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Abstract

Cancer, a complex and multifaceted disease, continues to challenge the boundaries of
biomedical research. In this dissertation, we explore the complexity of cancer genesis,
employing multiscale modeling, abstract mathematical concepts such as stability analysis,
and numerical simulations as powerful tools to decipher its underlying mechanisms.
Through a series of comprehensive studies, we mainly investigate the cell cycle dynamics,
the delicate balance between quiescence and proliferation, the impact of mutations, and
the co-evolution of healthy and cancer stem cell lineages. The introductory chapter
provides a comprehensive overview of cancer and the critical importance of understanding
its underlying mechanisms. Additionally, it establishes the foundation by elucidating key
definitions and presenting various modeling perspectives to address the cancer genesis.
Next, cell cycle dynamics have been explored, revealing the temporal oscillatory dynamics
that govern the progression of cells through the cell cycle.

The first half of the thesis investigates the cell cycle dynamics and evolution of
cancer stem cell lineages by incorporating feedback regulation mechanisms. Thereby,
the pivotal role of feedback loops in driving the expansion of cancer stem cells has been
thoroughly studied, offering new perspectives on cancer progression. Furthermore, the
mathematical rigor of the model has been addressed by deriving wellposedness conditions,
thereby strengthening the reliability of our findings and conclusions. Then, expanding
our modeling scope, we explore the interplay between quiescent and proliferating cell
populations, shedding light on the importance of their equilibrium in cancer biology. The
models developed in this context offer potential avenues for targeted cancer therapies,
addressing perspective cell populations critical for cancer progression. The second half of
the thesis focuses on multiscale modeling of proliferating and quiescent cell populations
incorporating cell cycle dynamics and the extension thereof with mutation acquisition.
Following rigorous mathematical analysis, the wellposedness of the proposed modeling
frameworks have been studied along with steady-state solutions and stability criteria.

In a nutshell, this thesis represents a significant stride in our understanding of cancer
genesis, providing a comprehensive view of the complex interplay between cell cycle
dynamics, quiescence, proliferation, mutation acquisition, and cancer stem cells. The
journey towards conquering cancer is far from over. However, this research provides
valuable insights and directions for future investigation, bringing us closer to the ultimate
goal of mitigating the impact of this formidable disease.
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Kurzfassung

Krebs ist eine komplexe und vielschichtige Krankheit, die die Grenzen der biomedizini-
schen Forschung immer wieder in Frage stellt. In dieser Dissertation erforschen wir die
Komplexität der Krebsentstehung, indem wir die Multiskalenmodellierung, abstrakte
mathematische Konzepte wie die Stabilitätsanalyse und numerische Simulationen als
leistungsstarke Werkzeuge zur Entschlüsselung der zugrunde liegenden Mechanismen
einsetzen. In einer Reihe umfassender Studien untersuchen wir vor allem die Dynamik
des Zellzyklus, das empfindliche Gleichgewicht zwischen Ruhe und Proliferation, die
Auswirkungen von Mutationen und die Koevolution von gesunden und Krebsstammzellen.
Das Einführungskapitel bietet einen umfassenden Überblick über Krebs und die entschei-
dende Bedeutung des Verständnisses der ihm zugrunde liegenden Mechanismen. Darüber
hinaus wird die Grundlage geschaffen, indem die wichtigsten Definitionen erläutert und
verschiedene Modellierungsperspektiven vorgestellt werden, um die allgegenwärtige Krebs-
entstehung anzugehen. Als Nächstes wurde die Zellzyklusdynamik erforscht, wobei die
zeitliche oszillierende Dynamik, die das Fortschreiten der Zellen durch den Zellzyklus
bestimmt, aufgedeckt wurde.

In der ersten Hälfte der Arbeit werden die Zellzyklusdynamik und die Evolution
von Krebsstammzelllinien unter Einbeziehung von Rückkopplungsregulationsmechanis-
men untersucht. Dabei wurde die zentrale Rolle von Rückkopplungsschleifen bei der
Ausbreitung von Krebsstammzellen gründlich untersucht, was neue Perspektiven für
die Krebsentstehung eröffnet. Dann erweitern wir unseren Modellierungsbereich und
untersuchen das Zusammenspiel zwischen ruhenden und wuchernden Zellpopulationen,
um die Bedeutung ihres Gleichgewichts in der Krebsbiologie zu beleuchten. Die in
diesem Zusammenhang entwickelten Modelle bieten potenzielle Möglichkeiten für ge-
zielte Krebstherapien, die auf perspektivische Zellpopulationen abzielen, die für das
Fortschreiten von Krebs entscheidend sind. Die zweite Hälfte der Arbeit befasst sich mit
der Multiskalenmodellierung von proliferierenden und ruhenden Zellpopulationen unter
Einbeziehung der Zellzyklusdynamik und deren Erweiterung durch Mutationserwerb.
Nach einer strengen mathematischen Analyse wurden die Existenz und Einzigartigkeit
der vorgeschlagenen Modellierungsrahmen zusammen mit stationären Lösungen und
Stabilitätskriterien untersucht.

Zusammenfassend lässt sich sagen, dass diese Arbeit einen bedeutenden Fortschritt in
unserem Verständnis der Krebsentstehung darstellt, da sie einen umfassenden Überblick
über das komplexe Zusammenspiel zwischen Zellzyklusdynamik, Ruhe, Proliferation,
Mutationserwerb und Krebsstammzellen bietet. Der Weg zur Überwindung von Krebs
ist noch lange nicht zu Ende. Diese Forschung liefert jedoch wertvolle Erkenntnisse und
Hinweise für künftige Untersuchungen, die uns dem Ziel näher bringen, die Auswirkungen
dieser schrecklichen Krankheit zu lindern.
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CHAPTER 1
Cancer: A biological perspective

1.1 Introduction to cancer
Cancer, a complex and devastating disease, arises from the uncontrolled growth and
division of cells within the human body. It is characterized by the accumulation of genetic
mutations that disrupt the normal regulatory mechanisms governing cell growth and
division. These mutations can occur in various genes responsible for controlling cell cycle
progression, DNA repair, and apoptosis. Commonly mutated genes in cancer include
tumor suppressor genes (e.g., TP53) and oncogenes (e.g., KRAS). Mutations can result
from a wide range of factors, including exposure to carcinogens, genetic predisposition,
or random errors in DNA replication. The accumulation of mutations leads to the
transformation of normal cells into cancerous cells, which can evade the body’s immune
system and proliferate uncontrollably. In order to understand cancer from a biological
perspective, it is essential to delve into the fundamental processes that govern normal
cellular behavior. The human body consists of trillions of cells, each carrying out specific
functions for maintaining tissue homeostasis and overall health of an organism. Cell
division, the process by which a parent cell divides into two daughter cells, plays a vital
role in growth, development, and tissue repair. Under normal circumstances, cell division
is tightly regulated by a complex network of signaling pathways, ensuring that cells divide
only when necessary and rectify any potential errors or abnormalities. However, the
balance between cell growth and cell death is disrupted when mutations occur in critical
genes involved in these regulatory mechanisms. Consequently, cells acquire the ability to
divide uncontrollably, leading to the formation of tumors.

Cancer cells possess several distinct hallmarks that differentiate them from their healthy
counterparts. The “hallmarks of cancer” is a conceptual framework that was proposed
initially by Douglas Hanahan and Robert Weinberg in a seminal paper published in the
journal Cell in 2000, titled “The Hallmarks of Cancer”, [1]. This framework outlines
several fundamental characteristics or traits shared by most, if not all, human cancers
as they progress and develop into malignant tumors. Over time, this framework has
been expanded to include additional hallmarks and enabling characteristics, [2]. In
addition, they introduced the concept of “enabling characteristics,” or means that enable
premalignant cells to acquire the six hallmarks of cancer. Recently, authors further
revisited the list, proposing one new emerging hallmark and two additional enabling
characteristics, [3]. In the sequel, we discuss some of these cancer hallmarks.
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1.1 Introduction to cancer

First and foremost, cancer cells exhibit sustained proliferative signaling [4], meaning
they continually receive and respond to signals that promote cell division, even without
external stimuli. Additionally, cancer cells can evade programmed cell death, or apoptosis,
which serves as a safeguard mechanism to eliminate damaged or abnormal cells [5]. Besides
the essential ability of cancer cells to generate and maintain growth-promoting signals, they
must also find ways to evade powerful mechanisms that restrain cell proliferation. Among
these tumor suppressors, two stand out as prototypes: the RB (retinoblastoma-associated)
and TP53 proteins, [6, 7]. These proteins are central hubs in two interconnected cellular
regulatory networks that play pivotal roles in determining whether cells should proceed
with proliferation or trigger programs leading to cellular senescence or apoptosis. Another
hallmark of cancer is the ability to sustain angiogenesis, [4, 8], the process by which new
blood vessels are formed to supply oxygen and nutrients to the growing tumor mass. It
ensures the tumor’s survival and facilitates its growth and metastatic potential, enabling
cancer cells to invade and colonize other organs. Furthermore, cancer cells exhibit limitless
replicative potential, achieved through the activation of an enzyme called telomerase,
which prevents the shortening of telomeres (protective caps at the ends of chromosomes)
that usually occurs with each round of cell division, [9, 10]. By maintaining the integrity
of their telomeres, cancer cells can continue to divide indefinitely. In addition to these
core hallmarks, cancer cells also display a remarkable ability to invade surrounding tissues
and metastasize to distant sites. This invasive and metastatic behavior is driven by the
acquisition of genetic alterations that enable cancer cells to detach from the primary
tumor, invade the surrounding extracellular matrix, enter the bloodstream or lymphatic
system, and establish secondary tumors in distant organs, [11, 12].

Developing effective therapeutic strategies for cancer requires a comprehensive under-
standing of the biological mechanisms that drive its initiation and progression. Multiscale
mathematical modeling is a powerful tool to investigate the dynamic interplay between
healthy and cancerous cellular populations, the impact of genetic mutations on tumor cell
proliferation, the evolution of distinct cellular subpopulations, and the role of cell cycle
dynamics in these processes. To ensure that mathematical models accurately represent
the behavior of biological systems, it is essential to establish the uniqueness of solutions.
Additionally, stability analysis helps to evaluate the long-term behavior of these solutions
and distinguish whether a particular system tends to approach a steady state or exhibits
fluctuations that may signify the onset or critical transition in cancer progression. By
integrating mathematical models with experimental data, researchers can unravel the
complex dynamics of cancer, explore new interventions, and refine treatment modalities.
This interdisciplinary approach holds great promise for advancing our understanding of
cancer biology and improving patient outcomes.

To conclude, cancer is a complex disease characterized by the accumulation of genetic
mutations that disrupt normal cellular processes. These mutations confer cancer cells with
distinct hallmarks, including uncontrolled proliferation, evasion of cell death, angiogenesis,
limitless replicative potential, and invasive and metastatic behavior. To gain a better
understanding of these processes, multiscale mathematical modeling proves to be an
invaluable tool, allowing for the examination of cellular behavior at various levels, from
molecular mutations to the broader spectrum of evolutionary changes. By employing
such approach, we can gain valuable insights into the dynamics of both healthy and
cancerous cell populations, which, in turn, can significantly contribute to the development
of more efficacious therapeutic strategies.
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1.2 Key definitions

1.2 Key definitions

1.2.1 Cell division

Cell division is a crucial biological process where a single parent cell divides into two or
more daughter cells. This process is vital for the growth, development, tissue repair, and
maintenance of multicellular organisms. The two main types of cell division are mitosis
and meiosis.

• Mitosis is responsible for the growth and repair of tissues, resulting in two daughter
cells with the same genetic information as the parent cell.

• Meiosis is a specialized cell division that occurs in germ cells and leads to the
formation of cells with half the genetic material necessary for sexual reproduction.

1.2.2 Cell differentiation

The process of cell differentiation involves the specialization of undifferentiated or unspe-
cialized stem cells to develop specific functions and structures. This transformation leads
to the acquisition of unique characteristics, gene expression patterns, and functionalities
that enable cells to perform specific roles within the body. The significance of this process
lies in its crucial role in the development and maintenance of multicellular organisms.

1.2.3 Self-renewal

Self-renewal is a property of stem cells, that allows them to divide and generate daughter
cells that are similar to the parent cell. It means that a stem cell can produce one or
more daughter cells that retain the same stem cell properties, such as the ability to
differentiate into specialized cell types. Self-renewal is essential for maintaining a pool of
undifferentiated cells in tissues and organs, ensuring their long-term function and repair
capabilities. Self-renewal can take place in two ways, as shown in Figure 1.1:

Asymmetric division Symmetric division

StemDifferentiated Stem Stem Differentiated Differentiated

Figure 1.1: Symmetric and asymmetric stem cell divisions.

• Symmetric self-renewal: a stem cell divides to produce two daughter cells that are
identical to the parent cell. Both daughter cells have the same stem cell properties
and differentiation potential.

• Asymmetric self-renewal: a stem cell divides to produce two daughter cells, but they
are not identical. One daughter cell retains the stem cell properties and maintains
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1.3 Cell lineages

stemness, while the other daughter cell undergoes differentiation and takes on a
more specialized role.

1.2.4 Cell age

Cell age refers to the biological or chronological age of individual cells within a population.
It represents how long a cell has existed or its position in a developmental timeline based
on biological features or markers.

1.2.5 Cell maturity

Cell maturity represents the state of development or differentiation of a cell. It reflects
how specialized or differentiated a cell has become in carrying out its specific functions
within an organism.

1.2.6 Pseudotime

Pseudotime is a computational concept used to order individual cells along a continuous
trajectory or timeline based on their gene expression profiles. It represents the inferred
developmental progression of cells within a biological system.

1.2.7 Proliferation

Proliferation is a process of cell division and reproduction, resulting in the generation of
new daughter cells from a single parent cell. It is a part of the cell cycle, which consists
of phases such as G1 (gap 1), S (synthesis), G2 (gap 2), and M (mitosis). During the cell
cycle, cells duplicate their genetic material (DNA replication) and then divide into two
daughter cells.

1.2.8 Quiescence

Quiescence, also known as the G0 phase of the cell cycle, is a state in which cells
temporarily exit the active cell cycle and become non-dividing and non-proliferating.
Cells in quiescence are in a resting phase. Cells enter quiescence such as lack of appropriate
growth signals or response to stress. In this state, cells remain metabolically active but
do not actively divide.

1.3 Cell lineages
A cell’s lineage refers to the complete developmental history of a tissue or organ, starting
from the initial stages in the fertilized embryo and proceeding through a series of divisions
and differentiations until it reaches a specific cell type, known as its “cell fate.” This
lineage is established by tracing the cellular ancestry of an organism over time, starting
from the original cells and concluding with a fully mature cell that can no longer undergo
division. The life of an individual cell commences with a cell division event and culminates
with either a second division, resulting in two offspring cells, or with cell death and no
further offspring. Cells are the fundamental entities in cell lineages, and a stem cell lineage
represents a unique lineage that originates from a stem cell or a population of stem cells, for
instance, see Figure 1.2, which shows a stem cell lineage of blood-forming hematopoietic
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stem cells that give rise to all blood and immune cell types, [13]. Stem cells are crucial in

Figure 1.2: Stem cell lineage of blood-forming hematopoietic stem cells give rise to all
blood and immune cell types [13].

development, tissue repair, and maintenance of organisms. They are classified based on
their differentiation potential, including totipotent, pluripotent, multipotent, oligopotent,
and unipotent stem cells, each with varying levels of developmental potential. The
concept of stem cells encompasses multiple generations, as they possess the ability to
self-renew, thus producing one or two cells resembling the parent, which ceases to exist
upon splitting. Each type of stem cell exhibits a characteristic level of potency, which
refers to the range of cell types they can develop into. The categorization of stem cells
based on their potency is:

• Totipotent: Stem cells that can give rise to an entire organism and extra-embryonic
tissues.

• Pluripotent: Stem cells that can develop into all cell types in an adult organism.

• Multipotent: Stem cells that can generate only a limited set of mature cell types.

• Oligopotent: Stem cells restricted to producing a few mature cell types.

• Unipotent: Stem cells with the ability to produce only one specific cell type.

1.4 Mutations in cell lineages
Over time, the human body’s trillions of cells experience a gradual accumulation of
inheritable changes. These changes manifest in a patchwork pattern across tissues, with
some areas showing more advanced alterations that could potentially lead to disease. In
contrast, other tissue regions may appear outwardly normal but subtly progress toward
malfunction. Cancer, as a disease, advances through heritable changes in cells, which
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are then passed down through cell lineages. To gain a comprehensive understanding
of cancer progression, it is essential to delve into the history of cell lineages and how
different lineages interact with each other. Inheritance relies on genes faithfully passed
from one generation to the next in all living organisms, including microorganisms. While
biochemical mechanisms are in place to ensure the accurate transmission of genes,
mutations - sudden alterations in the sequence of nucleotide bases A, C, G, T - can and
do occur, [14]. These mutations introduce variability into the gene pool and are also
heritable. Therefore, a mutation can be defined as an “abrupt and heritable modification
in the nucleotide sequence of a gene.” Mutations inevitably modify the genotype, which
is the genetic makeup of a cell, consequently impacting the phenotype - the observable
traits arising from that genotype’s expression in an organism.

Mutation stands as a critical phenomenon because it serves as the ultimate source of
genetic diversity, [15]. Without mutations, all genes would remain unchanged, and the
emergence of new variants or mutants (alleles) would be impossible. Hence, mutations
play a pivotal role in providing the essential genetic variability that allows microorganisms
to evolve and adapt effectively to environmental changes. However, it is crucial to strike a
balance, as an excess of mutations occurring too frequently could disrupt the transmission
of genetic information across generations significantly, [16].

1.4.1 Types of mutations

There are numerous mechanisms by which a DNA can be changed, leading to a variety
of mutation types. A concise overview of some of these is given below:

Original sequence

Point mutation

Insertion Deletion

Substitution Inversion

Figure 1.3: Different types of mutations, adapted from [17].
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1.4 Mutations in cell lineages

1.4.1.1 Point mutations

Point mutations involve the substitution of one nucleotide base with another in the DNA
sequence, [18]. There are two main subtypes:

• Missense mutations: In this type, a single nucleotide change leads to the
substitution of one amino acid in a protein with another. Depending on the specific
change, it can have either mild or severe effects on protein function.

• Nonsense mutations These mutations introduce a premature stop codon in the
DNA sequence, leading to the production of a truncated, nonfunctional protein.

1.4.1.2 Insertions and deletions (Indels)

Indels involve the addition (insertion) or removal (deletion) of one or more nucleotide
bases from the DNA sequence. These mutations can lead to frameshifts, where the
reading frame of the gene is altered, often resulting in nonfunctional proteins.

1.4.1.3 Silent mutations

Silent mutations are point mutations that do not alter the amino acid sequence of a
protein. They occur in non-coding regions of genes or in regions where multiple codons
code for the same amino acid. While they do not change the protein’s structure, they
can still affect gene regulation and mRNA stability.

1.4.1.4 Inversions and translocations

Inversions involve the reversal of a segment of DNA within a chromosome, while translo-
cations involve the exchange of genetic material between non-homologous chromosomes.
Both of these structural mutations can lead to disruptions in gene expression and
potentially cause genetic disorders.

1.4.1.5 Repeat expansions

Repeat expansion mutations involve the lengthening of repetitive DNA sequences within
the genome. These mutations are associated with various genetic disorders, including
Huntington’s disease and fragile X syndrome (FXS).

1.4.1.6 Spontaneous and induced mutations

Mutations can occur spontaneously due to errors in DNA replication or environmental
factors. Induced mutations result from exposure to mutagens such as radiation, chemicals,
or UV light.

1.4.2 Mutation rate

Mutation rate refers to the frequency at which genetic alterations occur in the DNA of
an organism. Understanding the mutation rate is pivotal in comprehending the dynamics
of genetic diversity, evolution, and the development of diseases, as it influences the
emergence of new genetic variants within a population, which ultimately can lead to
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cancer.
From the mathematical modeling perspective, mutation rate is typically defined as the

probability of a cell undergoing a genetic mutation within a given unit of time. This
probability can be represented mathematically as a rate constant denoted by the symbol
m. The mutation rate is often expressed as mutations per cell division or mutations per
cell per generation. Here is a simple mathematical representation of the mutation rate m
in the context of a basic birth-death process:

P (mutation in a given time interval) = m · ∆t,

where P (mutation in a given time interval) is the probability of a mutation occurring in a
small time interval ∆t. This equation provides a simple way to incorporate the mutation
rate into mathematical models of cell populations.

1.5 Multiscales in cancer
Cancer is a multifaceted disease that involves various biological scales. It encompasses
genetic changes that affect intracellular processes and tissue-level dynamics governing
tumor growth and metastasis. These different biological scales correspond to different
physical scales in length and time. For instance, intracellular biochemical reactions occur
on timescales of seconds or less and often involve gradients over micrometer distances.
Phenomena at the cellular and cell-to-cell level typically occur on length scales of tens of
micrometers and timescales spanning seconds to minutes. At the tissue level, relevant
scales are even more prominent. To bridge these scales, multiscale computational models
can help us predict how perturbations at one scale can impact processes at other scales.

As cancer is inherently multiscale, different approaches are required to describe its
variables in research. One such approach is the use of continuum descriptions which
utilize differential equation-based models. Another approach involves the utilization of
agent-based or stochastic models to describe discrete entities or events within cells and
tissues. Hybrid models, which are a combination of both, are also used. These approaches
are necessary as critical processes unfold at intracellular, cell-to-cell, and tissue levels
in cancer. Understanding the characteristics and requirements of different modeling
methods is crucial for accurately simulating various biological processes. Continuum
models are ideal for predicting the spatiotemporal progression of intracellular signaling
pathways, provided that a sufficient amount of protein and rate expressions are known.
On the other hand, discrete models are better suited for processes that rely on cell-to-cell
interactions, resulting in spatial variations. In some cases, hybrid models are necessary
to simulate processes with spatial heterogeneity that are influenced by a field, like a
chemokine gradient, which can be accurately described using continuum methods.

The term “multiscale” itself refers to the various levels or dimensions at which cancer
can be studied and analyzed, see Figure 1.4. These scales offer unique perspectives on
various aspects of cancer biology and its intricacies. Below are some of the primary
multiscales utilized in cancer research:

• Atomic scale: The atomic scale is utilized to analyze the structural and dynamic
characteristics of proteins, peptides, and lipids, and to investigate how these
properties are impacted by environmental factors or interactions with ligands.
At this scale, molecular dynamics (MD) simulations are the leading modeling
approach, which involve the interaction of atoms and molecules over a specific
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1.5 Multiscales in cancer

duration. Atomic-scale models operate within nanometer-length scales and deal
with timescales in the order of nanoseconds.

• Molecular scale: Models that operate at the molecular level do not depict
the individual molecular dynamics of proteins. Instead, they offer an average
representation of properties across a population of proteins. This scale is primarily
used to investigate cell signaling mechanisms, which serve as natural regulators in
biological, [19]. Biomedicine is actively involved in analyzing this scale, and it holds
the potential to reveal new therapeutic targets for combating diseases. The process
of signal transduction begins with the binding of extracellular molecules (known
as ligands) to receptors on the cell surface, ultimately leading to changes in cell
function. Present modeling endeavors primarily focus on this scale, contributing
valuable insights into quantifying relationships between signals and responses, and
deciphering the signaling events governing cellular reactions, see [20]. Biochemical
reactions involved in signaling pathways are often represented by ordinary differential
equations (ODEs). Molecular-scale models encompass length scales ranging from
nanometers to micrometers and timescales from microseconds to seconds.

• Microscopic scale: The microscopic scale also referred to as the tissue or mul-
ticellular scale, also encompasses the cellular scale, which includes the behaviors
and properties of individual cells. A selectively permeable cell membrane encloses
each cell, [21]. Models operating at this scale must effectively depict the trans-
formation of normal cells into malignant ones, the associated changes in cell-cell
and cell-matrix interactions, the complex and diverse tumor environment, and the
presence of tumor heterogeneity. Typically, these models employ partial differential
equations (PDEs) or agent-based modeling (ABM) to simulate these factors and
processes, rather than ordinary differential equations (ODEs). It is worth noting
that the simulation duration can significantly increase when examining individual
cell behaviors in fine detail. Tissue-scale models encompass length scales ranging
from micrometers to millimeters and timescales ranging from minutes to hours.

• Macroscopic scale: Macroscopic scale models focus on studying the overall
behavior of the tumor, including its shape, morphology, level of vascularization,
and invasiveness under different environmental conditions, [22]. To describe tissue
properties at the macroscopic level, microscopic details of tissue structure are
averaged over short spatial scales. This allows for the modeling of cell and substrate
transport using conservation laws for spatiotemporally varying densities like partial
differential equations (PDEs), instead of tracking individual cell activities. In
these models, cells are generally treated as a single continuum, which is sometimes
necessary because of the large number of cells involved. Macroscopic models consider
how cells respond to gradient fields originating from various sources, including
concentration gradients of diffusible or non-diffusible molecules, as well as strain and
stress gradients produced by the growing tumor mass. These models operate within
length scales ranging from millimeters to centimeters and timescales spanning from
days to years.

Since molecular-level processes occur significantly faster, it is reasonable to posit that
they reach a quasi-equilibrium state with the slower, higher-level processes. In other
words, we can incorporate lower-level processes into the higher level using methods like
constitutive equations or force fields. For instance, when a reaction unfolds at a rapid
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Ordinary differential equations (ODEs)

Single cell dynamics (Cell cycle)
Cellular automata models
Agent-based models (ABMs)
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Figure 1.4: An illustration of multiscale map in cancer consisting of the DNA, proteins,
cellular, subcellular interactions and tissue scales.

timescale, we can assume that the chemicals involved are in equilibrium. This assumption
simplifies the integrated system by removing one of the differential equations, streamlining
the solution process, and reducing computational demands, all while preserving model
accuracy. This type of multiscale modeling, where lower-level processes (characterized
by small spatial scales and fast dynamics) are integrated with higher-level processes
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(involving large spatial scales and slower dynamics), has garnered significant attention in
contemporary quantitative cancer research. It proves particularly valuable in developing
multiscale models because the system of governing equations typically becomes extensive
and complex.

1.6 Modeling Techniques: Discrete, Continuum, Hybrid
In this section, we delve into three main modeling techniques commonly used in cancer
research to model various aspects of cancer dynamics and behavior.

1.6.1 Discrete modeling

Discrete modeling involves explicitly representing individual cells in both space and
time, with their internal states updated based on predefined biological and biophysical
rules. This method is particularly valuable for studying various aspects, including
carcinogenesis, genetic instability, natural selection, and mechanisms of cell-cell and
cell-matrix interactions. The dynamics of discrete cancer cells can be explored through
lattice-based or lattice-free methods: the former employs a grid system in which cells
reside, while the latter allows cells to operate in arbitrary locations and interact in
various directions. Discrete modeling’s strength lies in translating detailed biological
findings into model rules, [23]. However, as the number of cells in the model increases,
the computational demands escalate rapidly, limiting the spatial and temporal scales
these models can effectively represent.

1.6.2 Continuum modeling

Continuum modeling, on the other hand, characterizes tumor tissue as a continuous
medium, preceding the need to explicitly model individual cells. Instead, it operates at a
larger scale and employs principles from continuum mechanics, typically employing partial
differential equations (PDEs) or integro-differential equations to describe continuous
fields for model variables. Standard variables in continuum models, such as cell volume
fractions, density, and concentrations of substances like nutrients, oxygen, and growth
factors, are more accessible for analysis and control compared to discrete modeling, [24].
While continuum models can capture global tumor growth and invasion properties at
tissue scales, they cannot examine individual cell dynamics and discrete events, like
epithelial-mesenchymal transition (EMT). This limitation is essential when studying the
impact of genetic, cellular, and microenvironment factors on overall tumor behavior.

1.6.3 Hybrid modeling

Hybrid modeling aims to harness the strengths of both continuum and discrete modeling
approaches. These models can be categorized into composite hybrid modeling and
adaptive hybrid modeling, [25, 26]. In composite hybrid models, individual cells are
treated discretely while interacting with chemical and mechanical continuum fields.
These models facilitate the coupling of different scales influenced by the growth process,
incorporating biophysical, biochemical, and biomechanical information between scales.
In adaptive hybrid models, discrete and continuum representations of cells are chosen
dynamically, with discrete modeling applied when necessary, such as for EMT, and
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1.7 A brief review of cell population models

continuum modeling used for the tumor bulk. Adaptive hybrid modeling provides high
resolution where needed while optimizing computational efficiency to support scalability
for clinical applications. While both continuum and discrete approaches have provided
valuable insights into cancer-related processes at specific spatial and temporal scales, the
complexity of cancer and its intricate interactions demand a multiscale continuum-discrete
(hybrid) approach. Hybrid models have the potential to bridge biological phenomena from
molecular and cellular scales to the tumor scale, offering a comprehensive understanding
of cancer dynamics.

1.7 A brief review of cell population models
In this section, we present a review of the models that can be employed to quantitatively
model and simulate cell population dynamics.

1.7.1 Population growth models

1.7.1.1 Exponential growth

Exponential growth can be described as follows:

dN
dt = rN, N(0) = N0,

where N is the number of cells and r is the population growth rate. This model assumes
that the population rate of change is proportional to the population size N . By integration
we can obtain an analytic solution that describes the number of cells in the population
as a function of time t and growth rate

N(t) = N0 exprt,

where N0 is the initial number of cells in the population. The major limitation of modeling
growth as an exponential process is that the exponential phase of growth is short-lived
in biologically realistic scenarios, Figure 1.5. It is only one phase of growth for cell
populations when infinite natural resources are available.

1.7.1.2 Logistic growth

In the real world, characterized by finite resources, exponential growth cannot be sus-
tained indefinitely. Exponential growth might be observed in environments with a low
number of individuals and abundant resources. However, as the population size increases,
the availability of resources diminishes, leading to a deceleration in the growth rate.
Ultimately, this growth rate reaches a point where it plateaus or stabilizes (as illustrated
in Figure 1.5). This maximum population size, which denotes the highest population
that a specific environment can sustain, is referred to as the carrying capacity, denoted
as K. The logistic model describes changes in population size with time as

dN
dt = rN

(
1 − N

K

)
, N(0) = N0.
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Figure 1.5: Behavior of exponential and logistic growth models.

Notice that when N is very small, 1 − N/K becomes close 1, and the right side of
the equation reduces to rN , which means the population is growing exponentially and
is not influenced by carrying capacity. On the other hand, when N is large, 1 −N/K
becomes close to zero, which means that population growth will be slowed greatly or
even stopped. Therefore, population growth is greatly slowed in large populations by the
carrying capacity K. This model also allows for the population of a negative population
growth, or a population decline.

1.7.1.3 Monod kinetics

The Monod model is a commonly employed mathematical model that links the rate of
population growth, denoted as r to the concentration of a limiting resource, [27]. The
Monod equation is as follows:

r = rmax
S

Ks + S
,

where rmax represents the maximum growth rate achievable by microorganisms, S denotes
the concentration of the essential substrate necessary for growth, and Ks signifies the
value of S at which the growth rate reaches half of its maximum potential. It’s important
to note that both rmax and Ks are empirical coefficients, and their specific values depend
on the species and environmental conditions under consideration.

1.7.1.4 Allee effect

The Allee effect is a biological phenomenon in which the size of a population influences
individual growth, deviating from the typical pattern of logistic growth, [28]. While Allee
effects are commonly studied in ecology, particularly in the context of mating populations,
they have also been integrated into models that describe populations of cancerous cells,
[29]. The strong Allee effect where growth rate is negative at small N is described by the
following ODE

dN
dt = rN

(
1 − N

K

)(
N

Nc
− 1

)
, N(0) = N0.
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where Nc is the critical population size (threshold) required for growth. This model has
stable fixed points at 0 and K and an unstable fixed point at Nc. The population has a
negative growth rate when 0 < N < Nc and a positive growth rate when Nc < N < K.

1.7.1.5 Baranyi model

The growth curve’s lag-time or adaptation time is a crucial aspect that previous models
do not adequately account for. The Baranyi model, on the other hand, accurately char-
acterizes the lag phase and the transition to the exponential phase, and it is represented
by the following form, [30]:

dN
dt = (µmaxα(t)f(N) + ξ(t))N,

where µmax is the maximum growth rate, α(t) is an adjustment function, and f(N) is
an inhibition function describing end-of-growth inhibition and finally, ξ(t) is a Gaussian
white noise term to model stochastic fluctuations in population size.
The Baranyi model can be employed in conjunction with any of the models discussed
before to depict the transition period that occurs before exponential growth or decay.
The physiological state of individual cells is influenced by their prior growth environment
and exposure to stressful conditions. This influence can lead to an extension of the lag
phase and an increase in the variability of lag times between individual cells.

1.7.2 Markov chain models

Markov chain models are frequently used in cell population dynamics to describe and
analyze the stochastic behavior of cell populations over time and to annotate morphological
state and multiphenotype properties from experimental data, [31]. These models are
particularly valuable when individual cells undergo discrete, probabilistic transitions
between different states or phenotypes. In cell biology, individual cells can exist in various
states or phenotypes, such as stem cells differentiating into specialized cell types or cancer
cells transitioning between different stages of malignancy. Markov chain models capture
these transitions as probabilistic events. Each state represents a specific cell condition,
and the transitions between states occur with defined probabilities. At each time step,
Markov chain models calculate the probabilities of cells transitioning from one state to
another based on the current state distribution and transition probabilities. The core
of a Markov chain model is the transition probability matrix. This matrix outlines the
probabilities of transitioning from one state to another. It is a square matrix, and its
elements represent the probabilities of transitioning from one state to another within a
single time step. Additionally, cell-to-cell variability within a population can be accounted
in Markov chain model. This is crucial when dealing with heterogeneous cell populations,
as they allow for the modeling of stochastic behaviors and transitions between different
subpopulations of cells. Estimating transition probabilities and other parameters of the
Markov chain model often involves statistical methods and experimental data. Model
parameters can be estimated through techniques like maximum likelihood estimation or
Bayesian inference.
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1.7.3 Agent-based models

Agent-based models (ABMs) simulate individual cells as autonomous agents with specific
behaviors and rules. They are used to study cell-cell interactions, cell migration, and
the emergence of complex behaviors in cell populations. Since cancer is known for
heterogeneity, where cells within a tumor exhibit diverse behaviors and characteristics.
ABMs excel in capturing this heterogeneity by representing individual cancer cells as
agents with their unique attributes, including growth rates, mutations, and motility.
Moreover, ABMs can simulate cell-cell interactions, including competition for resources,
signaling, and genetic mutations. Agents interact based on proximity and can influence
each other’s behaviors. They can also incorporate the tumor microenvironment, including
blood vessels, immune cells, and extracellular matrix components. These elements play
crucial roles in tumor growth and response to therapy.

Agent-based models require data for parameterization, which can be challenging
to obtain. However, advances in high-throughput technologies and patient-specific
data collection have improved parameter estimation. Complex agent-based models can
also be computationally intensive. There is always a trade-off between accuracy and
computational complexity. However, techniques like parallel computing and optimization
approaches help address this challenge. Finally, for agent-based models it is essential to
ensure that model predictions align with experimental observations. Model validation
often involves comparing simulation results to in vitro and in vivo data.

1.7.4 Physiologically structured population models

Structured population models used in ecology and population biology to describe and
analyze populations that can be subdivided into distinct classes or categories based on
specific characteristics or attributes. In other words, in these models size is viewed as
a continuum variable specific to individuals, such as mass, volume, length, maturity,
bacterial or viral load, or other physiologic or demographic property. These models
are particularly valuable when studying populations with age, size, or other structured
components that influence population dynamics. They describe how individual cells move
between different states over time. Transition dynamics include birth, death, growth, and
other processes specific to each state. The earliest models of age-structured populations,
pioneered by Sharpe and Lotka in 1911, [32] and later by McKendrick in 1926, [33], laid
the groundwork for utilizing partial differential equations in the modeling of continuous
age structure within evolving populations.

1.7.4.1 McKendrick–von Foerster model

The McKendrick–von Foerster equation is a linear first-order partial differential equation
encountered in several areas of mathematical biology – for example, demography and cell
proliferation modeling; it is applied when age structure is an important feature in the
mathematical model. The model reads as, [33]:

∂N

∂t
+ ∂N

∂a
= −µ(a)N, N(0, a) = N0(a),
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where the population density N(a, t) is a function of age a and time t, and µ(a) is the
death function and N0(a) is initial distribution. The boundary condition is

N(t, 0) =
∫ ∞

0
β(a)N(t, a)da,

where β(a) is birth function.

1.7.4.2 Gurtin-MacCamy model

A significant resurgence of interest in age-structured models was sparked by the ground-
breaking research of Gurtin and MacCamy in 1974, [34], particularly in the realm of
nonlinear age-structured models. Their innovative approach, employing nonlinear Volterra
integral equations, not only demonstrated the existence, uniqueness, and convergence
to equilibrium of solutions but also applied these principles to nonlinear adaptations of
the Sharpe-Lotka-McKendrick model. This work, known as Gurtin-MacCamy model,
represented a pivotal advancement in the field of age-structured population modeling.
The model can be expressed as

∂N

∂t
+ ∂N

∂a
= −µ(N(t), a)N,

with the initial condition N(0, a) = N0(a) ≥ 0 and non-local boundary condition

N(t, 0) =
∫ ∞

0
β(N(t), a)N(t, a)da ≥ 0.

Here N(t, a) is the size (density) of a certain population of a given age a ≥ 0 at time t ≥ 0,
µ(N(t), a) is the per capita mortality rate and N(t, 0) is the birth function that depends
on the age-structured size of the population and the per capita birth rate β(N(t), a).
The primary distinction arises from how birth and mortality rates are influenced by
population density.

1.7.4.3 Nonlinear Webb model

A nonlinear model of age and size structured population dynamics described by a density
function N(t, a, x), where t is time, a is age of individuals, and x is the size of individuals.
The prototype model of this kind involves a growing population of cells characterized by
varying cycle lengths (indicated by cell age) and diverse development stages (indicated
by cell size). The initial size of the two daughter cells born from a dividing mother
cell is governed by the division function k. The probability that a daughter cell born
from a mother cell of size x has birth size between y1, and y2 is

∫ y2
y1
k(y, x)dy. For all

x, k(y, x) = 0 for y > x and
∫∞

0 k(y, x)dy = 1. The cell density N(t, a, x) satisfies the
equation, [35]:

∂

∂t
N(t, a, x) + ∂

∂a
N(t, a, x) + ∂

∂x
g(x)N(t, a, x) = −(β(a, x) + µ(a, x))N(t, a, x),

with the initial condition N(0, a, x) = N0(a, x) ≥ 0, and boundary condition

N(t, 0, x) = 2
∫ ∞

0

∫ ∞

0
k(x, u)β(a, u)N(t, a, u)duda (Asymmetric division),

N(t, 0, x) = 4
∫ ∞

0
β(a, 2x)N(t, a, 2x)da (Symmetric division).
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Here, g is the growth function which governs the growth of individual cells. If g(x) = c,
where c is a constant, then individual cells have linear growth. The function β(a, x) is
division rate for cells of age a and size x and finally µ(a, x) represents the death rate of
cells. The total population NT (t) at any time t is

NT (t) =
∫ amax

0

∫ xmax

0
N(t, a, x)dxda,

where amax and xmax are maximum values of age and size, respectively.
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CHAPTER 2
Cell cycle: Biological insights and mathematical
abstractions

The cell cycle, an intricate sequence of molecular events, lies at the basis of life itself. It
is the fundamental process by which cells grow, divide, and ultimately contribute to the
growth, development, and maintenance of multicellular organisms, [36]. Furthermore, the
cell cycle is the mechanism that allows multicellular organisms to grow, repair damaged
tissues, and maintain their structural integrity. In embryonic development, the cell cycle
is responsible for the formation of the body’s various tissues and organs. Throughout an
organism’s life, the cell cycle continues to play a pivotal role in tissue renewal and repair.

At its core, the cell cycle is a highly regulated and sequential process that governs
the duplication and division of a single parent cell into two identical daughter cells, [37].
This remarkable journey progresses through various distinct phases, each characterized
by a series of events that guarantee the accurate transmission of genetic information
from one generation to the next.

• Interphase: The journey commences during interphase, where the cell prepares
itself for division. This phase encompasses three distinct subphases: G1 (Gap 1), S
(Synthesis), and G2 (Gap 2). In G1, the cell accumulates the necessary energy and
resources for DNA replication. Subsequently, during the S phase, the cell replicates
its DNA, ensuring that each daughter cell will receive a complete set of genetic
instructions. Lastly, G2 serves as a checkpoint phase during which the cell evaluates
if it is ready for division.

• Mitosis: Following interphase, the cell enters the phase known as mitosis. Here,
the nucleus divides, and the cell’s genetic material is apportioned into two separate
daughter nuclei. Mitosis consists of a series of stages: prophase, metaphase,
anaphase, and telophase, each with distinct cellular events and precise control
mechanisms.

• Cytokinesis: After mitosis, the physical division of the cell takes place during
cytokinesis. This process divides the cell’s cytoplasm and organelles, ultimately
yielding two distinct and genetically identical daughter cells.

Understanding the cell cycle is not only crucial for deciphering the essence of life but
also for gaining insights into one of the most relentless foes of human health-cancer.
Although the cell cycle represents an extraordinary feat of biological regulation, it is
not immune to vulnerabilities. Among its most significant challenges is the emergence
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of cancer. Cancer arises when the cell cycle’s intricate control mechanisms break down,
leading to uncontrolled cell growth and division. Mutations in genes that regulate the cell
cycle, such as tumor suppressor genes and oncogenes, can disrupt the delicate balance
between cell proliferation and cell death, [1]. Understanding the significance of the cell
cycle’s role in cancer is of paramount importance in the field of oncology. It has paved
the path for advancement of the targeted therapies that aim to restore normal cell cycle
control in cancer cells, offering hope in the ongoing battle against this devastating disease.

In the sequel, we delve into the molecular interactions of cell cycle in all four phases
which play substantial role in the progression of cell cycle.

2.1 Cell cycle: Molecular interactions
A cell cycle encompasses of four different phases of growth and development that suc-
cessively bring about the cell division. This division process can lead to either cell
differentiation, which can occur symmetrically or asymmetrically, or cell proliferation.
Notably, stem cells tend to differentiate more prominently than subsequent cell gen-
erations, which may progressively lose their differentiation potential over time. Here,
we provide an in-depth explanation of the cell cycle process, which relies on intricate
biochemical interactions as depicted in Figure 2.1.

Figure 2.1: Protein Interactions during the cell cycle: Key regulatory events in each
phase.

• G0 Phase: The G0 phase (G-zero phase) is a resting or quiescent phase of the cell
cycle. Cells in the G0 phase are not actively preparing to divide or undergoing the
processes of the traditional cell cycle stages (G1, S, G2, and M phases). Instead,
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they have temporarily exited the cell cycle and are in a non-dividing, resting state.
However, the cells can re-enter the active cell cycle (G1 phase) when prompted by
appropriate signals or changes in their environment. This transition from G0 to an
active phase is often regulated by specific growth factors and signaling pathways.

• G1 Phase (Gap 1): In the course of phase G1, when the cell perceives enough
amount of growth signals from the environment, it induce synthesizes of Cyclin D to
make an active complex with Cdk4/6. This complex can than trigger the activation
of transcription factor E2F by phosphorylating its inhibitor retinoblastoma protein
Rb. Resultantly, the transcription factor E2F is accumulated and activates the
other important Cyclins, i.e., Cyclin D, E and A. Cyclin E and Cdk2 make an active
complex and deactivates Rb by phosphorylation and thus cell transits to S phase.

• S Phase (Synthesis): The synthesis of Cyclin E by transcription factor E2F
enables progression in S phase. The regulation of Cyclin E − Cdk2 complex is also
performed by phosphorylation and dephosphorylation from Cyclin dependent kinase
inhibitor Wee1 and phosphatase Cdc25. Further regulation is achieved by reversible
association with tumor suppressor gene p21 followed from the pathway of p53,
which inhibits the Cdk activity in case of DNA damage in the cell. After making
an active complex, Cyclin A − Cdk2 triggers the degradation of Cyclin E − Cdk2 and
inactivates the transcription factor E2F by phosphorylation to exit S phase.

• G2 Phase (Gap 2): Cyclin A − Cdk2 complex accumulates, thus preparing the
cell for mitosis and ensuring proper DNA replication. G2 serves as a checkpoint
phase where the cell evaluates whether DNA replication in the S phase occurred
correctly and if the cell is ready for mitosis. Accumulation of Cyclin B − Cdk1
occurs in G2 phase which also brought about the transition to M phase. Additional
regulation of Cyclin A − Cdk2 and Cyclin B − Cdk2 complexes are also performed by
phosphorylation and dephosphorylation from Cyclin dependent kinase inhibitor
Wee1 and phosphatase Cdc25.

• M Phase (Mitosis): The M phase includes the stages of mitosis, where the
nucleus divides, and cytokinesis, where the cell physically splits into two daughter
cells. Cyclin B − Cdk1 complex is critical for the progression of mitosis. It triggers
various events, including chromosome condensation, alignment, and separation.
Additionally, it activates the protein Cdc20 by phosphorylation, that triggers the
degradation of Cyclin A and also of Cyclin B. After mitosis, the cell undergoes
cytokinesis, leading to the division of the cytoplasm and organelles, resulting in two
separate daughter cells. The negative feedback reduces the Cdk activity to lowest
level and cell exit the cell cycle to start over if the growth factors are available in
sufficient amount.

The cell cycle can vary among different cell types and is tightly regulated to suit their
specific functions and requirements. Variations in the cell cycle may involve differences
in the duration of each phase or even the presence of specific checkpoints. Some of the
examples include:

• In some cell types, like skin cells and gut epithelial cells, the cell cycle proceeds
rapidly. These cells are often exposed to mechanical wear and tear and require
continuous replacement. The G1 phase may be shorter or virtually absent in these
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cells, allowing them to quickly enter the S phase for DNA replication and progress
through the cell cycle. Checkpoints may be less stringent, as these cells prioritize
rapid proliferation over meticulous error-checking, [38].

• Certain cell types, like neurons and muscle cells, can exit the cell cycle and become
quiescent or non-dividing after reaching a specific stage of differentiation. These
cells often spend a significant portion of their lifecycle in the G0 phase, where they
do not actively participate in the cell cycle, [39].

• Stem cells are unique in that they can either undergo symmetric division (producing
two identical stem cells) or asymmetric division (generating one stem cell and one
differentiated cell). The balance between self-renewal and differentiation depends
on the specific stem cell type and the tissue it resides in, [40].

• Cancer cells often exhibit uncontrolled cell cycle progression. They bypass check-
points and rapidly divide, leading to tumor formation, [1]. Mutations in cell cycle
regulatory genes, such as TP53 (p53) or RB1 (Rb), can disrupt the normal control
mechanisms, allowing cancer cells to evade regulation, [41].

2.2 Mathematical formulation

2.2.1 Kinetic equations

Cell cycle regulation has been modeled using ordinary differential equations, representing
the reaction rate kinetics of key cellular proteins. Modeling the dynamics of the cell
cycle, particularly its temporal oscillatory behavior, is essential to strike a balance
between complexity and simplicity. We focus on a subset of main proteins, referred to
as core regulatory proteins, allowing for a more interpretable model while capturing
the fundamental dynamics of the cell cycle. However, it is essential to recognize that
these simplified models are abstractions of the complex biological reality. They capture
the essential features of the cell cycle; however, they may not account for all possible
regulatory mechanisms and interactions. In the sequel, we explain some critical proteins
in our modeling framework. Cyclin complexes that are main functioning proteins, i.e.,
Cyclin D − Cdk4/6, Cyclin E − Cdk2, Cyclin A − Cdk2 and Cyclin B − Cdk1, are represented
here by Md, Me, Ma and Mb, respectively. E2F is a transcription factor that plays a
crucial role in the initiation of the cell cycle, and Cdc20 is an important component that,
along with Anaphase promoting complex, degrades the Cyclin A and B in order for mitotic
exit. Rb is a tumor suppressor protein critical in regulating the cell cycle and preventing
uncontrolled cell proliferation. p21, also known as cyclin-dependent kinase inhibitor 1
(CDKN1A), plays a crucial role in cell cycle regulation and cell proliferation control. It
is a well-known cell cycle inhibitor and tumor suppressor protein that is an important
checkpoint regulator. Finally, Wee1 kinase plays a pivotal role in cell cycle regulation,
specifically in controlling the progression of the cell cycle through phosphorylation of
Cyclin-dependent kinases.

