume the number to go
up by 60% each 20 years. Remark 6.5 we can see that these choices reflect
the reality quite well.
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To be exact, the formula for expected number of doctors visits for a person
aged x is given as

1.5 · 2
x−20
20 ·(0.784 · 1x∈[18,29] + 0.776 · 1x∈[30,44]

+ 0.850 · 1x∈[45,64] + 0.937 · 1x∈[64,∞))

for males and

1.5 · 2
x−20
20 ·(0.904 · 1x∈[18,29] + 0.878 · 1x∈[30,44]

+ 0.908 · 1x∈[45,64] + 0.940 · 1x∈[64,∞))

for females. The expected number of hospital stays is given by

1.6
x−20
20 ·(0.087 · 1x∈[18,29] + 0.095 · 1x∈[30,44]

+ 0.159 · 1x∈[45,64] + 0.258 · 1x∈[64,∞))

for males and

1.6
x−20
20 ·(0.151 · 1x∈[18,29] + 0.114 · 1x∈[30,44]

+ 0.144 · 1x∈[45,64] + 0.259 · 1x∈[64,∞))

for females. Note that the above formulas give the expected number of
doctors visits and hospital stays, not the expected costs. In order to receive
the (variables for the) costs one needs to multiply the expected numbers by
Xdoctor and Xhospital, respectively.

Example 6.3. Given all this information, it is easy to calculate the net
expected losses of the insured and therewith also the monopolistic and unisex
premiums and the corresponding insurance demands.

Figure 32: One-year health premiums as functions of the initial age in sce-
nario (C)
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Figure 33: Equilibrium insurance demands of one-year health premiums as
functions of the initial age in scenario (C)

Figure 34: One-year health premiums as functions of the initial age in sce-
nario (M)
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Figure 35: Equilibrium insurance demands of one-year health premiums as
functions of the initial age in scenario (M)

In Figures 32 and 34 these premiums are plotted for different ages in the
competitive and the monopolistic market. The corresponding insurance de-
mands are given in Figures 33 and 35. We assume the risk aversion parame-
ter of our demand function to be ρ = 3 and the portfolio to consist of equal
shares of males and females, i.e. wm = 50%.
Of course, the piece wise modeling of the probabilities can be seen in the
plots. As expected, the unisex premium lies always between the male and
the female premium. If the (relative) difference of the two gender-specific
premiums is high, the unisex premium stays close to the higher gender-
specific premium. As usual, the monopolistic premiums are higher than the
competitive premiums, while the difference of the premiums in the two sce-
narios increases with an increasing value of the risk aversion parameter ρ.
The comparison of Table 18 and 19 reveals that the gender has a big in-
fluence on the number of doctor’s visits and hospital stays. Which gender
produces higher medical expenses depends on the age of the customers. Par-
ticularly, this can be seen when comparing the insurance demands. For more
details we refer to Remark 6.5 and Section 6.3.

Remark 6.4. Different to the computations in the previous chapters, the
calculations in this chapter and Chapter 7 are implemented in R. The reason
for this is that R is much more popular in the health insurance sector than
MATLAB, as it can be used for free. In R we are using the built in optimize

function and proceed similar as for the previous chapters, see Remark 2.35
for more details. We made use of the actuar package of R. This package
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contains actuarial functions and heavy tailed distributions for R and can be
found on GitLab9. We use the version of November 2021.
In this chapter, all plots are based on functions over the initial age. Hence,
each line in a plot is based on a number of points equal to the number of
initial ages investigated. In this section we always investigate initial ages
between 20 and 80, resulting in the calculation of 61 data points for each
line. In later sections, we are interested in initial ages between 21 and 100,
so we need to calculate 80 data points per line.

Remark 6.5. As we see in Section 6.3, the premium heights we are ending
up with are indeed quite realistic. The ambulant health costs we are dealing
with in Examples 6.6 and 6.7 later on make up a bit more than half of our
total medication costs, also the premiums in these cases are about half as
high. The total medication costs are in this setting given by the sum of the
ambulant and the stationary costs. Other expenses like seeing the dentist or
sickness day allowances are not included here. Nonetheless, we can observe
two differences:

1. Because of shrinking portfolio sizes in higher ages, the real-life data
source we are going to use starts to average over the costs for customers
over 85, therefore the costs and also the premiums turn out to be
constant there.

2. We can see that the male and female costs differ more from each other
for the real-life data. Especially the pregnancy costs are much more
visible and pronounced in real-life data. While in our modeled data
there is only a small gap, we are able to observe a so-called “preg-
nancy hill” known as “Schwangerschaftshügel” in German health care
companies.

6.3 Real-Life Data

As mentioned before, it is our goal to apply our model to real-life health
insurance data. Before doing so, we need to collect appropriate data sets.
Each year, the German Federal Financial Supervisory Authority (Bunde-
sanstalt für Finanzdienstleistungsaufsicht, BaFin) publishes probability ta-
bles for private health insurance 10. These tables consist of five different
parts, where the structure and exact names of the tables have changed over
time.

• “Profile”: standardized loss profiles, standardized and unstandardized
losses per head and portfolio sizes for each health insurance product,

9https://gitlab.com/vigou3/actuar
10https://www.bafin.de/DE/PublikationenDaten/Statistiken/PKV/wahrscheinlic

hkeitstafeln_node.html, also called loss per head statistics, only available in German;
visited May 2022
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• “Grundkopfschäden”: basic losses per head for each health insurance
product,

• “Fiktive Selbstbehalte”: fictitious deductibles for each health insur-
ance product that contains ambulant insurance benefits,

• “Erklärungen”: explanations about the data sets, used abbreviations,
etc.,

• “Grafiken”: visualizations for the data from the data sets.

Let us give some further explanations about the contents of the “Profile”
table. This table lists separated data for males, females and pregnancy costs
and contains data for stationary and ambulant costs, costs resulting from
dental treatments and the (compulsory) long-term care insurance as well as
daily sickness allowances. Furthermore, different lapse rate tables are in-
cluded. For more details about the tables and the exact columns used for
our computations, we refer to Appendix B.
The probability tables of the BaFin is not the only possible data source for
real-life health insurance data. Nonetheless, many other possible sources,
like the RePortal data from the umbrella organization of the German private
health insurers (Dachverband der privaten Krankenversicherer in Deutsch-
land) are not open source.
Unfortunately, it is quite difficult to find data which contains the distribu-
tions for the losses per head and not only expected values. The distribution
of the losses highly effects the demand for insurance, as we have seen in
Section 3.2, compare also Chapter 8. Therefore, we need to generate a dis-
tribution for the losses and include them in our model. We return to this
problem later, in Section 6.4.

Example 6.6. We first investigate the (one-year) health insurance premi-
ums and demands for males and females as well as the unisex premium in
a competitive scenario. Therefore we analyze an ambulant health care with
“Beihilfe”. The so-called “Beihilfe” is a system in Germany that provides
financial aid for medical costs in the private health insurance sector. Civil
servants such as teachers, police officers or fire fighters as well as soldiers
and judges and under specific circumstances the relatives of all these people
are eligible to receive this or a similar kind of financial aid. We model a
market without deductible, where the losses per head are coming from the
BaFin data from 2020. We assume that the agents are equipped with a risk
aversion parameter of ρ = 3 and the fraction of males wm in the portfolio
to be 50%.
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Figure 36: One-year health premiums as functions of the initial age including
pregnancy costs in scenario (C)

Figure 37: One-year health premiums as functions of the initial age excluding
pregnancy costs in scenario (C)
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Figure 38: Equilibrium insurance demands of one-year health premiums as
functions of the initial age including pregnancy costs in scenario (C)

Figure 39: Equilibrium insurance demands of one-year health premiums as
functions of the initial age excluding pregnancy costs in scenario (C)

As we can see, it depends on the age of the customer whether men or women
have higher average medical costs. Young men up to an age of 16 tend to
need more medical aid than females of the same age. The reason for this
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phenomenon might be that boys hurt themselves more often while playing
than girls. For an age between 16 and 70, women are producing higher med-
ical costs not only due to pregnancy (note the difference between Figure 36
and 37) but also due to the fact that they make use of medical check-ups and
preventive examinations more often. The lack of these kind of treatments
might also be a factor for the higher losses per head of the males over 70.
Note that the medical costs are not constant for very high ages, as shown in
Figures 36 and 37, but the numbers of customers in these ages are so small
that the costs are averaged over all these ages.
Due to the structure of the renewed demand function, the demand can
never be zero, compare Section 6.1. Nonetheless, there are situations, where
almost no customer of one gender buys insurance. As constructed, the in-
surance demand is one when there is free contract design in the market.
In regime (E), one gender subsidizes the other. While this could already
be seen for life insurance policies in Chapter 3, the subsidizing and subsi-
dized genders change depending on the age. Especially when we include
pregnancy costs, males between 30 and 35 are almost driven out of the
insurance market.

Example 6.7. Of course, we are also interested in the monopolistic premi-
ums and insurance demands for the health insurance product from the last
example.

Figure 40: One-year health premiums as functions of the initial age including
pregnancy costs in scenario (M)
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Figure 41: One-year health premiums as functions of the initial age excluding
pregnancy costs in scenario (M)

Figure 42: Equilibrium insurance demands for one-year health premiums as
functions of the initial age including pregnancy costs in scenario (M)
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Figure 43: Equilibrium insurance demands for one-year health premiums as
functions of the initial age excluding pregnancy costs in scenario (M)

Comparing Example 6.6, the shapes of the premium curves remain more or
less unchanged while the price of the insurance increases roughly by 33%.
This rise in the premiums gets reflected in the demands. As for the pre-
miums, the shape of the demand curves are almost unchanged, while the
insurance demand, respectively the number of customers deciding to pur-
chase insurance from a company, is drastically lowered.

