
Optimization based Algorithms for Task Planning
and Predictive Motion Control in Robotics

DISSERTATION

Ausgeführt zum Zwecke der Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

unter der Leitung von

Prof. Dr.- Ing. Naim Bajcinca
Lehrstuhl für Mechatronik in Maschinenbau und Fahrzeugtechnik

genehmigt vom

Fachbereich Maschinenbau und Verfahrenstechnik
der

Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau

Vorgelegt von
Herrn

Dipl.-Ing. Argtim Tika
aus Kërçovë, Nordmazedonien

Kaiserslautern, Februar 2024

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
67663 Kaiserslautern, Gottlieb-Daimler-Straße 47





Tag der Disputation:

Promotionskommission

Vorsitzender:

Erster Berichterstatter:

Zweiter Berichterstatter:

22.12.2023

Prof. Dr.-Ing. Sergiy Antonyuk

Prof. Dr.-Ing. Naim Bajcinca

Prof. Dr. rer. nat. Karsten Berns

D 386





Prindërve të mi





Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitar-
beiter am Lehrstuhl für Mechatronik in Maschinenbau und Fahrzeugtechnik (MEC) im
Fachbereich Maschinenbau und Verfahrenstechnik der Rheinland-Pfälzischen Technischen
Universität Kaiserslautern-Landau (RPTU).

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr.-Ing. Naim Bajcinca für die
Möglichkeit unter seiner Betreuung meine wissenschaftliche Karriere zu starten. Besonders
bin ich dankbar für sein hohes Interesse an meiner Arbeit, die zahlreichen fachlichen
Anregungen und Diskussionen, und vor allem für das entgegengebrachte Vertrauen
und die Freiheit mich fachlich und persönlich in vielen Bereichen weiterzuentwickeln.
Des Weiteren möchte ich Herrn Prof. Dr.-Ing. Sergiy Antonyuk für die Übernahme
des Vorsitzes der Promotionskommission und Prof. Dr. rer. nat. Karsten Berns für das
Interesse an meiner Arbeit und die Erstellung des Zweigutachtens danken.

Ich bin zahlreichen Kolleginnen und Kollegen am Lehrstuhl für die Hilfsbereitschaft
und die vielen anregenden fachlichen und persönlichen Diskussionen zu großem Dank
verpflichtet. Vor allem möchte ich an dieser Stelle den hervorragenden kollegialen
Zusammenhalt hervorheben und mich für die fruchtbare Kooperation während der
vergangenen Jahre, die zahlreichen Ratschläge sowie Unterstützung beim Aufbau von
Prüfständen und Demonstratoren im Labor herzlich bedanken.

Darüber hinaus möchte ich mich bei den Studenten bedanken, die unter meiner Betreu-
ung im Rahmen von Abschlussarbeiten zum Gelingen dieser Arbeit beigetragen haben.
Dankbar bin ich auch den industriellen Kooperationspartnern die im Zuge der For-
schungsprojekte CooPick, KIMKO, und KORINS, gefördert von der Arbeitsgemeinschaft
industrieller Forschungsvereinigungen (AiF) unter den Förderkennzeichen ZF4335706DB7,
ZF4335711PO9, und ZF4335715DB9, das Zustandekommen dieser Arbeit unterstützt
haben.

Der größte Dank gebührt meiner Familie, meinen Freunden und besonders meinen
Eltern für die uneingeschränkte Unterstützung während meines Lebens und meiner
wissenschaftlichen Laufbahn.

Kaiserslautern, Februar 2024

I





Abstract

Since their introduction, robots have primarily influenced the industrial world, providing
new opportunities and challenges for humans and machinery. With the introduction
of lightweight robots and mobile robot platforms, the field of robot applications has
been expanded, diversified, and brought closer to society. The increased degree of
digitalization and the personalization of goods and products require an enhanced and
flexible robot deployment by operating several multi-robot systems along production
processes, industrial applications, assembly and packaging lines, transport systems, etc.

Efficient and safe robot operation relies on successful task planning followed by the
computation and execution of task-performing motion trajectories. This thesis addresses
these issues by developing, implementing, and validating optimization-based methods for
task and trajectory planning in robotics, considering certain optimality and performance
criteria. The focus is mainly on the time optimality of the presented approaches with
respect to both execution and computation time without compromising safe robot use.

Driven by a systematic approach, the basis for the algorithm development is established
first by modeling the kinematics and dynamics of the considered robots and identifying
required dynamic parameters. In a further step, time-optimal task and trajectory
planning algorithms for a single robotic arm are developed. Initially, a hierarchical
approach is introduced consisting of two decoupled optimization-based control policies, a
binary problem for task planning, and a continuous model predictive trajectory planning
problem. The two layers of the hierarchical structure are then merged into a monolithic
layer, resulting in a hybrid structure in the form of a mixed-integer optimization problem
for inherent task and trajectory planning.

Motivated by a multi-robot deployment, the hierarchical control structure for time-
optimal task and trajectory planning is extended for the case of a two-arm robotic system
with highly overlapping operational spaces, leading to challenging robot motions with
high inter-robot collision potential. To this end, a novel predictive approach for collision
avoidance is proposed based on a continuous approximation of the robot geometry,
resulting in a nonlinear optimization problem capable of online applications with real-
time requirements. Towards a mobile and flexible robot platform, a model predictive
path-following controller for an omnidirectional mobile robot is introduced. Here, a
time-minimal approach is also applied, which consists of the robot following a given
parameterized path as accurately as possible and at maximum speed.

The performance of the proposed algorithms and methods is experimentally analyzed
and validated under real conditions on robot demonstrators. Implementation details,
including the resulting hardware and software architecture, are presented, followed by
a detailed description of the results. Concrete and industry-oriented demonstrators for
integrating robotic arms in existing manual processes and the indoor navigation of a
mobile robot complete the work.

III





Kurzfassung

Roboter haben seit deren Einführung die Industriewelt weitgehend geprägt und für
Mensch und Maschine neue Möglichkeiten und Herausforderungen geschaffen. Mit
der Einführung von Leichtbaurobotern und mobilen Roboterplattformen wurde das
Robotereinsatzgebiet erweitert, diversifiziert und näher an die Gesellschaft herangeführt.
Der zunehmende Digitalisierungsgrad und die Personalisierung von Waren und Gütern
erfordern einen steigernden und flexiblen Robotereinsatz, auch durch den Betrieb von
Multirobotersystemen entlang von Produktionsprozessen, industriellen Anwendungen,
Montage- und Verpackungslinien, Transportsystemen usw.

Ein effizienter und sicherer Roboterbetrieb stützt sich auf eine erfolgreiche Aufgabenpla-
nung gefolgt von der Berechnung und Ausführung von aufgabengerechten Trajektorien. In
dieser Hinsicht befasst sich die vorliegende Arbeit mit der Entwicklung, Implementierung
und Validierung von optimierungsbasierten Methoden zur Aufgaben- und Trajektorienpla-
nung unter Berücksichtigung von gewissen Optimalitäts- und Performancekriterien. Der
Fokus liegt dabei vor allem auf der Zeitoptimalität sowohl hinsichtlich der Ausführungs-
als auch der Berechnungszeit, ohne den sicheren Robotereinsatz zu beeinträchtigen.

Getrieben durch einen systematischen Ansatz wird durch die Modellierung der Kine-
matik und Dynamik der Roboter und der Identifikation von dynamischen Parametern die
Grundlage für die Algorithmenentwicklung geschaffen. In einem ersten Schritt wird für
einen Roboterarm eine hierarchische Regelungsstruktur vorgeschlagen, bestehend aus zwei
entkoppelten zeitoptimalen Optimierungsproblemen, einem binären zur Aufgabenplanung
und einem kontinuierlichen modellprädiktiven Trajektorienplanungsproblem. Anschlie-
ßend werden beide Ebenen des hierarchischen Ansatzes zu einer monolithischen Einheit
zusammengeführt was in einer hybriden Struktur in Form eines gemischt ganzzahligen
Optimierungsproblems für inhärente Aufgaben- und Trajektorienplanung resultiert.

Motiviert durch einen Multirobotereinsatz wird für ein zweiarmiges Robotersystem
mit stark überlappenden Arbeitsbereichen ein zeitoptimaler Algorithmus nach dem
Schema der hierarchischen Struktur entwickelt. Für die Kollisionsvermeidung zwischen
den Roboterarmen wird ein neuartiger prädiktiver Ansatz vorgeschlagen, der auf eine
kontinuierliche Approximation der Robotergeometrie aufbaut und in einem nichtlinearen
Optimierungsproblem fähig für den Einsatz in Onlineanwendungen mit Echtzeitanforde-
rungen resultiert. Auf dem Weg zu einer mobilen und flexiblen Roboterplattform wird
ein modellprädiktiver Regler vorgestellt, mit dem ein omnidirektionaler mobiler Roboter
einem vorgegebenen parametrisierten Pfad mit maximaler Geschwindigkeit folgen kann.

Die Performance der vorgeschlagenen Algorithmen wird auf Demonstratoren experimen-
tell analysiert und validiert. Dabei werden stets Implementierungsdetails, einschließlich
der Hard- und Softwarearchitektur präsentiert, gefolgt von einer ausführlichen Ergeb-
nisbeschreibung. Konkrete und industrienahe Anwendungsfälle zur Integration von
Roboterarmen in bestehende manuelle Prozesse und die Indoor-Navigation eines mobilen
Roboters runden und schließen die Arbeit ab.
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CHAPTER 1
Introduction

Robotic systems have significantly revolutionized industrial workplaces and continuously
increased the level of automation in various industrial sectors. The use of robots is
wide-ranging and steadily expanding with increasing digitalization and Industry 4.0.
It involves tasks in multiple domains such as packaging, palletizing, sorting, assembly,
and the execution of specific functions like machine tending, drilling, welding, soldering,
painting, etc. [1]. Most of the robotic applications fall under the category of pick-and-
place tasks and are well-suited as benchmarking frameworks in robotics due to their
widespread use in various automated processes and operations. Prior to executing the
pick-and-place tasks, task planning is usually performed to assign a task or a sequence of
tasks to the robots. Task planning is then followed by point-to-point trajectory generation
to perform the assigned tasks.

With the increased diversity and the personalization of goods and products, production
in short batches becomes more attractive, leading to multiple robot tasks of different
classes. Despite increasing automation, manual methods are currently still considered the
only cost-effective solution for the production of small batches, characteristic of high-mix,
low-volume manufacturers [2]. The increased flexibility appears to be a key element
towards higher levels of operational efficiency and productivity. This can be achieved by
empowering workers to work directly with automated systems or by facilitating robot
integration, enabling adaptations of robotic solutions to new workspaces [3].

Motivated by the increase of efficiency and productivity, in some applications, multi-
robot systems are deployed with robotic manipulators operating in close proximity and in
cooperation with each other, sharing a common working environment. In such cases, the
coordinated execution of optimal discrete task sequences is typically of interest, resulting
in a challenging problem due to the excessively large number of involved combinatorial
motion scenarios. Hence, increasing the performance of robotic applications involving
multiple goals requires efficient task scheduling and the subsequent execution of fast
and collision-free motion trajectories. Robot task allocation and scheduling is usually
performed separately from the trajectory planning. However, approaches also exist to
tightly couple the two problems or consider them jointly within the framework of an
algorithm. Nevertheless, most methods follow the traditional way used for repetitive
tasks of planning and programming robot applications offline [4].

This work considers robot applications involving multiple pick-and-place tasks per-
formed by a single or two robot manipulators. The problem formulations are motivated by
specific industrial applications about the integration of robot manipulators into existing
manual processes. Therefore, optimization-based algorithms are introduced, addressing
the problem of time-optimal robot task execution. This involves task scheduling and
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1.1 Task planning

trajectory planning by considering both problems independently within the scope of a
hierarchic framework or combined in the form of a hybrid control structure. In addition,
towards a flexible mobile robot platform, a motion control algorithm for fast and accurate
indoor path following is presented.

1.1 Task planning
The research on robot task scheduling has been primarily focused on minimizing the
cycle time by determining an optimal sequence of a set of unordered task points in the
three dimensional (3D) operational space W (robot working space). Task scheduling
problems are often modeled as an extension of the traveling salesman problem (TSP) [5].
An overview of related TSP-like combinatorial problems for application in robot task
sequencing is provided in [4]. The scope of the survey paper is limited to offline sequencing
algorithms for a single robot manipulator and also gives a brief insight into related planning
domains, such as multi-robot task planning, production scheduling, robot path planning,
etc. In [6], a modified TSP is introduced to obtain the optimal traveling schedule for a
3 DoF (degree of freedom) robot performing drilling / spot welding tasks.

Since the robot task execution is performed in the operational space and the robot
is controlled in the configuration space C, one obvious extension of the TSP algorithm
is the application of inverse kinematics (IK), as shown in [7] by introducing simplified
kinematic equations, in determining optimal task sequences. A further modification of the
TSP to account for multiple solutions of the inverse kinematics is presented in [8]. This
idea is extended in [9] combining task sequencing with path planning for an articulated
robot with obstacle avoidance in the robot’s 2D working environment. An adaptation
considering collision avoidance with static obstacles in the 3D real-word environment
is introduced in [10]. A further TSP modification is presented in [11] for the case of a
two-robot work cell. The robots are each modeled as first-degree B-spline curves to plan
collision-free motions. Kinematic and dynamic constraints, as well as collision avoidance
with the environment, are not considered. Another idea involving two robots is presented
in [12]. Therein, timed Petri nets and the uniform cell decomposition approach are used
to model the robot tasks and ensure collision-free operation. In all cases, the optimization
is performed offline using genetic algorithms (GA). The GA approach is extended in
[13] to account for the relative replacement of the robot base. A TSP approach for task
sequencing considering both robot kinematics and dynamics is proposed in [14] for a
fruit picking scenario. In [15], an asymmetric TSP algorithm for minimum-time motion
planning for point-to-point tasks is introduced, using predetermined travel times and
considering the cost dependency of the motion direction due to gravity and kinematics
without accounting for multiple IK solutions.