Our model consist of nine sates (proteins) that are sufficient to describe the cell cycle
mechanism, see Eqs. (2.1)-(2.9). The proposed variables of the model are also listed
in Table 2.1. The oscillatory dynamics of these proteins depicts the cell cycle exit and
re-entry into another cell cycle. Following Michaelis–Menten kinetics, the system of
ordinary differential equations can be expressed as follows:

22



2.2 Mathematical formulation

Variables Definition
Md Cyclin D − Cdk4/6 complex
E2F Transcription factor E2F
Rb Unphosphorylated Retinoblastoma protein
Wee1 Active, dephosphorylated form of kinase Wee1
Me Cyclin E − Cdk2 complex
Ma Cyclin A − Cdk2 complex
Mb Cyclin B − Cdk1 complex
Cdc20 Protein that belongs to the anaphase-promoting complex (APC)
p21 Cyclin-dependent kinase inhibitor p21

Table 2.1: Description of variables in cell cycle model.

dMd
dt = Ksd

(
GF

Kgf + GF

)
− Kmaxmdin

( Md
Kmd + Md

)
− Kp21md Md p21 (2.1)

dE2F
dt = Kse2f + K1e2f

( (E2Ftot − E2F)
Ke2f + (E2Ftot − E2F)

)
(Md + Me) − Krbe2f Rb E2F

− Ke2fma Ma
( E2F

K2e2f + E2F

)
− Kde2f E2F (2.2)

dRb
dt = Ksrb − Krbe2f Rb E2F − Krbmd Md

( Rb
Krb + Rb

)
− Kdrb Rb (2.3)

dWee1
dt = Kswee1 − Kmdwee1 Mb

( Wee1
Kwee1 + Wee1

)
− Kdwee1 Wee1 (2.4)

dMe
dt = Ksme E2F − Kwee1me

( Me
Kme + Me

)
Wee1 − Kp21me Me p21

− Kdme Ma
( Me

K1me + Me

)
(2.5)

dMa
dt = Ksma E2F − Kwee1ma

( Ma
Kma + Ma

)
Wee1 − Kp21ma Ma p21

− Kdma Cdc20
( Ma

K1ma + Ma

)
(2.6)

dMb
dt = Ksmb Ma − Kwee1mb

( Mb
Kmb + Mb

)
Wee1 − Kp21mb Mb p21

− Kdmb Cdc20
( Mb

K1mb + Mb

)
(2.7)

dCdc20
dt = Kscdc20 Mb

( (Cdc20tot − Cdc20)
K1cdc20 + (Cdc20tot − Cdc20)

)
− Kmaxcdc20dph

( Cdc20
Kcdc20 + Cdc20

)
− Kdcdc20 Cdc20 (2.8)

dp21
dt = K1sp21 − K2sp21 E2F

(
Kp21rb

Kp21rb + Rb

)
− Kp21md Md p21 − Kp21me Me p21

− Kp21ma Ma p21 − Kp21mb Mb p21 − K1p21 Me
(

p21
Kp21 + p21

)
− Kdp21 p21 (2.9)
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Hereby, we observe the temporal oscillatory behavior of proteins which play an important
role in determining the cell cycle varying dynamics. In stem cell lineage, each cell
population has varying rates of molecular interactions and hence these parameters vary
for every cell type. In the sequel, we present a detailed description of the parameters
involved in the model given in the Table 2.2 in the same order as they are appearing in
the equations.

Parameter Description Value
Ksd Rate constant for synthesis of Cyclin D − Cdk4/6 induced

by growth factors
0.175h−1

Kgf Michaelis constant for synthesis of the Cyclin D − Cdk4/6
complex induced by growth factors

0.1µM

Kmaxmdin Maximum degradation rate of Cyclin D − Cdk4/6 complex 0.245µMh−1

Kmd Michaelis constant for the degradation of Cyclin D − Cdk4/6 0.1µM
Kp21md Bimolecular rate constant for binding of Cyclin D − Cdk4/6

to p21
0.15µM−1h−1

Kse2f Basal rate of synthesis of E2F 0.15µMh−1

K1e2f Rate constant for activation of E2F by Cyclin D − Cdk4/6
and Cyclin E − Cdk2 complexes

0.805h−1

E2Ftot Total concentration of the transcription factor E2F 2µM
Ke2f Michaelis constant for E2F activation by Cyclin D − Cdk4/6

and Cyclin E − Cdk2 complexes
0.01µM

Krbe2f Bimolecular rate constant for binding of Rb to E2F 0.05µM−1h−1

Ke2fma Rate constant for phosphorylation of E2F by
Cyclin A − Cdk2

4h−1

K2e2f Michaelis constant for E2F phosphorylation by
Cyclin A − Cdk2

5µM

Kde2f Apparent first-order rate constant for non-specific E2F
degradation

0.002h−1

Ksrb Basal rate of synthesis of Rb 0.8µMh−1

Krbmd Rate constant for phosphorylation of Rb 2.2h−1

Krb Michaelis constant for Rb phosphorylation 0.1µM
Kdrb Apparent first-order rate constant for Rb degradation 0.01h−1

Kswee1 Rate of synthesis of kinase Wee1 0.06µMh−1

Kmdwee1 Rate constant for inactivation of kinase Wee1 through phos-
phorylation by Cyclin B − Cdk1

1.2h−1

Kwee1 Michaelis constant for Wee1 inactivation through phospho-
rylation by Cyclin B − Cdk1

0.1µM

Kdwee1 Apparent first-order rate constant for degradation of active
kinase Wee1

0.1h−1

Ksme Rate constant for synthesis of Cyclin E − Cdk2 induced by
the transcription factor E2F

0.21h−1

Kwee1me Rate constant for inactivation of Cyclin E − Cdk2 through
phosphorylation by kinases Wee1

1.4h−1

Kme Michaelis constant for Cyclin E − Cdk2 inactivation through
phosphorylation by kinases Wee1

0.1µM

24



2.2 Mathematical formulation

Kp21me Bimolecular rate constant for binding of Cyclin E − Cdk2 to
p21

0.2µM−1h−1

Kdme Rate constant for the degradation of Cyclin E − Cdk2 by
Cyclin A − Cdk2

0.35h−1

K1me Michaelis constant for the degradation of Cyclin E − Cdk2 0.1µM
Ksma Rate constant for synthesis of Cyclin A − Cdk2 induced by

the transcription factor E2F
0.175h−1

Kwee1ma Rate constant for inactivation of Cyclin A − Cdk2 through
phosphorylation by kinases Wee1

1.85h−1

Kma Michaelis constant for Cyclin A − Cdk2 inactivation through
phosphorylation by kinases Wee1

0.1µM

Kp21ma Bimolecular rate constant for binding of active
Cyclin A − Cdk2 to p21

0.15µM−1h−1

Kdma Rate constant for the degradation of the Cyclin A − Cdk2
complex by the protein Cdc20

0.245h−1

K1ma Michaelis constant for the degradation, activated by Cdc20,
of Cyclin A − Cdk2

0.1µM

Ksmb Rate constant for synthesis of Cyclin B − Cdk1 induced by
Cyclin A − Cdk2

0.21h−1

Kwee1mb Rate constant for inactivation of Cyclin B − Cdk1 through
phosphorylation by kinases Wee1

2.1h−1

Kmb Michaelis constant for Cyclin B − Cdk1 inactivation through
phosphorylation by kinases Wee1

0.1µM

Kp21mb Bimolecular rate constant for binding of Cyclin B − Cdk1 to
p21

0.12µM−1h−1

Kdmb Rate constant for the degradation of the Cyclin B − Cdk1
complex by the protein Cdc20

0.28h−1

K1mb Michaelis constant for the degradation, activated by Cdc20,
of Cyclin B − Cdk1

0.005µM

Kscdc20 Rate constant for activation of Cdc20 through phosphory-
lation by Cyclin B − Cdk1

8h−1

Cdc20tot Total concentration of the protein Cdc20 5µM
K1cdc20 Michaelis constant for Cdc20 activation through phospho-

rylation by Cyclin B − Cdk1
0.1µM

Kmaxcdc20dph Maximum rate of Cdc20 inactivation through dephospho-
rylation

0.7µMh−1

Kcdc20 Michaelis constant for Cdc20 inactivation through dephos-
phorylation

0.1µM

Kdcdc20 Apparent first-order rate constant for degradation of active
Cdc20

0.05h−1

K1sp21 Basal, E2F-independent rate of synthesis of p21 0.8µMh−1

K2sp21 Rate constant for synthesis of p21 induced by E2F 0.1h−1

Kp21rb Constant of inhibition by pRB of p21 synthesis 0.1µM
K1p21 Rate constant for inactivation of p21 through phosphoryla-

tion by Cyclin E − Cdk2
50h−1
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Kp21 Michaelis constant for p21 phosphorylation by
Cyclin E − Cdk2

0.5µM

Kdp21 Apparent first-order rate constant for non-specific p21
degradation

0.06h−1

Table 2.2: Parameters of the cell cycle model.

2.3 Numerical simulations
In this section, the numerical solution of the cell cycle model, consisting of nine ordinary
differential equations (ODEs), is presented. The model Eqs. (2.1)-(2.9) describes the
dynamics of cell cycle protein concentrations, and the kinetic parameters used for the
simulations are detailed in Table 2.2. The ODE solver ode45 is used for numerical
solutions. The initial conditions used are given in Table 2.3.

Variables Initial conditions
Md 0.01 mg/ml
Me 0.0148 mg/ml
Ma 0.77 mg/ml
Mb 0.15 mg/ml
p21 0.12 mg/ml
E2F 0.01 mg/ml
Rb 0.01 mg/ml
Wee1 0.01 mg/ml
Cdc20 0.01 mg/ml

Table 2.3: Initial conditions used in cell cycle simulations.

The model is simulated for a time interval of 0 to 100 hours. We observe oscillations
in the concentrations of Cyclin complexes (Md,Me,Ma,Mb) and p21, in the presence
of growth factor, as the cell cycle progresses through its all four phases, see Figure
2.2. There are approximately four to five cell cycles shown in this figure. On average,
the cell cycle in mammalian cells can typically last around 18 to 24 hours. These
oscillations of cell cycle proteins are crucial for regulating the progression of the cell
division cycle. The Cyclin D − Cdk4/6 complex synthesizes and accumulates in the
presence of maximum growth factors and therefore, its concentration increases, which
symbolizes progression in G1 phase and then decreases, which depicts the transition
from G1 to S phase. Consequently, following a series of molecular interactions, all cyclin
complexes oscillate. These oscillations are tightly linked to the progression and regulation
of the cell cycle. For instance, the presence of p21 inhibits the activity of cyclin-dependent
kinase complexes if DNA damage is detected, thus preventing the cell from advancing
through the G1/S and S phases of the cell cycle by binding to CDKs, see Figure 2.2. Other
cell cycle regulators from our model (E2F,Wee1,Cdc20,Rb) are plotted in Figure 2.3.
These proteins are essential players in the control of the cell cycle, and their oscillatory
behavior is tightly linked to the orderly progression of the cycle. The transcription
factors E2F are kept in check by phosphorylation by Cyclin − Cdk complexes during the
G1 phase. As cells progress through G1 into the S phase, these complexes become active
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and phosphorylate Rb (which is initially active in G1 phase), leading to the release of
E2F. Released E2F then triggers the transcription of genes necessary for DNA replication.
Afterward, E2F levels decrease as cells exit the S phase, setting the stage for the next
cell cycle.
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Figure 2.2: Numerical simulations of the cell cycle model. Almost four full cycles are
shown. The curves represent the cellular concentrations of different Cyclin complexes
(Cyclin D − Cdk4/6, Cyclin E − Cdk2, Cyclin A − Cdk2, and Cyclin B − Cdk1) and tumors
supressor protien (p21) in the presence of maximum growth factors.
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Figure 2.3: Numerical simulations of other cell cycle regulators including concentration
of trancription factors (E2F), kinases (Wee1), anaphase promoting complex (Cdc20) and
retinoblastoma protein (Rb) in the presence of maximum growth factors.

Wee1 activity peaks during the G2 phase. It phosphorylates and inhibits Cdk1, preventing
premature entry into mitosis (M phase). As cells progress through G2, Wee1 activity
decreases, allowing Cdk1 to become active and initiate mitosis. This oscillation ensures
that mitosis occurs only when conditions are suitable. Finally, Cdc20 binds to and
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activates the Anaphase-Promoting Complex/Cyclosome APC/C during the M phase,
leading to the degradation of Cyclin B and other proteins. This degradation is essential
for exit from mitosis. After mitosis, Cdc20 levels decrease, ensuring that the APC/C is
inactive during other cell cycle phases. In summary, the oscillations are essential for
controlling the timing of critical cell cycle events, ensuring the duration of the cell cycle,
and that cell division occurs accurately and with proper checkpoints. Any disturbances or
abnormalities in cell cycle regulation can significantly affect cellular health and contribute
to diseases, including cancer.
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Figure 2.4: Numerical simulations of the cell cycle model. The curves represent the
cellular concentrations of different Cyclin complexes (Cyclin D − Cdk4/6, Cyclin E − Cdk2,
Cyclin A − Cdk2, and Cyclin B − Cdk1) in the presence of different growth factors. Initially,
there are no growth factors and cell division cycle is not taking place. However from
hour 50, growth factors are maximum and hence the cells are dividing.
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Figure 2.5: Cellular concentrations of tumor supressor protein (p21), transcription factors
(E2F), kinases (Wee1), anaphase promoting complex (Cdc20) and retinoblastoma protein
(Rb) in the presence of different growth factors.
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Next, we plotted another scenario where growth factors are kept equal to zero (i.e.,
gf = 0) for the first 50h, and then their value is set to maximum (i.e., gf = 1) for the
remaining time used in the simulations. It is important to note that growth factors
are signaling molecules that play a pivotal role in regulating cell cycle progression by
modulating the activity of Cyclin-dependent kinases (CDKs) and other crucial proteins.
In the absence of growth factors, the oscillatory dynamics of the cell cycle are disrupted,
resulting in a lack of cell division, as illustrated in Figure 2.4 and 2.5. The cell cycle
dynamics are driven by a series of tightly interconnected and interrelated events. The
absence of specific steps within this process can lead to the complete cessation of the
entire cycle. Cyclin complexes are maintained at lower concentrations in Figure 2.4, while
regulatory proteins in Figure 2.5 gradually increase in the absence of Cyclin complexes.
Over time, they reach an equilibrium state. Growth factors, such as Epidermal Growth
Factor (EGF) or Platelet-Derived Growth Factor (PDGF), can bind to their respective
cell surface receptors, initiating intracellular signaling pathways. These pathways can
then stimulate the synthesis of Cyclins (e.g., Cyclin D, Cyclin E) and only increased Cyclin
levels promote the formation of active Cyclin − Cdk complexes, driving the cell cycle
forward. Furthermore, fluctuations in the concentration of growth factors can impact
the duration of oscillations in Cyclin levels and Cdk activity. Increased levels of growth
factors tend to extend the duration of these oscillations, resulting in a faster progression
of the cell cycle. In contrast, lower levels of growth factors have the opposite effect,
leading to slower cell cycle progression. For instance, if we observe the duration of two
cell cycle oscillations immediately following the maximization of growth factors in Figures
2.4 and 2.5, we can see that the first cell cycle has a longer duration compared to the
second one.

In summary, variations in growth factors influence the oscillatory dynamics of the cell
cycle by regulating the activity of Cyclin/Cdk complexes, regulating checkpoint control
proteins, and impacting cell fate decisions. The precise timing and magnitude of growth
factor signals are crucial for the orderly progression of the cell cycle, ensuring that cell
division occurs in response to the appropriate external and internal signaling cues.
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CHAPTER 3
Mathematical model: Stem cell lineage

Tumor emergence and progression is a complex phenomenon that assumes special molec-
ular and cellular interactions. The hierarchical structuring and communication via
feedback signaling of different cell types, which are categorized as the stem, progenitor,
and differentiated cells in dependence of their maturity level, plays an important role.
Under healthy conditions, these cells build a dynamical system that is responsible for
facilitating the homeostatic regulation of the tissue. Generally, in this hierarchical setting,
stem and progenitor cells are yet likely to undergo a mutation, when a cell divides into
two daughter cells. This may lead to the development of abnormal characteristics in
the cell, yielding an unrestrained number of cells. Therefore, the regulation of a stem
cell’s proliferation and differentiation rate is crucial for maintaining the balance in the
overall cell population. In this chapter, a maturity based mathematical model with
feedback regulation is formulated for healthy and mutated cell lineages. It is given in
the form of coupled ordinary and partial differential equations. The focus is laid on
the dynamical effects resulting from acquiring a mutation in the hierarchical structure
of stem, progenitor and fully differentiated cells. Additionally, the effects of nonlinear
feedback regulation from mature cells into both stem and progenitor cell populations
have been inspected. The steady-state solutions of the model are derived analytically.
Numerical simulations and results based on a finite volume scheme underpin various
expected behavioral patterns of the homeostatic regulation and cancer evolution.

3.1 Biological problem formulation
A tissue structure is comprised of various cell types arranged in a hierarchy according
to specific characteristics, properties and functionalities. Typically, stem cells have the
inherent property of indefinite self-renewal and differentiation into specialized cells [42].
Self-renewal in stem cells results in the production of the cells identical to the parent, [43].
As sources of a lineage structure, stem cells produce progenitor cells via differentiation
and their properties vary accordingly. For a given cell type, cell lineage has to undergo
a fixed number of maturity levels between the stem and differentiated cells. At the
end of a cell line, the progenitor cells give rise to a mature cell population which does
not possess the power to proliferate anymore, but can only experience apoptosis (the
programmed cell death, [44]). The specialised functions in the tissue are performed by
mature cells, while the tissue homeostasis is preserved by regulating the ratio of stem
cells’ self-renewal rate to differentiation. According to tumor stem cell hypothesis [45],
cancer invasion and maintenance is driven by a small number of cells possessing the
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properties of stem cells. It has been observed that cancer initiating cells are characterized
by high proliferative potential, capability to differentiate into diverse phenotypes and
strength to escape apoptosis [1, 45]. In fact, these so-called “tumor-initiating cells” are
stem cells that have acquired mutations [45], while the rest of the tumor cells are either
mutated progenitor or differentiated cells. The latter can undergo apoptosis and are less
likely responsible to invade and persist the tumor [46]. Therefore, it has been suggested
to eradicate the cancer stem cells by treatment to completely eliminate the cancer [47].
This motivates particularly the study of stem cell dynamics and their role in the cancer
evolution. In this sense, the present paper tends to develop a mathematical modeling
framework, which is useful to predict the observed behavioral patterns of cancer evolution
and, additionally, help in a purposeful impact by means of external inputs (e.g. radiation)
which leads to mutation acquisition.

Tumor development results from acquiring mutations and escaping the enzyme-coded
fixation process, [48]. After acquiring a nonsense mutation, it can increase in number via
cell division. Although not all mutations are harmful, certain mutations can contribute
to malignant cell growth when acquired successively. While there exist various types of
mutations, the ones which are crucial to cancer are characterized by enhanced proliferative
potential, reduced apoptosis, genetic instability and reduced tumor suppression, [1]. It
has also been observed that typically one to ten mutations are required in a cell to revamp
into a malignant one, [1, 49, 50]. The mutated cells also possess a progeny, because these
cells not only proliferate, but can also differentiate to successive cell types. In other
words, there exists another hierarchical structure of mutated (i.e. cancer) cells besides
the healthy one. Herein, the interesting aspect to study is the joint evolution of both
progenies sharing the same environment.

The functionality of any multi-cellular organism as a whole depends greatly on the
active feedback regulation process [51]. The loss of this homeostatic control escalates the
growth of cells in the tissue which culminate in the advent of cancer. The precise nature
of this feedback is not known [51]. In the literature, it is assumed that the mature cells
secrete feedback signals which manipulate the stem cell’s division strength in order to
maintain the balance between its self-renewal and differentiation rate [51]. The escalating
growth of the cell population may approach the steady-state due to the effects induced by
the feedback [52]. Various cell lineage frameworks have been introduced in the literature
to investigate the dynamics of tissue regulation via feedback loop [51–53]. For a structural
inspection of the feedback in a system consisting of two different cell lines with distinct
properties, it is necessary to consider a model of each sub-population. The latter is
based on the assumption that in every lineage, there exist a discrete chain of maturation
stages, which is sequentially arranged [54, 55]. This will additionally help to understand
the evolution of each sub-population individually, as well as the interaction with other
sub-populations.

A variety of mathematical models have been formulated for explicitly modeling each of
the cell subpopulations in a tissue using either discrete [51, 52, 56–62]or continuous [63,
64] cell maturity representations. The analysis in the present paper strongly relies on the
latter two references. In [63], a continuous maturity structured model of granulopoiesis has
been developed using partial differential equations (PDEs) for bone marrow granulocyte
precursors and ordinary differential equation (ODE) for the blood granulocytes. The
population of stem cells is assumed to be constant. The proliferation and mobilization
rates along with apoptosis were modeled as functions of cell maturity. The scaled maturity
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3.2 Mathematical modeling

level lies between zero and one. While the authors focused on the identification of the
fastest mutation sequences leading to emergence of the cancer, the feedback regulation
from the mature cells was entirely neglected. Due to the lack of regulation, such structures
produce unbounded growth of cell populations only, and in particular can not predict
steady-state evolution. On the other hand, in [64], the authors have used a similar
maturity based continuous model along with additional stem cell dynamics in the form
of an ODE model. The model is rather general and supports hierarchical structures of
cell lineage. As opposed to [64], we assign a separate sub-population to mature cells and
introduce the feedback homeostatic regulation therefrom, which has been neglected in
both, [64] and [63]. Our model provides a generic framework to investigate the dynamics
involved in the evolution of both normal and mutated cell populations under continuous
maturation process and feedback regulation. The main motivation behind this model is
to develop an insight into the process, while taking into account most relevant features
of this multi-step process.

In the present paper, we consider the dynamical interaction of three different sub-
populations: (i) the stem, (ii) progenitor and (iii) differentiated cells, while highlighting
the effects of feedback regulation from the mature cell population. More specifically, we
analyze the coupling of two progenies consisting of healthy and mutated cells, while our
main interest lies in investigating the feedback regulation from the separately modeled
dynamics of mature cell population into the stem and maturity structured progenitor cell
populations. In our framework, the stem and differentiated cells are modeled using ODEs,
assuming minimum and maximum maturity, respectively, while PDEs with continuous
maturity distributions are used to predict the evolution of the progenitor cells. In
particular, the differentiation rate is not assumed to be constant as in [64], it is rather
considered to be a function of maturity. Although there exist several models with
feedback regulation in the literature, to our best knowledge, this is a first attempt to
cover the feedback regulation in a more generic framework of stem cell lineage with
continuous maturity distribution along with the mutated cell lineage resulting from the
mutation acquisition in healthy cells. Finally, it is also interesting to highlight that our
mathematical model can predict the stem cell hypothesis, claiming that even a small
number of mutated stem cells can invade the overall cell population.

3.2 Mathematical modeling

The mathematical model of the stem cell line is rather complex as the cells vary con-
tinuously in course of maturation with time. In this work, instead of considering the
evolution of net cell population, we split it into different sub-populations to account for
their specific dynamics. The very initial cell state, i.e., stem cells, has the potential to
stay undifferentiated and not to divide frequently under the conditions of homeostatic
regulation [42, 65, 66]. As a middle stage in the cell evolution from stem cells all the way
to full differentiation, we discriminate the progenitor cells, which undergo proliferation
at relatively high rates and give rise to the population of fully mature cells. In the
process of maturation, the proliferative potential and mortality rate of progenitor cells
vary drastically until the terminal differentiation. To capture these dynamical effects,
it is necessary to consider the maturity distribution of progenitor cells, which is mathe-
matically described by means of PDEs. The last transition stage in the cell line from
progenitor cells refers to fully mature cells that are specialized to perform their functions
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in the respective tissue without further division, and undergo apoptosis after a short
span of life.

Zero mutation
(healthy cells)
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Figure 3.1: Schematics of the model. Co-evolution of normal and mutated cells in the
presence of feedback regulation. The model captures the evolution of stem cell lineages
with zero and one mutation. Stem cells can self-renew, differentiate and undergo apoptosis.
The resulting progeny continues to proliferate until terminally differentiates into mature
cells. Note that, during the division of a cell, there is a probability of getting a mutation.
The feedback originates from the mature cells and thus regulates the self-renewal and
proliferation rate of stem and progenitor cells, respectively.

The schematics of our model in Fig. 3.1 depicts the possible interactions between
subsequent cell types ensuing from symmetric/asymmetric self-renewal, mutation, dif-
ferentiation and apoptosis. The two parallel cell lines refer to the healthy and mutated
cells (perhaps cancer, if cells acquire a lethal mutation) with zero and one mutation,
respectively. Notice that, we consider only one mutation to keep the model simple for
investigation. The model can be scaled up easily to the acquisition of multiple mutations.
The potential for self-renewal is labeled as the property only for the stem cells in both
healthy and mutated states, while the differentiation of cells is undertaken by both stem
cell and progenitor cell populations. However, apoptosis can occur at all transition states
with a certain rate. Since the number of cells increases with each step of maturation [67],
the evolution scheme of all cell states as described above may lead to abnormal growth
tending towards an unbounded number of cells. To avoid such unrestrained behavior of
cell growth, one has to introduce feedback regulation. This modeling scheme enables
investigation of the dynamical behavior (i.e., evolution and control) of the overall cell
population with and without feedback homeostatic regulation. The discrete compartmen-
tal setting of the model facilitates the implementation and withdrawal of the feedback
signals into and from the different transition states, respectively.

In the sequel, we explain the governing model equations for the cell lineage dynamics
of healthy and mutated cells. Thereby, C0(t) and C1(t) refer to the number of stem cells
with zero and one mutation, respectively. Similarly, P0(x, t) and P1(x, t) correspond to
the progenitor cells with zero and one mutation, respectively, while M0(t) and M1(t) refer
to the number of fully differentiated healthy and mutated cell populations. As the cells in
the compartment of the stem and mature cells are assumed to behave alike, one can infer
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a modeling scheme in the form of ODEs. On the other hand, the healthy and mutated
progenitor cells require a property space, with cell maturity as a property variable. Since
all the intermediate transitioning cell states between stem and fully differentiated cells
are modeled as progenitor cells, the cells therein continuously differentiate to higher
maturity states. Thus, the progenitor cells in both healthy and mutated states require
partial differential equations.

3.2.1 Stem cell population

Stem cells are assumed to possess zero maturity level and they define the boundary
conditions for the progenitor cell population at minimum maturity. The primary charac-
teristics of stem cells responsible for their evolution are self-renewal and differentiation.
The self-renewal can occur in two different ways, symmetrically or asymmetrically. Either
way, there is a probability of acquiring a mutation during the division process, this yields
an influx into the mutated stem cell population. On the other hand, differentiation of
stem cells without mutation acquisition results in healthy progenitor cells, and those with
a mutation influence to mutated progenitor cells. The stem cell population increases by
symmetric self-renewal only, whereas the other mechanisms, e.g., mutation acquisition
and differentiation, cause a decrement. The dynamical behavior of the stem cells is then
described by the following mathematical expressions

d
dtC0(t) = [(1 − 2m)αS0(s) −mαA0(s) − αD0(s) − δC0 ]k0C0(t), (3.1)
d
dtC1(t) = [αS1(s) − αD1(s) − δC1 ]k1C1(t) + [2mαS0(s) +mαA0(s)]k0C0(t). (3.2)

The initial conditions of healthy and mutated stems cells are C0(0) = c0 and C1(0) = c1,
respectively. In the above equations, k0 and k1 are the proliferation rates of stem cell
with zero and one mutation, respectively. The first term on the right-hand side in Eq.
(3.1) refers to symmetric self-renewal with probability αS0 , which results either in a
decrement in the stem cell population by one, if the stem cells acquire a mutation with
rate m, i.e. −αS0(s)mk0C0, or increase the pool by one in case of no mutation, i.e.
(1 − m)αS0(s)k0C0. The second term represents an asymmetric self-renewal of stem
cells with probability αA0 in which the stem cells decrease by one, while asymmetrically
self-renewing and acquiring a mutation. The third term represents the differentiation of
stem cells with probability αD0 , which is always followed by a decrement in stem cell
population by one. The resulting progeny from the differentiation of cells will influx
into the progenitor cell population. Note that the feedback signal s has been introduced
into the stem cell probability of self-renewal (symmetric/asymmetric) and differentiation
to maintain tissue homeostasis. This feedback signal is determined by the mature cell
population, as shown below in Eq. (3.12). Finally, the fourth term describes the death
of stem cells with a rate of δC0 , which reduces the stem cell population by one.

In Eq. (3.2), the first three terms in a square bracket on the right-hand side describe
the symmetric self-renewal, differentiation and death of mutated stem cells C1 with the
probability of αS1 αD1 , and δC1 , respectively. The last two terms (in the second square
bracket) correspond to the influx from healthy stem cell population C0 as a consequence
of mutations acquired during symmetric and asymmetric self-renewal, Eq. (3.1).
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3.2.2 Progenitor cell population

The maturity distribution of progenitor cells represented by P0(x, t) and P1(x, t) consti-
tutes of all maturity stages between stem and mature cell populations with x as maturity
variable. Obviously,

∫ x2
x1
Pi(x, t)dx, i = 0, 1, is equal to the number of cells between

maturity x1 and x2. The maturity is defined by a continuous variable which stands for
the remaining proliferative potential of the cell and its capability to perform cellular
functions. The governing equations and the initial conditions for normal and mutated
progenitor cells read:

∂tP0(x, t) + ∂x[g0(x)P0(x, t)] =[(1 − 2m′)β0(x, s) − µ0(x)]P0(x, t), (3.3)
∂tP1(x, t) + ∂x[g1(x)P1(x, t)] =[β1(x, s) − µ1(x)]P1(x, t) + 2m′β0(x, s)P0(x, t), (3.4)

with initial conditions P0(x, 0) = p0(x), P1(x, 0) = p1(x) and boundary conditions

g0(0)P0(0, t) = [2(1 −m)αD0(s) + (1 −m)αA0(s)]k0C0(t), (3.5)
g1(0)P1(0, t) = [2αD1(s) + αA1(s)]k1C1(t) + [2mαD0(s) +mαA0(s)]k0C0(t), (3.6)

for t > 0.
The functions g0(x) and g1(x) stand for the differentiation rate of progenitor cells

with zero and one mutation, respectively. On the right-hand side of Eq. (3.3), the first
and second terms in the square bracket represent the birth and loss of progenitor cells
due to a mutation with the rate m′. The progenitor cells are assumed to acquire one
mutation at a time. The proliferation rates β0(x, s) and β1(x, s) of healthy and mutated
progenitor cells depend on the maturity level and tend to zero as the cells achieve the
higher maturity level [68]. The third term describes the apoptosis of progenitor cells
P0(x, t) with maturity dependent death rate µ0(x) and generally it gets higher as the
cell matures. On the right-hand side of Eq. (3.4), the first two terms in a square bracket
represent the proliferation and death of the mutated progenitor cells with the rate β1(x, s)
and µ1(x), respectively. The last term represents the influx from the healthy progenitor
cells via mutation. Note that, the proliferation potential and rate of apoptosis for the
progenitor cells is defined as function of maturity. The early progenitor cells have higher
proliferation potential as compared to the late progenitor cells. On the other hand, as
mentioned earlier the death rate of progenitor cells is meager for early progenitor cells
and increases after differentiating to a certain maturity level [69, 70], see Fig. 3.2 (a).
Although this does not hold for all cell types but true for of haemopoietic cells. There
are many choices which can be suitable for proliferation and death rates of progenitor
cells. Here, we borrow from [64] the following functional forms for βi and µi,

βi(x, s) = −1
2bi(s) tanh(ρβi

(x− ωβi
)) + 1

2bi(s), (3.7)

µi(x) = 1
2di tanh(ρµi(x− ωµi)) + 1

2di, (3.8)

where i = 0, 1, and bi and di represent the maximum rate of proliferation and apoptosis,
respectively. Furthermore, ωβi

represent the maturity level at which the progenitor cells
proliferate at half of the maximum rate and ρβi

refers to the steepness of the proliferation
switch. Similarly, the maturity at which progenitor cells die at half of the maximum rate
is ωµi and the steepness of the switch is ρµi . Here, the feedback signal s is introduced in
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the proliferation rate of progenitor cells. The behavior of the functional forms of βi (for
a fixed value of feedback, i.e., s = 1) and µi are depicted in Fig. 3.2 (a).
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Figure 3.2: Birth, death and differentiation functions for progenitor cells. (a) Birth
and death functions for both, healthy and mutated progenitor cell populations. The
solid black and red lines represent the birth and death rate of healthy progenitor cell
population, respectively, whereas the dotted black and and red lines depict the birth
and death rate of mutated progenitor cells. (b) Differentiation function of healthy and
mutated progenitor cell populations represented by black and red line, respectively.

Next, we introduce the differentiation function gi(x) which describes the rate at which
the cells mature. It is a strictly positive and continuously differentiable function. In the
pool of progenitor cells, continuous differentiation takes place alongside cellular division
(maturation process). In maturity-time representation, mitosis takes place at same
maturity levels [71]. From the modeling viewpoint, it means that in an infinitesimal time
interval (t, t+ dt), a cell with maturity x either matures to level x+ dx with probability
g(x)dt or divides into two daughter cells with probability β(x, s)dt.

The progenitor cell population is heterogeneous with respect to cell maturation velocities
[71] and typically, the maturity rate decreases along with an increasing maturity level.In
order to define g(x), we fix the maximum maturation velocity equal to one then we use a
monotonically decreasing function of the following functional form gi(x) = exp(−hix), i =
0, 1 in our model. Here, the differentiation functions gi(x) are bounded between 0 and 1,
thus the parameters hi are to be selected in such a way that gi(x) should not get near
zero within the specified range of maturity variable, i.e., xmin ≤ x ≤ xmax, see Fig. 3.2
(b). We assume lower differentiation potential for mutated cells because poor cellular
differentiation is one of the important traits of cancer [72, 73].

During a division process, progenitor cells can also undergo a mutation. In this model,
the healthy progenitor cells P0(x, t) acquire a mutation with a mutation rate m′ to either
proliferate into a mutated progenitor cell population P1(x, t) or to differentiate into a
mutated differentiated cell population M1(x, t).
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3.2.3 Mature cell population

The mature cell population is constituted by all the cells that attain the maximum
maturity level, i.e. x∗. These cells do not possess any proliferating potential and
only undergo apoptosis after a particular time. Therefore, mature cells cannot acquire
any additional mutation and are specialized to perform their assigned functions in the
tissue. The following equations describe the healthy and mutated density of mature cells
represented by M0(t) and M1(t), respectively:

dM0
dt =g0(x∗)P0(x∗, t) − δM0M0, M0(0) = m0, (3.9)

dM1
dt =g1(x∗)P1(x∗, t) + 2m′β0(x∗, s)P0(x∗, t) − δM1M1, M1(0) = m1. (3.10)

In Eq. (3.9), the first term on the right-hand side describes the inflow into healthy
mature cells via terminal differentiation of progenitor cells with maturity rate g0(x∗),
while the second term defines the apoptosis of the mature cells with a rate of δM0 . The first
term on the right-hand side of Eq. (3.10) is the influx from fully differentiated mutated
progenitor cells, and the second term represents the influx from healthy progenitor cells
due to an acquired mutation. The last term involving the rate δM1 refers to the death of
mutated mature cell population.

3.2.4 Feedback regulation

In the signaling mechanism among the cells, the growth response is modulated by
cytokine proteins along with other proliferation regulating factors, [51]. Cytokines bind
to their specific membrane-associated receptors which results in the activation of signal
transduction pathways, [74]. Studies have shown that in order to maintain the number
of cells in balance, these signals have to depend on the mature cell population [75,
76]. The dynamics of cytokine signaling molecules ζ can be described by an ODE as:
ζ̇ = υ − δζζ − γζM, where υ is the maximum secretion rate of cytokine signals, δζ

represents the natural decrement of the signals ζ, and γ is the rate by which the total
mature cell population M = M0 +M1 (consisting of both healthy and mutated mature
cells) regulate the cytokine signals. Substituting s = (δζ/υ)ζ and kζ = γ/δζ , the above
equation turns into

ṡ = δζ(1 − s− kζsM). (3.11)

Since the cytokine signals are typically secreted at a higher rate than that of proliferation
and differentiation of the cells, these drift quickly to a steady state. Hence, using
quasi-steady state approximation, the equilibrium state for the feedback signal intensity

s = 1
1 + kζM

(3.12)

follows from Eq. (3.11). This shows that in the absence of mature cell population, the
signal intensity is maximal, i.e., s = 1, and it drops to a minimum with a significant
increase in the mature cell population. The probabilities αSi(s), αAi(s) and αDi(s) in Eq.
(3.1)–(3.2) and the maximum birth rates bi(s) in the birth functions βi(x, s) of progenitor
cells in Eq. (3.3)-(3.4) are assumed to change linearly in s, cf. Eq. (3.7), given that
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slopes are positive which leads to the following linear forms αSi(s) = ᾱSis, αAi(s) = ᾱAis,
αDi(s) = ᾱDis and bi(s) = b̄is, where ᾱSi , ᾱAi , ᾱDi and b̄i represent maximum symmetric
self-renewal, maximum asymmetric self-renewal, maximum differentiation of stem cell
and maximum birth rate of progenitor cells, respectively.

3.3 Steady-state solutions
In this section, we derive the steady-state solutions of our governing equations (3.1)–(3.10).
For the sake of convenience, we hereby simplify the notation, reading

d
dtC0(t) = γ00(s)C0(t), C0(0) = c0 (3.13)
d
dtC1(t) = γ10(s)C1(t) + γ11(s)C0(t), C1(0) = c1, (3.14)

for the populations of healthy and mutated cells, respectively, with γ00, γ10 and γ11
defined as

γ00(s) := [(1 − 2m)αS0(s) −mαA0(s) − αD0(s) − δC0 ]k0 (3.15)
γ10(s) := [αS1(s) − αD1(s) − δC1 ]k1, γ11(s) = [2mαS0(s) +mαA0(s)]k0. (3.16)

In a similar manner, the PDEs that describe the progenitor cells read:

∂tP0(x, t) + ∂x[g0(x)P0(x, t)] =γ0(x, s)P0(x, t), (3.17)
∂tP1(x, t) + ∂x[g1(x)P1(x, t)] =γ1(x, s)P1(x, t) + 2m′β0(x, s)P0(x, t), (3.18)

where γ0(x, s) and γ1(x, s) are given by

γ0(x, s) := (1 − 2m′)β0(x, s) − µ0(x), γ1(x, s) := β1(x, s) − µ1(x). (3.19)

Finally, the equations of mature cell population stay same as before in Fig.s. (3.9) and
(3.10). In the sequel, we assume the following conditions:

c0, c1,m0,m1 ∈ R≥0, p0, p1 : [0, x∗] → R≥0
g0x , g1x ∈ L∞([0, x∗])
β0(x, s), β1(x, s) ∈ L∞([0, x∗] × R), µ0(x), µ1(x) ∈ L∞([0, x∗])
γ00(s) := γ00(M) is a decreasing function, i.e., γ00(+∞) < 0.

 (3.20)

To address the question of the existence of any steady-state under a homeostatic regulation,
we need to solve the following system of equations, for the steady-state unknowns C̄0,
C̄1, P̄0, P̄1, M̄0 and M̄1:

γ00(M̄)C̄0 = 0 (3.21)
γ10(M̄)C̄1 + γ11(M̄)C̄0 = 0 (3.22)

d
dx [g0(x)P̄0(x)] = γ̄0(x)P̄0(x) (3.23)
d

dx [g1(x)P̄1(x)] = γ̄1(x)P̄1(x) + 2m′β̄0(x∗)P̄0(x) (3.24)

g0(x∗)P̄0(x∗) − δM0M̄0 = 0 (3.25)
g1(x∗)P̄1(x∗) + 2m′β̄0(x∗)P̄0(x∗) − δM1M̄1 = 0, (3.26)
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with γ̄0(x) := γ0(x, M̄), γ̄1(x) := γ1(x, M̄) and β̄0(x∗) = β0(x∗, M̄) and the boundary
conditions given as

g0(0)P̄0(0) = (1 −m)[2αD0(M̄) + αA0(M̄)]k0C̄0 (3.27)
g1(0)P̄1(0) = [2αD1(M̄) + αA1(M̄)]k1C̄1 +m[2αD0(M̄) + αA0(M̄)]k0C̄0. (3.28)

The trivial steady-state, i.e., C̄0 = 0, C̄1 = 0, P̄0 = 0, P̄1 = 0, M̄0 = 0, M̄1 = 0 is evident
from Eqs. (3.21)–(3.26). However, the system also admits a non-trivial steady-state
under the assumption γ00(0) > 0. In this case, from Eq. (3.21) we get immediately

γ00(M̄) = 0. (3.29)

Now, using Eq. (3.15) in the above relation, we obtain:

[(1 − 2m)αS0(M̄) −mαA0(M̄) − αD0(M̄) − δC0 ]k0 = 0, (3.30)

where the probabilities αS0(M̄), αA0(M̄), and αD0(M̄) are defined as

αS0(M̄) = αS0

1 + kζM̄
, αA0(M̄) = αA0

1 + kζM̄
, αD0(M̄) = αD0

1 + kζM̄
, (3.31)

and αS0 , αA0 , αD0 ∈ R>0. By employing the above relations in Eq. (3.30), we derive the
relation for M̄ , which is:

M̄ = 1
kζδC0

[(1 − 2m)αS0 −mαA0 − αD0 − δC0 ]. (3.32)

Next, to solve the ODEs (3.23) and (3.24) for progenitor cells, we compute the boundary
conditions at the final maturity, i.e., x = x∗ from the Fig.s. (3.25) and (3.26)

P̄0(x∗) = δM0M̄0
g0(x∗) , P̄1(x∗) = −2m′β̄0(x∗)δM0M̄0

g0(x∗)g1(x∗) + δM1M̄1
g1(x∗) . (3.33)

The steady-state boundary values result by solving the ODEs (3.23) and (3.24) for the
healthy and mutated progenitor cells P̄0(x) and P̄1(x):

P̄0(x) = δM0M̄0
g0(x) e

f0(x), (3.34)

P̄1(x) = ef1(x)

g1(x)

[
2m′

∫ x∗

x
e−f1(x)β̄0(x)P̄0(x)dx+ g1(x∗)P̄1(x∗)

]
, (3.35)

with

f0(x) :=
∫ x∗

x

γ̄0(ξ)
g0(ξ)dξ, f1(x) :=

∫ x∗

x

γ̄1(ξ)
g1(ξ)dξ. (3.36)

Further, we use the boundary conditions given in Fig.s. (3.27) and (3.28) to compute
the steady-state values of healthy and mutated stem cells, respectively

C̄0 = δM0M̄0(1 + kζM̄)
k0(1 −m)[2αD0 + αA0 ]e

f0(0) (3.37)
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3.4 Numerical solution and simulation results

C̄1 = 1 + kζM̄

k1[2αD1 + αA1 ]

[
λ1e

f1(0) − mδM0M̄0
1 −m

ef0(0)
]
, (3.38)

where λ1 := 2m′β̄0(0)P̄0(0)
∫ x∗

0 ef1(0)dx+ g1(x∗)P̄1(x∗). Eventually, we derive the steady-
state relation for healthy mature cells M̄0 from Eq. (3.22):

M̄0 = ef1(0)(1 −m)(2αD0 + αA0)λ1λ2
mδM0e

f0(0)[(2αS0 + αA0)(2αD1 + αA1) + (2αD0 + αA0)λ2]
, (3.39)

where λ2 = αS1 − αD1 − δC1(1 + kζM̄). Note that, the steady-state relation for healthy
mature cells M̄1 can be easily determined utilizing Eqs. (3.32) and (3.39).

From the above derivation of steady-states, we can summarise the following observations.
The steady-states of our coupled nonlinear model cannot be defined explicitly, but the
sum of the steady-states of healthy and mutated mature cells, used to compute feedback
can be represented by an explicit relation. Moreover, the steady-states of stem and
progenitor cells highly depend on the steady-state of mature cells due to the feedback
inclusion.

3.4 Numerical solution and simulation results

3.4.1 Finite volume method

In this section, the numerical method used to solve the governing nonlinear Eqs. (3.1)–
(3.10) is presented. We apply already developed finite volume method (FVM) with central
upwind scheme for the flux approximation on hyperbolic partial differential equations
in MATLAB. The domain of the problem has been discretized in both, space and time.
The timeline is discretized into Nt steps with equidistant interval ∆t = tk+1 − tk. The
spatial stepsize is given by ∆x = x∗/Nx, where Nx is the maximum number of spatial
nodes given by xj = j∆x, 0 ≤ j ≤ Nx. The discretized progenitor cell density associated
with the jth spatial interval at time k reads

P k
i,j = 1

∆x

∫ x
j+ 1

2

x
j− 1

2

Pi(y, tk)dy, where i = 0, 1.

The necessary Courant-Friedrichs-Lewy (CFL) condition for convergence of the solution
requires maxx∈{xj} gi(x) ∆t

∆x ≤ 1. The PDEs (3.3)–(3.4) are hyperbolic in nature and with
the discretization defined above, we can implement the following algorithm to solve the
coupled differential equations.

First, the initial conditions are given as

C0
i = ci, P 0

i,j = 1
∆x

∫ x
j+ 1

2

x
j− 1

2

pi(y)dy, M0
i = mi, for i = 0, 1.

For each time step k, the feedback from mature cells is calculated as

sk = 1
1 + kζ(Mk

0 +Mk
1 )
.
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3.4 Numerical solution and simulation results

Then, the stem cell population at time tk+1 can be discretized as follows

Ck+1
i ≈ Ck

i + ∆t
( d

dtC
k
i

)
, i = 0, 1, (3.40)

and the following relation result for healthy and mutated stem cells, respectively

Ck+1
0 =

(
1 + ∆t

(
(1 − 2m)αS0(sk) −mαA0(sk) − αD0(sk) − δS0

)
k0
)
Ck

0

Ck+1
1 =

(
1 + ∆t

(
αS1(sk) − αD1(sk) − δS1

)
k1
)
Ck

1

+ ∆tm
(
2αS0(sk) − αA0(sk)

)
k0C

k
0 .

The boundary conditions for progenitor cells at j = 0 are given as

P k+1
0,0 = (1 −m)(2αD0(sk) + αA0(sk))k0C

k
0

P k+1
1,0 = (2αD1(sk) + αA1(sk))k1C

k
1 + (2αD0(sk) + αA0(sk))mk0C

k
0 .

The discretization of the PDEs concerning the density of the progenitor cell populations
is given in accordance with the central upwinding scheme as follows

P k+1
0,j =P k

0,j − ∆t
∆x

(
g0(xj)P k

0,j − g0(xj−1)P k
0,j−1

)
+ ∆t

(
(1 − 2m′)β0(xj , s

k) − µ0(xj)
)
P k

0,j

P k+1
1,j =P k

1,j − ∆t
∆x

(
g1(xj)P k

1,j − g1(xj−1)P k
1,j−1

)
+ ∆t

((
β1(xj , s

k) − µ1(xj)
)
P k

1,j + 2m′β0(xj , s
k)P k

0,j

)
.

Finally, the discretized ODEs for mature cells are given as following

Mk+1
0 = Mk

0 + ∆t
(
g0(xNx)P k

0,Nx
− δM0M

k
0
)

Mk+1
1 = Mk

1 + ∆t
(
g1(xNx)P k

1,Nx
+ 2m′β0(xNx , s

k)P k
0,Nx

− δM1M
k
1
)
,

which also involves the influx from progenitor cells P k
0 and P k

1 at the maximum maturity
x = x∗. The mature cell populations M0 and M1 will manipulate the feedback in the
next time step and consequently, feedback will alter the dynamics of stem, progenitor or
both cell populations to stabilize the exponential growth.

