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The driving process involves many layers of planning and navigation, in order to enable

tractable solutions for the otherwise highly complex problem of autonomous driving. One such

layer involves an inherent discrete layer of decision-making corresponding to tactical maneuvers.
Inspired by this, the focus of this work is predicting high-level maneuvers for the ego-vehicle. As

maneuver prediction is fundamentally feedback-structured, it requires modeling techniques that

take into consideration the interaction awareness of the tra±c agents involved. This work

addresses this challenge by modeling the tra±c scenario as an interaction graph and proposing
three deep learning architectures for interaction-aware tactical maneuver prediction of the ego-

vehicle. These architectures are based on graph neural networks (GNNs) for extracting spatial

features among tra±c agents and recurrent neural networks (RNNs) for extracting dynamic

motion patterns of surrounding agents. These proposed architectures have been trained and
evaluated using BLVD dataset. Moreover, this dataset is expanded using data augmentation,

data oversampling and data undersampling approaches, to strengthen model's resilience and

enhance the learning process. Lastly, we compare proposed learning architectures for ego-vehicle
maneuver prediction in various driving circumstances with various numbers of surrounding

tra±c agents in order to e®ectively verify the proposed architectures.

Keywords: Maneuver prediction; decision-making; autonomous driving; interaction graphs;

graph neural networks (GNNs); recurrent neural networks (RNNs).

1. Introduction

The process of driving a vehicle is highly interactive experience, constantly

in°uenced by both static and dynamic entities and features of the tra±c scenario.

Human driving involves numerous layers of tasks to navigate the road network,
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starting from ¯nding the optimal global and local path, observing the behavior of

surrounding tra±c agents, navigating while engaging with involved agents and ex-

ecuting low-level driving actions. One such task of human driving involves an in-

herent discrete layer in decision-making, corresponding to speci¯c tactical maneuvers

such as right or left turns, lane changing, straight driving, stopping, etc. It becomes

sensible to inherit this at a higher level of a hierarchical assembly in machine driving

as well, in order to provide tractable solutions for the otherwise extremely chal-

lenging problem of autonomous driving. Autonomous driving is one of the most

active research domains nowadays, given that it crosses numerous research dis-

ciplines, including environment perception, localization, behavior recognition, situ-

ational awareness, planning, navigation and control algorithms.

For autonomous driving, motion prediction is highly important and critical.

Lef�evre et al. in the survey [1], categorized motion modeling and prediction

approaches of tra±c agents into physics-based, maneuver-based and interaction-

aware. Physics-based approach considers laws of physics for motion prediction,

which makes this approach the simplest one. Maneuver-based approach predicts the

independent high-level movement of a tra±c agent, restricted by static features of

the road (i.e. number of lanes, width of the lane or maximum speed), and movement

capabilities of the tra±c agent, without considering nearby agents. And lastly, the

approach which is gaining more attention recently, the interaction-aware approach

considers the interactive relationship between tra±c participants to predict the fu-

ture motion of ego-vehicle. This approach accounts for the interactive nature of the

driving process, anticipating the in°uence of involved tra±c agents, which leads to a

better understanding of tra±c situations and a more reliable motion prediction.

Based on the output of the models, motion prediction models are categorized into

maneuver prediction, trajectory prediction or maneuver-based trajectory prediction.

A lot of research and progress on trajectory prediction has been reported in litera-

ture, using classical methods or data-driven methods recently [2–5]. Many studies

and developments have gone into maneuver-based trajectory prediction as well,

which involves ¯rst predicting a maneuver and then ¯tting a trajectory to that

particular maneuver, as stated in the literature [6, 7]. However, fewer results related

to the problem of maneuver prediction have been reported in literature. This is

explained by the lack of datasets and labels with explicit driving maneuvers, as it

requires more e®ort and expertise to annotate di®erent tra±c scenarios for maneuver

planning. One such dataset, published relatively recently is BLVD dataset [8], which

is used as the main dataset for this work.

Ranney in his work [9] categorized maneuver planning in three levels of timescale.

Strategic maneuver planning is a long-term planning problem, concerned with

planning maneuvers for reaching the destination from the origin, accounting also for

other important aspects of planning. On the other hand, tactical maneuvers are in

the timescale of seconds, and include a set of operations to achieve a short-term goal,

such as lane change, turns or stopping. Lastly, operational maneuvers, which are in

the timescale of milliseconds, include critical operations while driving, to maintain
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safety and follow tra±c rules. This work presents three architectures for predicting

tactical maneuvers for the ego-vehicle in divers tra±c scenarios.

Our everyday driving practice demonstrates that a driving decision of a tra±c agent

can heavily impact decisions of other agents. Consequently, while modeling the problem

of maneuver prediction, one has to consider the interaction between tra±c agents. Due

to their °exibility, scalability and high-level representation, graph-based techniques

have recently been widely used for interaction modeling in many domains such system

biology, social networks, recommendation algorithms, also in autonomous driving [10,

11]. Considering the crucial aspect of spatial modeling, this works also follows a graph-

based modeling approach, utilizing graphs as data structures to model the interactive

behavior between surrounding tra±c agents, regardless of the locality. Whereby, nodes

represent detected and tracked tra±c agents, while edges represent the relative spatial

interactionbetween them.Suchgraphs serve as inputs tographneural networks (GNNs)

for learning and extracting spatial features. Movement patterns of surrounding tra±c

agents and maneuver changes of the ego-vehicle are tracked over time via recurrent

neural networks (RNNs). This work is an extension of the previous work done in NIAR

[12], with the main focus to follow an interaction-aware approach for modeling diverse

multi-agent tra±c scenarios as interactiongraphs andpredict thebest tacticalmaneuver

for the ego-vehicle. The main contributions of this work are as follows:

. Representation of tra±c scenarios as dynamic and interaction graphs, andmodeling

the impact of interactions between tra±c agents for maneuver prediction;

. Proposing three di®erent architectures based on GNNs and RNNs for solving the

problem of tactical maneuver prediction for ego-vehicle in diverse tra±c scenarios;

. Data resampling techniques, such as data augmentation, data oversampling, data

undersampling or combination of them, to train and validate the proposed

architectures, and also stabilize the learning process;

. Conducting ablative experiments to evaluate the impact of maneuvers, number of

layers in GNNs and time-window in RNNs on the model's performance.

