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Abstract
Equations of state based on intermolecular potentials are often developed about the 
Lennard-Jones (LJ) potential. Many of such EOS have been proposed in the past. 
In this work, 20 LJ EOS were examined regarding their performance on Brown’s 
characteristic curves and characteristic state points. Brown’s characteristic curves 
are directly related to the virial coefficients at specific state points, which can be 
computed exactly from the intermolecular potential. Therefore, also the second and 
third virial coefficient of the LJ fluid were investigated. This approach allows a com-
parison of available LJ EOS at extreme conditions. Physically based, empirical, and 
semi-theoretical LJ EOS were examined. Most investigated LJ EOS exhibit some 
unphysical artifacts.

Keywords Lennard-Jones fluid · Equation of state · Characteristic curves · Virial 
coefficients

1 Introduction

The Lennard-Jones (12,6) potential [1, 2] has been extensively used since the early 
days of computer simulation [3–6] for the modeling of repulsive and dispersive 
interactions of simple fluids. It is probably the most frequently investigated mono-
mer model fluid in molecular simulation [7]. The Lennard-Jones (LJ) potential can 
be favorably used for testing new theories and simulation methods, e.g., for mix-
tures, phase changes, non-equilibrium phenomena, and interfaces between phases 
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[8–19]. Also, the Lennard-Jones potential is often used as a starting point for the 
development of many state-of-the-art force fields for complex molecules [20–22].

The Lennard-Jones potential is defined as

where � and � are the energy and size parameter, respectively. The distance between 
two particles is denoted by r. Different versions of the LJ potential are used in the 
literature depending on the treatment of the long–range interactions, which has an 
important influence on the thermodynamic properties [23–32]. The present work is 
limited to the ’full’ Lennard-Jones potential, i.e., including long-range correction 
schemes [33].

Analytical model functions of the LJ fluid for the description of the thermody-
namic properties, i.e., equations of state (EOS), are crucial for many applications, 
e.g., the development of theories for more complex fluids like polymers, electrolyte 
solutions, and associating fluids. LJ EOS have been used successfully as base mod-
els for a reference fluid to describe more complex fluids [34–38]. A large number of 
equations of state have been proposed for the LJ fluid, of which 20 are studied here, 
cf. Table 1.

(1)uLJ(r) = 4�

[

(

�

r

)12

−
(

�

r

)6
]

,

Table 1  Lennard-Jones equations of state used in the present work—sorted chronologically

The columns are: authors, abbreviation for EOS, EOS type, and year of publication

Authors Abbr. EOS type Year

Nicolas et al. [51] Ni Empirical (MBWR); pressure explicit 1979
Ree [53] Re Empirical; pressure explicit 1980
Cotterman et al. [35] Co BH perturbation theory + virial; Helmholtz energy explicit 1986
Adachi et al. [64] Ad Empirical (MBWR); pressure explicit 1988
Koutras et al. [66] Kou Modified HS equation; pressure explicit 1992
Miyano [61] Mi Empirical (MBWR); pressure explicit 1993
Johnson et al. [28] Jo Empirical (MBWR); pressure explicit 1993
Kolafa and Nezbeda [52] Ko HS + virial + empirical; Helmholtz energy explicit 1994
Mecke et al. [54, 55] Me HS + empirical; Helmholtz energy explicit 1996
Sun and Teja [60] Su Empirical (MBWR); pressure explicit 1996
Hess [67] He WCA reference + virial; pressure explicit 1999
Boltachev and Baidakov [68] Bo Empirical + virial; pressure explicit 2003
Paricaud [57] Pa BH perturbation theory; Helmholtz energy explicit 2006
Quiñones-Cisneros et al. [65] Qui Empirical; pressure explicit 2009
May and Mausbach [62, 63] Ma Empirical (MBWR); pressure explicit 2012
Lafitte et al. [38] La BH perturbation theory; Helmholtz energy explicit 2013
Thol et al. [41] Th Empirical; Helmholtz energy explicit 2016
van Westen and Gross [56] vWe BH perturbation theory; Helmholtz energy explicit 2017
Gottschalk [69] Go Empirical; virial coefficients; Helmholtz energy explicit 2019
Stephan et al. [46] St BH perturbation theory; Helmholtz energy explicit 2020
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Lennard-Jones EOS can be broadly separated into two types: empirical EOS 
and physically motivated EOS. ‘Physically motivated’ EOS means that the 
employed functions were derived from statistical mechanics, whereas an empiri-
cal EOS is a correlation of computer experiment data by a convenient but arbi-
trary mathematical form. However, the distinction between both types is not 
sharp; most LJ EOS have some physically motivated features and some empiri-
cal features, cf. Deiters and de Reuck [39] for a detailed discussion. It is widely 
accepted that empirical EOS have a tendency to exhibit poor extrapolation behav-
ior to fluid regions and physical properties that were not considered during the 
parametrization and may even yield a physically unreasonable behavior in some 
regions, e.g., multiple van der Waals loops in the vapor–liquid two phase region 
[40–42] or the crossing of isotherms [43–45]. Physically motivated LJ EOS on 
the other side are often less precise in the description of homogeneous state prop-
erties—particularly higher-order thermodynamic derivatives.

The LJ EOS of Johnson et al. [28], Lafitte et al. [38], and Stephan et al. [46] 
are of particular interest since those are the base in SAFT [34, 47, 48] type EOS 
for the modeling of repulsive and dispersive interactions, i.e., soft-SAFT [36, 37], 
SAFT-VR Mie [38, 49], and PC-SAFT [50], respectively. The LJ EOS of Ref. 
[46] is a re-parametrization of the PC-SAFT monomer model—developed to give 
a good description of the LJ fluid.