Task scheduling and trajectory or path planning are often closely coupled and are
considered in some applications as a combined planning framework. In [16], a batch
scheduling approach for pick-and-place task scheduling and motion coordination in
combination with velocity tuning for a dual-arm robot is presented. Alternatively, an
incremental scheduling method is considered for online coordination based on coordination
diagrams. A simultaneous task allocation and motion scheduling for a dual-arm robot
is also considered in [17] by introducing an offline constraint optimization problem. An
offline approach for multi-robotic task sequencing and path planning is presented in [18].
The problem is modeled as a multiple generalized TSP and solved based on a modified
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GA algorithm. The applications found in the literature are mainly concerned with
the offline optimization for repetitive tasks in which the cycle time is to be minimized.
The reported computation times are still not suitable for an online application with
dynamically moving target points.

1.2 Motion planning
Collision-free motion planning of robotic manipulators in dynamically changing environ-
ments requires algorithms capable of planning and updating robot trajectories in real
time. This research area has been widely studied in the last decades, presenting different
solutions and algorithms, mainly categorized as global and local planning methods. Path
and trajectory planning can also be considered separately by defining a geometric path
and then assigning a time law to it. The following gives a brief overview of related work,
focusing more on optimization-based approaches as more related to this work.

1.2.1 Sampling-base approaches

Sampling-based approaches such as rapidly-exploring random tree (RRT) [19] and proba-
bilistic roadmap (PRM) [20] are, especially in global motion planning, widely used for
path planning of robotic manipulators. They involve a time-consuming preprocessing
stage of sampling the collision-free configuration space and generating a graph-based
representation like a roadmap or a tree data structure. Sampling-based approaches are
well-suited for high-dimensional configuration spaces and can be successfully used for
path planning in multi-robot systems [21–23]. In [21], a PRM-based method consisting
of the composition of elementary roadmaps is presented and validated on simulations
using multi-robot arm systems in constrained environments. An adaptation of the RRT
algorithm for the discrete case of a graph (dRRT) is presented in [22], enabling rapid
exploration of high-dimensional configuration space for multi-robot motion planning. To
provide path-quality guarantees by identifying conditions for convergence to optimal
paths, an asymptotically-optimal extension of the dRRT approach is presented in [23],
denoted as dRRT*. Since these algorithms are computationally demanding, the paths
are computed offline followed by an open-loop execution, making them more suitable for
application in static working environments. To react on immediate environment changes
path deformation approaches like the elastic band method in [24] can be used. Prioritized
planning methods, like coordination along fixed independent paths and coordination
along independent roadmaps, as discussed in [25], can also be applied to avoid collisions in
a multi-robot system. A fixed-path coordination for two dual-arm robots in the presence
of assembly precedence constraints is discussed in [26]. Further coordination methods
are presented in [27] for the case when the robots’ paths are given and in [28] for the
case of offline computed robot trajectories, i. e., given paths along with velocity profiles.

Sampling-based approaches have been subject to various adaptations resulting in
algorithms capable of dealing with dynamically changing environments where continuous
replanning is needed. An asymptotically optimal and single-query algorithm for quick
replanning based on RRTs is presented in [29] (RRTX). For motion planning of robotic
arms in dynamic environments, an algorithm based on RRTs in configuration-time-space
(CT-RRT) is discussed in [30], where the path of the other arm is considered as a
dynamic obstacle. Continuous sampling-based replanning in [31] is achieved by parallelly
executing multiple RRTs as the robot executes the first action of the best motion plan
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from the previous planning period. In the context of probabilistic roadmap approaches,
dynamic roadmaps (DRM) are introduced in [32] for real-time path planning in changing
environments. Motion planning based on the composition of two separate DRMs for a
dual-arm robot is presented in [33], incorporating prioritized and coordinated planning
along fixed paths or graphs for collision avoidance. To follow the generated path, a model
predictive control (MPC) algorithm is proposed in [34], where an additional constraint is
optionally considered to avoid collisions locally in case the robot deviates from the path,
or the planner fails to find a valid path while replanning. MPC-based path-following
approaches are also presented in [35] and [36].

1.2.2 Optimization-based approaches

Local planning algorithms solve an optimization-based motion planning problem in
each sampling step and continuously update the robot motion plan without requiring
prior information on the working environment. One of the first and widely used local
planning approaches for collision-free trajectory generation are artificial potential field
methods proposed in [37]. These methods are mainly used for mobile robots [38] or single
manipulation arms [39] and consist of generating a potential field with repulsive terms in
the vicinity of obstacles and attracting terms at the target point. The generated artificial
forces, resulting from the gradient of the potential field, drive the robot away from the
obstacles toward the goal. In general, it is challenging to create a potential field with a
single minimum at the target point so that the planner can get stuck in local minima
and the robot fails to reach its target.

As an alternative to the artificial potential field approach, a local method for obstacle
avoidance based on the introduction of virtual velocity dampers and the existence of
separating hyperplanes is presented in [40] and described in more detail in [41] and [42].
The algorithm can also be applied to multi-robot systems by representing each manipulator
link by a hierarchical description with convex volumes (primitives) to efficiently update the
environment model as the robots move. This results in an optimization problem, where
collision avoidance is translated into geometric constraints in the robot configuration
space. Before the constrained optimization problem is solved, a list of primitive pairs lying
at a distance less than a threshold is computed, which need to be separated. However,
the computation times achieved when applying this method are unsuitable for online
applications. The velocity damper approach is extended in [43] to replace the local
planner with a boundary following method and avoid local minima. The algorithm is
evaluated using simulations with robot systems consisting of two and three robots, having
five DoF each. Although it is stated to be real-time capable, no computation times are
given, and no implementation in an experimental setup is realized. A further extension
is proposed in [44] for the use of non-strictly convex objects as geometric models.

Another optimization-based algorithm for online planning of collision-free robot trajec-
tories involving two robot manipulators is presented in [45]. The parts of the robots are
modeled by spherical shells, generating a geometric representation of the manipulators
and their surroundings by a list of geometric primitives. Given the geometric model, a
distance check is performed and a set of linear inequality constraints on the joint velocities
is computed. Only the joint velocities are used as optimization variables, resulting in a
convex optimization problem with a quadratic cost function minimizing the error between
the actual and the desired end-effector velocity. This algorithm falls in the category of
prioritized planning [46] since the first robot follows a preprogrammed trajectory, and the
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second one has to reach a target while accounting for collision avoidance with the other
robot. A multi-robot trajectory optimization approach using the alternating direction
method of multipliers (ADMM) is proposed in [47]. This approach requires the existence
of a strictly feasible initial trajectory, and the presented computation times are, for a
setup with two robotic arms, not applicable for online applications. A local optimization
approach for multi-arm payload manipulation is presented in [48]. However, the paper
focuses on the teleoperation-based simultaneous guidance of multiple collaborative arms
without considering any collision avoidance constraints.

CHOMP [49] and TrajOpt [50] represent two optimization-based algorithms for motion
planning which can cover a wide range of robotic applications, mainly in static envi-
ronments. The performance of the planners highly depends on the provided trajectory
initialization. In some cases, an optimization problem needs to be solved to obtain an
initialization trajectory, or multiple trajectory initialization is required to find a feasible
solution. Both algorithms formulate trajectory planning as an unconstrained optimiza-
tion problem penalizing the smoothness of the path and the proximity to obstacles.
Implementing collision avoidance as penalties in the cost function has the drawback that
the planner can converge to local minima of the cost function, which do not correspond
to collision-free robot motions. These algorithms are mainly used in simulations since
they rely on a geometry representation of the working environment. This poses a chal-
lenge when transferring the motion planning from simulation to reality and involves
a preprocessing stage. Depending on the application, additional sensors like cameras
and laser scanners may be required to generate the geometry representation using voxel
grids (CHOMP) or meshes (TrajOpt), or additional software tools like OpenRAVE have
to be considered. In addition, CHOMP and TrajOpt are not complete planners, and
postprocessing of the generated paths is required when using ROS (Robot Operating
System) to send control commands to a real robot. For the considered robot arms, this
involves the motion planning framework MoveIt adding additional processing time in the
control loop. This, combined with the lack of robustness in ensuring collision-free motion
planning, makes them less suitable for real-world applications with dynamic target points
where continuous replanning is required.

MPC algorithms are increasingly used in the field of robot manipulators not only for
following a given path, but also for point-to-point trajectory generation. A predictive
control algorithm as a fixed-time optimization problem is proposed in [51], in which
the deviation of states and control inputs are penalized. Some approaches regarding
time-optimal MPC concerning stabilizing properties, real-time application and achieving
minimum number of control interventions can be found in [52] and [53]. In [54], an MPC
algorithm for reference tracking combined with a sliding mode controller for uncertainties
compensation is introduced. An MPC-based framework for semiautonomous teleoperation
of a robot manipulator, including collision avoidance with the environment, is presented
in [55]. Collision avoidance with dynamic obstacles is considered in [56] in the context
of a human-robot collaboration, where the robot parts and the dynamic obstacles are
modeled using convex objects. Further MPC-based approaches considering single robot
manipulators are presented in [57], [58] and [59]. Considering two robotic manipulators,
a hierarchical approach for MPC-based time-optimal planning is described in [60]. For
collision avoidance, a standard approach is considered by modeling the robot’s shape and
obstacles using a composition of spheres and swept sphere lines. Collision avoidance is
ensured by imposing minimum distance constraints. The algorithm is validated on a simple
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experimental setup using two planar robot arms with two DoF each. Recent publications
on MPC and dual-arm manipulation focus on cooperative object transportation without
considering collision avoidance between the robot arms, see, e. g., [61], [62].

The listed planning algorithms encounter limitations when implementing motion
planning on real applications with robots sharing a common workspace with dynamically
moving target points. ADMM, for instance, requires a strictly feasible (collision-free)
initial trajectory which is difficult to provide. The PRM-based approach [33] requires
offline preprocessing and the outcome is a prioritized path planning which requires an
additional path-following algorithm to finally generate the control inputs for the robot
arms. Experimental results presented in [45] using an interior-point optimizer also result
in prioritized planning with one robot following a preprogrammed trajectory. CHOMP
and TrajOpt require pre- and postprocessing for an adequate environment representation
and compatibility with the ROS interface and do not guarantee collision-free motion.

1.3 Path-following control
Path-following control is often encountered in various fields involving autonomous systems,
such as mobile robots and robotic arms, unmanned aircraft systems (UAS), unmanned
ground vehicles (UGV), and, more recently, autonomous driving cars. In path-following
applications the controlled system is guided to a predefined reference path, and the system
follows it as accurately as possible while accounting for relevant kinematic and dynamic
limitations. The geometric reference path is often, especially in mobile robotics for use
in indoor environments with static obstacles, generated by applying sampling-based
approaches such as the already mentioned RRT [19] and PRM [20] methods.

Optimal control methods based on MPC are widely applied in different applications
for the design of path-following controllers, see, e. g., [63–65]. In [63] and [65], the path-
following problem is formulated in the Frenet-Serret frame considering an omnidirectional
mobile robot, respectively, an autonomous driving car. An MPC-based controller for
trajectory tracking and path following of underactuated two- and three-dimensional
moving vehicles is addressed in [64]. Focusing on path tracking for automated road
vehicles, [66] provides a comprehensive overview and classification of different MPC
formulations published in recent years. In [67], a path-following predictive controller
for nonlinear constrained systems is presented, and sufficient stability conditions are
provided. The approach is evaluated on simulations using a simplified kinematic vehicle
model. Further predictive-based path-following approaches are introduced in [68] and
[69]. While other presented approaches mainly use nominal prediction models, in [69], a
disturbance observer-based MPC scheme for nonholonomic vehicles with coupled input
constraints and disturbances is considered. Recently, an MPC approach implemented
using deep neural network (DNN) is introduced in [70] for camera-based lane-following
control of an autonomous vehicle. In addition to MPC, further path-following control
methods like backstepping [71] and feedback linearization [72] can also be used.

Towards minimum-time path-following strategies, a model predictive contouring control
(MPCC) approach is presented in [73] as an extension to [67], aiming to minimize the
distance to a given reference path while maximizing the progress along it. This method
is reformulated in [74] in the form of a local MPCC algorithm, suitable for real-time
collision-free navigation of a mobile robot in indoor environments. However, the focus lies
on following a given reference path and velocity while accounting for collision avoidance
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with static and dynamic objects. A predictive contouring control method for time-optimal
quadrotor flight is introduced in [75], aiming to find a trade-off between path progress
maximization and minimizing path error.