2. Related Works

The research landscape in motion prediction and decision-making for autonomous

driving is mainly separated into three main categories. The ¯rst category predicts a

trajectory for the ego-vehicle based on the previous states, solved as a regression task.

The second category is concerned with predicting high-level movement in form of

maneuver prediction, solved as a classi¯cation task. The third category models and

solves the problem of motion prediction in two phases, determining the maneuver

¯rst, based on which a trajectory is predicted. These methods are powerful, but

limited in case of wrong maneuver classi¯cation.

2.1. Decision-making using classical methods

Decision-making has been the subject of research for some time now. Hermes et al.

[13] used velocity and yaw angle components of the trajectory as input to a classi¯er
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to determine the best maneuver and then implement a probabilistic tracking

framework to predict the motion state in the future. Hidden Markov Models were

used in [14, 15] as a data-driven approach to classify a maneuver ¯rst, generating a

probability distribution for each state over all possible vehicle's trajectory.

Libener et al. [16] used Bayes net to develop a model to classify the maneuver of

vehicles in complex intersection scenarios, based on vehicle's velocity pro¯le.

Houenou et al. [17] proposed a new approach based on heuristic classi¯ers to rec-

ognize a high-level maneuver of lane keeping or lane changing using lane marking

distance, then using polynomial ¯tting for trajectory prediction. Schreier et al. [18]

proposed a two-stage motion prediction model, ¯rst using Bayesian network to

predict the state of all vehicles forward in time based on maneuver motion models,

then predicting a joint probability distribution function for all possible maneuver-

based trajectories.

2.2. Decision-making using deep learning

Data-driven techniques, machine learning speci¯cally, have also been used to address

the challenging problem of decision-making. These methods gained prominence since

many research institutes and commercial companies around the world are producing

huge volumes of data and making them accessible to the general public as tra±c

datasets. CoverNet [2] proposed a multimodal trajectory prediction model, framing

the problem of high-level decision-making as a classi¯cation task, over all feasible

maneuvers and generate the best trajectory based on the state space. Mo et al. [19]

proposed an interaction-aware encoder–decoder trajectory prediction model for the

ego-vehicle, based on long short-term memory (LSTM) for tracking dynamic features

of surrounding vehicles and convolutional neural network (CNN) to extract spatial

interactive features between tra±c agents.

Due to the multimodal nature of driving, there are numerous options available

when faced with a particular tra±c situation. The biggest drawback of using only

trajectory prediction is that the result frequently represents an average of several

di®erent options. A solution would be to predict the maneuver or predict a proba-

bility for each maneuver, over which speci¯c trajectories are generated. Deo et al.

[6, 7] proposed a model based on convolutional social pooling for extracting spatial

inter-dependencies among agents, and LSTM encoder–decoder to preserve the time-

context, predicting the probability distribution over possible maneuver-based

trajectories.

Meanwhile, maneuver-based prediction methods are focused on modeling and

solving the problem as a classi¯cation task. Schlechtriemen et al. [20] proposed a

classi¯cation algorithm based on random forest, focused on predicting lane change or

lane keeping maneuvers in highway scenarios, considering that the dataset is highly

unbalanced and a®ected by noise and outliers. Khosroshahi in the work [21] proposed

an architecture based on LSTMs, using ground plane coordinates of vehicles position

and angular changes for maneuver classi¯cation at intersections.

352 P. Rama & N. Bajcinca

In
t. 

J.
 S

em
an

tic
 C

om
pu

tin
g 

20
23

.1
7:

34
9-

37
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

K
A

IS
E

R
SL

A
U

T
E

R
N

 o
n 

03
/0

1/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2.3. Decision-making using GNNs

GNN is a relatively new branch of deep learning algorithms, which operate on

graph-structured data, proposed from Scarselli et al. [22]. This work served as the

basis for many other concepts and variants of GNNs, notably graph convolutional

networks (GCNs), which generalized the convolution operator for graphs [23]. These

models and other variants work using message passing framework (MPF) [24], with

the main idea to aggregate information from neighboring nodes and update the

representation of the central node. Research interest in GNNs is growing fast, al-

ready being used successfully in many domains, such as computer vision, natural

language processing (NLP) or system biology. Recently, GNNs are also being used in

decision-making systems of autonomous driving, where spatial dependencies and

interactive behavior among tra±c agents are modeled as interaction graphs.

Diehl et al. [3] analyzed empirically di®erent aspects of modeling a tra±c scene

and utilizing GNNs for predicting the trajectory of vehicles, proving that adopting

GNN models increased the prediction accuracy. Ciu et al. [25] used spectral con-

volutional graph neural network combined with LSTMs, to learn and extract lo-

calized spatial features from the tra±c network, in order to predict network-wide

tra±c states. GRIP [4] represents the spatial interaction between tra±c agents in

form of a graph, proposing an architecture based on convolution layers to capture

spatial features and LSTM encoder–decoder model to predict simultaneously the

future trajectories for all observed tra±c agents. Mo et al. [5] combined GNN to

capture interaction features and RNN to capture dynamic features, in order to

predict an interaction-aware trajectory, proving that the dynamic features of the

target vehicle and the interaction with other vehicles a®ects the trajectory prediction

accuracy. VectorNet [26] represents tra±c components in form of vectors, modeling

their interaction using a hierarchical GNN to learn the context features and their

high-order interaction, in order to predict the trajectory of vehicles.

On the other hand, GNNs are also used for maneuver planning and prediction in

autonomous driving. Chandra et al. [27] used spectral graph analysis and LSTMs to

predict maneuvers and trajectories of surrounding tra±c participants in urban tra±c

scenarios, representing the proximity among them as a weighted graph. Pan et al.