The most popular LJ EOS are those of Johnson et al. [28], Nicolas et al. [51], 
Kolafa and Nezbeda [52], Cotterman et  al. [35], Lafitte et  al. [38], Ree [53], 
and Mecke et al. [54, 55] (sorted by their the number of citations in the Web of 
Science).

Table 1 also indicates the types of the LJ EOS, i.e., whether they are Helmholtz 
energy or pressure explicit. We compare the performance of 20 LJ EOS, varying 
from purely empirical to rigorously theory-based. Physically motivated LJ EOS con-
sidered here are those of Refs. [35, 38, 46, 56, 57] and are all based on the perturba-
tion theory of Barker and Henderson [58, 59]. LJ EOS that are empirically based 
are those of Refs. [28, 41, 51, 53, 60–65]. The remaining LJ EOS considered in the 
present work [52, 54, 55, 66–69] are denoted here as semi-theoretical.

In a recent work of our group [46], LJ EOS were systematically reviewed and 
compared with available computer experiment data for the LJ fluid for homogeneous 
state points and the vapor–liquid equilibrium. The present work pursues this com-
parison for a detailed discussion of Brown’s characteristic curves [70] and important 
characteristic states. As Brown’s characteristic curves are directly related to virial 
coefficients, also the second and third virial coefficient are studied. This compari-
son is of particular interest, since the virial coefficients of the LJ fluid can be com-
puted exactly from their definitions in statistical mechanics, while reference data 
obtained from computer simulations are subject to errors and uncertainties [7, 71, 
72]. Brown’s characteristic curves and the virial coefficients are directly linked in 
the limit of the ideal gas and therefore corporately investigated in the present work. 
Brown proposed the characteristic curves for the assessment of equations of state 
for a fluid with repulsive and dispersive interactions [70]. The LJ fluid is evidently 
an excellent candidate for such an assessment. Furthermore, Brown’s characteristic 
curves are an important tool for the development of new equations of state [73–75].
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From Brown’s characteristic curves, the Amagat curve exhibits the largest pres-
sure and temperature. For most gases, the Amagat curve is therefore not relevant for 
technical applications. Nevertheless, for particularly light-boiling gases, like neon, 
helium, and hydrogen, the pressure and temperature range of the Amagat curve is 
often relevant for technical applications. Furthermore, thermodynamic conditions in 
the range of the Amagat curve are relevant for fluids in geological applications as 
well as lubrication gaps in tribological applications. Only EOS that produce reason-
able Amagat curves are appropriate for such applications.

We use reduced properties with respect to the Lennard-Jones potential throughout 
this article denoted by an asterisk; the definitions can be found in Table 2.

2  Theory

Brown’s characteristic curves are defined as curves on which the compressibility 
factor Z =

p∗v∗

T∗
 or its derivatives match the values of an ideal gas at the same tem-

perature and density [70]. Since EOS are usually fitted to reference data at moderate 
conditions, the application of the characteristic curves is often referred to as ’testing 
the extrapolation behavior’ of EOS [41, 73–75]. The testing of these characteristic 
curves has also been included in the IUPAC guidelines for publishing equations of 
state [76]. In this section, the definitions of Brown’s characteristic curves along with 
the description of the their general features are briefly outlined. Also their relation to 
the second and third virial coefficient B∗ and C∗ , respectively, is discussed.

Brown’s characteristic curves are defined as the loci of state points at which a cer-
tain thermodynamic property of the fluid matches that of an ideal gas [70, 73, 75, 77]. 
Brown defined four main characteristic curves: one 0 th-order (named Zeno curve) and 
three 1 st-order curves (named Amagat, Boyle, and Charles curve) [70] based on the 
compressibility factor itself and its derivatives with respect to the temperature and 

Table 2  Reduced properties 
with respect to the Lennard-
Jones potential parameters � and 
� applied in the present work

The properties u∗ , a∗ , h∗ , v∗ indicate the respective quantity per par-
ticle

Property Symbol

Temperature T∗ = T ∕ (�∕k
B
)

Pressure p∗ = p ∕ (�∕�3)

Density �∗ = � ∕ (1∕�3)

Internal energy u∗ = u ∕ �

Helmholtz energy a∗ = a ∕ �

Enthalpy h∗ = h ∕ �

Distance r∗ = r ∕ �

Volume V∗ = V ∕ �3

Specific volume v∗ = v ∕ �3

2
nd virial coeff. B∗ = B ∕ (

2

3
��3)

3
rd virial coeff. C∗ = C ∕ (

2

3
��3)2
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pressure. For a real fluid, Z and its derivatives can match the values of the ideal gas for 
special T∗, v∗ combinations only [70, 75], as a result of Gibbs’ phase rule. These state 
points collectively constitute a characteristic curve.

The characteristic curves are also known under other names: the Zeno curve as 
’ideal curve’, the Amagat curve as ’Joule inversion curve’, and the Charles curve as 
’Joule–Thomson inversion curve’. Here, we adopt the original naming introduced by 
Brown [70]. The characteristic curves are usually plotted in a double-logarithmic p∗
–T∗ diagram; this convention is also adopted here. In such a diagram, the characteristic 
curves exhibit a typical concave dome shape, i.e., they have a negative curvature.

