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Abstract
Various regulatory initiatives (such as the pan-European PRIIP-regulation or the 
German chance-risk classification for state subsidized pension products) have been 
introduced that require product providers to assess and disclose the risk-return pro-
file of their issued products by means of a key information document. We will in 
this context outline a concept for a (forward-looking) simulation-based approach 
and highlight its application and advantages. For reasons of comparison, we fur-
ther illustrate the performance of approximation methods based on a projection of 
observed returns into the future such as the Cornish–Fisher expansion or bootstrap 
methods.

Keywords Risk-return profiles of pension products · Customer protection · 
Regulatory requirements

1  Simulation and its role in regulatory issues

The importance of funded private or occupational old age provision will increase 
due to demographic changes and the resulting challenges for government-run pay-
as-you-go systems. Retail investors and advisors therefore need reliable methodolo-
gies to match offered products and investors’ needs and risk appetite.

Regulatory issues nowadays typically require the aggregation of the risk of a 
company, of an investment strategy, a certificate, a pension product or even a short 
living financial product into a single number. This number might be a fully specified 
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measure such as the variance or the value-at-risk of the final outcome of the invest-
ment (just to name two popular such quantities) or a classification into risk classes 
or chance-risk classes.

Examples for this are the calculation of the Solvency Capital Requirement for an 
insurance undertaking, the assessment of a product’s risk-return profile for packaged 
retail and insurance-based investment products (so-called ”PRIIPs”), or the chance-
risk classification of pension products from a retail investor’s point of view by the 
so-called PIA (“Produkt Informationsstelle Altersvorsorge”) in Germany.

As the terms chance and risk already imply, the outcome of the corresponding 
financial transaction is not exactly predictable. Thus, a stochastic modelling of this 
outcome is the appropriate task. The full probabilistic information about the out-
come is contained in its probability distribution. However, as the explicit form of 
this probability distribution is often unknown, various approximation methods have 
been used/suggested in the past such as

• Monte Carlo simulation, i.e. the use of suitably distributed random numbers to 
imitate the uncertainty inherent in the capital markets combined with a suitable 
transformation or discretization to either achieve or approximate the aimed dis-
tribution,

• approximation via an expansion of the distribution function such as the Delta-
Gamma-method or the Cornish–Fisher expansion,

• bootstrap methods or historical simulation, i.e. the use of past market data for 
future predictions of the performance of financial positions.

The purpose of this article is to demonstrate that of all the above mentioned methods 
a forward-looking Monte Carlo simulation framework is the most appropriate con-
cept. For this we will present the necessary steps to set up a simulation framework, 
demonstrate its flexibility and performance potential, and compare it with various 
approximation methods in real life applications and challenges in the following 
sections.1

Before we present the suggested concept in more detail, we will start by com-
menting on some often raised reservations against the use of Monte Carlo simula-
tion approaches.

Rumour 1: Simulation is technically involved    Simulation consists of the 
choice of an underlying model (including the parameters determining it) followed 
by the generation of suitable random numbers. Then, the quantities of interest can be 
simulated and the corresponding measures—such as risk or chance measures—will 
be inferred from the simulation. To underline this well-structured concept, we will 
give a toy example realization of it in the next section followed by a well-established 
application for chance-risk classification in Sect. 3.

1 We want to highlight that this article is not an introduction to the Monte Carlo method itself. For this, 
we recommend e.g. the monographs Glasserman [6] or Korn et al. [10] that both also contain applica-
tions in financial and actuarial models
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Rumour 2: Simulation needs a huge computing infrastructure     It is often 
understood that simulations necessary to perform for regulatory issues require the 
use of huge computing clusters and then result in endless computing times. While 
this might be true for a naive nested Monte Carlo approach to the calculation of the 
Solvency Capital of an insurance company (see e.g. Krah et al. [13] for methods and 
numbers), this definitely is not the case if we consider the risk assessments neces-
sary for PRIIP- or PIA-calculations. There, on the one side instead of an individual-
ized assessment, the calculation is only required for a prototypical customer and on 
the other side many parts of the simulation can be done offline. Further, the num-
ber of the underlying variables that correspond to random numbers are usually very 
low. In total, typically not more than an ordinary laptop is needed. Although it is in 
general not required for the chance-risk assessment task in the PIA-calculations, we 
remark that for particular products a speed-up of the Monte Carlo simulation can 
be achieved by e.g. incorporating variance reduction methods (see e.g. Korn et al. 
[10], Chapter 3, for a survey on variance reduction methods or see Korn et al. [12] 
for an example of speeding up Monte Carlo pricing of a cliquet option that is popu-
lar in some insurance products by using the control variate technique).

Rumour 3: Simulation is not accurate    Although Monte Carlo simulation is 
based on a repeated performance of random experiments the law of large numbers 
ensures the strong convergence of Monte Carlo estimators for expectations. The 
Glivenko-Cantelli theorem ensures the uniform convergence if the distribution func-
tion of a random event has to be approximated by Monte Carlo simulation. On top of 
that the availability of confidence intervals often adds information on the accuracy 
of the simulation-based estimates that other methods cannot provide.

Rumour 4: Simulation as a service is costly  The simulation-based chance-risk 
classification of German pension products leads to surprisingly low costs per classi-
fied product, typically lower than the sales costs of the corresponding product for the 
therein considered four maturities of 12, 20, 30 and 40 years.

As our guiding—but by far not the only—example where simulation is used in an 
efficient way, we have chosen the chance-risk-classification of state subsidized Ger-
man pension products performed by PIA. The underlying approach and the models 
applied will be introduced in Sect. 3. However, before considering this methodol-
ogy, Sect. 2 will provide an introduction to the fundamental aspects of model-based 
simulation. Section  4 will then be devoted to analyze currently required approxi-
mation methods by the PRIIP-regulation (cf. European Commission [4] and Euro-
pean Commission [5]) to assess financial products’ risk-return profiles and highlight 
their weaknesses compared to an approach based on (forward-looking) simulation. 
Finally, Sect. 5 concludes.