1.4 Goal and overview of this work
The main purpose of this work is to develop optimization-based approaches for task
scheduling and collision-free trajectory planning of robot manipulators relevant to specific
use cases motivated by existing industrial applications. With the goal of increasing
the efficiency of robotic systems involving single or multiple robot manipulators, time
criteria are considered as performance indicators for algorithm development. By deploying
multiple robots in the presence of various tasks from different classes, the idea is to
compute an optimal distribution of the tasks among the robots by satisfying both task
and robot-relevant constraints. For fast and coordinated task execution, predictive control
methods are introduced, generating minimum-time robot trajectories online. A similar
motion planning strategy is introduced for a maximum speed path-following control of
an omnidirectional mobile robot, which can be equipped with two robotic arms forming
a flexible robotic workplace for indoor applications.

Time-optimal planning and control strategies in the sense of minimum-time robot task
and trajectory planning are known to lead to aggressive system behavior, enhancing the
need for fast and reliable control algorithms capable for online applications in dynamic
environments. Therefore, during the development, implementation and validation of
the algorithms, attention is also paid to the computation time to ensure that, especially
the algorithms for motion planning, are sufficiently fast to allow continuous replanning
at runtime. In addition, the idea is to develop novel algorithms that address the two
essential problems in robotic automation, task sequencing and trajectory planning, and
are easy to implement and use in existing industrial applications.

Compared to existing sampling-based path planning approaches, the proposed predic-
tive methods do not require a time-consuming prepossessing stage and generate robot
trajectories directly in the configuration space, which can be forwarded to the local robot
controller using ROS without involving additional path-following or motion generation
controllers. Moreover, as opposed to the mentioned optimization-based approaches, the
algorithms introduced in this work include relevant collision avoidance restrictions as
state-dependent constraints in the optimization problem, ensuring that computed feasible
solutions correspond to collision-free trajectories.

In order to lay the foundation for the algorithm development, Chapter 2 summarizes
the basics for the mathematical modeling of the considered robots. Using a systematic
approach, Section 2.1 presents the kinematics of the serial robot manipulator, including
forward and inverse kinematics in Section 2.1.1, respectively Section 2.1.2, followed by the
differential kinematics in Section 2.2. Section 2.3 gives an insight into the dynamics of the
robot manipulators and the analytic expression of the motion equations in closed form,
applying Lagrange formalism in Section 2.3.1 and Newton-Euler methods in Section 2.3.2.
The kinematics and dynamics of the considered omnidirectional mobile robot are described
in Section 2.4 and Section 2.5, respectively.

For high-fidelity robot simulation models, the dynamic parameters of the robot manip-
ulators are identified in Chapter 3. Therefore, the system model is expressed linearly
in a set of base inertial parameters estimated utilizing optimized trajectories. For the
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optimization-based generation of persistent excitation trajectory suitable for parameter
identification, a memetic algorithm is introduced, presented in [76], which represents a
metaheuristic combination of genetic and gradient-based algorithms.

Considering a single robot manipulator, Chapter 4 presents algorithms for task schedul-
ing and predictive-based trajectory planning by introducing two control structures, see,
[77], [78]. The hierarchic controller in Section 4.2 consists of two independent opti-
mization problems, an integer bilinear programming (IBLP) problem for computing
an optimal task execution sequence and a continuous nonlinear programming (NLP)
problem for online trajectory planning. For the task planning, two methods are presented
based on modifications of the TSP. Minimum-distance scheduling is performed in the
robot’s operational space by minimizing the Euclidean distance of the robot end-effector.
Minimum-time scheduling is introduced to minimize robot cycle time by transforming
the scheduling problem in the robot’s configuration space. A time-optimal algorithm is
presented for the MPC-based trajectory planning, making the robots reach the assigned
goals in the minimum possible time. The hybrid controller described in Section 4.3
combines the two optimization problems into a single algorithm for task and trajectory
planning by introducing a mixed-integer predictive control method.

Chapter 5 is dedicated to the cooperative synchronous execution of pick-and-place
tasks by two robot manipulators sharing a confined working environment. The robot
arrangement, in conjunction with the distributed tasks, leads to challenging robot motion
with high collision potential between the robot manipulators. Therefore, the hierarchic
control structure is extended to the case of a multi-robot system, introducing safety-
related constraints in both task scheduling and trajectory planning layers. By making
use of the high structural flexibility of the hierarchic controller, two architectures are
presented for the MPC-based trajectory planning layer: a centralized one common to
both robots [79], and a distributed MPC scheme where each robot has its local controller
[80]. Collision avoidance between robot manipulators is subject to nonlinear constraints
applied along the prediction horizon, increasing the dimension and computation time of
the trajectory planning problem. Therefore, this work presents a novel approach based
on a continuous approximation of the robot’s geometry and the introduction of tangent
separating planes, resulting in a nonlinear optimization algorithm capable of planning
collision-free robot trajectories online, see, [81], [82].

A path-following feedback controller for an omnidirectional mobile robot based on
nonlinear model predictive control is introduced in Chapter 6 as presented in [83]. The
problem is formulated in the Frenet-Serret frame with the predictive controller aiming
to drive the mobile robot approach and follow a parametrized geometric path while
maximizing the robot speed, i. e., the covered robot distance. With the goal of finding
a tradeoff between path-tracking error and maximum possible speed, an automatic
procedure is used to select suitable weighting parameters for the controller.

Chapter 7 presents suitable modifications of the introduced optimization-based algo-
rithms and their implementation on specific industry-related demonstrators. The focus
is more on integrating robot manipulators into existing manual processes to increase
automation and efficiency. A simplified pipeline of indoor navigation is presented for the
mobile robot, using existing methods for localization and global path planning and the
proposed predictive controller for maximum speed path-following control.

Finally, some concluding remarks in Chapter 8 finalize the work and give a brief outlook
on possible future research topics.
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CHAPTER 2
Mathematical Modeling

Mathematical models build the basis for the design and development of advanced tech-
niques to understand, analyze, and control the behavior of physical systems. Considering
that robots equipped with end-effectors execute their tasks in the workspace W (opera-
tional space) and the motion control is realized in the robots configuration space C (joint
space), providing mathematical models that map between the robot configuration and
operational space is crucial for many robot applications. Depending on whether these
models describe the relation between the end-effector position and velocity to the position
and velocity of the robot joints or how forces and torques map to accelerations, they
represent kinematic or dynamic robot equations. There exist different approaches on how
to model and represent the kinematics and dynamics of robotic systems [84–88]. This
chapter provides basic information regarding the mathematical modeling of kinematics
and dynamics of robot manipulators and mobile robots. In particular, the modeling of
serial-linked robot manipulators with rigid links is considered, and the kinematic and
dynamic equations of the UR5 Robot from UniversΛl Robots1 are derived. In the
domain of mobile robots, there are various drive systems that result in different kinematic
and dynamic representations and constraints, thus impacting the planning and control of
robot motions. This chapter derives the kinematic and dynamic equations of a wheeled
mobile robot with an omnidirectional drive system.

2.1 Kinematics of robot manipulators
Robotic systems are composed of interconnected rigid bodies. In the case of robot
manipulators, the rigid robot parts -links- are connected by joints forming a kinematic
chain. In order to perform the kinematic analysis, each link is associated with at least
one body-attached coordinate system. The motions of the rigid bodies and the entire
kinematic chain can be expressed as a combination of rotation and translation motions in
conjunction with transformations between the different body-related coordinate systems.
Robot kinematic models determine the relation between the configuration and operational
space for kinematic quantities like position, velocity, and acceleration vectors. In this
section, based on rigid body motions, the forward and inverse kinematics of a serial robot
manipulator are derived. The forward and inverse position kinematics is followed by the
differential kinematics, describing the relation between the velocities in the operational
space and the joint space by computing the manipulator Jacobian.

1UniversΛl Robots
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2.1.1 Forward kinematics

Robot forward kinematics describes the position and orientation (pose) of robot parts
in the operational space as a function of the joint coordinates q = [θ1, . . . , θn]T ∈ C,
with n denoting the number of robot joints and θj , j ∈ {1, . . . , n}, the respective joint
angles. Mostly, the pose of the robot end-effector attached to the last robot link is of
interest when deriving the forward kinematic equations. By introducing a homogeneous
coordinate representation for the position vector, rotation, and translation operationals
from the coordinate system of robot link j to the coordinate system of link j − 1 can be
combined into a single homogeneous transformation of the form

Tj
j−1 =

[
Rj
j−1 j−1pj
0 1

]
. (2.1)

Here, Rj
j−1 ∈ SO(3)2 represents an orthogonal rotation matrix to transform a vector

expressed in the coordinate frame attached to link j to the coordinate system of link
j − 1. j−1pj denotes the vector from the origin of the frame of link j − 1 to the origin
of the frame attached to link j expressed in the frame of link j − 1. The vector 0 is
a row zero vector 01×3, and the value 1 a scale factor denoting that the transformed
homogeneous coordinates of the position vector correspond to the physical coordinates.
Considering an additional robot link, i. e., j − 2, the transformation from the coordinate
system of Link j to the coordinate system of link j − 2 is given by

Tj
j−2 = Tj−1

j−2 Tj
j−1 . (2.2)

The homogeneous transformation Tj
j−1 can be decomposed to pure translation and

rotation transformations in the form

Tj
j−1 = Tj

T j−1 Tj
R j−1 =

[
I j−1pj
0 1

] [
Rj
j−1 0
0 1

]
, (2.3)

with the 3 × 3 identity matrix I. Let i ∈ {x, y, z} denote the local axis of a coordinate
system, θ the rotation angle, and d the displacement length, a set of basic homogeneous
transformations is then defined by

TT (i, d) =
[

I dei
0 1

]
, TR(i, θ) =

[
Ri,θ 0

0 1

]
. (2.4)

Here, ei represent unit vectors of the respective coordinate axis and Ri,θ rotation matrices
by the angle θ about the axis i ∈ {x, y, z}, i. e.,

Rx,θ =

1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)

,Ry,θ =

 cos (θ) 0 − sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

,Rz,θ =

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

.
(2.5)

The 4 × 4 homogeneous transformation matrices of the form (2.1) represent a special
case of homogeneous coordinates, widely used in the fields of robotics and computer

2Special Orthogonal group of order 3.
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graphics. A set containing all these matrices is generated by the basic homogeneous
transformations (2.4) and is denoted by E(3)3 [87].

For a robot manipulator with n rigid links, the homogeneous transformation from
the coordinate system (onxnynzn) of the last link n to the inertial frame of reference
(o0x0y0z0) is given by

Tn
0 =

n∏
j=1

Tj
j−1 =

[
Rn

0 0pn
0 1

]
, (2.6)

with the rotation matrix Rn
0 and the vector 0pn from the center of the inertial frame

to the center of the frame attached to the last robot link. For a given rotation Re
n and

displacement npe of the end-effector relative to the coordinate frame (onxnynzn) of the
last robot link, the position and orientation of the robot end-effector in the inertial frame
is given by

Te
0 =

[
Rn

0 0pn
0 1

][
Re
n npe

0 1

]
=
[
Re

0 0pe
0 1

]
. (2.7)

Given that the columns of the rotation matrix Re
0 ∈ R

3×3 are unit vectors and
mutually orthogonal to each other, they define six independent constraints by nine matrix
elements, implying thus the existence of only three independent variables. Therefore, the
orientation of a rigid body, i. e., an arbitrary SO(3) rotation matrix, can be represented
using only three independent quantities [87]. In general, a minimal representation of the
special orthonormal group SO(m) requires m(m − 1)/2 parameters [89]. Let Re denote a
minimal representation of the rotation matrix Re

0 with only three angular parameters
ϕe(Re) ∈ R3 determining the orientation of the robot end-effector. The forward robot
kinematic equation describing the pose of the end-effector relative to the robot base can
then be written in the form

fkin(q) =
[

0pe
ϕe(Re)

]
(2.8)

as a function of the joint angles q = [θ1, . . . , θn]T.
In robotics, the Euler angles ϕ = [φ, ϑ, ψ]T are often used for the minimal representation

of a rigid body orientation in space. There exist two minimal parametrizations of rotations
using the Euler angles obtained by composing a ZY Z or ZY X (Roll-Pitch-Yaw) sequence
of three basic rotations (2.5), i. e.,

RZY Z(ϕ) = Rz,φRy,ϑRz,ψ , (2.9)

respectively
RZY X(ϕ) = Rz,φRy,ϑRx,ψ . (2.10)

Both minimal representations are subject to representational singularities that have to
be taken into account. For a given end-effector rotation matrix Re

0 and its minimal
representation Re using Euler angles, e. g., Re(ϕe) = RZY Z(ϕe), the set of Euler angles
ϕe(q) corresponding to Re

0(q) is determined by solving the inverse problem considering
that Re

0(q) != Re(ϕe). For more information regarding the parametrization of rotations
and solving the inverse problem of computing the minimal angles see, e. g., [87] and [89].

To compute and analyze the kinematics of the robot, each link j is associated with a
rigidly attached coordinate frame (ojxjyjzj). Regarding the distribution of the coordinate

3Euclidean group of order 3.
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frames, no further assumptions have been made so far. They can even be assigned to
lie outside the physical link itself, provided they are rigidly attached to them. This
means that, when the robot joint j is actuated, the link j and the frame attached to
it undergo a movement that results in no change in the pose of the coordinate frame
(ojxjyjzj) relative to link j. However, for the choice of coordinate systems, a standard, the
Denavit-Hartenberg convection, has been established, which entails further simplifications
in the systematic description of the geometry of industrial robots.