[28] proposed a framework based on GNNs, LSTMs and attention mechanisms to

utilize spatio-temporal graphs to learn the driver's intention of lane change and

predict the trajectory of vehicles. Li et al. [10, 11] modeled the spatial interaction

between heterogeneous road agents in form of a graph, using GNNs for spatial

feature extraction and LSTMs for temporal features extraction, to recognize inter-

active behavior events and predict the trajectory of all heterogeneous road agents.

3. Methodology

Making decisions in complex tra±c scenarios is a di±cult and highly interactive

process that is a®ected by all nearby tra±c agents. Such tra±c agents (i.e. vehicles,

buses, motorcycles, pedestrians, etc.) move through a shared tra±c area while
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navigating and interacting with other agents. A tra±c scenario is de¯ned by key

elements that must be taken into account before modeling the problem and imple-

menting a deep learning architecture for maneuver prediction. The ¯rst element is

concerned with the dynamic nature of tra±c scenarios, where tra±c agents can move

inside or outside the ¯eld of in°uence of other agents. Next element, agents which are

inside this ¯eld of in°uence, have characteristic features which should be part of the

problem modeling. The last element is to understand the scene context, by deter-

mining the driving action of nearby agents in°uencing the decision of ego-vehicle, in

order to anticipate the movement of these surrounding agents for improving the

accuracy of maneuver planning and prediction.

Following the work done in [12], tra±c scenarios are represented as interaction

graphs. Moving tra±c agents are represented as nodes in the graph, while edges

represent the interaction among tra±c agents. An interaction graph, which abstracts

a tra±c scenario as a °uid and dynamic graph data structure, naturally represents

the spatial interaction between tra±c agents in di®erent environments. Hence, a

graph ful¯lls all requirements from the aforementioned elements, used in this work to

model the problem. Agents move inside or outside of ¯eld of in°uence, re°ected in the

structure of the graph, adding or removing nodes, modeling it as a dynamic system.

Characteristic features of agents (i.e. class, position or relative distance) are part of

the interaction graph in form of node features and edge features, respectively. Lastly,

inferred driving actions of agents from the scenario context are also modeled as node

features, enriching the scenario graph. To solve the problem of decision-making, the

tra±c scenario needs to be considered as a whole, which is an advantage when

representing the problem as a graph data structure.

Two aspect to consider for modeling and predicting maneuvers are the spatial

interaction and temporal movement pattern. Therefore, graph structures are build to

model such interactions among tra±c agents, using a GNN module to extract such

spatial feature. Leveraging GNNs for capturing spatial and interactive features be-

tween tra±c agents has already been proven to increase the predictive power,

compared to models that do not take into account this interaction [3]. On the other

hand, temporal features of movement pattern are tracked in time using a RNN

module. These two modules, GNN and RNN, are combined in three di®erent ways in

three di®erent architecture proposed in this work. These di®erent combinations give

us an idea of how important are spatial and temporal features, hyperparameters of

the architectures, and time complexity for training and evaluating them.

3.1. Problem formulation

Each frame of a tra±c scenario is passed through an environment perception algo-

rithm, where n tra±c agents are detected and tracked. For each agent i at time t, a

feature vector f
ðtÞ
i is detected, represented as:

f
ðtÞ
i ¼ ½c ðtÞ

i ; a
ðtÞ
i ; s

ðtÞ
i ; x

ðtÞ
i ; y

ðtÞ
i ; l

ðtÞ
i ;w

ðtÞ
i ; h

ðtÞ
i ; o

ðtÞ
i �; ð1Þ
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where c is the class of tra±c agent, a is the driving action, s is the description of the

tra±c scenario, x and y are positional coordinates, l is the length, w is the width and

h is the height of the bounding box, and lastly o is the heading angle.

Such feature vectors f
ðtÞ
i are tracked for T timesteps, ordered in time in form of

historical feature x
ðtÞ
i of agent i at time t, represented as:

x
ðtÞ
i ¼ ff ðt�T Þ

i ; f
ðt�T þ1Þ
i ; f

ðt�T þ2Þ
i ; f

ðt�T þ3Þ
i ; f

ðt�T þ4Þ
i ; . . . ; f

ðtÞ
i g: ð2Þ

Such ordered historical feature x
ðtÞ
i are build for n detected and tracked tra±c

agent, stacked together in form of a feature matrix X ðtÞ at time t, represented as:

X ðtÞ ¼ fx ðtÞ
1 ; x

ðtÞ
2 ; x

ðtÞ
3 ; x

ðtÞ
4 ; . . . ; x ðtÞ

n g: ð3Þ

Given this feature matrix X ðtÞ at time t, a graph g ðtÞ is build for every timestep,

used as an input the model. The aim is to learn a mathematical function Fð�Þ to map

past T timesteps of n feature vectors represented as graph signals into one of many

possible maneuvers for the ego-vehicle. The output of the model is the predicted

maneuver for ego-vehicle at time t þ 1.

3.2. Graph notation and construction

A separate interaction graph GðtÞ is constructed from every frame t of a tra±c

scenario. Such graphs are modeled as directed graphs, de¯ned as GðtÞ ¼ ðV ðtÞ; E ðtÞÞ,
where V ðtÞ ¼ fv1; v2; v3; v4; . . . ; vng is the set of n observed agents as nodes, and

E ðtÞ � V ðtÞ � V ðtÞ is the set of edges. The adjacency matrix AðtÞ 2 Rn�n of graph GðtÞ

shows which nodes are connected to each other. Every node vi in the graph has its

own feature vector fi. The feature vector of the whole graph is de¯ned as the feature

matrix X n�d , where d is the feature dimension.

The graph data structure models the interaction between n detected tra±c agents

represented as nodes, with n þ 1 total nodes in the graph including the ego-vehicle as

an additional node. Moreover, edges represent interactive relationship among tra±c

agents. Every agent interacts with other nearby agents, therefore connecting every

node with every other node in the graph, forming a complete graph in the process. In

our work, we enrich the edge features with normalized weights, encoding the inverse

Euclidean distance between the centerpoint of ego-vehicle and the centerpoint of the

detected bounding box of other tra±c agents in the image space. This indicates that

tra±c agents which are closer to the ego-vehicle will have a bigger impact on deci-

sion-making of the ego-vehicle, and tra±c agents which are further away will have

less impact on decision-making.