The Zeno, Amagat, Boyle, and Charles curve are required to have a negative curva-
ture throughout and a single maximum in a double-logarithmic pressure–temperature 
diagram [70, 75]. Furthermore, Brown postulated that all four characteristic curves end 
in the limit of p∗ → 0 with an infinite slope in a double-logarithmic p∗ − T∗ diagram 
[70]. Brown furthermore deduced that the four characteristic curves of 0 th and 1 st-order 
may only contact each other at three distinct points [70, 75]: (1) the Zeno curve con-
verges against the Amagat curve on the hypothetical extension of the vapor pressure 
curve; (2) the Zeno curve converges against the Boyle curve in their common limit of 
p∗ → 0 at T∗ = T∗

Boyle
 (the zero crossing temperature of the second virial coefficient), 

and (3) the Zeno curve intersects the Charles curve at the point of maximum pressure 
of the Zeno curve. Usually, the Amagat and Zeno curves are truncated at low tempera-
tures by the solid–fluid equilibrium. Finally, the Amagat, Boyle, and Charles curve 
must not cross, but enclose each other in a p∗ − T∗ diagram [70]: the Amagat curve 
surrounding the Charles curve surrounding the Boyle curve.

The characteristic curves can be computed from the Helmholtz energy per par-
ticle a∗ and its derivatives. The following notation is used for the derivatives of the 
Helmholtz energy with respect to the inverse temperature and density

with n,m = 0, 1, 2 and the tilde indicating ã∗ = a∗∕T∗ . In Eq. (2), ’id’ indicates the 
ideal gas contribution and ’conf’ the configurational contribution.

The density-based virial equation can be written as

The Zeno curve ( Z ) is defined as the locus of state points that satisfy Z =
p∗v∗

T∗
≡ 1 

and can be computed from the Helmholtz energy as

Furthermore, state points on the Zeno curve have u∗conf = 0 . The Zeno curve ends at 
the Boyle temperature T∗

Boyle
 in the zero-pressure limit p∗ → 0 , where the third and 

higher virial coefficients can be neglected. This corresponds to the condition for the 
second virial coefficient B∗(T∗

Boyle
) = 0 , cf. Eq. (3).

The Amagat curve ( A ) is defined as the locus of state points that satisfy 
(

�Z

�T∗

)

v∗
≡ 0 and can be computed from the Helmholtz energy as

(2)ã∗
nm

= ã*id
nm

+ ã*conf
nm

= (1∕T∗)n 𝜌∗m
𝜕n+m(ã*id + ã*conf)

𝜕(1∕T∗)n 𝜕𝜌∗m
,

(3)Z = 1 + B∗�∗ + C∗�∗2 +⋯ .

(4)ã∗conf
01

= 0 .
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The Amagat curve originates on the vapor pressure curve at low temperatures (if 
crystallization is disregarded). It ends at the Amagat temperature T∗

Amagat
 in the zero-

pressure limit p∗ → 0 , which corresponds to the maximum of the second virial coef-
ficient with dB∗∕dT∗ = 0 . This relation can be obtained by applying 

(

�Z

�T∗

)

v∗
= 0 to 

the density-based virial equation (3) in the low-pressure limit where the third and 
higher virial coefficients can be neglected.

Equations of state that do not exhibit a maximum in the second virial coefficient 
B∗(T∗) have a distorted Amagat curve in the limit p∗ → 0 [70, 75].

The Boyle curve ( B ) is defined as the locus of state points that satisfy 
(

�Z

�1∕�∗

)

T∗ ≡ 0 
and can be computed from the Helmholtz energy as

The Boyle curve originates on the vapor pressure curve close to the critical point, 
runs through a pressure maximum and ends at the Boyle temperature in the limit 
p∗ → 0 . This can be shown by applying 

(

�Z

�1∕�∗

)

T∗ = 0 to Eq. (3) in the low-pressure 
limit. Hence, the Boyle and the Zeno curve converge into each other in the zero-
pressure limit.

The Charles curve ( C ) is defined as the locus of state points that satisfy 
(

�Z

�T∗

)

p∗
≡ 0 

and can be computed from the Helmholtz energy as

The Charles curve—also known as Joule–Thomson inversion curve—is of funda-
mental technical importance as it determines the transition locus from heating to 
cooling upon isenthalpic throttling, i.e., ( �T

∗

�p∗
)h∗ = 0 also holds on the Charles curve. 

The Charles curve originates on the vapor pressure curve. The Charles curve ends at 
the Charles temperature T∗

Charles
 in the zero-pressure limit p∗ → 0 , which corre-

sponds to the condition for the second virial coefficient dB∗∕dT∗ = B∗∕T∗ (the 
secant of the second virial coefficient at B∗(T∗

Charles
) is a line through the origin) [39]. 

This relation can be straightforwardly derived by applying 
(

�Z

�T∗

)

p∗
= 0 to the pres-

sure-based virial equation in the low-density limit where the third and higher virial 
coefficients are negligible [74].

Furthermore, it has been shown that the terminal slope of the characteristic 
curves at high temperatures are related to both the second and third virial coefficient 
[74], which follows from the nature of the virial expansion.

Details and alternative thermodynamic definitions for the characteristic curves 
can be found in Refs. [39, 70, 73, 75, 77].

The second and third virial coefficient B∗ and C∗ , respectively, of a fluid can be 
directly computed from the pairwise additive intermolecular potential, e.g., the LJ 
potential uLJ [78, 79]. Using the Mayer function

(5)ã∗conf
11

= 0 .

(6)ã∗conf
01

+ 𝜌∗ã∗conf
02

= 0 .

(7)ã∗conf
01

+ 𝜌∗ã∗conf
02

+ 1∕T∗ã∗conf
11

= 0 .

(8)f ∗
ij
= exp

(

− u∗
LJ
(r∗

ij
)∕T∗

)

− 1 ,
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where r∗
ij
 indicates the distance between two interacting particles, the second and 

third virial coefficient can be written as [79]

where d�∗ indicates a finite volume element in which the particle is located. Equa-
tion (9) can be integrated in a trivial way, cf. Ref. [79]. The integrals in Eq. (10) 
were solved in this work using the method proposed by Hutem and Boonchui [80]. 
Equations (9) and (10) were implemented and numerically integrated to obtain exact 
results (within the significant digits used for the computer precision in the calcu-
lations) for B∗ and C∗ as well as their characteristic points using the LJ potential. 
’Exact’ means here that no statistical uncertainty applies to the data (in contrast to 
molecular simulation results).