2.1.1.1 Denavit-Hartenberg convection

When deriving the homogeneous transformation matrices of the form (2.1), it is to
be expected that six parameters are needed, three for the position and three for the
orientation to describe the pose of a robot link in the kinematic chain relative to the
pose of the preceding link. The Denavit-Hartenberg (DH) convection [90] uses only
four parameters to describe the spatial relationship between the coordinate frames of
two successive links, by introducing two constraints to the placement of the frames [87],
namely:

1. The axis xj is perpendicular to the axis zj−1.

2. The axis xj intersects the axis zj−1.

Following the DH convection each homogeneous transformation matrix can be expressed
as a function of four parameters, two link (link length aj and twist angle αj) and two
joint (offset length dj and joint angle θj) parameters, and can be represented as a product
of four basic transformations (2.4). However, there exist two, respectively, three popular
representations for the kinematics of serial manipulators based on the DH convection:

• Classical DH convention

• Modified DH convention
– Corke notation
– Khalil-Kleinfinger notation

Regardless of the notation used, given the correct choice of the DH parameters, all
convections lead to the same result, i. e., the same end-effector pose relative to the inertial
frame. Nevertheless, each representation has its technical benefits and drawbacks. The
differences and commonalities between different DH convection are discussed in [91] and
[92]. In the following, we will briefly describe the classical and modified DH formalism
for serial-linked robot manipulators with rotary joints.

Classical DH convection

The classical DH representation is the standard convection originally introduced by
Danavit and Hartenberg [90], which consists of attaching the link coordinate frames to
the far (distal) end of each link. Following this approach the DH parameters are defined
as follows:
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• αj is the angle from the zj−1 axis to the zj axis about the xj axis;

• aj is the distance from the origin oj of the (j)-th coordinate frame (ojxjyjzj) to
the intersection of the xj and zj−1 axes along the xj axis, i. e., the distance from
the zj−1 axis to the zj axis along the axis xj ;

• θj is the joint angle from the xj−1 axis to the xj axis about the zj−1 axis;

• dj is the offset distance from the origin oj−1 of the (j−1)-th frame to the intersection
of the zj−1 axis with the xj axis along the zj−1 axis, i. e., the distance from the
xj−1 axis to the xj axis along the axis zj−1;

Using the classical DH parameters the homogeneous transformation between link j
and j − 1 is given as a product of four basic transformations, two rotations and two
translations, i. e.,

Tj
j−1 = TR(z, θj)TT (z, dj)TT (x, aj)TR(x, αj)

=


cos (θj) − sin (θj) cos (αj) sin (θj) sin (αj) aj cos (θj)
sin (θj) cos (θj) cos (αj) − cos (θj) sin (αj) aj sin (θj)

0 sin (αj) cos (αj) dj

0 0 0 1

 .
(2.11)

Modified DH convection: Corke notation

The modified DH parameters were first introduced by Craig in [84], where as opposed to
the classical convection, the link coordinate frames are attached to the near (proximal)
rather than to the far (distal) end of each link. This modified notation is, in some ways,
clearer and tidier, and it is widely used and described in many robotics books [92]. By
using this approach, the DH parameters are defined as follows:

• αj−1 is the angle from the zj−1 axis to the zj axis about the xj−1 axis;

• aj−1 is the distance from the zj−1 axis to the zj axis along the xj−1 axis;

• θj is the angle from the xj−1 axis to the xj axis about the zj axis;

• dj is the distance from the xj−1 axis to the xj axis along the zj axis.

The homogeneous transformation matrix between two successive links is, in this case,
given by

Tj
j−1 = TR(x, αj−1)TT (x, aj−1)TT (z, dj)TR(z, θj)

=


cos (θj) − sin (θj) 0 aj−1

sin (θj) cos (αj−1) cos (θj) cos (αj−1) − sin (αj−1) −dj sin (αj−1)
sin (θj) sin (αj−1) cos (θj) sin (αj−1) cos (αj−1) dj cos (αj−1)

0 0 0 1

 .
(2.12)
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2.1 Kinematics of robot manipulators

Modified DH convection: Khalil-Kleinfinger notation

Khalil and Kleinfinger presented in [93] another modification of the DH convection, which,
analogous to the Corke notation, attaches the coordinate frames to the near (proximal)
end of each link. The difference to the Corke notation consists in the definition of the
two link parameter (aj , αj). The following parameters are required to define the (j)-th
frame relative to the frame (j − 1):

• αj is the angle from the zj−1 axis to the zj axis about the xj−1 axis;

• aj is the distance from the zj−1 axis to the zj axis along the xj−1 axis;

• θj is the angle from the xj−1 axis to the xj axis about the zj axis;

• dj is the distance from the xj−1 axis to the xj axis along the zj axis.

The homogeneous transformation matrix between two successive links resulting by
applying this modified DH convection is given by

Tj
j−1 = TR(x, αj)TT (x, aj)TR(z, θj)TT (z, dj)

=


cos (θj) − sin (θj) 0 aj

sin (θj) cos (αj) cos (θj) cos (αj) − sin (αj) −dj sin (αj)
sin (θj) sin (αj) cos (θj) sin (αj) cos (αj) dj cos (αj)

0 0 0 1

 .
(2.13)

The motivation behind this modification is to develop a method which can be used
easily and without ambiguity in tree structured and robots with closed kinematic chain
(closed-loop robots). Furthermore, attaching the coordinate frame (ojxjyjzj) to link j
such that axis zj is along the axis of joint j also simplifies the dynamic model of the
robot [88] and is therefore often commonly used in parameter estimation literature and
textbooks, see, e. g., [85, 86, 94].

2.1.1.2 Denavit-Hartenberg parameters of the UR5 robot

In this work, the UR5 robot from UniversΛl Robots is used for experiments, which
consists of seven links and six rotational joints, the base joint, shoulder joint, elbow joint
and three wrist joints. Hence, n = 6 holds for the considered robot arm. Link zero is the
robot mounting flange and is referred to as the robot base, and link six, i. e., wrist three,
is the tool flange.

To derive and analyze the forward and inverse robot kinematics the classical DH
convection is used. The resulting distribution of the coordinate frames for each link and
the corresponding DH parameters are shown in Figure 2.1 and Table 2.1, respectively.
The coordinate frame (o0x0y0z0), which represent also the inertial frame, is attached
to the robot base, and the last frame (o6x6y6z6) to the last robot link. The last robot
link is referred to also as the end-effector, since an end-effector is rigidly attached to
the tool flange. The tool offset and orientation can be systematically considered in the
homogeneous transformation, see (2.6) and (2.7). Hence, the homogeneous transformation
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2.1 Kinematics of robot manipulators

describing the position 0p6(q) and orientation R6
0(q) of the robot’s end-effector relative

to the base frame reads

Te
b(q) = T6

0(q) =
6∏
j=1

Tj
j−1(θj , αj , aj , dj) =

[
R6

0(q) 0p6(q)
0 1

]
, (2.14)

with the matrix Tj
j−1 from (2.11), the DH parameters from Table 2.1 and the vector of

the joint angles qT = [θ1, . . . , θ6].
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a3

d4

d5
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Figure 2.1: UR5 from UniversΛl Robots with coordinate frames and Denavit-Hartenberg
parameters according to the classical convection.

Table 2.1: Denavit-Hartenberg parameters for the UR5.

Link j αj(rad) aj(m) θj dj(m) Link j αj(rad) aj(m) θj dj(m)
1 π

2 0 θ1 0.089 4 π
2 0 θ4 0.109

2 0 −0.425 θ2 0 5 −π
2 0 θ5 0.094

3 0 −0.392 θ3 0 6 0 0 θ6 0.082

As already mentioned, the choice of the coordinate systems and the corresponding
DH parameters according to the Khalil-Kleinfinger notation leads to simplifications
in the dynamic robot model, which is particularly advantageous for parameter iden-
tification. Therefore, when deriving the robot model for parameter identification the
Khalil-Kleinfinger representation of the robot geometry is used, leading to the coordinate
frame assignment as depicted in Figure 2.2 with the modified DH parameters shown in
Table 2.2. Due to the choice of the coordinate frames where the first frame (o0x0y0z0)
is not attached to robot base and the last one not directly to the robots last link, two
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2.1 Kinematics of robot manipulators

additional translations are needed represent the pose of the end-effector relative to the
robot base, i. e.,

Te
b(q) = TT (z, d1)T6

0(q)TT (z, d6) . (2.15)

Here, d1 and d6 correspond to the offset distances from Table 2.1, as they do not occur
as parameters in the modified DH convection. The matrix

T6
0(q) =

6∏
j=1

Tj
j−1(θj , αj , aj , dj) , (2.16)

with the homogeneous transformation matrix Tj
j−1(2.13) and the DH parameters from

Table 2.2 represent the pose of the last coordinate frame relative to the first one.
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y5 z5
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a4

d4

d5

Figure 2.2: UR5 from UniversΛl Robots with coordinate frames and Denavit-Hartenberg
parameters based on the modified DH representation following the Khalil-Kleinfinger notation.

Table 2.2: Modified (Khalil-Kleinfinger) Denavit-Hartenberg parameters for the UR5.

Link j αj(rad) aj(m) θj dj(m) Link j αj(rad) aj(m) θj dj(m)
1 0 0 θ1 0 4 0 −0.392 θ4 0.109
2 π

2 0 θ2 0 5 π
2 0 θ5 0.094

3 0 −0.425 θ3 0 6 −π
2 0 θ6 0

16



2.1 Kinematics of robot manipulators

2.1.2 Inverse kinematics

In comparison to forward robot kinematics, which deals with determining the pose
of the end-effector for given joint coordinates q, inverse kinematics (IK) is concerned
with the inverse problem of finding the joint variables as a function of the end-effector
position and orientation. The inverse kinematics problem is generally more complex
than forward kinematics because it involves solving nonlinear equations where multiple
solutions might exist, and sometimes even no solution exists for some desired poses. The
existence of multiple IK solutions implies that different joint angle configurations lead
to the same end-effector pose. Two approaches can be used to determine the inverse
kinematics: a closed-loop analytic solution based on geometric and algebraic equations
or an iterative numerical solution. The method preference usually depends on the robot
and the application since there is no general approach to derive the inverse kinematics
of serial-linked robot manipulators. The analytical solution of the considered UR5
robot is discussed in many technical reports and paper, see, e. g., [95–98]. Based on
the approach presented in [95], the following describes how the inverse kinematics is
calculated analytically in a more systematic way.

x0

y0

z0

θ1

x1

y1

z1

x5

y5

z5
x6

y6

z6

d6

d4

1p5
0p5

0p6

Figure 2.3: Schematic illustration for computing the joint angle θ1.

For a given position 0p6 = [0p6x, 0p6y, 0p6z]T and orientation of the robot end-effector
relative to the base frame, the homogeneous transformation matrix can be written as

T6
0 =

[
R6

0 0p6
0 1

]
=


0 x̂6x 0 ŷ6x 0 ẑ6x 0p6x

0 x̂6y 0 ŷ6y 0 ẑ6y 0p6y

0 x̂6z 0 ŷ6z 0 ẑ6z 0p6z
0 0 0 1

 , (2.17)

where the columns [0i6x, 0i6y, 0i6z]T, i ∈ {x̂, ŷ, ẑ} represent unit vectors defining the axis
of end-effector frame relative to the robot base expressed in the coordinate frame of the
latter one. To find the joint angle θ1, firstly the homogeneous transformation matrix from
the coordinate frame (o5x5y5z5) to the frame (o1x1y1z1) as function of the end-effector
pose is computed in the form

T5
1 = T0

1(θ1)T6
0T5

6(θ6) , (2.18)
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2.1 Kinematics of robot manipulators

with T0
1 =

(
T1

0
)−1 and T5

6 =
(
T6

5
)−1. For the position vector 1p5 from the origin o1

to the origin o5 expressed in the coordinate frame (o1x1y1z1), eT
z 1p5 = d4 holds, see

Figure 2.3, yielding

eT
z 1p5 = T5

1[3, 4] = (0 ẑ6yd6 − 0p6y) cos (θ1) − (0 ẑ6xd6 − 0p6x) sin (θ1) != d4 , (2.19)

where T[3, 4] denotes the matrix element in the 3-rd row and 4-th column. Equation
(2.19) can be written in a simplified form by computing the position vector of the origin
o5 relative to the robot base frame, i. e.,

0p5 = 0p6 + R6
0

 0
0

−d6

 =

0p6x − 0 ẑ6xd6

0p6y − 0 ẑ6yd6

0p6z − 0 ẑ6zd6

 =

0p5x

0p5y

0p5z

 (2.20)

and substituting the first two components of (2.20) into (2.19). The resulting equation

−0p5y cos (θ1) + 0p5x sin (θ1) = d4 (2.21)

can then be written as

−
√

0p
2
5x + 0p

2
5y(sin (γ1) cos (θ1) − cos (γ1) sin (θ1)) = d4 , (2.22)

with γ1 = arctan (0p5y/0p5x). Finally, the two solutions for θ1 corresponding to the robot
shoulder configurations "left" and "right" are given by

θ1 = arctan
(

0p5y

0p5x

)
± arccos

 d4√
0p

2
5x + 0p

2
5y

+ π

2 . (2.23)

The angle θ1 is always defined if an inverse solution exists since there is no possible robot
configuration which results in

√
0p

2
5x + 0p

2
5y ≤ |d4|, see Figure 2.3.