3.3. Model architectures

In the framework of this work, three di®erent architectures based on GNNs and

RNNs are proposed to model and predict tactical maneuvers for the ego-vehicle,

shown in Fig. 1. The main building modules are GNNs for spatial feature extraction,
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and RNNs for temporal feature extraction. The ¯rst step is a shared step for all

architectures, which is extracting objects and features for constructing interaction

graphs. Such graphs serve as input to the GNN architecture. For the other two

architectures, which include the RNN module, a further processing step is required

for ordering tra±c scene graphs in time, before giving it as input for the network. The

last layer is also a shared layer for all architectures, which includes a softmax clas-

si¯cation layer. Implementing three di®erent architectures, di®erent graph repre-

sentations, hyperparameters, time windows and dataset variants illustrates how

di®erent methods or aspects can impact the prediction accuracy of maneuver plan-

ning. Three proposed architectures are explained in detail as follows:

(1) GNN architecture: This architecture consists of a multi-layer GNN module,

which serves also as a baseline model. This architecture gives the initial overview

of the best network hyperparameters, tuning them for the best accuracy and

impact evaluation of spatial features for maneuver prediction. The architecture

is shown in Fig. 1, including only the innermost part, colored in dark gray.

Detected and tracked tra±c agents which are inside the ¯eld of in°uence from

the ego-vehicle are used as nodes in the graph. Every node is connected to every

other node, constructing a directed complete graph GðtÞ for timestep t. Extracted

features are used as node and edge features, enriching the graph with tra±c

scenario information. Such graphs are used as inputs for the GNN module:

g ðtÞ ¼ GNNðGðtÞÞ; ð4Þ

where GNNð�Þ is a multi-layer GNN function. The input graph passes through

the message passing function and the node update function, as described in [24].

Node features are updated multiple time based on its own previous node feature,

Fig. 1. Three proposed architectures with GNNs and RNNs for maneuver prediction.
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and neighboring node features and edge features, transformed into so-called node

embeddings. The output of the module is a transformed graph, with a latent

spatial representation g ðtÞ for every node in the graph. A layer-wise GNN

operation for node i is de¯ned as:

g
ðlþ1Þ
i ¼ ’updðx

ðlÞ
i ; ’aggðx

ðlÞ
i ; x

ðlÞ
j ; e

ðlÞ
ij ÞÞ; ð5Þ

where x
ðlÞ
i is the vector representation of node i in layer l, x

ðlÞ
j is the vector

representation of neighboring node j of node i and e
ðlÞ
ij is the normalized weight

between node i and j. Function ’aggð�Þ aggregates feature information from

neighboring nodes into the central node, weighted by edge features. Function

’updð�Þ updates the feature representation of each node at layer l into embed-

dings for every node at layer l þ 1 in the graph by using the vector representation

of neighboring nodes. After applying multiple times these two functions, the

embedding of ego-node at time t, denoted as g
ðtÞ
0 , is extracted from the graph and

used for maneuver classi¯cation of the ego-vehicle at time t.

(2) GNN–RNNarchitecture: In complex tra±c scenarios, it is important to make

decisions based on driving actions of nearby tra±c agents which are observed for

some time. Preserving the temporal driving context is of profound importance.

Therefore, compared to the previous architecture, the second proposed archi-

tecture, GNN–RNN architecture has an additional RNN module deployed after

the GNN module, for tracking the temporal context of maneuver prediction. The

GNN–RNN architecture is shown in Fig. 1, which includes the inner and middle

parts of the architecture, colored in dark gray and gray, respectively.

Graph construction is done identically as in the previous model, described in

Sec. 3.2, with one additional and important preprocessing step. Input graphs are

ordered in time as a sequence of graphs fGðtÞjt 2 ½t � T ; t�g of a ¯xed time-window

of length T . This is a necessary step for using RNNmodule, where previous hidden

representations are important for predicting the representation for next timestep.

Such graphs are passed through the multi-layer GNN module ¯rst, as de¯ned in

Eq. (4), transforming node features into node embeddings. Ego-node embedding

g
ðtÞ
0 is extracted from graph GðtÞ for each timestep ½t � T : t�, where a sequence of

length T of ego-node embeddings is created fg ðtÞ
0 jt 2 ½t � T ; t�g. This sequence

g
ðt�T :tÞ
0 is passed as an input to the RNN module, tracking ego-embeddings in

time, extracting temporal patterns of maneuver change based on the graph

structure and features:

h ðt�T :tÞ ¼ RNNðg ðt�T :tÞ
0 Þ; ð6Þ

whereRNNð�Þ is a multi-layer RNN network, implemented as many-to-many, and

h ðt�T :tÞ is a sequence of hidden representations for every timestep. Hidden

representations h ðt�T :tÞ are passed through a multi-layer perceptron (MLP) to

classify and predict the best ego-vehicle maneuver for every timestep ½t � T : t�:

z ðt�T :tÞ ¼ MLPðh ðt�T :tÞÞ; ð7Þ
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where z ðtÞ is the ¯nal latent representation from the network. This representation

is passed through softmax function for training and validating the network.

(3) RNN–GNN–RNN architecture: The last proposed architecture, RNN–
GNN–RNN architecture is based on GNN module and RNN encoder–decoder
framework [29], including all gray modules of the architecture in Fig. 1.