Remark 6.8. As the phenomena that can be observed for the demand func-
tions in later examples do not qualitatively differ from these ones, we decided
to omit plotting the demands and focus on the premiums instead.

Remark 6.9. Usually, an insurer would charge costs in order to meet its
expenses, operating costs etc. The types of costs together with their allowed
heights are fixed for health insurance products in Germany. In detail, the
following costs can be charged:

• acquisition costs of 6.4% of the expected average basic losses per head,

• loss adjustment expenses of 4% of the expected average basic losses
per head,

• administrative expenses of 2.3% of the expected average basic losses
per head,

• safety loading of 4% of the basic loss per head of the corresponding
age,
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• 0.7% of the basic loss per head of the corresponding age as a surcharge
for the standard and basic tariff; these tariffs cover the (basic) medical
expenses of customers that are not able to pay the normal premiums
anymore.

Similar to life insurance products, including costs in health insurance con-
tracts is straightforward, see Remark 3.10. As before, the observed effects
do not change qualitatively. Hence, all costs are omitted to keep the calcu-
lations simple.

6.4 Further Adjustments of the Model

As mentioned before, the adjusted optimal demand function

λ̂m/f (π) = e
−ρ−1

π−π0
m/f

π0
m/f

from Section 6.1 depends solely on the expected value of the risk and not on
the distribution. As we have seen in Section 3.2, the distribution, especially
the variance of the risk, has a high effect on the demand of insurance. As we
have seen when comparing Figures 11 and 13, the demand for insurance in
case of the term insurance is much higher than in the case of the endowment
insurance. This makes sense, as an insurance is needed especially for risks,
which are hard to predict and have a high worst-case loss.
In the following, we present three different possible adjustments for the
demand function. Again, π0m/f denotes the net expected loss of an insured

of type π0m/f with risk Xm/f and ρ is the risk aversion parameter of our

demand function. With V(u(X)) and σ(u(X)), we denote the variance and
standard deviation of u(X), where u is a utility function.

a) e
−ρ−1

π−π0
m/f

π0
m/f

+V(u(X))
: One option is to add the variance of the utility of

the risk to the denominator. A higher variance results in a lower value
of the fraction and therefore to a value of the demand function that
lies closer to one.
Unfortunately, this approach only enlarges the demand for insurance
if the variance is high but does not reduce it if it is low. To solve this
problem, we present a second approach.

b) e
− ρ−1

V(u(X))

π−π0
m/f

π0
m/f : By manipulating the (inverse) risk aversion parame-

ter ρ by dividing it through the variance of the utility of the risk, we
receive a demand function which matches our criteria: It lies closer
to one, the bigger the variance is and equals one whenever the pre-
mium is equal to π0m/f . Note that a higher variance results in a higher
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risk aversion parameter and therefore in a higher risk aversion. The
problem with this approach is that even by normalizing the risk X by
its expectation, our model is not robust and reacts very sensitive to
changes in the risk of the customers. These changes might affect the
variance and therefore also the demand. By replacing the variance by
the standard deviation, this effect can be weakened.

c) e
− ρ−1

σ(u(X))

π−π0
m/f

π0
m/f : Here, the (inverse) risk aversion parameter ρ is ma-

nipulated by dividing it through the standard deviation (square root
of the variance) of the utility of the (normalized) risk. This seems like
a good choice to depict the spread of the distribution in our demand
function. Unless otherwise stated, we are going to use this demand
function in the following.

The classic pricing of health insurance products only uses the expected val-
ues of the losses, not their distributions. Also, all public data sources we
found only contain expected losses but no loss distributions. Therefore, we
need to derive a distribution on our (real-life) data.
We already know, what the expected values of the distributions have to be,
namely the corresponding (expected) value of our real-life data. It is our
goal, to model different distributions, where we choose the parameters of
the distribution in such a way that the desired expectation is reached, while
we are often able to choose our variance by determining the values of the
parameters accordingly. Of course, this is impossible for distributions which
only depend on one parameter. Possible candidates for distributions are:

• the exponential distribution (variance cannot be chosen, as we have
only one parameter, which is fixed due to the expectation constraint),

• the normal distribution (variance can be easily chosen with the vari-
ance parameter σ2),

• the uniform distribution (variance can be chosen by setting the size
of the interval on which the density of the distribution is non-zero
accordingly),

• the Pareto distribution (variance can be chosen by setting suitable
values for the shape and the scale parameter, it is also possible to
choose the parameters such that the distribution has infinite variance
and is heavy tailed, which might be useful for stationary costs, compare
Section 6.1).

Of course, one could extend this list by adding more distributions.

Remark 6.10. Assume, we are choosing a Pareto distribution with a param-
eter setting that ensures infinite variance, i.e. we set the shape parameter a
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to be in (1, 2]. In this case, not only X but also u(X) would have infinite
variance. This would lead to a division by ∞, which cannot be calculated
directly. If we calculate the limit instead, we see that we always end up with
an insurance demand of one. Especially in a monopolistic market setting,
this leads to exploding premiums, as customers always buy insurance, no
matter how high the premium is. In this case it might be better not to use
the Pareto distribution itself but to cut it off at a certain value, e.g. after
50 or 100 times the expected damage.
On the other hand, if the variance is zero, i.e. if the risk is a.s. constant,
we also receive a division that is not defined. Taking the limit in approach
b) and c) leaves us with a setting where no insurance is bought at all. In-
deed, if the premium is at least as high as the expected loss an agent is not
interested in buying any insurance.

Example 6.11. As in Example 6.6, we consider an ambulant health care
with “Beihilfe” in a competitive scenario without deductible, where the
losses per head are coming from the BaFin data from 2020. We assume
that the risk aversion parameter is given as ρ = 3. In Figure 44, we assume
the risk to be uniformly distributed on the interval [0, 2 ·π0⊕/⊖], i.e. between
zero and twice the expected loss. In Figure 45, we assume the loss to be
exponentially distributed where the parameter is chosen to be the inverse of
the expected loss. All the examples are calculated with the third approach

for the demand function, i.e. by taking λ̂m/f (π) = e
− ρ−1

σ(u(X))

π−π0
m/f

π0
m/f . The

utility function for calculating σ(u(X)) is chosen to be CARA utility with
a risk aversion parameter of three.

Figure 44: One-year health premiums as functions of the initial age with
uniform distribution in scenario (C)
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Figure 45: One-year health premiums as functions of the initial age with
exponential distribution in scenario (C)

As we can see, the demand for insurance and therefore the unisex premium
highly depends on the underling distribution. If the risk is uniformly dis-
tributed and therefore bounded, the demand for insurance is much lower
than if it is unbounded, like in the exponential case. As mentioned above,
the demand does not depend on the initial wealth of the agents, see the
explanations at the beginning of Section 6.1 and compare Remark 2.36. Re-
placing the risk aversion parameter by a modified one like we did it in this
section does not affect this feature.

As there is no structural difference for the competitive and the monopolistic
scenario here, we do not present examples for the scenario (M) for this
market setting.

6.5 Reserves and Bruttopremiums

Health insurance products are usually life-long contracts with a (constant)
flat premium, also called the bruttopremium, over the years. Of course,
insurance companies can raise the annual contributions under certain con-
ditions. As stated in Remark 6.14, including medical inflation in the model
would be straightforward. To ease the notation, we do not regard medical
inflation here.
To calculate the bruttopremium, we need to calculate a pension series ps in
order to determine the future cash flow. We calculate the series by back-
ward induction. We drop the dependency on the gender of the agent in all
formulas of this section to increase the readability.
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Definition 6.12. Assuming that the interest rate r is constant, we define
the pension series ps by

ps(ω + 1) = 0 and ps(k) =
1

1 + r
ps(k + 1) + p̃k,

where ω is the maximum age of the population (here ω = 100) and k =
0, . . . , ω − 1. Furthermore, p̃k is the probability that a customer “survives”
the year, i.e. he is still a customer of the insurance company at the end of
the year, so he has neither died nor canceled the contract.

With the pension series and the annual premiums we can calculate the brut-
topremium. This is done by dividing the (discounted) sum of the remaining
one-year premiums πk by the corresponding value of the pension series. We
summarize this in a formula in the following definition.

Definition 6.13. The bruttopremium bp of an x-year old is defined as

bp(x) =

∑ω
k=x

(
1

1+r

)k−x
πk

ps(x)
,

where the value πk denotes the premium of a customer aged k.

Remark 6.14. If we are in a competitive market with free contract design,
the premium πk equals expected loss π0k of a k-year old person. Note that
one could model the premium πk to depend on the initial age/birth year
of the customer, as the medical inflation affects the losses per head over
time. Including this dependency in our model is straightforward. To ease
the notation and the computations, we omit this dependency here.

Finally we can calculate the reserve resx of an initially x-year old person
by subtracting the remaining sum of expected losses per head from the
remaining discounted expected (brutto)premium payments. More formally,
we receive the following definition.

Definition 6.15. The reserve resx of an initially x-year old person now
aged l is given by

resx(l) = bp(x) · ps(l)−
ω∑

k=l

(
1

1 + r

)k−x

· π0k,

where l is an integer greater or equal x. Here, the value π0k denotes the
expected medical expenses of a k-year old agent.