Next, the joint angle θ5 is computed using the projection of the position vector 1p6 on
the z1-axis of the coordinate frame (o1x1y1z1), i. e.,

eT
z 1p6 = T6

1[3, 4] = 0p6x sin (θ1) − 0p6y cos (θ1) != d4 + d6 cos (θ5) , (2.24)

which depends on θ5 and the previously computed angle θ1, see Figure 2.4. Here,
T6

1 = T0
1T6

0 represents the transformation of the given end-effector pose T6
0 (2.17) to

the coordinate frame of link one by applying the inverse of the homogeneous transfor-
mation T1

0 from (2.11). Note that equation (2.24) can also be derived in a systematic
way by comparing the given pose of the end-effector relative to the coordinate frame
(o1x1y1z1) with the computed end-effector pose by successively applying the homogeneous
transformation (2.11) from link six up to link one, i. e.,

T0
1(θ1)T6

0
!=

6∏
j=2

Tj
j−1(θj , αj , aj , dj) . (2.25)

Using (2.24), the two solutions for the angle θ5 corresponding to the robot wrist being
"up" or "down", respectively, are given by

θ5 = ± arccos
(

0p6x sin (θ1) − 0p6y cos (θ1) − d4
d6

)
. (2.26)
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Figure 2.4: Schematic illustration for computing the joint angle θ5.

This solution is defined as long as the argument of arccos (·) has a magnitude not greater
than one, or |0p6x sin (θ1) − 0p6y cos (θ1) − d4| ≤ |d6|.

The joint angle θ6 is determined by analyzing the z1 axis of the coordinate frame
(o1x1y1z1), which, as can be seen in Figure 2.5, is always parallel to the z2 and z3 axes
of the respective coordinate frames. Therefore, seen from the coordinate frame of the
end-effector the orientation [6 ẑ1x, 6 ẑ1y, 6 ẑ1z]T of the z1 axis depends only on the angles
θ5 and θ6

R1
6 ez =

6 ẑ1x

6 ẑ1y

6 ẑ1z

 =

 cos (θ6) sin (θ5)
− sin (θ6) sin (θ5)

cos (θ5)

 . (2.27)

Here, R1
6 denotes the rotation matrix from the coordinate frame of link one to the frame

of link six and ez = [0, 0, 1]T is the unit vector. Next, we compute the orientation of the
z1 axis as function of the end-effector pose by computing first the orientation relative to
the base frame, i. e.,

R1
0 ez =

0 ẑ1x

0 ẑ1y

0 ẑ1z

 =

 sin (θ1)
− cos (θ1)

0

 . (2.28)

and transforming it back to the end-effector frame by multiplying with the inverse
R0

6 =
(
R6

0
)−1 of the rotation matrix from (2.17), yielding6 ẑ1x

6 ẑ1y

6 ẑ1z

= R0
6

0 ẑ1x

0 ẑ1y

0 ẑ1z

=

6 x̂0x 6 ŷ0x 6 ẑ0x

6 x̂0y 6 ŷ0y 6 ẑ0y

6 x̂0z 6 ŷ0z 6 ẑ0z


 sin (θ1)

− cos (θ1)
0

=

6 x̂0x sin (θ1) − 6 ŷ0x cos (θ1)
6 x̂0y sin (θ1) − 6 ŷ0y cos (θ1)
6 x̂0z sin (θ1) − 6 ŷ0z cos (θ1)

 .
(2.29)

Equating the first two components of (2.27) and (2.29) leads

cos (θ6) = 6 x̂0x sin (θ1) − 6 ŷ0x cos (θ1)
sin (θ5) ,

sin (θ6) = −6 x̂0y sin (θ1) + 6 ŷ0y cos (θ1)
sin (θ5) ,

(2.30)
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Figure 2.5: Schematic illustration for computing the joint angle θ6.

and finally, to the solution of the joint angle θ6

θ6 = arctan
(−6 x̂0y sin (θ1) + 6 ŷ0y cos (θ1)

6 x̂0x sin (θ1) − 6 ŷ0x cos (θ1)

)
. (2.31)

Note that for sin (θ5) = 0, which also results in both numerators of (2.30) being zero,
the solution is undetermined. This corresponds to the robot configuration where the axis
z6 and z5 are aligned collinearly with axes z1, z2, and z3, as shown in Figure 2.5. In this
case θ6 can be set to an arbitrary value between [−2π, 2π].

With the determined joint angles θ1, θ5 and θ6 the transformation matrices T1
0, T6

5
and T5

4 are known, allowing us to define the pose of the coordinate frame (o4x4y4z4)
relative to the frame (o1x1y1z1) of link one as a function of the given end-effector pose
T6

0 in the form
T4

1 = T0
1(θ1)T6

0T4
6(θ5, θ6) , (2.32)

where T0
1 =

(
T1

0
)−1 and T4

6 =
(
T5

4T6
5
)−1. The coordinates of the position vector 1p4

from the origin o1 to the origin o4 expressed in the frame of the first link are then given
by 1p4x = T4

1[1, 4], 1p4y = T4
1[2, 4] and 1p4z = T4

1[2, 4], where T4
1[i, j] denotes the matrix

element in i-th row and j-th column. As can be seen in Figure 2.6, the components 1p4x
and 1p4y of the vector 1p4 form with the DH parameters a2 and a3 a triangle on the
x1y1-plane. By applying the law of cosines, the determination of θ3 is then reduced to a
planar problem given by

1p
2
4x + 1p

2
4y = a2

2 + a2
3 − 2a2a3 cos (π − θ3) . (2.33)

The right-hand side of equation (2.33) can also be computed by successively applying
the homogeneous transformation (2.11) from link four up to link one since

T4
1 = T0

1(θ1)T6
0T4

6(θ5, θ6) !=
4∏
j=2

Tj
j−1(θj , αj , aj , dj) (2.34)
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Figure 2.6: Schematic illustration for computing the joint angle θ3.

holds true. From (2.33) the two solutions of joint angle θ3 corresponding to the robot
configurations "elbow up" and "elbow down" are given by

θ3 = ± arccos
(

1p
2
4x + 1p

2
4y − a2

2 − a2
3

2a2a3

)
. (2.35)

The solutions for the joint angle θ3 are defined for
∣∣∣1p2

4x + 1p
2
4y − a2

2 − a2
3

∣∣∣ ≤ |2a2a3|.
To determine the joint angle θ2 the pose T4

2 of the coordinate frame (o4x4y4z4) is
computed relative to the frame (o2x2y2z2) of the second link in the form

T1
2(θ2)T4

1
!=

4∏
j=3

Tj
j−1(θj , αj , aj , dj) , (2.36)

with T4
1 from (2.32) and the homogeneous transformations (2.11). Comparing the 2p4y

components of the vector 2p4, see Figure 2.7, yields

−1p4x sin (θ2) + 1p4y cos (θ2) = −a3 sin (θ3) , (2.37)

which can then be written as

−
√

1p
2
4x + 1p

2
4y(sin (θ2) cos (γ2) − cos (θ2) sin (γ2)) = −a3 sin (θ3) , (2.38)

with γ2 = arctan (1p4y/1p4x). Finally, the solution for θ2 is given by

θ2 = arctan
(

1p4y

1p4x

)
− arcsin

 −a3 sin (θ3)√
1p

2
4x + 1p

2
4y

 . (2.39)

The solution for θ2 is defined if the argument of arcsin (·) is within [−1, 1], which is always
the case if an inverse kinematics solution exists.
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Figure 2.7: Schematic illustration for computing the joint angles θ2 and θ4.

The last remaining joint angle θ4 can be computed by transforming the matrix T4
1

from (2.32) back to the coordinate frame (o3x3y3z3), i. e.,

T4
3 = T1

3(θ2, θ3)T4
1 =


3 x̂4x 3 ŷ4x 3 ẑ4x 3p4x

3 x̂4y 3 ŷ4y 3 ẑ4y 3p4y

3 x̂4z 3 ŷ4z 3 ẑ4z 3p4z
0 0 0 1

 !=


cos (θ4) 0 sin (θ4) 0
sin (θ4) 0 − cos (θ4) 0

0 1 0 d4
0 0 0 1

 .
(2.40)

Thus, θ4 can be determined from the direction of the x4 axis relative to the frame of link
three in the form

θ4 = arctan
(

3 x̂4y

3 x̂4x

)
. (2.41)

With the solutions for θ2 (2.39), θ4 (2.41), θ6 (2.31), and the respective double so-
lutions for θ1 (2.23), θ3 (2.35) and θ5 (2.26), there exist in total eight geometric robot
configurations (c = 8) which correspond to the same end-effector pose. Considering that
the revolute joints are limited to θj ∈ [−2π, 2π], j ∈ {1, . . . , n}, also the ±2π solutions,
i. e., θj − sgn(θj)2π, should be considered as possible solutions, resulting in 2n solutions
per robot configuration and 2nc possible joint configurations for a given end-effector
pose. Let p ∈ P denote a task point in the robot’s operational space W . This results for
the considered robotic arm with six rotational joints (n = 6) in a set Cp of 512 possible
joint configurations for a given task-related robot end-effector position and orientation.
This set is usually reduced to a set of feasible robot joint configurations since robots
typically operate in working environments surrounded by static obstacles, which limit
their operational space. Besides the presented analytical approach, several numerical
approaches exist to compute the robot joint configurations for a given end-effector pose,
which generally converge to a single solution.
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2.2 Manipulator Jacobian

The forward robot kinematics fkin(q) =
[

0pT
e ,ϕ

T
e
]T

from (2.8) represents the relation
between the robot joints q ∈ Rn and the pose of the end-effector in operational space
relative to the inertial frame. The time derivative of the forward kinematics equation
results in a set of equations [

0ṗe
ϕ̇e

]
=
[

Jp
Jϕ

]
q̇ = Jaq̇ (2.42)

describing the relationship between the velocities in the operational space W and joint
velocities q̇ ∈ Rn in configuration space C. In (2.42), Ja ∈ R6×n denotes the analytical
manipulator Jacobian with its translational Jp and rotational Jϕ parts. The name ana-
lytical refers to the analytical approach used to compute the Jacobian via differentiation
of the direct kinematics equation with respect to the joint variables, i. e.,

0ṗe = ∂0pe(q)
∂q q̇ = Jpq̇ , ϕ̇e = ∂ϕe(q)

∂q q̇ = Jϕq̇ . (2.43)

Computing the rotational analytical Jacobian Jϕ is not straightforward since it includes
determining the minimal representation angles ϕe(q) as function of the robot joints q
by solving an inverse problem, see Section 2.1.1. To avoid this, a geometric approach
can also be used to find the relationship between the velocities in joint and configuration
space as [

0ṗe

0ωe

]
=
[

Jp
Jω

]
q̇ = Jgq̇ , (2.44)

with the geometric Jacobian Jg ∈ R6×n, and its translational Jp and rotational Jω parts.
The geometric approach consists of determining the contributions of each joint velocity
to the end-effector linear 0ṗe and angular 0ωe velocity components in the form, see,
e. g., [85]

0ṗe =
n∑
j=1

∂0pe(q)
∂qj

q̇j =
n∑
j=1

jpj q̇j , 0ωe =
n∑
j=1

jωj q̇j . (2.45)

Considering revolute robot joints and the classical DH convection, which consist of
rigidly assigning a coordinate frame (oj−1xj−1yj−1zj−1) to robot joint j, the angular
joint velocity expressed in the local frame is given by

j−1ωj = j−1ez,j−1θ̇j , (2.46)

with j−1ez,j−1 = ez = [0, 0, 1]T. j−1ωj can also be referred to as the angular velocity of
link j relative to link j−1 expressed in the coordinate frame of the later one. Transforming
equation (2.46) to the inertial frame defines the contribution of joint velocity θ̇j to the
angular end-effector velocity

jωj q̇j = Rj−1
0 j−1ωj = 0ez,j−1θ̇j , (2.47)

where 0ez,j−1 = Rj−1
0 j−1ez,j−1. Finally, with q̇j = θ̇j , the geometric rotational Jacobian

can be written as

Jω =
[
jω1 jω2 · · · jωn

]
=
[

0ez,0 0ez,1 · · · 0ez,n−1
]
. (2.48)
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2.2 Manipulator Jacobian

To calculate the translational geometric Jacobian the end-effector pose relative to the
inertial robot frame is expressed as

0pe = 0pj−1 + Rj−1
0 j−1pj + Rj

0 j pe . (2.49)

The contribution of robot joint j to the end-effector linear velocity is determined by
allowing only joint angle θj to move and keeping all other joints still. The derivative of
(2.49) with respect to θj defines the j-th column of Jp, denoted as jpj , and is given by,
see, e. g., [87]

jpj = ∂0pe
∂θj

= ∂

∂θj

(
Rj−1

0 j−1pj + Rj
0 j pe

)
= Rj−1

0
∂j−1pj
∂θj

+ ∂Rj
0

∂θj
j pe

= 0ez,j−1 × (0pe − 0pj−1) .