Extracted feature vectors from the detected tra±c agents are used as inputs to

the RNN encoder module, colored in light gray. Historical features x
ðtÞ
i are order

in time, as de¯ned in Eq. (2), from t � T to t, for every detected tra±c agent i in

the tra±c scenario. This sequence of feature vectors ff ðtÞi jt 2 ½t � T ; t�g serves as

the input to the RNN encoder:

ĥ
ðt�T :tÞ
i ¼ RNNencðf

ðt�T :tÞ
i Þ; ð8Þ

where ĥ
ðt�T :tÞ
i are the hidden representations of an individual tra±c agent i from

t � T to t, where T is a ¯xed time window. Hidden representation ĥ
ðtÞ
i from the

RNNenc is used as a node feature for node i in graph GðtÞ, instead of the feature

vector f
ðtÞ
i used in the two previous architectures. Graphs with new node features

are passed through a multi-layer GNN module, as de¯ned in Eq. (4) for message

passing and node update. Ego-node embedding g
ðtÞ
0 is extracted from the graph,

encompassing temporal dependencies from individual tra±c agents for T past

timesteps and spatial features from the current timestep. The RNN decoder

tracks dynamic features of ego-vehicle, such as movement changes:

h
ðt�T :tÞ
0 ¼ RNNdecðg

ðt�T :tÞ
0 Þ: ð9Þ

The hidden representation h
ðtÞ
0 from each timestep ½t � T : t� is passed through an

MLP network for classi¯cation, similar as de¯ned in Eq. (7), mapping temporal

features and spatial features of surrounding tra±c agents. This representation is

passed lastly through a softmax function, to train the deep learning network and

predict the next best maneuver for ego-vehicle in di®erent tra±c scenarios.

4. Experiments

All experiments were conducted on a desktop with Ubuntu 18.04 with 2.2GHz Intel

(R) Xeon(R) CPU E5-2698 v4, 256 GB RAM, and Tesla V100-DGXS-32GB for

training.

4.1. Dataset

Proposed architectures are data-driven approaches for solving the problem of ma-

neuver planning. Therefore, for these models to learn in a supervised fashion, a large

amount of labeled data is required, with variety of complex tra±c scenarios. In this

work, Building a Large-Scale 5D Semantics Benchmark for Autonomous Driving

(BLVD) [8] is used as the main dataset to train and validate the proposed
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architectures. BLVD provides 3D detection and tracking of heterogeneous tra±c

agents (i.e. vehicles, riders and pedestrians), the driving action of surrounding

agents relative to the ego-vehicle (i.e. parallel driving in right/left, overtaking from

right/left, straight accelerating/decelerating, stopping, etc.) and scenario description

(i.e. highway or urban road, low or high density of participants or intersection),

among others. But the main information provided is the driving maneuver of ego-

vehicle, which is used as the label for supervised learning. Such maneuvers include

`̀ straight decelerating", `̀ straight accelerating", `̀ turning left", `̀ turning right",

`̀ uniformly straight driving", `̀ changing line to left", `̀ changing line to right"

and `̀ stopping".

BLVD dataset, similar to most dataset for autonomous driving, su®ers from the

class imbalance problem, where the majority of datapoints are just driving straight

or stopping, dominating the overall class distribution. This is a known issue in

machine learning, therefore a further processing step was required to prepare the

dataset. This step is necessary to stabilize the learning process and tackle the

problem of class imbalance. This step includes adding datapoints in minority classes

or removing datapoints from majority classes. In this work, data resampling tech-

niques such as data augmentation, data oversampling and data undersampling

techniques, were used to generate variants of BLVD dataset. But, since we are

dealing here with graphs, these resampling techniques are important to evaluate the

impact they have in the learning process. These three techniques are explained

as follows:

(1) Data augmentation is a technique used extensively in computer vision, to

increase the number of frame datapoints from existing frame datapoints. But,

this process is di®erent when working with graphs, especially in tra±c scenarios.

The only augmentation technique used here is a lateral inversion, in which tra±c

scenarios are °ipped along the lateral axis. This means that the feature matrix of

the graph had to be adjusted accordingly, such as the x; y coordinate position in

image space, the heading angle, driving action `̀ overtaking from left" would be

`̀ overtaking from right", `̀ parallel driving in right" would be `̀ parallel driving in

left", and the maneuver of ego-vehicle `̀ turning right" would be `̀ turning left" or

`̀ changing line to left" would now be `̀ changing line to right".

(2) Data oversampling is a technique used when there is a class imbalance in the

dataset and consists of choosing randomly datapoints from the underrepresented

classes of the dataset and adding them over in the training set. In our work,

scenario graphs of the underrepresented classes are chosen, copying them over

and adding noise in the node and edge features of the graph. Node feature include

x; y position or length, width, height of the bounding box, which are chosen

randomly, adding noise with a standard deviation of 0.01%, 0.02% or 0.03%.

After this processing step, class distribution of the dataset is more balanced, and

the added noise to node features and edge features makes the learning process

more robust.
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(3) Data undersampling is also a technique used in case there is a class imbalance

problem in the dataset. The di®erence to the previous technique is that it

removes datapoints from the overrepresented classes, without adding new

datapoints from the underrepresented classes. BLVD dataset contains a lot of

scenarios where the ego-vehicle is just driving straight or stopping, therefore

these two classes are two main classes undersampled for experiments.

Using the aforementioned techniques, apart from the original BLVD dataset, six

additional dataset variants are created, testing the impact of data augmentation,

data oversampling and undersampling in the accuracy of all three proposed archi-

tectures. The ¯rst dataset variant is BLVD dataset [8], referred to as `̀ BLVD" in the

following, constructing the interaction graph as described in Sec. 3.2, with no ad-

ditional datapoints or biases added or removed. The second variant is generated

using data augmentation technique applied to all maneuver classes in BLVD, re-

ferred to as `̀ B-AUG". Because of class imbalance in BLVD, data augmentation was

applied to only underrepresented classes, such as `̀ Turning Left", `̀ Turning Right",

`̀ Changing Line to Left" and `̀ Changing Line to Right", to generate the next variant

called `̀ B-AUG2". Next, BLVD dataset was oversampled with classes that are un-

derrepresented, introducing randomly biases to the node or edge features in the

process, generating the `̀ B-DOS" variant. BLVD was undersampled with classes

that are overrepresented, selecting randomly only 25% of `̀ Uniform Straight

Driving" class and 50% of `̀ Stopping" class, generating the `̀ B-DUS" dataset vari-

ant. Two techniques, data oversampling and undersampling were used to balance the

class distribution and create the variant called `̀ B-DOUS". Lastly, the variant re-

ferred to as `̀ B-AUDO", was generated using ¯rst data augmentation to generate

new possible datapoints, and then balancing the class distribution using data over-

sampling. The class distribution of these dataset variants is shown in Table 1.