3.4.2 Simulation results

In this section, we present the model simulations for illustration purposes. The initial
states and the used parameters are given in Table 3.1. The forthcoming results are
computed by the numerical scheme given at the end of this section. The maturity variable
x belongs to [0, 5] with the value of maximum maturity x∗ set to be 5. The step sizes
for time ∆t and maturity ∆x used in simulations are 0.01 and 0.05, respectively. The
behavioral patterns of the model are investigated hereby with the objective to observe
the evolution of all six sub-populations with the feedback regulation, which is determined
from the total number of both healthy and mutated mature cells. In general, after
acquiring a mutation, the mutated cell gains fitness and thus differ considerably from
healthy cells, [57]. Therefore, the probability of mutated stem cells to self-renew is greater
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Figure 3.3: The cytokine feedback signal reduces over time with the increasing number of
mature healthy and mutated cells.

Param. Description Parameter values Units
i = 0 i = 1

ci Initial stem cell density 18000 [59, 77] 0 mL−1

mi Initial mature cell density 0 0 mL−1

ᾱSi Maximum symmetric self-renew probabil-
ity

0.176 [78] 0.25 -

ᾱAi Maximum asymmetric self-renew proba-
bility

0.60 [78] 0.60 -

ᾱDi Maximum differentiation probability 0.15 [78] 0.15 -
δCi Stem cells’ death rate 0.0125 [59] 0.053[70] day−1

δMi Mature cells’ death rate 1.8 [70] 1.9[70] day−1

m Mutation rate of stem cells 10−4 [79, 80] - -
m′ Mutation rate of progenitor cells 10−6 [81] - -
ki Stem cell proliferation rate 0.47[65] 0.60 day−1

ωβi
Maturity at proliferation switch 2.50 2.50 days

ρβi
Steepness of progenitor cells proliferation
switch

2 2 -

ωµi Maturity at death switch 2.50 2.70 days
ρµi Steepness of progenitor cells death switch 2 2 -
bi Max. progenitor cells proliferation rate 1.51 [82] 1.8[82] day−1

di Max. progenitor cells death rate 2.15 1.8 day−1

kζ Ratio of γ to δS 1.85 × 10−9 1.85 × 10−9 -

Table 3.1: Initial values and parameters of the model for both, healthy and mutated cell
lineages, where i = 0 stands for the parameters of healthy cell line with zero mutation
and i = 1 represents the parameters of mutated cell lineage with one mutation.

in simulations relative to the healthy ones, while the death rate is reduced, see Table
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Figure 3.4: Healthy and mutated stem and mature cells are shown. (a) Healthy stem
cells with initial value of 18000mL−1 grow exponentially and converge to a steady-state.
Healthy mature cells depict a similar behavior with initial condition equal to zero. (b)
Mutated stem cells with initial condition equal to zero, increase exponentially and attain a
steady-state at relatively large value while mutated mature cells depict a similar behavior
with initial condition equal to zero.

3.1. The feedback influences the the probabilities of symmetric/asymmetric self-renewal
and differentiation in stem cells whereas in progenitor cells, the feedback is influencing
the maximum proliferation rate bi in the birth function β(x, s). The simulations are
initialized with healthy stem cells as c0 := C0(0) = 18000mL−1, while all the rest of
the sub-populations have been set to zero. Initially, the feedback signal is maximum,
i.e., equal to one, because no differentiated cells exist, while over the course of time, the
increase in the healthy and mutated mature cell population leads to a reduction of the
feedback signal, as shown in Fig. 3.3. The parameters used in Fig. 3.3-3.4 are given in
Table 3.1. The exponential growth in healthy stem cell population results in the increase
of all healthy and mutated cell types Fig. 3.4. A steady-state is achieved in healthy stem
cells and consequently in all other sub-populations, see Fig. 3.4 and 3.4. The achieved
steady-states coincide with the analytically calculated steady states of all cell states in
Eqs. (3.35-3.39). The feedback signal plays the central role in the stabilization of the
model states. In the absence of this feedback signal, the exponential growth continues
and thus results in an unnatural number of cells.

Fig. 3.6 depicts another behavior of the model in which all the parameters used are
same as in Table 3.1 but the symmetric self-renewal rate of stem cells ᾱS0 = 0.175 and
their death rate δC0 = 0.016 day−1. Contrary to Fig. 3.4, the healthy stem cells C0 in
Fig. 3.6(a) start decreasing after a gradual increase for a while and eventually land to a
very low number. Indeed, similar behavior has been shown by the healthy mature cells
in Fig. 3.6(a), whereas the mutated stem and mature cells still attain their respective
steady-states, as shown in Fig. 3.6(b).
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Figure 3.5: Density distribution of progenitor cells. Left: Distribution of healthy progeni-
tor cells P0(t, x). Right: Distribution of mutated progenitor cells P1(t, x). It continues
to grow a higher number and approach a steady-state.

0 500 1,000 1,500 2,0000

0.5

1

1.5
×105

(a)

time [days]

C
el

ld
en

sit
y

stem cells C0
mature cells M0

0 500 1,000 1,500 2,0000

0.2

0.4

0.6

0.8

1

×109

(b)

time [days]

stem cells C1
mature cells M1

Figure 3.6: Cell density of healthy and mutated stem and mature cells are shown.
(a) Healthy stem cells with initial value of 18000mL−1 grow exponentially and start
decreasing in number and mutated stem cells with initial condition equal to zero, increase
exponentially until attain a steady-state at relatively large value. (b) Healthy mature
cells with initial condition equal to zero, depict the same behavior as healthy stem cells
while mutated mature cells depict a similar behavior as mutated stem cells with initial
condition equal to zero.

In accordance with the dynamics of healthy and mutated stem cell populations described
in Eq. (3.1) and (3.2), respectively, the probabilities of symmetric/asymmetric self-
renewal and differentiation rates are influenced by the feedback signal. The rapidly
increasing healthy and mutated mature cell number in Fig. 3.6(c and d) tends to abate
the value of cytokine feedback signals pursuant to the relation in Eq. (3.12). It can
be easily observed from Eq. (3.1) that, as the feedback signal drops, the probabilities
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of symmetric/asymmetric stem cell self-renewal αS0/αA0 and differentiation αD0 also
decrease. Note that these probabilities vary linearly with feedback signal s having a
positive slope. As a consequence, with the temporal evolution of healthy stem cells, death
rate dominates over self-renewal, and healthy stem cells start declining in number, cf.
Fig. (3.1). In Eq. (3.2) for mutated stem cells, the decline in feedback signal reduces the
probability of self-renewal and differentiation in mutated stem cells. Nevertheless, the
mutated cells still manage to grow in a higher number due to the increased fitness as
stated before and thus approaching a steady-state. This scenario, in which the healthy
cell line deteriorates and only mutated cells prevail over time, could also be called ‘pure
cancerous steady-state’.
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Figure 3.7: Number of healthy and mutated stem and mature cells with different initial
conditions of healthy stem cells. The rest of the states have initial conditions equal
to zero. (a) Healthy stem cells achieve a respective steady state for a corresponding
initial value. (b) Mutated stem cells with initial condition equal to zero, attain a same
steady-state at all initial values of C0(t). (c) Healthy mature cells with initial condition
equal to zero, depict the same behavior as healthy stem cells. (d) Mutated mature cells
depict a similar behavior as mutated stem cells with initial condition equal to zero.
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The establishment of the steady-state via feedback regulation has already been suggested
in the literature [51], where the authors have considered ODE settings for the discrete
cell populations of the stem cells all the way to the differentiated cells. Moreover, it is
mentioned that the whole dynamics of stem cell lineages can be controlled by a single
negative feedback loop, i.e., cytokine signaling.

It is important to mention that in our model feedback is only effecting the birth rates,
but the results can also be achieved by influencing the death rates via feedback signal
[83]. Moreover, in our model, the division rates of stem cell populations {ki, i = 0, 1}, are
not depending on feedback signal because it has been validated in [84] and [51] that an
efficient control mechanism underlies the modulation of self-renewal and differentiation
rates as compared to the maintenance of proliferation rates in stem cells. It is evident
from the simulation results as well that even without feedback regulation in division
rates, the mutated stem cell population does achieve a steady-state.

3.4.2.1 Case study: Evolution for different initial conditions

Fig. 3.7 demonstrates the behavior of the model concerning different initial values of the
stem cell population. All other cell population states (mutated stem cells, healthy and
mutated progenitor cells, and mature cells) are initialized with zero number of cells. The
parameter values used are similar as in Table 3.1. It can be seen that with any number
of initial healthy stem cells C0(0), the steady states are achieved at the same time in
healthy stem C0(t) and mature M0(t) cells, Fig. 3.7 (a) and (c); however, the magnitudes
of the steady states are different. On the other hand, in mutated cell populations, the
effect of different initial conditions is reflected only in the rates at which the steady states
are achieved, while the magnitude of steady-state is the same for all initial values, see Fig.
3.7 (b) and (d). It implies that no matter how many healthy stem cells are there at any
particular age, the subsequent mutations can lead to a substantial amount of mutated
cell populations.

3.4.2.2 Case study: Feedback signal as Hill function

Here we want to analyse the model behavior when we define the relation between feedback
signal s and total number of mature cells M using Hill function as compared to the
behavior produced by the relation in Eq. (3.12). Since increase in the concentration of
mature cells represses the feedback signal, we define their relation using the Hill function
as follows:

s = 1
1 +

(
M

KM

)n , (3.41)

where KM is the mature cell concentration (2.6 × 106mL−1) at which feedback signal is
half a maximum and n is the Hill coefficient. Note that the Eq. (3.41) coincides with
Eq. (3.12) when n = 1 and KM = 1/kζ . The simulations have been performed using
Hill feedback function in Eq. (3.41) and it turns out that the model depicts the similar
behavior to the previous case, compare Fig. 3.8 with 3.4 and 3.6. In Fig. 3.8 (a)-(d),
the model parameters used are similar as in Table 3.1, whereas in Fig. 3.8 (e)-(h) the
parameter values which have been varied are symmetric and asymmetric self renewal
rate of stem cells as ᾱS0 = 0.175 and ᾱA0 = 0.6650, respectively.
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Figure 3.8: Model behavior by using Hill feedback function for various Hill coefficient
values. All cell states achieve non-trivial steady-states (a)-(d). Pure cancerous steady-
states where healthy cells decline with time (e)-(h) .

It is to be noted that the dynamics of the stem and progenitor cells are maintained in
homeostasis by inducing feedback only in the self-renewal rates. One can also achieve
homeostasis by inducing the feedback in the death rates [83]. However, death rates are
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kept constant in the current paper; see Table 3.1. Moreover, in our model, the division
rates of stem cell populations {ki, i = 0, 1}, are not depending on feedback signal because
it has been validated in [84] and [51] that an efficient control mechanism underlies the
modulation of self-renewal and differentiation rates as compared to the maintenance of
proliferation rates in stem cells. It is evident from the simulation results as well that
even without feedback regulation in division rates, the mutated stem cell population does
achieve a steady-state.

3.5 Model validation
In this section, we validate the behavior of our model with different experimental mea-
surements taken from the literature. In Fig. 3.9, we use the tumor volume measurements
for three different cancers, namely prostate, breast and colon for validation purpose.
The experimental data sets are taken from [85–87]. These data sets are obtained by
establishing human tumor xenografts in mice. The measurements of tumor volume are
available from the day of implantation and during exponential growth. To compare our
model behavior with the tumor volume, we first compute the total number of mutated
cells N(t), which is the sum of mutated stem, progenitor, and mature cells, as

N(t) := C1(t) +
∫ x1

x0
P1(x, t)dx+M1(t).

Then, considering the effective volume of a cell in the tumor to be 4.18 × 10−6mm3 [88],
the whole tumor volume V (t) is computed as [89]

V (t) = 4.18 × 10−6N(t)mm3.
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Figure 3.9: Model fitting to the experimental data. Validation of the model using different
experimental data for breast, prostate and colon cancer cells. The data are available only
during the exponential growth and the model (blue line) fits the data (black dots) for
the given values. The grey shaded regions are the model predictions before and after
the available experimental measurements and a steady-state is achieved under cytokine
feedback signaling.

49



3.5 Model validation

The tumor volume calculated from the cell count of the proposed model (blue lines) fits
very well to the experimental data (black marks) in all three scenarios, see Fig. 3.9. The
grey shaded regions depict the predicted model behavior before and after the available
experimental values. Our model attains a steady-state in all three simulations due to
the feedback via cytokine signals. Note that, the steady-states may vary in reality for
different cancer types and also individually but the proposed model is flexible enough to
depict various steady-state scenarios. The healthy cell lineage is considered to be initially
at a steady-state. The parameters used in Fig. 3.9 are given in Table 3.2.
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Figure 3.10: Model fitting to the experimental data. The model has been validated
with the data set derived by TUBO Cancer cell line [90]. The experimental data are
represented by black error bars representing mean ± standard deviation. The blue line
is the model fit to the experimental measurements. Our proposed model predicts an
establishment of the steady-state in grey shaded area where no measurements of cell
count were available.

The model has been further validated by using another experimental data set generated
in vitro experiments on TUBO cancer cells and is reported in [90], see Fig. 3.10. TUBO
cancer cells are a cloned line derived in vitro from a BALB-neuT mouse mammary
carcinoma. The data set consists of mean ± standard deviation for total cell count. The
model fits to the mean values for more than 65 percent of the data set. The initial
conditions for healthy cell line are equal to their respective steady-state values. The
initial condition of mutated stem cells is equal to 2×104mL−1 and for mutated progenitor
and mature cells are equal to zero. The parameter values used in the Fig. 3.10 are given
in Table 3.3. The mutation rates for healthy stem and progenitor cells are 10−4 and 10−6

[81], respectively. The exponential growth and achievement of the steady-state requires
enhanced proliferation and self-renewal rates of stem cells. Thereby, the maximum
self-renewal probability of healthy and mutated stem cells represented by ᾱS0 and ᾱS1
are used as 0.35 and 0.40, respectively. The sum of the probabilities for symmetric
self-renewal, asymmetric self-renewal and differentiation is still kept equal to 1.
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3.6 Discussion and conclusion

Parameters Values
Breast Prostate Colon

c1 2.5 × 105mL−1 3 × 104mL−1 0.7 × 105mL−1

kζ 12.8 × 10−10 12.8 × 10−10 12.8 × 10−10

m1 0mL−1 0mL−1 0mL−1

d1 1.36 day−1 1.36 day−1 1.36 day−1

ᾱS0 0.36 [78] 0.31 [78] 0.36 [78]
d0 1.67 day−1 [70] 1.67 day−1 [70] 1.67 day−1

ᾱS1 0.40 0.30 0.40
b1 1.09 day−1 [82] 1.09 day−1 1.09 day−1

ᾱA0 0.80 [78] 0.70 [78] 0.80 [78]
b0 1.23 day−1 [82] 1.23 day−1 1.23 day−1

ᾱA1 0.50 0.50 0.50
ρµ1 8 8 8
δC0 0.24 day−1 0.17 day−1 [70] 0.24 day−1

ρµ0 8 8 8
δC1 1.0 day−1 [91] 1.6 day−1 1.0 day−1 [91]
ωµ1 2.95 days 2.95 days 2.95 days
δM0 2.1 day−1 [70] 2.1 day−1 [70] 2.1 day−1 [70]
ωµ0 2.80 days [70] 2.80 days 2.80 days
δM1 0.3 day−1 0.5 day−1 0.3 day−1

ρβ1 2 2 2
m 10−4 [79, 80] 10−4 10−4

ρβ0 2 2 2
m′ 10−6 [81] 10−6 10−6

ωβ1 1.80 days 1.80 days 1.80 days
k1 0.60 day−1[65] 0.60 day−1 0.60 day−1

ωβ0 1.45 days 1.45 days 1.45 days

Table 3.2: The values of the parameters used in the simulations of Fig. 3.9 are presented
for all three cancer types.

Parameter Value Parameter Value
m 10−4 m′ 10−6 [81]
ᾱS0 0.35 ᾱS1 0.40
δC0 1.40 day−1 δC1 2.20 day−1

δM0 2.10 day−1 δM1 0.50 day−1

k0 1 day−1 k1 1 day−1

kζ 1.42 × 10−7

Table 3.3: Parameters used for model validation in Fig. 3.10.

3.6 Discussion and conclusion
According to the stem cell hypothesis, the persistence of cancer is regulated by a small
number of cancer cells which share the same biological properties as the stem cells, [45].
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3.6 Discussion and conclusion

The results of this model are in accordance with the stem cell hypothesis because the
mutated stem cells are responsible for the evolution and persistence of the whole mutated
cell lineage due to their elevated self-renewal and differentiation potential, see Fig. 3.4–3.5.
An efficient feedback mechanism must exist with heavy cross-talks between the cells
themselves and the extracellular environment to robustly regulate the system comprising
of cell lineages with various cell types. In the proposed model, the feedback in both,
the stem and progenitor cell populations allows mimicking the intercellular interactions
among the cells. Moreover, the model provides an insight that the self-renewal rate of
stem cells turns out to be very critical for persistence and maintenance of healthy cell
line. As shown in the Fig. 3.6, the influence of the feedback lead to the extinction of
healthy cell line because the self-renewal rate of stem cells was reduced. Thus leading
to the fact that to maintain the healthy cell population, the critical ratio of stem cell’s
self-renewal to differentiation rate should be maintained.

The proposed model have some drawbacks too. First, the model assumes a single
mutation leading to cancer evolution, which might not be true in many cases but the
model structure is flexible to incorporate more mutations and to predict the evolution of
cancer depending on their individual effects. Secondly, the model assumes only cytokines
feedback signaling but of course there exist several feedback mechanisms, for instance,
chalone [51], mechanosensing [92] etc. Furthermore, the simulations are performed
assuming linear dependence on feedback signal which might not be very realistic, however,
the precise nature of this feedback is still unknown.

We propose a generic modeling framework to investigate the coupled dynamics of the
healthy and mutated cell lineages, entailing homeostatic regulation. We show that the
model predicts familiar behaviour and evolutionary patterns of cancer. For instance, the
small number of mutated stem cells are responsible for the evolution of whole mutated
cell lineage. Moreover, the healthy cell line significantly declines in number due to
the sensitivity of symmetric self renewal rate of stem cell. Thus, the symmetric and
asymmetric self-renewal rates of stem cells are crucial for the persistence and maintenance
of both cell lines. The model is also validated with different experimental measurements
of the tumor available in the literature. With regard to future work, it is possible to
extend our model to include additional phenomena, e.g. cell de-differentiation and other
feedback mechanisms. Its architecture also enables heterogeneous type mutations to
be introduced, which can be of interest to gain additional insights in the development
of cancer and, additionally in the faster emergence of cancer. A future appealing step
concerns the stability analysis of the dynamical behavior and sensitivity analysis with
respect to the process parameters.
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CHAPTER 4
Mathematical analysis: Wellposedness of stem cell lineage
model

In the realm of mathematical analysis and its applications, the existence and uniqueness
of solutions are fundamental questions. According to Hadamard, a problem is considered
well-posed when it has a unique solution that continuously depends on the initial data [93].
The property of wellposedness is crucial, especially when making predictions based on
the given problem data. Analyzing structured population models for cell differentiation
through mathematical means is relatively rare in the literature. While techniques for
proving the existence of a unique solution for coupled nonlinear ODE-PDE models exist,
each physical problem’s mathematical framework requires its unique approach to identify
the conditions for a unique solution. Some of the approaches studied for problems of our
class include semigroup theory [94, 95], Banach fixed point theory [96, 97], and iterative
methods (based on induction) [98, 99], among others.

This chapter aims to establish the wellposedness of the nonlinear coupled ODE-PDE
model introduced in Chapter 3. The motivation behind this analysis is to demonstrate the
mathematical rigor of the proposed model. We establish the existence of a globally unique
solution for our mathematical model of stem cell lineages utilizing the well-established
Banach fixed point theory within our problem settings, defining solution bounds and
making assumptions about the function spaces concerning the given data and solution
variables.

4.1 Banach fixed point theory: A brief overview

Banach fixed point theory, named after the renowned Polish mathematician Stefan
Banach, constitutes a branch of functional analysis dedicated to studying fixed points
of specific mappings in metric spaces. One of the most celebrated outcomes of fixed
point theory is the Banach contraction mapping principle, used in studying nonlinear
equations. It establishes conditions under which a mapping in a complete metric space
possesses a unique fixed point. It provides a systematic framework for investigating the
existence and uniqueness of fixed points of certain self maps of metric space, and provides
a contractive method to find those fixed points. In the sequel, an introduction to Banach
fixed point theory along with some related definitions is presented.
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4.1 Banach fixed point theory: A brief overview

4.1.1 Cauchy sequence

A sequence {xn} is called a Cauchy sequence if for any given ϵ > 0, there exists N ∈ N
such that for all n,m ≥ N implies

|xn − xm| < ϵ.

4.1.2 Metric space

A metric space is a set equipped with a distance function (metric) that quantifies the
distance between any two points in the set. Formally, a metric space is defined as a pair
(X, d), where X is the set of elements, and d : X ×X → R is a function that satisfies the
following properties for all x, y, and z in X:

• Non-negativity: d(x, y) ≥ 0;

• Identity of indiscernibles: d(x, y) = 0 if and only if x = y;

• Symmetry: d(x, y) = d(y, x);

• Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

4.1.3 Complete metric space

A metric space (X, d) is called complete if every Cauchy sequence in X converges to a
limit within X. A Cauchy sequence is a sequence of elements {xn} such that for any
ϵ > 0, there exists an N such that d(xn, xm) < ϵ for all n,m ≥ N .

4.1.4 Fixed point

A fixed point on a mapping T : X → X of a set X into itself is an x ∈ X which is mapped
onto itself, that is

Tx = x.

For example, the mapping x → x2 on R has two fixed points; 0 and 1.

4.1.5 Contraction mapping

Let (X, d) be a metric space. A mapping T : X → X is called a contraction mapping on
X if there exists a constant k (0 ≤ k < 1) such that

d(T (x), T (y)) ≤ k ∗ d(x, y) for all x, y ∈ X.

This condition ensures that the mapping “contracts” distances, meaning that the images
(T (x) and T (y)) of points under T are closer together than the original points.

4.1.6 Banach fixed point theorem

Let (X, d) be a complete metric space and let T : X → X be a contraction mapping on
X, then T has a unique fixed point, i.e., x∗ ∈ X such that

T (x∗) = x∗.
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4.2 Mathematical model

In this chapter, we investigate the model wellposedness utilizing Banach fixed point
theory. The general approach in this work involves defining a solution operator for
the decoupled dynamics of the model and demonstrating that it acts as a contraction
mapping. We then prove that the fixed point of this contraction mapping corresponds
to the solution of the original problem. Finally, by applying the Banach fixed point
argument, we affirm our results.

4.2 Mathematical model
In the sequel, we write the governing model equations for the cell lineage dynamics of
healthy and mutated cells together from Chapter 3 as:

d
dtC0(t) = [(1 − 2m)αS0(s) −mαA0(s) − αD0(s) − δC0 ]k0C0(t), (4.1)
d
dtC1(t) = [αS1(s) − αD1(s) − δC1 ]k1C1(t) + [2mαS0(s) +mαA0(s)]k0C0(t), (4.2)

∂tP0(x, t) + ∂x[g0(x)P0(x, t)] =[(1 − 2m′)β0(x, s) − µ0(x)]P0(x, t), (4.3)
∂tP1(x, t) + ∂x[g1(x)P1(x, t)] =[β1(x, s) − µ1(x)]P1(x, t) + 2m′β0(x, s)P0(x, t), (4.4)

with boundary conditions for t > 0

g0(x0)P0(x0, t) = [2(1 −m)αD0(s) + (1 −m)αA0(s)]k0C0(t), (4.5)
g1(x0)P1(x0, t) = [2αD1(s) + αA1(s)]k1C1(t) + [2mαD0(s) +mαA0(s)]k0C0(t), (4.6)

dM0
dt =g0(x∗)P0(x∗, t) − δM0M0, (4.7)

dM1
dt =g1(x∗)P1(x∗, t) + 2m′β0(x∗, s)P0(x∗, t) − δM1M1, M1(0) = m1. (4.8)

The initial conditions are C0(0) = c0, C1(0) = c1, P0(x, 0) = f0(x), P1(x, 0) = f1(x),
M0(0) = m0, M1(0) = m1. Finally, the dynamics of cytokine feedback signaling molecules
ζ can be described by an ODE [100] as:

dζ
dt = υ − (δζ + γM)ζ, (4.9)

where υ is the maximum secretion rate of cytokine signals, δζ represents the natural
decrement of the signals ζ, and γ is the rate by which the total mature cell population
M = M0 + M1 (consisting of both healthy and mutated mature cells) regulate the
cytokine signals. Substituting s = (δζ/υ)ζ and kζ = γ/δζ , the above equation turns into

ṡ = δζ(1 − s− kζsM), s(0) = s0. (4.10)

4.2.1 Assumption and simplification

Hereby, we invoke a strong assumption in the model that the auxiliary functions and
parameters depend linearly on the feedback signal concentration s. Thus, we get

αS0(s) = αS0s, αA0(s) = αA0s, αD0(s) = αD0s, αS1(s) = αS1s, αD1(s) = αD1s

andβ0(x, s) = β0(x)s, β1(x, s) = β1(x)s, (4.11)
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4.3 Solution operator Sθ

where αS0 , αA0 , αD0 , αS1 , αD1 ∈ R≥0. Using (4.11), the model equations (4.1)-(4.10)
can be re-written as

d
dtC0(t) = k0 (((1 − 2m)αS0 −mαA0 − αD0)s− δC0)C0(t), C0(0) = c0, (4.12)
d
dtC1(t) = k1 ((αS1 − αD1)s− δC1)C1(t) +mk0 (2αS0 + αA0) sC0(t), C1(0) = c1,

(4.13)
∂tP0(x, t) + ∂x[g0(x)P0(x, t)] =

(
((1 − 2m′)β0(x))s− µ0(x)

)
P0(x, t), (4.14)

∂tP1(x, t) + ∂x[g1(x)P1(x, t)] = (β1(x)s− µ1(x))P1(x, t) + 2m′β0(x)sP0(x, t), (4.15)

with the initial conditions P0(x, 0) = f0(x), P1(x, 0) = f1(x) and boundary conditions
for t > 0

g0(x0)P0(x0, t) = k0 (2(1 −m)αD0 + (1 −m)αA0) sC0(t) := h0(t), (4.16)
g1(x0)P1(x0, t) = k1 (2αD1 + αA1) sC1(t) + k0 (2mαD0 +mαA0) sC0(t) := h1(t). (4.17)

Finally, the equations for healthy and mutated mature cells and the feedback signal
concentration are

dM0
dt = g0(x∗)P0(x∗, t) − δM0M0, M0(0) = m0, (4.18)

dM1
dt = g1(x∗)P1(x∗, t) + 2m′β0(x∗)sP0(x∗, t) − δM1M1, M1(0) = m1, (4.19)

ds
dt = δζ(1 − s− kζsM), s(0) = s0. (4.20)

Next, we employ the above model to prove the existence of a unique solution under the
assumption introduced in this section.

4.3 Solution operator Sθ

Consider the initial data satisfying

c0, c1, m0, m1, s0 ∈ R≥0, and f0(x), f1(x) : [x0, x
∗] → R≥0, h0(t), h1(t) : [0, T ] → R≥0,

with continuously differentiable auxiliary functions

g0, g1, β0, β1, µ0, µ1 : [x0, x
∗] → R≥0 and g0, g1, β0, β1, µ0, µ1 ∈ C1([x0, x

∗]),
g0(x), g1(x) > 0, ∀x ∈ [x0, x

∗) and s : [0, T ] → [0, 1]. (4.21)

Moreover, we assume that the parameters involved in the model fulfill

x0, x
∗, T, m, m′, αS0 , αA0 , αD0 , αS1 , αA1 , αD1 ,∈ R≥0, and

k0, k1, δC0 , δC1 , δM0 , δM0 , δM1 , kζ , δζ ∈ R≥0.

Meeting the requirements for auxiliary functions set out above in (4.21) and the following
restriction on the specified data space will ensure the wellposedness of model.
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4.3 Solution operator Sθ

Definition 4.3.1 (Problem data space). We define a space for the given data as

Θ :=
{

(c0, c1,m0,m1, f0, f1, h0, h1, s0) | f0, f1 ∈ C1([x0, x
∗]) with

∫ x∗

x0

P0(x)
g0(x) dx < ∞,∫ x∗

x0

P1(x)
g1(x) dx < ∞,m0 ≥ 0,m1 ≥ 0, c0 ≥ 0, c1 ≥ 0, s0 ≥ 0, h0, h1 ∈ C1([0, T ])

withh0(0) = f0(x0), h1(0) = f1(x∗)
}
.

For each θ = (c0, c1,m0,m1, f0, f1, h0, h1, s0) ∈ Θ, the norm of the function space Θ is
defined as

∥θ∥Θ := |c0| + |c1| + |m0| + |m1| + |s0| + ∥f0∥∞ + ∥f1∥∞ + ∥h0∥∞ + ∥h1∥∞,

where | · | and ∥ · ∥∞ denote the absolute value and L∞ norm, respectively.

Definition 4.3.2 (Solution Bounds). For θ = (c0, c1,m0,m1, f0, f1, h0, h1, s0) ∈ Θ, define
the following upper bounds

ḡ0 := max
x∈[x0,x∗]

g0(x), ḡ1 := max
x∈[x0,x∗]

g1(x), h̄0 := max
t∈[0,T ]

h0(t), h̄1 := max
t∈[0,T ]

h1(t),

µ̄0 := max
x∈[x0,x∗]

µ0(x), µ̄1 := max
x∈[x0,x∗]

µ1(x), β̄0 := max
x∈[x0,x∗]

β0(x), β̄1 := max
x∈[x0,x∗]

β1(x).

Furthermore, the functions that serve as bound for solution variables are

C0 := Θ × [0, T ] → R, C0(θ, t) :=c0 exp
(
k0((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0 − δ)t

)
,

C1 := Θ × [0, T ] → R, C1(θ, t) :=m(2αS0 + αA0)k0C0(θ, t)
(δC1 − αS1)k1

,

P0 := Θ × [0, T ] → R, P0(θ, t) := exp
(
((1 − 2m′)β̄0 − µ̄0)t

)(
((1 − 2m′)β̄0 − µ̄0)h̄0g0(x0)

+ ∥f0∥1
)
,

P1 := Θ × [0, T ] → R, P0(θ, t) :=(µ̄1 − β̄1)
(
2m′β̄0P 0(θ, t)

)
ḡ1x̄

∗ + exp
(
(β̄1 − µ̄1)t

)(
(β̄1 − µ̄1)h̄1g1(x0) + ∥f1∥1

)
,

M0 := Θ × [0, T ] → R, M0(θ, t) :=g0(x∗)P0(θ, t)
δM0

,

M1 := Θ × [0, T ] → R, M1(θ, t) :=g1(x∗)P1(θ, t) + 2m′β0(x∗)P0(θ, t)
δM1

,

s := Θ × [0, T ] → R, s(θ, t) :=1.

Next, we simplify the PDEs (4.14) and (4.15) for the sake of analysis. Thereby, we define
a parameter transform for x by which we drop the maturity rates g0(x) and g1(x) from
the convective terms of the PDEs (4.14) and (4.15), respectively.

Lemma 4.3.1 (Parameter transform for x). Let g(x) > 0, ∀x ∈ [x0, x∗). Then, there
exists a number x̄∗ ∈ (0,∞] and a function x : [0, x̄∗) → [x0, x∗) satisfying the following
conditions:

1. dx
dx̄ = g(x(x̄)) for all x̄ ∈ (0, x̄∗)
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4.3 Solution operator Sθ

2. x(0) = x0

3. limx̄→x̄∗ x(x̄) = x∗.

Proof. For the proof, see [97].

We define T ′ ∈ (0, T ] to restrict our problem to a shorter time interval in order to
guarantee that the solution operator is contractive.

Definition 4.3.3 (Variable space). We define XT ′ := L1([0, T ′])×L1([0, T ′])×L1([0, T ′]×
[x0, x∗)) × L1([0, T ′] × [x0, x∗)) × L1([0, T ′]) × L1([0, T ′]) × L1([0, T ′]). For any θ ∈ Θ
define the following associated function spaces

Y θ,1
T ′ :={y1 ∈ L1([0, T ′]) | 0 ≤ y1(t) ≤ C0(θ, t) for almost all t ∈ [0, T ′]},
Y θ,2

T ′ :={y2 ∈ L1([0, T ′]) | 0 ≤ y2(t) ≤ C1(θ, t) for almost all t ∈ [0, T ′]},

Y θ,3
T ′ :=

{
y3 ∈ L1([0, T ′] × [x0, x

∗)) |
∫ x∗

x0
y3(x, t)dx ≤ P0(θ, t) for almost all t ∈ [0, T ′] and

y3(x, t) ≥ 0 for almost all t ∈ [0, T ′], x ∈ [x0, x
∗)
}
,

Y θ,4
T ′ :=

{
y4 ∈ L1([0, T ′] × [x0, x

∗)) |
∫ x∗

x0
y4(x, t)dx ≤ P1(θ, t) for almost all t ∈ [0, T ′] and

y4(x, t) ≥ 0 for almost all t ∈ [0, T ′], x ∈ [x0, x
∗)
}
,

Y θ,5
T ′ :={y5 ∈ L1([0, T ′]) | 0 ≤ y5(t) ≤ M0(θ, t) for almost all t ∈ [0, T ′]},
Y θ,6

T ′ :={y6 ∈ L1([0, T ′]) | 0 ≤ y6(t) ≤ M1(θ, t) for almost all t ∈ [0, T ′]},
Y θ,7

T ′ :={y7 ∈ L1([0, T ′]) | 0 ≤ y7(t) ≤ s(θ, t) for almost all t ∈ [0, T ′]},
Y θ

T ′ :=Y θ,1
T ′ × Y θ,2

T ′ × Y θ,3
T ′ × Y θ,4

T ′ × Y θ,5
T ′ × Y θ,6

T ′ × Y θ,7
T ′ ⊂ XT ′ .

For any ξ = (x1, x2, x3, x4, x5, x6, x7) ∈ XT ′ and t ∈ [0, T ′], define the norm

∥ξ∥X :=
∫ T ′

0
∥ξ∥tdt,

with

∥ξ∥t := |x1(t)| + |x2(t)| +
∫ x∗

x0
|x3(x, t)|dx+

∫ x∗

x0
|x4(x, t)|dx+ |x5(t)| + |x6(t)| + |x7(t)|.

Now, we are able to define a solution operator which consists of all the solution variables. It
is to be noted that with reference to Lemma 4.3.1, we define the following transformations
for the involved PDEs (4.14) and (4.15). For g0(x), g1(x) > 0 and g0(x), g1(x) ∈
C1([x0, x∗]) and ∀x ∈ [x0, x∗), there exist functions x(x̄0) and x(x̄1) such that

dx
dx̄0

= g0(x(x̄0)), x(0) = x0 and dx
dx̄1

= g1(x(x̄1)), x(0) = x0

hold for all x̄0 ∈ (0, x̄∗
0) and x̄1 ∈ (0, x̄∗

1), respectively. In the following definition, the
solution operators for P θ

0 and P θ
1 are stemming from the transformed PDEs. The details

of this can be found in Section 4.4.
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4.3 Solution operator Sθ

Definition 4.3.4 (Solution operator). For θ ∈ Θ, we define the solution operator
Sθ[y] := (Cθ

0 [y], Cθ
1 [y], P θ

0 [y], P θ
1 [y], M θ

0 [y],M θ
1 [y], sθ[y]) as

Sθ : Y θ
T ′ →L1([0, T ′]) × L1([0, T ′]) × L1([0, T ′] × [x0, x

∗)) × L1([0, T ′] × [x0, x
∗))

× L1([0, T ′]) × L1([0, T ′]) × L1([0, T ′]),

with

Cθ
0 : Y θ

T ′ → L1([0, T ′]),
Cθ

1 : Y θ
T ′ → L1([0, T ′]),

P θ
0 : Y θ

T ′ → L1([0, T ′]) × [x0, x
∗),

P θ
1 : Y θ

T ′ → L1([0, T ′]) × [x0, x
∗),

M θ
0 : Y θ

T ′ → L1([0, T ′]),
M θ

1 : Y θ
T ′ → L1([0, T ′]),

sθ : Y θ
T ′ → L1([0, T ′]),

such that for all y = (y1, y2, y3, y4, y5, y6, y7) ∈ Y θ
T ′ and almost all t ∈ [0, T ′] and x̄ ∈

[0, x̄∗):

Cθ
0 [y](t) := c0 exp

(∫ t

0
k0 (((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0) y7(λ) − δC0)dλ

)
,

Cθ
1 [y](t) := exp

(∫ t

0
k1((ᾱS1 − ᾱD1)y7(λ) − δC1)dλ

)[
c1+∫ t

0
exp

(
k1

∫ ϵ

0
(−ᾱS1 + ᾱD1)y7(λ) + δC1dλ

)
× (m(2ᾱS0 + ᾱA0)k0y1(ϵ)y7(ϵ))dϵ

]
,

P θ
1 [y](x(x̄1), t) := 1

g1(x(x̄1))

×



exp
( ∫ t

0 β1(x(λ+ x̄1 − t))y7(λ) − µ1(x(λ+ x̄1 − t))dλ
)

×
[ ∫ t

0 exp
{− ∫ ϵ

0 β1(x(λ+ x̄1 − t))y7(λ) − µ1(x(λ+ x̄1 − t))dλ
}

(
2m′β0(x(ϵ+ x̄1 − t))y3(x(ϵ+ x̄1 − t), ϵ)y7(ϵ)

)
g1(x(ϵ+ x̄1 − t))dϵ

+f1(x(x̄1 − t))g1(x(x̄1 − t))
]
, x̄1 ≥ t

exp
( ∫ x̄1

0 β1(x(λ))y7(λ+ t− x̄1) − µ1(x(λ))dλ
)

×
[ ∫ x̄1

0 exp
{− ∫ ϵ

0 β1(x(λ))y7(λ+ t− x̄1) − µ1(x(λ))dλ
}

(
2m′β0(x(ϵ))y3(x(ϵ), ϵ+ t− x̄1)y7(ϵ+ t− x̄1)

)
g1(x(ϵ))dϵ

+h1(t− x̄1)g1(x0)
]
, x̄1 < t
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4.4 Fixed point of the solution operator Sθ

P θ
0 [y](x(x̄0), t) := 1

g0(x(x̄0))

×



exp
( ∫ t

0 (1 − 2m′)β0(x(λ+ x̄0 − t))y7(λ) − µ0(x(λ+ x̄0 − t))dλ
)

×f0(x(x̄0 − t))g0(x(x̄0 − t)), x̄0 ≥ t

exp
( ∫ x̄0

0 (1 − 2m′)β0(x(λ))y7(λ+ t− x̄0) − µ0(x(λ))dλ
)

×h0(t− x̄0)g0(x0), x̄0 < t

M θ
0 [y](t) := exp (−δM0t)

[ ∫ t

0
exp (δM0λ)g0(x∗)y3(x∗, λ)dλ+m0

]
,

M θ
1 [y](t) := exp (−δM1t)

[ ∫ t

0
exp (δM1λ)(g1(x∗)y4(x∗, λ) + 2m′β0(x∗)y3(x∗, λ)y7(λ))dλ

+m1

]
,

sθ[y](t) := exp
(

−
∫ t

0
δζ(1 + kζ(y5(λ) + y6(λ)))dλ

)
×
[ ∫ t

0
exp

(∫ ϵ

0
δζ(1 + kζ(y5(λ) + y6(λ)))dλ

)
δζdϵ+s0

]
.

4.4 Fixed point of the solution operator Sθ

Note that the latter definition of the operator Sθ is motivated by the solutions of the follow-
ing decoupled ODE-PDE system. Thus, for any given functions ȳ1, ȳ2 ∈ C0([0, T ]), ȳ3, ȳ4
∈ C0([x0, x∗) × [0, T ]), ȳ5, ȳ6, ȳ7 ∈ C0([0, T ]), and θ = (c0, c1,m0,m1, s0, f0, f1, h0, h1) ∈
Θ, the solution variables C0, C1, P0, P1, M0, M1, s can be found from the following
decoupled ODE-PDE system:

d
dtC0(t) = [((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0)ȳ7(t) − δC0 ] k0C0(t),
d
dtC1(t) = [(ᾱS1 − ᾱD1)ȳ7(t) − δC1 ] k1C1(t) +m(2ᾱS0 + ᾱA0)ȳ7(t)k0ȳ1(t),

∂tP0(x, t) + ∂x[g0(x)P0(x, t)] =
[
(1 − 2m′)β0(x)ȳ7(t) − µ0(x)

]
P0(x, t),

∂tP1(x, t) + ∂x[g1(x)P1(x, t)] = [β1(x)ȳ7(t) − µ1(x)]P1(x, t) + 2m′β0(x)ȳ7(t)ȳ3(x, t),
d
dtM0(t) = g0(x∗)ȳ3(x∗, t) − δM0M0,

d
dtM1(t) = g1(x∗)ȳ4(x∗, t) + 2m′β0(x∗)ȳ3(x∗, t)ȳ7(t) − δM1M1,

d
dts(t) = δζ(1 − s− kζs(ȳ5(t) + ȳ6(t))),

with the initial conditions C0(0) = c0, C1(0) = c1, P0(x, 0) = f0(x), P1(x, 0) = f1(x),
M0(0) = m0, M1(0) = m1, s(0) = s0, and boundary conditions

g0(0)P0(0, t) = (1 −m) [2ᾱD0 + ᾱA0 ȳ7(t)] k0ȳ1(t) := h0(t),
g1(0)P1(0, t) = [2ᾱD1 + ᾱA1 ȳ7(t)] k1ȳ2(t) +m [2ᾱD0 + ᾱA0 ȳ7(t)] k0ȳ1(t) := h1(t),
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for t > 0. Note that all representatives of Sθ that operate on Y θ
T ′ cannot solve the ODE-

PDE system because all components of Y θ
T ′ are from the subspace of L1, and for every

differentiable function, there exists an equivalent function that is nowhere differentiable
with respect to L1 norm. Therefore, we will consider one particular representative of Sθ,
which we call the unique continuous representative. Likewise, we can argue that since the
fundamental theorem of analysis is only applicable to integrals over continuous functions,
we choose the continuous equivalence classes of the functions on which Sθ is applied.
Lemma 4.4.1. Let y = (y1, y2, y3, y4, y5, y6, y7) ∈ Y θ

T ′ be such that there exists a
continuous representative ȳ = (ȳ1, ȳ2, ȳ3, ȳ4, ȳ5, ȳ6, ȳ7) of y. Then, the unique continuous
representatives of Cθ

0 [y], Cθ
1 [y], P θ

0 [y], P θ
1 [y],M θ

0 [y],M θ
1 [y], and sθ[y] solve the decoupled

ODE-PDE system.
Proof. The claim for Cθ

0 [y], Cθ
1 [y],M θ

0 [y],M θ
1 [y], sθ[y] follows from the ODE theory, see

Lemma 1 in appendix. Now, we need to prove that the continuous representatives of
P θ

0 [y], P θ
1 [y] satisfy (4.14), (4.15), (4.16) and (4.17). It is easy to see that the initial and

boundary conditions are satisfied at x̄0 = t and x̄1 = t by the continuous representatives
of P θ

0 [y] and P θ
1 [y], respectively. To show that (4.14) and (4.15) also satisfy the claim,

assume that t ∈ (0, T ), x̄0 ∈ (0, x̄∗
0) and x̄1 ∈ (0, x̄∗

1). We denote the continuous
representatives of P θ

0 [y] and P θ
1 [y] as P0 and P1, respectively. Further, we introduce the

notations P̃0(x(x̄0), t) := g0(x(x̄0))P0(x(x̄0), t) and P̃1(x(x̄1), t) := g1(x(x̄1))P1(x(x̄1), t).
We begin by proving the existence of a continuous representative for P θ

0 [y] and thereby,
we will compute ∂P̃0(x(x̄0),t)

∂x̄0
and ∂P̃0(x(x̄0),t)

∂t using the definition of P θ
0 and prove the

continuity at x̄0 = t by showing that left and right limits exist and are equal to the value
of function at x̄0 = t. The derivative ∂P̃0(x(x̄0),t)

∂x̄0
for x̄0 ≥ t results in

∂P̃0
∂x̄0

= exp
(∫ t

0
(1 − 2m′)β0(x(λ+ x̄0 − t))y7(λ) − µ0(x(λ+ x̄0 − t))dλ

)[
f ′

0(x(x̄0 − t))

g2
0(x(x̄0 − t)) + f0(x(x̄0 − t))g′

0(x(x̄0 − t))g0(x(x̄0 − t)) + ∂

∂x̄0

∫ t

0
(1 − 2m′)

β0(x(λ+ x̄0 − t))y7(λ) − µ0(x(λ+ x̄0 − t))dλf0(x(x̄0 − t))g0(x(x̄0 − t))
]
.

After simplification, we get
∂P̃0
∂x̄0

=P̃0(x(x̄0), t)
(

(1 − 2m′)β0(x(x̄0))y7(t) − µ0(x(x̄0))+

∂

∂x̄0

∫ t

0
(1 − 2m′)β0(x(λ+ x̄0 − t))y7(λ) − µ0(x(λ+ x̄0 − t))dλ

)
− ∂P̃0(x(x̄0), t)

∂t
.

Applying the limit x̄0 → t+ on both sides of above equation yields

lim
x̄0→t+

∂P̃0
∂x̄0

=P̃0(x(t), t)2
(
(1 − 2m′)β0(x(t))y7(t) − µ0(x(t))

)− ∂P̃0(x(t), t)
∂t

. (4.22)

Next, we consider the other case, when x̄0 < t, the derivative ∂P̃0(x(x̄0),t)
∂x̄0

results in

∂P̃0(x(x̄0), t)
∂x̄0

=P̃0(x(x̄0), t)
(

(1 − 2m′)β0(x(x̄0))y7(t) − µ0(x(x̄0))+

∂

∂t

∫ x̄0

0
(1 − 2m′)β0(x(λ))y7(λ+ t− x̄0) − µ0(x(λ))dλ

)
− ∂P̃0(x(x̄0), t)

∂t
.
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4.4 Fixed point of the solution operator Sθ

Then, applying the limit x̄0 → t− on the both sides of above equation, we have

lim
x̄0→t−

∂P̃0(x(x̄0), t)
∂x̄0

= P̃0(x(t), t)2
(
(1 − 2m′)β0(x(t))y7(t) − µ0(x(t))

)− ∂P̃0(x(t), t)
∂t

.

(4.23)

From Eq. (4.22) and Eq. (4.23), it follows that

lim
x̄0→t+

∂P̃0(x(x̄0), t)
∂x̄0

= lim
x̄0→t−

∂P̃0(x(x̄0), t)
∂x̄0

.

Now, we can calculate the differential quotient at (t, x(t)). By mean value theorem, we
can assign some ϱh ∈ (t, t+ h) (or ϱh ∈ (t+ h, t)) to each h > 0 or (h < 0) such that

P̃0(x(t+ h), t) − P̃0(x(t), t)
h

= ∂P̃0(x(ϱh), t)
∂x̄0

.

We have that

∂P̃0(x(t), t)
∂x̄0

= lim
h→0

P̃0(x(t+ h), t) − P̃0(x(t), t)
h

= lim
h→0

∂P̃0(x(ϱh), t)
∂x̄0

= lim
x̄0→t

∂P̃0(x(x̄0), t)
∂x̄0

=P̃0(x(t), t)2
(
(1 − 2m′)β0(x(t))y7(t) − µ0(x(t))

)− ∂P̃0(x(t), t)
∂t

exists at x̄0 = t and that the partial derivative is continuous in the direction of x̄0. Next,
we consider ∂P̃0(x(x̄0),t)

∂t for x̄0 ≥ t, which by using the definition of P̃0, results in

∂P̃0(x(x̄0), t)
∂t

=P̃0(x(x̄0), t)
(

(1 − 2m′)β0(x(x̄0))y7(t) − µ0(x(x̄0)) + ∂

∂x̄0

∫ t

0
(1 − 2m′)

β0(x(λ+ x̄0 − t))y7(λ) − µ0(x(λ+ x̄0 − t))dλ
)

− ∂P̃0(x(x̄0), t)
∂x̄0

.