Furthermore, the second and third viral coefficient were computed from the con-
sidered LJ EOS, cf. Table 1. Equations (11) and (12) give the thermodynamic defini-
tions for the calculation of the second and third virial coefficient B∗ and C∗ from the 
Helmholtz energy:

3  Results

3.1  Virial Coefficients

The second and third virial coefficient computed from the 20 considered LJ EOS 
are compared in Fig.  1 with exact data obtained from statistical mechanics [81] 
published in the literature [7, 29, 60, 82–84]. Numbers from our implementation 
perfectly agree with that literature data. The literature values are plotted for repro-
ducibility reasons. The numeric values for the second and third virial coefficient 
computed from the 20 considered LJ EOS are reported in the electronic Supplemen-
tary Material.

Qualitatively, the second virial coefficient B∗ of the LJ fluid is captured well by 
all considered LJ EOS, cf. Fig. 1—top, except that of Koutras et al. [66]. All other 
LJ EOS have a single zero crossing at the Boyle temperature T∗

Boyle
 (defined as 

B∗(T∗
Boyle

) = 0 ). The exact value of the Boyle temperature obtained from numerical 

(9)B∗ = −
1

2V∗ ∬ f ∗
12
d�∗

1
d�∗

2
,

(10)C∗ = −
1

3V∗ ∭ f ∗
12
f ∗
23
f ∗
13
d�∗

1
d�∗

2
d�∗

3
,

(11)B∗ = lim
𝜌∗→0

(

𝜕(p∗∕𝜌∗T∗)

𝜕𝜌∗

)

T∗

= 𝜌∗−1 lim
𝜌∗→0

(ã∗conf
01

∕𝜌∗) ,

(12)C∗ =1∕2 ⋅ lim
𝜌∗→0

(

𝜕2(p∗∕𝜌∗T∗)

𝜕𝜌∗2

)

T∗

= 𝜌∗−2 lim
𝜌∗→0

(ã∗conf
02

∕𝜌∗2) .
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integration is T∗
Boyle

= 3.417927982 . However, significant deviations from the exact 
second virial coefficient data are found for most LJ EOS at low temperatures (below 
the triple point temperature, which is approximately T∗

tr
= 0.68 ± 0.02 [85–92]) and 

at high temperatures ( T∗ > 10 ), cf. Fig. 1—middle. Excluding the direct vicinity of 
the Boyle temperature, all LJ EOS except that of Paricaud [57], Gottschalk [69], and 

Fig. 1  Second (top and middle) and third (bottom) virial coefficient as a function of the temperature. The 
top and bottom plot show the virial coefficients themselves; the middle plot shows the relative deviation 
�B∗ = (B∗

EOS
− B

∗
ref
)∕B∗

ref
 of the second virial coefficient from the LJ EOS of Paricaud [57], i.e., the base-

line ’ref’ corresponds to Ref. [57]. For all three plots: lines are LJ EOS and exact values from Refs. [29, 
60, 82–84] are symbols
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Hess [67] show relative deviations from the exact values for the second virial coeffi-
cient of at least 20% in some temperature range. The LJ EOS of Refs. [57, 67, 69] 
comprise the statistical mechanical formulation for the second virial coefficient in 
their mathematical formulation, which consequently leads to an excellent agreement 
for B∗ . However, minor deviations for B∗ are observed for the results obtained from 
our implementation of the LJ EOS of Paricaud [57] at low temperatures.

The LJ EOS of Quiñones-Cisneros et al. [65], Nicolas et al. [51], Cotterman et al. 
[35], Sun and Teja [60], Koutras et al. [66], and Stephan et al. [46] deviate by more 
than 20% from the exact values in the range T∗ < T∗

tr
 and 6 < T∗ . The LJ EOS of van 

Westen and Gross [56], Lafitte et al. [38], Thol et al. [41], Adachi et al. [64], May 
and Mausbach [62, 63], Johnson et  al. [28], Kolafa and Nezbeda [52], Boltachev 
and Baidakov [68], Ree [53], and Miyano [61] deviate by more than 20% from the 
exact values at T∗ < T∗

tr
 , too, but perform better at high temperatures. Excluding the 

vicinity of the Boyle temperature and extreme temperature conditions at T∗ < T∗
tr
 

and 6 < T∗ , the LJ EOS of Mecke et al. [54, 55], Johnson et al. [28], Boltachev and 
Baidakov [68], Adachi et al. [64], Miyano [61], Thol et al. [41], and Kolafa and Nez-
beda [52] describe the exact second virial coefficient data within �B∗ = ±2%—the 
LJ EOS of Refs. [41, 52, 54, 55, 64, 68] even better than 0.5% in a wide temperature 
range.

The agreement of the LJ EOS and exact values for the third virial coefficient C∗ is 
overall significantly less good than for the second virial coefficient. Only the LJ EOS 
of Johnson et al. [28], Kolafa and Nezbeda [52], Lafitte et al. [38], Mecke et al. [54, 
55], May and Mausbach [62, 63], Thol et al. [41], and van Westen and Gross [56] 
qualitatively describe the trend of the third virial coefficient accurately. The LJ EOS 
of Kolafa and Nezbeda [52], Mecke et al. [54, 55], and Thol et al. [41] describe the 
third virial coefficient qualitatively well up to T∗ = 100 . The absolute average devia-
tions from these three LJ EOS and the exact values for C∗ from the literature (Refs. 
[7, 29, 60, 82–84, 93]) are AADMe = 0.47 , AADKo = 0.53 , and AADTh = 0.08 , i.e., 
that of Thol et al. [41] is the most accurate regarding the description of C∗ . Also the 
results from the LJ EOS of Boltachev and Baidakov [68] and Gottschalk [69] are in 
very good agreement with the exact data for the third virial coefficient at moderate 
and high temperatures (cf. Fig. 1—bottom), too, but both yield a wrong limit at low 
temperatures.