Note that the value of the reserve depends on the initial age as well, because
the expected costs rely on the survival probabilities. By construction, the
reserve has a value of zero at the end of the lifespan, i.e. at terminal age
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plus one ω + 1. In scenario (C) with free contract design, i.e. a market,
where premium πk and expected costs πk0 are equal, also the reserve at the
beginning of the contract is zero. This can be easily seen by calculating

bp(x) · ps(x) =
ω∑

k=x

(
1

1 + r

)k−x

πk

=
ω∑

k=x

(
1

1 + r

)k−x

π0k

which implies resx(x) = 0. As we can see in Examples 6.16 and 6.17 below,
this is not true for the monopolistic case or unisex premiums.

Example 6.16. We continue the investigation about the scenario from Ex-
ample 6.6. As before, we consider an ambulant health care with “Beihilfe”
in a competitive scenario without deductible, where the losses per head are
coming from the BaFin data from 2020. Different to Section 6.4, we use
the model that does not depend on the standard deviation/distribution to-
gether with a risk aversion parameter ρ = 3. The fraction of males in the
portfolio is given by wm = 50%. Including the distributions of the risks
does not change the results qualitatively. We analyze the reserves of male
customers with different initial ages, in Figure 46 in a competitive market,
in Figure 47 in a monopolistic one. The reserves for the females including
pregnancy costs are given in Figure 50.

Figure 46: Male reserves as functions of the age with different initial ages
in scenario (C)
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Figure 47: Male reserves as functions of the age with different initial ages
in scenario (M)

The lower the initial age is, the higher the reserves become. This is not
surprising, as the expected medical costs highly depend on the age of the
customer and becomes larger, the older the customer becomes. Hence, a
lower initial age results in a longer time, where the expected losses lie below
the bruttopremium and therefore let the reserve grow. After the time point,
where the expected losses exceed the bruttopremium, the reserve starts to
shrink. As mentioned above, it has to be zero at terminal time by construc-
tion.
As the premiums in the monopolistic case lie clearly above the expected
losses, our reserves become negative in young ages. Different to other cases,
for example if the losses are falling for higher ages, this is no issue for the
insurer, as this results from charging very high premiums. Later, we discuss
how one could evolve the model to avoid negative reserves if we regard the
unisex case.

The final problem which we need to deal with in this chapter is how to
transform the concept of reserves to our unisex scenario. The naive idea
would be, to mix all the gender-related input variables by a constant factor,
which is equivalent to the fraction wm of males in the portfolio. Note that
we assume that our portfolio consists of 50% males and females, respectively.

Example 6.17. In the setting of the last example, we redeem the reserves in
a competitive market including pregnancy costs, shown below in Figure 48.
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Figure 48: Unisex reserves as functions of the age with different initial ages
and constant mixing in scenario (C)

As we can see, it does not make sense to mix the gender-related parameters
with a constant mixing parameter, as it leads to negative reserves, even in the
competitive market. The more natural approach is to mix the parameters
according to a dynamic mixing parameter, which relies on the age dependent
fraction of males in the portfolio. This mixing dynamic parameter ξn at the
beginning of year n is given by

ξn =
ηmn

ηmn + ηfn
,

where ηmn and ηfn describe the number of males and females in the portfolio at
the beginning of year n. Of course, these two numbers depend on the amount
of customers dying or canceling their contracts but in practice also on the
number of newly arriving customers. We assume that no new customers
arrive once the contract has started, so the number of males and females in
the portfolio can be calculated by (rounding)

ηin = ηi0 ·
n∏

i=1

p̂ik

for i = m, f Here, p̂ik are the probabilities that a customer of gender i neither
cancels, nor dies within year k, compare Definition 6.12.
For more details about using mixing parameters to mix (gender-specific life
insurance) premiums we refer to Section 3.3. The fraction of males in a
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life insurance portfolio where the lapse rates are zero was already given in
Figure 21.

Example 6.18. In Figure 49 we can see that our new approach indeed pre-
vents negative reserves. For more discussions regarding mixing parameters,
we refer to Section 3.3.

Figure 49: Unisex reserves as functions of the age with different initial ages
and dynamic mixing in scenario (C)

The flattening of the curve for ages in the upper 20s and the 30s can be
explained by the higher fraction of females in these ages. As we have seen
in Example 6.6, health insurance is of special interest for females in these
ages, the market consists almost solely of them. Hence an effect which is
observable for the female reserves can also be observed here: Due to rising
costs related to pregnancies, the growth of the reserves slows down. At an
age of around 40, where pregnancy costs play almost no role anymore, the
growth of the reserve accelerates again. In these older ages, the fraction
of males in the portfolio rises again. This also explains why this change of
growth cannot be observed for the reserves with an initial age of 45 and 55.
In Figure 50, the reserves for females including pregnancy costs are plotted.
The effect of the pregnancy costs can also be observed quite clearly in this
plot.
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Figure 50: Female reserves as functions of the age with different initial ages
in scenario (C)

142



7 Disability Insurance

In this chapter we model disability insurance products. These types of poli-
cies pay out some money if the insured person falls seriously ill or becomes
disabled during his working life. As the disability insurance market is usu-
ally a market with price competition, we can directly make use of the model
of Chapter 2. Of course, we need to replace the mortality model by an
appropriate disability model. The U.S. Social Security Administration has
published actuarial notes, including disability and mortality tables for in-
sured workers. More details are presented in Section 7.1.
We continue by analyzing different insurance contracts in Section 7.2. The
products which we are applying our model to are a disability annuity, con-
tracts which pay out a lump sum in case of disability and a combination of
the two contract types.
Different to classic life insurance products, we deal with four states when
it comes to disability insurances. More details about actuarial models and
methods in disability insurance can be found in Haberman and Pitacco
(1999) [HP99]. The four possible states in our model are:

• (a) active: agents which are alive, healthy and have never been dis-
abled,

• (r) recovered: agents which recovered from a disability and are (alive
and) active again,

• (i) disabled: agents which are alive but disabled,

• (d) dead: agents which are dead.

Active and recovered agents can become disabled (again) or die with cer-
tain probabilities. Disabled agents can recover from their disability, putting
them in the recovered state to mark that they have been disabled in the
past. Of course, disabled agents can die as well, we assume furthermore
that the customers cannot rise from death.
Sometimes, the active and recovered agents, i.e. the agents that are not
disabled and alive are subsumed in a non-disabled status (nd). For compu-
tations it is not only relevant which status an agent is currently in, but also
his history, see the formulas in Section 7.2. The real-life data source we are
using distinguishes between active and recovered agents. Especially when
we compare the probabilities of becoming disabled (again), agents with a
case of disability in their history are more likely to fall into disability again.
Hence, we need to make sure that we are carefully distinguishing between
these cases when it comes to computing, compare Remark 7.3.
The possible transitions between the different status are illustrated in Fig-
ure 51 below.
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Figure 51: Possible transitions between the four possible states of an agent

7.1 Data Basis and Adjustments of the Model

Before continuing, we present details how the payment of the disability
insurance can come to an end. Complementary to the immediate lifetime
annuities, which we have observed Chapter 3, e.g. in Example 3.5, there are
three options how the payment of a disability insurance can terminate:

a) The agent can leave the system by dying. This is the only way the
payment of an immediate lifetime annuity introduced in Definition 3.5
can end. As we are considering a disability insurance, the part of our
customers which are still alive can be partitioned in three parts. One
part consist of the agents which have never been disabled (state (a)),
a second one contains the agents that are recovered (state (r)). The
third part is formed by those customers which are disabled (state (i)).
As the disability status highly affects the survival probabilities, we
need to distinguish between disabled and non-disabled people when it
comes to survival and mortality rates, see also Remark 7.3.

b) Different to pension products like the immediate lifetime annuity, the
payment does not continue until the end of the life (modeled by a
maximum age ω, in our model ω = 110). Contrariwise, it ends when
an agent reaches a predetermined retirement age. In Germany, most
contracts end when the customer has reached the age of 67. At this
age, he is eligible to receive payments from the federal pension fund.

c) Some disabilities are not permanent. Once the disability is gone and
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the insured is able to work again, also the payment of the disability
annuity ends. This is called a recovery, the corresponding probabilities
are called recovering probabilities rk, respectively lrk if we look at the
cumulative probabilities over l years, see Example 7.2. When a cus-
tomer gets recovered, he is set back to the non-disabled but recovered
status, from where he can become disabled again, retire or die. Note
that one could model the probabilities not only age dependent, but
also depending on a parameter that models how often the insurance
company checks whether the insured is still disabled. The more money
an insurance company spends for trying to detect insurance fraud by
customers that do not report their recovery, the higher the recovering
probabilities becomes. Vice versa, spending no money on investigating
lowers the detection cost but therefore also the recovering probability,
which leads to higher annuity payments. We leave this task of finding
the optimal checking procedure as an open problem for future research.