2  Simulation as a universal tool for risk assessment

Model-based simulation always yields an estimation of the distribution function of 
the desired object, the so-called empirical distribution. Thus, all kinds of assessment 
(e.g. a classification into different risk classes) or risk measures (e.g. value-at-risk, 
expected shortfall) can be inferred from it. A theoretical justification for this is the 
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famous Glivenko-Cantelli theorem that states the uniform convergence of the empir-
ical distribution function towards the distribution function of the simulated object. 
Of course, an appropriate choice of the model for the underlying object is crucial.

We will below describe the general framework for model-based simulation with 
applications to risk assessment. It typically consists of four steps:

Step 1: Choice of the underlying stochastic model   When judging a financial 
position, a suitable stochastic model of the underlying capital market is the basis for 
model-based simulation. As a toy example, we consider the task of calculating the 
value-at-risk of a European call option on a (non-dividend paying) stock with matu-
rity T at time T1 < T .

For this task, the classical model for the underlying market is the Black–Scholes 
model. It consists of the evolution of a money market account B(t) with constant 
interest rate and of the stock price S(t) given by a geometric Brownian motion. I.e. 
we have the two price evolutions

for constants r,�, � with 𝜎 > 0 , W(t) a one-dimensional Brownian motion.
Why not a more sophisticated model? Although the Black–Scholes model is a 

workhorse of the finance industry, some researchers might question it, particularly 
for very short running options with e.g. just some days to maturity. They might sug-
gest adding jump components to the stock price or looking at more complicated 
driving processes than the Brownian motion. While there can be real statistical evi-
dence for those models to describe the stock price evolution (in the risk-neutral set-
ting of � = r for reasons of option pricing), there are some fundamental issues with 
the choice of a more complicated model:

• Practicality vs. state of the art  The market participants have to be able to under-
stand and to implement the chosen model. This in particular means that a typical 
IT infrastructure is sufficient to come up with accurate results in a reasonable 
time.

• Complexity vs. gain in accuracy  A more complex model needs more parameters. 
It will only lead to an improvement in accuracy if the additional parameters can 
be estimated in an accurate way, a fact that is often not considered when adver-
tising more complex models.

• Task specific issues  Depending on the task, i.e. pricing, risk assessment or inter-
nal calculations for portfolio optimization, a simple model can be sufficient or 
there might be good reasons for using a more sophisticated one.

Who decides on the model to use?  And finally, there has to be some institution that 
decides on the model choice. Depending on the actual task this can be the financial 
entity (e.g. a bank, an insurance company, ...) itself in cases of calculating a price 
for a financial product or an official institution (such as e.g. EIOPA or the European 
Parliament) in cases such as the Solvency II or the Basel III regulations.

An example where the companies have wide choices is the use of internal models 
in the ORSA process. This typically leads to the technically involved and realistic 

B(t) = ert, S(t) = S(0)e

(
�−

1

2
�2

)
t+�W(t)
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models on one hand and simplistic rules that are designed to be conservative with 
regard to risk issues on the other hand.

Step 2: Calibration—How to obtain the model parameters?  This step consists 
in fully specifying all the parameters that enter into the model. In our Black–Scholes 
model example these are the constant riskless rate r, the mean rate of stock return � 
and the stock price volatility 𝜎 > 0.

One often chooses r as the spot rate, i.e. the equivalent constant interest rate that 
delivers the price of a riskless zero bond with maturity T. � is very hard to estimate. 
While it is not needed for reasons of pricing, we need it for risk assessment or port-
folio optimization decisions. Using an expert opinion for � is a popular choice. � is 
typically calibrated to market prices of at-the-money call and put options (i.e. those 
options where the strike is close to the current stock price).2 I.e. we choose that 
value of � such that the sum of squared differences between the market prices of 
e.g. a set of (European) call options and their theoretical counterparts given by the 
Black–Scholes formula is minimized.This procedure is also called calibration of the 
volatility (see e.g. Hull [8], Section 23.14 for a description of a comparable task).

Step 3: Simulation of the underlying stochastic model    The way the model 
is simulated depends on the actual task. In our example, we only need to know the 
stock price at time T1 to obtain the call option price at time T1 by the Black–Scholes 
formula (see Black and Scholes [1]), i.e. we only have to simulate a sequence 
Z1, ..., ZN of independent, standard normally distributed random numbers to obtain 
the corresponding sequences of stock prices

From this, we obtain the sequence H(1), ...,H(N) of corresponding call option prices 
at time T1:

Remark 1 (Two important comments)  (a) The stock price evolves over time in the 
physical world, i.e. we have to apply the drift parameter � to simulate its price at 
time T1 . This is then used as an input for the Black–Scholes formula to calculate the 
corresponding call option price.

(b)  The number N of simulation runs depends on the actual task, but should in 
general never be below 10,000. The reason for this is that the MC estimator is unbi-
ased and its standard deviation decreases as 1∕

√
N . Thus, a choice of N = 10,000 

ensures an accuracy of the 1-percent order (see Korn et al. [10], Chapter 3 for more 
details).

S(k)(T1) = S(0)e(�−
1

2
�2)T1+�

√
T1Zk , k = 1, ...,N.

H(k) = S(k)(T1)�
�
d1(T1)

�
− Ke−r(T−T1)�

�
d2(T1)

�
,

d1(t) =
ln
�

S(k)(t)

K

�
+ (r +

1

2
�2)(T − t)

�
√
T − t

, d2(t) = d1(t) − �
√
T − t .

2 These are the most frequently traded options and thus deliver the most recent price information.
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Step 4: Inferring the final risk assessment  As all the necessary simulations are 
performed, we only have to order the obtained option prices at time T1 . Then, the 
value-at-risk for a given level 0 < 𝛼 < 1 is obtained as the corresponding �-quantile 
of the ordered call option prices.