(2.50)

The translational geometric Jacobian is then defined as

Jp =
[
jp1 jp2 · · · jpn

]
. (2.51)

For the translational Jacobian, the analytical and geometric approaches lead to the
same matrix. This is not the case for the rotational Jacobian since the analytic rotational
Jacobian depends on the used minimal rotation representation. If the Euler angles
ϕe = [φe, ϑe, ψe]T are used to parameterize the end-effector rotation, a relation between
the angular velocity 0ωe and the rotational velocity ϕ̇e can be found. The time derivative
of the rotation matrix resulting from the ZY Z Euler parametrization (2.9) is given by

ṘZY Z(ϕe) = S(0ωe)RZY Z(ϕe) , (2.52)

with the skew-symmetric matrix S and the angular velocity vector

0ωe = TZY Z(ϕe)ϕ̇e . (2.53)

Here, the matrix

TZY Z(ϕe) =

0 − sin (φe) cos (φe) sin (ϑe)
0 cos (φe) sin (φe) sin (ϑe)
1 0 cos (ϑe)

 (2.54)

represents a transformation matrix defining the relation between the time derivative of
the Euler angles and the angular velocities, see, e. g., [84, 85]. Combining equation (2.53)
with (2.42) and (2.44) yields the relation between the analytical and geometric Jacobian

Ja =
[

I 0
0 T−1

ZY Z(ϕe)

] [
Jp
Jω

]
(2.55)

provided det (TZY Z(ϕe)) ̸= 0.
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2.3 Dynamics of robot manipulators
Mathematical dynamic models in robotics describe the relation between applied general-
ized forces and the resulting robot joint motion and play a crucial role in the simulation
and control of robotic systems. In the literature exist different approaches mainly based
on Lagrangian and Newtonian mechanics, which are used to derive a closed mathematical
model of a dynamic system. The most commonly used modeling approaches in robotics
are the Lagrangian formalism, the Newton-Euler method, and the Projected Newton-
Euler method, which all result in an equivalent description of the dynamics in the form
of a multi-body dynamic system formulated as

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) . (2.56)

Here, τ ∈ Rn denotes the vector of generalized torques, q ∈ Rn denotes the vector of
generalized coordinates, M(q) ∈ Rn×n is the symmetric positive definite generalized
inertia matrix, C(q, q̇) ∈ Rn×n represents the coefficients of the centrifugal (proportional
to q̇2

i ) and Coriolis (proportional to q̇iq̇j , i ≠ j) forces and g(q) ∈ Rn is the vector of
potential forces. The dynamic model can be further extended by considering additional
phenomena like friction, joint elasticity etc. Equation (2.56) represents the inverse
dynamic model that, for a given set of robot parameters, provides joint torques as
function of joint positions, velocities and accelerations. Inverse dynamic models play an
important role in the design and operational of robotic systems, in computing torques
and selecting suitable actuators, or in identifying dynamic parameters. Given that
the generalized inertia matrix is positive definite, the robot joint accelerations can be
described in terms of the joint positions, velocities and torques, leading the direct dynamic
model

q̈ = M−1(q) (τ − C(q, q̇)q̇ − g(q)) , (2.57)

which is mainly used for simulation and testing purposes to analyze the performance of
applied control strategies, cf., e. g., [84].

2.3.1 Lagrange method

The Lagrange method provides an analytical approach for deriving the equation of motion
of physical systems and is closely related to the d’Almbert and Hamilton principles [99].
The main idea is to consider the motion of the robotic system in the configuration C space
by introducing a set of generalized coordinates that automatically satisfy the kinematic
constrains of the system. With the set of generalized coordinates q and generalized
velocities q̇, a scalar energy-based function called the Lagrangian function

L = T − U (2.58)

is defined, which for mechanical rigid body systems corresponds to the difference between
the total kinetic energy T and the total potential energy U . The equation of motion can
then be calculated using the Euler-Lagrange equations, known also as Euler-Lagrange
equations of the second kind, consisting of a system of second order differential equations
for the generalized coordinates q, i. e.,

d
dt
∂L

∂q̇j
− ∂L

∂qj
= τj , j = 1, . . . , n . (2.59)
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2.3 Dynamics of robot manipulators

The Lagrangian formalism is often used to derive the dynamic equations in closed
form, which are then used for controller design or to obtain a better insight into the
structure of the equations. It also exhibits high structural flexibility and allows systematic
consideration of various effects such as friction, joint elasticity, actuator transmission
system etc.

2.3.1.1 Kinetic and potential energy

The total kinetic energy T stored in the moving links and actuators of robot manipulators
is a function of the robot joint coordinates q and velocities q̇, and is given by

T =
n∑
j=1

(TLj + TAj) . (2.60)

Here, TLj = TLtj + TLrj and TAj = TAtj + TArj denote the kinetic energy of link j and
actuator j, respectively, consisting each of a translational (TLtj , TAtj) and rotational
(TLrj , TArj) component. In this work, lightweight robot manipulators are used, and it is
assumed that the mass of the stator of the actuator is considered in the mass distribution
of the link. Thus, the contributions of the translational kinetic energy of the stators are
included in the respective parts of the kinetic energy of the links given by

TLtj = 1
2mLj 0ṗT

Lcj 0ṗLcj , (2.61)

with the link mass mLj , and the velocity 0ṗLcj of the vector to the center of the mass
0pLcj expressed in the inertial frame. The rotational component of the kinetic energy of
link j is given by

TLrj = 1
2 0ωT

j Rj
0ΘLcj

(
Rj

0

)T
0ωT

j , (2.62)

where 0ωj represents the angular link velocity vector expressed in the inertial frame and
ΘLcj is the inertia tensor of link j with respect to its center of mass expressed in the local
body-attached frame. By applying the transformation Rj

0ΘLcj

(
Rj

0

)T
with the rotation

matrix Rj
0, the inertia tensor is transformed to the inertial frame of reference.

The total kinetic energy of the rotor j, including the transmission system of the
actuator, is calculated by

TAj = TAtj + TArj = 1
2mMj 0ṗT

Mcj 0ṗMcj + 1
2ΘAj q̇

2
j , (2.63)

with the rotor mass mMj , the velocity ṗMcj of the vector to the center of the mass
relative to the inertial frame, and the moment of inertia ΘAj = ι2jΘMj of the rotor
including actuator transmission. Assuming a rigid transmission, the transmission ratio ιj
of actuator j is given by the constant velocity relation ιj = q̇Mj/q̇j , with the joint velocity
q̇j and the angular rotor velocity q̇Mj . Note that, (2.63) neglects the gyroscopic effects of
the rotor, which take place due to the movement of the link where the actuator is rigidly
mounted. However, this approximation is justified by the fact that the actuators of the
considered lightweight robot have a relatively small rotor mass and high transmission
ratio [86].

The total kinetic energy of robot link j can be expressed as

TLj = 1
2mLj q̇TJT

pLj
JpLjq̇ + 1

2 q̇TJT
ωjR

j
0ΘLcj

(
Rj

0

)T
Jωjq̇ , (2.64)
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with the analytical translational Jacobian Jpcj and the geometric rotational Jacobian
Jωj given by

JpLj = ∂0pLcj

∂q , Jωj =
[

0ez,0 0ez,1 · · · 0ez,j−1 03×n−j
]
. (2.65)

Analogous, the total kinetic energy of actuator j is given by

TAj = 1
2mMj q̇TJT

pM jJpM jq̇ + 1
2 q̇TΘAjq̇ , (2.66)

with
JpM j = ∂0pMcj

∂q and ΘAj = diag([0, · · · ,ΘAj , · · · , 0]) . (2.67)

For simplicity, let 0pcj represent the vector to the center of mass of the combined body
of mass mj composed of link j and rotor of the actuators rigidly attached to it. The
total translational kinetic energy of link j is then written as

Ttj = 1
2mj 0ṗT

cj 0ṗcj = 1
2mj q̇TJT

pcjJpcjq̇ , with Jpcj = ∂0pcj
∂q . (2.68)

Finally, the total kinetic energy of the robot manipulator can be expressed as

T (q, q̇) = 1
2 q̇TM(q)q̇ , (2.69)

with the generalized inertia matrix

M(q) =
n∑
j=1

(
mjJT

pcjJpcj + JT
ωjR

j
0ΘLcj

(
Rj

0

)T
Jωj + ΘAj

)
. (2.70)

In this work, rigid robot links are assumed, and the elasticity between the motors and
the links is not considered. Thus, the total potential energy stored in the manipulator
corresponds to the sum of the potential energy of the individual links resulting from the
gravitational forces and is given by

U(q) = −
n∑
j=1

mj 0gT
0pcj (2.71)

Here, 0gT = [0, 0,−g] represents the vector of the gravitational acceleration g, that, with
respect to the inertial frame, always points towards the negative z0-axis. mj and 0pcj
denote the mass and the vector to the center of the mass of link j, including the actuator,
expressed in the inertial frame.

2.3.1.2 Generalized torque

For robot manipulators with serial links usually it is quite straightforward to obtain the
vector τ of generalized torques since the actuators act in the direction of the generalized
coordinates. If external torque and force vectors acting on the robot links are given
with respect to the local body-attached Cartesian frame, the generalized torques and
forces can be computed by projecting each Cartesian vector onto the space of generalized
coordinates using Jacobian matrices. Let jTj represent the Cartesian torque acting on
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robot link j expressed in the body-attached link frame. The generalized torques can then
be computed by

τ =
n∑
j=1

JT
ωj

(
Rj

0 jTj

)
, (2.72)

with the rotational Jacobian Jωj =
[

0ez,0, 0ez,1, · · · , 0ez,j−1 ,03×n−j] of link j, see (2.48),
and the transformation matrix Rj

0 expressing the torque vectors in the inertial frame.
Similarly, the contributions of external forces jFj can be computed by projecting the
Cartesian vectors using the translational Jacobian of the points where forces are acting.

For the UR5 robot manipulator with the body-attached coordinate frames shown in
Figure 2.1, the torque vectors in the local frames are given in Table 2.3, considering the
action-reaction principle of actuators acting between body links. Applying transformation
(2.72) with the Jacobian matrices (2.48) yields the generalized torque vector

τ =
[
τ1 τ2 τ3 τ4 τ5 τ6

]T
. (2.73)

Table 2.3: Torque vectors expressed in the local body-attached link frames.

Link j 1 2 3 4 5 6

jTj


0
τ1

0




0
0

τ2 − τ3




0
0

τ3 − τ4




0
τ4

−τ5




0
−τ5

−τ6




0
0
τ6



Robot joints and transmission systems exhibit friction phenomena, which are significant
for the performance of the robot manipulator. Assuming that there is no interaction
of the robot with the environment, the generalized torques can be divided into driving
torques τ d and friction torques τ f , i. e., τ = τ d − τ f . There exist different approaches
to model friction effects in control applications, mainly consisting of static or dynamic
models [100]. In robotics, usually static friction models are considered, which generally
consist of three parts: Coulomb friction, static friction, and viscous friction [84]. In this
work, a static friction model describing only the Coulomb and viscous components is
used, given by

τfj = Fcj sign (q̇j) + Fvj q̇j . (2.74)

The friction model is linear in the Coulomb Fcj and viscous Fvj friction parameters and
neglects nonlinearities due to Stribeck phenomena at low rotational speed. Considering
all joints j ∈ {1, . . . , n} of the robot manipulator, the generalized friction torque can be
written as

τ f = diag ([sign (q̇1), . . . , sign (q̇n)])Fc + diag ([q̇1, . . . , q̇n])Fv , (2.75)

where Fc = [Fc1, . . . , Fcn]T and Fv = [Fv1, . . . , Fvn]T.
The friction parameters are identified in Chapter 3 along with other dynamic robot

parameters. However, friction parameters highly depend on the operation conditions,
like temperature, lubrication type, humidity etc. Therefore, for some applications, online
methods are applied to estimate and compensate friction forces during runtime [84].
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2.3.1.3 Equation of motion

The equations of motion of a multibody robotic system obtained by applying the Euler-
Lagrange equations (2.59) are generally expressed in the form

M(q)q̈ + η(q, q̇) = τ d + τ ext , (2.76)

with the inertia matrix M(q) from (2.70) and the vector

η(q, q̇) = C(q, q̇)q̇ + g(q) − τ f (2.77)

containing centrifugal and Coriolis forces C(q, q̇)q̇, potential forces g(q), and generalized
friction forces τ f , see (2.75). τ d represents actuator driving torques and τ ext generalized
forces and torques due to the robot interaction with the environment.

The Coriolis matrix C(q, q̇) is computed directly from the inertia matrix by using the
Christoffel symbols of the first king defined as

cjlk = 1
2

(
∂mkl

∂qj
+ ∂mkj

∂ql
− ∂mjl

∂qk

)
, (2.78)

with mjl denoting the (j, l)th element of the generalized inertia matrix M(q). The (k, l)th

element of the Coriolis matrix is then given by, cf., e. g., [87],

C[k, l] =
n∑
j=1

cjlkq̇j . (2.79)

The vector of the generalized potential forces resulting from the potential energy U(q)
is given by

gT(q) = ∂U(q)
∂q . (2.80)

Finally, the equation of motions of the robot are given in the form (2.56), i. e.,

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2.81)

where τ = τ d − τ f + τ ext.

2.3.2 Newton-Euler methods

Newton-Euler formulation consists of a force balance approach and describes the motion
of the physical system in the Cartesian space. Iterative Newton-Euler methods are often
used in robotics for real-time computation of the inverse dynamic model by applying a
forward recursion for propagating link velocities and accelerations, followed by a backward
recursion for propagating forces and torques, cf., e. g., [84, 85].