4.2. Model implementation

Models are implemented in Python, PyTorch [30] and Deep Graph Library (DGL)

[31] for the GNN module. Three proposed architectures in this work can have one

Table 1. Class distribution of all seven dataset variants.

BLVD B-AUG B-AUG2 B-DOS B-DUS B-DOUS B-AUDO

Straight Decelerating 4.46% 3.88% 4.13% 14.27% 10.78% 12.93% 13.03%

Straight Accelerating 2.34% 2.36% 2.17% 13.26% 5.66% 12.84% 12.10%

Turning Left 3.53% 2.65% 4.84% 13.02% 8.53% 12.51% 12.00%
Turning Right 1.69% 1.65% 4.84% 11.26% 4.10% 12.56% 12.32%

Uniform Straight Driving 63.53% 67.14% 58.87% 15.64% 38.53% 15.17% 13.96%

Changing Line to Left 1.11% 1.23% 2.50% 7.40% 2.69% 8.26% 10.87%

Changing Line to Right 1.58% 1.30% 2.50% 10.49% 3.82% 11.71% 12.39%
Stopping 21.75% 19.79% 20.16% 14.65% 25.90% 14.02% 13.32%

Total 69,040 102,877 74,504 280,481 28,562 214,172 314,118
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GNN module or two modules in GNN and RNN, di®erent number of layers, nor-

malization, dropout values, hidden units or activation functions. But, just the most

important hyperparameters and implementation details of each architecture, which

showed the best results from the experiments, are explained as follows:

(1) GNN architecture: The input to the architecture is an interaction graph, with

a feature matrix of dimension b� n � d, where b is the batch size, n represents

the number of nodes and d is the dimensionality of the feature vector fi. Batch

size used for training and validating this architecture was 32. The best GNN

module consists of three GNN layers with 32-dimensional hidden units. Each

GNN layer, apart from the last layer, is followed by a layer normalization [32],

activation function of LeakyReLU with a negative slope of 0.1, and dropout

value of 0.1 to avoid over¯tting. After three layers of GNN, the node embedding

of ego-vehicle is extracted from the transformed graph. This node embedding

from the last layer is converted in class probabilities using softmax function. The

output dimension is eight, representing eight possible maneuvers the ego-vehicle

can make, as noted in BLVD dataset. The architecture was trained for 150

epochs.

(2) GNN–RNN architecture: The input to the architecture is again an interac-

tion graph, with a feature matrix of dimension b� n � d, with batch size 32. The

interaction graph are ordered in time as a sequence, with a time widow of 20. The

GNN module consists of three GNN layers with 16-dimensional hidden units.

Each layer is passed through layer normalization, activation function of Lea-

kyReLU with 0.1 negative slope, and no dropout. The ego-node embedding is

extracted from the GNN module and used as an input to the RNN module. This

module is used as the decoder, implemented using a two-layer LSTM network

[33], with 16-dimensional hidden units, 0.2 dropout value and of type many-

to-many. Lastly, an MLP is used as classi¯cation layer, with 16 hidden units and

0.2 dropout value. The ¯nal wights are passed through softmax function, out-

putting eight probabilities to classify the maneuver of ego-vehicle. This

architecture converged faster, therefore was trained for 75 epochs.

(3) RNN–GNN–RNN architecture: This architecture deploys an LSTM en-

coder–decoder [29] for maneuver prediction. The input to the LSTM encoder is a

feature matrix of size b� n � d, with batch size of 32. These extracted feature

matrices are ordered in time, with a time window of 20. Encoder is implemented

using a two-layer LSTM with 16-dimensional hidden units and a dropout value

of 0.2. The hidden representation from every timestep is used as a node feature,

while the structure of the graph is build from the input feature matrix. Such

graphs serve as input to the GNN module, which consists of two GNN layers,

with 16-dimensional hidden units, layer normalization, and LeakyReLU (0.1)

activation function. The node embedding of ego-vehicle is extracted and given as

an input to the LSTM decoder, implemented as a two-layer LSTM network, with

16-dimensional hidden units, 0.2 dropout value and many-to-many type. The
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last layer of this architecture is an MLP classi¯cation layer, with 16-dimensional

hidden units and a dropout value of 0.2. This architecture was trained for 50

epochs, but training time per epoch was longer then the previous architectures.

The dataset is split randomly in training set and testing set, with a ratio of 70% and

30%, respectively. Adam Optimizer [34] is used for training the proposed archi-

tectures, with a learning rate of 0.001 and L2 regularization of 0.0001. All models are

trained as supervised classi¯cation problems, minimizing the cross-entropy loss

between the predicted probabilities from the network and maneuver labels for

ego-vehicle from the BLVD dataset:

loss ¼ �
XC¼8

i

yi logðsoftmaxðziÞÞ ð10Þ

where zi are the weight from the last layer of the network, passed through softmax

function and yi is the label from the dataset. These values are minimized over C

classes, in this work eight maneuver classes for the ego-vehicles.

4.3. Evaluation metrics

Three proposed architectures are trained and evaluated using classi¯cation accuracy

over eight maneuver labels, shown in Table 1. The problem of tactical maneuver

prediction in this work is modeled as a multi-class classi¯cation problem. Since

BLVD dataset is highly unbalanced, and since we experimented with di®erent

dataset variants, just accuracy and loss value is not enough to report the perfor-

mance of the model. Apart from accuracy, F1 score and ROC score are also reported

for all experiments to have a better understanding of the performance of proposed

architectures.