Example 1 To illustrate the performance of the Monte Carlo approach we con-
sider a European call option with a strike of K = S(0) = 100 and parameters r = 0 , 
� = 0.03 , � = 0.2 . We want to calculate the 95%-quantile of the call price at time 
T1 < T  for various values of T , T1 . We therefore consider the plain Monte Carlo 
method, the so-called Delta-Gamma-approximation (see e.g. Korn et al. [10]), both 
with 10,000 simulation runs and compare it to the exact solution that we obtain by 
putting the 95%-quantile of S(T1) as input into the Black–Scholes formula to obtain 
the call price at time T1 . The results are displayed in Table 1.

The Monte Carlo method shows a remarkable accuracy for just 10,000 simulation 
runs. The Delta-Gamma-approximation performs very good for a small value of T1 , 
but clearly looses accuracy with increasing T1.

3  A simulation concept for chance‑risk classification

As a part of ”pre-contractual” customer information, since 2017 every state subsi-
dized pension product sold in Germany has to be assigned to a so-called chance-risk 
class (CRC). By law, the decision for the classification of a particular pension prod-
uct has to be based on the simulated contract wealth at the end of the accumulation 
phase. We will describe this now well-established application of Monte Carlo simu-
lation methods in detail below.

The choice of the underlying capital market model and the chance and risk meas-
ures, the development of the software concept for the simulation and the actual com-
putations (including the calibration of the market parameters and the simulation of 
the contract wealth in all classified products) have been performed by the Fraun-
hofer Institute for Industrial Mathematics ITWM in Kaiserslautern, Germany. The 
final assignment of the CRC is then done by PIA.

Note, an approach similar to the methodology introduced in this section has also 
been implemented by the Austrian and German insurance market as “a robust and 
well recognized industry and regulatory standard” in the context of the PRIIP-regu-
lation (cf. Sect. 4).

Table 1  Comparison of the 95%
-quantile of call option prices 
obtained by different methods

T ; T1 exact value Monte Carlo value Delta-Gamma 
approx.

3 ; 2 62.52 63.09 58.67
2 ; 1 40.79 41.12 39.47
1 ; 0.1 14.70 14.77 14.78
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Further, we discuss the specific implementation of the four steps of the previ-
ous section and look at various decisions and alternatives that have to be considered 
within the task of CRC assignment step by step.

Step 1: The underlying stochastic market model     The choice of the capital 
market model underlying the simulation is a fundamental decision with regard to 
the simulation effort, the realism of the simulations and the relevance of the CRC. 
As pensions are long-term products and also German life insurers typically invest 
a large fraction of the incoming premia into bonds, it is of high relevance to have 
a good model for the interest rate evolution. To be able to classify both participat-
ing life insurance contracts and bank savings plans, a two-factor Hull–White model 
in the so-called G2++ variant (see Brigo and Mercurio [2]) has been chosen. This 
model has the advantage of being well understood by both practitioners and aca-
demics. As a two factor model, it can explain random influences that are relevant 
for short-term interest rates and also those that are relevant for long-term rates. Due 
to the normally distributed short rate, it can also model negative interest rates. On 
top of that, it allows for a perfect fit to the initial yield curve, a fact that will be 
explained in detail in Step 2.

The resulting model for the short rate r⋆(t) under the risk-neutral measure ℚ is 
given by the following set of equations

with Wi(t) independent one-dimensional Brownian motions. The function

contains additional drift parts and the deterministic function f M(0, t) , the so-called 
initial market forward yield curve (see Step 2 for details).

As a second basic asset a reference stock index with dynamic evolution given by 
a generalized Black–Scholes model is introduced as

where the Brownian motion W(t) can be correlated to Wi(t) , i = 1, 2.
Of course, there are technically more involved stock price models and interest 

rate models available in the literature, but the above choices are a good compromise 
between realism, acceptance and accessibility by the insurance market.

Step 2: Parameter calibration    We will need different methods to obtain all 
required model parameters. As a first step, we consider the initial market forward rate 
curve f M(0, t) which in theory has the task to ensure equality between the initial model 

dx(t) = − ax(t)dt + 𝜎dW1(t),

dy(t) = − by(t)dt + 𝜂

�
𝜌dW1(t) +

√
1 − 𝜌2dW2(t)

�
,

r⋆(t) = x(t) + y(t) + 𝜓(t)

�(t) = f M(0, t) +
�2

2a2

(
1 − e−at

)2

+
�2

2b2

(
1 − e−bt

)2
+ �

��

ab

(
1 − e−at

)(
1 − e−bt

)

S(t) = S(0) exp

⎛⎜⎜⎝

t

∫
0

r(s)ds +
�
�S − 0, 5 �S

2
�
t + �SW(t)

⎞⎟⎟⎠
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prices P(0, t) for zero bonds and the observed market prices PM(0, t) . As this is only 
possible theoretically, a popular parameterization in terms of the the Nelson-Siegel-
Svensson (cf. Svensson [14]) is applied. We obtain its actual form at time 0 by

for parameters �0, �1, �2, �1, �2 with �1 ≥ 0 and �2 ≥ 0 that are publicly available 
from the German Bundesbank. The advantage of this choice is obvious as the Ger-
man Bundesbank is a neutral and respected institution.

The remaining parameters a, b, �, � ≥ 0 and � ∈ [−1, 1] are also obtained from mar-
ket prices. As the bond prices are already used to obtain the Nelson-Siegel-Svensson 
curve, we calibrate a, b, �, � and � to market prices of interest rate caps and interest rate 
swaptions. I.e. we choose those values such that the sum of squared deviations of mar-
ket prices of interest rate caps and swaptions from their theoretical counterparts at time 
0 are minimal.

As the simulations for classification purposes have to be performed under a real-
world measure ℙ , we have to add a suitable risk premium (not necessarily a positive 
one!) to obtain the final short rate process r(t) under ℙ . For reasons of conceptual com-
patibility, we want to stay in the G2++ model class, and modify xt and yt by introduc-
ing additional drift parameters �x and �y to obtain

and where for simplicity of notation we kept the names of the two Brownian 
motions, i.e. we now assume that they are Brownian motions under ℙ . To determine 
the risk premia �x, �y , one needs predictions of the future evolution of the short rate. 
For this, we use the annual predictions by the OECD on the expected future devel-
opment of the interest rate market.