Considering these thoughts, our basic model does not need to be changed
too much. We just need to carefully choose the damage probabilities and
heights and apply our basic model from Chapter 2 to it, see Examples 7.2,
7.6 and 7.8.
As mentioned before, our analysis is based on data from the social security
administration of the U.S. government11. Each year, a death and disabil-
ity life table for insured workers born 20 years before the current year is
published by the office of chief actuary in Baltimore, Maryland. The publi-
cations are PDF files containing five (before 2012) or six (since 2012) pages
each. In these pages, an introduction and an analysis of the assumptions
and methods used is presented. From the four (before 2014) to five (since
2014) tables (named A, B, C, D and E) we are using tables C12 and D13.
The tables mentioned above consist of four sections:

a) In the columns “Living at Beginning of Year” one can find the num-
bers, how many people of a fictive population of 1,000,000 individuals
which were active and alive at the age of 20 are alive, active, got
disabled or recovered.

b) Under the heading “Deaths”, the number of deaths is analyzed, in
total as well as disaggregated to active, disabled and recovered people.

c) Under the heading “Newly Disabled”, the number of newly disabled
persons is summarized, again as a total number and split up in active
and recovered persons.

11https://www.ssa.gov/oact/NOTES/ran6/, visited August 2021
12“Illustrations of Survival and Disability Status for Insured Males Attaining Age 20”;

name has changed over time; before 2014 denoted as Table B
13“Illustrations of Survival and Disability Status for Insured Females Attaining Age 20”;

name has changed over time; before 2014 denoted as Table C
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d) Finally, the column “Newly Recovered” counts the number of newly
recovered persons. As people can only recovered from a disability
status and naturally not from the active or dead status, no further
disaggregation is needed.

Unfortunately, at the time of working the tables were only available for a
limited amount of years. We are using the data as of August 2021, i.e.
data for the birth years 1985 and 1991 till 2000. To deal with this lack of
data, we regress the given data by using ensemble learning and train a set
of 20 independent neural networks for males and females, respectively. We
are regressing nine different numbers: The number of active, disabled and
recovered persons living at the beginning of a year, the newly died active,
disabled and recovered customers, the newly disabled active and recovered
agents and the newly recovered agents.
The networks have the following specifications, which seem to work good for
our setting:

• The network has three layers with 150, 100 and 30 neurons and nine
output neurons.

• We make use of the mean-squared error for the loss and the elu acti-
vation function.

• The optimizer is chosen to be the Nadam optimizer with a learning
rate of 3 · 10−4.

• The test set is supposed to contain 10% of the original 7248 points in
our data set, while the validation set contains 10% of the remaining
points.

The final regression is then performed by taking the mean of the regressions
done by the neural networks, see Chapter 4 for more applications of neural
networks. Again, it seems like the effect of the network specifications is not
very large if one is not using extreme specifications like a very high learning
rate. The alternative regression methods we tried in Section 4.2 are also
not very promising in this setting. There is some research going on in the
area of forecasting mortality probabilities using neural networks. We refer
to Hainaut (2018) [Hai18] or other (less mathematical) papers from clinical
research like Simpson et al. (2015) [SLC+15] or Lee et al. (2018) [LHG+18].

7.2 Numerical Examples

After these theoretical considerations we are interested how our model works
in practice. Therefore we are going to investigate three insurance products.
We start by analyzing the disability annuity in Section 7.2.1, a product that
ensures a constant payment stream to substitute income loss due to disabil-
ity. We continue by investigating a lump sum insurance in Section 7.2.2.
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This type of insurance pays out one unit of money when an agent becomes
disabled, so the medical and private expenses like remodeling the house to
meet the needs of a disabled person can be made. Finally, in Section 7.2.3,
we are looking at full disability insurance, a combination of the two above
products.

Remark 7.1. As in the last chapter, Chapter 6 which was about health
insurance, all computations are done in R and all costs are omitted. Again,
the number of data points we are calculating for each line in a figure is
determined by the number of initial ages or birth years we are plotting over.

7.2.1 Disability Annuities

First, we take a look at disability annuities. A disability annuity pays out
one unit of money at the beginning of each year, starting the year after the
disability occurred. The contract can only be signed by those customers,
who are active, not by disabled customers. The payment ends either when
the agent is retired (in Germany at the age of 67), or if the agent dies or
recovers before getting retired, compare Section 7.1. As for the life insurance
products in Chapter 3, setting the payout to one unit of money is only done
for the sake of creating an arbitrary reference point and has no further
meaning.

Example 7.2. To ease the quite complicated notation which is upcoming
next, we do not denote the gender of the agent in the formulas. Nonetheless,
one actually needs two versions, one for males and one for females. We
calculate all probabilities for a person that is x years old at the beginning
of the contract. As it is common practice in many insurance companies, we
assume that it is only possible to sign an insurance contract when one has
reached a certain age, say 20 for our model. This age is chosen as it fits the
minimal age of our data set.
Following the notation of Definition 2.4, the risk variables Z are given by

P(Z = zk) = nd
kpx · dx+k · 1{k+x≤67},

where k = 0, 1, . . . . In the formula above, nd
kpx denotes the k-year sur-

vival probability of a non-disabled x-year old agent. We can calculate this
probability as

nd
kpx =

a
klx
nd
klx

· akpx +
r
klx
nd
klx

· rkpx. (20)

Here, r
kpx and a

kpx denote the according survival probabilities of recovered

and active customers. With
r
klx
nd
klx

and
a
klx
nd
klx

we describe the fractions of re-

covered and active non-disabled customers. As a non-disabled person can
be either recovered or active, these fractions add up to one. Customers can
only switch from the active to the recovered status but not vice versa, so
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r
klx
nd
klx

increases in k. Finally, by dx+k we describe the probability that an

x+ k-year old customer is falling into disability before the age of x+ k+ 1.
Actually one needs to mix this probability from the recovered and active
probabilities as in Equation (20):

dx+k =
a
klx
nd
klx

· adx+k +
r
klx
nd
klx

· rdx+k. (21)

Here, adx+k and rdx+k denote the probabilities of an x + k-year old active
or recovered agent falls into disability, respectively. The damage heights zk

can be calculated by
zk = da(x, k).

With da(x, k) we denote the value of a disability annuity for an initially x-
year old person that falls into disability at age x+k. For k = 0, 1, . . . , 67−x,
da(x, k) can be calculated by

da(x, k) =

67−x∑
l=k+1

B(0, l)( i
l−kpx+k − l−krx+k).

In the formula above, B(0, l) denotes the discount factor from age 0 to l, see
Section 3.1.2 for more details. Note that if the interest rate is not assumed
to be constant but time dependent, the discount factor depends on the exact
year in which the agent falls into disability. To ease the notation, we do not
regard this dependence here.
By i

lpx+k the l-year survival probability of an inactive (disabled) x+ k-year
old person is given. In other words, this term describes the probability that
a person with initial age x+ k survives until he is x+ k + l years old. Note
that the index shift from i

lpx+k to i
l−kpx+k is needed as the sum starts at

k + 1. Finally, as the agent could recover, lrx+k represents the probability
that a person which got disabled at the age of x + k recovers within the
next l years. To be able to recover, the person especially needs to survive,
so i

l−kpx+k − l−krx+k is always non-negative.

Remark 7.3. In Example 7.2 we distinguished between active, recovered and
disabled survival probabilities. There is indeed a crucial difference between
the active, recovered and disabled persons. In most cases, the disabled
death probabilities are five to ten times higher than for the active ones. For
example the male one-year death probability for a 50-year old active agent
is about 0.25%, while it is approximately 0.4% for the recovered and about
2% for the disabled agents.

In Figures 52, 56 and 58 and 54, 57 and 59, the premiums are plotted for
different birth years, namely 1997, 1950 and 2040, in scenarios (C) and (M),
respectively. Figure 60 shows the premiums for customers with initial age 40
for different birth years in scenario (C). In Figures 53 and 55 the coverages
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for the customers born in 1997 are given for scenarios (C) and (M). As for
the health insurance, the observed phenomena for the coverages do not seem
to depend too much on the underlying product and the birth year, so we set
our focus on analyzing the premiums in the following.

Remark 7.4. The premiums are calculated based on U.S. data, see Sec-
tion 7.1 for more details. Unless otherwise stated, we assume that the
agents are equipped with a constant interest rate of r = 3% and CARA
utility (exponential utility) with a risk aversion parameter of ρ = 0.03. As
mentioned in Section 2.1, it is difficult to compare the risk aversion param-
eters of a CARA and a CRRA utility function. By choosing ρ = 3 as for
the CRRA utility function when we investigated life insurance products in
Chapter 3, the monopolistic premiums are about as high as the worst-case
loss. Recall that the initial wealth is not relevant, as the equilibrium in-
surance demand is independent of the initial wealth under CARA utility,
compare Remark 2.36.

Figure 52: Premiums of a disability annuity for customers born in 1997 as
functions of the initial age in scenario (C)
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Figure 53: Equilibrium insurance coverages of a disability annuity for cus-
tomers born in 1997 as functions of the initial age in scenario (C)

Figure 54: Premiums of a disability annuity for customers born in 1997 as
functions of the initial age in scenario (M)
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Figure 55: Equilibrium insurance coverages of a disability annuity for cus-
tomers born in 1997 as functions of the initial age in scenario (M)

Figure 56: Premiums of a disability annuity for customers born in 1950 as
functions of the initial age in scenario (C)
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Figure 57: Premiums of a disability annuity for customers born in 1950 as
functions of the initial age in scenario (M)

Figure 58: Premiums of a disability annuity for customers born in 2040 as
functions of the initial age in scenario (C)
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Figure 59: Premiums of a disability annuity for customers born in 2040 as
functions of the initial age in scenario (M)

Figure 60: Premiums of a disability annuity for customers with initial age
40 as functions of the birth year in scenario (C)

Remark 7.5. In the nine figures above, we can observe the following phe-
nomena:
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• As we can see, the probability of falling into disability and therewith
the price of insurance is getting lower, the later the customers are
born, see Figure 60.