Finally, applying the limit x̄0 → t+, yields

lim
x̄0→t+

∂P̃0(x(x̄0), t)
∂t

=P̃0(x(t), t)2
(
(1 − 2m′)β0(x(t))y7(t) − µ0(x(t))

)− ∂P̃0(x(t), t)
∂t

.

Now, for x̄0 < t, the derivative ∂P̃0(x(x̄0),t)
∂t simplifies to

∂P̃0(x(x̄0), t)
∂t

=P̃0(x(x̄0), t)
(

(1 − 2m′)β0(x(x̄0))y7(t) − µ0(x(x̄0))+

∂

∂t

∫ x̄0

0
(1 − 2m′)β0(x(λ))y7(λ+ t− x̄0) − µ0(x(λ))dλ

)
− ∂P̃0(x(x̄0), t)

∂x̄0
.

Consequently, taking the limit x̄0 → t− results in

lim
x̄0→t−

∂P̃0(x(x̄0), t)
∂t

= P̃0(x(t), t)2
(
(1 − 2m′)β0(x(t))y7(t) − µ0(x(t))

)− ∂P̃0(x(t), t)
∂x̄0

.

Therefore, it holds that

lim
x̄0→t+

∂P̃0(x(x̄0), t)
∂t

= lim
x̄0→t−

∂P̃0(x(x̄0), t)
∂t

,
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which gives the continuity of P̃0 and ∂P̃0(x(x̄0),t)
∂x̄0

.
Now, we prove this claim for P̃1. Consider ∂P̃1(x(x̄1),t)

∂x̄1
for x̄1 ≥ t, then by using the

definition of P θ
1 and simplifying, we have

∂P̃1
∂x̄1

=P̃1(x(x̄1), t)
(
β1(x(x̄1))y7(t) − µ1(x(x̄1)) + ∂

∂x̄1

∫ t

0
β1(x(x̄1))y7(λ) − µ1(x(x̄1))dλ

)
− ∂P̃1(x(x̄1), t)

∂t
+ exp

(∫ t

0
β1(x(x̄1))y7(λ)−µ1(x(x̄1))dλ

)[
exp

(
−
∫ t

0
y7(λ)

β1(x(x̄1)) − µ1(x(x̄1))dλ
)(

2m′β0(x(x̄1))y3(x(x̄1), t)y7(t)
)
g1(x(x̄1)) + ∂

∂x̄1∫ t

0
exp

(
−
∫ ϵ

0
β1(x(x̄1))y7(λ) − µ1(x(x̄1))dλ

)(
2m′β0(x(x̄1))y3(x(x̄1), ϵ)y7(ϵ)

)
g1(x(x̄1))dϵ

]
.

After applying the limit x̄1 → t+ on both sides of above equation yields

lim
x̄1→t+

∂P̃1
∂x̄1

=P̃1(x(t), t)2
(
β1(x(t))y7(t) − µ1(x(t))

)− ∂P̃1(x(t), t)
∂t

+ 4m′β0(x(t))y3(x(t), t)y7(t)g1(x(t)).

Consider the case when x̄1 < t, then the derivative takes the following form:

∂P̃1
∂x̄1

=P̃1(x(x̄1), t)
(
β1(x(x̄1))y7(t) − µ1(x(x̄1)) + ∂

∂t

∫ x̄1

0
β1(x(λ))y7(t) − µ1(x(λ))

dλ
)

− ∂P̃1(x(x̄1), t)
∂t

+ exp
(∫ x̄1

0
β1(x(λ))y7(t) − µ1(x(λ))dλ

)
[

exp
(

−
∫ x̄1

0
β1(x(λ))y7(t) − µ1(x(λ))dλ

)
2m′β0(x(x̄1))y3(x(x̄1), t)y7(t)

g1(x(x̄1)) + ∂

∂t

∫ x̄1

0
exp

(
−
∫ ϵ

0
β1(x(λ))y7(t) − µ1(x(λ))dλ

)
2m′β0(x(ϵ))

y3(x(ϵ), t)y7(t)g1(x(ϵ))dϵ
]
,

and, thus after applying limit x̄1 → t− on both sides of above equation yields

lim
x̄1→t−

∂P̃1(x(x̄1), t)
∂x̄1

=P̃1(x(t), t)2
(
β1(x(t))y7(t) − µ1(x(t))

)− ∂P̃1(x(t), t)
∂t

+ 4m′β0(x(t))y3(x(t), t)y7(t)g1(x(t)).

Ultimately, it holds that

lim
x̄1→t+

∂P̃1(x(x̄1), t)
∂x̄1

= lim
x̄1→t−

∂P̃1(x(x̄1), t)
∂x̄1

.

Next, we can calculate the differential quotient at (t, x(t)). By mean value theorem, we
can assign some ϱh ∈ (t, t+ h) (or ϱh ∈ (t+ h, t)) to each h > 0 or (h < 0) such that

P̃1(x(t+ h), t) − P̃1(x(t), t)
h

= ∂P̃1(x(ϱh), t)
∂x̄1

.
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So, we get that

∂P̃1(x(t), t)
∂x̄1

= lim
h→0

P̃1(x(t+ h), t) − P̃1(x(t), t)
h

= lim
h→0

∂P̃1(x(ϱh), t)
∂x̄1

= lim
x̄1→t

∂P̃1(x(x̄1), t)
∂x̄1

= P̃1(x(t), t)2
(
β1(x(t))y7(t) − µ1(x(t))

)− ∂P̃1(x(t), t)
∂t

+ 4m′β0(x(t))y3(x(t), t)y7(t)g1(x(t)),

exists and that the partial derivative is continuous in the direction of x̄1. In the next
step, we consider ∂P̃1(x(x̄1),t)

∂t for x̄1 ≥ t, then by using the definition of P θ
1 we have

∂P̃1(x(x̄1), t)
∂t

= P̃1(x(x̄1), t)
(
β1(x(x̄1))y7(t) − µ1(x(x̄1)) + ∂

∂x̄1

∫ t

0
β1(x(x̄1))y7(λ)−

µ1(x(x̄1))dλ
)

− ∂P̃1(x(x̄1), t)
∂x̄1

+ exp
(∫ t

0
β1(x(x̄1))y7(λ)−µ1(x(x̄1))dλ

)
[

exp
(

−
∫ t

0
y7(λ)β1(x(x̄1)) − µ1(x(x̄1))dλ

)(
2m′β0(x(x̄1))y3(x(x̄1), t)

y7(t)
)
g1(x(x̄1)) + ∂

∂x̄1

∫ t

0
exp

(
−
∫ ϵ

0
β1(x(x̄1))y7(λ) − µ1(x(x̄1))dλ

)
(
2m′β0(x(x̄1))y3(x(x̄1), ϵ)y7(ϵ)

)
g1(x(x̄1))dϵ

]
.

and, thus applying the limit x̄1 → t+, yields

lim
x̄1→t+

∂P̃1(x(x̄1), t)
∂t

=P̃1(x(t), t)2
(
β1(x(t))y7(t) − µ1(x(t))

)− ∂P̃1(x(t), t)
∂t

+ 4m′β0(x(t))y3(x(t), t)y7(t)g1(x(t)).

If x̄1 < t, then ∂P̃1(x(x̄1),t)
∂t reads

∂P̃1
∂t

=P̃1(x(x̄1), t)
(
β1(x(x̄1))y7(t) − µ1(x(x̄1)) + ∂

∂t

∫ x̄1

0
β1(x(λ))y7(t) − µ1(x(λ))

dλ
)

− ∂P̃1(x(x̄1), t)
∂x̄1

+ exp
(∫ x̄1

0
β1(x(λ))y7(t) − µ1(x(λ))dλ

)
[

exp
(

−
∫ x̄1

0
β1(x(λ))y7(t) − µ1(x(λ))dλ

)
2m′β0(x(x̄1))y3(x(x̄1), t)y7(t)

g1(x(x̄1)) + ∂

∂t

∫ x̄1

0
exp

(
−
∫ ϵ

0
β1(x(λ))y7(t) − µ1(x(λ))dλ

)
2m′β0(x(ϵ))

y3(x(ϵ), t)y7(t)g1(x(ϵ))dϵ
]
,

which after applying limit, x̄1 → t−, reduces to

lim
x̄1→t−

∂P̃1(x(x̄1), t)
∂t

=P̃1(x(t), t)2
(
β1(x(t))y7(t) − µ1(x(t))

)− ∂P̃1(x(t), t)
∂t

+ 4m′β0(x(t))y3(x(t), t)y7(t)g1(x(t)).
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Thus, it holds that

lim
x̄1→t+

∂P̃1(x(x̄1), t)
∂t

= lim
x̄1→t−

∂P̃1(x(x̄1), t)
∂t

.

This gives the claim of continuity of P̃1 ans ∂P̃1(x(x̄1),t)
∂x̄1

.
This completes the proof.

Remark 4.4.1. Note that not every equivalence class in L1([0, T ′]) contains a continuous
representative. However, for all y ∈ Y θ

T ′ , the classes Cθ
0 [y], Cθ

1 [y], P θ
0 [y], P θ

1 [y], M θ
0 [y],

M θ
1 [y] and sθ[y] each contain a continuous representative. This has been shown in Lemma

4.4.1. Therefore, for each fixed point of Sθ there exists a continuous representative.

Lemma 4.4.2. Let y = (y1, y2, y3, y4, y5, y6, y7) ∈ Y θ
T ′ with continuous representative

ȳ = (ȳ1, ȳ2, ȳ3, ȳ4, ȳ5, ȳ6, ȳ7). Then there exists a unique solution to the decoupled
ODE-PDE system.

Proof. The claim for Cθ
0 [y], Cθ

1 [y],M θ
0 [y],M θ

1 [y], sθ[y] follows from ODE theory, see Lemma
1. To prove that the continuous representatives of P θ

0 [y] and P θ
1 [y] are unique, we need

to derive the explicit relations for P0 and P1 and, therefore, we use the method of
characteristics to solve both PDEs (4.14) and (4.15). We start with the transformation of
the PDEs using previously defined P̃0(x, t) := g0(x)P0(x, t) and P̃1(x, t) := g1(x)P1(x, t)
for t ∈ [0, T ′] and x ∈ [x0, x1). Then for all t ∈ (0, T ′) and x ∈ (x0, x1), we have from Eq.
(4.14)

∂

∂t

(
P̃0(x, t)
g0(x)

)
+ ∂

∂x

(
g0(x)P̃0(x, t)

g0(x)

)
=
[
(1 − 2m′)β0(x)ȳ7(t) − µ0(x)

] ( P̃0(x, t)
g0(x)

)
or equivalently

∂

∂t
P̃0(x, t) + g0(x) ∂

∂x
P̃0(x, t) =

[
(1 − 2m′)β0(x)ȳ7(t) − µ0(x)

]
P̃0(x, t). (4.24)

Similarly, from Eq. (4.15), we have

∂

∂t

(
P̃1(x, t)
g1(x)

)
+ ∂

∂x

(
g1(x)P̃1(x, t)

g1(x)

)
= [β1(x)ȳ7(t) − µ1(x)]

(
P̃1(x, t)
g0(x)

)
+ 2m′β0(x)ȳ3(x, t)ȳ7(t),

equivalently

∂

∂t
P̃1(x, t) + g1(x) ∂

∂x
P̃1(x, t) = [β1(x)ȳ7(t) − µ1(x)] P̃1(x, t)

+ (2m′β0(x)ȳ3(x, t)ȳ7(t))g1(x). (4.25)

Next, we use the parameter transform from Lemma 4.3.1 to drop the growth terms
(i.e., g0(x) and g1(x)) and introduce x̄0 and x̄1 as new maturity variables for P0 and P1,
respectively. We obtain

∂

∂x̄0
P̃0(x(x̄0), t) = dx

dx̄0

∂

∂x
P̃0(x, t) = g0(x(x̄0)) ∂

∂x
P̃0(x, t),

∂

∂x̄1
P̃1(x(x̄1), t) = dx

dx̄1

∂

∂x
P̃1(x, t) = g1(x(x̄1)) ∂

∂x
P̃1(x, t).
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Therefore, from Eqs. (4.24) and (4.25) it follows that

∂

∂t
P̃0(x(x̄0), t) + ∂

∂x̄0
P̃0(x(x̄0), t) =

[
(1 − 2m′)β0(x(x̄0))ȳ7(t) − µ0(x(x̄0))

]
P̃0(x(x̄0), t),

(4.26)
∂

∂t
P̃1(x(x̄1), t) + ∂

∂x̄1
P̃1(x(x̄1), t) = [β1(x(x̄1))ȳ7(t) − µ1(x(x̄1))] P̃1(x(x̄1), t)

+
(
2m′β0(x(x̄1))ȳ3(x(x̄1), t)ȳ7(t)

)
g1(x(x̄1)), (4.27)

respectively. Now, we use the method of characteristics (MOC) to find the explicit
relations of both P̃0(x(x̄0), t) and P̃1(x(x̄1), t). Starting with Eq. (4.26), we suppose that
P̃0(x(x̄0), t) can be described by an ODE along the curve (x(ϕ1(u)), ϕ2(u)) = ϕ(u), and
we define

ϕ̇1(u) := 1 ⇒ ϕ1(u) = u+ c1,

ϕ̇2(u) := 1 ⇒ ϕ2(u) = u+ c2,

and z(u) := P̃0(x(ϕ1(u)), ϕ2(u)),

where c1, c2 ∈ R are constants. Then, it holds that

dz
du = dP̃0(x(ϕ1(u)), ϕ2(u))

du

= ∂P̃0(x(ϕ1(u)), ϕ2(u))
∂x

dx(ϕ1(u))
dϕ1

dϕ1(u)
du + ∂P̃0(x(ϕ1(u)), ϕ2(u))

∂ϕ2

dϕ2(u)
du

=
(
(1 − 2m′)β0(x(ϕ1(u)))ȳ7(ϕ2(u)) − µ0(x(ϕ1(u)))

)
P̃0(x(ϕ1(u)), ϕ2(u))

=
(
(1 − 2m′)β0(x(ϕ1(u)))ȳ7(ϕ2(u)) − µ0(x(ϕ1(u)))

)
z(u). (4.28)

We can describe P̃0 by ODE (4.28) such that

P̃0(x(u+ c1), u+ c2) = P̃0(x(ϕ1(u)), ϕ2(u)) = z(u)

= exp
{∫ u

0
(1 − 2m′)β0(x(ϕ1(ũ)))ȳ7(ϕ2(ũ))−µ0(x(ϕ1(ũ)))dũ

}
z(0)

= exp
{∫ u

0
(1 − 2m′)β0(x(ϕ1(ũ)))ȳ7(ϕ2(ũ))−µ0(x(ϕ1(ũ)))dũ

}
P̃0(x(ϕ1(0)), ϕ2(0))

= exp
{∫ u

0
(1 − 2m′)β0(x(ũ+ c1))ȳ7(ũ+ c2)−µ0(x(ũ+ c1))dũ

}
P̃0(x(c1), c2).

Next, we define the boundary set Γ := {[x0, x∗) × {0}} ∪ {{x0} × [0, T ′]}, such that if a
curve (x(ϕ1(u)), ϕ2(u)) starts in Γ, then we can use the boundary conditions to determine
P̃0(x(c1), c2). For (x(u+ c1), u+ c2) to be in Γ, either c1 = 0 or c2 = 0. This leads to the
following two scenarios. In the first case, we consider c1 = 0 and c2 ∈ [0, T ′) is arbitrary,
then we have

P̃0(x(u),u+ c2)=exp
{∫ u

0
(1 − 2m′)β0(x(ũ))ȳ7(ũ+ c2)−µ0(x(ũ))dũ

}
P̃0(x(0), c2).

We can now use the solution along these characteristics in order to get a solution in
{(x(x̄0), t)|t ∈ [0, T ′], x̄0 ∈ [0,min(x̄∗

0, t))}:

x̄0
!= ϕ1(u) = u+ c1 = u ⇒ u = x̄0 and t

!= ϕ2(u) = u+ c2 ⇒ c2 = t− u,
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4.4 Fixed point of the solution operator Sθ

which implies

P̃0(x(x̄0), t)= exp
{∫ x̄0

0
(1 − 2m′)β0(x(ũ))ȳ7(ũ+ t− x̄0)−µ0(x(ũ))dũ

}
h0(t− x̄0)g0(x0).

This proves the equation for g0(x(x̄0))P0(x(x̄0), t) in the case for x̄0 < t. Next, we
consider c1 ∈ [0, x̄∗

0) is arbitrary and c2 = 0, then we have

P̃0(x(u+ c1), u) = exp
{∫ u

0
(1 − 2m′)β0(x(ũ+ c1))ȳ7(ũ) − µ0(x(ũ+ c1))dũ

}
P̃0(x(c1), 0).

In a similar way, we can now use the solution along these characteristics in order to get a
solution in {(x(x̄0), t)|t ∈ [0, T ′], x̄ ∈ [t, x̄∗

0)}:

x̄0
!= ϕ1(u) = u+ c1 ⇒ c1 = x̄0 − u and t

!= ϕ2(u) = u ⇒ t = u

and, thus

P̃0(x(x̄0), t) = exp
{∫ t

0
(1 − 2m′)β0(x(ũ+ x̄0 − t))ȳ7(ũ) − µ0(x(ũ+ x̄0 − t))dũ

}
× f0(x(x̄0 − t))g0(x(x̄0 − t)).

This proves the equation for g0(x(x̄0))P0(x(x̄0), t) in the case for x̄0 ≥ t. Now, we find the
explicit relation for P̃1(x(x̄1), t) from Eq. (4.27). Following the similar way, we suppose
that P̃1(x(x̄1), t) can be described by an ODE along the curve (x(φ1(u)), φ2(u)) = φ(u)
and we define

φ̇1(u) := 1 ⇒ φ1(u) = u+ k1,

φ̇2(u) := 1 ⇒ φ2(u) = u+ k2,

z(u) := P̃1(x(φ1(u)), φ2(u)),

where k1, k2 ∈ R are constants. Then, proceeding in a similar manner as for P0, it holds
that

dz
du = (β1(x(φ1(u)))ȳ7(φ2(u)) − µ1(x(φ1(u)))) z(u)

+
(
2m′β0(x(φ1(u)))ȳ3(x(φ1(u)), φ2(u))ȳ7(φ2(u))

)
g1(x(φ1(u))). (4.29)

We can describe P̃1 by the ODE (4.29) such that

P̃1(x(u+k1), u+ k2) = P̃1(x(φ1(u)), φ2(u)) = z(u)

= exp
{∫ u

0
β1(x(φ1(ũ)))ȳ7(φ2(ũ)) − µ1(x(φ1(ũ)))dũ

}
×
[ ∫ u

0
exp

{
−
∫ ũ

0
β1(x(φ1(ṽ)))ȳ7(φ2(ṽ)) − µ1(x(φ1(ṽ)))dṽ

}
(
2m′β0(x(φ1(ũ)))ȳ3(x(φ1(ũ)), φ2(ũ))ȳ7(φ2(ũ))

)
g1(x(φ1(ũ)))dũ+ z(0)

]
= exp

{∫ u

0
β1(x(ũ+ k1))ȳ7(ũ+ k2) − µ1(x(ũ+ k1))dũ

}
×
[ ∫ u

0
exp

{
−
∫ ũ

0
β1(x(ṽ + k1))ȳ7(ṽ + k2) − µ1(x(ṽ + k1))dṽ

}(
2m′

β0(x(ũ+ k1))ȳ3(x(ũ+ k1), ũ+ k2)ȳ7(ũ+ k2)
)
g1(x(ũ+ k1))dũ+ P̃0(x(k1), k2)

]
,
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4.4 Fixed point of the solution operator Sθ

where we have used z(0) = P̃1(x(ϕ1(0)), ϕ2(0)) with ϕ1(0) = k1 and ϕ2(0) = k2. Next,
we define the boundary set Γ := {[x0, x1) × {0}} ∪ {{x0} × [0, T ′]} such that if a
curve (x(φ1(u)), φ2(u)) starts in Γ, then we can use boundary conditions to determine
P̃1(x(k1), k2). If we want (x(u + k1), u + k2) to be in Γ, then either k1 = 0 or k2 = 0.
This leads to the following two cases. Firstly, we take k1 = 0 and k2 ∈ [0, T ′) is arbitrary,
then we have

P̃1(x(u), u+ k2) = exp
{∫ u

0
β1(x(ũ))ȳ7(ũ+ k2) − µ1(x(ũ))dũ

}
×
[ ∫ u

0
exp

{
−
∫ ũ

0
β1(x(ṽ))ȳ7(ṽ + k2) − µ1(x(ṽ))dṽ

}
(
2m′β0(x(ũ))ȳ3(x(ũ), ũ+ k2)ȳ7(ũ+ k2)

)
g1(x(ũ))dũ+ P̃0(x(0), k2)

]
.

We can now use the solution along these characteristics in order to get a solution in
{(x(x̄1), t)|t ∈ [0, T ′], x̄1 ∈ [0,min(x̄∗

1, t))}:

x̄1
!= φ1(u) = u+ k1 = u ⇒ u = x̄1 and t

!= φ2(u) = u+ k2 ⇒ k2 = t− u.

Thus, it implies

P̃1(x(x̄1), t) = exp
{∫ x̄1

0
β1(x(ũ))ȳ7(ũ+ t− x̄1) − µ1(x(ũ)dũ

}
×
[ ∫ x̄1

0
exp

{
−
∫ ũ

0
β1(x(ṽ))ȳ7(ṽ + t− x̄1) − µ1(x(ṽ))dṽ

}(
2m′β0(x(ũ))

ȳ3(x(ũ), ũ+ t− x̄1)ȳ7(ũ+ t− x̄1)
)
g1(x(ũ))dũ+ h1(t− x̄1)g1(x0)

]
.

This proves the equation for g1(x(x̄1))P1(x(x̄1), t) in the case for x̄1 < t. Secondly, we
consider k1 ∈ [0, x̄∗

1) is arbitrary and k2 = 0, then we have

P̃1(x(u+ k1), u) = exp
{∫ u

0
β1(x(ũ+ k1))ȳ7(ũ) − µ1(x(ũ+ k1))dũ

}
×
[ ∫ u

0
exp

{
−
∫ ũ

0
β1(x(ṽ + k1))ȳ7(ṽ) − µ1(x(ṽ + k1))dṽ

}(
2m′

β0(x(ũ+ k1))ȳ3(x(ũ+ k1), ũ)ȳ7(ũ)
)
g1(x(ũ+ k1))dũ+ P̃0(x(k1), 0)

]
.

Similar to the last case, we can now use the solution along these characteristics in order
to get a solution in {(x(x̄1), t)|t ∈ [0, T ′], x̄1 ∈ [t, x̄∗

1)}:

x̄1
!= φ1(u) = u+ k1 ⇒ k1 = x̄1 − u and t

!= φ2(u) = u ⇒ t = u.

Finally, we have

P̃1(x(x̄1), t) = exp
{∫ t

0
β1(x(ũ+ x̄1 − t)ȳ7(ũ) − µ1(x(ũ+ x̄1 − t))dũ

}
×
[ ∫ t

0
exp

{
−
∫ ũ

0
β1(x(ṽ + x̄1 − t)ȳ7(ṽ) − µ1(x(ṽ + x̄1 − t)dṽ

}
(
2m′β0(x(ũ+ x̄1 − t)ȳ3(x(ũ+ x̄1 − t, ũ))ȳ7(ũ)

)
g1(x(ũ+ x̄1 − t)dũ

+ f1(x(x̄1 − t))g1(x(x̄1 − t))
]
.

68



4.5 Boundedness of solution

This proves the equation for g1(x(x̄1))P1(x(x̄1), t) in the case for x̄1 ≥ t.

Theorem 4.4.1. Let y = (y1, y2, y3, y4, y5, y6, y7) ∈ Y θ
T ′ . Then y is a fixed point of Sθ if

and only if its continuous representative solves the basic ODE-PDE system on [0, T ′].

Proof. If y is a fixed point of Sθ, then its continuous representative solves the basic PDE
system on [0, T ′]. This follows from Lemma 4.4.1. For the other case, if continuous
representative ȳ of y solves the basic ODE-PDE system on [0, T ′] then y is a fixed point
of Sθ. Here, we can argue that if ȳ solves the basic ODE-PDE system on [0, T ′] then
it also solves the decoupled ODE-PDE system and since the solution to this system is
unique (by Lemma 4.4.2) and equal to the continuous representative of

Sθ := (Cθ
0 [y], Cθ

1 [y], P θ
0 [y], P θ

1 [y],M θ
0 [y],M θ

1 [y], sθ[y]),

(by Lemma 4.4.1), we get that y must coincide with Sθ[y] almost everywhere, i.e., y must
be a fixed point of Sθ.

4.5 Boundedness of solution

Proposition 4.5.1. For all y = (y1, y2, y3, y4, y5, y6, y7) ∈ Y θ
T ′ with a continuous repre-

sentative, it holds that

Cθ
i [y](t) ∈ [0, Ci(θ, t)],∫ x∗

x0
P θ

i [y](x, t)dx ≤ Pi(θ, t), P θ
i [y](x, t) ≥ 0,

M θ
i [y](t) ∈ [0,Mi(θ, t)],

sθ[y](t) ∈ [0, s̄(θ, t)],

for almost all t ∈ [0, T ′] and x ∈ [x0, x∗), where i ∈ {0, 1}.

Proof. It is obvious (from the definition of operators) that Cθ
0 , Cθ

1 , P θ
0 , P θ

1 , M θ
0 , M θ

1 ,
and sθ are non-negative almost everywhere. To find the upper bounds, we let ȳ =
(ȳ1, ȳ2, ȳ3, ȳ4, ȳ5, ȳ6, ȳ7), denote the continuous representative of y and use C0, C1, P0, P1,
M0 , M1, and s to refer to the continuous representative of Cθ

0 , Cθ
1 , P θ

0 , P θ
1 , M θ

0 , M θ
1 and

sθ, respectively. We begin with finding the upper bound for C0 and by Lemma 4.4.1, for
all t ∈ (0, T ′) we have

d
dtC0(t) =

(
((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0)ȳ7(t) − δC0

)
k0C0(t)

≤(((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0)s̄(t, θ) − δC0

)
k0C0(t).

Hence,

s̄(t, θ) = δC0

(1 − 2m)ᾱS0 −mᾱA0 − ᾱD0
⇒ d

dtC0(t) ≤ 0.

We get that C0(t) ≤ C0(t, θ) for all t ∈ [0, T ′] together with C0(0, θ) = c0. Next, we
consider C1 and for all t ∈ (0, T ′), we have

d
dtC1(t) =

(
(ᾱS1 − ᾱD1)ȳ7(t) − δC1

)
k1C1(t) + (2mᾱS0 +mᾱA0)ȳ7(t)k0ȳ1(t)

≤(ᾱS1 s̄(t, θ) − δC1

)
k1C1(t) + (2mᾱS0 +mᾱA0)s̄(t, θ)k0C0(t, θ).
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Therefore,

C1(t) = C1(t, θ) ⇒ d
dtC1(t) ≤ 0.

This proves that C1(t) ≤ C1(t, θ) for all t ∈ [0, T ′]. Now, we consider P0 and for t ∈ [0, T ′],
we have∫ x∗

x0
P0(t, x)dx =

∫ x̄∗
0

0
g0(x(x̄0))P0(t, x(x̄0))dx̄0

=
∫ t

0
g0(x(x̄0))P0(t, x(x̄0))dx̄0 +

∫ x̄∗
0

t
g0(x(x̄0))P0(t, x(x̄0))dx̄0

=
∫ t

0
exp

(∫ x̄0

0
(1 − 2m′)β0(x(λ))y7(λ+ t− x̄0) − µ0(x(λ))dλ

)
h0(t− x̄0)

g0(x0)dx̄0 +
∫ x̄∗

0

t
f0(x(x̄0 − t)) exp

(∫ t

0
(1 − 2m′)β0(x(λ+ x̄0 − t))y7(λ)

− µ0(x(λ+ x̄0 − t))dλ
)
g0(x(x̄0 − t))dx̄0.

Using Definition 4.3.2, we obtain:∫ x∗

x0
P0(t, x)dx ≤ h̄0g0(x0)

∫ t

0
exp

(
((1 − 2m′)β̄0s(θ, t) − µ̄0)x̄0

)
dx̄0 +

∫ x̄∗
0

t
f0(x(x̄0 − t))

exp
(
((1 − 2m′)β̄0s(θ, t) − µ̄0)t

)
g0(x(x̄0 − t))dx̄0

= exp
(
((1 − 2m′)β̄0s(θ, t) − µ̄0)t

)(
((1 − 2m′)β̄0s(θ, t) − µ̄0)h̄0g0(x0)

+ ∥f0∥1
)
.

Thus, when s(θ, t) = 1, we have∫ x∗

x0
P0(t, x)dx ≤ exp

(
((1 − 2m′)β̄0 − µ̄0)t

)(
((1 − 2m′)β̄0 − µ̄0)h̄0g0(x0) + ∥f0∥1

)
.

Next, we want to show the upper bound of P1(t, x). Considering P1 for t ∈ [0, T ′], we
have ∫ x∗

x0
P1(t, x)dx =

∫ x̄∗
1

0
g1(x(x̄1))P1(t, x(x̄1))dx̄1

=
∫ t

0
g1(x(x̄1))P1(t, x(x̄1))dx̄1 +

∫ x̄∗
1

t
g1(x(x̄1))P1(t, x(x̄1))dx̄1.

Then, by using P1(t, x(x̄1)) and Definition 4.3.2, it reduces to∫ x∗

x0
P1(t, x)dx ≤

∫ t

0
exp

(∫ x̄1

0
(β̄1s(θ, t) − µ̄1)dλ

)[ ∫ x̄1

0
exp

{
−
∫ ϵ

0
(β̄1s(θ, t) − µ̄1)dλ

}
(
2m′β̄0P 0(θ, t)s(θ, t)

)
ḡ1dϵ+ h̄1g1(x0)

]
dx̄1 +

∫ x̄∗
1

t
exp

(∫ t

0
(β̄1s(θ, t)

− µ̄1)dλ
)[ ∫ t

0
exp

{
−
∫ ϵ

0
(β̄1s(θ, t) − µ̄1)dλ

}(
2m′β̄0P 0(θ, t)s(θ, t)

)
ḡ1dϵ

+ f1(x(x̄1 − t))g1(x(x̄1 − t))
]
dx̄1

=(µ̄1−β̄1s(θ, t))
(
2m′β̄0P 0(θ, t)s(θ, t)

)
ḡ1x̄

∗
1 + exp

(
(β̄1s(θ, t) − µ̄1)t

)(
h̄1g1(x0)(β̄1s(θ, t) − µ̄1) + ∥f1∥1

)
.
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Now, consider M0 and for all t ∈ (0, T ′), we have

d
dtM0(t) =g0(x∗)ȳ3(x∗, t) − δM0M0 ≤ g0(x∗)P0(θ, t) − δM0M0.

Thus,

M0(t) = M0(t, θ) ⇒ d
dtM0(t) ≤ 0.

This proves that M0(t) ≤ M0(t, θ) for all t ∈ [0, T ′]. Next, we take M1 and for all
t ∈ (0, T ′), it follows that

d
dtM1(t) =g1(x∗)ȳ4(x∗, t) + 2m′β0(x∗)ȳ3(x∗, t)ȳ7(t) − δM1M1

≤g1(x∗)P1(θ, t) + 2m′β0(x∗)P0(θ, t)s(θ, t) − δM1M1.

Consequently,

M1(t) = M1(t, θ) ⇒ d
dtM1(t) ≤ 0.

This proves that M1(t) ≤ M1(t, θ) for all t ∈ [0, T ′]. Finally, consider s and for all
t ∈ (0, T ′), it follows that

d
dts(t) =µ(1 − s− kζs(ȳ5(t) + ȳ6(t))) ≤ µ(1 − s).

Therefore,

s(t) = s(t, θ) ⇒ d
dts(t) ≤ 0.

This proves that s(t) ≤ s(t, θ) for all t ∈ [0, T ′].

Lemma 4.5.1. Let θa = (ca
0, c

a
1,m

a
0,m

a
1, s

a
0, f

a
0 , f

a
1 , h

a
0, h

a
1) ∈ Θ and η > 0, then for

all θb = (cb
0, c

b
1,m

b
0,m

b
1, s

b
0, f

b
0 , f

b
1 , h

b
0, h

b
1) ∈ Θ with ∥θa − θb∥Θ < η, it holds that

hi
0(t), hi

1(t), C0(θi, t), C1(θi, t), M0(θi, t), M1(θi, t), s(θi, t), P0(θi, t), P1(θi, t), f i
0(x),

f i
1(x) ≤ const.(θa, η) for i = a, b and all t ∈ [0, T ], x ∈ [x0, x∗].

Proof. The case i = a is trivial. For i = b, let t ∈ [0, T ] and consider

|ha
0(t) − hb

0(t)| ≤ ∥ha
0 − hb

0∥∞ ≤ ∥θa − θb∥Θ < η =⇒ hb
0(t) ≤ const.(θa, η),

|fa
0 (t) − f b

0(t)| ≤ ∥fa
0 − f b

0∥∞ ≤ ∥θa − θb∥Θ < η =⇒ f b
0(t) ≤ const.(θa, η).

The proof for other solution variables follows in a similar manner using the definitions of
bounds.

Next, we will employ the general Lemma 2 to prove the boundedness of our solution
variables.
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Lemma 4.5.2. Let θa ∈ Θ, η > 0. There exist non-negative constants CC0(θa, η),
CC1(θa, η), CM0(θa, η), CM1(θa, η) and Cs(θa, η) such that for all θb ∈ Θ with ∥θa −θb∥ <
η, and ya ∈ Y θa

T ′ , yb ∈ Y θb

T ′ , it holds that

|Cθa

0 [ya](t) − Cθb

0 [yb](t)| ≤ CC0(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

|Cθa

1 [ya](t) − Cθb

1 [yb](t)| ≤ CC1(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

|M θa

0 [ya](t) −M θb

0 [yb](t)| ≤ CM0(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

|M θa

1 [ya](t) −M θb

1 [yb](t)| ≤ CM1(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

|sθa [ya](t) − sθb [yb](t)| ≤ Cs(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

for almost all t ∈ [0, T ′].

Proof. For t ∈ [0, T ′], x = (x1, x2, x3, x4, x5, x6, x7) ∈ XT ′ , and θ ∈ Θ, we prove
the statement for each variable separately. Starting with Cθ

0 , we define p(t, x, θ) :=
((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0)k0x7(t) − δC0k0 and g(t, x, θ) := 0. Now, let θa, θb ∈ Θ with
∥θa − θb∥ < η and ya ∈ Y θa

T ′ , yb ∈ Y θb

T ′ . For i = a, b, it holds that

p(t, yi, θi) = ((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0)k0y7(θi, t) − δC0k0

≤ ((1 − 2m)ᾱS0)k0s(θi, t)
Lemma 4.5.1

≤ const.(θa, η),
g(t, yi, θi) ≤ const.(θa, η),

and

|p(t, ya, θa) − p(t, yb, θb)| ≤ ((1 − 2m)ᾱS0 −mᾱA0 − ᾱD0)k0|ya
7(t) − yb

7(t)|
≤ const.(θa, η)∥ya − yb∥t,

|g(t, ya, θa) − g(t, yb, θb)| ≤ const.(θa, η)∥ya − yb∥t.

By Lemma 2, the claim for Cθ
0 , i.e.,

|Cθa

0 [ya](t) − Cθb

0 [yb](t)| ≤ CC0(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

is proved. Further, we consider Cθ
1 and define p(t, x, θ) := ((ᾱS1 − ᾱD1)x7(t) − δC1)k1

and g(t, x, θ) := (2mᾱS0 +mᾱA0)x7(t)k0x1(t). For i = a, b, it holds that

p(t, yi, θi) = ((ᾱS1 − ᾱD1)y7(θi, t) − δC1)k1 ≤ (ᾱS1 − ᾱD1)k1s(θi, t)
Lemma 4.5.1

≤ const.(θa, η)
g(t, yi, θi) = (2mᾱS0 +mᾱA0)y7(θi, t)k0y1(θi, t) ≤ (2mᾱS0 +mᾱA0)k0s(θi, t)C0(θi, t)

Lemma 4.5.1
≤ const.(θa, η),
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and

|p(t, ya, θa) − p(t, yb, θb)| ≤ (ᾱS1 − ᾱD1)k1|ya
7(t) − yb

7(t)| ≤ const.(θa, η)∥ya − yb∥t,

|g(t, ya, θa) − g(t, yb, θb)| ≤ (2mᾱS0 +mᾱA0)k0|ya
7(t)ya

1(t) − yb
7(t)yb

1(t)|
≤ (2mᾱS0 +mᾱA0)k0|ya

7(t)||ya
1(t) − yb

1(t)|+|yb
1(t)||ya

7(t) − yb
7(t)|

≤ const.(θa, η)∥ya − yb∥t,

where we used the inequality |x1y1 − x2y2| ≤ |x1| · |y1 − y2| + |y2| · |x1 − x2|. This
gives us the claim for Cθ

1 . Next, considering M θ
0 and defining p(t, x, θ) := −δM0 , and

g(t, x, θ) := g0(x∗)x3(x∗, t). For i = a, b, it holds that

p(t, yi, θi) = −δM0≤ const.(θa, η)
g(t, yi, θi) = g0(x∗)yi

3(x∗, t) ≤ g0(x∗)P i
1(x∗, t)

≤ const.(θa, η)

and

|p(t, ya, θa) − p(t, yb, θb)| = 0 ≤ const.(θa, η)∥ya − yb∥t,

|g(t, ya, θa) − g(t, yb, θb)| ≤ g0(x∗)|ya
3(x∗, t) − yb

3(x∗, t)|
≤ const.(θa, η)∥ya − yb∥t.

This gives the claim for M θ
0 . Next, we consider M θ

1 and define p(t, x, θ) := −δM1 and
g(t, x, θ) := g1(x∗)x4(x∗, t) + 2m′β0(x∗)x3(x∗, t)x7(t). For i = a, b it holds that

p(t, yi, θi) = −δM1≤ const.(θa, η)
g(t, yi, θi) = g1(x∗)yi

4(x∗, t) + 2m′β0(x∗)yi
3(x∗, t)y7(θi, t)

= g1(x∗)P i
1(x∗, t) + 2m′β0(x∗)P i

0(x∗, t)s(θi, t)

≤ g1(x∗)P1
i(x∗, t) + 2m′β0(x∗)P0

i(x∗, t)s(θi, t)
≤ const.(θa, η)

and

|p(t, ya, θa) − p(t, yb, θb)| = 0 ≤ const.(θa, η)∥ya − yb∥t,

|g(t, ya, θa) − g(t, yb, θb)| ≤ g1(x∗)|ya
4(x∗, t) − yb

4(x∗, t)| + 2m′β0(x∗)
|ya

3(x∗, t)ya
7(t) − yb

3(x∗, t)yb
7(t)|

≤ g1(x∗)|ya
4(x∗, t) − yb

4(x∗, t)| + 2m′β0(x∗)|ya
3(x∗, t)|

|ya
7(t) − yb

7(t)| + 2m′β0(x∗)|yb
7(t)||ya

3(x∗, t) − yb
3(x∗, t)|

≤ const.(θa, η)∥ya − yb∥t.

This gives the claim for M θ
1 . Finally, consider sθ and define p(t, x, θ) := −(δζ + kζ(x5(t) +

x6(t))) and g(t, x, θ) := δζ . For i = a, b it holds that

p(t, yi, θi) = −(δζ + kζ(y5(θi, t) + y6(θi, t))) ≤ −(δζ + kζ(M0(θi, t) +M1(θi, t)))
≤ const.(θa, η)

g(t, yi, θi) = δζ≤ const.(θa, η)
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and

|p(t, ya, θa) − p(t, yb, θb)| = kζ(|ya
5(t) − yb

5(t)| + |ya
6(t) − yb

6(t)|)
≤ const.(θa, η)∥ya − yb∥t,

|g(t, ya, θa) − g(t, yb, θb)| = 0 ≤ const.(θa, η)∥ya − yb∥t.

This gives the claim for sθ.

Lemma 4.5.3. Let θa ∈ Θ, η > 0. There exist non-negative constants CP0(θa, η) and
CP1(θa, η) such that for all θb ∈ Θ with ∥θa − θb∥ < η and ya ∈ Y θa

T ′ , yb ∈ Y θb

T ′ , then for
almost all t ∈ [0, T ′], it holds that

∫ x∗

x0
|P θa

0 [ya](x, t) − P θb

0 [yb](x, t)|dx ≤ CP0(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,∫ x∗

x0
|P θa

1 [ya](x, t) − P θb

1 [yb](x, t)|dx ≤ CP1(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
.

Proof. Let t ∈ [0, T ′], θa ∈ Θ, η > 0, θb ∈ Θ with ∥θa − θb∥ < η and ya ∈ Y θa

T ′ , yb ∈ Y θb

T ′ .
Throughout the proof, P a

0 , P b
0 , P a

1 , and P b
1 denote the continuous representatives of the

equivalence classes of P θa

0 [ya], P θb

0 [yb], P θa

1 [ya], and P θb

1 [yb], respectively. Similar to the
previous approach, the strategy is to show that the individual integrals are bounded and
satisfy the claim and then to show it for the whole term. We start with the P0(x, t). We
first consider the integral over the interval [t, x∗). It holds that

∫ x∗

t
|P a

0 (x, t) − P b
0 (x, t)|dx≤

∫ x̄∗
0

t
g0(x(x̄0 − t))

[
fa

0 (x(x̄0 − t))
∣∣∣∣ exp

(∫ t

0
(1 − 2m′)

β0(x(λ+ x̄0 − t))ya
7(λ) − µ0(x(λ+ x̄0 − t))dλ

)
− exp

(∫ t

0
(1 − 2m′)β0(x(λ+ x̄0 − t))yb

7(λ)

− µ0(x(λ+ x̄0 − t))dλ
)∣∣∣∣+ |fa

0 (x(x̄0 − t)) − f b
0(x(x̄0 − t))|

× exp
(∫ t

0
(1 − 2m′)β0(x(λ+ x̄0 − t))yb

7(λ)

− µ0(x(λ+ x̄0 − t))dλ
)]

dx̄0,

where we used the property of real numbers |x1y1 −x2y2| ≤ |x1| · |y1 − y2| + |y2| · |x1 −x2|
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and Definition 4.3.2. Using |ex − ey| ≤ max{ex, ey}|x− y|, it follows that

∫ x∗

t
|P a

0 (x, t) − P b
0 (x, t)|dx ≤

∫ x̄∗
0

t
g0(x(x̄0 − t))

[
fa

0 (x(x̄0 − t))(1 − 2m′)β0(x(λ+ x̄0 − t))∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ+ |fa

0 (x(x̄0 − t)) − f b
0(x(x̄0 − t))|

exp
(∫ t

0
(1 − 2m′)β0(x(λ+ x̄0 − t))yb

7(λ)

− µ0(x(λ+ x̄0 − t))dλ
)]

dx̄0

≤(1 − 2m′)β̄0

∫ x̄∗
0

t
g0(x(x̄0 − t))fa

0 (x(x̄0 − t))∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλdx̄0 + exp

(
((1 − 2m′)β̄0s(θb, T ) − µ̄0)

T
) ∫ x̄∗

0

t

∣∣fa
0 (x(x̄0 − t)) − f b

0(x(x̄0 − t))
∣∣g0(x(x̄0 − t))dx̄0

≤(1 − 2m′)β̄0

∫ x̄∗
0

0
g0(x(x̄0))fa

0 (x(x̄0))dx̄0

∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣

dλ+ exp
(
((1 − 2m′)β̄0s(θb, T ) − µ̄0)T

) ∫ x̄∗
0

0
g0(x(x̄0))∣∣fa

0 (x(x̄0)) − f b
0(x(x̄0))

∣∣dx̄0

=(1 − 2m′)β̄0∥fa
0 ∥1

∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ+ exp

(
((1 − 2m′)

β̄0s(θb, T ) − µ̄0)T
) ∫ x1

x0

∣∣fa
0 (x) − f b

0(x)
∣∣dx,

and, finally

∫ x∗

t
|P a

0 (x, t) − P b
0 (x, t)|dx ≤ const.(θa, η)

(∫ t

0

∥∥ya − yb
∥∥

λ
dλ+ ∥θa − θb∥Θ

)
.

Now, consider the integral over the rest of the interval [x0, t). We have

∫ t

x0
|P a

0 (x, t) − P b
0 (x, t)|dx≤

∫ t

0
g0(x0)

[∣∣∣∣ exp
(∫ x̄0

0
(1 − 2m′)ya

7(λ+ t− x̄0)β0(x(λ))

− µ0(x(λ))dλ
)

−exp
(∫ x̄0

0
(1 − 2m′)β0(x(λ))yb

7(λ+ t− x̄0)

− µ0(x(λ))dλ
)∣∣∣∣ha

0(t− x̄0) + exp
(∫ x̄0

0
(1 − 2m′)β0(x(λ))

yb
7(λ+ t− x̄0) − µ0(x(λ))dλ

)∣∣ha
0(t− x̄0) − hb

0(t− x̄0)
∣∣]dx̄0,

where we have used the same property of real numbers |x1y1 − x2y2| ≤ |x1| · |y1 − y2| +
|y2| · |x1 − x2| and Definition 4.3.2. Then, by using |ex − ey| ≤ max{ex, ey}|x − y|, we
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end up with

∫ t

x0
|P a

0 (x, t) − P b
0 (x, t)|dx≤

∫ t

0
g0(x0)

[
ha

0(t− x̄0)
∣∣∣∣ ∫ x̄0

0
(1 − 2m′)β0(x(λ))ya

7(λ+ t− x̄0)

− µ0(x(λ))dλ−
∫ x̄0

0
(1 − 2m′)β0(x(λ))yb

7(λ+ t− x̄0)

− µ0(x(λ))dλ
∣∣∣∣+ ∣∣ha

0(t− x̄0) − hb
0(t− x̄0)

∣∣ exp
(∫ x̄0

0
(1 − 2m′)β0(x(λ))yb

7(λ+ t− x̄0)

− µ0(x(λ))dλ
)]

dx̄0

≤ g0(x0)h̄a
0β̄0(1 − 2m′)

∫ t

0

∫ x̄0

0

∣∣ya
7(λ+ t− x̄0) − yb

7(λ+ t− x̄0)
∣∣

dλdx̄0 + exp
((

(1 − 2m′)β̄0s(θ, T ) − µ̄0
)
x̄∗

0
)∫ t

0
|ha

0(t− x̄0) − hb
0(t− x̄0)|dx̄0

≤g0(x0)h̄a
0β̄0(1 − 2m′)

∫ t

0

∫ t

t−x̄0

∣∣ya
7(λ) − yb

7(λ)
∣∣

dλdx̄0 + exp
((

(1 − 2m′)β̄0s(θ, T ) − µ̄0
)
x̄∗

0
)∫ t

0
|ha

0(t) − hb
0(t)|dt

≤g0(x0)h̄a
0β̄0(1 − 2m′)T

∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ

+ exp
((

(1 − 2m′)β̄0s(θ, T ) − µ̄0
)
x̄∗

0
) ∫ t

0
|ha

0(t) − hb
0(t)|dt

≤ const.(θa, η)
(∫ t

0

∥∥ya − yb
∥∥

λ
dλ+ ∥θa − θb∥Θ

)
.

Now, combining the intervals over the integral, we get the complete statement for P0

∫ x1

x0
|P a

0 (x, t) − P b
0 (x, t)|dx =

∫ t

x0
|P a

0 (x, t) − P b
0 (x, t)|dx+

∫ x1

t
|P a

0 (x, t) − P b
0 (x, t)|dx

≤CP0(θa, η)
(∫ t

0

∥∥ya − yb
∥∥

λ
dλ+ ∥θa − θb∥Θ

)
.

Finally, we get the claim for P0.