In the Lagrange formulation, the equations of motion of a multibody system are derived
starting from the total Lagrangian of the system without the need to account for internal
reaction forces between the links. However, in the Newton-Euler formulation, each link
is separated at the joints and considered as a single unit. In this case, constraint forces,
which are imposed by the joints and limit the relative motion between links, must be
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introduced as external forces. Assuming rigid robot links, the Newton-Euler equations
for link j with respect to its center of mass are given by

mj 0p̈cj − 0Fcj (2.82)

Rj
0Θcj

(
Rj

0

)T
0ω̇j + 0ωj ×

(
Rj

0Θcj

(
Rj

0

)T
0ωj

)
− 0Tj . (2.83)

Here, 0p̈cj denotes the absolute acceleration of the link center of mass relative to the
inertial frame, and 0Fcj are the resultant external forces that act through the center of
the mass, expressed also in the inertial frame. Note that forces that do not act through
the center of mass have do be transformed to an equivalent force through the center of
mass and an additional torque term. The Euler equations (2.83) are also expressed with
respect to the inertial frame, where

0ωj =
j∑
i=1

jωiq̇i , with jωi = 0ez,i−1 , (2.84)

represents the angular velocity of link j relative to the inertial frame, see (2.45) and
(2.47). 0ω̇j is the absolute angular acceleration of link j, and 0Tj are the resultant
external torques. The constant inertia tensor Θcj = ΘLcj with respect to the center of
the mass of link j is transformed to the inertial frame using the rotation matrix Rj

0.
An advantage of the Lagrangian formulation is the ability to provide closed-form

equations of motion directly in generalized coordinates in compliance with kinematic
constraints imposed by constraint conditions between interconnected bodies. However,
Newton-Euler equations can be also used to analytically derive equation of motions in
Configuration space by projecting Cartesian forces and torques onto the space of general-
ized coordinates using Jacobian matrices. With the translational Jpcj and rotational Jωj
Jacobian the Newton-Euler equations can be written as mjJpcj

Rj
0Θcj

(
Rj

0

)T
Jωj

q̈+

 mjJ̇pcjq̇

Rj
0Θcj

(
Rj

0

)T
J̇ωjq̇ + Jωjq̇ ×

(
Rj

0Θcj

(
Rj

0

)T
Jωjq̇

)−
0Fcj

0Tj

 .
(2.85)

The first variational principle encountered in the science of mechanics is the principle of
virtual work, which controls the equilibrium of a mechanical systems and is fundamental
for the development of analytical mechanics [101]. If, for a mechanical multibody system
with constraint conditions, the principle of virtual works applies, then the dynamics of
the system can be analyzed without having to evaluate the constraint forces, cf., e. g.,
[85, 87, 99]. For mechanical manipulators with time-invariant, holonomic constraints,
the principle applies, denoting the fact that configuration constraints define forces which
do not perform work in the direction of the virtual displacements, i. e., infinitesimal
displacements consistent with the constraints.

Let δpcj denote the virtual displacement and δϕcj the variation of an infinitesimal
rotation of a local frame attached to the center of the mass of link j. For the virtual
displacements to be consistent with the joints, they must satisfy the equation[

δpcj
δϕcj

]
=
[
Jpcj

Jωj

]
δq . (2.86)
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Applying the expressions for virtual displacements of generalized coordinates δq and
evaluating the principle of virtual work for multibody systems yields the Projected
Newton-Euler formulation, see, e. g., [102],

0 =
n∑
j=1

(Jpcj

Jωj

T mjJpcj

Rj
0Θcj

(
Rj

0

)T
Jωj

q̈

+

Jpcj

Jωj

T
 mjJ̇pcjq̇

Rj
0Θcj

(
Rj

0

)T
J̇ωjq̇ + Jωjq̇ ×

(
Rj

0Θcj

(
Rj

0

)T
Jωjq̇

)−
Jpcj

Jωj

T0Fcj

0Tj

).
(2.87)

Following the assumptions made in Section 2.3.1 for the modeling of the robot arm
by considering a simplified rotor dynamics and neglecting a potential interaction of the
robot with the environment, the external forces and torques can be expressed in the form

n∑
j=1

JT
pcj0Fcj =

n∑
j=1

JT
pcj (mj0g) = −

(
∂U(q)
∂q

)T
(2.88)

and
n∑
j=1

JT
ωj0Tj = τ −

n∑
j=1

ΘAjq̈ . (2.89)

Regrouping terms in (2.87) results in the closed-form representation (2.81) of the robot
dynamic model, with the generalized inertia matrix

M(q) =
n∑
j=1

(
mjJT

pcjJpcj + JT
ωjR

j
0ΘLcj

(
Rj

0

)T
Jωj + ΘAj

)
, (2.90)

the Coriolis and centrifugal forces

C(q, q̇)q̇=
n∑
j=1

(
mjJT

pcjJ̇pcjq̇ + JT
ωj

(
Rj

0Θcj

(
Rj

0

)T
J̇ωjq̇ + Jωjq̇×

(
Rj

0Θcj

(
Rj

0

)T
Jωjq̇

)))
,

(2.91)
and the vector of gravitational forces

g(q) = −
n∑
j=1

JT
pcj (mj0g) . (2.92)

It is to be noted that by the analytic derivation of the equations of motion (2.87), the
linear momentum conservation law and the angular momentum conservation law are
expressed with respect to the same coordinate frame. However, since the projections lead
to a scalar product of a gradient with a vector, the Newton and Euler equations can be
expressed in different coordinate frames as long as the gradient and the corresponding
vector are defined with respect to the same coordinate frame. Given that the inertia
tensors Θcj are computed with respect to the local body-attached frames and thus
constant, it is convenient to define the projected Euler equations in the respective local
frames. In this case, the Jacobian Jωj has to be expressed also with respect to the
the same body-attached coordinate frames. On the other hand, the projected Newton
equations are generally expressed with respect to an inertial frame of reference.
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2.4 Kinematics of an omnidirectional mobile robot
Different drive mechanisms and wheel typologies are used in mobile robotics to design
robot platforms with high motion flexibility and maneuverability capable of performing
tasks in narrow spaces and environments with static and dynamic obstacles. Depending
on the type of wheels and motion capabilities, wheeled mobile robots can be classified into
two major categories, omnidirectional and nonholonomic [103]. Nonholonomic mobile
robots are subject to nonholonomic constraints imposing a specific relation between the
robot’s generalized coordinates qm and possible generalized velocities q̇m at any time,
preventing the robot from being able to move in any direction in a two-dimensional (2D)
plane. In contrast, holonomic or omnidirectional robots can perform complex motion
combinations in any direction. They usually employ non-steered omniwheels or mecanum
wheels, which are driven forward or backward and allow sideways sliding, imposing no
velocity constraints on the robot’s chassis [103]. This work considers an omnidirectional
mobile robot equipped with four mecanum wheels, as shown in Figure 2.8.
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zm
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α
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θ

ω1ω2

ω4ω3

Figure 2.8: Mobile robot with mecanum wheels4.

The kinematic model of a mobile robot describes the relation between the wheel speeds
ωm = [ω1, ω2, ω3, ω4]T and the robot’s chassis velocity represented by the generalized
velocities q̇m = [vx, vy, ω]T. In order to derive the kinematics of the mecanum wheeled
mobile robot, it is assumed that the robot is rolling without slipping on hard, horizontal,
flat ground. Each mecanum wheel consists of nine passive rollers mounted around the
wheel circumference. These rollers rotate freely about their rotation axis, which forms an
angle γ with the wheel’s rotation axis, see Figure 2.8. The coordinate frame (omxmymzm)
is attached to the robot chassis, and to each wheel is assigned a coordinate frame

4DONKEYmotion
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(owixwiywizwi), i ∈ {1, . . . , 4}, as schematically illustrated for wheel one. In addition,
the roller which is in contact with the ground is associated with a coordinate frame
(ocixciycizci) such that the frame origin is at the contact point and the x-axis shows in
the direction of the rollers rotation axis. The constant parameters α = arctan (b/a) and
l =

√
a2 + b2 describe the position of the wheel frame relative to the robot frame, and

the angle θ describes the orientation of the robot frame relative to the inertial frame.
Let 0pm represent the vector from the origin of the inertial frame (o0x0y0z0) to the

origin of the local robot frame (omxmymzm) expressed in inertial coordinates. The vector
0pw from the inertial frame to the center of the omnidirectional wheel, relative to the
inertial frame, is given by

0pw = 0pm + Rm
0 mpmw . (2.93)

Here, mpmw = Rw
m [l, 0, 0]T represents the position of the wheel center relative to the

local robot frame, with the rotation matrices Rw
m = Rz,(α− π

2 ),Rm
0 = Rz,θ from the wheel

to the robot frame and from the robot to the inertial frame, respectively. Given that
α = const., the velocity 0vw = 0ṗw of the wheel center is given by

0vw = 0vm + Ṙm
0 mpmw = 0vm + SRm

0 mpmw , (2.94)

with the skew-symmetric matrix S(ω) = Ṙm
0 (Rm

0 )T, where ω = θ̇. Transforming the
velocity vector to the local robot frame yields

(Rm
0 )T

0vw = (Rm
0 )T

0vm + (Rm
0 )T SRm

0 mpmw

mvw = (Rm
0 )T

0vm + Smpmw.
(2.95)

Using mvw, the velocity at the contact point of the wheel roller relative to the local robot
frame is given by

mvc = mvw + mωw × mrw = mvw +

0
ϕ̇
0

×

 0
0

−r

 = mvw −

rϕ̇0
0

 , (2.96)

with the angular wheel velocity vector mωw = [0, ϕ̇, 0]T and the wheel radius r. Express-
ing the velocity at the roller contact point with respect to the roller-attached coordinate
frame (ocxcyczc) by applying the transformation matrix Rc

m = Rz,(γ− π
2 ) yields

(Rc
m)T

mvc = (Rc
m)T

mvw − (Rc
m)T

rϕ̇0
0

 . (2.97)

Substituting (2.95) into (2.97) gives

cvc = (Rc
m)T (Rm

0 )T
0vm + (Rc

m)TSmpmw − (Rc
m)T

rϕ̇0
0



cvc =
[
(Rc

m)T +
[
0 0 1

ω
(Rc

m)TSmpmw

]]
(Rm

0 )T
0vm − (Rc

m)T

rϕ̇0
0

 ,
(2.98)

with
mvm = (Rm

0 )T
0vm =

[
vx vy ω

]T
(2.99)
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2.4 Kinematics of an omnidirectional mobile robot

representing the robot velocity relative to the local robot frame. The wheels rolling
without slipping condition at the contact point implies the constraint

eT
x cvc = eT

x (Rc
m)T

mvc = 0 , (2.100)

yielding the kinematic constraint equation for wheel i ∈ {1, . . . , 4}

[
sin (γi) − cos (γi) −l sin (αi − γi)

]vxvy
ω

 = riϕ̇i sin (γi) . (2.101)

The kinematic constraints for the four wheels are then given by
sin (γ1) − cos (γ1) −l sin (α1 − γ1)
sin (γ2) − cos (γ2) −l sin (α2 − γ2)
sin (γ3) − cos (γ3) −l sin (α3 − γ3)
sin (γ4) − cos (γ4) −l sin (α4 − γ4)


vxvy
ω

 =


r1ϕ̇1 sin (γ1)
r2ϕ̇2 sin (γ2)
r3ϕ̇3 sin (γ3)
r4ϕ̇4 sin (γ4)

 (2.102)

which, with the geometric parameters from Table 2.4 and q̇m = mvm, lead the following
inverse robot kinematics equation

ωm = Jmq̇m , with Jm = 1
r


1 1 l

√
2 sin (α+ π

4 )
1 −1 −l

√
2 sin (α+ π

4 )
1 1 −l

√
2 sin (α+ π

4 )
1 −1 l

√
2 sin (α+ π

4 )

 , (2.103)

where Jm ∈ R4×3 is the Jacobian matrix with constant parameters, ωm = [ϕ̇1, . . . , ϕ̇4]T,
and r = ri,∀i ∈ {1, . . . , 4}. An omnidirectional mobile robot requires at least three
wheels to achieve an arbitrary motion on a 2D plane. For a mobile robot equipped
with more than three wheels the forward kinematics equations are overdetermined, i. e.,
rank (Jm) = 3. The forward kinematics can be obtained by applying the Least Squares
approach

min
q̇m

||ωm − Jmq̇m||22 , (2.104)

leading the optimal solution

q̇m =
(
JT

mJm
)−1

JT
mωm = J†

mωm , (2.105)

with the Moore-Penrose pseudoinverse matrix

J†
m = r

4


1 1 1 1
1 −1 1 −1
1

l
√

2 sin (α+ π
4 )

−1
l
√

2 sin (α+ π
4 )

−1
l
√

2 sin (α+ π
4 )

1
l
√

2 sin (α+ π
4 )

 .
(2.106)

Table 2.4: Geometric parameters of the mobile robot.
Wheel i 1 2 3 4
γi − π

4
π
4 − π

4
π
4

αi α π − α π + α 2π − α
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2.5 Dynamics of an omnidirectional mobile robot
The dynamics of a mobile robot can be derived analogous to the dynamics of robot
manipulators or other mechanical systems by applying the Lagrangian formalism or
the Newton-Euler equations. This section applies the Lagrange method to derive the
equation of motion for the introduced omnidirectional mobile robot with mecanum wheels.
Assuming that the robot is moving on a plane ground, the potential energy is considered
to be zero, resulting in the Lagrange function being equal to the total kinetic energy of
the system, i. e., L = Tm.