• Interestingly, the premiums are not decreasing monotonously with ris-
ing age, especially for early birth years, see e.g. Figure 52. The slight
increase for younger ages can be explained by the fact that the de-
crease of the contract duration also results in a shorter time in which
the premium payment can be invested. Furthermore, the probabilities
of becoming disabled in young ages is quite small. Be reminded that
a customer needs to be active at the beginning of the contract. This
effect weakens over time, compare e.g. the customers born in 1950
(Figure 56) with those born in 2040 (Figure 58).

• The annuity ends when the customer retires, therefore the insurance
company will not make any payments after the customer turns 67.
Because of this, the premiums are tending to zero when the age of
the customer approaches the retirement age of 67, see Figure 52 as an
example.

• For customers born in 1950, males pay more than females for almost
all ages. In both scenarios this difference is so high that the females are
pushed out of the market for many initial ages, see Figures 56 and 57.
The push-out effect in scenario (M) is stronger than in scenario (C).
This is in line with our results from Chapters 2 and 3, where we already
could observe the effect. Also for customers born in 1997 a push-out
can be observed but occurs at higher ages compared to the customers
in 1950. The push-out gets particularly visible when observing the
coverages, see Figures 53 and 55.

• While males paid more for almost all initial ages if they were born in
1950, this is no longer the case for later birth years. For example for
customers born in 1997 it is more expensive for females up to an age
of 53, afterwards males become more expensive again. Interestingly,
the premium difference between males and females vanishes over the
recent and upcoming birth years. Given our interpolated data, the
premiums are going to be almost the same for many initial ages in the
future, see Figures 58 and 59.

7.2.2 Lump Sum Payments

It is of interest to provide an option to include lump sum payments in our
disability insurance contracts. If the insured has bought such a contract,
the insurance company pays out a predefined amount of money in case of
disability.
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Example 7.6. The risk variables Z for the lump sum insurance are quite
similar to the variables of the disability annuity from Example 7.2. The
two products only differ in the damage heights but not in the corresponding
probabilities. As before, these probabilities are given by

P(Z = zk) = nd
kpx · dx+k · 1{x+k≤67},

where k = 0, 1, . . . . Again, nd
kpx denotes the (mixed) k-year survival prob-

ability of a non-disabled x-year old agent, see Equation (20). Furthermore,
by dx+k, we describe the (mixed) probability that an x+k-year old customer
falling into disability before the age of x + k + 1, see Equation (21). The
damage heights zk for the lump sum insurance can be calculated by

zk = B(0, k + 1),

the discount factor from year 0 to k + 1.

Remark 7.7. We assume in our model that agents can recover and become
disabled again. In this case, the lump sum is going to be paid again. The
agents do not need to pay the lump sum back in case they recover.

The effects observed for the lump sum insurance are quite similar to those
observed for the disability annuity in Section 7.2.1, see Remark 7.5. There-
fore, we focus on comparing different risk aversion parameters for the unisex
premium in a competitive scenario. When there is perfect competition, the
gender-specific premiums are just given by the expectation of the corre-
sponding risk variable. One can see in Figure 61 that the unisex premium
for the lump sum insurance highly depends on the value of the risk aversion
parameter ρ. It should not be surprising that the higher the risk aversion
parameter is, i.e. the more risk averse a person is, the closer the unisex
premium lies to the average of the gender-specific premiums. Lower risk
aversion parameters such as ρ = 0.2 or ρ = 0.1 lead to push-outs, in our
example at ages 57 and 51.
For comparison, some calculations for the monopolistic case is given in Fig-
ure 62. The risk aversion parameter for the gender-specific premiums as well
as for the unisex premium is given by ρ = 0.5.
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Figure 61: Premiums of a lump sum insurance for customers born in 1997
as functions of the initial age in scenario (C) for different risk aversion pa-
rameters ρ for the unisex premium

Figure 62: Premiums of a lump sum insurance for customers born in 1997
as functions of the initial age in scenario (M)
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7.2.3 Full Disability Insurance

Finally, we take a look at full disability insurances, i.e. insurances, where
agents receive periodical payments beginning in the year after disability and
in addition a single lump sum payment in the beginning of the year after
disability occurred. The lump sum payment is fixed to ten units of money,
while the annuity payment is still one amount of money per year in which
the agent is disabled at the beginning.
As in Section 7.2.1 we suppose that the annuity can end with the death or
recovery of the agent, but always ends with the retirement of the insured.
Similar to Section 7.2.2, a customer that has recovered and falls into disabil-
ity again is eligible to receive a second lump sum payment. Additionally,
the first payment does not need to be returned in case of a recovery of the
agent.

Example 7.8. Let us now investigate the full disability insurance. We have
seen in Examples 7.2 and 7.6 that the damage probabilities of the disability
annuity and a lump sum insurance are given by

P(Z = zk) = nd
kpx · dx+k · 1{k+x≤67},

Furthermore, the damage heights can be calculated as

zk = 10 ·B(0, k + 1) + da(x, k),

since it is given by combining a disability annuity with a lump sum insurance
that pays out ten units of money in the end of the year, in which the customer
becomes disabled. More details can be found in Examples 7.2 and 7.6.

Figures 63 and 64 show numerical values for the premiums in a competi-
tive and monopolistic scenario. Similar to the disability annuities in Sec-
tion 7.2.1, the risk aversion parameter is set to ρ = 0.03.
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Figure 63: Premiums of a full disability insurance for customers born in
1997 as functions of the initial age in scenario (C)

Figure 64: Premiums of a full disability insurance for customers born in
1997 as functions of the initial age in scenario (M)
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8 Analysis of the Push-Out Effect

When analyzing insurance products in our model, we were able to observe
the push-out effect, a phenomenon where customers of one type/gender were
pushed out of the insurance market. The reason for the appearance of push-
outs is that insurance is too expensive for one type of agents, so they are
better off if they do not purchase insurance at all.
In [SS14] a market under price competition with two types of customers is
analyzed in a theoretical setting. It is argued that there are two equilibriums
in the market, one where both types of agents buy insurance and one where
only the type with the higher risk decides to buy coverage. The push-out
point coincides with the point where we switch from the first to the second
equilibrium. This argument is also applicable for our setting. In a market
with n risk classes one can observe n equilibriums, one where all customers
are buying insurance, one where all customers but those with the lowest risk
buy insurance and so on. As for markets with two types of customers, each
push-out coincides with a point where we switch from one equilibrium to an
other, so n − 1 push-outs can be observed. In Example 8.2, a market with
three risk classes, three equilibriums and two push-outs is analyzed.
We have first seen this phenomenon in theoretical examples in Chapter 2
which originate from [SS14]. But also when discussing real-life data, we
could observe this effect for life insurance products in Chapter 3 as well as
for disability insurance products in Chapter 7. Due to the adjustments of
the model for health insurance products, push-outs are (even theoretically)
not possible in these markets, see Chapter 6. Nonetheless, unisex premiums
might reduce the share of customers of one gender in the insurance market
to almost zero.
In this chapter we present a short analysis on the parameter-dependency
on the appearance of these push-out effects and show some more numerical
examples in order to illustrate our argumentation. We restrict ourselves to
present examples only for some meaningful parameters. For a deep analysis
for each parameter we refer to [Ohe20].

Remark 8.1. All figures in this chapter rely on an implementation in MAT-
LAB, compare Remark 2.35. We calculated between 101 and 1000 data
points for each curve.

The probability for a push-out

• is bigger in scenario (M) than in scenario (C): As we have obtained in
various examples, market settings where the insurer tries to maximize
its profits strengthen the push-out effect. This can be seen for example
when comparing Figure 15 with 16 or Figure 56 with 57.

• is larger, the smaller the variance of the risk is: In Chapter 3 we have
seen that the push-out effect for the endowment insurance is much
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stronger than for other insurance products, see Figures 13 and 14.
This is reasonable as the customers choose to buy insurance in order
to swap the unpredictable risk against a predictable premium payment.
If the variance of the risk is very low, this exchange is less attractive.

• is larger, the higher the initial wealth of the customers is: When the
initial wealth of a customer is much higher than maximum loss that
can occur, it gets less attractive for the customers to purchase insur-
ance. If we are not using CARA utility, the equilibrium insurance
coverage λ̂ is a function that depends on the initial wealth, compare
also Remark 2.10.
Figure 65 illustrates the equilibrium premiums and the equilibrium
insurance coverages as functions of the initial wealth a of the agents.
All other parameters are set to their standard values: The insurance
portfolio consists of 50% males and females born in 1950 with an ini-
tial age of 30. The contract duration is 20 years, and we use CRRA
utility (power utility) with a risk aversion parameter of ρ = 3, i.e.
u(x) = − 1

2x2 . We do not charge any costs or safety loading/risk pre-
mium.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 65: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the initial wealth
a of the customers in scenario (M)

• is lower, the larger the risk aversion parameter ρ is: The customer’s
willingness to take risk is modeled by a risk aversion parameter ρ. The
larger this parameter is, the more risk averse the agents are. Hence,
customers that are very risk averse are willing to pay higher premiums
in order to see their risks covered. In Figure 61 the unisex premiums
for a disability lump sum insurance are compared for different risk
aversion parameters ρ. It can be seen that the higher the risk aversion
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parameter is, the later the push-out occurs.
We give a second example to illustrate the influence of the risk aver-
sion parameter on the push-out effect. In Figure 66, the equilibrium
premiums and equilibrium coverages are given as functions of the risk
aversion parameter ρ. Again, all other values are set to their standard
values. We assume furthermore that the initial wealth is set to a = 2
and that the underlying utility function is a CRRA utility function,
i.e. u(x) = 1

1−ρx
1−ρ for ρ > 0 and u(x) = ln(x) if we have ρ = 1.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 66: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the risk aversion
parameter ρ in scenario (M)

• is higher, the more the damage probabilities differ, especially regarding
the relative difference: For high ages, the survival and death probabil-
ities differ more than for lower ages, for long contract durations more
than for short ones. The longevity effect causes the death probabilities
to fall over the birth years, which leads to a bigger relative difference
between the two genders. As we can see in Figure 12, this can result
in a push-out.