Other considered LJ EOS either exhibit no maximum or two maxima or a wrong 
limit at low temperatures. Even though the LJ EOS of Refs. [57, 67, 69] were found 
to be the most precise LJ EOS to describe the second virial coefficient, these LJ 
EOS produce a qualitatively wrong trend for the third virial coefficient. As it is pos-
sible to discriminate between the LJ EOS based on their ability to reproduce B∗(T∗) 
and particularly C∗(T∗) , no attempt was made to discuss their predictions of D∗(T∗) 
and higher virial coefficients.

Castro-Marcano et  al. [94] showed that theoretically based EOS, such as soft-
SAFT [36, 37], SAFT-VR [38, 49], and PC-SAFT [50, 95] do not adequately 
describe third virial coefficients of real substances in a sense that they do not exhibit 
a maximum at moderate temperatures and wrong limits at low temperatures. Our 
results indicate that for the PC-SAFT equation, this deficiency is already inherent in 
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the corresponding monomer term (the LJ EOS of Ref. [46]), whereas the soft-SAFT 
and SAFT-VR Mie equation show a physically correct behavior for monomers.

3.2  Characteristic Curves

Multiple computer experiment data sets for the characteristic curves of the LJ fluid 
are available in the literature [75, 96–100]. The Charles curve (a.k.a. Joule–Thom-
son inversion curve) of the LJ fluid has been investigated several times in the lit-
erature by molecular simulations [75, 96–100]. The Amagat, Boyle, and Zeno curve 
of the LJ fluid have only been investigated by computer experiment by Deiters and 
Neumaier [75]. The numeric values of these computer experiment data were sum-
marized in Ref. [7] and are taken here as reference.

The computer experiment data available for the characteristic curves are com-
pared in Fig. 2 with the results obtained from the LJ EOS of Lafitte et al. [38], which 
gives the best description of the characteristic curve reference data (discussed in 
detail below). The Charles curve computer experiment data points of Refs. [75, 96, 
97, 99, 100] are in good mutual agreement. For the Charles curve, the computer 
experiment data reported by Heyes and Llaguno [98] is found to deviate significantly 
from the data of Refs. [75, 96, 97, 99, 100]. To avoid visual clutter, only the data of 

Fig. 2  Brown’s characteristic 
curves: lines are the LJ EOS of 
Lafitte et al. [38]; symbols are 
molecular simulations results 
from the literature [75, 96–100]. 
The black solid line and star 
indicate the VLE and critical 
point. The gray-shaded region 
indicates the solid phase of 
the LJ potential as reported by 
Agrawal and Kofke [89]
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Deiters and Neumaier [75] is used in the following for the evaluation of the LJ EOS. 
Figure 2 also shows the solid–fluid transition reported by Agrawal and Kofke [89].

It turns out that some of the simulation data of Deiters and Neumaier [75] for the 
Amagat and Charles curves probably lie beyond the freezing line. It is well known, 
however, that small simulation ensembles in cubic boxes with periodic boundary 
conditions tend to supercool. Deiters and Neumaier [75] used a moderate ensemble 
size of N = 1000 particles, they always started their simulations from random con-
figurations, and they monitored the simulations runs for signs of crystallization. One 
can therefore conclude that the reported simulation states beyond the freezing line 
represent supercool fluid states.

Figure 2 shows that the four characteristic curves computed from the LJ EOS of 
Lafitte et al. [38] satisfies all requirements postulated by Brown [70], i.e., starting 
points on the vapor pressure curve, limits at p∗ → 0 , and intersection points, except 
the termination point of the Zeno and Amagat curve. Brown deduced from rational 
thermodynamic arguments that the Zeno and Amagat curve converge into each other 
in the zero-temperature and zero-pressure limit with infinite slope. However, it is 
interesting to note that the LJ EOS of Lafitte et al. [38] yields a crossing of the Zeno 
and Amagat curves at approximately the critical pressure. Furthermore, the Zeno 
curve of the LJ EOS of Lafitte et al. [38] does not exhibit an infinite slope in the 
zero-pressure limit as postulated by Brown [70].

Brown’s [70] assumption for an infinite slope of the Zeno curve in the zero-pres-
sure limit at low T∗ is probably incorrect. The compressibility factor on the Zeno 
curve is by definition Z = 1 , which yields ln p∗ = lnT∗ + ln �∗ . The last term con-
verges approximately to a constant value at low p∗ for T∗

→ 0 . Hence, the Zeno 
curve has a constant slope of unity at T∗

→ 0 in a double-logarithmic p∗ − T∗ dia-
gram—as predicted by the LJ EOS of Lafitte et  al. [38] and others (see below). 
Nonetheless, for the LJ model that region lies in the solid region.

The characteristic curve computer experiment data of Deiters and Neumaier [75] 
are compared in Fig. 3 individually with the results obtained from the 20 investi-
gated LJ EOS. The LJ EOS are ordered roughly according their types, i.e., starting 
from the physically motivated LJ EOS, to the semi-theoretical and fully empirical LJ 
EOS.