Now, we prove the statement for P1 by first considering the integral over interval [t, x1):
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∫ x1

t
|P a

1 (x, t) − P b
1 (x, t)|dx =

∫ x̄∗
1

t
g1(x(x̄1))|P a

1 (x(x̄1), t) − P b
1 (x(x̄1), t)|dx̄1

≤
∫ x̄∗

1

t

[
exp

(∫ t

0
β1(x(x̄1))ya

7(λ) − µ1(x(x̄1))dλ
)∣∣∣∣ ∫ t

0
exp

(
−
∫ ϵ

0
β1(x(x̄1))ya

7(λ)

− µ1(x(x̄1))dλ
)(

2m′β0(x(x̄1))ya
3(x(x̄1), ϵ)ya

7(ϵ)
)
g1(x(x̄1))dϵ+

fa
1 (x(x̄1 − t))g1(x(x̄1 − t)) −

∫ t

0
exp

(
−
∫ ϵ

0
β1(x(x̄1))yb

7(λ) − µ1(x(x̄1))dλ
)

(
2m′β0(x(x̄1))yb

3(x(x̄1), ϵ)yb
7(ϵ)

)
g1(x(x̄1))dϵ+ f b

1(x(x̄1 − t))g1(x(x̄1 − t))
∣∣∣∣+{∫ t

0
exp

(
−
∫ ϵ

0
β1(x(x̄1))yb

7(λ) − µ1(x(x̄1))dλ
)(

2m′β0(x(x̄1))yb
3(x(x̄1), ϵ)

yb
7(ϵ)

)
g1(x(x̄1))dϵ+ f b

1(x(x̄1 − t))g1(x(x̄1 − t))
}∣∣∣∣ exp

(∫ t

0
β1(x(x̄1))ya

7(λ)

− µ1(x(x̄1))dλ
)

− exp
(∫ t

0
β1(x(x̄1))yb

7(λ) − µ1(x(x̄1))dλ
)∣∣∣∣]dx̄1,

where we used the property of real numbers |x1y1 −x2y2| ≤ |x1| · |y1 − y2| + |y2| · |x1 −x2|
and Definition 4.3.2. Simplifying above relation, we get

∫ x1

t
|P a

1 (x, t) − P b
1 (x, t)|dx ≤

∫ x̄∗
1

t
exp

(∫ t

0
β1(x(x̄1))ya

7(λ) − µ1(x(x̄1))dλ
)

2m′β0(x(x̄1))

g1(x(x̄1))
∫ t

0

[
exp

(
−
∫ ϵ

0
β1(x(x̄1))ya

7(λ) − µ1(x(x̄1))dλ
)

|ya
3(x(x̄1), ϵ)ya

7(ϵ)

− yb
3(x(x̄1), ϵ)yb

7(ϵ)| +
∣∣∣∣ exp

(∫ t

0
β1(x(x̄1))ya

7(λ) − µ1(x(x̄1))dλ
)

− exp
(∫ t

0
β1(x(x̄1))yb

7(λ) − µ1(x(x̄1))dλ
)∣∣∣∣yb

3(x(x̄1), ϵ)yb
7(ϵ)

]
dϵdx̄1+∫ x̄∗

1

t
exp

(∫ t

0
β1(x(x̄1))ya

7(λ)−µ1(x(x̄1))dλ
)
g1(x(x̄1 − t))(fa

1 (x(x̄1 − t))

− f b
1(x(x̄1 − t)))dx̄1 +

{
exp

(
(µ̄1 − β̄1s(θ, T ))T

)
(µ̄1 − β̄1s(θ, T ))

(
2m′β̄0P0(θ, T )s(θ, T )

)
ḡ1(x̄∗

1 − T ) +
∫ x1

x1
f b

1(x)dx
}
β̄1

∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ.
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Using |ex − ey| ≤ max{ex, ey}|x− y|, it follows that

∫ x1

t
|P a

1 (x, t) − P b
1 (x, t)|dx ≤

∫ x̄∗
1

t
exp

(
(β̄1s(θ, T ) − µ̄1)T

)
2m′β̄0ḡ1∫ t

0

[
exp

(
(µ̄1 − β̄1s(θ, T ))ϵ

)|ya
3(x(x̄1), ϵ)ya

7(ϵ) − yb
3(x(x̄1), ϵ)yb

7(ϵ)|

+
∣∣∣∣ ∫ t

0
β1(x(x̄1))ya

7(λ) − µ1(x(x̄1))dλ−
∫ t

0
β1(x(x̄1))yb

7(λ) − µ1(x(x̄1))dλ
∣∣∣∣

P0(θ, T )s(θ, T )
]
dϵdx̄1 + exp

(
(β̄1s(θ, T ) − µ̄1)T

) ∫ x̄∗
1

0
g1(x(x̄1))

(
fa

1 (x(x̄1))−

f b
1(x(x̄1))

)
dx̄1 +

{
exp

(
(µ̄1 − β̄1s(θ, T ))T

)
(µ̄1 − β̄1s(θ, T ))

(
2m′β̄0P0(θ, T )

s(θ, T )
)
ḡ1(x̄∗

1 − T ) + ∥f b
1∥
}
β̄1

∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ

≤ exp
(
(β̄1s(θ, T ) − µ̄1)T

)
2m′β̄0ḡ1

∫ x̄∗
1

t

∫ t

0

[
exp

(
(µ̄1 − β̄1s(θ, T ))ϵ

)|ya
3(x(x̄1), ϵ)

ya
7(ϵ) − yb

3(x(x̄1), ϵ)yb
7(ϵ)| + β̄1P0(θ, T )s(θ, T )

∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ]dϵdx̄1

+ exp
(
(β̄1s(θ, T ) − µ̄1)T

) ∫ x1

x0

(
fa

1 (x) − f b
1(x)

)
dx+ const.(θa, η)∫ t

0

∥∥ya − yb
∥∥

λ
dλ

≤ exp
(
(β̄1s(θ, T ) − µ̄1)T

)
2m′β̄0ḡ1

[ ∫ x̄∗
1

t

∫ t

0
exp

(
(µ̄1 − β̄1s(θ, T ))ϵ

)|ya
3(x(x̄1), ϵ)

ya
7(ϵ) − yb

3(x(x̄1), ϵ)yb
7(ϵ)|dϵdx̄1 + β̄1P0(θ, T )s(θ, T )(x̄∗

1 − T )∫ t

0

∣∣ya
7(λ) − yb

7(λ)
∣∣dλ]+ const.(θa, η)∥θa − θb∥Θ

+ const.(θa, η)
∫ t

0

∥∥ya − yb
∥∥

λ
dλ

≤ const.(θa, η)
(∫ t

0
∥ya − yb|λdλ+ ∥θa − θb∥Θ

)
.

Eventually, we get

∫ x1

t
|P a

1 (x, t) − P b
1 (x, t)|dx ≤ const.(θa, η)

(∫ t

0

∥∥ya − yb
∥∥

λ
dλ+ ∥θa − θb∥Θ

)
. (4.30)

Now, consider the integral over the rest of the interval [x0, t) and following similar lines
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as before,∫ t

x0
|P a

1 (x, t) − P b
1 (x, t)|dx =

∫ t

0
g1(x(x̄1))|P a

1 (x(x̄1), t) − P b
1 (x(x̄1), t)|dx̄1

=
∫ t

0

[
exp

(∫ x̄1

0
β1(x(λ))ya

7(t) − µ1(x(λ))dλ
){∫ x̄1

0
exp

(
−
∫ ϵ

0
β1(x(λ))ya

7(t)

− µ1(x(λ))dλ
)(

2m′β0(x(ϵ))ya
3(x(ϵ), t)ya

7(t)
)
g1(x(ϵ))dϵ+ ha

1(t− x̄1)g1(x0)
}

− exp
(∫ x̄1

0
β1(x(λ))yb

7(t) − µ1(x(λ))dλ
){∫ x̄1

0
exp

(
−
∫ ϵ

0
β1(x(λ))yb

7(t)−

µ1(x(λ))dλ
)(

2m′β0(x(ϵ))yb
3(x(ϵ), t)yb

7(t)
)
g1(x(ϵ))dϵ+ hb

1(t− x̄1)g1(x0)
}]

dx̄1

≤
∫ t

0
exp

(∫ x̄1

0
β1(x(λ))ya

7(t) − µ1(x(λ))dλ
)∣∣∣∣ ∫ x̄1

0
2m′β0(x(ϵ))g1(x(ϵ)){

exp
(

−
∫ ϵ

0
β1(x(λ))ya

7(t) − µ1(x(λ))dλ
)
ya

3(x(ϵ), t)ya
7(t)−

exp
(

−
∫ ϵ

0
β1(x(λ))yb

7(t)−µ1(x(λ))dλ
)
yb

3(x(ϵ), t)yb
7(t)

}
dϵ+

g1(x0)(ha
1(t− x̄1) − hb

1(t− x̄1))
∣∣∣∣dx̄1 +

∫ t

0

{∫ x̄1

0
exp

(
(µ̄1 − β̄1s(θ, T ))ϵ

)
(
2m′β̄0P0(θ, T )s(θ, T )

)
ḡ1dϵ+ h̄b

1g1(x0)
}

∣∣∣∣ ∫ x̄1

0
β1(x(λ))ya

7(t) − µ1(x(λ))dλ−
∫ x̄1

0
β1(x(λ))yb

7(t) − µ1(x(λ))dλ
∣∣∣∣dx̄1

≤ exp
(
(β̄1s(θ, T ) − µ̄1)x̄∗

1
)[

2m′β̄0ḡ1

∫ t

0

∫ x̄1

0
exp

(
(µ̄1 − β̄1s(θ, T ))ϵ

)|ya
3(x(ϵ), t)

ya
7(t) − yb

3(x(ϵ), t)yb
7(t)|dϵdx̄1 + P0(θ, t)s(θ, t)β̄1

∫ t

0

∫ x̄1

0

∫ ϵ

0

∣∣ya
7(t) − yb

7(t)
∣∣dλ

dϵdx̄1 + g1(x0)
∫ t

0
(ha

1(t− x̄1) − hb
1(t− x̄1))dx̄1

]
+ const.(θa, η)

∫ t

0

∥∥ya − yb
∥∥

λ
dλ

≤ exp
(
(β̄1s(θ, T ) − µ̄1)x̄∗

1
)[

2m′β̄0ḡ1

∫ t

0

∫ x̄1

0
exp

(
(µ̄1 − β̄1s(θ, T ))ϵ

)|ya
3(x(ϵ), t)

ya
7(t) − yb

3(x(ϵ), t)yb
7(t)|dϵdx̄1 + 1

2P0(θ, t)s(θ, t)β̄1x̄
∗2
1

∫ t

0

∣∣ya
7(t) − yb

7(t)
∣∣dx̄1

+ g1(x0)
∫ t

0
(ha

1(t) − hb
1(t))dt

]
+ const.(θa, η)

∫ t

0

∥∥ya − yb
∥∥

λ
dλ

≤ const.(θa, η)
(∫ t

0
∥ya − yb|λdλ+ ∥θa − θb∥Θ

)
.

As the end result, we obtain∫ t

x0
|P a

1 (x, t) − P b
1 (x, t)|dx ≤ const.(θa, η)

(∫ t

0

∥∥ya − yb
∥∥

λ
dλ+ ∥θa − θb∥Θ

)
. (4.31)
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Finally, (4.30) and (4.31) give the statement on the whole interval as∫ x1

x0
|P a

1 (x, t) − P b
1 (x, t)|dx ≤ CP1(θa, η)

(∫ t

0

∥∥ya − yb
∥∥

λ
dλ+ ∥θa − θb∥Θ

)
.

This completes the proof.

Now we are ready to state and prove the main statement of this section.

Theorem 4.5.1. Let θa ∈ Θ, η > 0. There exist non-negative constants CS(θa, η) such
that for all θb ∈ Θ with ∥θa − θb∥ < η and ya ∈ Y θa

T ′ , yb ∈ Y θb

T ′ , it holds that

∥Sθa [ya] − Sθb [yb]∥t ≤ CS(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
,

for almost all t ∈ [0, T ′].

Proof. The proof follows from the Lemma 4.5.2 and 4.5.3.

4.6 Wellposedness results

In this section, we prove that there exists a unique solution of the model (4.12-4.20) for
time t ∈ [0, T ]. We also show that the solution of the model depends continuously on
given problem data, which concludes that the proposed model is well-posed.

4.6.1 Existence and uniqueness of the solution

Let θ ∈ Θ be fixed, and η > 0 be arbitrary. We choose T ′ ∈ (0, T ] such that T ′CS(θ, η) ≤
q < 1 and T

T ′ ∈ N. We intend to show the existence of a unique solution to the original
ODE-PDE system in Y θ

nT ′ for all n = 1, 2, · · · , T
T ′ by induction. Let us begin with n = 1

then for all ya, yb ∈ Y θ
T ′ with continuous representatives, it holds that

∥Sθ[ya] − Sθ[yb]∥X =
∫ T ′

0
∥Sθ[ya] − Sθ[yb]∥tdt

≤ T ′CS(θ, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θ − θ∥Θ

)
(by Theorem 4.5.1)

≤ q∥ya − yb∥X .

Therefore, Sθ is a contraction on the space Ỹ θ
T ′ := {y ∈ Y θ

T ′ | ∃ cont. repr. of y}. Following
the standard proof of Banach fixed point theorem, we get that applying Sθ iteratively
gives a Cauchy sequence in Y θ

T ′ , [101]. For any y(0) ∈ Y θ
T ′ define the sequence (y(i))i∈N by

setting y(i+1) := Sθ[y(i)] ∈ Y θ
T ′ for i = 0, 1, · · · . Then, we have that

∥Sθ[y(i+1)] − Sθ[y(i)]∥X ≤ q∥y(i+1) − y(i)∥X

= q∥Sθ[y(i)] − Sθ[y(i−1)]∥X

and, so
∥Sθ[y(i+1)] − Sθ[y(i)]∥X ≤ qi∥Sθ[y(0)] − y(0)∥X ,
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4.6 Wellposedness results

for all i = 1, 2, · · · . Consequently, for all j ≥ i

∥y(j) − y(i)∥X = ∥Sθ[y(j−1)] − Sθ[y(i−1)]∥X

≤
j−2∑

k=i−1
∥Sθ[y(k+1)] − Sθ[y(k)]∥X

≤ ∥Sθ[y(0)] − y(0)∥X

j−2∑
k=i−1

qk.

Since Y θ
T ′ is a complete metric space and Ỹ θ

T ′ ⊂ Y θ
T ′ , the limit of the above-mentioned

Cauchy sequence exists in Y θ
T ′ . Moreover, we know that every fixed point of Sθ must

have a continuous representative, therefore, the sequence converges to a fixed point in
Ỹ θ

T ′ , which is unique because Sθ is a contraction. Thus, by Theorem 4.4.1, we get the
existence of a unique solution to the basic ODE-PDE system in Y θ

T ′ .
Next, we take 1 < n ≤ T

T ′ . By induction hypothesis, we know that there exists a unique
solution ŷ = (ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ6 , ŷ7) in Y θ

(n−1)T ′ . We define the restricted space

Ỹ θ
nT ′ :={(y1, y2, y3, y4, y5, y6, y7) ∈ Y θ

nT ′ |y1(t) = ŷ1(t), y2(t) = ŷ2(t), y3(·, t) != ŷ3(·, t),

y4(·, t) != ŷ4(·, t), y5(t) = ŷ5(t), y6(t) = ŷ6(t), y7(t) = ŷ7(t) for almost all
t ∈ [0, (n− 1)T ′]}.

Ỹ θ
nT ′ is a closed subset of Y θ

nT ′ and hence a complete metric space. Since ŷ is a fixed
point of Sθ on Y θ

(n−1)T ′ , therefore, the operator Sθ when applied to any y ∈ Ỹ θ
nT ′ with

continuous representative returns an element of Ỹ θ
nT ′ with continuous representative.

Therefore, we get for all ya, yb ∈ Ỹ θ
nT ′ with a continuous representative that

∥Sθ[ya] − Sθ[yb]∥X =
∫ nT ′

0
∥Sθ[ya] − Sθ[yb]∥tdt

=
∫ nT ′

(n−1)T ′
∥Sθ[ya] − Sθ[yb]∥tdt

≤
∫ nT ′

(n−1)T ′
CS(θ, η)

∫ t

0
∥ya − yb∥λdλdt

≤ CS(θ, η)
∫ nT ′

(n−1)T ′

∫ nT ′

0
∥ya − yb∥λdλdt

= (nT ′ − (n− 1)T ′)CS(θ, η)∥ya − yb∥X

≤ q∥ya − yb∥X .

Utilizing the same argument as in the induction start (for n = 1), we also get the
existence of a unique fixed point in Ỹ θ

nT ′ . This implies the existence and uniqueness of a
solution in Y θ

nT ′ : Existence of the solution follows from Theorem 4.4.1. For uniqueness, let
y ∈ Y θ

nT ′ be any solution to the original ODE-PDE system. By the induction hypothesis,
y restricted to the time interval [0, (n− 1)T ′] must be equal to ŷ. Hence y ∈ Ỹ θ

nT ′ is the
unique fixed point in Ỹ θ

nT ′ .
Since, nT ′ = T , this concludes the results.
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4.6.2 Continuous dependence on problem data

Let T ′ = T . For i = {a, b} let θi = (ci
0, c

i
1,m

i
0,m

i
1, f

i
0, f

i
1, h

i
0, h

i
1, s

i
0) ∈ Θ and yi =

(Ci
0, C

i
1, P

i
0, P

i
1,M

i
0,M

i
1, s

i) be the unique solution of Eqs. (4.1-4.10) with

Ci
0(0) := ci

0, C
i
1(0) := ci

1,

P i
0(x, 0) := f i

0(x), P i
1(x, 0) := f i

1(x), x0 ≤ x ≤ x∗

P i
0(x0, t) := hi

0(t), P i
1(x0, t) := hi

1(t), 0 < t ≤ T

M i
0(0) := mi

0, M
i
1(0) := mi

1

si(0) := si
0.

Then by Theorem 4.4.1, ya and yb are fixed points of Sθa and Sθb , respectively. By
Theorem 4.5.1, for almost all t ∈ [0, T ] it holds that

∥ya − yb∥t = ∥Sθa [ya] − Sθb [yb]∥t

≤ CS(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ ∥θa − θb∥Θ

)
≤ CS(θa, η)∥θa − θb∥Θ(1 + CS(θa, η)teCS(θa,η)t) (Gronwall’s inequality)
≤ CS(θa, η)(1 + CS(θa, η)TeCS(θa,η)T )∥θa − θb∥Θ

= const.(θa, η)∥θa − θb∥Θ.

This implies that

∥ya − yb∥X ≤ const.(θa, η)∥θa − θb∥Θ.

Thus, it shows that the solution of the original ODE-PDE system continuously depends
on the given problem data.
Hereby, we conclude that the proposed model is well-posed.
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CHAPTER 5
Multiscale mathematical model: Proliferating and quiescent
cell populations

In this chapter, we propose a nonlinear multiscale mathematical model for age-structured
proliferating and quiescent cell populations (PDEs) coupled with cell cycle protein
dynamics (ODEs). The model assumes a bidirectional transition between the proliferating
and quiescent subpopulations. The coupling between the two scales is introduced based
on biological findings inherited from the literature. Numerical simulations are performed
using the finite volume method to examine the impact of parameters on the nonlinear
dynamics of the model. Our model demonstrates the underlying impact of cell cycle
dynamics on the evolution of cell population in a tissue. The main focus of this work is
to investigate the balance between proliferating and quiescent cell populations, which
play a crucial role in maintaining homeostasis in a cell population.

5.1 Biological problem formulation

One of the cornerstones in understanding human tumor growth is mammalian cell division
patterns. Many researchers have been drawn to it, and it has been the subject of extensive
research for decades. Most theoretical research works explore the life cycle by utilizing
age-structured frameworks. Some examples of age-structured growth models include
epidemic [102–104], microscopic virus [105, 106] and and cell population [107–110] models.
However, the underlying molecular intricacies of a tissue necessitate a more comprehensive
modeling framework comprising special molecular and cellular interactions.

In any living tissue, the dividing cells can be classified into quiescent and proliferating
compartments. Proliferating cells divide by going through various stages in cell-cycle
(G1, S,G2,M). Quiescent cells, on the other hand, do not grow or proliferate; instead,
they move from the proliferative compartment to the G0 phase and remain there until
differentiation or apoptosis. For tissue homeostasis to be preserved, cells must be able to
switch between the quiescent and proliferative phases. However, the transitioning between
the two compartments relies on signaling molecules, which are known as growth or anti-
growth factors [111]. Proliferating cells grow within a tumor cell population until the
tumor is active and malignant. Besides, the total number of cells, i.e., in both quiescent
and proliferating cell populations, remains stable (on average) to preserve homeostasis;
therefore, the size of the proliferative compartment in a healthy cell population remains
confined. The schematics of a multiscale modeling framework employed in this paper is
shown below in Figure 5.1. b
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5.1 Biological problem formulation

This work primarily focuses on formulating a model of the cell population (in both
proliferative and quiescent compartments) and analyzing its dynamics concerning the
behavior of cell-cycle proteins. Age-structured models, as previously indicated, have been
widely employed in this direction. These include models investigating cell population only
in quiescent phase [110], cell population only in proliferating phase [112, 113]. Finally,
cell population dynamics involving both quiescent and proliferating phases [109, 114–118].
Nevertheless, the influence of molecular interactions at the subcellular level on balance
between proliferative and quiescent phases has not been studied.

Macroscale

Microscale

q(a, t) p(a, t)

µq(a) µp(a)

γ(N)

α(x1, a)

β(a)

CycD

CDK4/6
Rb

p21E2F

gf

Decrement

Activation

Inhibition

Phosphorylation

Feedback ↑

Feedback ↓

Figure 5.1: In the macro-scale, two populations of proliferating and quiescent cells are
shown with various transition effects given by α, β, γ, and µ functions. At the bottom,
the microscale is represented with all four protein states and their interactions which are
explained using legends in the bottom left. The feedback from the macroscale, in the
form of growth factors gf , manipulates the cell-cycle (microscale). The feedback loop is
closed by the rate α (corresponds to the rate of cells transitioning from proliferating to
quiescent phase), determined by the protein dynamics at the microscale.

Thereby, we formulate a multiscale model by employing mathematical tools which can
also encompass the heterogeneity of a complex system lying at the sub-cellular level. We
primarily focus on two predominant scales, i.e., macroscale (population dynamics) and
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5.1 Biological problem formulation

microscale (cell-cycle dynamics), and define the coupling between these two time and age
varying scales. Age refers to the time elapsed since last division, [113, 119]. Note that in
addition to the physical time variable (denoted by t), age-structured models introduce
the age variable (denoted as a) which has rather a physiological character. The concept
of “cell age” characterizes the biological variability within a proliferating cell population.
Partial differential equations (PDEs) are used to simulate cell populations in the quiescent
and proliferative stages at the macroscale. While ordinary differential equations are
used to predict sub-cellular protein interactions related to cell-cycle dynamics (ODEs).
Finally, through feedback in both directions, the two scales are connected. As mentioned
earlier, proliferating cells represent a complete cycle of cell division (G1,S,G2,M). Cells
in the early proliferating phase, known as G1, can transition to the quiescent phase till
they reach the restriction point (R). However, depending on the concentration of G1
phase cyclin protein (x1), the cells transit to S phase from late G1 phase. It is also
clear that restriction point (R) splits the cells in the G1-phase in two parts such that
the cells become quiescent before R but can no longer avoid division once R is passed,
[120, 121]. In quiescent phase, cells do not divide or grow, but they continue to perform
their other cellular functions. A bidirectional cell transitioning between quiescence and
proliferation phases plays an essential role in tissue homeostasis, and it is regulated
by extracellular environmental conditions [111]. In tumoral tissue, the balance in the
bidirectional transition is disturbed, and cells may grow unconditionally [122]. Recent
experiments have also revealed that cyclins are the most significant regulatory molecules
for changes in cell-cycle phase, [123]. As a result, we use a crucial aspect in the dynamics
of cell-cycle (i.e., from G1 − S phase transition) to predict the evolution of a transitional
balance between quiescent and proliferating subpopulations, that is essential to maintain
homeostasis.

A variety of proteins are expressed at the microscale, which play an essential role in
the sequential transition between different phases of cell-cycle. The complex network
of protein interactions in the cell-cycle has been mathematically described using ODEs
and simulated by several authors, including [124–129] and references therein. However,
for simplicity, we consider only four proteins (i.e., Cyclin D − CDK4/6, p21, E2F, and Rb)
from the network of proteins which participate in the cell-cycle dynamics, see Chapter 2.
These proteins are chosen because they are primarily engaged in Cyclin D’s activity and
the progression of cells to the S from G1 phase. The motivation stems from experimental
results, which have shown that Cyclin D regulates the transition between the G0 and
G1 phase, see [130–132]. Furthermore, when Cyclin D is over-expressed, cells in the
proliferative phase commit to cell division, and when Cyclin D is under-expressed, cells
enter a quiescent phase. It should be noted that these molecular interactions are assumed
to occur in a fast growing population of cells and not in a single cell. Moreover, we
assume averaged concentrations of these proteins in proliferating and quiescent cell
subpopulations without considering cell to cell variability. In the sequel, we provide
the biological relevance of cell-cycle proteins. The advancement in the cell-cycle is
regulated by cyclin proteins (structural protein) and their cyclin-dependent kinase (CDK)
inhibitors. There is a specific Cyclin − CDK complex for every phase in the cell-cycle.
When micro-environment of a cell has enough growth signals, it initiates a cell-cycle
that spans the activities of phase-specific complexes of cyclin protein and their catalytic
partners CDK. Cyclin D activates during the G1 phase and is induced merely by growth
factors, [133]. When there are no growth factors, the concentration of Cyclin D declines,
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and the cell does not start the cycle. Growth-factors attach to particular receptors
located on the external cytoplasmic membrane of the cell, which activates intra-cellular
signaling pathways (i.e., Raf/Map/Ras kinase), which ultimately leads to the synthesis
of Cyclin D (see [14, 134, 135], for more details). Cyclin D makes an active complex with
CDK4/6 with a maximum synthesis rate. This complex can then trigger the activation
of transcription factor E2F by phosphorylating its inhibitor retinoblastoma protein Rb.
Resultantly, the transcription factor E2F is accumulated and activates the other essential
cyclins involved in the cell-cycle.

To summarize, we develop a multiscale model to primarily address the concerns relevant
to impairment in cell transitioning between quiescent and proliferating compartments,
which results in unlimited tumor growth, and whether Cyclin D is responsible for the
deregulation of cells transitioning between quiescent and proliferating compartments.

5.2 Mathematical modeling

5.2.1 Age-structured model

The cell populations in quiescent and proliferating compartments are described by
transport PDEs (partial differential equations) of nonlinear hyperbolic type, which
characterize the density distribution of the cells concerning physiological age a and time
t. In the quiescent phase, the cell density q(a, t) is given by

∂

∂t
q(a, t) =α(a, x1)p(a, t) − (γ(N) + µq(a))q(a, t), (5.1)

where the first term α(a, x1)p(a, t) is the inflow from the proliferating cells at the rate
α(a, x1), which is further regulated by a microscale variable, namely the age-specific
concentration of Cyclin complex x1. The detail of the microscale variables is presented
later in this section. The next term refers to the loss in quiescent cell density caused
by either returning to cell division with the rate γ(N) in the proliferating phase or by
cell death as a result of apoptosis (or necrosis), as depicted by death rate µq(a). The
total number cell population in both phases is represented by N(t), which is defined in
Eq. (5.3). The cells in the quiescent phase do not age (or in other words, the cells halt
their age), therefore in Eq. (5.1), the convection term concerning physiological age a is
not present. In the proliferating phase, the cell number density represented by p(a, t)
reads

∂

∂t
p(a, t) + ∂

∂a
(g(a)p(a, t)) = γ(N)q(a, t) − (β(a) + α(a, x1) + µp(a))p(a, t), (5.2)

where g(a) stands for the rate of evolution of a cell-cycle. The first term on the right
γ(N)q(a, t) denotes the transition from the quiescent to the proliferating cells. The
following term β(a)p(a, t) symbolizes the number of cells that complete cell division at
some age of the proliferating phase, whereas the cells that are moving to the quiescent
phase from proliferating phase without having undergone division are given by the
term α(a, x1)p(a, t). Finally, the decrement in proliferating cell density because of
apoptosis/necrosis is described by the death rate µp(a). The cell population, N(t),
defined as the sum of all cells in the quiescent and proliferating phases across all ages, is
given as:

N(t) =
∫ a⋆

0
(q(a, t) + p(a, t)) da, (5.3)
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where a⋆ is the maximal age of the cells. The initial conditions are defined as:

p(a, 0) = p0(a), q(a, 0) = q0(a), ∀a ≥ 0. (5.4)

The boundary condition is given as follows:

g(0)p(0, t) = 2
∫ a⋆

0
β(a)p(a, t)da, (5.5)

for t > 0, where the number 2 appears because of the two newborn cells, which begin in the
proliferating phase with age 0. The function, which defines the number of cells switching
from quiescent to proliferating phase, γ(N), takes the form of monotone decreasing Hill
function of N :

γ(N) = νθκ

θκ +Nκ
, (5.6)

where ν defines the maximal rate of cell transitioning from quiescent to proliferating
population (e.g., when there are no cells, i.e., N = 0), κ is the Hill coefficient and θ
characterises the entire cell population reaching the half maximum of ν. It means that
the percentage of quiescent cells which enter the proliferative phase again declines to zero
when the cell population rises, thus depicting density inhibition. The usage of the Hill
function is motivated here to describe nonlinear and saturable mechanisms between the
total cell population and the transition rate, see [136]. The number of cells that complete
the division at some age in the proliferation phase are represented by function β(a). The
age a regulates the function β(a) in such a way that it is almost zero until a minimum
age of cells, and then it increases until the age a∗:

β(a) = ρ1aγ1

ργ1
2 + aγ1

, (5.7)

where ρ1 is the maximum proliferation rate, ρ2 is the age at which the half-maximum
effect is achieved, and the exponent γ1 is the Hill coefficient. Next we define the rate at
which the cells leave the proliferating phase and become quiescent is given by the relation
in (7.10). It depends on both age a and the amount of Cyclin D − CDK4/6 complex x1:

α(a, x1) = σ1
σγ2

2
(σγ2

2 + xγ2
1 )

σγ3
3

(σγ3
3 + aγ3) . (5.8)

The function α(a, x1) determines the number of cells that do not divide because of
growth-inhibiting factors. Age dependence in α is motivated because the cells transit
from the proliferating to quiescent phase only until a certain age that specifies a restriction
point R in the cell-cycle (G1 − S phase transition). However, until the restriction point,
the concentration of Cyclin complex x1 must be under a certain threshold to allow cells
to leave the proliferating phase. In Eq. (7.10), γ2 and γ3 are Hill coefficient, σ2 and σ3
represent the concentration of Cyclin D − CDK4/6 complex x1 and age a, respectively,
and after γ2 and γ3, the rate function α asymptotically decreases to zero and thus
avoiding transition of cells to quiescent phase. It indicates that at age σ3, cells are
inevitably devoted to entering the proliferation compartment. Lastly, σ2 is the limit for
the concentration of Cyclin’ complex, which determines R, the restriction point.

In the process of cell-signaling, cell growth is regulated by the proteins called cytokine
and other proliferation governing factors, [137]. Cytokines proteins attach to their special
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receptors, thus activating signal transduction pathways, [138]. As per different studies, it
is evident that the number of cells can be kept in balance by cytokine signals, which depend
on the total cell population [139]. For detailed explanation concerning the dynamics
of cytokine signals, please see [140, 141]. After quasi-steady-state approximation, the
number of growth factors gf stemming from the total cell number N is given as,

gf = 1
1 + ktN

, (5.9)

indicating maximum intensity, i.e., gf = 1, for small cell density and effectively zero
intensity for large cell densities.

5.2.2 Cell cycle model

As previously stated, we consider only four microscale states (proteins) in the cell-cycle
model, which are plausible enough to incorporate reversible transition between quiescent

Description State
Cyclin D − CDK4/6 x1
E2F x2
Rb x3
p21 x4

Table 5.1: Description of the cell
states at the microscale.

and proliferating phase. We utilise the kinetics of
Michaelis-Menten to describe the chemical reactions
with enzymes and substrates from the cell-cycle, which
are briefly described in the sequel. Cyclin D protein
makes a complex with its catalytic partner CDK4-6
when there are sufficient growth factors. After the
formation of Cyclin D − CDK4/6 complex, it phospho-
rylates other proteins from the cell-cycle, which are
critical to advancement in the first grwoth phase of
the cell-cycle and crossing the restriction point R, [130,
142]. More precisely, the Cyclin D − CDK4/6 complex phosphorylates the retinoblastoma
protein Rb to inactivate it and thus release the transcription factor E2F, which in result
activates many growth promoting signals to progress the cell-cycle. p21, which inhibits
CDK, regulates the cell-cycle by hindering the functions of the several CDK proteins. The
description of proteins is given in the Table 5.1. We consider the evolution of cell-cycle
proteins in a single-cell whose dynamics is representative of the behavior of all cells in
a population. We consider that all cells behave identical and thus one ode model with
similar parameters for all cells in a population represents the microscale of underlying
cell-cycle dynamics. We further postulate that our representative cell in the microscale
completes division at some age a⋆, while, of course, our model accounts for the cells with
shorter cycles at the macroscale via function β(a). The following ODE system describes
the cell-cycle dynamics, [143]:

dx1
da = k1s

(
gf

kgf + gf

)
− k14x4x1 − k1d

(
x1

k1 + x1

)
, (5.10a)

dx2
da = k21

(
x2t − x2

k2 + (x2t − x2)

)
x1 − k32x2x3 − k2dx2, (5.10b)

dx3
da = k3s − k32x2x3 − k31

(
x3

k3 + x3

)
x1 − k3dx3, (5.10c)

dx4
da = k4s + k42

(
k34

k34 + x3

)
x2 − k41

(
x4

k4 + x4

)
x1 − k4dx4. (5.10d)

In Eq. (5.10a), the first term on the right-hand side describes the synthesis of
Cyclin D − CDK4/6 complex induced by the growth factors gf . The last two terms
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describe the binding of Cyclin D − CDK4/6 complex with tumor suppressor protein p21
and the degradation rate of Cyclin D − CDK4/6 complex, which is induced by other
cell cycle proteins, for example, Cyclin D, respectively. In Eq. (5.10b), the first term
on the right-hand side describes the synthesis of transcription factors E2F induced by
Cyclin D − CDK4/6 complex. The second term denotes the decrement of E2F due to
inhibition by retinoblastoma protein Rb, while the last term depicts a constant inacti-
vation rate of E2F induced by other cell cycle proteins, for instance, Cyclin A. In the
third equation (5.10c), the first term on the right-hand side represents the synthesis
of free un-phosphorylated retinoblastoma protein Rb. The second term denotes the
decline in Rb by making a complex with E2F to inhibit it. The third term refers to
the deactivation of Rb by phosphorylation from Cyclin D − CDK4/6 complex and the
last one to the degradation of Rb. In Eq. (5.10d), the first and second terms represent
the synthesis of p21 by ATM/ATR, TGFβ pathways and induced by E2F, respectively.
The third term represents the decrement in p21 due to inhibition of Cyclin D − CDK4/6
complex, and the last term stands for the degradation of p21. The description of the
parameters involved in the cell cycle model (5.10a)-(5.10d) is described below in the Table
5.3. The detailed derivation of the microscale model equations is not given here; however,
we suggest the interested readers to read [143] for more details. For understanding, the
model simulations of above mentioned four microscale states are shown in Figure 5.2.
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Figure 5.2: Evolution of microscale proteins from the cell-cycle. Cyclin D − CDK4/6
shows a complete activation and degradation within a full cycle. The concentration of
transcription factor E2F is elevated since Retinoblastoma protein Rb is inactivated with
the rise in Cyclin D − CDK4/6 complex. Similarly, protein p21 elevates near the end of
the cell-cycle to help in the degradation of the Cyclin’ complex.

89



5.3 Numerical solution and simulation results

5.3 Numerical solution and simulation results

In this section, we present the numerical method used to solve the system (5.1)-(5.2) and
(5.10a)-(5.10d) in MATLAB. Finite volume method (FVM) is implemented using central
upwind discretization scheme for flux approximation of hyperbolic transport type PDEs,
[144]. FVM is a well-established numerical simulation approach and its details can be
found in [145, 146]. Hereby, we introduce the following notations:

• ∆a is mesh size and ∆t is the time step,

• ∆a = a∗/Na, where Na is a maximum number of age nodes given by ai = i∆a, 0 ≤
i ≤ Na,

• time is discretized into Nt steps with equidistant interval ∆t = tk+1 − tk.

The basic principle in finite volume method is to divide the domain into a number of
control volumes and approximate the integral conservation law on each control volume.
The one-dimensional property space along the horizontal axis has been partitioned into
Na control volumes. The flux F is computed at each grid point using a central upwind
scheme. An illustration of our numerical scheme is shown in the Figure 5.3. Highlighted
light green box represents a control volume and we approximate the integral conservation
law on each of the control volume in given domains. The green arrows are pointing the
flux through the boundary of the control volume where the flux F is computed at each
grid point using central upwind scheme as schematically depicted with magenta boxes
for k = 2 at i = 2, 3 with the red arrows.

In the sequel, we describe the discretized model and fluxes. The discretized cell densities
of proliferating and quiescent cells associated with the ith spatial interval at time k reads

pk
i = 1

∆a

∫ a
i+ 1

2

a
i− 1

2

p(a, tk)da, qk
i = 1

∆a

∫ a
i+ 1

2

a
i− 1

2

q(a, tk)da.

The necessary Courant-Friedrichs-Lewy (CFL) condition for convergence of the solution
requires

∆t
[
γk + max(µq(ai))

]
∆t
[max(g(ai))

∆a + max(α(xk
1,i, ai) + β(ai))

]
 ≤ 1.

The initial conditions for q0
i and p0

i are defined below

q0
i = 1

∆a

∫ a
i+ 1

2

a
i− 1

2

(a, t0)da, p0
i = 1

∆a

∫ a
i+ 1

2

a
i− 1

2

p(a, t0)da.

Next, the discretized form of the PDEs (5.1) are given as

qk+1
i − qk

i =∆tα(xk
1,i, ai)pk

i − ∆t
(
γk + µq(ai)

)
qk

i ,

pk+1
i − pk

i − ∆t
∆a

(
Fk

i+1/2 − Fk
i−1/2

)
=∆tγkqk

i − ∆t
(
α(xk

1,i, ai) + β(ai) + µp(ai)
)
,
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Figure 5.3: Computational mesh illustrating finite volume scheme with central upwind
discretization.

where γk = γ(Nk) and Nk = ∆a∑i

[
qk

i +pk
i

]
. The fluxes represented by F are defined

using central upwind scheme as follows

Fk
i+1/2 = g(ai+1/2)pk

i−1.

The cell division boundary condition at age a = 0 reads

g(a0)pk+1
0 = 2∆a

a∗∑
i=1

β(ai)pk
i .

Then, we define the growth factors as

gf = 1/(1 + ktN
k)

and the discretized form of the cell cycle model (5.10a)-(5.10d) is

xk
1,i+1 = xk

1,i + ∆t
(
k1s

(
gf

kgf + gf

)
− k14x

k
4,ix

k
1,i − k1d

(
xk

1,i

k1 + xk
1,i

))
,

xk
2,i+1 = xk

2,i + ∆t
(
k21

(
x2t − xk

2,i

k2 + (x2t − xk
2,i)

)
xk

1,i − k32x
k
2,ix

k
3,i − k2dx

k
2,i

)
,

xk
3,i+1 = xk

3,i + ∆t
(
k3s − k32x

k
2,ix

k
3,i − k31

(
xk

3,i

k3 + xk
3,i

)
xk

1,i − k3dx
k
3,i

)
,

xk
4,i+1 = xk

4,i + ∆t
(
k4s + k42

(
k34

k34 + xk
3,i

)
xk

2,i − k41

(
xk

4,i

k4 + xk
4,i

)
xi

1 − k4dx
k
4,i

)
,
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with the following initial conditions

x1,i = x10, x2,i = x20, x3,i = x30, x4,i = x40.

We have used ode45 function of MAT-
LAB to solve cell cycle model at each time
step k. The resulting outcome of Cyclin
D − CDK4/6 complex xk

1,i is then used in
the macroscale model by updated total
number of cell population influenced by
the growth factors. The implementation
of the numerical algorithm is described
using pseduocode given in Algorithm 1.
The main loop is with respect to time evo-
lution, and on each time step k, concentra-
tion of growth factors is updated based on
updated total population of cells. These
growth factors influence the cell cycle dy-
namics and this represents the feedback
from macro- to microscale. The concentra-
tion of D − CDK4/6 complex entirely de-
pends on growth factors and consequently

Algorithm 1: Numerical method
initialization;
forall time step k = 1, 2, · · · , Nt do

Compute Nk, gf
k;

Compute xk
1 , xk

2 , xk
3 , xk

4 using ode45;
forall age step i = 1, 2, · · · , Na do

Compute β(ai);
Compute α(ai, x

k
1,i);

Compute Γ(Nk);
Compute qk+1

i and pk+1
i ;

end
Compute CFL condition;
if CFL<1 then

continue;
else

break;
disp(‘CFL is not satisfied’)

end
end

influences the transition rates in macroscale and it closes the feedback loop.

5.3.1 Simulation results

In this section, we present the numerical results of the model proposed in (5.1)-(5.2)
and (5.10a)-(5.10d) for illustration purposes. The behavioral patterns of the model are
investigated hereby with the objective to observe the evolution of both sub-populations
coupled with cell cycle dynamics. The initial states and the used parameters are given
in Table 5.3 and 5.2. In all the simulations, we used the spatial step size ∆a = 0.5
with maximum age of cells a∗ = 50 and the time step ∆t = 0.02. Moreover, for sake of
simplicity, we use unit speed, i.e., g(a) = 1. In the sequel, we will discuss the following
three case studies.
Local stability of the non-trivial steady-state solution:
First, we investigate the local stability of the non-trivial steady-state. The parameter
values used are µp = µq = 0.0014. We take γ(N) = 6.8964 × 10−6 and ρ1 = 1.0. The
initial conditions are assumed as p(a, 0) = q(a, 0) = k0√

2πσ2 exp
(− (a−µ)2

2σ2
)
, where k0 = 106,

µ = 2 and σ2 = 200. Figure 5.4 (a) and (b) represents the cell density distribution of
proliferating p(a, t) and quiescent q(a, t) cells, respectively. Both subpopulations show
the trends of achieving a steady-state with time. Figure 5.4 (c) represents the evolution
of microscale state x1 concerning age a and, additionally, with respect to time due to
a continuous change in the growth factors. In Figure 5.5 (a), we plot the total cell
population N(t) comprised of proliferating, and quiescent cells exhibit an exponential
increase in cell number and ultimately achieve a steady-state. On the other hand, Figure
5.5 (b) shows the the growth factors, which are influenced by total cell population, are
maximum initially due to low cell count and gradually start declining until achieving an
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Param. Description Value Unit
ν Maximum transition rate from quiescent to prolifer-

ation phase
0.6 [147] day−1

θ Total cell population beyond which Γ is zero 0.095 × 106 [147] -
κ Hill coefficient 1 [147] -
ρ1 Maximum effect of Cyclin D/CDK 4-6 complex on

cell division
0.7 -

ρ2 Value of Cyclin D/CDK 4-6 complex to achieve half
maximum effect

0.35 -

γ1 Hill coefficient 8 -
σ1 Maximum rate of switching cells from proliferating

to quiescent phase
0.01 -

σ2 Switching Cyclin D/CDK 4-6 complex value beyond
which α is close to zero

0.35 -

σ3 Switching age value beyond which α is close to zero 14 h
γ2 Hill coefficient 7 -
γ3 Hill coefficient 7 -
kt Rate constant which measures the effect of total

population on growth factors
1.80 × 10−9 -

Table 5.2: Parameters used in the simulations of multiscale model of proliferating and
quiescent cell populations.

equilibrium. The transition rate γ(N) from quiescent to proliferating phase is depicted
in Figure 5.5 (c). When the overall cell population increases, cell transition rate from
quiescent to proliferating phase declines due to low count of growth factors.

The growth factors influence the behavior of Cyclin D − CDK4/6 complex as depicted
in Figure 5.4. The total cell count is initially low (see Figure 5.5 (a)) and growth factors
are at their maximum (see Figure 5.5 (b)) which results in the proper activation and
degradation of Cyclin D − CDK4/6 complex along the age. The latter depicts a complete
cell cycle or successful division of cells on average. However, as the growth factors
decline to a point where no (or fewer) new cells are required, the average behavior of
Cyclin D − CDK4/6 complex in proliferating cells also exhibit non-oscillatory dynamics
and it throughout remains at a lower concentration, which is a depiction of no cell
divisions. Here, a question may arise that how the behavior of a single cell can stand for
the dynamics of whole population level. Indeed, the cell cell variability aspect and spatial
variance are dominating factors in this mechanism and predictions of our proposed model
in Figure 5.4 are only representing an averaged behavior of all the cells in a population.
The feedback signal itself in Eq. (7.12) which depends on total cell population is an ideal
representation of growth factors which entirely relies on total number of cells and ignores
various other possible scenarios, for instance, availability of nutrients, PH level, oxygen
concentration etc. Furthermore, the gamma function γ(N) which determines the cell
transitions from quiescent to proliferating cells, is depicted in Figure 5.5 (c). It represents
an inverse relation to total cell population and declines to a very low number when the
respective cell populations attain a steady-state. In terms of feedback from cell cycle to
population level, only concentration of Cyclin D − CDK4/6 complex is taken into account.
It mainly influences the transition rate α(x1, a) from proliferating to quiescent cells.
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Figure 5.4: Cell density distribution quiescent and proliferating cell populations are shown
with respect to age a and time t.
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Figure 5.5: (a) N(t) achieves steady state. (b) Gamma function γ declines as the total
cell population achieves steady state. (c) Growth-factors gf decreasing with increase in
cell population.

It is evident from the distribution of proliferating cells in Figure 5.4 that new cells
are entering proliferating phase at age a = 0 and after 20 hours of aging, cells start
leaving the proliferating phase depending on their cycle length and concentration of
Cyclin D − CDK4/6 complex. However, quiescent cells q(a, t) are accumulating with the
proliferating cells which do not achieve certain level of Cyclin D − CDK4/6 concentration
to pass a restriction point from G1 − S phase of cell cycle.
Local stability of the trivial steady-state:
Next, we investigate the local stability of the trivial steady-state. Thereby, we choose
the death rates to be constants and µp = µq = 0.0184. Moreover, we take ρ1 = 0.20 and
ν = 0.1. The initial conditions are taken as p(a, 0) = q(a, 0) = k0√

2πσ2 exp
(− (a−µ)2

2σ2
)
,
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Figure 5.6: (a) Total population of cells N(t) decays to zero. (b) Gamma function γ
increasing to its maximum value due to less number of cells. (c) Growth-factors gf remain
maximum due to decline in cell count.
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Figure 5.7: (a) Total cell population N(t) which is the sum of proliferating and quiescent
cells of all ages. It grows exponentially with time thus depicting an unstable behavior.
(b) Gamma function, representing the rate at which the cells move back to proliferation
phase from quiescent phase, is also declining. (c) Growth factors increasing with the
increase in total cell population. However, as the change in N(t) larger and larger, the
change in growth factors is negligible.

where k0 = 106, µ = 2 and σ2 = 200. The trivial steady-state is locally stable as shown
in Figure 5.6. The parameters used in Figure 5.6 are same as mentioned above. The
total cell population N(t) is plotted in Figure 5.6(a). The trivial steady-state is achieved
until 2500 hours and cell population declines to zero. The growth factors, on the other
hand, reach to their maximum value 1 and retain that value throughout due to very low
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cell number. The gamma function also attains its maximum with time.