To specify the parameters �S and �S of the evolution of a stock index, we choose 
yet another approach. As the Euro area is an attractive market for German insurance 
companies, the EuroStoxx 50 is a relevant reference index. From historical time series 
data, the choice of � = 0.2 is a reasonable value. As we only perform relative com-
parisons in the classification task, there is no need to obtain a pseudo accuracy (such 
as � = 0.19867 ) in this case. Historical data also suggest the use of a risk premium of 
�S = 0.04.

To simulate another index or a stock that has a volatility of � , we assign it a risk pre-
mium � via the relation

f M(0, t) = �0 + �1
�1

t

(
1 − e−t∕�1

)

+ �2
�1

t

(
1 − e−t∕�1

(
1 +

t

�1

))
+ �3

�2

t

(
1 − e−t∕�2

(
1 +

t

�2

))

dx(t) = a
�
�x − x(t)

�
dt + �dW1(t), x(0) = 0 ,

dy(t) = b
�
�y − y(t)

�
dt + �

�
�dW1(t) +

√
1 − �2dW2(t)

�
, y(0) = 0 .
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�
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Remark 2 (More assets)     If one wants to introduce diversification effects on the 
stock side, one can introduce a second stock price S̃(t) with log-returns that are cor-
related (but not linearly dependent!) to those of the first stock, a volatility of 𝜎S̃ and 
a risk premium of 𝜆S̃ . Of course, the introduction of this second stock comes along 
with uncertainty about the volatility and the risk premium of the second stock and 
the correlation −1 < 𝜌SS̃ < 1 of the log-returns of the stocks.

Another issue arises to simulate assets of a mixed type. An example for this is 
a defaultable bond which typically contains characteristics of both (riskless) bonds 
and stocks. To deal with those assets a mapping approach can be introduced that 
uses a portfolio of riskless bonds (of a certain duration) and a stock (of a certain 
volatility) as a model for assets of mixed type.

Step 3: Simulation of the capital market and of the contract values  We simu-
late 10,000 paths of the short rate process and of the basic stock index price for e.g. 
40 years. More precisely, we use a monthly discretization and first simulate

for k = 1, ..., 10,000 , i = 0, ..., 479 . Here, (Z(k)(i), Z̃(k)(i)) are independent pairs of 
independent standard normally distributed random variables. From these simulated 
paths, we directly obtain the 10,000 short rate paths, but can also derive values of 
zero bond prices or yield curve dynamics over time.

For the simulation of the basic stock index fund we use the generated short rate 
paths r(k)(i∕12) and obtain the corresponding stock price paths via

The standard normally distributed and independent random variables Ẑ(k)(i + 1) are 
also independent from the Z- and Z̃-variables.

Remark 3 (Simulation basis) It is worth to point out that this is already the full simu-
lation of the basic capital market. The evolution of all (!) other possible ingredients 
(such as stocks, bonds, defaultable bonds, ...) are now a consequence of the simu-
lated paths of the x-,y- and S-processes.

Remark 4 (The prototypical customer) The next task is the actual simulation of 
the evolution of a customer’s contract value over time. To standardize this, one has 
introduced a prototypical customer that contributes 100 Euro at the beginning of 
each month until the end of the accumulation phase. In particular, it is assumed that 
the customer survives the accumulation phase.

x(k)((i + 1)∕12) = a
�
𝜆x − x(k)(i∕12)

�
∕12 + 𝜎

√
1∕12Z(k)(i + 1), x(k)(0) = 0 ,

y(k)((i + 1)∕12) = b
�
𝜆y − y(k)(i∕12)

�
∕12

+ 𝜂
√
1∕12

�
𝜌Z(k)(i + 1) +

√
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�
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We now have the basis for generating the paths of the evolution of the prototypi-
cal customer’s contract value by additionally including the different types of costs 
and the way that profits are generated, assigned and shared between the policy hold-
ers and the insurer.

Remark 5 (Product specific simulation) For each (!) product classified in Germany, 
there exists a corresponding implementation to perform the required simulation task. 
However, this simulation is only performed once a year assuming the prototypical 
customer and not per individualized constellation. The latter would have resulted in 
an enormous simulation effort.

Step 4: Calculating the chance and risk measures and assigning the 
CRC     Having simulated 10,000 contract values V (k)(T) for a pension prod-
uct hold by the prototypical customer at the end of the accumulation phase T, 
T ∈ {12, 20, 30, 40} , we get the chance measure as the (largest) solution C(T) of the 
equation

I.e. C(T) is the constant interest rate such that a riskless investment of the contribu-
tions of the prototypical customer leads to a wealth at time T that equals the mean of 
the above simulated 10,000 final contract values.

To obtain the risk measure R(T), we order the contract values at the end of the 
accumulation phase, take the smallest 2.000 of the values, and solve the correspond-
ing version of Eq. (1). It is clear that we have

Note further that a lower value of R(T) indicates a higher risk (for a bad perfor-
mance) of the pension product.

Based on the performance of five benchmark portfolios without costs, a decom-
position of ℝ2 in five areas is calculated3. The CRC of a product is then a direct con-
sequence of the above calculated pair (C(T), R(T)). In addition, there are necessary 
side constraints for CRC 1 and 2 (a money back guarantee for CRC 2, and a money 
back guarantee plus a strictly increasing value process after costs for CRC 1). The 
decomposition of ℝ2 is time dependent which allows for different CRC for the same 
product for different durations of the accumulation phase. Details on the form of the 
benchmark portfolios are publicly available to the product providers.

Remark 6 (Annual recalculation and calibration) To be in line with actual market 
developments, the market coefficients are recalibrated annually. As this leads to a 

(1)100(1 + C(T)∕12)
(1 + C(T)∕12)12T − 1

C(T)∕12
=

1

10,000

10,000∑
k=1

V (k)(T) .