None except the LJ EOS of Lafitte et  al. [38] satisfies all requirements for the 
characteristic curves and is in good quantitative agreement with available computer 
experiment data. The characteristic curves obtained from the LJ EOS of Ree [53] 
are in accordance with Brown’s postulates, but show significant deviations from the 
computer experiment data. Most LJ EOS yield reasonable Zeno, Boyle, and Charles 
curves, but fail for the Amagat curve. In the case of inaccurate Zeno, Boyle, and 
Charles curves, they are mostly distorted at low temperatures. Several LJ EOS [41, 
52, 56, 61, 67, 69] produce reasonable Amagat curves over a wide temperature 
range, but yield distortions in the vicinity of the solid–fluid equilibrium. There are 
also some LJ EOS that produce Amagat curves exhibiting minor oscillations at high 
pressures [28, 35, 51, 57, 60, 62–65], i.e., a wrong curvature.

A constant slope of unity for the Zeno curve at T∗
→ 0 in the double-logarithmic 

p∗ − T∗ diagram is also obtained from the LJ EOS of Refs. [35, 41, 46, 53, 56, 57, 
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67], cf. Fig. 3. This corroborates our argument concerning the original postulates of 
Brown [70].

The four characteristic curves studied here evidently represent challenges of dif-
ferent severity, i.e., the Charles curve is predicted qualitatively correct by most LJ 
EOS, while the Amagat curve is predicted qualitatively correct and in good agree-
ment with reference data in the entire temperature range by merely one LJ EOS. 

Fig. 3  Comparison of Brown’s characteristic curves obtained from different LJ EOS (colored lines) with 
the molecular simulations results (symbols) of Deiters and Neumaier [75]. The black solid line and star 
indicate the VLE and critical point obtained from the respective LJ EOS. The gray-shaded region indi-
cates the solid phase of the LJ potential as reported by Agrawal and Kofke [89]
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There is a tendency among the four characteristic curves to be predicted qualita-
tively correct (Charles → Boyle → Zeno → Amagat).

Boshkova and Deiters [77] reported that many theory-based EOS fail to yield 
accurate Amagat curves due to simplifications in the modeling of the repulsive 
interactions. However, we find that the theory-based LJ EOS of Lafitte et al. [38], 
Cotterman et al. [35], and Paricaud [57] yield reasonable Amagat curves in a wide 
temperature range—the LJ EOS of Lafitte et al. [38] is even quantitatively in good 
agreement with computer experiment results.

The LJ EOS of Stephan et al. [46] based on the PC-SAFT monomer model yields 
qualitatively accurate Zeno, Boyle, and Charles curves, but a completely distorted 
Amagat curve. This type of behavior was also reported by Boshkova and Deiters 
[77] for the characteristic curves of the original PC-SAFT parametrization. They 
showed that this is a result of the simplified temperature-dependent diameter of the 
PC-SAFT approach which gives a poor description of the soft repulsion of the Len-
nard-Jones potential [77]. This is supported by the results from a recent work of our 
group [46], which showed that the LJ EOS of Stephan et al. (re-parametrized PC-
SAFT monomer term) yields large deviations at high temperatures and densities for 
most homogeneous state point properties, where the softness of the repulsive inter-
actions becomes more important.

The LJ EOS of the MBWR type (Refs. [28, 51, 60–64]) have in common that 
they yield Zeno curves with a kink at low temperatures. Some of them also exhibit 
a distorted Boyle curve (LJ EOS of Refs. [28, 61–63]). All LJ EOS of the MBWR 
type yield distorted Amagat curves, but most yield accurate Charles curves. For 
some MBWR type LJ EOS [51, 60, 64], the Amagat curve has a positive curvature 
at high T∗.

The LJ EOS of Cotterman et al. [35], Paricaud [57], Thol et al. [41], Hess [67], 
and van Westen and Gross [56] produce qualitatively accurate Zeno, Boyle, and 
Charles curves, but distorted Amagat curves—especially at low temperatures. The 
LJ EOS of Stephan et al. [46] (re-parametrized PC-SAFT monomer), Koutras et al. 
[66], and Boltachev and Baidakov [68] yield erratic results for the Amagat curve. 
The LJ EOS of Cotterman et al. [35] and Paricaud [57] have a faint bump at high 
temperatures, i.e., wrong curvature. The LJ EOS of Boltachev and Baidakov [68] 
and Quiñones-Cisneros et al. [65] show a distorted shape for all four characteristic 
curves. For the LJ EOS of Quiñones-Cisneros et al. [65], the Zeno curve at moder-
ate temperatures lies below p∗ = 0.01 , i.e., out of the range of the depicted plot. 
The characteristic curves obtained from the LJ EOS of Gottschalk [69], Kolafa and 
Nezbeda [52], and Mecke et al. [54, 55] are in good agreement with the reference 
data in a wide temperature and pressure range of the fluid region, but all four curves 
yield unrealistic solutions at low temperatures (for the Amagat curve of Ref. [54, 55] 
at T∗ < 0.1 ). Overall, for most LJ EOS the identified deficiencies are found in the 
vicinity and beyond the solid–fluid equilibrium, i.e., the Zeno and Amagat curves, 
whereas a reasonable performance is often found at high temperatures. It should be 
noted that state points beyond the solid–fluid equilibrium can also be relevant for the 
modeling of fluid mixtures.

The characteristic curves obtained from the LJ EOS of Mecke et  al. [54, 55] 
are in excellent agreement with the available computer experiment data, but show 
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unphysical features in the low-temperature limit. Deiters and Neumaier [75] reported 
that the LJ EOS of Mecke et al. [54, 55] gives a realistic description of all character-
istic curves, which is found differently in the present work. An additional (physically 
unrealistic [70, 77]) branch is found for all four characteristic curves. Likewise, an 
unrealistic behavior is found for the Charles, Boyle, Zeno, and Amagat curve of the 
LJ EOS of Kolafa and Nezbeda [52] at low temperature.