5. Results

5.1. Main results

This section presents the main results from experiments, based on the implemen-

tation details provided in Sec. 4.2. The best accuracy, F1 score and ROC score of all

three proposed architectures, for all dataset variants are shown in Table 2.

GNN architecture scored the best performance in B-DOS dataset variant, with

92.88% accuracy, 92.81% F1 score and 95.92% ROC score. Considering that time

aspect was not part of the modeling, GNN architecture performed generally worse on

the same dataset variants, compared to architectures with RNNmodule. GNN–RNN

architecture has shown very good performance in B-DOS as well, with an accuracy

value of 96.81%, F1 score of 96.79% and an ROC score of 98.15%. Lastly, RNN–
GNN–RNN architecture has performed slightly better in the overall experiments.

The best performance is reported again in the B-DOS dataset variant, with 97.01%

accuracy, 97.01% F1 score and 98.27% ROC score. Figure 2 shows the training
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graphs of the F1 score for all three architectures, revealing that training in B-DOS

dataset variant converged faster, compared to other dataset variants.

Results can also be looked from the perspective of BLVD dataset variants and the

impact of data resampling techniques in the performance. Data oversampling

had the biggest impact, improving the F1 score of the GNN architecture by 2.12%,

GNN–RNN architecture by 4.62% and RNN–GNN–RNN architecture by 6.02%,

compared with the original BLVD dataset. Dataset variant B-DOUS also improved

the performance, since the dataset was increased with more tra±c scenarios, added

bias and noise, the learning architectures were able to di®erentiate from more

movement patterns and features. While data undersampling technique in combi-

nation with data oversampling improved the results, data undersampling technique

on the other hand did not improve the results. By removing datapoints from the

overrepresented classes, B-DUS variant decreased the F1 score of GNN architecture

by 4.83%, of GNN–RNN architecture 6.59% and RNN–GNN–RNN architecture by

7.54%. Also data augmentation did not improve the results generally. We argue that

the reason that this technique did not improve the results is that by inverting a tra±c

scenario laterally, the model deals with a new scenario, hence a di®erent interaction

Fig. 2. Training graphs of F1 score evaluation metric for all dataset variants.

Table 2. Main Results: Accuracy (Acc), F1 score (F1-S) and ROC score (ROC-S) are reported for all

three proposed architectures. Conclusion: RNN–GNN–RNN architecture showed slightly better overall

performance compared to the other two architectures, while all architectures saw the best improvement
from B-DOS dataset variant.

Dataset
GNN GNN–RNN RNN–GNN–RNN

variants Acc F1-S ROC-S Acc F1-S ROC-S Acc F1-S ROC-S

BLVD 91.04% 90.88% 92.97% 92.61% 92.52% 93.93% 91.74% 91.50% 93.28%

B-AUG 92.59% 92.27% 93.05% 88.23% 87.74% 92.09% 87.34% 86.29% 91.46%

B-AUG2 91.07% 90.93% 92.98% 86.68% 86.19% 90.29% 86.06% 85.44% 90.11%

B-DOS 92.88% 92.81% 95.92% 96.81% 96.79% 98.15% 97.01% 97.01% 98.27%
B-DUS 86.58% 86.49% 91.32% 86.54% 86.42% 91.02% 84.70% 84.60% 89.99%

B-DOUS 92.76% 92.68% 95.85% 95.98% 95.96% 97.69% 96.49% 96.47% 97.98%

B-AUDO 90.96% 90.88% 94.83% 94.74% 94.74% 96.96% 94.76% 94.76% 97.00%

Notes: Bold values show the best result for an architecture, underline values are second best results and

italic values are the third best overall results.
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graph, with also di®erent driving maneuvers and rules, often times generating

scenarios which are not valid. This is especially relevant in architecture with RNN,

where a movement patterns is tracked in time, but is not in compliance with

tra±c rules.

5.2. Comparison results

5.2.1. Impact of maneuver class distribution

As mentioned in Sec. 4.1 describing the BLVD dataset, there is a huge class im-

balance, with `̀ straight driving" and `̀ stopping" classes that dominate the class

distribution. Most of the time, in these tra±c scenarios, not much happens and

therefore data-driven models can't learn to di®erentiate the main features respon-

sible for maneuver prediction. On the other hand, there are classes that are under-

represented such as turns or lane change maneuvers. But, what if we remove

overrepresented or underrepresented classes from the dataset and train the

architectures?

Experiments conducted in this subsection shows the performance results of GNN

architecture in case tra±c scenarios with certain ego-vehicle maneuvers are not used

for training. Experiments are split in four groups of maneuvers:

. Maneuvers#1: All classes included from BLVD, eight classes in total;

. Maneuvers#2: Not included are overrepresented classes `̀ uniform straight

driving" and `̀ stopping" in training, including all other classes, six classes in total;

. Maneuvers#3: Not included in training are underrepresented classes `̀ changing

line to left" and `̀ changing line to right", six classes in total for training;

. Maneuvers#4: Not included are classes from the previous group, additionally

maneuvers `̀ turning left" and `̀ turning right", four classes in total for training.

As shown in Fig. 3, removing maneuvers from training can impact the performance

of the GNN architecture. Removing overrepresented maneuvers decreased the

Fig. 3. Accuracy and F1 macro score graphs for the proposed GNN architecture, showing the impact of

not including certain maneuvers in training and evaluation.
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accuracy, con¯rmed also from the main results, where data undersampling showed

the worst results. On the other hand, removing underrepresented classes increased

the accuracy of training. Yet, such models thrive on larger datasets, hence we believe

data-driven models are more accurate and complete if they utilize all datapoints,

enlarged with data resampling techniques used in this work.

5.2.2. Impact of GNN layers

The GNN module is utilized in this work to extract spatial features from tra±c

graphs. Spatial features, together with temporal features have profound impact for

decision-making. GNN architecture deals only with spatial features extraction, while

GNN–RNN architecture combines spatial and temporal features extraction. Both

architectures are implemented with three GNN layers, based on best empirical

results from experiments. What if we change the number of GNN layers and what is

the impact on spatial (GNN) or spatio-temporal (GNN–RNN) feature extraction?