Param. Description Value Unit
k1s Rate constant for synthesis of Cyclin D − CDK4/6 in-

duced by gf

0.155 h−1

kgf Michaelis constant for synthesis of the
Cyclin D − CDK4/6 induced by gf

0.1 µM

k14 Bimolecular rate constant for binding of
Cyclin D − CDK4/6 to p21

0.15 µM−1h−1

k1d Maximum degradation rate of Cyclin D − CDK4/6 com-
plex

0.255 µMh−1

k1 Michaelis constant for the degradation of
Cyclin D − CDK4/6 complex

0.1 µM

k21 Rate constant for activation of E2F by
Cyclin D − CDK4/6 complex

0.805 h−1

k2 Michaelis constant for E2F activation by
Cyclin D − CDK4/6 complex

0.01 µM

x2t Total concentration of the transcription factor E2F 2 µM

k32 Bimolecular rate constant for binding of Rb to E2F 0.01 µM−1h−1

k2d Apparent first-order rate constant for non-specific E2F
degradation

0.02 h−1

k3s Basal rate of synthesis of Rb 0.8 h−1

k31 Rate constant for phosphorylation of Rb by
Cyclin D − CDK4/6 complex

2.2 h−1

k3 Michaelis constant for Rb phosphorylation by
Cyclin D − CDK4/6 complex

0.1 µM

k3d Apparent first-order rate constant for Rb degradation 0.01 h−1

k4s Basal, E2F-independent rate of synthesis of p21 0.8 µMh−1

k42 Rate constant for synthesis of p21 induced by E2F 0.1 h−1

k34 Constant of inhibition by Rb of p21 synthesis 0.1 µM

k41 Rate constant for p21 inactivation via phosphorylation
by Cyclin D − CDK4/6 complex

50 h−1

k4 Michaelis constant for p21 phosphorylation by
Cyclin D − CDK4/6

0.5 µM

k4d Apparent first-order rate constant for non-specific p21
degradation

0.06 h−1

Table 5.3: Parameters of the cell-cycle model, [126]. Here µM and h represents micromolar
and hour, respectively.

Instability in the solution:
Finally, we investigate the instability of the solution in Figure 5.7. The dynamics of the
proposed model is very robust in general due to the feedback loops. However, the transition
function α(a, x1) is very sensitive with respect to a noise in the cell cycle states. Here,
to analyse a situation in which cell cycle behaves abnormally, we changed a parameter
kgf = 0.0001 which means that the influence of the growth factors on production of
Cyclin D − CDK4/6 complex is somehow compromised. More precisely, by changing this
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value, we are inducing delays in the completing an oscillation of Cyclin D − CDK4/6
complex. Resultantly, the cell number grows exponentially. All other parameters used
in this case study are similar to the case study of non-trivial steady-states. The total
cell number is plotted in Figure 5.7 (a). It grows exponentially in the presence of larger
amount of growth factors, as shown in Figure 5.7 (b). However, the transition function
γ(N) is reducing over time.

5.4 Discussion and conclusion
The proposed model does have some limitations also. The model, for example, excludes
cell-to-cell variability, which is an important aspect to capture noise and heterogeneity
from the cellular level. The feedback model, which includes growth factors, is relatively
simple, and activation of the Cyclin D − CDK4/6 complex can only be characterized by
taking into account all signaling pathways. Furthermore, at the microscale, the cell cycle
model is confined to Cyclin D and the proteins in direct interaction with it; nevertheless,
multiple additional proteins can control this network in various situations/scenarios.
Finally, while the Cyclin D complex and its inhibitor CDK4/6 play an important role
in the G1 − S transition, the other restriction point in the S phase for detecting DNA
damage has been overlooked.

In a nutshell, we proposed a non-linear, multiscale modeling of physiologically-structured
quiescent and proliferating cells in relation to cell-cycle dynamics, which play an essential
part in committing a cell to irreversible cell-division process. The non-dividing quiescent
cell population is also modeled, and there exists a bi-directional transition between the
two sets of populations. A closed feedback loop not only couples the two scales but
further aids in keeping the overall growth of the cells in homeostasis. Finally, numerical
simulations were conducted with three scenarios of some variations in the parameters.
The first scenario explains the steady-state behavior of the model in a healthy person
under normal conditions. The second scenario relates to a trivial steady-state where,
hypothetically, the decline in cell number density is more than the rise due to newborn
cells. Finally, in the third case study, we investigate the impact of Cyclin D − CDK4/6
complex on the transition between two sub-populations. It turns out that any fluctuations
in synthesis and degradation of Cyclin D − CDK4/6 complex can result in an abnormal
growth in cell number, thus leading to cancer.
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CHAPTER 6
Mathematical analysis: Wellposedness and stability
properties of multiscale model

In this chapter, we demonstrate the uniqueness and existence of non-negative solutions
using semigroup and spectral theory from functional analysis. The main objective is
to rigorously determine the well-posed nature of the model equations introduced in
Chapter 5. We also derive steady-state solutions and then obtain spectral criteria for
local stability for steady-state solutions in the sense that if the growth bound of the
linearised semigroup is negative, the steady-state solution is the locally asymptotically
stable, and if growth bound is positive, the steady-state solution is unstable. In the
sequel, a brief introduction to semigroup theory is provided. Following that, we will
derive wellposedness and stability conditions for our model from Chapter 5.

6.1 Semigroup theory: A brief overview
Semigroup theory is a powerful mathematical framework that plays a pivotal role in
the analysis of evolution equations arising in various fields of science and engineering.
This theory provides a systematic approach to understanding the behavior of dynamical
systems governed by ordinary and partial differential equations (ODEs and PDEs) in both
deterministic and stochastic settings. In this introductory discussion, we will explore the
fundamental concepts of semigroup theory and its application in proving the existence,
uniqueness, and stability of coupled ODE-PDE models.

Let X be a Banach space (a complete normed vector space) and let B(X) be the set of
all bounded linear operators from X to itself. A semigroup of operators on X is a family
of operators T (t) : 0 ≤ t ≤ ∞ such that, [148]:

• For each t ≥ 0, T (t) is a bounded linear operator from X to itself, i.e., T (t) ∈ B(X).

• The family {T (t) : t ≥ 0} satisfies the semigroup property: For all s, t ≥ 0, the
composition of operators T (s) and T (t) is equivalent to applying T (s+ t):

T (s+ t) = T (s) ◦ T (t),

where ◦ represents the composition of operators.

A semigroup of bounded linear operators, T (t), is uniformly continuous if

lim
t→0

∥T (t) − I∥ = 0.
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6.2 Existence and uniqueness of non-negative solution

A linear operator A defined by

D(A) = {x ∈: lim
t→0

T (t)x− x

t
exists}

and
Ax = lim

t→0

T (t)x− x

t
= d+T (t)x

dt
|t=0 for x ∈ D(A)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.
In essence, a semigroup of operators defines a continuous transformation of elements in

the Banach space X as time progresses. It is a powerful mathematical tool commonly used
to study time-dependent linear evolution equations and dynamical systems in functional
analysis and partial differential equations.

Coupled ODE-PDE models are frequently encountered in scientific and engineering
disciplines which describe the interplay between ODEs that govern localized phenomena
and PDEs that describe spatial distributions. Semigroup theory can be instrumental
in establishing the existence and uniqueness of solutions to such coupled systems, [149].
The key idea is to represent the ODE-PDE system as an abstract Cauchy problem, often
in the form:

d
dtu(t) = Au(t) + F (u(t)),

d
dtv(t, x) = Bv(t, x) +G(v(t, x)).

Here, u and v represent the ODE and PDE components, respectively, while A, B, F ,
and G are linear or nonlinear operators. Semigroup theory provides conditions under
which this abstract problem admits a unique solution for all initial conditions, ensuring
the wellposedness of the coupled model.

Stability analysis is another essential aspect of understanding the behavior of coupled
differential equation models over time and yet again semigroup theory provides a rigorous
framework for analyzing the stability of solutions to such systems. Stability in this context
refers to the behavior of solutions with respect to perturbations in initial conditions or
model parameters. By investigating the spectral properties of the generators associated
with the semigroups corresponding to the ODE and PDE components, we can determine
conditions under which the coupled system exhibits stability, asymptotic behavior, or
chaotic dynamics, which are crucial for predicting the long-term behavior of complex
dynamical systems.

6.2 Existence and uniqueness of non-negative solution
This section shows that the initial-boundary value problem (5.1)-(5.2), (5.10a)-(5.10d)
has a unique solution. For simplicity, we will use the cell-cycle model for the whole
time t and not just with respect to age a. First, we define the Banach spaces, X =
L1(0, a⋆) × L1(0, a⋆) and Y = L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) with the
norm ∥ϕ∥ = ∑2

i=1 ∥ϕi∥1 for ϕ(a) = (ϕ1(a), ϕ2(a))T ∈ X and ∥φ∥ = ∑4
i=1 ∥φi∥1 for

φ(a) = (φ1(a), φ2(a), φ3(a), φ4(a))T ∈ Y , where ∥ · ∥1 is ordinary norm of L1(0, a⋆).
First, we take the initial-boundary value problem of the system (5.1)-(5.2) as an abstract
Cauchy problem on the Banach space X. Further, assume that ga, gaa ∈ L∞((0, a⋆)×R+),
and death rates are non-negative, i.e., µp(·) = µq(·) ≥ 0, locally integrable on [0, a⋆).
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6.2 Existence and uniqueness of non-negative solution

The transition rate α(a, x1) ∈ L∞((0, a⋆) × (0, a⋆)), and β(a) ∈ L1(0, a⋆). Now, first we
define a linear operator A1:

(A1ϕ)(a) =
(

−µq(a)ϕ1(a)
−∂(g(a)ϕ2(a))

∂a − (β(a) + µp(a))ϕ2(a)

)
, ϕ(a) = (ϕ1(a), ϕ2(a))T ∈ D(A1),

where T depicts the vector’s transpose and the domain D(A1) is defined below

D(A1) =
{

(ϕ1, ϕ2) |ϕi is absolute continuous on [0, a⋆), ϕ(0) =
(

0, 2
∫ a⋆

0
β(a)ϕ2(a)da

)T}
.

The nonlinear operator F1 : X × Y → X is given by

(F1(ϕ, φ))(a) =


−νθκϕ1(a)
θκ + (Nϕ)κ

+ α(φ1, a)ϕ2(a)

νθκϕ1(a)
θκ + (Nϕ)κ

− α(φ1, a)ϕ2(a)

 , ϕ ∈ X, φ ∈ Y,

where the linear operator N on L1(0, a⋆) × L1(0, a⋆) is given by

Nϕ =
∫ a⋆

0
(ϕ1(a) + ϕ2(a)) da.

Let υ(t) = (q(·, t), p(·, t))T ∈ X. We can define an initial-boundary value problem
(5.1)-(5.2) in the form of an abstract semilinear IVP in X:

d
dtυ(t) = A1υ(t) + F1(υ(t), u(t)), υ(0) = υ0 ∈ X, (6.1)

where υ0(a) = (q0(a), p0(a)).
Next, we define initial value problem (5.10a)-(5.10d) as Cauchy problem on the Banach
space Y . Let A2 be a linear operator written as follows

(A2φ)(a) =


0

−k2dφ2(a)
k3s − k3dφ3(a)
k4s − k4dφ4(a)

 , φ(a) = (φ1(a), φ2(a), φ3(a), φ4(a))T ∈ D(A2),

where the domain D(A2) is

D(A2) = {φ ∈ Y |φi is absolute continuous on [0, a⋆), φ(0) = (0, 0, 0, 0)T}.

We define the nonlinear operator F2 : X × Y → Y by

(F2(ϕ, φ))(a) =



k1s

(
gf (Nϕ)

kgf +gf (Nϕ)

)
− k14φ4(a)φ1(a) − k1d

(
φ1(a)

k1+φ1(a)

)
,

k21

(
x2t−φ2(a)

k2+(x2t−φ2(a))

)
φ1(a) − k32φ2(a)φ3(a)

−k32φ2(a)φ3(a) − k31

(
φ3(a)

k3+φ3(a)

)
φ1(a)

k42

(
k34

k34+φ3(a)

)
φ2(a) − k41

(
φ4(a)

k4+φ4(a)

)
φ1(a)


,
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6.2 Existence and uniqueness of non-negative solution

where ϕ ∈ X, φ ∈ Y . Let u(t) = (x1(t), x2(t), x3(t), x4(t))T ∈ Y . Then the initial-
boundary value problem (5.10a)-(5.10d) can be defined as an abstract semilinear IVP in
Y :

d
dtu(t) = A2v(t) + F2(υ(t), u(t)), u(0) = u0 ∈ Y, (6.2)

where u0(t) = (x0
1, x

0
2, x

0
3, x

0
4). Now, we can define a combine Cauchy problem for (6.1)

and (6.2) as follows:

d
dt

(
υ
u

)
=
(

A1 0
0 A2

)(
υ
u

)
+
(

F1(υ, u)
F2(υ, u)

)
,

(
υ(0)
u(0)

)
=
(
υ0
u0

)
∈ Z,

d
dtζ(t) = Aζ(t) + F(ζ(t)), ζ(0) = ζ0 ∈ Z, (6.3)

where ζ = (υ, u), ζ0 = (υ0, u0), A =
(

A1 0
0 A2

)
, F =

(
F1
F2

)
and Z = {X,Y } is a

Banach space. T (t) is C0− semigroup which is generated by A, for all t ≥ 0 and operator
F exhibits continuous Frechet differentiability on Z (in other words, F1 and F2 are Frechet
differentiable on both X and Y , see Lemma 3 in the appendix, where we show Frechet
differentiability of F1 from X → X). Then there exists a maximum interval [0, t1) for
existence and uniqueness of continuous mild solution t → ζ(t, ζ0) from [0, t1) to Z for
each ζ0 ∈ Z, so that

ζ(t, ζ0) = T (t)ζ0 +
∫ t

0
T (t− s)F(ζ(s, ζ0))ds, ∀t ∈ [0, t1) (6.4)

and t1 = +∞ or limt→t−
1

∥ζ(t, ζ0)∥ = ∞. Additionally, when ζ0 ∈ D(A), then ζ(t, ζ0) ∈
D(A) for 0 ≤ t < t1 and the function ζ → ζ(t, ζ0) is continuously differentiable which also
satisfies (6.3) on [0, t1), see Proposition 4.16 [150] and [151].

Remark 6.2.1. We denote the maximum value of the solution variables as pmax, qmax,
x1,max, x2,max, x3,max and x4,max. If we normalise the governing equations using N(a) =
p(a, t) + q(a, t) + x1(a) + x2(a) + x3(a) + x4(a), then an a-priori estimate on these would
lead to p(a, t) + q(a, t) + x1(a) + x2(a) + x3(a) + x4(a) = 1.

Lemma 6.2.1. Let Ω = {(p, q, x1, x2, x3, x4) ∈ Z|p ≥ 0, q ≥ 0, x1 ≥ 0, x2 ≥ 0, x3 ≥
0, x4 ≥ 0} and let Ω0 = {(p, q, x1, x2, x3, x4) ∈ Z|0 ≤ p ≤ pmax, 0 ≤ q ≤ qmax, 0 ≤ x1 ≤
x1,max, 0 ≤ x2 ≤ x2,max, 0 ≤ x3 ≤ x3,max, 0 ≤ x4 ≤ x4,max}. Then, the mild solution
ζ(t, ζ0), ζ0 ∈ Ω of (6.3), after a finite time, enters Ω0 which is positively invariant.

Proof. First, we derive the solution expression from (5.2) as follows:

q(a, t) := exp
(

−
∫ t

0
µq(a) + γ(N(t))dt

){∫ t

0
exp

(
−
∫ ξ

0
µq(a) + γ(N(π))dπ

)
α(x1(a), a)p(a, ξ)dξ + q0(a)

}
. (6.5)

and, immediately, it follows that q(a, t) ≥ 0 when q0(a) ≥ 0 and p(a, t) is positive. Next,
to derive the solution of Eq. (5.1), we first use transformations p̃(a, t) = g(a)p(a, t) and
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6.2 Existence and uniqueness of non-negative solution

q̃(a, t) = g(a)q(a, t) for t ∈ [0, t1] and a ∈ [a0, a⋆). Then for all t ∈ (0, t1) and a ∈ (a0, a⋆),
we have from Eq. (5.1):

∂p̃(a, t)
∂t

+ g(a)∂p̃(a, t)
∂a

= γ(N(t))q̃(a, t) − (β(a) + α(x1(a), a) + µp(a))p̃(a, t). (6.6)

Following that, we utilize the parameter transform given in Lemma 3.1 [140] in order
to eliminate the term g(a) and introduce η as a new age variable for both p and q. We
obtain

∂

∂η
p̃(a(η), t) = da

dη
∂

∂a
p̃(a, t) = g(a) ∂

∂a
p̃(a, t), where da

dη = g(a).

Therefore, from Eq. (6.6), it follows that

∂p̃(a(η), t)
∂t

+ ∂p̃(a(η), t)
∂η

=γ(N(t))q̃(a(η), t) − (β(a(η)) + α(x1(a(η)), a(η))

+ µp(a(η)))p̃(a(η), t). (6.7)

To determine the explicit relation of p̃(a(η), t), employ the method of characteristics
(MOC). We suppose that p̃(a(η), t) is characterized by an ordinary differential equation
along the curve (a(ψ1(y)), ψ2(y)) = ψ(y), then

ψ̇1(y) := 1 ⇒ ψ1(y) = y + c1, ψ̇2(y) := 1 ⇒ ψ2(y) = y + c2, z(y) := p̃(a(ψ1(y)), ψ2(y)),

where c1, c2 ∈ R are constants. Then, it follows

dz
dy =dp̃(a(ψ1(y)), ψ2(y))

dy

=∂p̃(a(ψ1(y)), ψ2(y))
∂a

da(ψ1(y))
dψ1

dψ1(y)
dy + ∂p̃(a(ψ1(y)), ψ2(y))

∂ψ2

dψ2(y)
dy

=γ(N(ψ2(y)))q̃(a(ψ1(y)), ψ2(y)) − (β(a(ψ1(y))) + α(x1(a(ψ1(y))), a(ψ1(y)))
+ µp(a(ψ1(y))))p̃(a(ψ1(y)), ψ2(y))

=γ(N(ψ2(y)))q̃(a(ψ1(y)), ψ2(y)) − (β(a(ψ1(y))) + α(x1(a(ψ1(y))), a(ψ1(y)))
+ µp(a(ψ1(y))))z(y). (6.8)

We can now write p̃ using an ODE (6.8) so that

p̃(a(y+c1), y + c2)= p̃(a(ψ1(y)), ψ2(y)) = z(y)

= exp
(

−
∫ y

0

(
β(a(ψ1(ξ))) + α(x1(a(ψ1(ξ))), a(ψ1(ξ))) + µp(a(ψ1(ξ)))

)
dξ
)

[ ∫ y

0
exp

(∫ ζ

0

(
β(a(ψ1(ξ))) + α(x1(a(ψ1(ξ))), a(ψ1(ξ))) + µp(a(ψ1(ξ)))

)
dξ
)

γ(N(ψ2(ζ)))q̃(a(ψ1(ζ)), ψ2(ζ))dζ + p̃(a(ψ1(0)), ψ2(0))
]

= exp
(

−
∫ y

0

(
β(a(ξ + c1)) + α(x1(a(ψ1(ξ + c1))), a(ξ + c1)) + µp(a(ξ + c1))

)
dξ
)

[ ∫ y

0
exp

(∫ ζ

0

(
β(a(ξ + c1))+ α(x1(a(ψ1(ξ + c1))), a(ξ + c1))+µp(a(ξ + c1))

)
dξ
)

γ(N(ζ + c2))q̃(a(ζ + c1), ζ + c2)dζ + p̃(a(c1), c2)
]
.
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6.2 Existence and uniqueness of non-negative solution

Following that, we establish the boundary set Γ := {[a0, a⋆) × {0}} ∪ {{0} × [0, t1]} in
such a way that if a curve (a(ψ1(y)), ψ2(y)) begins in Γ, we may utilize the boundary
condition to determine p̃(a(c1), c2). If we want (a(y + c1), y + c2) to be in Γ, then either
c1 = 0 or c2 = 0. This results in the two situations below. In the first scenario, c1 = 0
and c2 ∈ [0, t1) can be chosen randomly. Then, in this case,

p̃(a(y), y + c2) = exp
(

−
∫ y

0

(
β(a(ξ)) + α(x1(a(ξ)), a(ξ)) + µp(a(ξ))

)
dξ
)

[ ∫ y

0
exp

(∫ ζ

0

(
β(a(ξ)) + α(x1(a(ξ)), a(ξ)) + µp(a(ξ))

)
dξ
)
γ(N(ζ + c2))

q̃(a(ζ), ζ + c2)dζ + p̃(a(0), c2)
]
.

We may now utilize the characteristic solution to achieve the solution in {(a(η), t)|t ∈
[0, t1], η ∈ [0,min(η∗, t))}:

η
!= ψ1(y) = y + c1 = y ⇒ y = η and t

!= ψ2(y) = y + c2 ⇒ c2 = t− y,

which implies

p̃(a(η), t) = exp
(

−
∫ η

0

(
β(a(ξ)) + α(x1(a(ξ)), a(ξ)) + µp(a(ξ))

)
dξ
)

[ ∫ η

0
exp

(∫ ζ

0

(
β(a(ξ)) + α(x1(a(ξ)), a(ξ)) + µp(a(ξ))

)
dξ
)
γ(N(ζ + t− η))

q̃(a(ζ), ζ + t− η)dζ + p̃(a(0), t− η)
]
.

This establishes the equation for g(a(η))p(a(η), t) in case of η < t. Then, we take
c1 ∈ [0, η∗) is arbitrary and c2 = 0. Then we achieve,

p̃(a(y + c1), u) = exp
(

−
∫ y

0

(
β(a(ξ + c1)) + α(x1(a(ξ + c1)), a(ξ + c1)) + µp(a(ξ + c1))

)
dξ
)[ ∫ y

0
exp

(∫ ζ

0

(
β(a(ξ + c1)) + α(x1(a(ξ + c1)), a(ξ + c1))

+ µp(a(ξ + c1))
)
dξ
)

+ γ(N(ζ))q̃(a(ζ + c1), ζ)dζ + p̃(a(c1), 0)
]
.

We may now utilize the characteristic solution to achieve a solution in {(a(η), t)|t ∈
[0, t1], η ∈ [t, η∗)}:

η
!= ψ1(y) = y + c1 ⇒ c1 = η − y and t

!= ψ2(y) = y + c2 ⇒ y = t,

which results into

p̃(a(η), t) = exp
(

−
∫ t

0

(
β(a(ξ + η − t)) + α(x1(a(ξ + η − t)), a(ξ + η − t))

+ µp(a(ξ + η − t))
)
dξ
)[ ∫ t

0
exp

(∫ ζ

0

(
β(a(ξ + η − t))

+ α(x1(a(ξ + η − t)), a(ξ + η − t)) + µp(a(ξ + η − t))
)
dξ
)

γ(N(ζ))q̃(a(ζ + η − t), ζ)dζ + p̃(a(η − t), 0)
]
.
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6.2 Existence and uniqueness of non-negative solution

This establishes the equation for g(a(η))p(a(η), t) for η > t. Thus, the final solution for
g(a(η))p(a(η), t) can be written as:

p̃(a(η), t) :=



exp
(

−
∫ η

0

(
β(a(ξ)) + α(x1(a(ξ)), a(ξ)) + µp(a(ξ))

)
dξ
)[
h(t− η)∫ η

0
exp

(∫ ζ

0

(
β(a(ξ))+α(x1(a(ξ)), a(ξ))+µp(a(ξ))

)
dξ
)

γ(N(ζ + t− η))q̃(a(ζ), ζ + t− η)dζ
]
, ā < t

exp
(

−
∫ t

0

(
β(a(ξ + η − t)) + α(x1(a(ξ + η − t)), a(ξ + η − t))+

µp(a(ξ + η − t))
)
dξ
)[
p0(a(η − t)) +

∫ t

0
exp

(∫ ζ

0

(
β(a(ξ + η − t))

+ α(x1(a(ξ + η − t)), a(ξ + η − t)) + µp(a(ξ + η − t))
)
dξ
)
γ(N(ζ))

q̃(a(ζ + η − t), ζ)dζ
]
, ā ≥ t.

where, h(t− η) denotes the boundary condition p̃(a(0), t− η). It can be seen that above
relation for g(a)p(a, t) is positive for positive initial data and when g(a)q(a, t) ≥ 0.

Next, we check the positivity of coupled ODE model (5.10a)-(5.10d). Thereby, the set
of ODEs are written as 

dx1
da = f1(x1, x4),
dx2
da = f2(x1, x2, x3),
dx3
da = f3(x1, x2, x3),
dx4
da = f4(x1, x2, x3, x4),

(6.9)

where f1, f2, f3 and f4 represent the vector fields of the corresponding microscale states
x1-x4. Note that in Eq. (6.9), f1 does not show any dependence on N (or, in other
words, dependence on p and q) because N varies with time, and at each time step,
it is a fixed constant which determines growth factors for all ages. Next, in order to
check the positivity of the solutions of all ODEs in this case, it is sufficient to know
that the vector fields f1, f2, f3, f4 are continuously differentiable and are pointing away
from the negative parts in the state space. Starting with the ODE for x1 from (6.9),
we substitute x4 = 0 in f1(x1, x4), which yields ẋ1 = f1(x1). It can be seen that

f1(x1) = k1s

(
gf

kgf +gf

)
− k1d

(
x1

k1+x1

)
> 0 for all a > 0, when k1s

(
gf

kgf +gf

)
> k1d

(
x1

k1+x1

)
,

which means that the concentration of x1 increases more than it decreases for all ages.
It is evident since growth factors are the only source of increase in the concentration of
x1. Therefore, when growth factors are at the absolute minimum, x1 is also at its lowest
concentration, and the decrement (or degradation) cannot be more than the activation
of complex x1. Since the solution to the system (5.10a)-(5.10d) is unique for each given
initial condition (evident from (6.3) and (6.4)), thus for any given x4 > 0, the solution
will remain in the first quadrant. This guarantees the positivity of solution for x1. Next,
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6.3 Existence and stability of steady-state solutions

we assume x1 = 0 in f2(x1, x2, x3) which yields an ODE ẋ2 = f2(x2, x3). The solution to
which takes the form x2(a) = x0

2e
−(k32x3(a)−k2d)a, which implies x2(a) > 0 for all x0

2 > 0
as well as for all values of x3(a). Thus for any given positive initial data, the solution
x2(a) is positive for all ages. In the similar fashion, we can now substitute x3 = 0 in
f2(x1, x2, x3) which yields a nonlinear ODE ẋ2 = f2(x1, x2). The explicit solution cannot
be computed in this case. However, the phase portrait of (x1, x2) shows that the solution
trajectories point away from the axis which separate the positive and negative space for
given positive initial data. In a similar way, we can also derive sufficient conditions for
the positivity of the solutions for x3(a) and x4(a). With this, we attain that, if ζ0 ∈ Ω,
ζ(t, ζ0) ∈ Ω∀t > 0, .

Now, suppose z(t, ·) = q(t, ·) + p(t, ·) and death rates are identical, i.e., µp = µq. Then,
we have from Eqs. (5.1)-(5.2):

dz(t, ·)
dt = Bz(t, ·) −

(
∂

∂a
+ β(a)
g(a)

)
g(a)p(t, ·), z(0) = q0(0) + p0(0) ∈ L1(0, a⋆), (6.10)

where we define operator B as B = −µp(a) and

D(B) = {ϕ ∈ L1(0, a⋆)|ϕ is absolute continuous on [0, a⋆) and ϕ(0) = 0}.

From Eq. (6.10), it leads to

z(t, ·) = W(t)z(0, ·) −
∫ t

0
U(t− s)

(
∂

∂a
+ β(a)
g(a)

)
g(a)p(s, ·)ds, (6.11)

where operator B generates a positive C0-semigroup W(t). As we know, W(t) is a
nilpotent translation semigroup, it leads to z(t)(a) ≤ q0(a − t) + p0(a − t), a > t and
z(t) ≤ 0 for t ≥ a⋆. Therefore, the mild solution ζ(t, ζ0), ζ0 ∈ Ω enters Ω0 for t ≥ Ω, and
in case of ζ0 ∈ Ω0, ζ(t, ζ0) ∈ Ω0, ∀t ≥ 0. Hence it is proved.

We conclude from the above result that the norm of the local solution ζ(t, ζ0), ζ0 ∈
D(A) ∩ Ω, of (6.3) is defined and is finite. As a result, we achieve the final result.

Theorem 6.2.1. The abstract Cauchy problem (6.3) has a unique global classical solution
on Z with respect to the initial data z0 ∈ Ω ∩D(A).

Consequently, given a positive initial data, the IVP (5.1)-(5.2) has a unique positive
solution.

6.3 Existence and stability of steady-state solutions
Here, we establish the steady-state solution of the model and sufficient conditions for the
existence of the positive steady-state. First, we introduce some notations in the sequel.
Let’s define X as a real/complex Banach space and X⋆ be its dual space, i.e., the space
of all linear functionals on X. The notation ⟨F,ψ⟩ represents the value of F ∈ X⋆ at
ψ ∈ X. A close subset X+ is called cone if the following hold:

• X+ ̸= {0},

• X+ ∩ (−X+) = {0},

• λX+ ⊂ X+, λ ≥ 0,
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• X+ +X+ ⊂ X+.

The dual cone X⋆
+ is the subset of X⋆ consisting of all positive linear functionals on X,

i.e., F ∈ X∗
+ if and only if F ∈ X⋆ and ⟨F,ψ⟩ ≥ 0 for all ψ ∈ X+.

6.3.1 Existence of steady-state solutions

Let p̄, q̄, x̄1 − x̄4 represent the steady-states of the system (5.1)-(5.2), (5.10a)-(5.10d).
Then, p̄, q̄, x̄1 − x̄4 must satisfy these time-invariant system of ordinary differential
equations:

0 = α(a, x̄1)p̄(a) − (γ̄ + µq(a))q̄(a),
∂a(g(a)p̄(a)) = γ̄q̄(a) − (β(a) + α(a, x̄1) + µp(a))p̄(a),

p̄(0) = 2
∫ a⋆

0
β(a)p̄(a)da,

dx̄1
da = k1s

(
ḡf

kgf + ḡf

)
− k14x̄4x̄1 − k1d

(
x̄1

k1 + x̄1

)
,

dx̄2
da = k21

(
x2t − x̄2

k2 + (x2t − x̄2)

)
x̄1 − k32x̄2x̄3 − k2dx̄2,

dx̄3
da = k3s − k32x̄2x̄3 − k31

(
x̄3

k3 + x̄3

)
x̄2 − k3dx̄3,

dx̄4
da = k4s + k42

(
k34

k34 + x̄3

)
x̄2 − k41

(
x̄4

k4 + x̄4

)
x̄1 − k4dx̄4,

(6.12)

where γ̄ = γ(N̄), ḡf = gf (N̄) and N̄ =
∫ a⋆

0 (q̄(a) + p̄(a))da. Since the ODEs of the
cell-cycle model are age-dependent and with the input of growth factors at a steady-state,
all cell-cycle states acquire a steady-state. Therefore, to investigate the steady-states of
proliferating and quiescent cell populations p̄(a) and q̄(a), we do not need to solve the
ODEs of the cell-cycle model explicitly. Consequently, solving the system (6.12) for p̄
and q̄, we obtain q̄ as

q̄(a) = α(a, x̄1)p̄(a)
γ̄ + µq(a) , (6.13)

and after using the above relation for q̄ in the equation for p̄ yields

d(g(a)p̄(a))
da +

(
α(a, x̄1)µq(a)
γ̄ + µq(a) + β(a) + µp(a)

)
p̄(a) = 0. (6.14)

Solving Eq. (6.14) for p̄(a), yields both steady-state solutions for p̄(a) and q̄(a) as follows
q̄(a) = α(a, x̄1)p̄(0)

γ̄ + µq(a) exp
(

−
∫ a

0

1
g(a)

(
g′(a) + α(x̄1, ξ)µq(ξ)

γ̄ + µq(ξ) + β(ξ) + µp(ξ)
)

dξ
)
,

p̄(a) = p̄(0) exp
(

−
∫ a

0

1
g(a)

(
g′(a) + α(x̄1, ξ)µq(ξ)

γ̄ + µq(ξ) + β(ξ) + µp(ξ)
)

dξ
)
.

It is clear that the system defined in Eqs. (5.1)-(5.2), (5.10a)-(5.10d) always admits a
trivial steady-state.
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6.3.2 Stability of steady-state solutions

Next, we want to derive the stability conditions for a positive steady-state solution.
Suppose q(a, t) = q̄ and p(a, t) = p̄, ∀t ≥ 0 represent equilibrium solutions to the PDE
model (5.1)-(5.2) and q∗(a, t) and p∗(a, t) represent the corresponding perturbation terms:

q(a, t) = q̄ + ϵq∗(a, t), p(a, t) = p̄+ ϵp∗(a, t).

Substituting the above relations in to the PDE model (5.1)-(5.2), we have

ϵ
∂

∂t
q∗(a, t) = α(a, x̄1)(p̄+ ϵp∗(a, t)) −

(
νθκ

θκ + (N̄ + ϵn(t))κ
+ µq(a)

)
(q̄ + ϵq∗(a, t)),

ϵ
∂

∂t
p∗(a, t) + ∂

∂a
(g(a)(p̄+ ϵp∗(a, t))) =

(
νθκ

θκ + (N̄ + ϵn(t))κ

)
(q̄ + ϵq∗(a, t))

− (β(a) + α(a, x̄1) + µp(a))(p̄+ ϵp∗(a, t)),

(p̄(0) + ϵp∗(0, t)) = 2
∫ a⋆

0
β(a)(p̄+ ϵp∗(a, t))da.

where, n(t) :=
∫ a⋆

0 (p∗(a, t) + q∗(a, t)) da. Then, take the derivative wrt epsilon ϵ, leads
to: 

∂

∂t
q∗(a, t) = α(a, x̄1)p∗(a, t) −

(
∂

∂ϵ

(
νθκϵ

θκ + (N̄ + ϵn(t))κ

)
− µq(a)

)
q∗(a, t),

∂

∂t
p∗(a, t) + ∂

∂a
(g(a)p∗(a, t)) = ∂

∂ϵ

(
νθκϵ

θκ + (N̄ + ϵn(t))κ

)
q∗(a, t)

− (β(a) + α(a, x̄1) + µp(a))p∗(a, t),

p∗(0, t) = 2
∫ a⋆

0
β(a)p∗(a, t)da,

which simplifies to

∂

∂t
q∗(a, t) = α(a, x̄1)p∗(a, t) −

(
νθκ

(
θκ + (N̄ + ϵn(t))κ − κϵn(t)(N̄ + ϵn(t))κ−1

(θκ + (N̄ + ϵn(t))κ)2

)
− µq(a)

)
q∗(a, t),

∂

∂t
p∗(a, t) + ∂

∂a
(g(a)p∗(a, t)) = νθκ

(
θκ + (N̄ + ϵn(t))κ − κϵn(t)(N̄ + ϵn(t))κ−1

(θκ + (N̄ + ϵn(t))κ)2

)
q∗(a, t) − (α(a, x̄1) + β(a) + µp(a))p∗(a, t),

p∗(0, t) = 2
∫ a⋆

0
β(a)p∗(a, t)da.

Taking the limit ϵ → 0, we obtain a linear system of PDEs:
q∗

t (a, t) = α(a, x̄1)p∗(a, t) − (
µq(a) + γ(N̄)

)
q∗(a, t),

p∗
t (a, t) + ∂a(g(a)p∗(a, t)) = γ(N̄)q∗(a, t)) − (α(a, x̄1) + β(a) + µp(a))p∗(a, t),

p∗(0, t) = 2
∫ a⋆

0
β(a)p∗(a, t)da,

(6.15)
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where γ(N̄) = νθκ/(θκ + N̄κ). Next, let ω(t) = (q∗(·, t), p∗(·, t))T , we formulate (6.15) as
abstract Cauchy problem:

d
dtω(t) = Cω(t), ω(0) = ω0 ∈ X, (6.16)

on the Banach space X and the generator C is defined by

(Cϕ)(a) =

 −(γ(N̄) + µq(a))ϕ1(a) + α(a, x̄1)ϕ2(a)

γ(N̄)ϕ1(a) −
(

∂
∂a + 1

g(a)
(
β(a) + α(a, x̄1) + µp(a)

))
g(a)ϕ2(a)

 ,
where

ϕ(a) = (ϕ1(a), ϕ2(a))T ∈ D(C),

and D(C) is defined below:

D(C) =
{

(ϕ1, ϕ2)|ϕi is absolute continuous on [0, a⋆), ϕ(0) =
(

2
∫ a⋆

0
β(a)ϕ2(a)da, 0

)T}
.

Next, the resolvent equation for operator C is considered as,

(λI − C)ϕ = ψ, ϕ ∈ D(C), ψ ∈ X, λ ∈ C. (6.17)

Which leads to

(
λ+ γ(N̄) + µq(a)

)
ϕ1(a) − α(a, x̄1)ϕ2(a) = ψ1(a) (6.18a)

−γ(N̄)ϕ1(a) + ∂

∂a
(g(a)ϕ2(a)) +

(
λ+ β(a) + α(a, x̄1) + µp(a)

)
ϕ2(a) = ψ2(a), (6.18b)

and

ϕ2(0) = 2
∫ a⋆

0
β(a)ϕ2(a)da.

By solving (6.18a), we get

ϕ1(a) = ψ1(a) + α(a, x̄1)ϕ2(a)
λ+ γ(N̄) + µq(a)

. (6.19)

Which after substituting in Eq. (6.18b) and solving gives

ϕ2(a) = exp
(

−
∫ a

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ) − γ(N̄)α(x̄1, ξ)

g(ξ)(λ+ γ(N̄) + µq(ξ))
dξ
)

[ ∫ a

0
exp

(∫ ζ

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ) − γ(N̄)α(x̄1, ξ)

g(ξ)
(
λ+ γ(N̄) + µq(ξ)

)dξ)
1
g(ζ)

{
ψ2(ζ) + γ(N̄)ψ1(ζ)

λ+ γ(N̄) + µq(ζ)

}
dζ + ϕ2(0)

]
.
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Substituting ϕ2(a) back in Eq. (6.19) yields

ϕ1(a) = 1
λ+ γ(N̄) + µq(a)

[
exp

(
−
∫ a

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)(λ+ γ(N̄) + µq(ξ))

dξ
){∫ a

0
exp

(∫ ζ

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)

(
λ+ γ(N̄) + µq(ξ)

)dξ) 1
g(ζ)

{
ψ2(ζ) + γ(N̄)ψ1(ζ)

λ+ γ(N̄) + µq(ζ)

}
dζ

+ ϕ2(0)
}
α(a, x̄1) + ψ1(a)

]
.

Lemma 6.3.1. The operator C has a compact resolvent and

σ(C) = σP (C) = {λ ∈ C | − µq − γ(N̄) ∈ σP (Uλ)}, (6.20)

where σ(C) is the spectrum and σP (C) represents the point spectrum of operator C.
Proof. Let’s rewrite ϕ1(a) as

ϕ1(a) = (Uλψ2)(a) + (Vλψ1)(a),

where Uλ and Vλ are the linear operators on Banach space, given as

(Uλψ)(a) =
∫ a⋆

0
Gλ(ζ, a)ψ(ζ)dζ, (Vλψ)(a) =

∫ a⋆

0
Hλ(ζ, a)ψ(ζ)dζ, (6.21)

where

Gλ(ζ, a) = α(a, x̄1)
g(ζ)(λ+ γ(N̄) + µq(a))

exp
(

−
∫ a

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)(λ+ γ(N̄) + µq(ξ))

dξ
)

exp
(∫ ζ

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)(λ+ γ(N̄) + µq(ξ))

dξ
)
, (6.22)

and

Hλ(ζ, a) = 1
g(ζ)(λ+ γ(N̄) + µq(ξ))

(
γ(N̄)Gλ(ζ, a) + g(ζ)

a⋆

)
.

Similarly, we rewrite ϕ2(a) as

ϕ2(a) = 1
α(a, x̄1)

{
(λ+ γ(N̄) + µq)(Uλψ2)(a) + γ(N̄)(Uλψ1)(a)

}
.

Let Λ = {λ ∈ C |−µq(·) −γ(N̄) ∈ σ(Uλ)}, then we can say that if λ ∈ C\Λ, operators Uλ

and Vλ are compact operators from X to L1(0, a⋆). This implies ϕ1(a) is represented by
a compact operator. In a similar fashion, ϕ2(a) is also represented by a compact operator.
Resultantly, we get that operator C has a compact resolvent which further implies that
σ(C) comprises entirely of isolated eigenvalues, i.e., σ(C) = σP (C) (see p. 187, Theorem
6.29 in [152]). From latter, we know that C\Λ ⊂ ρ(C), where ρ(C) is the resolvent of
C. This implies σP (C) = σ(C) ⊂ Λ. Since Uλ is a compact operator, then it leads to
σ(Uλ)\{0} = σP (Uλ)\{0}. Now if λ ∈ Λ, there exists an eigenfunction ψλ such that
Uλψλ = ψλ. Then, it is trivial to see that (ϕ1(a), ϕ2(a))T provides an eigenvector of C
for an eigenvalue λ. Then Λ ⊂ σP (C), and finally, we can say that (6.20) satisfies.
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Lemma 6.3.2. Let T(t) be the C0-semigroup generated by the operator C, t ≥ 0. Then,
T(t) is eventually norm continuous (ENC) and

ω0(C) = s(C) = sup{Reλ |λ ∈ σ(C)}, (6.23)

where ω0(C) represents the growth bound of semigroup T(t) and s(C) denotes the spectral
bound of the operator C.

Proof. First, we write the bounded operator C as:

Cϕ =

−(γ(N̄) + µq(a)) α(a, x̄1)

γ(N̄) −
(

∂
∂a + 1

g(a)(β(a) + α(a, x̄1) + µp(a))
)
g(a)

(ϕ1(a)
ϕ2(a)

)
,

for ϕ ∈ X. To prove the compactness of C, we show that for any bounded sequence
(ϕn)n∈N in X, the sequence (Cϕn)n∈N has a uniformly convergent subsequence. For this
we use the Arzelà-Ascoli Theorem. Thereby, we need to check that (Cϕn)n∈N is uniformly
bounded and uniformly equicontinuous. For the boundedness, note that since we assumed
that (ϕn)n∈N is bounded, we have

∥Cϕn∥1 ≤ ∥C∥ ∥ϕn∥1 ≤ ∥C∥ sup
n∈N

∥ϕn∥1,

proving that (Cϕn)n∈N is also bounded. Next, for the uniform equicontinuity, consider∫
R

|(Cϕ)(a+ h) − (Cϕ)(a)|da =
∫

R
|C(a+ h) − C(a)| |ϕ(a)|da

≤
∫

R

∣∣∣∣
(

−γ(N̄) − µq(a+ h) α(a+ h, x̄1)
γ(N̄) − ∂

∂a+hg(a+ h)−β(a+ h)−α(a+ h, x̄1)−µp(a+ h)

)

−
(

−γ(N̄) − µq(a) α(a, x̄1)
γ(N̄) − ∂

∂ag(a) − β(a) − α(a, x̄1) − µp(a)

) ∣∣∣∣
∣∣∣∣∣ϕ1(a)
ϕ2(a)

∣∣∣∣∣ da
=
∫

R

∣∣∣∣∣−µq(a+ h) + µq(a) α(x̄1, a+ h) − α(a, x̄1)
0 k(a+ h) − k(a)

∣∣∣∣∣
∣∣∣∣∣ϕ1(a)
ϕ2(a)

∣∣∣∣∣ da
≤ ∥ϕ∥

∫
R

∣∣∣∣∣−µq(a+ h) + µq(a) α(x̄1, a+ h) − α(a, x̄1)
0 k(a+ h) − k(a)

∣∣∣∣∣ da,
where k(a) = − ∂

∂ag(a)−β(a)−α(a, x̄1)−µp(a). It follows that (Cϕn)n∈N is equicontinuous.
Thus, by the Arzelà-Ascoli Theorem, the sequence (Cϕn)n∈N has a uniformly convergent
subsequence, and therefore, C is compact which implies T is ENC semigroup. As we
know that the spectral mapping theorem applies to ENC semigroup, we get the spectral
determined growth condition, i.e., ω0(C) = s(C), thus we obtain (6.23).

If ω0(C) < 0, the steady-state solution ω = 0 of (6.16) is locally exponentially
asymptotically stable in a way that there exists ϵ > 0, M ≥ 1 and γ < 0, such
that when x ∈ X and ∥x∥ ≤ ϵ, then the solution ω(t, x) of (6.16) exists globally and
∥ω(t, x)∥ ≤ M exp(γt)∥x∥, ∀t > 0.

Next, to study the stability of equilibrium states, we need to find that dominant
singular point, i.e., the element of set Λ which has the largest real part. Then utilizing
(6.20) and (6.23), we can find the growth bound of semigroup T.
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Lemma 6.3.3. The operator Uλ, λ ∈ R is nonsupporting with respect to X+ and

lim
λ→+∞

r(Uλ) = 0, (6.24)

holds.

Proof. It can be seen from (6.21) and (6.22) that the operator Uλ, λ ∈ R is strictly
positive. Now, in order to show non-supporting property of Uλ, λ ∈ R, we can easily
verify the inequality

Uλψ ≥ ⟨fλ, ψ⟩c, c = 1 ∈ X+, ψ ∈ X+, (6.25)

where the linear function fλ, is given as

⟨fλ, ψ⟩=
∫ a⋆

0

[
s(ζ)

g(ζ)(λ+ γ(N̄) + µq(a))
exp

(
−
∫ a

0
β(ξ) + α(x̄1, ξ)+λ+µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)(λ+ γ(N̄) + µq(ξ))

dξ
)

exp
(∫ ζ

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)(λ+ γ(N̄) + µq(ξ))

dξ
)]
ψ(ζ)dζ. (6.26)

Thereby, it leads us to Un+1
λ ψ ≥ ⟨fλ, ψ⟩⟨fλ, c⟩nc, ∀n. Since fλ is strictly positive and

the constant function c = 1 is a quasi-interior point of L1(0, a⋆), it leads to ⟨F,Un
λ ⟩ > 0

for every pair ψ ∈ X+\{0}, F ∈ X∗
+\{0}. Then Uλ, λ ∈ R is nonsupporting. Following

that, we utilise (6.25) and take duality pairing with the eigenfunctional Fλ of Uλ which
corresponds to r(Uλ), then we get

r(Uλ)⟨Fλ, ψ⟩ ≥ ⟨Fλ, e⟩⟨fλ, ψ⟩.
Suppose ψ = c, we obtain an inequality r(Uλ) ≥ ⟨fλ, c⟩, where

⟨fλ, c⟩ =
∫ a⋆

0

s(ζ)
g(ζ)(λ+ γ(N̄) + µq(ζ))

exp
(

−
∫ a

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
g(ξ)(λ+ γ(N̄) + µq(ξ))

dξ
)

exp
(∫ ζ

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
λ+ γ(N̄) + µq(ξ)

dξ
)

dζ. (6.27)

It follows that

⟨fλ, c⟩ ≥ϵ
∫ a⋆

0

1
g(ζ)(λ+ γ(N̄) + µq(ζ))

exp
(

−
∫ a

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
λ+ γ(N̄) + µq(ξ)

dξ
)

exp
(∫ ζ

0
β(ξ) + α(x̄1, ξ) + λ+ µp(ξ)

− γ(N̄)α(x̄1, ξ)
λ+ γ(N̄) + µq(ξ)

dξ
)

dζ. (6.28)

By using the positivity of γ(N̄), µp, µq, α and β, we conclude the following

lim
λ→+∞

r(Uλ) = 0.

Hence, it is proven.
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Preceding Lemma concludes that λ → r(Uλ) is a decreasing function of λ ∈ R.
Furthermore, if λ ∈ R so that r(Uλ) = 1, then λ ∈ Λ since r(Uλ) ∈ σP (Uλ). From the
monotonicity of r(Uλ) and (6.24), the following holds.

Lemma 6.3.4. There exists a unique λ0 ∈ R ∩ Λ such that r(Uλ0) = 1, and λ0 > 0 if
r(U0) > 1; λ0 = 0 if r(U0) = 1; λ0 < 0 if r(U0) < 1.

Now, we will show, using Theorem 6.13 in [153], that λ0 is a dominant singular point.

Lemma 6.3.5. If there exists a λ ∈ Λ, λ ̸= λ0, then Reλ < λ0.