• is larger, the higher the (annual) interest rate r is: We model the inter-
est rate either to be constant or using a CIR model, see Section 3.1.2.
If the interest rate is high enough, it gets more and more attractive
to take the risk and invest the premium in the money market instead
of paying it to the insurance company. As argued before, the damage
height compared to the initial wealth of the customers might get to
low, which can result in a push-out, compare Figure 65. We calculated
an additional example for the term insurance in scenario (M), where
we analyzed the dependency of the annual interest rate the equilibrium

161



premium and insurance coverage. The results are given in Figure 67.
Note that for an interest rate of 0% we cannot use the CIR model but
set the rate to be constant at 0%.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 67: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a term insurance as functions of the (annual) interest rate r
(in %) in scenario (M)

• is higher, the less customers there are in the portfolio (as long as we
charge a safety loading in addition to the net premium): We have seen
in Example 5.79 that the number of customers in the market affects the
point where the push-out appears. The less customers there are, the
higher is the influence of the (variance based) safety loading on the
premium. When comparing scenarios (C) and (M), customers with
lower risk are more sensitive to an increase of the premium. Hence,
the effect is stronger, the less customers there are in the market.

• is higher, the less customers of low risk there are in the portfolio:
The fewer low-risk customers there are in a portfolio, the closer the
aggregate premium lies to the premium of the high-risk customers.
This enhances the chance that insurance gets too expensive for the low-
risk customers and therefore leave the insurance market. To illustrate
this effect, we calculated an example where we vary the fraction of
males wm for the pure endowment insurance. Recall from Remark 3.6
that the males are the low risk customers when we regard the pure
endowment insurance. The example is given in Figure 68. Note that
we needed to set the initial wealth of the agents to a = 3 in order to
cause a push-out.
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(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 68: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ of a pure endowment insurance as functions of the fraction of
males wm in the portfolio in scenario (M)

To conclude this chapter, we provide an example in order to show that for
markets with more than two risk classes, multiple push-outs are possible.

Example 8.2. We extend the setting of Example 2.29. Recall that we
assumed there are agents equipped with CRRA utility with a risk aversion
parameter of ρ = 3 and an initial wealth of a = 2. In contrast to the
example from Chapter 2, we now have three types of agents where each risk
type shows up equally likely, i.e. w1 = w2 = w3 = 1

3 . All agents face a
loss in case of damage of z11 = z12 = z13 = 1. The damage probability of
the low-risk customers is set to p11 = 5%. The damage probability of the
high-risk customers p13 is as before varied between 5% and 60%. For the
customers of medium risk we assume that the damage probability p12 rises

by 1% for each 4% rise of p13, in formulas p12 =
p13−5%

4 + 5%. For example, if
we have p13 = 9%, we set p12 = 6% and so on. We furthermore assume that
p0i = 1− p1i for i = 1, 2, 3 and that all other damage probabilities and losses
in case of damage are zero.
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(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 69: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ as functions of the (medium-) and high-risk agents loss proba-
bility p13 in scenario (M)

In scenario (M), we can see that there are two push-outs. In the first one,
the low-risk customers leave the market and only the medium- and high-risk
agents stay in the market. This happens at p13 = 18%, so the existence of
medium-risk agents in the market defers the push-out of low-risk customers
compared to a market with only two types of agents, compare Figure 2. At
p13 = 33% there is a second push-out, where also the customers of medium
risk are pushed out of the market. We then end up in a market consisting
of high-risk customers only.
For the monopolistic case there are three local maximums for the insurer’s
optimization problem in regime (E), compare Remark 2.30.

(a) Eq. insurance coverage λ̂ (b) Eq. premium per coverage π̂

Figure 70: Equilibrium insurance coverage λ̂ and equilibrium premium per
coverage π̂ as functions of the (medium-) and high-risk agents loss proba-
bility p13 in scenario (C)
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In the competitive market, there is only one push-out for our example. As for
the monopolistic market setting, the existence of medium-risk customers de-
fers the point where the push-out happens, compare Example 2.31. Nonethe-
less, in a market setting where the medium-risk agents damage probability
rises slow enough, we are observing a second push-out in the competitive
market as well.
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9 Conclusion

In this chapter we conclude the thesis by recapturing our main findings and
how they relate to our research aims and questions. We discuss the value
and contribution, but also the limitations of our studies and suggest future
research opportunities.

Generalization of the Insurance Market Model and Observ-
ability of Push-Out Effects

We have generalized the insurance market model presented by Sass and
Seifried in 2014 [SS14] in such a way that our model is able to handle ar-
bitrary discrete risks. It is based on the computation of equilibriums in
insurance markets under imperfect information which was introduced by
Rothschild and Stiglitz in 1976 [RS76]. While a similar insurance market
model was already presented in [Ohe20], we could develop an even more
general model in this thesis. We used the Lee-Carter mortality model to
deal with longevity, modeled the interest rate through the CIR model and
introduced the possibility for different values of the initial wealth and utility
functions among the agents. In Chapter 5 the market model was generalized
further so that it is able to deal with an possibly even (uncountably) infinite
amount of agent types.
After providing some theoretical foundations, our model was applied by in-
troducing different insurance products and calculating the equilibrium pre-
miums and equilibrium insurance coverages using real-life data. In doing so,
we found that the push-out effect, already observed in theoretical examples
in Chapter 2, also occurs in real-life examples.
Three major groups of insurance contracts were analyzed: In Chapter 3,
we examined life insurance and annuity products. The analysis was con-
ducted using French mortality data from the Human Mortality Database
(HMD). In Chapter 6 our focus was on the analysis of health insurance
products. Before doing so, we needed to provide some adjustments to the
model. The adjusted model was then applied to simulated data that was
based on [Rob17a, Rob17b] and real-life data that originated from the Ger-
man Federal Financial Supervisory Authority (Bundesanstalt für Finanzdi-
enstleistungsaufsicht, BaFin). Finally, Chapter 7 examined three disability
insurance products. The data source for this chapter was the Social Security
Administration of the U.S. government. We regressed their data in order to
predict the past and future probability tables using a neural net approach.
Some of the phenomena that can be identified are evident in all types of in-
surance we investigated. One phenomenon that was of particular interest in
our considerations is the push-out effect. To investigate its manifestations,
we have undertaken a general analysis of this effect in Chapter 8. Since
equilibrium premiums and coverages are calculated as numerical solutions
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of two connected optimization problems, it is difficult to formulate analyti-
cal criterions for the occurrence of a push-out. Nonetheless, we were able to
devise indicators what increases or decreases the probability that a push-out
shows up.
In Section 3.3 we calculated different types of mixing parameters and com-
pared our approach with [CV17]. On one hand, these parameters can be
used to calculate the aggregate/unisex premiums using the type-/gender-
specific formulas. This drastically lowers the computation times of the ag-
gregate/unisex premiums. On the other hand, this analysis helped us to
gain a deeper understanding of the behavior of the equilibrium premiums
(and coverages). For future research it might be interesting to generalize the
concept of mixing parameters further and to combine it with our (neural net-
work) regression approach from Chapter 4 or other insurance products like
the health and disability contracts from Chapters 6 and 7.
In practice, one can see that push-outs show up less frequently than in our
model calculations. There are two reasons that can explain this difference
between the reality and our model. First, customers are not fully rational.
Even if they would be economically better off if they did not purchase in-
surance, some customers choose to buy it to satisfy their need for security.
Second, insurance companies can design policies that are specifically attrac-
tive to men or women. To do so, one would need to extend the model in a
way that it is able to deal with more complex contracts, e.g. by implement-
ing a bonus malus system, premium refunds, deductibles or others. Another
option is to develop contracts that can only be bought by people who meet
certain criterions, such as belonging to some occupational group. For exam-
ple, by selling a contract that can only be bought by roofers, one can create
a portfolio that primarily consists of males without excluding females from
buying the contract.
In general, we can conclude that our equilibrium insurance market model
is capable of pricing even complex insurance products. The equilibrium
approach, unless precluded by market regulations, could be used as an al-
ternative technique for pricing in insurance markets.