The Amagat curve of the LJ EOS of Thol et al. [41] is distorted at lower tempera-
tures—as also pointed out by Thol et al. [41] and Deiters and Neumaier [75]. How-
ever, we find a significantly different Amagat curve as reported by Thol et al. [41] 
for their LJ EOS. The Amagat curve computed from our implementation is in good 
agreement with the computer experiment results reported by Deiters and Neumaier 
[75] for most temperatures. We suspect a misprint in the publication of Thol et al. 
[41].

3.3  Characteristic State Points

The thermodynamic behavior of a pure substance contains multiple uniquely defined 
state points, of which the critical point is the most prominent one. Such state points 
can be favorably used to characterize the quality of EOS, since they comprise a con-
densed description of the thermodynamic behavior in a single state point. The criti-
cal point obtained from different LJ EOS in comparison to computer experiment 
data has been discussed in detail elsewhere [7, 46]. Here, characteristic state points 
related to the virial coefficients and Brown’s characteristic curves are discussed. In 
particular, exact values for a given interaction potential can be obtained for some 
characteristic points from statistical mechanics.

The characteristic state points considered in the present work are schematically 
illustrated in Fig. 4; they are defined as:

• the state points of the four characteristic curves in the zero-density limit, labeled 
as Z(�∗ → 0) , A(�∗ → 0) , B(�∗ → 0) , and C(�∗ → 0) (which can also be com-
puted from the virial coefficients—see above),

• the zero crossing of the third virial coefficient C∗(T∗) = 0 , and the maximum of 
the third virial coefficient max(C∗(T∗)),

• the intersection of the Boyle and Charles curve with the vapor pressure curve 
labeled as VLE ∩ B and VLE ∩ C,

• the intersection point of the Zeno and Charles curve labeled as Z ∩ C,
• the maxima of the four characteristic curves in the p∗ − T∗ plane labeled as 

max(A) , max(B) , max(C) , and max(Z).

Exact values from numerical integration of the virial coefficients can be obtained for 
the temperature at Z(�∗ → 0) , A(�∗ → 0) , B(�∗ → 0) from the second virial coef-
ficient (cf. Fig. 4—top and middle), the zero crossing of the third virial coefficient 
C∗(T∗) = 0 , and the maximum of the third virial coefficient max(C∗(T∗)) as indi-
cated in Table 3 (cf. Fig. 4—bottom). These results are termed as ’results from the 
virial route’ in the following. Those reported values in Table 3 were obtained in this 
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work and were—where available—compared and found in excellent agreement with 
results from the literature [101].

Furthermore, the above-defined characteristic state points were computed for 
each of the considered LJ EOS. For the maxima and intersection points of the 
characteristic curves, an iterative solver was used to find the state point satisfying 
the respective conditions. For the intersection points of the characteristic curves 
with the phase envelope, both the VLE and the characteristic curves were itera-
tively computed by means of a given LJ EOS to find the intersection point. The 

Fig. 4  Scheme of the character-
istic curves (top) and second and 
third virial coefficient (middle 
and bottom, respectively) for 
the illustration of the considered 
characteristic state points (red 
symbols), cf. Table 3
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zero-density limit state points of the characteristic curves were computed directly 
from the definition of the respective curve at �∗ → 0 . To validate the consistency 
of the LJ EOS implementations used in the present work, these state points were 
also computed by the LJ EOS from the corresponding definition from the second 
virial coefficient (see above) for comparison. The results obtained from the two 
thermodynamic definitions were found in all cases to be in perfect agreement.

Table 3 lists the temperatures of the characteristic state points. The temperature, 
pressure, and density of each state point are reported in the electronic Supplemen-
tary Material. The numeric values therein are reported with more decimal places 
than in Table 3. Blanks in Table 3 indicate cases where the shape of a characteristic 
curve or the third virial coefficient is distorted in a way that a maximum or crossing 
point could not be evaluated in a meaningful way.

The temperatures T∗
Z(�∗→0)

 , T∗
B(�∗→0)

 , T∗
C(�∗→0)

 , and T∗
A(�∗→0)

 (zero-density limit state 
points of the characteristic curves) obtained from the LJ EOS can be compared with 
exact results computed by numerical integration via the virial coefficient route, cf. 
Fig. 4—middle and Table 3. Excellent agreement is found for many LJ EOS except 
the LJ EOS of Refs. [46, 51, 53, 56, 60, 65, 66] which yield significantly deviating 
T∗
Z(�∗→0)

 and T∗
B(�∗→0)

 ; the LJ EOS of Refs. [28, 35, 46, 51, 53, 60, 62–66] yield sig-
nificantly deviating T∗

A(�∗→0)
 (or even no solution).

The zero-density limits T∗
Z(�∗→0)

 , T∗
B(�∗→0)

 , T∗
C(�∗→0)

 , and T∗
A(�∗→0)

 obtained from the 
LJ EOS of Gottschalk [69] and Hess [67] agree with the exact values within the 
computer precision employed for the calculations since those are integrated in the 
respective equation. For the LJ EOS of Paricaud [57] small deviations for the 
T∗
Z(�∗→0)

 , T∗
B(�∗→0)

 , T∗
C(�∗→0)

 , and T∗
A(�∗→0)

 in comparison to the exact data are found, 
which is in line with the small deviations observed for the second virial coefficient 
itself. Also the LJ EOS of Kolafa and Nezbeda [52] has a second virial coefficient 
term and therefore gives an excellent description of the zero-density limits of the 
characteristic curves. Also the empirical LJ EOS of Thol et al. [41] yields accurate 
results for T∗

Z(�∗→0)
 , T∗

B(�∗→0)
 , T∗

C(�∗→0)
 , and T∗

A(�∗→0)
 (deviations below 2%).