R(T) ≤ C(T) .

3 Details on and justification of the form of this decomposition can be found in Korn and Wagner [11].
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change of the pairs (C(T), R(T)) and the decomposition of ℝ2 that defines the differ-
ent CRC, there is an annual reclassification.

4  Simulation vs. approximation methods: some explicit examples 
in the context of PRIIPs

Since 1st of January 2018, providers of packaged retail and insurance-based invest-
ment products (so-called PRIIPs) have to disclose a key-information document 
(so-called KID) following regulation EU 1286/2014 issued by the European Com-
mission (cf. European Commission [4]). This key information document has to be 
provided to the customer in good time before the actual purchase of the considered 
product and contains among others an indication of products’

• risk by means of a summary risk indicator,
• return by means of so-called performance scenarios,
• costs by means of a summary cost indicator.

For deriving the required figures on risk, return and costs, the European Commis-
sion issued additional regulatory technical standards (RTS) by European Commis-
sion [5] and assigns each product subject to the PRIIP-regulation to one of four 
different product categories which are briefly summarized as follows: Category 1 
comprises derivative-like products, products with a less than monthly price assess-
ment and products where the retail investor may loose more than her invested pre-
miums. Further, Category 2 covers products which provide a linear exposure to their 
underlying assets whereas Category 3 encompasses products with non-linear expo-
sure to their underlying investments. Finally, Category 4 contains products whose 
“values depend in part on factors not observed in the market” (cf. European Com-
mission [5]) and especially includes insurance-based investment products that are 
equipped with some profit participation which is generally not directly observed in 
the market.

In this section, we will focus on the performance scenarios which—following 
European Commission [5]—shall represent a “stress scenario, an unfavourable sce-
nario, a moderate scenario and a favourable scenario.” Further, the unfavourable, 
moderate and favourable scenario shall correspond to the 10th -, 50th - and 90th-per-
centile of the PRIIP’s probability distribution of returns.4

For deriving these percentiles European Commission [5] proposes different cal-
culation methodologies for the different product categories considered. A so-called 
Cornish–Fisher approximation (cf. Cornish and Fisher [3]) shall be applied for 

4 In contrast, depending on the product’s maturity considered, the stress scenario additionally imposes 
some stressed assumptions and then refers to either the 1st-percentile for a maturity less than 1 year or 
the 5th-percentile when higher maturities are considered. In the remainder of this paper, we will solely 
focus on the unfavourable, moderate and favourable performance scenario, but our results similarly hold 
for the stress scenario as well.
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products of Category 2, whereas a simulation by means of a bootstrap shall be per-
formed for Category 3 type products. Concerning products of Category 4, no actual 
methodology is defined, but a “robust and well recognized industry and regulatory 
standard” (e.g. the one introduced in Sect. 3) shall be applied instead to derive the 
required figures. For products of Category 1, no calculations concerning the perfor-
mance-scenarios shall be performed at all, but the possible derivative-like structure 
of this type of products (such as e.g. a call-option) shall be indicated graphically 
instead.

We will now analyze how the different methodologies—especially those for Cat-
egories 2 and 3—perform. For doing so, we will assume a simple Black–Scholes 
model equipped with drift � and volatility � and analyze the results when the Cor-
nish–Fisher approximation and the bootstrap methodology as required by European 
Commission [5] are applied to this model. Both proposed methodologies essen-
tially build on the considered underlying assets’ historically observed returns5 and 
then basically project these returns into the future. Note, assuming a Black–Scholes 
model as an underlying model for the considered time series, we are able to derive 
analytical solutions for the true performance scenarios, i.e. the true 10th-, 50th and 
90th-percentile of returns and are hence able to compare the results obtained by 
the Cornish–Fisher approximation and the bootstrap methodology to the true val-
ues actually provided by the model. These analyses will show that an application of 
the currently proposed methodologies for Category 2 or 3 which essentially projects 
observed past returns into the future, may yield very unintended results since the 
product’s true performance potential may be significantly under- respectively over-
estimated. Therefore, an approach based on (forward-looking) simulations as e.g. 
introduced in Sect. 3 may in our view yield much more stable results when the prod-
uct’s probability distribution of (future) returns is assessed for a disclosure of the 
required key information document.

4.1  Sketch of the Cornish–Fisher approximation and the bootstrap methodology

The Cornish–Fisher approximation and the bootstrap methodology as introduced by 
European Commission [5] base their projection of the required performance scenar-
ios on (preferably daily) observed log-returns over the last 5 years of the underlying 
time series considered.6

Therefore, let 
{
ri, i = 1,…M0

}
 denote a collection of M0 historically observed 

daily log-returns over the period of the last 5 years. The Cornish–Fisher approxima-
tion (cf. Sect.  4.1.1) provides an analytical assessment of the future performance 
scenarios based on some estimation of the moments of 

{
ri
}
 whereas the bootstrap 

methodology (cf. Sect. 4.1.2) builds on sampling future returns from the historically 
observed ones to assess the required performance scenarios.

5 European Commission [5] requires observed daily returns of the past 5 years (if available) to be 
applied in the different methodologies.
6 Note, a shorter period of observation or less than daily returns are to some extent also permitted by 
European Commission [5].
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4.1.1  Cornish–Fisher approximation

We use the notation as introduced in European Commission [5] in what follows to 
describe the application introduced by Cornish and Fisher [3] to estimate percentiles 
of a distribution based on its (centralized) moments. Considering 

{
ri
}
 we obtain an 

estimate for

• the expected return or first moment M1

• the jth-centralized moment Mj, j =, 2,… , 4

• the volatility 

• the skewness 

• the excess kurtosis 

Let us consider a product with a maturity7 of T years and further assume N trading 
days within this period. The annualized log-returns in the unfavourable, moderate 
and favourable performance scenario are then given as (cf. European Commission 
[5]):

• unfavourable scenario 

• moderate scenario 

M1 ∶=
1

M0

M0∑
i=1

ri

Mj ∶=
1

M0

M0∑
i=1

(
ri −M1

)j

� ∶=
√
M2

�1 ∶=
M3

�3

�2 ∶=
M4

�4
− 3.