Proof. Suppose that λ ∈ Λ and Uλψ = ψ, then |Uλψ| = |ψ|, where |ψ|(a) = |ψ(a)|.
This yields UReλψ ≥ ψ. Considering the duality pairing with FReλ ∈ X⋆

+, we get
r(UReλ)⟨FReλ, |ψ|⟩ ≥ ⟨FReλ, |ψ|⟩, which results into the fact that r(UReλ) ≥ 1 since FReλ

is strictly positive. As shown that r(Uλ), λ ∈ R is declining function, it concludes that
Reλ ≤ λ0. If we suppose that Reλ = λ0, then Uλ0 |ψ| = |ψ|. In fact, if we assume
Uλ0 |ψ| > |ψ| and take duality pairing with the eigenfunctional F0 corresponding to
r(Uλ0) = 1 on both sides results into ⟨F0, |ψ|⟩ > ⟨F0, |ψ|⟩, which is a contradiction.
As a consequence Uλ0 |ψ| = |ψ|, from which we deduce that |ψ| = cψ0, where c is a
constant which we may assume 1 and ψ0 is the eigenfunction corresponding to r(Uλ0) = 1.
Therefore, ψ(a) = ψ0(a) exp(iv(a)) for, say, a real-valued function v(a). Substituting
which into Uλ0ψ0 = |Uλψ|, leads us to

α(a, x̄1)
g(a)(λ0 + γ(N̄) + µq(a))

∫ a⋆

0
exp

(∫ ζ

a
β(ξ) + α(x̄1, ξ) + λ0 + µp(ξ)

− γ(N̄)α(x̄1, ξ)
λ0 + γ(N̄) + µq(ξ)

dξ
)
ψ0(ζ)dζ

=
∣∣∣∣ α(a, x̄1)
g(a)(λ0 + iImλ+ γ(N̄) + µq(a))

∫ a⋆

0
exp

(∫ ζ

a
β(ξ) + α(x̄1, ξ) + λ0 + iImλ

+ µp(ξ) − γ(N̄)α(x̄1, ξ)
λ0 + iImλ+ γ(N̄) + µq(ξ)

dξ
)

exp(iv(ζ))ψ0(ζ)dζ
∣∣∣∣.

From Lemma 6.12 [153], it leads us to Imλ+v(ζ) = Θ, where Θ is a constant. Utilizing
Uλψ = ψ, we get

exp(iΘ)Uλ0ψλ0 = ψλ0 exp(iv(ζ)),

so Θ = v(ζ), leads to Imλ = 0. Hence, the result is proven.

Theorem 6.3.1. The equilibrium state (q̄(a), p̄(a))T, for (5.1)-(5.2) is locally asymptoti-
cally stable if r(U0) < 1 and locally unstable if r(U0) > 1.

Proof. Lemma 6.3.4 and 6.3.5 concludes that sup{Reλ : −µq − γ(N̄) ∈ σP (Uλ)} = λ0.
Therefore, it results into s(C) = sup{Reλ : −µq − γ(N̄) ∈ σP (Uλ)} < 0 if r(U0) < 1 and
s(C) > 0 if r(U0) > 1. Hence proved.
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CHAPTER 7
Multiscale mathematical model: Healthy and cancerous
proliferating and quiescent cell populations

This chapter proposes an extension of our physiologically structured PDE model that
incorporates multiscale and nonlinear features. The model accounts for both mutated
and healthy populations of quiescent and proliferating cells at the macroscale, as well as
the microscale dynamics of cell cycle proteins. A reversible transition between quiescent
and proliferating cell populations is assumed. The growth factors generated from the
total cell population of proliferating and quiescent cells influence cell cycle dynamics.
As feedback from the microscale, Cyclin D − CDK4/6 protein concentration determines
the transition rates between quiescent and proliferating cell populations. In the end, we
executed numerical simulations to observe the impact of the parameters on the model’s
nonlinear dynamics.

7.1 Biological problem formulation

Cell populations are dynamic, with cells continuously dividing, differentiating, and
sometimes accumulating mutations, [154]. Mammalian cell division patterns are critical
to understanding human tumor progression. Age-structured mathematical models provide
a valuable tool to simulate and analyze these intricate processes. These models categorize
cells into age groups, capturing how cell properties change. By incorporating mutations
and quiescence into these models, a wide range of questions related to cancer progression,
tissue homeostasis, and therapeutic interventions can be explored. As already stated in
Chapter 5, several research works utilize age-structured frameworks to investigate the cell
population dynamics. Some examples of age-structured growth models include epidemic
[102–104], microscopic virus [105, 106] and cell population [107–110] models. On the other
hand, the concealed molecular complexity of a tissue demands a more thorough modelling
framework that includes special cellular and molecular interactions. Age-structured
models help elucidate the growth patterns of cancerous tumors, considering factors such
as mutation acquisition, clonal expansion, and the role of cancer stem cells. Additionally,
they can help us understand the emergence of drug resistance in cancer populations,
enabling the development of more effective treatment strategies.

Cells can be in different states, including actively proliferating, quiescent (dormant),
or undergoing differentiation. Modeling these transitions is crucial for understanding cell
population dynamics. The proliferating cells go through different phases in the cell cycle
(G1,S,G2,M) while dividing. Quiescent cells do not grow or divide but move to the G0
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7.1 Biological problem formulation

phase, remaining until they differentiate or undergo apoptosis. The transition between
proliferating and quiescent populations of cells is a critical aspect of cell biology and
has several important implications for the health and function of tissues and organisms.
First and foremost, maintaining a balance between proliferating and quiescent cells
is essential for tissue homeostasis. Proliferating cells replace damaged or dying cells,
ensuring the tissue’s proper functioning and structural integrity. Quiescent cells act as a
reservoir, ready to proliferate when needed. Furthermore, maintaining quiescence is a
protective mechanism against cancer. Typically, cells with damaged DNA or those at
risk of becoming cancerous can enter a quiescent state, preventing them from dividing
and potentially developing into tumors. Loss of this control can increase the risk of
cancer. These transitions are essential for maintaining tissue function, conserving energy,
responding to injuries, preventing cancer, regulating stem cell behaviour, and ensuring
overall health and longevity. This dynamic balance is tightly regulated and contributes
to the proper functioning of tissues and organisms. Growth factors play a pivotal role in
regulating the transition between proliferating and quiescent populations of cells. These
signalling molecules are essential for orchestrating various cellular processes, including
cell proliferation, cell cycle progression, and the maintenance of quiescence, [111].

Mutations are changes in the DNA sequence of a cell, and they can affect various
aspects of cell behavior, including cell cycle regulation, response to growth factors, and
the decision to enter or exit quiescence. Mutations in genes that regulate cell growth and
division can disturb the finely-tuned equilibrium that governs cell proliferation, which in
turn can result in the emergence of cancer. Although other factors like environmental
exposures and lifestyle choices may also play a role in cancer development, mutations in
genes are a major contributor to this disease. Mutations can be of several types, those
that are particularly significant for cancer involve increased potential for proliferation,
decreased apoptosis, genetic instability, and reduced tumor suppression [1]. The exact
number of mutations needed for cancer initiation varies widely, and it is influenced
by factors such as the type of cancer, the specific genetic and environmental context,
and the presence of other genetic alterations. Some cancers may develop from a single
critical mutation, while others may require multiple mutations, [155, 156]. Furthermore,
studies have shown that the transformation of a normal cell into a cancerous one usually
requires the accumulation of one to ten mutations [1, 49]. In cancerous tissues, mutated
cells can coexist with healthy cells (non-cancerous or normal cells). Cancer arises from
genetic mutations in a subset of cells within a tissue, and these mutated cells continue to
proliferate alongside the surrounding normal cells. This coexistence is a hallmark of cancer,
and the interactions between cancer and normal cells within the tumor microenvironment
can influence disease progression.

This research focuses on the model development of the cell population in all healthy
and mutated cell populations. We investigate the coupling dynamics of tissue cell density
and cell cycle proteins. Previous studies have used age-structured models to investigate
cell populations in quiescent phase [110] only, the proliferating phase [112, 113] only, or
both phases together [109, 114–118]. Despite this, the impact of molecular interactions
on the interplay between proliferative and quiescent phases at the subcellular level has
yet to be examined. Thus, the primary aim of this paper is to develop a multiscale model
utilizing mathematical techniques that can capture the intricacies of a complex system
existing at the sub-cellular level. Schematics in Figure 7.1 depicts multiscale-modeling
framework used in this chapter.
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7.1 Biological problem formulation
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Figure 7.1: Both healthy and mutated subpopulations of proliferating and quiescent cells
are depicted with possible transition effects. Healthy proliferating cells can transition to
cancer proliferating cells upon mutation with rate m. Microscale (or cell cycle) dynamics
with predominant protein states along with their interactions are shown, indicated by the
legend in the bottom right corner. The growth factors gf from the macroscale influences
the cell-cycle.
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7.2 Mathematical modeling

To model the behaviour of cell populations in both healthy and mutated proliferative
and quiescent compartments at the macroscale, we use partial differential equations
(PDEs). For predicting sub-cellular protein interactions related to cell cycle dynamics,
we employ ordinary differential equations (ODEs). The two scales are connected via the
feedback incorporated in both directions. Within a cycle of cell division (G1,S,G2,M),
cells in the early proliferating phase (G1) can move to the quiescent-phase until the
restriction point (R). When cells receive external signals or growth factors that promote
cell cycle entry, the complex Cyclin D − CDK4/6 is activated. This activation is a key
trigger for cells to exit quiescence and enter the cell cycle’s proliferative G1 phase. This
mechanism of bi-directional transition is captured in our model for both healthy and
mutated cell lines. Moreover, our mathematical model includes mechanisms for cell
proliferation (division) and mutation rate.

In summary, we are extending our multiscale model that describes the coupling between
two predominant scales in Chapter 5, to a framework where healthy and mutated cell
lines co-exist and we model the proliferating and quiescent cell populations for both
healthy and mutated cell lineages. The main goal is to study the conditions under which
cell transitioning between proliferating and quiescent states, leads to uncontrolled tumor
growth. Specifically, we investigate whether Cyclin D − CDK4/6 complex is one of the
important cause in creating a deregulation in cell transitioning between proliferating
and quiescent cells. In the sequel, we delve into the details of multiscale mathematical
modeling of proliferating and quiescent cells with regards to the dynamics of cell cycle.
After which, model behavior and impact of the parameters is investigated using numerical
simulations.

7.2 Mathematical modeling

7.2.1 Age-structured model

The cell densities of healthy and mutated cells in the proliferative and quiescent compart-
ments are described by nonlinear hyperbolic transport PDEs that relate the cell density
distribution to both physiological age a and time t. Specifically, the densities of healthy
cells in the proliferative and quiescent phases are expressed as follows:

∂

∂t
ph(a, t) + ∂

∂a
(gh(a)ph(a, t)) = γh(N)qh(a, t) − (βh(a) + αh(a, x1) + µph

(a))ph(a, t),
(7.1)

∂

∂t
qh(a, t) = αh(a, x1)ph(a, t) − (γh(N) + µqh

(a))qh(a, t), (7.2)

where the rate evolution of a cell cycle is denoted by gh(a) in the equation. The first
term on the right side, γh(N)qh(a, t), represents the transition to proliferating from
quiescent cells, while the term βh(a)ph(a, t) represents the cell densities for completing
cell division in some age of the proliferating phase. Cells which move to the quiescent
phase without undergoing division are represented by αh(a, x1)ph(a, t). The loss in the
proliferating cells due to apoptosis/necrosis is represented by the death rate µph

(a).
The inflow from healthy proliferating cells, regulated by the microscale variable of
Cyclin D − CDK4/6, complex concentration x1 for each age, is denoted by the first term
in Eq (7.2): αh(a, x1)ph(a, t). The next term depicts a loss in the quiescent cells due
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7.2 Mathematical modeling

to either by returning to proliferating phase at the rate γh(N) or by cell death due to
apoptosis (or necrosis), as represented by the death rate µqh

(a).
Next, the cell density of mutated cells in mutated proliferating (pc) and quiescent (qc)

phases, respectively, is presented:
∂

∂t
pc(a, t) + ∂

∂a
(gc(a)pc(a, t)) = γc(N)qc(a, t) − (βc(a) + αc(a, x1) + µpc(a))pc(a, t),

(7.3)
∂

∂t
qc(a, t) = αc(a, x1)pc(a, t) − (γc(N) + µqc(a))qc(a, t), (7.4)

where the terms used are similar to those in the case of healthier cells, as shown in
Eqs (7.1) and (7.2). The total cell number in both healthy and mutated populations of
cells in quiescent and proliferating phases is denoted by N(t) and is defined in Eq (7.5).
In the case of quiescent cells, aging does not occur (i.e., the cells stop aging), so the
convection term related to physiological age a is absent in Eqs (7.2) and (7.4). The total
number of cells, represented by N(t), represents the sum of all cells in the proliferating
and quiescent phases throughout all ages, and can be expressed as

N(t) =
∫ a⋆

0
(ph(a, t) + qh(a, t) + pc(a, t) + qc(a, t)) da, (7.5)

where maximum age of the cells is given by a⋆. The initial conditions are given below:

ph(a, 0) = ph,0(a), qh(a, 0) = qh,0(a), pc(a, 0) = pc,0(a), qc(a, 0) = qc,0(a), ∀a ≥ 0. (7.6)

The boundary conditions are given as follows:

gh(0)ph(0, t) = 2(1 −m)
∫ a⋆

0
βh(a)ph(a, t)da, (7.7)

gc(0)pc(0, t) = 2
∫ a⋆

0
βc(a)pc(a, t)da+ 2m

∫ a⋆

0
βh(a)ph(a, t)da, (7.8)

for t > 0, where the number 2 shows the two newborn cells initializing in the proliferating
phase, and the parameter m represents the mutation rate. Since healthy cell can acquire
a mutation only during a division process, therefore, new born mutated cells start will
start at age 0.

The function βi(a) represents the cell number that finish dividing at a particular age
in both healthy and mutated proliferating phases. Here, the index i indicates whether
the compartment is healthy or cancerous, denoted by h and c, respectively. The function
βi(a) is regulated by the age of the cell, denoted by a, and is almost zero until a minimum
cell age. Afterward, the function increases until it reaches the age of a∗.

βi(a) = ρ1,ia
γ1,i

ρ
γ1,i

2,i + aγ1,i
, (7.9)

The maximum proliferation rate is represented by ρ1,i, while ρ2,i is the age t achieve
half-maximum. The Hill coefficient is represented by the exponent γ1,i.

Next, we establish the rate at which cells transition to the quiescent phase from the
proliferating compartments, which depends on both the age of the cell (a) and the
quantity of the Cyclin D − CDK4/6, complex (x1).

αi(a, x1) = σ1,i

σ
γ2,i

2,i

(σγ2,i

2,i + x
γ2,i

1 )
σ

γ3,i

3,i

(σγ3,i

3,i + aγ3,i)
. (7.10)
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The function αi(a, x1) depicts the number non-dividing cells due to anti-growth factors.
The age-dependence of αi is motivated by the fact that cells transition to the quiescent
phase from the proliferating phase only until they reach a specific age that marks a
restriction point (R) in the cell cycle (which is also G1 − S phase transition). However,
before the restriction point, the Cyclin, complex’s concentration x1 must be below a
certain value to enable cells to exit the proliferating phase. In Eq (7.10), the Hill
coefficients are represented by γ2,i and γ3,i, while σ2,i and σ3,i denote the concentration
of the Cyclin D − CDK4/6, complex x1 and the age a, respectively. After γ2,i and γ3,i,
the rate function α decreases asymptotically to zero, preventing cells from transitioning
to the quiescent phase. This implies that at age σ3,i, cells are inevitably committed to
entering the proliferation phase. Finally, σ3,i represents the threshold concentration of
the Cyclin, complex to determine the restriction point R.

The function γi(N), which determines the number of cells transitioning to the pro-
liferating phase from the quiescent phase, is represented by a Hill function of N that
decreases monotonically:

γi(N) = νiθ
κi
i

θκi
i +Nκi

, (7.11)

where the Hill function are defined as follows: νi specifies the maximum rate at which cells
transition to proliferating from quiescent population, when there are no cells, i.e., N = 0;
κi is the Hill coefficient, and θi represents the proportion of the total cell population that
reaches half the maximum value of νi. This implies that the number of quiescent cells
transitioning to the proliferative compartment decreases to zero as the cell population
increases, illustrating density inhibition.

Cell growth is controlled by proteins such as cytokines and other factors that regulate
proliferation [137]. Cytokines bind to specific receptors, activating signaling pathways
[138]. The cytokine signals that regulate cell numbers are reliant on the total population
of cells, as demonstrated by various studies [139]. For a detailed explanation of cytokine
signal dynamics, refer to [140, 141]. Using the quasi-steady-state approximation, we can
express the quantity of growth factors (gf ) produced by the entire cell population (N) as

gf = 1
1 + ktN

. (7.12)

7.2.2 Cell cycle model

In this framework, we will consider the same cell cycle model as in Chapter 5 because
those four microscale proteins in our cell cycle model, as mentioned earlier, that are suffi-

Description State
Cyclin D − CDK4/6 x1
E2F x2
Rb x3
p21 x4

Table 7.1: Description of the cell
states at the microscale.

cient to account for the reversible transitions between
the quiescent and proliferating phases. Please refer
to Section 5.2.2 for more elaboration. Thereby, we
consider four proteins which are described in Table 7.1.
Hereby, we assume a homogeneous cell population,
where all cells behave similarly, and therefore, we
model the behavior of a single cell to represent the
dynamics of all cells within a population. Under the
fundamental assumption of uniform behavior among
all constituent cells, we use an ordinary differential
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equation (ODE) model characterized by uniform parameters to encapsulate the intrinsic
cell cycle dynamics at a microscopic level. Additionally, we account for cells with
abbreviated cell cycles at a macroscopic scale, incorporating the function βi(a) to
accommodate this variability. Notably, our model introduces a specific chronological
age denoted as a⋆ at which the representative cell successfully completes its division.
Following Michaelis-Menten kinetics, the temporal evolution of the cell cycle dynamics,
i.e., the chemical reactions occurring between enzymes and substrates during the cell
cycle are presented below:

dx1
da = k1s

(
gf

kgf + gf

)
− k14x4x1 − k1d

(
x1

k1 + x1

)
, (7.13)

dx2
da = k21

(
x2t − x2

k2 + (x2t − x2)

)
x1 − k32x2x3 − k2dx2, (7.14)

dx3
da = k3s − k32x2x3 − k31

(
x3

k3 + x3

)
x1 − k3dx3, (7.15)

dx4
da = k4s + k42

(
k34

k34 + x3

)
x2 − k41

(
x4

k4 + x4

)
x1 − k4dx4. (7.16)

A detailed description of all the terms involved in the model equations (7.13)-(7.16) can
be found in Section 5.2.2, [157]. Although we will not delve into the full derivation of these
equations here, inquisitive readers can refer to [143] for a comprehensive explanation.
To aid in understanding, we have included simulations of the four microscale states
mentioned earlier in Figure 7.2.
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Figure 7.2: Evolution of microscale proteins from the cell-cycle. Cyclin D − CDK4/6
shows a complete activation and degradation within a full cycle. The concentration of
transcription factor E2F is elevated since Retinoblastoma protein Rb is inactivated with
the rise in Cyclin D − CDK4/6 complex. Similarly, protein p21 elevates near the end of
the cell-cycle to help in the degradation of the Cyclin’ complex.
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7.3 Numerical solution and simulation results

7.3 Numerical solution and simulation results
In this section, we present simulations of our model aimed at better understanding
the evolution of healthy and mutated sub-populations of quiescent and proliferative
cells. Simulations are performed in the computational environment of Matlab, utilizing
the finite volume method with a discretization scheme based on the central upwind
approach. For clarity, we provide a detailed account of the model parameters employed
throughout these simulations, which is briefly summarized in Table 7.2. For cell age,
we have imposed a maximum threshold of 50. Furthermore, we have set the temporal
(∆t) and spatial (∆a) step size to values of 0.02 and 0.5, respectively, to strike an
optimal balance between computational accuracy and efficiency. Notably, a unit speed
is employed in our simulations, implying that both the healthy (gh(a)) and mutated
(gc(a)) sub-populations advance through the cell cycle at the same pace, represented as
1 for both. In the following subsections, we present two case studies that illustrate the
scenarios of steady and exponential growth in mutated cell populations, which ultimately
result in a significant reduction or near absence of healthy cells within the tissue.

Param. Description Healthy Mutated Unit
m Mutation rate 0.2 - day−1

νi Maximum transition rate from quies-
cent to proliferation phase

0.6 [147] 0.6 day−1

θi Total cell population beyond which Γ
is zero

0.095 × 106 [147] 0.095 × 106 -

κi Hill coefficient 1 [147] 1 -
ρ1,i Maximal effect of Cyclin D − CDK4/6,

complex on the division of cell
0.7 0.7 -

ρ2,i Value of Cyclin D − CDK4/6, complex
to achieve half maximum effect

0.35 0.35 -

γ1,i Hill coefficient 8 8 -
σ1,i Maximum rate of switching cells from

proliferating to quiescent phase
0.01 0.01 -

σ2,i Switching Cyclin D − CDK4/6, complex
value, after that α is close to zero

0.5[157] 0.45

σ3,i Switching age value beyond which α is
close to zero

14 15 h

γ2,i Hill coefficient 7 7 -
γ3,i Hill coefficient 7 7 -
kt Rate constant which measures the ef-

fect of total population on growth fac-
tors

1.80 × 10−9 [158] 1.80 × 10−9 -

Table 7.2: Parameters used in the simulationsof multiscale model of healthy and mutated
proliferating and quiescent cell populations.

Steady-state dynamics of healthy and mutated cell populations:
This case study aims to investigate the steady-state dynamics of both healthy and

mutated cell populations, with specified death rates: µph
= µqh

= 0.0014 and µpc =
µqc = 0.0014. To initiate the study, we define the initial conditions for all cell populations
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Figure 7.4: Behavior of (a) proliferation rate βi(a) and (b) transition rate αi(a) of cells
from proliferating to quiescent phase. Here i = {h, c} representing healthy and cancerous
cell populations.

(ph(a, t), qh(a, t), pc(a, t), qc(a, t)) as normal distributions, expressed as k0,i√
2πσ2 exp

( −
(a−µ)2

2σ2
)
. In this equation, we use µ = 2 and σ2 = 200. The specific values assigned to

k0,hq, k0,hp, k0,cq, and k0,cp are as follows: 1.5 × 105, 106, 1.5 × 103, and 103, respectively,
for healthy quiescent, healthy proliferating, mutated quiescent, and mutated proliferative
cell populations, see Figure 7.3. The utilization of a normal distribution is motivated by
its ability to provide a suitable approximation of cell distribution within a population.
This distribution effectively captures the inherent heterogeneity with respect to cell age
within a given population.
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Figure 7.5: Steady state scenario of cell density distribution of different cell populations
(a) healthy proliferating cells, (b) mutated proliferating cells, (c) healthy quiescent cells
and (d) mutated quiescent cells.

Figure 7.5 illustrates the evolving number density distribution of various cell popula-
tions: (a) healthy proliferating cells, (b) mutated proliferating cells, (c) healthy quiescent
cells and (d) mutated quiescent cells. These cell populations are tracked over time, with
cell age measured in units of time and cell density quantified as cells per cubic millimeter.
The mutation rate is held constant at m = 0.1. As time progresses, the populations
of healthy proliferating ph(a, t) and quiescent qh(a, t) cells gradually diminish, while
mutated proliferating pc(a, t) and quiescent qc(a, t) cells grow more rapidly and eventually
saturate the tissue space. Simultaneously, the total cell population, encompassing both
healthy and mutated proliferating and quiescent cells, represented as N(t), undergoes a
rapid initial increase, as depicted in Figure 7.6(a), before ultimately reaching a steady
state. The transition from proliferating to quiescent phase is assumed to be similar for
both healthy and mutated cell populations as shown by function α in Figure 7.4 (b). The
proliferation rate of mutated cells, however, is assumed to be slightly higher than in the
healthy cells, see Figure 7.4 (a). Furthermore, Figure 7.6(c) illustrates the behavior of
growth factors, which are influenced by the cell population N(t). Initially, they surge
due to the low cell count and subsequently recede until achieving an equilibrium state.
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Figure 7.6: Dynamics of the combined cell population, growth factors, and transition
function γ: (a) the total cell population N(t) reaches a steady-state, (b) both gamma
functions, γh and γc, decrease as the total cell population reaches a steady-state, and (c)
the growth factors gf decrease as the cell population increases.
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Figure 7.7: Behavior of (a) proliferation rate βi(a) and (b) transition rate αi(a) of cells
from proliferating to quiescent phase, Here i = {h, c} representing healthy and cancerous
cell populations.

Lastly, Figure 7.6(b) illustrates the transition rate of cells shifting from the quiescent
phase to the proliferating phase, represented as γi(N), for both the healthy and mutated
cell populations. As time progresses, this transition rate decreases owing to the growing
proliferating population. Maintaining a balance between proliferating and quiescent cells
is essential for tissue homeostasis. Quiescent cells conserve energy by reducing their
metabolic activity. This allows the organism to allocate resources efficiently. In case
of any damage to the tissue, these quiescent cells will be activated to replace damaged
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Figure 7.8: Exponential tumor growth: Cell density distribution of different cell popula-
tions (a) healthy proliferating cells, (b) mutated proliferating cells, (c) healthy quiescent
cells and (d) mutated quiescent cells.

tissue and promote healing.
Exponential growth of mutated cell populations:

For this specific case study, we opted for a mutation rate of m = 0.2 and applied
death rates of µph

= µqh
= 0.0014 and µpc = µqc = 0.0010. Furthermore, we made

adjustments to several other parameters, including ν1,c = 0.045, ρ1,c = 1.0, ρ2,c = 30,
σ1,c = 0.040, and σ2,c = 0.45. Figure 7.8 shows the cell density distribution of healthy
and mutated proliferating and quiescent cells, respectively. Both healthy subpopulations
exhibit trends that lead to a negligible steady state as time progresses. However, the
mutated cell populations (pc(a, t) and qc(a, t)) demonstrate exponential growth, emulating
the behavior typically associated with cancer.

Mutated cells exhibit an elevated proliferation rate compared to their healthy coun-
terparts, signifying that they divide and replicate at a faster pace. This heightened
proliferation rate is a hallmark of the aberrant behavior often associated with mutated
or cancerous cells. Therefore, the proliferation rate of mutated cells is assumed to be
slightly higher than that of healthy cells, as illustrated in Figure 7.7(a). Additionally,
the transition from the proliferating phase to the quiescent phase represents a critical
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Figure 7.9: Dynamics of entire cell population, growth factors, and γ transitions: (a)
The total cell population N(t) exhibits exponential growth. (b) Both gamma functions,
γh and γc, decrease as the total cell population increases. (c) As the cell population
increases, the growth factors gf decrease.

mechanism by which cells can temporarily halt their division and conserve energy and
resources, helping to maintain tissue stability and prevent uncontrolled growth. However
in mutated cells, this transition can be impaired or delayed, causing mutated cells to
continue dividing rapidly without entering quiescence as they should. This dysregulation
contributes to the uncontrolled growth characteristic of many cancer cells. Therefore, it
is assumed to be less frequent in mutated cell populations compared to healthy cells, as
indicated by the function α depicted in Figure 7.7(b).

Figure 7.9 provides insights into the total cell count, growth factors, and the transition
function from quiescent to proliferating phases, γi(N). The total cell population, com-
prising both healthy and mutated proliferating and quiescent cell populations, undergoes
exponential growth in cell numbers over time. Initially, the growth factors reach their
maximum values due to the low cell count and then gradually decrease to extremely low
levels. Finally, the transition functions γh and γc also decrease as the cell population
expands.

7.4 Discussion and conclusion
This study proposes a non-linear, multiscale mathematical model of physiologically-
structured healthy and mutated quiescent and proliferating cells coupled to cell cycle
dynamics. We incorporated reversible transitioning from quiescent to proliferating
cells and vice versa. The proposed model allow us to explore the effects of different
parameters, including mutation rates, proliferation rates, and transition rates, on cell
population dynamics. We also performed numerical simulations to study the impact of
Cyclin D − CDK4/6, complex on the transition between two sub-populations. One notable
finding of this study, is the pivotal role played by the Cyclin′ complex in the reversible
transition, with any irregularity in this process having the potential to lead to cancer.

The proposed model has several limitations that need to be addressed. Firstly, it
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7.4 Discussion and conclusion

lacks the incorporation of cell heterogeneity, a crucial aspect in accounting for cellu-
lar variability and noise. Additionally, the feedback model involving growth factors
is relatively simplistic, and a more comprehensive characterization of the activation
of the Cyclin,D − CDK4/6 complex should encompass all relevant signaling pathways.
Furthermore, at the microscale, it would have been beneficial to model cell cycle dynamics
separately for healthy and mutated cell populations to explore the distinct behaviors
within their respective compartments. Lastly, while the Cyclin,D − CDK4/6 complex
is pivotal for the G1 to S phase transition, the model overlooks the existence of other
restriction points that detect DNA damage occurring during the S phase.
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CHAPTER 8
Mathematical analysis: Wellposedness and stability
properties of multiscale model of healthy and cancer cell
populations

In this chapter, we investigate the wellposedness of the model, proposed in Chapter
7, derive steady-state solutions, and find sufficient conditions of stability for derived
solutions by utilizing semigroup and spectral theory.

8.1 Existence and uniqueness of non-negative solution
This section presents the uniqueness of the solution to the initial-boundary value problem
(7.1)–(7.7) and (7.13)-(7.16), which we will simplify by using the microscale model
for the entire time t, instead only until age a. We introduce Banach spaces, X =
L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) and Y = L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) ×
L1(0, a⋆), with the norm |ϕ| = ∑4

i=1 |ϕi|1 for ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T ∈ X
and |φ| = ∑

i = 14|φi|1 for φ(a) = (φ1(a), φ2(a), φ3(a), φ4(a))T ∈ Y , where | · |1 is
the standard norm of L1(0, a⋆). We first treat the initial-boundary value problem of
system (7.1)–(7.7) as an abstract Cauchy problem on Banach space X. We assume that
gha, ghaa, gca , gcaa ∈ L∞((0, a⋆) × R+), and non-negative death rates, that is, µph

(·) =
µqh

(·) ≥ 0 and µpc(·) = µqc(·) ≥ 0, and are locally integrable on [0, a⋆). The transition
rate αi(a, x1) ∈ L∞((0, a⋆) × (0, a⋆)), and βi(a) ∈ L1(0, a⋆). We start by defining a linear
operator A1 as follows:

(A1ϕ)(a) =


−∂(gh(a)ϕ1(a))

∂a − (βh(a) + µph
(a))ϕ1(a)

−µqh
(a)ϕ2(a)

−∂(gc(a)ϕ3(a))
∂a − (βc(a) + µpc(a))ϕ3(a)

−µqc(a)ϕ4(a)

 ,
where

ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T ∈ D(A1).
The symbol T denotes the transpose of the vector, and the domain D(A1) is given by the
following:

D(A1) =
{

(ϕ1, ϕ2, ϕ3, ϕ4) |ϕi is absolute continuous on [0, a⋆),

ϕ(0) =
(

2(1 −m)
∫ a⋆

0
βh(a)ϕ1(a)da, 0, 2

∫ a⋆

0
βc(a)ϕ3(a)da+ 2m

∫ a⋆

0
βh(a)ϕ1(a)da, 0

)T}
.
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8.1 Existence and uniqueness of non-negative solution

The nonlinear operator F1 : X × Y → X is given by

(F1(ϕ, φ))(a) =



νhθ
κh
h ϕ2(a)

θκh
h + (Nϕ)κh

− αh(φ1, a)ϕ1(a)

−νhθ
κh
h ϕ2(a)

θκh
h + (Nϕ)κh

+ αh(φ1, a)ϕ1(a)

νcθ
κc
c ϕ3(a)

θκc
c + (Nϕ)κc

− αc(φ1, a)ϕ4(a)

−νcθ
κc
c ϕ3(a)

θκc
c + (Nϕ)κc

+ αc(φ1, a)ϕ4(a)


, ϕ ∈ X, φ ∈ Y,

where the linear operator N on L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) × L1(0, a⋆) is given by

Nϕ =
∫ a⋆

0
(ϕ1(a) + ϕ2(a) + ϕ3(a) + ϕ4(a)) da.

Consider υ(t) = (ph(·, t), qh(·, t), pc(·, t), qc(·, t))T ∈ X. We can define the initial-
boundary value problem (7.1)–(7.7) as an abstract semilinear initial value problem (IVP)
in X, as shown below:

d
dtυ(t) = A1υ(t) + F1(υ(t), v(t)), υ(0) = υ0 ∈ X, (8.1)

where υ0(a) = (ph0(a), qh0(a), pc0(a), qc0(a)).
Next, we define IVP (7.13) as a Cauchy problem on the Banach space Y . Suppose A2

is a linear operator which reads

(A2φ)(a) =


0

−k2dφ2(a)
k3s − k3dφ3(a)
k4s − k4dφ4(a)

 , φ(a) = (φ1(a), φ2(a), φ3(a), φ4(a))T ∈ D(A2),

where the domain D(A2) is

D(A2) = {φ ∈ Y |φi is absolute continuous on [0, a⋆), φ(0) = (0, 0, 0, 0)T}.

We define the nonlinear operator F2 : X × Y → Y by

(F2(ϕ, φ))(a) =



k1s

(
gf (Nϕ)

kgf +gf (Nϕ)

)
− k14φ4(a)φ1(a) − k1d

(
φ1(a)

k1+φ1(a)

)
,

k21

(
x2t−φ2(a)

k2+(x2t−φ2(a))

)
φ1(a) − k32φ2(a)φ3(a)

−k32φ2(a)φ3(a) − k31

(
φ3(a)

k3+φ3(a)

)
φ1(a)

k42

(
k34

k34+φ3(a)

)
φ2(a) − k41

(
φ4(a)

k4+φ4(a)

)
φ1(a)


,

where ϕ ∈ X, φ ∈ Y . Take v(t) = (x1(t), x2(t), x3(t), x4(t))T ∈ Y . Then (7.13)-(7.16)
can be expressed as an abstract semilinear IVP in Y :

d
dtv(t) = A2v(t) + F2(υ(t), v(t)), v(0) = v0 ∈ Y, (8.2)
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8.1 Existence and uniqueness of non-negative solution

where v0(t) = (x0
1, x

0
2, x

0
3, x

0
4), we can now establish a joint Cauchy problem for (8.1) and

(8.2) as shown below:

d
dt

(
υ
v

)
=
(

A1 0
0 A2

)(
υ
v

)
+
(

F1(υ, v)
F2(υ, v)

)
,

(
υ(0)
v(0)

)
=
(
υ0
v0

)
∈ Z,

d
dtζ(t) = Aζ(t) + F(ζ(t)), ζ(0) = ζ0 ∈ Z, (8.3)

where ζ = (υ, v), ζ0 = (υ0, v0), A =
(

A1 0
0 A2

)
, F =

(
F1
F2

)
and the Banach space is

Z = {X,Y }. Assuming that T (t) is a C0-semigroup generated by A for t ≥ 0, and the
operator F is continuously Fréchet differentiable on Z (specifically, both F1 and F2 are
Fréchet differentiable on X and Y ), a continuous mild solution t → ζ(t, ζ0) exists and is
unique for each ζ0 ∈ Z on a maximal interval [0, t1) in Z.

ζ(t, ζ0) = T (t)ζ0 +
∫ t

0
T (t− s)F(ζ(s, ζ0))ds, ∀t ∈ [0, t1), (8.4)

where t1 can be either +∞ or limt→t−
1

|ζ(t, ζ0)| = ∞. Moreover, if ζ0 ∈ D(A), then
ζ(t, ζ0) ∈ D(A) for 0 ≤ t < t1, and the function ζ → ζ(t, ζ0) is continuously differentiable
and satisfies (8.3) on [0, t1). This has been established in Proposition 4.16 [150, 151].
Remark 8.1.1. Let’s take ph,max, qh,max, pc,max, qc,max, x1,max, x2,max, x3,max and x4,max
to represent the maximum values of the solution variables. If we normalise the governing
equations using N(a) = ph(a, t)+qh(a, t)+pc(a, t)+qc(a, t)+x1(a)+x2(a)+x3(a)+x4(a),
then an a-priori estimate on these would lead to ph(a, t) + qh(a, t) + pc(a, t) + qc(a, t) +
x1(a) + x2(a) + x3(a) + x4(a) = 1.
Lemma 8.1.1. Let Ω = {(ph, qh, pc, qc, x1, x2, x3, x4) ∈ Z|ph ≥ 0, qh ≥ 0, pc ≥ 0, qc ≥
0, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} and let Ω0 = {(ph, qh, pc, qc, x1, x2, x3, x4) ∈ Z|0 ≤
ph ≤ ph,max, 0 ≤ qh ≤ qh,max, 0 ≤ pc ≤ pc,max, 0 ≤ qc ≤ qc,max, 0 ≤ x1 ≤ x1,max, 0 ≤ x2 ≤
x2,max, 0 ≤ x3 ≤ x3,max, 0 ≤ x4 ≤ x4,max}. Then after a finite time, the mild solution
ζ(t, ζ0) of (8.3), where ζ0 ∈ Ω, enters a positively invariant set Ω0.
Proof. To obtain the solution of Eq (7.1), we will begin by utilizing transformations
p̃h(a, t) = gh(a)ph(a, t) and q̃h(a, t) = gh(a)qh(a, t) for t ∈ [0, t1] and a ∈ [a0, a⋆). Then,
for t ∈ (0, t1) and a ∈ (a0, a⋆), we have from Eq (7.1)
∂p̃h(a, t)

∂t
+ gh(a)∂p̃h(a, t)

∂a
= γh(N(t))q̃h(a, t) − (βh(a) + αh(x1(a), a) + µph

(a))p̃h(a, t),
(8.5)

Next, we apply the parameter transform to remove the term gh(a) and define a new age
variable η for both ph and qh, Lemma 3.1 [140] . This yields the expression:

∂

∂η
p̃h(a(η), t) = da

dη
∂

∂a
p̃h(a, t) = gh(a) ∂

∂a
p̃h(a, t), where da

dη = gh(a).

Therefore, from Eq (8.5), it follows that
∂p̃h(a(η), t)

∂t
+ ∂p̃h(a(η), t)

∂η
=γh(N(t))q̃h(a(η), t) − (βh(a(η)) + αh(x1(a(η)), a(η))

+ µph
(a(η)))p̃h(a(η), t). (8.6)
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8.1 Existence and uniqueness of non-negative solution

To obtain the explicit relation of p̃h(a(η), t), we will utilize the method of characteristics
(MOC). Specifically, we assume that p̃h(a(η), t) is governed by an ODE along the curve
(a(ψ1(y)), ψ2(y)) = ψ(y), and therefore, we have

ψ̇1(y) := 1 ⇒ ψ1(y) = y + c1, ψ̇2(y) := 1 ⇒ ψ2(y) = y + c2, z(y) := p̃h(a(ψ1(y)), ψ2(y)),

where c1, c2 ∈ R are constants. Then, it follows

dz
dy =dp̃h(a(ψ1(y)), ψ2(y))

dy

=∂p̃h(a(ψ1(y)), ψ2(y))
∂a

da(ψ1(y))
dψ1

dψ1(y)
dy + ∂p̃h(a(ψ1(y)), ψ2(y))

∂ψ2

dψ2(y)
dy

=γh(N(ψ2(y)))q̃h(a(ψ1(y)), ψ2(y)) − (βh(a(ψ1(y))) + αh(x1(a(ψ1(y))), a(ψ1(y)))
+ µph

(a(ψ1(y))))p̃h(a(ψ1(y)), ψ2(y))
=γh(N(ψ2(y)))q̃h(a(ψ1(y)), ψ2(y)) − (βh(a(ψ1(y))) + αh(x1(a(ψ1(y))), a(ψ1(y)))

+ µph
(a(ψ1(y))))z(y). (8.7)

We can now write p̃h using an ODE (8.7) so that

p̃h(a(y + c1), y + c2) = p̃h(a(ψ1(y)), ψ2(y)) = z(y)

= exp
(

−
∫ y

0

(
βh(a(ψ1(ξ))) + αh(x1(a(ψ1(ξ))), a(ψ1(ξ))) + µph

(a(ψ1(ξ)))
)
dξ
)

[ ∫ y

0
exp

(∫ ζ

0

(
βh(a(ψ1(ξ))) + αh(x1(a(ψ1(ξ))), a(ψ1(ξ))) + µph

(a(ψ1(ξ)))
)
dξ
)

γh(N(ψ2(ζ)))q̃h(a(ψ1(ζ)), ψ2(ζ))dζ + p̃h(a(ψ1(0)), ψ2(0))
]

= exp
(

−
∫ y

0

(
βh(a(ξ + c1)) + αh(x1(a(ψ1(ξ + c1))), a(ξ + c1)) + µph

(a(ξ + c1))
)
dξ
)

[ ∫ y

0
exp

(∫ ζ

0

(
βh(a(ξ + c1))+ αh(x1(a(ψ1(ξ + c1))), a(ξ + c1)) + µph

(a(ξ + c1))
)
dξ
)

γh(N(ζ + c2))q̃h(a(ζ + c1), ζ + c2)dζ + p̃h(a(c1), c2)
]
.

Now, we define the boundary set Γ as [a0, a⋆) × 0 ∪ 0 × [0, t1], which enables us to use
the boundary condition to determine p̃h(a(c1), c2) if a curve (a(ψ1(y)), ψ2(y)) begins in
Γ. In order for (a(y + c1), y + c2) to lie on Γ, either c1 = 0 or c2 = 0. Therefore, we have
the following two scenarios:

In the first scenario, we can randomly choose c1 = 0 and c2 ∈ [0, t1). In this case, we
have

p̃h(a(y), y + c2) = exp
(

−
∫ y

0

(
βh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph

(a(ξ))
)
dξ
)

[ ∫ y

0
exp

(∫ ζ

0

(
βh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph

(a(ξ))
)
dξ
)

γh(N(ζ + c2))q̃h(a(ζ), ζ + c2)dζ + p̃h(a(0), c2)
]
.

132



8.1 Existence and uniqueness of non-negative solution

The solution in (a(η), t)|t ∈ [0, t1], η ∈ [0,min(η∗, t)) can be obtained using the character-
istic solution as follows:

η
!= ψ1(y) = y + c1 = y ⇒ y = η and t

!= ψ2(y) = y + c2 ⇒ c2 = t− y,

which implies

p̃h(a(η), t) = exp
(

−
∫ η

0

(
βh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph

(a(ξ))
)
dξ
)

[ ∫ η

0
exp

(∫ ζ

0

(
βh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph

(a(ξ))
)
dξ
)

γh(N(ζ + t− η))q̃h(a(ζ), ζ + t− η)dζ + p̃h(a(0), t− η)
]
.

Using the above equation, we can obtain the expression for gh(a(η))ph(a(η), t) when
η < t. By choosing an arbitrary c1 ∈ [0, η∗) and setting c2 = 0, we obtain

p̃h(a(y + c1), u) = exp
(

−
∫ y

0

(
βh(a(ξ + c1)) + αh(x1(a(ξ + c1)), a(ξ + c1))

+ µph
(a(ξ + c1))

)
dξ
)[ ∫ y

0
exp

(∫ ζ

0

(
βh(a(ξ + c1)) + αh(x1(a(ξ + c1)), a(ξ + c1))

µph
(a(ξ + c1))

)
dξ
)

+ γh(N(ζ))q̃h(a(ζ + c1), ζ)dζ + p̃h(a(c1), 0)
]
.

Using the characteristic solution, we can obtain a solution in the set (a(η), t)|t ∈ [0, t1],
η ∈ [t, η∗) as follows:

η
!= ψ1(y) = y + c1 ⇒ c1 = η − y and t

!= ψ2(y) = y + c2 ⇒ y = t,

which results into

p̃h(a(η), t) = exp
(

−
∫ t

0

(
βh(a(ξ + η − t)) + αh(x1(a(ξ + η − t)), a(ξ + η − t))

+ µph
(a(ξ + η − t))

)
dξ
)[ ∫ t

0
exp

(∫ ζ

0

(
βh(a(ξ + η − t))

+ αh(x1(a(ξ + η − t)), a(ξ + η − t)) + µph
(a(ξ + η − t))

)
dξ
)

γh(N(ζ))q̃h(a(ζ + η − t), ζ)dζ + p̃h(a(η − t), 0)
]
.

Hence, the relation for gh(a(η))ph(a(η), t) is now established for η > t. As a result, the
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8.1 Existence and uniqueness of non-negative solution

ultimate solution for gh(a(η))ph(a(η), t) can be expressed as

p̃h(a(η), t) :=



exp
(

−
∫ η

0

(
βh(a(ξ)) + αh(x1(a(ξ)), a(ξ)) + µph

(a(ξ))
)
dξ
)[
h(t− η)∫ η

0
exp

(∫ ζ

0

(
βh(a(ξ))+αh(x1(a(ξ)), a(ξ))+µph

(a(ξ))
)
dξ
)

γh(N(ζ + t− η))q̃h(a(ζ), ζ + t− η)dζ
]
, ā < t,

exp
(

−
∫ t

0

(
βh(a(ξ + η − t)) + αh(x1(a(ξ + η − t)), a(ξ + η − t))+

µph
(a(ξ + η − t))

)
dξ
)[
p0(a(η − t)) +

∫ t

0
exp

(∫ ζ

0

(
βh(a(ξ + η − t))

+ αh(x1(a(ξ + η − t)), a(ξ + η − t)) + µph
(a(ξ + η − t))

)
dξ
)
γh(N(ζ))

q̃h(a(ζ + η − t), ζ)dζ
]
, ā ≥ t,

where the boundary condition p̃h(a(0), t−η) is denoted as h(t−η). Note that for positive
initial data, the above expression is positive and for gh(a)qh(a, t) ≥ 0.

We then derive the solution expression from (7.2) as shown below:

qh(a, t) := exp
(

−
∫ t

0
µqh

(a) + γh(N(t))dt
){∫ t

0
exp

(
−
∫ ξ

0
µqh

(a) + γh(N(π))dπ
)

αh(x1(a), a)ph(a, ξ)dξ + qh,0(a)
}
. (8.8)

As a direct consequence, we observe that qh(a, t) is non-negative for positive initial data
and whenever gh(a)qh(a, t) ≥ 0. Similarly, we can obtain the solution expression for pc

and qc.
Next, to ensure the positivity of the coupled ODE model (7.13), we express the system

of ODEs as follows: 

dx1
da = F1(x1, x4),
dx2
da = F2(x1, x2, x3),
dx3
da = F3(x1, x2, x3),
dx4
da = F4(x1, x2, x3, x4),

(8.9)

where F1, F2, F3 and F4 correspond to the vector fields of the microscale states x1–x4.
It is worth noting that in (8.9), F1 does not depend on N (i.e., ph, qh, pc and qc), as N
changes with time and is a fixed constant at each time step, which determines the growth
factors entire age range.

To ensure that the solutions of all ODEs is positive, it is essential to verify that the
vector fields F1,F2,F3,F4 are smoothly differentiable and oriented in a direction that
points away from the negative regions in the state space. Starting with the ODE for
x1 from (8.9), we set x4 = 0 in F1(x1, x4) to obtain ẋ1 = F1(x1). We can observe that
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F1(x1) = k1s

(
gf

kgf +gf

)
− k1d

(
x1

k1+x1

)
> 0 for all a > 0 when k1s

(
gf

kgf +gf

)
> k1d

(
x1

k1+x1

)
.

This implies that the concentration of x1 consistently rises more than it falls over time,
as the sole source of an increase in x1 concentration is from growth factors. Consequently,
during periods when growth factors are at their minimum, the concentration of x1 is also
at its minimum, meaning the amount of degradation or decrement cannot surpass the
activation of the x1 complex. Given that the solution to system (7.13)-(7.16) is unique
for each initial condition, as can be observed from (8.3) and (8.4), we can infer that the
solution remains in the first quadrant for any x4 > 0. Therefore, the positivity of the
solution for x1 is guaranteed. To obtain an ODE for ẋ2, we assume x1 = 0 in F2(x1, x2, x3).
This results in ẋ2 = F2(x2, x3), whose solution takes the form x2(a) = x0

2e
−(k32x3(a)−k2d)a.