Exact values were also obtained in the present work for the temperature of the 
zero crossing and maximum of the third virial coefficient T∗

C∗=0
 and T∗

max(C∗)
 from 

numerical integration, cf. Table 3. Only results from the LJ EOS of Refs. [41, 52, 
54, 55] are found to be in good agreement with exact values for T∗

C∗=0
 and T∗

max(C∗)
 ; 

reasonable agreement is found for the LJ EOS of Refs. [28, 62, 63]. The best results 
for T∗

C∗=0
 and T∗

max(C∗)
 are obtained from the LJ EOS of Thol et al. [41].

The temperature of the Zeno curve maximum T∗
max(Z)

 obtained from the 20 inves-
tigated LJ EOS are in good agreement. They lie in the range T∗

max(Z)
= 1.74 ± 0.06 . 

The temperature of the Boyle curve maximum obtained from the 20 LJ EOS scatters 
slightly more in the range T∗

max(B)
= 2.12 ± 0.09 . Only the LJ EOS of Koutras et al. 

[66] yields a significantly lower T∗
max(Z)

 and T∗
max(B)

 compared to all other investigated 
LJ EOS. The scattering is significantly larger for the temperature of the Charles 
curve maximum obtained from the different LJ EOS as T∗

max(C)
= 2.92 ± 0.5 . For the 

temperature of the Amagat curve maximum, 11 LJ EOS scatter around 
T∗
max(A)

= 4.5 ± 1.5 . The LJ EOS of Refs. [28, 35, 60, 62–64, 68] show significantly 
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shifted T∗
max(A)

 which is due to the distorted Amagat curves produced by these LJ 
EOS.

The differences in the intersection points of the Charles and Boyle curves with 
the VLE are dominated by differences in the VLE obtained from the different LJ 
EOS—especially close to the critical point. The temperature of the Zeno and Charles 
curves intersection point (corresponding to max(Z) ) obtained from the considered 
LJ EOS agrees within T∗

Z∩ C
= 1.74 ± 0.06 , excluding the LJ EOS of Ref. [68].

Sadus [101] recently reported values for the Boyle temperature and the maximum 
of the second virial coefficient computed from the LJ EOS of Koutras et al. [66], 
which significantly deviate from the values obtained from our implementation for 
that LJ EOS. However, we compared B∗(T∗) obtained from our implementation with 
results originally reported by Koutras et al. [66] and found excellent agreement.

4  Conclusions

The present work revisits Brown’s characteristic curves and virial coefficients of the 
Lennard-Jones fluid. They were computed from a large number of LJ EOS and from 
rigorous statistical mechanics (where accessible). For most LJ EOS, these properties 
have not been examined yet—especially the physically motivated ones.

The second virial coefficient is predicted qualitatively correctly by all but one LJ 
EOS. However, significant quantitative deviations are observed for most considered 
LJ EOS. For the third virial coefficient, only few LJ EOS produce qualitatively cor-
rect results.

Brown’s characteristic curves [70] predicted from the different LJ EOS were 
compared with computer experiment data of Deiters and Neumaier [75] and with 
exact values in the ideal gas limit. The physically motivated LJ EOS are found to 
give an overall better description of the characteristic curves—especially at low tem-
perature and high pressure. Most LJ EOS produce distorted Amagat curves. Only 
the LJ EOS of Lafitte et al. [38] yields realistic results for all characteristic curves in 
the entire temperature range that are also in good quantitative agreement with avail-
able computer experiment data. The LJ EOS of Ree [53] yields realistic descriptions 
for the characteristic curves, but significant deviation to computer experiment data. 
Nevertheless, in several cases, a reasonable performance is found in a wide tempera-
ture range, e.g., the LJ EOS of Refs. [35, 41, 56, 57, 67, 69].

We showed that Brown’s assumption that the Amagat and Zeno curves should 
converge with an infinite slope in the zero-pressure limit at low temperatures (in the 
double-logarithmic pressure–temperature diagram) is probably inaccurate. The Zeno 
curve exhibits a limiting slope of unity. Hence, the required intersection point of the 
Amagat and Zeno curves is not found in the zero-pressure limit.

Brown’s characteristic curves are found to be sensitive properties, in a sense that 
they clearly reveal unphysical behavior of an EOS, which holds in particular for the 
Amagat and Zeno curve. The Boyle and Charles curve are found to be predicted 
accurately by most LJ EOS and are therefore less sensitive indicators. Nevertheless, 
the application of the characteristic curves to investigate ’the extrapolation behavior 
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of EOS’ [73] should be carried out with caution. For example, the characteristic 
curves from the LJ EOS of Mecke et al. [54, 55] and Lafitte et al. [38] are in good 
agreement with corresponding computer experiment data in a wide temperature 
range, but both LJ EOS exhibit large deviations from pressure and internal energy 
reference data at extreme temperature and density (beyond the Amagat curve), cf. 
Ref. [46]. Vice versa, the LJ EOS of Kolafa and Nezbeda [52] and Thol et al. [41] 
exhibit distorted Amagat curves at low temperatures, but both LJ EOS give an over-
all accurate and fairly precise description of pressure and internal energy reference 
data also at extreme conditions [46]. Hence, for these LJ EOS the findings for the 
performance on the characteristic curves could not be transferred to conditions sig-
nificantly above the pressure and temperature range of the characteristic curves. 
Instead, it is emphasized that the characteristic curves are a necessary requirement 
for an EOS to be accurate in the entire temperature and pressure range, but not a suf-
ficient one.
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