1

T

�
M1N + �

√
N

�
−1.28 + 0.017

�1√
N

+ 0.0724
�2

N
− 0.0611

�2
1

N

�
− 0.5�2N

�

7 European Commission [5] would require product providers to define some recommended holding 
period for the product. In this paper, we apply the terms maturity and recommended holding period as 
synonyms.
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• favourable scenario 

Note, Graf [7] shows that these formulae contain technical errors—that is the term 
−0.5�2N should actually be removed—and hence postulates modified versions of 
the unfavourable, moderate and favourable performance scenario as

• modified unfavourable scenario 

• modified moderate scenario 

• modified favourable scenario 

Remark 7 (When will the Cornish–Fisher approximation fail?) Note, the Cornish–
Fisher approximation introduced here might fail to accurately estimate the product’s 
true unfavourable, moderate or favourable scenario for at least two reasons:

• The assumptions underlying the original expansion as introduced by Cornish and 
Fisher [3] prove to be wrong (cf. Jaschke [9] for some more insight how wrong 
the assumptions and their impact could be).

• The actual estimates for M1, �,�1,�2 derived from the observed returns of 
the last five years prove to be inaccurate. Section  4.2 shows how inaccurate 
these estimates can actually be, even when the Cornish–Fisher-approximation 
should—if its parameters were correctly known—provide an accurate estimate 
for the required performance scenarios in this setup.

4.1.2  Bootstrap methodology

Whereas the Cornish–Fisher approximation as introduced in the previous section 
provides an analytical approximation of the performance scenarios by a parametric 
approach based on the observed returns 

{
ri, i = 1,… ,M0

}
 , the bootstrap methodol-

ogy required for products of Category 3 relies on re-sampling these observed returns 

1

T

(
M1N − �

�1

6
− 0.5�2N

)

1

T

�
M1N + �

√
N

�
1.28 + 0.017

�1√
N

− 0.0724
�2

N
+ 0.0611

�2
1

N

�
− 0.5�2N

�
.

1

T

�
M1N + �

√
N

�
−1.28 + 0.017

�1√
N

+ 0.0724
�2

N
− 0.0611

�2
1

N

��

1

T

(
M1N − �

�1

6

)

1

T

�
M1N + �

√
N

�
1.28 + 0.017

�1√
N

− 0.0724
�2

N
+ 0.0611

�2
1

N

��
.
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to assess the future performance potential. Note, in a practical application for prod-
ucts of Category 3 

{
ri
}
 would not resemble the observed returns of the actual prod-

uct itself, but rather the observed returns of the product’s underlying assets. When 
products of Category 3 are considered, a non-linear relationship between the prod-
uct’s and its underlying performance is generally assumed and hence a bootstrapping 
methodology on the underlying returns is proposed. However, in order to assess if 
the bootstrap approach delivers appropriate results, we directly assess the underlying 
and neglect any further non-linear relationships to the performance potential of the 
considered product.

In order to derive the unfavourable, moderate and favourable performance sce-
nario for a product with maturity T years and N trading days within this period, the 
bootstrap methodology as stated by European Commission [5] proposes the follow-
ing approach:

• Project one future trajectory of the product by 

1. sample the product’s daily (log-)return by randomly picking 
rs ∈

{
ri, i = 1,… ,M0

}
,

2. add this return to the product’s total return so far,
3. repeat N times.

• Repeat this projection at least 10,000 times.
• Estimate the required percentiles (10th-, 50th-, 90th-percentile) from the simu-

lated trajectories.

Remark 8 (When will the bootstrap methodology fail?) Compared to the Cornish–
Fisher approach introduced previously, the bootstrap methodology may fail to accu-
rately estimate the product’s true unfavourable, moderate or favourable scenario if 
the observed returns 

{
ri
}
 fail to appropriately reproduce the underlying’s true proba-

bility distribution of returns. Since, naturally the bootstrap approach will only apply 
those returns that have actually been observed in the past again and just rearrange 
them somehow.

4.2  Numerical analyses of the Cornish–Fisher approximation and the bootstrap 
methodology and comparison with a Monte Carlo simulation

After a brief sketch of the Cornish–Fisher approximation and the bootstrap method-
ology, we will now analyze whether these approaches are able to appropriately esti-
mate the future performance scenarios in case we do know the true underlying prob-
ability distribution and further compare results obtained by means of Monte Carlo.

We assume S(t) to follow a Black–Scholes model with drift � and volatility � , 
i.e. S(t) = e

(�−
1

2
�2)t+�W(t) with W(t) denoting a Brownian motion in what follows. 

This model will on the one side be used as a data-generating model for the 
required time series of observed returns. Thus, we will sample 5 years of realized 
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log-returns 
(
ln

S(t+�t)

S(t)

)
 on a daily basis, assuming 252 trading days per year and 

hence set �t = 1

252
 . On the other side, the model will also be the underlying of our 

considered product for which the future performance scenarios should be esti-
mated. Since S(t) follows a log-normal distribution its probability distribution of 
returns is easily assessed in closed form. Assuming � = 0.06 and � = 0.2 we con-
sider a product with maturity T = 20 years and hence obtain the true future per-
formance scenarios in terms of annualized log-returns as summarized in Table 2.