Regression via Machine Learning Approaches

Machine learning regression approaches such as neural networks have gained
vast popularity in recent years. The exponential growth in computing power
enabled larger and more sophisticated networks that can perform increas-
ingly complex tasks.
As shown in Chapter 4, these methods can also be used to regress equi-
librium premiums of life insurance products. For our considerations the
phenomena for the different products and the two scenarios (M) and (C)
were structurally the same, so we decided to focus on the product where the
generation of data points made the lowest effort, i.e. the pure endowment
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insurance in competitive markets.
The neural net approach provides us with a new finding of the insurance
premiums that is quite robust, as the specifications of the network do not
have a large impact on the quality of training. If the learning rate is chosen
sufficiently small, say e.g. 0.001 or 0.0001, the risk of overfitting can be al-
most eliminated.
Furthermore, we have observed that the training quality in the unisex pre-
mium regression can be increased by adding the male and female premiums
to the input. Nevertheless, we have seen that one needs to calculate several
thousand data points to run a reasonable regression. In addition, regulations
in most countries require insurers to calculate premiums directly rather than
approximating them. These issues limit the practical use of neural networks
to regress premiums.
While we have restricted ourselves to regress the insurance premiums, one
could develop a new pricing approach by regressing the equilibrium insur-
ance coverage function and perform a similar analysis like we did but with
the regressed demand function instead of solving it each time. It is worth
considering the approach to regress the mixing parameters from Section 3.3
and calculate the aggregate/unisex premiums based on the type-/gender-
specific premiums and the regressed mixing parameters. Also the regression
of other insurance types and an analysis how further input such as the death
or survival probabilities or the discount factors improve the quality of train-
ing are of interest. Finally, one could try to use neural networks for detecting
push-outs.
Overall, it can be concluded that neural networks seem to be a powerful
tool when it comes to regressing equilibrium insurance premiums, but are
limited in practical use.

Risk Class Management

The core of our work is Chapter 5, where we introduced the concepts of risk
classes and risk relations to solve the problem of optimal risk class manage-
ment in insurance markets. The goodness of the risk class allocation chosen
by an insurer given the choice(s) of its competitor(s) is characterized by
the number of customers who decide to buy insurance from that company.
In order to analyze the customer count of an insurer, we needed a model
to predict the customer flow in our insurance market. This is done using
a Markov chain approach, first presented by Irle et al. in 2011 [IKLM11].
Based on this approach, we were able to introduce a preference relation to
compare different allocations of customers into contracts. This allowed us
to derive the concept of global and local optimizers for a set of risk class
allocations. As we have seen in theoretical but also real-world examples, a
global optimizer might fail to exist.
In practice we found two ways to overcome this issue. The first one is more
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of theoretical nature. Instead of solving the problem in a discrete set, we
transferred it to its convex hull, where we have proven various propositions
about existence and location of optimums. We then defined a procedure
for returning to the discrete set using a metric. This approach works well
in theory but is of limited use in practice, as computing the convex hull
and performing the optimization on it becomes very complex when the un-
derlying discrete set is very large or has a high dimension. According to
preliminary considerations, it is sufficient in practice to regard only 2n−1

contracts if there are n risk classes in the market. Therefore, the number of
potential contracts only doubles for each additional risk class. Nonetheless,
this approach is not really applicable in practice.
An alternative idea with broader practical application is developed in the
section about capacity constrained markets, Section 5.3. There we presented
an adapted version of Algorithm 1, our optimal rating class algorithm. This
refined version of our original approach was presented in Algorithm 3 un-
der the name “Counting Algorithm (under Capacity Constraints)”. This
already describes the core idea behind the procedure. Following the algo-
rithm, the task of finding an optimal rating class vector is performed several
times, randomly traversing the set of all possible vectors. Using a so-called
frequency vector, the prevalence of each possible risk class allocation in the
set of locally optimal vectors is recorded. After a sufficient number of rep-
etitions, we choose for the vector which appeared as a local optimum the
most often. What “sufficient” means must be evaluated individually for each
example. As a rule of thumb, the more local optimums are found in each
iteration, the higher the number of iterations must be. Of course, this pro-
cedure increases the computation time but serves as an option to increase
the robustness of the method and to find a way to choose for a risk class
allocation, if no global optimizer exists.
As mentioned in the introduction, the formulation and management of this
problem and the development of an algorithm to solve it is motivated by
the trend that the allocation of customers into risk classes became more
distinguished over the years. We hence presented a new approach to a prob-
lem that dates back several decades but has gained importance in recent
years. Game theoretical approaches to address this problem existed as early
as the 1960s, see for example the studies of Borch from 1962 [Bor62]. Our
approach developed in this thesis provides a new perspective to the problem
and satisfies some desirable properties. This is particular evident when it
comes to finding the optimal response to a given risk class allocation of an
other insurance company. Given the structure of our model this can be for-
mulated as a convex optimization problem, which is therefore easy to solve.
We have seen that the fraction of customers buying insurance from one
company converges towards a deterministic fraction. As a possible general-
ization, one could model the customer flow such that the limiting process is
random. For example the standardized process we use to model the customer
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share converges to a (random) diffusion if we use the second non-extensive
and N -independent model in [IKLM11]. Models in which customers of the
different risk classes do not behave independently of customers in other
classes are also possible.
The goal for the insurers in our model was to attract a customer share to
their company that is as large as possible. This is motivated by our study
of herding theory, which serves as a theoretical foundation for why the con-
vergence against the desired fractions makes sense. Nonetheless, other ob-
jectives are also conceivable, such as weighting the customers according to
their acquired coverage or assuming that the companies want to maximize
their total profit in the monopolistic/duopolistic market setting.
Taking everything together, our model has indeed given answers to the un-
derlying research questions, namely how to compare different allocations of
risk classes into rating classes and how to model the risk class management
problem based on this comparison. All our reasoning got summarized in
Algorithm 1 and its refinements. We have seen that an optimal risk class
allocation does not need to exist and found ways to mitigate this problem.
The risk class management application of our equilibrium insurance market
model forms the main part of this thesis and concludes the analysis how
an equilibrium pricing model affects the behavior and the characteristics of
insurance markets.
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A Notation

We summarize the notation used in this thesis in the following table.

Notation Explanation

Ch 2: Basic Model

u(x) (real-valued) utility function
ρ risk aversion parameter of the (CARA and CRRA)

utility function, always ρ > 0
a initial wealth of a customer
⊕/⊖ agent type (low-risk/high-risk) from the insurers view
w⊕/w⊖ fraction of the low-risk/high-risk customers in the

market
Z⊕/⊖ risk of customer of type ⊕/⊖ (discrete and indepen-

dent non-negative RV)
(Ω,F ,P) probability space on which the risk variables Z are

defined
pk⊕/⊖ damage probability for customers of type ⊕/⊖ (in

damage case k, k ∈ N0), p
k
⊕/⊖ ∈ [0, 1] for all k

zk⊕/⊖ damage amount for customers of type ⊕/⊖ (in damage
case k, k ∈ N0), z

k
⊕/⊖ ≥ 0 for all k

π0⊕/⊖ = E[Z⊕/⊖] insurance contract’s net expected value of an agent of
type ⊕/⊖

π⊕/⊖ (type-specific) premiums in regime (F) for customers
of type ⊕/⊖

π⊙ (aggregated) premium in regime (E)
λ⊕/⊖ purchased coverage/insurance demand of customers of

type ⊕/⊖
λ̂⊕/⊖ equilibrium insurance coverage of customers of type

⊕/⊖
π̂⊕/⊖ optimal type-specific premiums for customers of type

⊕/⊖
π̂⊙ optimal aggregate premium
F function derived from the optimal coverage equation

used for the implicit calculation of the derivative λ̂′⊕/⊖
of the optimal coverage

Ch 3: Life Insurance

B(0, T ) time-T -discount factor

T p
⊕/⊖
x time-T -survival probability of an ⊕/⊖-agent with ini-

tial age x

k|1q
⊕/⊖
x k-year deferred death probability of an ⊕/⊖-agent

with initial age x
ω maximal age an agent can reach (we assume ω = 110)
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tmx centralized death probability of an x-year old person
at time t, gender/agent type is omitted here

(ax)x, (bx)x age dependent factors of the Lee-Carter mortality
model

(κt)t time dependent factor of the Lee-Carter mortality
model

εx,t error term of the Lee-Carter mortality model
qx,t one-year death probability of an x-year old at time t
rt short-rate (CIR model) at time t
Πu, Πm, Πf unisex, male and female premium
ξ1, ξ2, ξ3 mixing parameter based on premiums, probabilities

and parameters

Ch 5: Risk Classes and Risk Relations

C set of risk classes
ηi number of customers in risk class i ∈ C
λi purchased coverage/insurance demand of customer of

type i ∈ C, hat denotes optimality
πi (type-specific) premium for customer of type i ∈ C,

hat denotes optimality, π⊙ denotes that the premium
is global/aggregate

(wi)i∈C fraction (or density) of i-agents in the market
Zi risk variable of agents of type i ∈ C
π0i = E[Zi] insurance contract’s net expected value of an agent of

type i ∈ C
n number of risk classes (if C = {1, . . . , n})
f : C → N rating class assignment function
rif rating class i given rating class assignment function f

Rf set of rating classes given f
mf = |Rf | number of rating classes given f
R set of possible rating class sets/vectors
∼ counting relation, equivalence relation used to find rat-

ing class vectors that only differ in the numeration of
the rating classes

R′ = R/ ∼ set of (equivalence classes) of possible rating class vec-
tors modulo numeration

Bn n-th Bell number; if there are n risk classes it holds
that |R′| = Bn

(ZN
t )t time homogeneous Markov chain with state space

{0, . . . , N} that models the number of customers buy-
ing insurance from a company