Therefore, for any positive initial data, x2(a) remains positive for all ages and x3(a) values.
Similarly, we substitute x3 = 0 in F2(x1, x2, x3) to obtain a nonlinear ODE ẋ2 = F2(x1, x2)
for x2. Although an explicit solution cannot be computed, the phase portrait of (x1, x2)
reveals that the solution trajectories move away from the axis separating the positive and
negative space for positive initial data. By following a similar procedure, we can establish
sufficient conditions for the positivity of solutions for x3(a) and x4(a). Therefore, we
conclude that if ζ0 ∈ Ω, then ζ(t, ζ0) ∈ Ω for all t > 0.

The above analysis implies that the local solution ζ(t, ζ0) of (8.3) with initial conditions
ζ0 ∈ D(A) ∩ Ω has a well-defined and finite norm. Consequently, we obtain our final
result.

Theorem 8.1.1. The abstract Cauchy problem (8.3) has a unique global classical solution
on Z with respect to the initial data z0 ∈ Ω ∩D(A).

As a result of having positive initial data, the IVP (7.1)–(7.4) possesses a singular
positive solution.

8.2 Existence and stability of steady-state

This section aims to determine the steady-state solution of the model and to present
sufficient conditions for the existence of a positive steady-state. To this end, we specify
some notation. Let X be a real or complex Banach space, and let X⋆ denote its dual
space. We denote the value of F ∈ X⋆ at ψ ∈ X as ⟨F,ψ⟩. Additionally, we define a
cone X+ as a non-zero set that satisfies X+ ∩ (−X+) = 0, λX+ ⊂ X+ for λ ≥ 0, and
X+ +X+ ⊂ X+. Furthermore, we define the dual cone, denoted as X⋆

+, as the subset of
the dual space.

8.2.1 Existence of steady-states

The steady-states of the system (7.1)–(7.4) and (7.13)-(7.16) are denoted by p̄h(a),
q̄h(a), p̄c(a), q̄c(a) and x̄1 − x̄4. These steady-states must satisfy the following set of
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time-invariant ordinary differential equations:



∂(gh(a)p̄h(a))
∂a

= γ̄hq̄h(a) − (βh(a) + αh(a, x̄1) + µph
(a))p̄h(a),

0 = αh(a, x̄1)p̄h(a) − (γ̄h + µqh
(a))q̄h(a),

∂(gc(a)p̄c(a))
∂a

= γ̄cq̄c(a) − (βc(a) + αc(a, x̄1) + µpc(a))p̄c(a),

0 = αc(a, x̄1)p̄c(a) − (γ̄c + µqc(a))q̄c(a),

p̄h(0) = 2(1 −m)
∫ a⋆

0
βh(a)p̄h(a)da,

p̄c(0) = 2
∫ a⋆

0
βc(a)p̄c(a)da+ 2

∫ a⋆

0
βh(a)p̄h(a)da,

dx̄1
da = k1s

(
ḡf

kgf + ḡf

)
− k14x̄4x̄1 − k1d

(
x̄1

k1 + x̄1

)
,

dx̄2
da = k21

(
x2t − x̄2

k2 + (x2t − x̄2)

)
x̄1 − k32x̄2x̄3 − k2dx̄2,

dx̄3
da = k3s − k32x̄2x̄3 − k31

(
x̄3

k3 + x̄3

)
x̄2 − k3dx̄3,

dx̄4
da = k4s + k42

(
k34

k34 + x̄3

)
x̄2 − k41

(
x̄4

k4 + x̄4

)
x̄1 − k4dx̄4,

(8.10)

where γ̄i = γi(N̄), ḡf = gf (N̄) and N̄ =
∫ a⋆

0 (p̄h(a) + q̄h(a) + p̄c(a) + q̄c(a))da. Since
the cell cycle model’s ODEs are age-dependent and the system is in a steady-state due
to the input of growth factors, all cell cycle states attain a steady-state. As a result,
we can determine the steady-states of the quiescent and proliferating cell populations,
represented by p̄h(a), q̄h(a), p̄c(a) and q̄c(a), without explicitly solving the equations of
microscale model. Solving the system (8.10) for p̄h, q̄h, p̄c and q̄c allows us to obtain the
values of q̄h and q̄c:

q̄h(a) = αh(a, x̄1)p̄h(a)
γ̄h + µqh

(a) , q̄c(a) = αc(a, x̄1)p̄c(a)
γ̄c + µqc(a) , (8.11)

and substituting the aforementioned expressions for q̄h and q̄c into the equations for p̄h

and p̄c, respectively, results in the following expressions:

d(gh(a)p̄h(a))
da +

(
αh(a, x̄1)µqh

(a)
γ̄h + µqh

(a) + βh(a) + µph
(a)
)
p̄h(a) = 0, (8.12)

d(gc(a)p̄c(a))
da +

(
αc(a, x̄1)µqc(a)
γ̄c + µqc(a) + βc(a) + µpc(a)

)
p̄c(a) = 0. (8.13)
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Solving Eq (8.12) for p̄h(a) and p̄c(a), yields steady-state solutions for p̄h(a), q̄h(a), p̄c(a)
and q̄c(a) as follows:

p̄h(a) = p̄h(0) exp
(
−
∫ a

0

1
gh(a)

(
g′

h(a) + αh(x̄1, ξ)µqh
(ξ)

γ̄h + µqh
(ξ) + βh(ξ) + µph

(ξ)
)

dξ
)
,

q̄h(a) = αh(a, x̄1)p̄h(0)
γ̄h + µqh

(a) exp
(
−
∫ a

0

1
gh(a)

(
g′

h(a) + αh(x̄1, ξ)µq,h(ξ)
γ̄h + µqh

(ξ) + βh(ξ) + µph
(ξ)
)

dξ
)
,

p̄c(a) = p̄c(0) exp
(
−
∫ a

0

1
gc(a)

(
g′

c(a) + αc(x̄1, ξ)µqc(ξ)
γ̄c + µqc(ξ) + βc(ξ) + µpc(ξ)

)
dξ
)
,

q̄c(a) = αc(a, x̄1)p̄c(0)
γ̄c + µqc(a) exp

(
−
∫ a

0

1
gc(a)

(
g′

c(a) + αc(x̄1, ξ)µq,c(ξ)
γ̄c + µqc(ξ) + βc(ξ) + µpc(ξ)

)
dξ
)
.

It is evident that the system described in Eqs (7.1)–(7.4), (7.13) always has a trivial
steady-state.

8.2.2 Stability analysis of steady-state solutions

Our next objective is to obtain the stability criteria for a positive steady-state solution.
Suppose ph(a, t) = p̄h, qh(a, t) = q̄h, pc(a, t) = p̄c, qc(a, t) = q̄c, ∀t ≥ 0 represent
equilibrium solutions to the PDE model (7.1)–(7.4) and p∗

h(a, t), q∗
h(a, t), p∗

c(a, t) and
q∗

c (a, t) represent the corresponding perturbation terms:

ph(a, t) = p̄h + ϵp∗
h(a, t), qh(a, t) = q̄h + ϵq∗

h(a, t),

pc(a, t) = p̄c + ϵp∗
c(a, t), qc(a, t) = q̄c + ϵq∗

c (a, t).

After substituting the aforementioned expressions into the PDE model (7.1)–(7.4), we
obtain

ϵ
∂

∂t
p∗

h(a, t) + ∂

∂a
(gh(a)(p̄h + ϵp∗

h(a, t))) =
(

νhθ
κh
h

θκh
h + (N̄ + ϵn(t))κh

)
(p̄h + ϵq∗

h(a, t))

− (βh(a) + αh(a, x̄1) + µph
(a))(p̄h + ϵp∗

h(a, t)),

ϵ
∂

∂t
q∗

h(a, t) = αh(a, x̄1)(p̄h + ϵp∗
h(a, t)) −

(
νhθ

κh
h

θκh
h + (N̄ + ϵn(t))κh

+ µqh
(a)
)

(p̄h + ϵq∗
h(a, t)),

ϵ
∂

∂t
p∗

c(a, t) + ∂

∂a
(gc(a)(p̄c + ϵp∗

c(a, t))) =
(

νcθ
κc
c

θκc
c + (N̄ + ϵn(t))κc

)
(p̄c + ϵq∗

c (a, t))

− (βc(a) + αc(a, x̄1) + µpc(a))(p̄c + ϵp∗
c(a, t)),

ϵ
∂

∂t
q∗

c (a, t) = αc(a, x̄1)(p̄c + ϵp∗
c(a, t)) −

(
νcθ

κh
c

θκc
c + (N̄ + ϵn(t))κc

+ µqc(a)
)

(p̄c + ϵq∗
c (a, t)),

(p̄h(0) + ϵp∗
h(0, t)) = 2(1 −m)

∫ a⋆

0
βh(a)(p̄h + ϵp∗

h(a, t))da,

(p̄c(0) + ϵp∗
c(0, t)) = 2

∫ a⋆

0
βc(a)(p̄c + ϵp∗

c(a, t))da+ 2m
∫ a⋆

0
βh(a)(p̄h + ϵp∗

h(a, t))da,
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where n(t) :=
∫ a⋆

0 (p∗
h(a, t) + q∗

h(a, t) + p∗
c(a, t) + q∗

c (a, t)) da. Then, take the derivative
with respect to epsilon ϵ, leads to

∂

∂t
p∗

h(a, t) + ∂

∂a
(gh(a)p∗

h(a, t)) = ∂

∂ϵ

(
νhθ

κh
h ϵ

θκh
h + (N̄ + ϵn(t))κh

)
q∗

h(a, t)

− (βh(a) + αh(a, x̄1) + µph
(a))p∗

h(a, t),
∂

∂t
q∗

h(a, t) = αh(a, x̄1)p∗
h(a, t) −

(
∂

∂ϵ

(
νhθ

κh
h ϵ

θκh
h + (N̄ + ϵn(t))κh

)
− µqh

(a)
)
q∗

h(a, t),

∂

∂t
p∗

c(a, t) + ∂

∂a
(gc(a)p∗

c(a, t)) = ∂

∂ϵ

(
νcθ

κc
c ϵ

θκc
c + (N̄ + ϵn(t))κc

)
q∗

c (a, t)

− (βc(a) + αc(a, x̄1) + µpc(a))p∗
c(a, t),

∂

∂t
q∗

c (a, t) = αc(a, x̄1)p∗
c(a, t) −

(
∂

∂ϵ

(
νcθ

κc
c ϵ

θκc
c + (N̄ + ϵn(t))κc

)
− µqc(a)

)
q∗

c (a, t),

p∗
h(0, t) = 2(1 −m)

∫ a⋆

0
βh(a)p∗

h(a, t)da,

p∗
c(0, t) = 2

∫ a⋆

0
βc(a)p∗

c(a, t)da+ 2m
∫ a⋆

0
βh(a)p∗

h(a, t)da,

which simplifies to

∂

∂t
p∗

h(a, t)+ ∂

∂a
(gh(a)p∗

h(a, t)) = νhθ
κh
h

(
θκh

h + (N̄ + ϵn(t))κh − κhϵn(t)(N̄ + ϵn(t))κh−1

(θκh
h + (N̄ + ϵn(t))κh)2

)
q∗

h(a, t) − (αh(a, x̄1) + βh(a) + µph
(a))p∗

h(a, t),
∂

∂t
q∗

h(a, t) = αh(a, x̄1)p∗
h(a, t) −

((
θκh

h + (N̄ + ϵn(t))κh − κhϵn(t)(N̄ + ϵn(t))κh−1

(θκh
h + (N̄ + ϵn(t))κh)2

)
νhθ

κh
h − µqh

(a)
)
q∗

h(a, t),

∂

∂t
p∗

c(a, t)+ ∂

∂a
(gc(a)p∗

c(a, t)) = νcθ
κc
c

(
θκc

c + (N̄ + ϵn(t))κc − κcϵn(t)(N̄ + ϵn(t))κc−1

(θκc
c + (N̄ + ϵn(t))κc)2

)
q∗

c (a, t) − (αc(a, x̄1) + βc(a) + µpc(a))p∗
c(a, t),

∂

∂t
q∗

c (a, t) = αc(a, x̄1)p∗
c(a, t) −

((
θκc

c + (N̄ + ϵn(t))κc − κcϵn(t)(N̄ + ϵn(t))κc−1

(θκc
c + (N̄ + ϵn(t))κc)2

)
νcθ

κc
c − µqc(a)

)
q∗

c (a, t),

p∗
h(0, t) = 2(1 −m)

∫ a⋆

0
βh(a)p∗

h(a, t)da,

p∗
c(0, t) = 2

∫ a⋆

0
βc(a)p∗

c(a, t)da+ 2m
∫ a⋆

0
βh(a)p∗

h(a, t)da.

138



8.2 Existence and stability of steady-state

In the limit as ϵ approaches zero, we arrive at a linear system of partial differential
equations:

∂

∂t
p∗

h(a, t) + ∂

∂a
(gh(a)p∗

h(a, t)) = γh(N̄)q∗
h(a, t)) − (αh(a, x̄1) + βh(a) + µph

(a))p∗
h(a, t),

∂

∂t
q∗

h(a, t) = αh(a, x̄1)p∗
h(a, t) − (

µqh
(a) + γh(N̄)

)
q∗

h(a, t),
∂

∂t
p∗

c(a, t) + ∂

∂a
(gc(a)p∗

c(a, t)) = γc(N̄)q∗
c (a, t)) − (αc(a, x̄1) + βc(a) + µpc(a))p∗

c(a, t),
∂

∂t
q∗

c (a, t) = αc(a, x̄1)p∗
c(a, t) − (

µqc(a) + γc(N̄)
)
q∗

c (a, t),

p∗
h(0, t) = 2(1 −m)

∫ a⋆

0
βh(a)p∗

h(a, t)da,

p∗
c(0, t) = 2

∫ a⋆

0
βc(a)p∗

c(a, t)da+ 2m
∫ a⋆

0
βh(a)p∗

h(a, t)da,
(8.14)

where γi(N̄) = νiθ
κi
i /(θ

κi
i +N̄κi), where i = {h, c}. Next, we formulate (8.14) as semilinear

problem:
d
dtω(t) = Cω(t), ω(0) = ω0 ∈ X, (8.15)

where the generator C is defined on the Banach space X as follows:

(Cϕ)(a) =


−
(

∂
∂a + 1

gh(a)
(
βh(a) + αh(a, x̄1) + µph

(a)
))
gh(a)ϕ1(a) + γh(N̄)ϕ2(a)

αh(a, x̄1)ϕ1(a) − (γh(N̄) + µqh
(a))ϕ2(a)

−
(

∂
∂a + 1

gc(a)
(
βc(a) + αc(a, x̄1) + µpc(a)

))
gc(a)ϕ1(a) + γc(N̄)ϕ2(a)

αc(a, x̄1)ϕ1(a) − (γc(N̄) + µqc(a))ϕ2(a)


,

where
ϕ(a) = (ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T ∈ D(C),

where D(C) is defined below:

D(C) =
{

(ϕ1, ϕ2) |ϕi is absolute continuous on [0, a⋆),

ϕ(0) =
(

2(1 −m)
∫ a⋆

0
βh(a)ϕ1(a)da, 0, 2

∫ a⋆

0
βc(a)ϕ2(a)da+ 2m

∫ a⋆

0
βh(a)ϕ1(a)da, 0

)T}
.

Next, we take the resolvent equation for the operator C:

(λI − C)ϕ = ψ, ϕ ∈ D(C), ψ ∈ X, λ ∈ C, (8.16)

which leads to

−γh(N̄)ϕ2(a) + ∂

∂a
(gh(a)ϕ1(a)) +

(
λ+ βh(a) + αh(a, x̄1) + µph

(a)
)
ϕ1(a) = ψ1(a), (8.17)(

λ+ γh(N̄) + µqh
(a)
)
ϕ2(a) − αh(a, x̄1)ϕ1(a) = ψ2(a), (8.18)

−γc(N̄)ϕ4(a) + ∂

∂a
(gc(a)ϕ3(a)) +

(
λ+ βc(a) + αc(a, x̄1) + µpc(a)

)
ϕ3(a) = ψ3(a), (8.19)(

λ+ γc(N̄) + µqc(a)
)
ϕ4(a) − αc(a, x̄1)ϕ3(a) = ψ4(a), (8.20)
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and

ϕ1(0) = 2(1−m)
∫ a⋆

0
βh(a)ϕ1(a)da, ϕ3(0) = 2

∫ a⋆

0
βc(a)ϕ3(a)da+2m

∫ a⋆

0
βh(a)ϕ1(a)da.

By solving (8.18) and (8.20), we get

ϕ2(a) = ψ2(a) + αh(a, x̄1)ϕ1(a)
λ+ γh(N̄) + µqh

(a)
, ϕ4(a) = ψ4(a) + αc(a, x̄1)ϕ3(a)

λ+ γc(N̄) + µqc(a)
, (8.21)

which after substituting in Eqs. (8.17) and (8.19) gives

ϕ1(a) = exp
(

−
∫ a

0
βh(ξ) + αh(x̄1, ξ) + λ+ µph

(ξ) − γh(N̄)αh(x̄1, ξ)
gh(ξ)(λ+ γh(N̄) + µqh

(ξ))
dξ
)

[ ∫ a

0
exp

(∫ ζ

0
βh(ξ) + αh(x̄1, ξ) + λ+ µph

(ξ) − γh(N̄)αh(x̄1, ξ)
gh(ξ)

(
λ+ γh(N̄) + µqh

(ξ)
)dξ)

1
gh(ζ)

{
ψ1(ζ) + γh(N̄)ψ2(ζ)

λ+ γh(N̄) + µqh
(ζ)

}
dζ + ϕ1(0)

]
,

ϕ3(a) = exp
(

−
∫ a

0
βc(ξ) + αc(x̄1, ξ) + λ+ µpc(ξ) − γc(N̄)αc(x̄1, ξ)

gc(ξ)(λ+ γc(N̄) + µqc(ξ))
dξ
)

[ ∫ a

0
exp

(∫ ζ

0
βc(ξ) + αc(x̄1, ξ) + λ+ µpc(ξ) − γc(N̄)αc(x̄1, ξ)

gc(ξ)
(
λ+ γc(N̄) + µqc(ξ)

)dξ)
1

gc(ζ)

{
ψ3(ζ) + γc(N̄)ψ4(ζ)

λ+ γc(N̄) + µqc(ζ)

}
dζ + ϕ3(0)

]
.

Substituting ϕ1(a) and ϕ3(a) back in Eq (8.21) yields

ϕ2(a) = 1
λ+ γh(N̄) + µqh

(a)

[
exp

(
−
∫ a

0
βh(ξ) + αh(x̄1, ξ) + λ+ µph

(ξ)

− γh(N̄)αh(x̄1, ξ)
gh(ξ)(λ+ γh(N̄) + µqh

(ξ))
dξ
){∫ a

0
exp

(∫ ζ

0
βh(ξ) + αh(x̄1, ξ) + λ+ µph

(ξ)

− γh(N̄)αh(x̄1, ξ)
gh(ξ)

(
λ+ γh(N̄) + µqh

(ξ)
)dξ) 1

gh(ζ)

{
ψ1(ζ) + γh(N̄)ψ2(ζ)

λ+ γh(N̄) + µqh
(ζ)

}
dζ

+ ϕ1(0)
}
αh(a, x̄1) + ψ2(a)

]
,

ϕ4(a) = 1
λ+ γc(N̄) + µqc(a)

[
exp

(
−
∫ a

0
βc(ξ) + αc(x̄1, ξ) + λ+ µpc(ξ)

− γc(N̄)αc(x̄1, ξ)
gc(ξ)(λ+ γc(N̄) + µqc(ξ))

dξ
){∫ a

0
exp

(∫ ζ

0
βc(ξ) + αc(x̄1, ξ) + λ+ µpc(ξ)

− γc(N̄)αc(x̄1, ξ)
gc(ξ)

(
λ+ γc(N̄) + µqc(ξ)

)dξ) 1
gc(ζ)

{
ψ3(ζ) + γc(N̄)ψ4(ζ)

λ+ γc(N̄) + µqc(ζ)

}
dζ

+ ϕ3(0)
}
αc(a, x̄1) + ψ4(a)

]
.

Lemma 8.2.1. The resolvent of operator C is compact and its spectrum, denoted by
σ(C), satisfies the condition:

σ(C) = σP (C) = {λ ∈ C |1 ∈ σp(Uλ)}. (8.22)
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Here, σP (C) refers to the point spectrum of C, and Uλ is an operator dependent on λ.

Proof. The expression of ϕ1(a) and ϕ3(a) can be re-written as

ϕ1(a) = 1
αh(a, x̄1)

{
(λ+ γh(N̄) + µqh

)(Uh,λψ2)(a) + γh(N̄)(Uh,λψ1)(a)
}
,

ϕ3(a) = 1
αc(a, x̄1)

{
(λ+ γc(N̄) + µqc)(Uc,λψ4)(a) + γc(N̄)(Uc,λψ3)(a)

}
,

where the linear operator on Banach space, Ui,λ is given as

(Ui,λψ)(a) =
∫ a⋆

0
Hi,λ(ζ, a)ψ(ζ)dζ, i = {h, c}, (8.23)

where

Hλ(ζ, a) = αi(a, x̄1)
gi(ζ)(λ+ γi(N̄) + µqi(a))

exp
(

−
∫ a

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)

exp
(∫ ζ

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)
. (8.24)

Similarly, we rewrite ϕ2(a) and ϕ4(a) as

ϕ2(a) = (Ui,λψ2)(a) + (Vi,λψ1)(a), ϕ4(a) = (Ui,λψ4)(a) + (Vi,λψ3)(a),

where the linear operator on Banach space, Vi,λ is given as

(Vi,λψ)(a) =
∫ a⋆

0
Gi,λ(ζ, a)ψ(ζ)dζ,

where Gi,λ(ζ, a) = 1
gi(ζ)(λ+ γi(N̄) + µqi(ξ))

(
γi(N̄)Hi,λ(ζ, a) + gi(ζ)

a⋆

)
.

Let Λ = λ ∈ C, |1 ∈ σ(Uλ). For λ ∈ C\Λ, the operators Ui,λ and Vi,λ are compact
operators from X to L1(0, a⋆), implying that ϕ1(a) and ϕ3(a) are represented by compact
operators, and similarly, ϕ2(a) and ϕ4(a) are also represented by compact operators. As
a result, the operator C has a compact resolvent, which confirms that its spectrum σ(C)
constitutes only isolated eigenvalues, i.e., σ(C) = σP (C) (see Theorem 6.29 on page 187
in [152]). Hence, C\Λ ⊂ ρ(C), where ρ(C) is the resolvent of operator C. Therefore,
σP (C) = σ(C) ⊂ Λ. Since Uλ is a compact operator, we have σ(Uλ)\0 = σP (Uλ)\0. If
λ ∈ Λ, there exists an eigenfunction ψλ such that Uλψλ = ψλ. It is easy to see that
(ϕ1(a), ϕ2(a), ϕ3(a), ϕ4(a))T provides an eigenvector of C for the eigenvalue λ. Thus, we
have Λ ⊂ σP (C), and we can conclude that (8.22) is satisfied.

Lemma 8.2.2. Consider the operator C which generates C0-semigroup for t ≥ 0. Then,
T(t) is eventually norm continuous (ENC), and we have

ω0(C) = s(C) = sup Reλ, |λ ∈ σ(C), (8.25)

where s(C) represents the spectral bound of the operator C, and ω0(C) denotes the
growth bound of the semigroup T(t).
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Proof. To begin, we express the bounded operator C as

Cϕ =


kh(a) γh(N̄) 0 0

αh(a, x̄1) −γh(N̄) − µqh
(a) 0 0

0 0 kc(a) γc(N̄)
0 0 αc(a, x̄1) −γc(N̄) − µqc(a)



ϕ1(a)
ϕ2(a)
ϕ3(a)
ϕ4(a)

 ,

for ϕ ∈ X, kh(a) = −∂gh(a)
∂a − βh(a) − αh(a, x̄1) − µph

(a) and kc(a) = −∂gc(a)
∂a − βc(a) −

αc(a, x̄1) − µpc(a). To establish the compactness of C, our strategy is to demonstrate
that for any bounded sequence (ϕn)n ∈ N in X, the sequence (Cϕn)n ∈ N contains a
subsequence that converges uniformly. To accomplish this, we invoke the Arzelà-Ascoli
Theorem, which requires us to verify that (Cϕn)n ∈ N is uniformly bounded and uniformly
equicontinuous. To prove boundedness, since we assume (ϕn)n ∈ N to be bounded, we
get

∥Cϕn∥1 ≤ ∥C∥ ∥ϕn∥1 ≤ ∥C∥ sup
n∈N

∥ϕn∥1,

which determines that (Cϕn)n ∈ N is also bounded. For uniform equicontinuity, we
consider∫

R
|(Cϕ)(a+ h) − (Cϕ)(a)|da =

∫
R

|C(a+ h) − C(a)| |ϕ(a)|da

≤
∫

R

∣∣∣∣∣∣∣∣∣


kh(a+ h) γh(N̄) 0 0

αh(a+ h, x̄1) −γh(N̄) − µqh
(a+ h) 0 0

0 0 kc(a+ h) γc(N̄)
0 0 αc(a+ h, x̄1) −γc(N̄) − µqc(a+ h)



−


kh(a) γh(N̄) 0 0

αh(a, x̄1) −γh(N̄) − µqh
(a) 0 0

0 0 kc(a) γc(N̄)
0 0 αc(a, x̄1) −γc(N̄) − µqc(a)


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ϕ1(a)
ϕ2(a)
ϕ3(a)
ϕ4(a)

∣∣∣∣∣∣∣∣∣ da

=
∫

R

∣∣∣∣∣∣∣∣∣
m1 0 0 0
m2 m3 0 0
0 0 kc(a+ h) − kc(a) 0
0 0 αc(a+ h, x̄1) − αc(a, x̄1) −µqc(a+ h) − µqc(a)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ϕ1(a)
ϕ2(a)
ϕ3(a)
ϕ4(a)

∣∣∣∣∣∣∣∣∣ da

≤∥ϕ∥
∫

R

∣∣∣∣∣∣∣∣∣
m1 0 0 0
m2 m3 0 0
0 0 kc(a+ h) − kc(a) 0
0 0 αc(a+ h, x̄1) − αc(a, x̄1) −µqc(a+ h) − µqc(a)

∣∣∣∣∣∣∣∣∣ da.
where m1 = kh(a+h)−kh(a), m2 = αh(a+h, x̄1)−αh(a, x̄1), and m3 = −µqh

(ah)−µqh
(a)

Hence, we have shown that (Cϕn)n ∈ N is equicontinuous, and by the Arzelà-Ascoli
Theorem, we can conclude that there exists a uniformly convergent subsequence of
(Cϕn)n ∈ N. Consequently, C is compact, which in turn implies that T is an ENC
semigroup. Since the spectral mapping theorem can be applied to ENC semigroups, we
have the spectral determined growth condition given by ω0(C) = s(C). Thus, we obtain
(8.25).

The local exponential asymptotic stability of the steady-state solution ω = 0 of (8.15)
is established when ω0(C) < 0. Specifically, there exist constants ϵ > 0, M ≥ 1, and
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γ < 0 such that if x ∈ X and |x| ≤ ϵ, then the solution ω(t, x) of (8.15) exists globally
and satisfies |ω(t, x)| ≤ M exp(γt)|x| for all t > 0. In order to examine the stability of
steady states, it is necessary to identify the dominant singular point within the set Λ,
which corresponds to the element with the highest real value. By utilizing (8.22) and
(8.25), we can then determine the growth bound of the semigroup T.

Lemma 8.2.3. For any λ ∈ R, the operator Ui,λ is nonsupporting with respect to X+
and

lim
λ→+∞

r(Ui,λ) = 0 (8.26)

holds.

Proof. By Eqs. (8.23) and (8.24), we can conclude that the operator Ui,λ, λ ∈ R is strictly
positive. To prove that Uλ, λ ∈ R is non-supporting, we can easily demonstrate the
inequality

Ui,λψ ≥ ⟨fi,λ, ψ⟩c, c = 1 ∈ X+, ψ ∈ X+, (8.27)

where the linear function fi,λ, is

⟨fi,λ, ψ⟩ =
∫ a⋆

0

[
si(ζ)

gi(ζ)(λ+ γi(N̄) + µqi(a))
exp

(
−
∫ a

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)−

γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)

exp
(∫ ζ

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)]
ψ(ζ)dζ. (8.28)

Thereby, it leads us to Un+1
i,λ ψ ≥ ⟨fi,λ, ψ⟩⟨fi,λ, c⟩nc, ∀n. which holds for all ψ ∈ X+,

where fi,λ is strictly positive and the constant function c = 1 is a quasi-interior point
of L1(0, a⋆). This implies that ⟨F,Un

i,λ⟩ > 0 for every pair ψ ∈ X+\0, F ∈ X∗
+\0, and

therefore Ui,λ, , λ ∈ R is non-supporting. We then use inequality (8.27) and take the
duality pairing with the eigenfunctional Fi,λ of Ui,λ corresponding to r(Ui,λ), yielding

r(Ui,λ)⟨Fλ, ψ⟩ ≥ ⟨Fλ, e⟩⟨fi,λ, ψ⟩.

Assuming ψ = c, we obtain the inequality:

r(Ui,λ) ≥ ⟨fi,λ, c⟩,

where

⟨fi,λ, c⟩ =
∫ a⋆

0

si(ζ)
gi(ζ)(λ+ γi(N̄) + µqi(ζ))

exp
(

−
∫ a

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)

exp
(∫ ζ

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)

dζ. (8.29)
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It follows that

⟨fλ, c⟩ ≥ϵ
∫ a⋆

0

1
gi(ζ)(λ+ γi(N̄) + µqi(ζ))

exp
(

−
∫ a

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
g(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)

exp
(∫ ζ

0
βi(ξ) + αi(x̄1, ξ) + λ+ µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
gi(ξ)(λ+ γi(N̄) + µqi(ξ))

dξ
)

dζ. (8.30)

By using the positivity of γi(N̄), µpi , µqi , αi and βi, we conclude the following:

lim
λ→+∞

r(Ui,λ) = 0.

Hence, it is proven.

The previous lemma implies that the function λ → r(Ui,λ) is decreasing for all λ ∈ R.
Moreover, if there exists a λ ∈ R such that r(Ui,λ) = 1, then it follows that λ ∈ Λ,
as r(Ui,λ) ∈ σP (Ui,λ). Combining this with the monotonicity property of r(Ui,λ) and
inequality (8.26), we obtain the following result.

Lemma 8.2.4. There exists a unique λ0 ∈ R ∩ Λ such that r(Ui,λ0) = 1, and λ0 > 0 if
r(U0) > 1; λ0 = 0 if r(U0) = 1; λ0 < 0 if r(U0) < 1.

We will demonstrate that λ0 is a dominant singular point, utilizing Theorem 6.13 in
[153].

Lemma 8.2.5. If there exists a λ ∈ Λ, λ ̸= λ0, then Reλ < λ0.

Proof. Let λ ∈ Λ and Ui,λψ = ψ. Then |ψ|(a) = |ψ(a)|, and we have |Ui,λψ| = |ψ|.
Therefore, we obtain Ui,Reλψ ≥ ψ. By taking the duality pairing with FReλ ∈ X⋆

+,
we get r(Ui,Reλ)⟨FReλ, |ψ|⟩ ≥ ⟨FReλ, |ψ|⟩. We have r(Ui,Reλ) ≥ 1, as FReλ is strictly
positive. Since r(Ui,λ), λ ∈ R is a declining function, we conclude that Reλ ≤ λ0.
Suppose Reλ = λ0. Then Ui,λ0 |ψ| = |ψ|. If we assume Ui,λ0 |ψ| > |ψ|, then taking the
duality pairing with the eigenfunctional F0 corresponding to r(Ui,λ0) = 1 results in
⟨F0, |ψ|⟩ > ⟨F0, |ψ|⟩, which is a contradiction. Therefore, we have Ui,λ0 |ψ| = |ψ|, and
we can deduce that |ψ| = cψ0, where constant c is assumed to be 1, and ψ0 is the
eigenfunction relating to r(Ui,λ0) = 1. Therefore, we have ψ(a) = ψ0(a) exp(iv(a)) for a
real-valued function v(a). Substituting this into Ui,λ0ψ0 = |Ui,λψ| yields

αi(a, x̄1)
gi(a)(λ0 + γi(N̄) + µqi(a))

∫ a⋆

0
exp

(∫ ζ

a
βi(ξ) + αi(x̄1, ξ) + λ0 + µpi(ξ)

− γi(N̄)αi(x̄1, ξ)
λ0 + γi(N̄) + µqi(ξ)

dξ
)
ψ0(ζ)dζ =

∣∣∣∣ αi(a, x̄1)
gi(a)(λ0 + iImλ+ γi(N̄) + µqi(a))∫ a⋆

0
exp

(∫ ζ

a
βi(ξ) + αi(x̄1, ξ) + λ0 + iImλ+ µpi(ξ) − γ(iN̄)αi(x̄1, ξ)

λ0 + iImλ+ γi(N̄) + µqi(ξ)
dξ
)

exp(iv(ζ))ψ0(ζ)dζ
∣∣∣∣.

Lemma 6.12 [153] implies that Imλ+ v(ζ) equals a constant Θ. Using the fact that
Ui,λψ = ψ, we obtain the equation exp(iΘ)Ui,λ0ψλ0 = ψλ0 exp(iv(ζ)). This equation
shows that if Θ = v(ζ), then Imλ = 0. Therefore, the proof is complete.
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Theorem 8.2.1. The equilibrium state (p̄h(a), q̄h(a), p̄c(a), q̄c(a))T, for (7.1)–(7.4), is
locally asymptotically stable if r(U0) < 1 and locally unstable if r(U0) > 1.

Proof. Lemmas 8.2.4 and 8.2.5 suggests that sup Reλ : 1 ∈ σP (Ui,λ) = λ0. This implies
that if r(U0) < 1, then s(C) = sup Reλ : 1 ∈ σP (Ui,λ) < 0. Conversely, if r(U0) > 1, then
s(C) = sup Reλ : 1 ∈ σP (Ui,λ) > 0. Therefore, the proof is complete.

We checked the wellposedness of the model, derive non-trivial equilibrium solutions
and find spectral criteria for local stability.
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CHAPTER 9
Conclusion and future outlooks

The process of cancer genesis is complex and involves a delicate balance between pro-
liferation and quiescence and the impact of genetic mutations. In this thesis, we have
delved into multiscale modeling and stability analysis to understand cancer genesis better
in various modeling frameworks in our pursuit of unraveling the complexities of cancer
genesis. We have presented and analyzed a series of mathematical models that capture the
complexities of cell cycle dynamics, the evolution of cancer stem cell lineages, mutation
acquisitions, and the interplay between quiescent and proliferating cell populations. The
culmination of this research represents a significant step forward in understanding the
underlying mechanisms driving the initiation and progression of cancer.

The cell cycle phases dictate the orderly progression of cells, and any disruptions
can lead to aberrant growth, a hallmark of cancer. In Chapter 2, we introduced a
mathematical model of cell cycle dynamics comprising nine core proteins that maintain
the temporal oscillatory dynamics. Next, we explored the evolution of cancer stem
cell lineages, incorporating feedback regulation mechanisms in Chapter 3. Our findings
revealed how feedback loops can drive the expansion of cancer stem cells, highlighting
their pivotal role in cancer progression. Understanding the dynamics of cancer stem
cells is essential for designing therapies that can effectively target these elusive and
resilient cell populations. In Chapter 4, we addressed the well-posedness of a coupled
PDE-ODE model of stem cell lineage introduced in Chapter 3. This research underscores
the importance of mathematical rigor in modeling biological systems and ensures the
reliability of our models as tools for understanding cancer genesis.

Furthermore, we extended our modeling framework to consider the interplay between
quiescent and proliferating cell populations in Chapter 5. This chapter sheds light on the
importance of understanding the balance between these two populations in the context
of cancer. We proposed nonlinear, multiscale modeling of physiologically structured
quiescent and proliferating cell densities coupled with cell-cycle dynamics, essential in
committing a cell to an irreversible cell-division process. The insights gained from our
models can aid in developing targeted therapies that specifically target proliferating or
quiescent cells, offering a promising avenue for future cancer treatment strategies. In
Chapter 6, we also checked the wellposedness of the model, derived non-trivial equilibrium
solutions, and found spectral criteria for local stability in the sense that if the growth
bound of the linearised semigroup is negative, the steady-state solution is the locally
asymptotically stable, and if the growth bound is positive, the steady-state solution is
unstable. Finally, in Chapter 7 and 8, we extended our multiscale model of proliferating
and quiescent cell populations with mutation acquisitions. We also performed stability
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analysis of a multiscale model incorporating cell cycle dynamics. Similar to Chapter 8,
using semigroup and spectral theory, we investigated the well-posedness of the model,
derived steady-state solutions, and found sufficient stability conditions. In the end, we
executed numerical simulations to observe the impact of the parameters on the model’s
nonlinear dynamics. These findings contribute to the growing body of knowledge aimed
at elucidating the dynamics of cancer cells within the context of the cell cycle.

The apex of this research represents a significant step forward in the underlying
mechanisms driving the initiation and progression of cancer. While we have achieved
significant milestones, it is crucial to acknowledge the limitations of our work and propose
future directions. In the sequel, we highlight some of the limitations of this work and
potential avenues for future research:

A primary limitation of this work is that the mathematical models presented in this
thesis involve simplifications and assumptions to make them tractable. While these
simplifications are necessary for analysis, they may not fully capture the intricacies
of real biological systems. For instance, the cell cycle model consists of nine essential
proteins that are important for temporal oscillatory dynamics. However, it is important
to acknowledge that the cell cycle is an intricate biological process governed by a vast
array of proteins and complex regulatory mechanisms. These simplifications were chosen
to facilitate a more manageable analysis and gain initial insights into the cell cycle
dynamics. Future work should strive for more detailed and realistic models, which means
that to enhance the comprehensiveness and accuracy of our model, we can consider
extending it by incorporating additional proteins and elements that are known to play
critical roles in the cell cycle.

Another limitation is that the mathematical models we have put forth in this thesis have
primarily been deterministic, assuming a perfect, predictable environment for biological
systems. Nevertheless, biological systems are inherently stochastic in reality, and there
is significant randomness and variability in various cellular processes. For instance, in
population dynamics, stochasticity refers to random variability or uncertainty that affects
the growth, interactions, and behaviors of individuals within a population. This noise
can arise from various sources and processes, including genetic mutations, environmental
fluctuations, demographic events, or stochastic birth and death rates. Such systems
often exhibit fluctuations and diverse outcomes in response to the same initial conditions.
Consequently, to address this limitation and improve the models’ predictability, future
research should pivot toward the incorporation of stochastic elements. Therefore, the
possible extension of this work would be the utilization of stochastic differential equations
or the implementation of agent-based modeling, which can effectively account for the
intrinsic variability and unpredictability observed in biological systems.

Furthermore, integrating approaches from control theory into the development of
personalized treatment strategies is a crucial step in the advancement of healthcare.
In the course of this work, our primary focus has been to develop simple yet complex
models that capture the complexity of sub-cellular and population dynamics in cancer
genesis. We have dedicated considerable effort to analyzing the model’s well-posedness
and stability, laying a strong foundation for understanding these dynamics. Now is the
right time to build upon this foundation and extend these models with optimization
approaches from control theory, and the goal is to tailor treatment approaches to cancer.
One promising avenue could be dynamically adjusting drug dosages or treatment schedules
in chemotherapy. Implementing such an approach recognizes the ever-evolving nature
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of the disease and the distinctive responses of individual patients. The incorporation of
control theory principles will eventually benefit us in developing treatment strategies
that are adaptable and patient-specific, thereby optimizing therapeutic outcomes while
minimizing adverse effects.

Finally, experimental validation is indispensable to affirm the predictions and hypothe-
ses derived from our mathematical models. It is not uncommon to encounter challenges
in finding empirical data that aligns precisely with the settings and assumptions of a
mathematical model, as we have experienced in Chapter 3, where we validated our model
against experimental data of breast, prostate, colon, and TUBO cancer cell lines. Collabo-
rations between mathematicians, biologists, and clinicians are crucial for bridging the gap
between theoretical modeling and real-world clinical applications. Such collaborations
will enable us to acquire empirical data that validates and refines our mathematical
models, ensuring their accuracy and relevance to actual biological systems.

In conclusion, our work represents a significant contribution to the field of mathematical
modeling in cancer research. We have investigated several aspects of cancer genesis, but
there is still much to explore and refine. As we address the limitations and pursue these
future directions, we move closer to improving our understanding of cancer dynamics
and, ultimately, developing better models for effective treatments of this complex disease.
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Appendix

Lemma 1. Let p and g be real-valued functions such that p, g ∈ L1([0, T ]) and y0 ∈ R.
Then, there exists a uniquely determined y : [0, T ] → R that solves the IVP

dy
dt + p(t)y = g(t), y(0) = y0. (.1)

Moreover, it holds that

y(t) = exp
(

−
∫ t

0
p(ϵ)dϵ

)(∫ t

0
exp

(∫ λ

0
p(ϵ)dϵ

)
g(λ)dλ+ y0

)
(.2)

Proof. See the proof in [159].

Lemma 2. Let θa ∈ Θ, η > 0, p and g be non-negative functions on [0, T ′] ×XT ′ × Θ
and z0 be a function defined on Θ. Furthermore, for t ∈ [0, T ′], x ∈ XT ′ and θ ∈ Θ define

z(t, x, θ) := exp
(

−
∫ t

0
p(λ, x, θ)dλ

)(∫ t

0
exp

(∫ λ

0
p(ϵ, x, θ)dϵ

)
g(λ, x, θ)dλ+ z0(θ)

)
.

If it holds that

p(t, ya, θa), p(t, yb, θb), g(t, ya, θa), g(t, yb, θb) ≤ const.(θa, η) and (.3)

|p(t, ya, θa) − p(t, yb, θb)|, |g(t, ya, θa) − g(t, yb, θb)| ≤ const.(θa, η)∥ya − yb∥t (.4)

for all θb ∈ Θ with ∥θa − θb∥ < η and ya ∈ Y θ
T ′ then for all θb ∈ Θ and ya ∈ Y θ

T ′ , we also
have

|z(t, ya, θa) − z(t, yb, θb)| ≤ const.(θa, η)
(∫ t

0
∥ya − yb∥λdλ+ |z0(θa) − z0(θb)|

)
.

Proof. See the proof in [97].

Lemma 3 (Fréchet differentiability). F1 : X → X is Fréchet differentiable at ϕ ∈ X,
where X is a Banach space.

Proof. For F1 to be Fréchet differentiable, we need to show that

lim
∥h∥→0

∥F1(ϕ+ h, φ) − F1(ϕ, φ) −Ah∥
∥h∥ = 0, (.5)
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where A = DF1(ϕ) and ∥ · ∥ is a norm in X. Consider
∥F1(ϕ + h, φ) − F1(ϕ, φ) − Ah∥

∥h∥

= 1
∥h∥

∥∥∥∥∥∥∥


−νθκ(ϕ1(a) + h)
θκ + (Nϕ + 2a∗h)κ

+ α(φ1, a)(ϕ2(a) + h)

νθκ(ϕ1(a) + h)
θκ + (Nϕ + 2a∗h)κ

− α(φ1, a)(ϕ2(a) + h)

−


−νθκϕ1(a)
θκ + (Nϕ)κ

+ α(φ1, a)ϕ2(a)

νθκϕ1(a)
θκ + (Nϕ)κ

− α(φ1, a)ϕ2(a)



−


∂

∂ϕ1

(
−νθκϕ1(a)
θκ + (Nϕ)κ

+ α(φ1, a)ϕ2(a)
)

+ ∂

∂ϕ2

(
−νθκϕ1(a)
θκ + (Nϕ)κ

+ α(φ1, a)ϕ2(a)
)

∂

∂ϕ1

(
νθκϕ1(a)

θκ + (Nϕ)κ
− α(φ1, a)ϕ2(a)

)
+ ∂

∂ϕ2

(
νθκϕ1(a)

θκ + (Nϕ)κ
− α(φ1, a)ϕ2(a)

)
h

∥∥∥∥∥∥∥∥

= 1
∥h∥

∥∥∥∥∥∥∥∥
−νθκϕ1(a)

(
1

θκ + (Nϕ + 2a∗h)κ
− 1

θκ + (Nϕ)κ

)
νθκϕ1(a)

(
1

θκ + (Nϕ + 2a∗h)κ
− 1

θκ + (Nϕ)κ

)
+


−νθκ

θκ + (Nϕ + 2a∗h)κ
+ α(φ1, a)

νθκ

θκ + (Nϕ + 2a∗h)κ
− α(φ1, a)

h

−


−(θκ + (Nϕ)κ)νθκ + νθκϕ1(a)ka∗(Nϕ)k−1

(θκ + (Nϕ)κ)2 + νθκϕ1(a)ka∗(Nϕ)k−1

(θκ + (Nϕ)κ)2 + α(φ1, a)

(θκ + (Nϕ)κ)νθκ − νθκϕ1(a)ka∗(Nϕ)k−1

(θκ + (Nϕ)κ)2 − νθκϕ1(a)ka∗(Nϕ)k−1

(θκ + (Nϕ)κ)2 − α(φ1, a)

h

∥∥∥∥∥∥∥∥
= 1

∥h∥

∥∥∥∥∥∥∥∥
−νθκϕ1(a)

(
(Nϕ)κ − (Nϕ + 2a∗h)κ

{θκ + (Nϕ + 2a∗h)κ}{θκ + (Nϕ)κ}

)
νθκϕ1(a)

(
(Nϕ)κ − (Nϕ + 2a∗h)κ

{θκ + (Nϕ + 2a∗h)κ}{θκ + (Nϕ)κ}

)
+


−νθκ

θκ + (Nϕ + 2a∗h)κ
+ α(φ1, a)

νθκ

θκ + (Nϕ + 2a∗h)κ
− α(φ1, a)

h

−


−(θκ + (Nϕ)κ) + (Nϕ)k−1ka∗ϕ1(a)

(θκ + (Nϕ)κ)2 + ϕ1(a)ka∗(Nϕ)k−1

(θκ + (Nϕ)κ)2 + α(φ1, a)
νθκ

(θκ + (Nϕ)κ) − (Nϕ)k−1ka∗ϕ1(a)
(θκ + (Nϕ)κ)2 − ϕ1(a)ka∗(Nϕ)k−1

(θκ + (Nϕ)κ)2 − α(φ1, a)
νθκ

 νθκh

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥


−1
h

(
(Nϕ)κ − (Nϕ + 2a∗h)κ

{θκ + (Nϕ + 2a∗h)κ}{θκ + (Nϕ)κ}

)
1
h

(
(Nϕ)κ − (Nϕ + 2a∗h)κ

{θκ + (Nϕ + 2a∗h)κ}{θκ + (Nϕ)κ}

)
 νθκϕ1(a) +


−νθκ

θκ + (Nϕ + 2a∗h)κ
+ α(φ1, a)

νθκ

θκ + (Nϕ + 2a∗h)κ
− α(φ1, a)



−


−νθκ

θκ + (Nϕ)κ
+ α(φ1, a)

νθκ

θκ + (Nϕ)κ
− α(φ1, a)


∥∥∥∥∥∥∥ . (.6)

Further by taking the limit h → 0, we achieve

lim
∥h∥→0

∥F1(ϕ + h, φ) − F1(ϕ, φ) − Ah∥
∥h∥ =

∥∥∥∥∥∥∥


−νθκ

θκ + (Nϕ)κ
+ α(φ1, a)

νθκ

θκ + (Nϕ)κ
− α(φ1, a)

−


−νθκ

θκ + (Nϕ)κ
+ α(φ1, a)

νθκ

θκ + (Nϕ)κ
− α(φ1, a)


∥∥∥∥∥∥∥ = 0.

(.7)

Thus, we show that F1 is Fréchet differentiable in X.

In the similar fashion, F1 and F2 can be shown Fréchet differentiable in both X and Y .
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