Next, we analyze how the Cornish–Fisher approximation and the bootstrap 
methodology perform when observations of daily log-returns of the consid-
ered model serve as the required historical basis 

{
ri
}
 . For doing so, we generate 

10,000 streams of observed daily log-returns from the underlying model, i.e. we 
obtain a set

of 5-year observed log-returns with M0 = 5 ⋅ 252 . Then, we analyze the results 
of the Cornish–Fisher approximation and the bootstrap methodology if we set the 
underlying time series of observed returns to �

�
, k = 1,… , 10,000 . For each �

�
∈ R , 

we estimate M1, �,�1,�2 for the Cornish–Fisher approximation and perform a boot-
strap re-sampling (based on 10,000 trajectories each) vice versa. These calculations 
finally provide us with 10,000 realizations of the projected performance scenarios 
when both proposed methodologies are applied. The Monte Carlo simulation also 
builds on 10,000 trajectories (“inner simulations”) of the underlying Geometric 
Brownian motion assuming a monthly time step. From this inner simulations we 
then estimate the unfavourable, moderate and favourable scenario as respective per-
centiles. This procedure is then repeated 10,000 times (“outer simulations”) which 
allows to derive an estimate for the empirical probability distribution of the different 
performance scenarios for the Monte Carlo exercise as well.

Figures 1,  2 and 3 show the results of the empirical probability distributions 
of projected performance scenarios by depicting some estimated percentiles. 
First, it is worthwhile noting that in this case the Cornish–Fisher approximation 
should be able to accurately estimate the underlying probability distribution—
when the parameters were known—since the log-returns are normally distrib-
uted and hence perfectly fit to the Cornish–Fisher approximation’s assumptions. 
However, taking the results of Fig. 1 into account, the considered approach might 
tremendously over-respectively underestimate the product’s true performance 
scenarios even when a corrected version of the Cornish–Fisher formulae (cf. 
modified results) is applied. The Cornish–Fisher approximation only on average 
delivers appropriate estimates of the performance scenarios and hence is subject 
to a very high parameter risk. This issue is reasoned with the fact that it is very 

R ∶=
{
�
�
, k = 1,… , 10,000 with �

�
∶=

{
rk,i, i = 1,… ,M0

}}

Table 2  True log-returns (p.a.) 
for the different performance 
scenarios

Scenario unfavourable moderate favourable

Return −1.73% 4.00% 9.73%
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Fig. 1  Performance scenarios’ estimated log-returns (p.a.) applying the Cornish–Fisher approximation
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Fig. 2  Performance scenarios’ estimated log-returns (p.a.) via the bootstrap methodology



290 S. Graf, R. Korn 

1 3

hard (if not impossible) to derive an appropriate estimate for the required param-
eters (especially regarding the expected return M1 ) from just one realized path of 
observation.8

Taking the parameter risk of the Cornish–Fisher approximation into account, it is 
not surprising that the bootstrap methodology is generally prone to the same issues 
and may—due to good or bad luck observed in the considered time series—yield to 
a severe over- respectively underestimation of the product’s true performance poten-
tial (cf. Fig. 2).

Finally, Fig. 3 in our view clearly shows the advantage of the Monte Carlo method 
both taking bias and a possible variability into account. Note, the key take away here 
is that—although the data-generating model’s distributional characteristics would 
in this case allow the Cornish–Fisher approximation and bootstrap methodology to 
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-2%

0%

2%

4%

6%

8%

10%

12%

unfavourable moderate favourable

Distribution of projected returns applying Monte Carlo simulation

1%-99%
5%-95%
10%-90%
25%-75%
Median
Mean
True Value

Fig. 3  Performance scenarios’ estimated log-returns (p.a.) via Monte Carlo simulation

Table 3  Percentiles of estimated log-returns (p.a.) for the unfavourable performance scenario

Method 10th 25th 50th 75th 90th

Cornish–Fisher −15.3% −9.8% −3.9% 2.0% 7.5%

Cornish–Fisher (modified) −13.3% −7.8% −1.9% 4.0% 9.5%

Bootstrap −13.2% −7.8% −1.9% 4.3% 9.9%

Monte Carlo −1.8% −1.8% −1.7% −1.7% −1.6%

8 Note, this caveat can also be not overcome if the required historical time frame was further increased to 
e.g., more than 5 years.



291

1 3

A guide to Monte Carlo simulation concepts for assessment of…

deliver appropriate estimates for the required percentiles—both methodologies face 
severe “parameter risk” and can utterly fail, since their underlying parameters are 
derived from just one observed trajectory. Naturally, this is overcome by the Monte 
Carlo method where one “only” faces the risk of a Monte-Carlo error when applying 
a certain number (here 10,000) of trajectories.

To be clear, only to assess the resulting Monte-Carlo error depicted in Fig. 3, we 
repeated the Monte-Carlo exercise 10,000 times and hence in total used 100 million 
sample paths to derive the empirical probability distribution. Then, we were able to 
conclude that already one set of 10,000 trajectories is enough to yield a much better 
result than the Cornish–Fisher approximation or the bootstrap methodology in terms 
of stability and robustness.  

Further, Tables 3 and 4 show percentiles of the unfavourable respectively favour-
able performance scenario for the different methodologies when our sample R of 
observed time series and the outer Monte Carlo simulations are considered.

Note, taking the true performance scenarios of the underlying model into account 
(cf. Table 2), there is—due to the mentioned parameter risk—a chance of 25% (10%) 
that the approximated unfavourable scenario delivers higher returns than the actually 
true moderate (favourable) performance scenario. In contrast, there also is a chance 
of 25% (10%) that the approximated favourable scenario gives lower returns than the 
actually true moderate (unfavourable) performance scenario. Further, very high pro-
jections for the favourable scenario (e.g. twice as high as the actual true value) may 
also be observed with a significant probability.

Of course a forward-looking simulation as e.g. the one introduced in Sect. 3 will 
still only constitute a modelling approach and hence should not claim to exactly pro-
duce or deliver the true probability distribution of future returns. However, such an 
approach if appropriately calibrated does not suffer from the above issues and there-
fore provides stable instead of rather random results on the assessment of possible 
future performance scenarios for different financial products (cf. Tables 3 and 4).