νi, µi birth and death rate of the Markov chain (ZN
t )t

XN
t =

ZN
t
N standardized version of the Markov chain (values in

[0, 1])
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(X(t))t non-random limiting process of the Markov chain
⊑ preference relation to compare two vectors of the same

length n
≡ equivalence of two vectors in the sense of ⊑ (a ≡ b :⇔

a ⊑ b and b ⊑ a)
E(a) indifference curve of vector a w.r.t. ⊑
fb function that needs to be maximized in order to find

the optimal respond to a vector b
A1 set used for the discrete example to show

the possible non-existence of an optimizer,
A1 = {(1, 2, 0), (0, 1, 2), (2, 0, 1)}

O set of locally optimal vectors
convX convex hull of set X
A2 extended set for the discrete example, A2 =

{(1, 2, 0), (0, 1, 2), (2, 0, 1), (0, 2, 1), (2, 0, 1), (1, 0, 2)}
epif epigraph of a function f
db(x, y) distance between x and y induced by fb, x, y, b ∈ Rn

≥0,
might write d(·, ·) instead of db(·, ·)

π ∈ Rn premium vector given a rating class vector
γ ∈ Rn loaded premium vector given a rating class vector

λ̂ ∈ Rn optimal coverage vector given a loaded premium vec-
tor γ

s ∈ Rn vector which contains the amounts of safety loadings
given a rating class vector

⊑cov preference relation to compare the coverage vectors
given their rating class vectors

ψ fraction vector of customers in Company 1
R∗ set of risk coalitions considered by Algorithm 1
c capacity constraint of an insurance company, can be

element wise, contract wise or globally
h changing parameter which describes how many of the

customers which do not meet the capacity constraint
of a company switch to the other

ã, b̃ capped vectors a and b
freq frequency vector given O1, . . . ,Ok used by Algo-

rithm 3

Ch 6: Health Insurance

Xdoctor random variable of the ambulant costs/medical con-
sultation expenses (normally distributed)

Xhospital random variable of the stationary
costs/hospitalization expenses (Pareto distributed)

ps pension series, vector in Rω+1
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ω maximal age (here we assume contrary to the life in-
surance chapter ω = 100)

p̃k probability that a customer “survives” the year, i.e.
he is still a customer of the insurance company at the
end of the year, so he has neither died nor canceled
the contract

bp brutto premium, i.e. constant annual premium that
does not rise with the age

πk one-year premium of a k-year old person
resx (premium) reserve of an x-year old person
π0k expected medical expenses of a k-year old person

ξn = ηmn
ηmn +ηfn

dynamic mixing parameter for the unisex reserves, i.e.
fraction of males in the portfolio at the beginning of
year n

ηmn , η
f
n number of males and females in the portfolio at the

beginning of year n

Ch 7: Disability Insurance

rk probability that a k-year old disabled person recovers
within the next year

lrk probability that a k-year old disabled person recovers
within the next l years

nd
kpx k-year survival probability of a non-disabled x-year

old agent
a
kpx k-year survival probability of an active x-year old

agent
r
kpx k-year survival probability of a recovered x-year old

agent
a
klx
nd
klx

fraction of active among the non-disabled customers
of a population of initially x-year old agents after k
years

r
klx
nd
klx

fraction of recovered among the non-disabled cus-
tomers of a population of initially x-year old agents
after k years

dk probability that a k-year old customer falls into dis-
ability before the age of k + 1

adk probability that a k-year old active customer falls into
disability before the age of k + 1

rdk probability that a k-year old recovered customer falls
into disability before the age of k + 1

da(k) value of a disability annuity for a person that falls into
disability at age k

i
lpx l-year survival probability of an inactive (disabled) x-

year old person
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B Data Sources

In this chapter, we summarize the data sources used in this thesis. The
author of this thesis greatly acknowledges the availability of the given data
sets, which made it possible to apply the presented model to real-life data.

Mortality Data

The mortality data we used in Chapters 3, 4, 5 and 6 originates from the
Human Mortality Database (HMD), which can be found under https:

//www.mortality.org/. The database is a project by the University of
California, Berkeley, USA and the Max Planck Institute for Demographic
Research, Rostock, Germany. It is an open source database providing de-
tailed population and mortality data to researchers and others.
To be able to calculate the premiums for recent birth years, we need to
predict the future mortality. To this end, we make use of the Lee-Carter
model. More details about this model can be found in Section 3.1.1.
As this thesis is written and supervised at a German university, one would
expect the data to be for the German population as well. Nonetheless, there
are several problems when using the German data. Due to the division of
Germany after WorldWar II, there are two datasets, one for West and one for
East Germany. Not only could mixing these datasets cause trouble and pro-
duce misleading results, but there was also no data collected before 1956. To
make the results more reliable, the data used in this thesis is of French origin,
containing data from 1816 to 2018. For our thesis we used the “Deaths 1x1”
data as of November 2020. The latest French mortality data can be found
under https://www.mortality.org/Country/Country?cntr=FRATNP.

Health Data

For our analysis of health insurance products in Section 6.2 we use data
that we model from data sets of the German Robert Koch Institute (RKI)
[Rob17a, Rob17b]. These data set are called “Inanspruchname ambulanter
ärztlicher Versorgung in Deutschland” and “Inanspruchname von Kranken-
hausbehandlungen in Deutschland” translating to “Utilization of Ambulant
Medical Care in Germany” and “Utilization of Hospital Treatments in Ger-
many” and are only available in German. In this data set, the RKI sum-
marizes how often men and women of different ages see the doctor or visit
a hospital. We use these frequencies to model the expected losses, see Sec-
tion 6.2 for more details.
In the rest of Chapter 6 we use real-life health insurance data. Each year,
the German Federal Financial Supervisory Authority (Bundesanstalt für Fi-
nanzdienstleitungsaufsicht, BaFin) publishes probability tables for private
health insurance. The data can be found under https://www.bafin.de/D
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E/PublikationenDaten/Statistiken/PKV/wahrscheinlichkeitstafe

ln_node.html. Each year, the tables from the year before are published.
Unfortunately, the data is available only in German. We use the tables as
of May 2022.
While we use the data from 2020 for the examples in this thesis, we might
also use the mixed data from 2018, 2019 and 2020. In this case, which is
also used by insurance companies, we calculate the “mixed” damage heights
by simply taking the arithmetic mean of the corresponding damage heights
of the three years. The most important part of the data sets given by the
BaFin are the “Profile” tables. From these we use the “. . . ks” columns,
where we replace the dots according to the gender and insurance type we
would like to investigate. In this case, “ks” means “Kopfschäden”, a Ger-
man word translating to loss per head.
As we focus on ambulant health insurances, we need to choose the ambulant
loss per head columns which can be found right in the beginning of the ta-
ble. Note that there are different tables for “Beihilfe” (financial aid for civil
servants by the government) and other customers. We also need to decide
whether we want to add pregnancy and maternity costs for females. These
costs are known as “S-Kosten”, where the S stands for “Schwangerschaft”
translating to pregnancy. In the future, the costs for maternity might not be
included in “S-Kosten” anymore but given as “M-Kosten”. While these costs
are not included at first, we can add them by taking the sum of the female
head per loss and pregnancy column. To be precise, we are using the columns
“01 KKV amb B M ks”, “01 KKV amb B W ks”, “01 KKV amb B S ks”
for males, females and pregnancy cost for “Beihilfe”. If we want ana-
lyze the other customers, we can use the columns “01 KKV amb N M 0-
100 ks”, “01 KKV amb N W 0-100 ks” and “01 KKV amb N S 0-100 ks”.
Note that “0-100” indicates that this is the data for customers with a de-
ductible between 0 and 100€ per year. The tables we are taking the data
from are called “KRAWATTE 2018 Tafeln komplett”,
“PKV Kopfschadenstatistik 2019 Profile” and
“PKV Kopfschadenstatistik 2020 TAFELN” for the years 2018, 2019 and
2020, respectively.
When it comes to the calculation of reserves and bruttopremiums, we also
need the probabilities that a customer leaves the system. This could happen
due to two reasons. First of all, a customer could die. To calculate these
probabilities we use our French mortality data. Keep in mind that the health
data is of German origin. The two different origins of the probabilities should
not cause any trouble, as the French and German mortality probabilities lie
close together, especially the observed effects are (almost) the same. Sec-
ondly, a customer could cancel his private health insurance and switch back
to the public one. These probabilities are given in the “06 STORNO. . . ”
columns, where “Storno” can be translated by lapse rate. From 2021, these
probabilities are collected in an own table, where more details are provided.
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Due to a rule in the German health care system, a customer cannot cancel
his contract if he is older than 55. This rule is known as the 55-rule (“55er-
Regel” in German) and causes all lapse rates for customers older than 55 to
be zero.

Disability Data

In the examples in Chapter 7 we rely our analysis on U.S. data. More
precisely, the data originates from the social security administration of the
U.S. government and can be found as PDF files under https://www.ss

a.gov/oact/NOTES/ran6/. We use the tables for customers born in 1985
together with the birth years from 1991 to 2000 as of August 2020. From
these eleven documents we are getting the general tables which we use for
our computations by regressing the given data with a neural net approach,
see Section 7.1 for more details. The tables provide disability, recovery and
death probabilities. The death probabilities are disaggregated to active,
disabled and recovered customers, while the disability probabilities are split
up into active and recovered customers. As the tables already provide death
probabilities, also for the active, recovered and disabled customers, we do
not need to make use of the mortality data from the HMD. As we have
seen in Remark 7.3 it is indeed relevant to distinguish between the different
states an insured can be in.
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