In this subsection, we compared the performance of GNN architecture and GNN–
RNN architecture if we change the number of GNN layers. Table 3 shows the impact

of number of GNN layers on the best accuracy values, F1 score and ROC score.

In the case of GNN architecture, the performance increases until the third GNN

layer, at which point the performance decreases with each additional layer. We argue

that, since we are dealing with small and complete graphs, three rounds of message

passing are enough to capture spatial features from the scenario. Adding more layers

can lead to feature over-smoothing, whereby the GNN model loses the expressive and

discriminative power to learn from data.

However, GNN–RNN architecture showed slightly better performance with

four GNN layers, yet the overall di®erence is very small. We argue that extracted

spatial features are not so dominant, compared with temporal features. Hence, in

the GNN–RNN architecture, tracking temporal features in time with RNN is more

important.

Table 3. Results: Experiments ran on B-DOS dataset variant, reporting

accuracy (Acc), F1 score (F1-S) and ROC score (ROC-S) for di®erent number of

GNN layers. Conclusion: Three-layer GNN module showed the best results for

GNN architecture, while the performance change was minimal for GNN–RNN
architecture.

No. of
GNN GNN–RNN

GNN layers Acc F1-S ROC-S Acc F1-S ROC-S

1 59.31% 59.47% 76.57% 96.58% 96.57% 98.03%
2 85.53% 85.45% 91.67% 96.65% 96.63% 98.05%

3 92.88% 92.81% 95.92% 96.81% 96.79% 98.15%

4 91.96% 91.87% 95.39% 97.45% 97.45% 98.52%
5 90.62% 90.50% 94.61% 97.32% 97.31% 98.45%
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5.2.3. Impact of RNN time-window

For the main experiments, the value of time window for GNN–RNN and RNN–
GNN–RNN architectures is empirically set to 20 timesteps, as the best trade-o®

value between prediction results and computation time. In this subsection, we

experimented with the time-window in the RNN–GNN–RNN architecture and show

the impact of this hyperparameter in the performance, again in the B-DOS variant.

Figure 4(a) visualizes the impact of time window in RNN encoder and decoder on

the performance of the RNN–GNN–RNN architecture. Increasing the time window,

improves the performance results. In short, more information from the past provides

a better understanding of the tra±c scenario, hence better prediction, until a

threshold value is reached, after which the prediction does not improve much.

Figure 4(b) shows the confusion matrix of the RNN–GNN–RNN architecture,

with a time window of 20 timesteps, trained on B-DOS variant. The confusion matrix

re°ects the good accuracy the model showed for maneuver prediction. Yet, it also

shows the main classes the model struggles to predict and confuses with. Under-

represented classes are confused and wrongly predicted for overrepresented classes of

`̀ uniform straight driving" and `̀ stopping", maneuvers dominating the dataset.

5.3. Visualization of maneuver prediction

A typical tra±c scenario, namely `̀ M L m23 4 188" from BLVD dataset, is taken

and visualized in Fig. 5 for model inference. The top part of the ¯gure shows the

camera image and extracted features used as input for the architecture, in this case

RNN–GNN–RNN. On the bottom left, the interaction graph is constructed from

extracted features, whereby nodes are colored based on the object class, red are

`̀ vehicles", blue are `̀ riders" and green are `̀ pedestrians". This graph is passed as an

input to the model for inference, outputting a probability distribution over eight

possible maneuvers for the ego-vehicle, shown on the bottom right part of the ¯gure.

(a) Performance impact of time window (b) Confusion matrix for time window 20

Fig. 4. Time window analysis for RNN–GNN–RNN architecture.
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In this urban tra±c scenario, two cars and one pedestrian in front have stopped,

while tra±c participant are moving from left to right in an intersection. Based on

extracted features, the model predicts the maneuver `̀ straight decelerating" for the

ego-vehicle.

6. Conclusion and Future Work

This work proposed modeling a tra±c scenario as an interaction graph and proposed

three deep learning architectures for interaction-aware tactical maneuver prediction

based on GNNs and RNNs. The interaction graph is a °exible data structure,

whereby nodes are modeled from detected tra±c participants, while edges represent

spatial interaction between them. Such graphs are utilized by GNNs to learn spatial

and interactive behavior of surrounding tra±c agents. On the other hand, graphs are

order in time, modeling the problem of maneuver prediction as a sequence of graphs,

utilizing RNNs for temporal feature extraction. BLVD was used as the main dataset,

extended in form of dataset variants, with techniques of data augmentation, data

oversampling and data undersampling. Three proposed architectures were trained

and validated against all seven dataset variant, to stabilize the learning process and

improve the robustness of models. The experiments showed di®erent aspects of each

architecture, but architectures which combined GNN and RNN showed superior

results. Moreover, data manipulation techniques generally improved the results,

especially data oversampling technique. Based on all experiments, we showed em-

pirically that a tra±c scenario can be modeled as a spatial interaction graph. The

proposed data-driven architectures were validated in diverse driving scenarios for

maneuver prediction in autonomous driving.

Fig. 5. Visualization of model inference for maneuver prediction.

Maneuver Prediction Using Tra±c Scene Graphs via GNNs and RNNs 367

In
t. 

J.
 S

em
an

tic
 C

om
pu

tin
g 

20
23

.1
7:

34
9-

37
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

K
A

IS
E

R
SL

A
U

T
E

R
N

 o
n 

03
/0

1/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



For future work, modeling the tra±c graph with additional static features of the

road network, such as lane markings, tra±c signs or free space information, can

improve the GNN module for spatial feature extraction. Moreover, including ego-

vehicle odometry data must be part of input set too, as profound important infor-

mation for maneuver planning. Lastly, experimenting with more data manipulation

techniques, especially for enriching datapoints in form of interaction graphs, for

tackling the unbalanced class distribution in autonomous driving datasets and im-

proving deep learning motion prediction models.
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