5  Conclusion

In this work we have presented some basics of simulation approaches and a fully devel-
oped simulation framework in detail that is successfully used in Germany for chance-
risk classification of pension products. We have further highlighted some disadvan-
tages of the use of moment based approximations such as the Delta–Gamma-method 
or the Cornish–Fisher expansion on the one side and also on bootstrapping historically 

Table 4  Percentiles of estimated 
log-returns (p.a.) for the 
favourable performance scenario

Method 10th 25th 50th 75th 90th

Cornish–Fisher −3.9% 1.6% 7.5% 13.4% 19.0%

Cornish–Fisher (modified) −1.9% 3.6% 9.5% 15.4% 21.0%

Bootstrap −1.7% 3.7% 9.5% 15.8% 21.4%

Monte Carlo 9.6% 9.7% 9.7% 9.8% 9.8%



292 S. Graf, R. Korn 

1 3

observed returns on the other side and especially commented on their application in 
the PRIIPs regulatory framework. Their performance is particularly bad for assessing 
the risk-return profile of long-term financial products, even for much simpler ones than 
typical pension products.

In contrast to the performance of these approximations, simulation approaches can 
be tailored to an actual application such that any degree of desired accuracy can be 
obtained. However, to make use of their full potential in a general setting, it needs a 
clear and detailed concept for their application. As the chance-risk classification 
approach in Germany—which also serves as a basis for some ”robust and well recog-
nized industry and regulatory standards” used in the context of PRIIPs—has shown 
this can be done in a satisfying way for insurance companies, customers and political 
decision makers.

As a conclusion of the examples and concepts presented in our work, we want to 
summarize some important advantages of simulation methods for risk assessment:

Flexibility   Simulation approaches can easily be modified to deal with tasks that 
have not been present at the time of their conception. Examples are the risk assessment 
of novel products or of novel risk mitigation techniques and investment strategies.

Accuracy    Given a good model choice, simulation approaches can deliver every 
desired degree of accuracy via increasing the number of simulation runs.

Past and future—Using the best of both worlds  Simulation approaches use the 
essential information of the past data to calibrate the model parameters, but allow for 
much more possible future scenarios as just repeating what has been observed in the 
past. Thus, even economic scenarios that have been unexpected given past performance 
can enter the result of the simulations. This mainly avoids being caught by surprise.

Customer relevant information by a forward looking approach    Simulation 
approaches are forward-looking, i.e. the simulations of future evolutions are based on 
parameters inferred from the actual market situation. They therefore provide relevant 
information for the customer, a feature that static approaches solely based on historic 
data do not have. This is especially true when markets have changed recently as is the 
case with the current low interest rate environment.

Raising the standards   Our experience has shown that the presence of a model-
based simulation approach has forced the providers to actually deal with this approach. 
This then also leads to a more detailed understanding of the own product’s properties. 
Further, the simulation approach also proved to be beneficial for product design.

Summing up all the conceptual considerations and examples presented above, we 
believe that there are convincing arguments for considering a well-specified model-
based Monte Carlo simulation concept as a highly suitable tool for risk assessment 
in various applications, especially those related to pension products.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 



293

1 3

A guide to Monte Carlo simulation concepts for assessment of…

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

References

 1. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 
81(3):637–54

 2. Brigo D, Mercurio F (2001) Interest rate models. Springer, New York
 3. Cornish EA, Fisher RA (1938) Moments and cumulants in the specification of distributions. Rev Int 

Stat Inst 5(4):307–320
 4. Commission E (2014) Regulation (eu) no 1286/2014 of the european parliament and of the council 

of 26 november 2014 on key information documents for packaged retail and insurance-based invest-
ment products (priips). OJ L 352:1–23

 5. Commission E (2017) Commission delegated regulation (eu) 2017/653 of 8 March 2017 supple-
menting regulation (eu) no 1286/2014 of the european parliament and of the council on key infor-
mation documents for packaged retail and insurance-based investment products (priips) by laying 
down regulatory technical standards with regard to the presentation, content, review and revision of 
key information documents and the conditions for fulfilling the requirement to provide such docu-
ments. OJ L 100:1–52

 6. Glasserman P (2003) Monte Carlo methods in financial engineering. Stochastic modelling and 
applied probability. Springer, New York

 7. Graf S (2019) PRIIP-KID: providing retail investors with inappropriate product information? Eur 
Actuar J 9(2):361–385

 8. Hull JC (2003) Options, futures, and other derivatives. Stochastic modelling and applied probability. 
Prentice Hall, Upper Saddle River

 9. Jaschke SR (2001) The Cornish–Fisher-expansion in the context of delta—Gamma—normal 
approximations. Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, Berlin

 10. Korn R, Korn E, Kroisandt G (2010) Monte Carlo methods and models in finance and insurance. 
CRC Press, Chapman and Hall/CRC Financial Mathematics Series, Boca Raton

 11. Korn R, Wagner A (2018) Chance-risk classification of pension products: scientific concepts and 
challenges. In: Glau K, Linders D, Min A, Scherer M, Schneider L, Zagst R (eds) Innovations in 
insurance, risk- and asset management. World Scientific, Singapore, pp 381–398

 12. Korn R, Wenzel J, Temocin B (2017) Applications of the central limit theorem for pricing cliquet-
style options. Eur Actuar J 7(2):465–480

 13. Krah A-S, Nikolic Z, Korn R (2018) A least-squares monte carlo framework in proxy modeling of 
life insurance companies. Risks 6:26

 14. Svensson L (1994) Estimating and interpreting forward interest rates: Sweden 1992–1994, Working 
paper series, vol 4871. National Bureau of Economic Research, Inc., Cambridge

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A guide to Monte Carlo simulation concepts for assessment of risk-return profiles for regulatory purposes
	Abstract
	1 Simulation and its role in regulatory issues
	2 Simulation as a universal tool for risk assessment
	3 A simulation concept for chance-risk classification
	4 Simulation vs. approximation methods: some explicit examples in the context of PRIIPs
	4.1 Sketch of the Cornish–Fisher approximation and the bootstrap methodology
	4.1.1 Cornish–Fisher approximation
	4.1.2 Bootstrap methodology

	4.2 Numerical analyses of the Cornish–Fisher approximation and the bootstrap methodology and comparison with a Monte Carlo simulation

	5 Conclusion
	Acknowledgements 
	References