The translational kinetic energy of the mobile robot is given by

Tmt = 1
2mm 0ṗT

cm 0ṗcm , (2.107)

where 0ṗcm represents the absolute velocity vector of the center of the robot mass mm.
The position of the center of the mass relative to the inertial frame can be written as

0pcm = 0pm + Rm
0 mpcm , (2.108)

with the vector 0pm from the inertial frame to the origin of the body-attached robot
frame and mpcm representing the vector to the center of the mass relative to the local
robot frame. The velocity vector can be computed as

0ṗcm = 0vm + Ṙm
0 mpcm = Rm

0 mvm + Ṙm
0 mpcm , (2.109)

with mvm = q̇m, see (2.99), and finally expressed in the form

0ṗcm = Jpcm q̇m , (2.110)

where
Jpcm(θ, mpcm) = ∂0ṗcm

∂q̇m
(2.111)

denotes the Jacobian matrix. Substituting (2.110) into (2.107) yields the translational
kinetic energy

Tmt = 1
2mmq̇T

mJT
pcmJpcm q̇m . (2.112)

The rotational kinetic energy is given by

Tmr = 1
2Θcmθ̇

2 + 1
2

4∑
i=1

(
mwi(rωi)2 + Θwi ω

2
i

)
, (2.113)

with the moment of inertia Θcm of the robot around the z-axis (rotation axis) passing
through the center of the mass, the wheel masses mwi , and the moment of inertia Θwi

of the wheels around the rotation axis. Assuming identical mecanum wheels, equation
(2.113) can be written in the form

Tmr = 1
2 q̇T

mΘcmq̇m + 1
2
(
mwir

2 + Θwi

)
ωT

mωm , (2.114)

with Θcm = diag ([0, 0,Θcm]) and ωm = [ω1, . . . , ω4]T. By substituting the inverse
kinematics equation ωm = Jmq̇m, see (2.103), into (2.114), the total kinetic energy of
the robot can be expressed as

Tm = Tmt + Tmr = 1
2 q̇T

mMm(qm)q̇m , (2.115)
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2.5 Dynamics of an omnidirectional mobile robot

where
Mm(qm) = mmJT

pcmJpcm + Θcm +
(
mwir

2 + Θwi

)
JT

mJm (2.116)

is the generalized mass matrix. Not that, the mass matrix depends only on the coordinate
θ, i. e., Mm(qm) = Mm(θ), and the Coriolis matrix Cm(θ, θ̇) can be easily computed by
using the Christoffel symbols of the first king (2.78).

The external torque acting on the robot wheel i, neglecting friction phenomena of the
actuator, is given by τwi − Fcrir sign (ωi), see Figure 2.9, leading to the vector of the
external moments

Tm = τ w − diag ([r sign (ω1), . . . , r sign (ω4)])Fcr . (2.117)

Here, τ w = [τw1 , . . . , τw4 ]T represent the actuator torque vector, and Fcr = [Fcr1 , . . . , Fcr4 ]T
contains coefficients of friction forces acting at the contact point of the rollers. Let, mFm
represent the external force vector acting on the robot body, expressed with respect to
the local robot frame. For the power delivered to the mechanical system by the external
forces, respectively, torques, the following holds

TT
mωm = mF

T
mq̇m , (2.118)

yielding, using (2.103), the vector of the external forces

mFm = JT
mTm . (2.119)

Substituting (2.117) into (2.119) leads to

mFm = JT
mτ w − JT

mH(ωm)Fcr , (2.120)

with H(ωm) = diag ([r sign (ω1), . . . , r sign (ω4)]).
Finally, the equations of motion of the omnidirectional robot derived by applying the

Lagrange equations, i. e.,

d
dt

(
∂Tm
∂q̇m

)T
−
(
∂Tm
∂qm

)T
= mFm , (2.121)

can be expressed in the form

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + JT
mH(ωm)Fcr = JT

mτ w

ωm = Jmq̇m .
(2.122)

Note that the equations of motion are derived with respect to the local body-attached
robot frame but can easily transformed to the inertial frame or any other frame of
reference.

xm

zm xw1

yw1

r

ω1 τw1

Fcr1

Figure 2.9: External torque on a mecanum wheel.
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CHAPTER 3
Dynamic Parameter Identification

In advanced industrial robot applications, one is typically enforced to apply model-based
control techniques, such as Computed Torque control that rely on accurate mathematical
modeling of the robot manipulator at hand. These approaches are often afflicted with
insufficiently known values of dynamical parameters involving inertia elements, friction
parameters, etc. Robot manufacturers usually provide dynamic parameters, but they
are often incomplete or refer to specific application scenarios and thus do not cover
the versatility of different situations, like advanced applications with robot operation in
dynamic working environments. Consequently, estimating dynamic parameters is often a
mandatory step in developing appropriate control strategies.

This chapter presents a general procedure for parameter estimation of robot manipula-
tors, which makes use of a formulation of the dynamic robot model in terms of symbolic
parameter aggregates, i. e., a set of symbolic expressions involving multiple parameters.
Roughly speaking, in this approach, one strives to construct proper manipulation trajec-
tories that enable collections of data sets suitable for accurately estimating all involved
dynamic parameters. It is important to emphasize that the results of the identification
procedure are highly dependent on the synthesis of suitable identifying manipulation
trajectories, which typically amount to proper formulations of corresponding trajectory
planning optimization problems. The involved optimization problems generally feature,
due to the periodic and non-convex nature of the cost function and constraints, a large
number of local minima. The L2 norm condition number of the regressor matrix is
commonly chosen for the cost function. The optimization is further subject to constraints
to respect the physical robot limitations and avoid collisions between the robot links and
the working environment while computing persistent excitation trajectories. To solve the
resulting optimization problem gradient-based numerical local solvers [104], sometimes in
conjunction with multiple starting points [105], [106] can be applied. Genetic algorithms
(GA) have been also used for finding the global minima in certain problem classes, as
they are able to cover the whole search space [107–109].

In order to combine the advantages of the latter approaches, a customized metaheuristic
algorithm, named memetic algorithm, introduced in [76] and [110], is used. Memetic
algorithms (MAs), also known as "Hybrid Evolutionary Algorithms" (hybrid EAs),
combine different optimization ideas, such as population-based methods used in genetic
algorithms and local search methods, while trying to exploit any given knowledge about
the problem [111]. This chapter will study the benefits and efficiency of the proposed
computation technique in obtaining excitation robot trajectories suitable for highly
accurate parameter estimation of the UR5 robot.
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3.1 Identification model
The inverse dynamic model (2.81) of robot manipulators with rigid transmissions is linear
in the dynamic parameter vector ϱ ∈ Rnϱ and can be expressed in the form

τ d = W(q, q̇, q̈)ϱ , (3.1)

with the regression matrix W(q, q̇, q̈) ∈ Rn×nϱ , representing a key feature for identifying
dynamic parameters, see, e. g., [86], [89]. However, when applying the Lagrangian or
Newton-Euler formalism expressed with respect to the center of the mass of the links, see
Section 2.3.1 and Section 2.3.2, the resulting dynamic model is not linear in the inertial
parameters. For instance, the forces mj0p̈cj in the Newton equation (2.82) make use
of the mass mj and the constant vector j pocj of the center of mass relative to the link
coordinate frame, both subject to identification. Following the notation presented in [86],
the recursive Newton-Euler equations are reformulated and expressed with respect to the
origin oj of the local link frames (ojxjyjzj) in the form

Fj = mj p̈oj + ω̇j ×mj pocj + ωj × (ωj ×mj pocj)
Tj = Θoj ω̇j + ωj × (Θoj ωj) +mj pocj × ṗoj .

(3.2)

Applying recursively the regrouped Newton-Euler equations, results in a dynamic model
of the form (3.1), which is linear in the link parameters ϱj , ∀j ∈ {1, . . . , n}, cf., e. g.,
[112], [113]. The link parameters are composed of inertial and friction parameters and
can be written in the form

ϱj =
[
ϱT

Θj ϱT
Pj ϱT

mj ϱT
fj ϱT

Aj

]T
. (3.3)

Here, the parameter vector ϱT
Θj = [Θxxj ,Θxyj ,Θxzj ,Θyyj ,Θyzj ,Θzzj ] consists of compo-

nents of the constant inertial tensor Θoj expressed with respect to the origin oj of the
local link frame. ϱPj = mjpocj = [Pxj , Pyj , Pzj ]T represents the first moments of the
links, and ϱmj = mj is the mass of link j including all masses of the rotors attached
to it. The parameter vector ϱT

fj = [Fcj , Fvj ] contains the Coulomb and viscous Friction
parameters, and ϱAj = ΘAj is the rotor inertia.

The regression matrix W(q, q̇, q̈) depends on the robot’s geometry and is considered to
be known. Therefore, the modified DH convection is used, following the Khalil-Kleinfinger
notation with the body-attached coordinate frames shown in Figure 2.2 and the DH
parameters given in Table 2.2. Since some columns of W(q, q̇, q̈) are linearly dependent,
not all parameters can be identified. Some cannot be identified at all, because they do
not have any or have only a neglectable effect on the dynamic model. Others can only be
identified in linear combination with other parameters. Therefore, some columns of the
matrix and the according parameters are regrouped leading to a minimum set of linear
independent parameter, called base parameter set, that determines the dynamic model
completely.

The base parameter set is not unique and consists of the actual physical robot parame-
ters or a linear combination of those. There are numerous ways to reduce the model to
this set of parameters, e. g., numerically, using the singular value decomposition (SVD)
or QR decomposition [114] or symbolically by finding a Groebner basis, see, e. g., [115],
[116], of the equations. Deduced from the terms of the energy model of serial robots
there exists a closed form symbolic solution [117]. Following this approach, this work
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3.2 Excitation trajectory

applies symbolic regrouping with the workflow presented in [110]. The system dynamics
(3.1) expressed in the base parameters ϱb ∈ Rnϱ is then given by

τ d = Wb(q, q̇, q̈)ϱb , (3.4)

with the regression matrix Wb(q, q̇, q̈) ∈ Rn×nϱ . For the system identification, it is re-
quired for the robot to execute motion trajectories that can sufficiently excite the identified
dynamic parameters. During the experiment, measurements of τ d(ti),q(ti), q̇(ti), q̈(ti)
are taken at multiple time instances ti+1 ≥ ti, ti ∈ {t0, . . . tT }, and the system identi-
fication is reduced to an overdetermined linear parameter estimation problem of the
form

Xϱb = τ b , (3.5)

with the observation matrix X and the measured torque vector τ b given by

X =

 Wb(q(t0), q̇(t0), q̈(t0))
...

Wb(q(tT ), q̇(tT ), q̈(tT ))

 and τ b =

τ d(t0)
...

τ d(tT )

 . (3.6)

The optimization-based computation of a persistent excitation trajectory that satisfies
robot constraints generally leads to an infinite-dimensional problem. In the following
section, the trajectory-finding problem is reduced to a finite-dimensional optimization
problem by introducing parameterized robot trajectories.

3.2 Excitation trajectory
The quality of the robot base parameters, identified by solving the overdetermined system
(3.5) applying the Least Squares approach

ϱ̂b = X†τ b , (3.7)

with the pseudoinverse matrix X† =
(
XTX

)−1
XT, depends highly on the reference robot

trajectory. The entries of Wb(q, q̇, q̈) consist of functions with a variety of periodic terms
of the robot joints q, multiplied by velocity q̇, acceleration q̈, and gravity terms. This
implies that for certain possible data points, some terms might vanish. For some joint
configurations, the periodic terms or groups of periodic terms are zero, and if velocities
and accelerations are zero, the corresponding terms are zero, too. On the other hand,
to excite the gravity-dependent terms, a few positions without any robot movement
are sufficient. A good selection of data points that satisfies a sufficient excitation of
all relevant terms inside Wb(q, q̇, q̈) is provided by a persistently exciting reference
trajectory. Finding such a trajectory corresponds to solving a nonlinear optimization
problem of the form

min
q, q̇, q̈

fq(q, q̇, q̈)

s.t. qmin ≤ q ≤ qmax

|q̇| ≤ q̇max

|q̈| ≤ q̈max

gq(q)≤ 0 .

(3.8)
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3.2 Excitation trajectory

There exist many ideas how to choose the objective function fq(q, q̇, q̈) [85, 86, 118], e. g.,
the D-optimality criterion [105], or the Hadamard inequality [119]. The most common
is the condition number κ(X) = cond(X(q, q̇, q̈)), which describes how much the error
in the observation matrix will influence the solution ϱ̂b. The optimization must respect
constraints due to maximal joint range, velocities and acceleration, including nonlinear
constraints to prevent collisions with the robot’s workspace and between robot links.

Discretizing and solving the optimization problem (3.8) returns unconnected points
of configurations, which have to be connected to one trajectory. One possible way is to
apply interpolation (curve fitting) to the points [94], but the resulting trajectory is not
guaranteed to have the same objective function value. The standard way is to integrate
trajectory models and their parameters into the optimization model. Trajectory models
might be spline-variants [106] or variants of periodic excitation [120–123]. A popular
model is the trajectory parametrization by Fourier series, which, for robot joint j, is
given as follows

qj(t) =
K∑
k=1

(
ajk
kωf

sin(kωf t) − bjk
kωf

cos(kωf t)
)

+ qj0 . (3.9)

The fundamental angular frequency ωf is chosen to be equal for all joints to ensure
periodicity. ajk and bjk are the amplitudes for the 1 . . .K harmonic terms. qj0 is the offset
and the trajectory evolves along time t. The terms for the velocities and accelerations
are obtained by differentiating (3.9), i. e.,

q̇j(t) =
K∑
k=1

(ajk cos(ωfkt) + bjk sin(ωfkt)) ,

q̈j(t) =ωf
K∑
k=1

(kbjk cos(ωfkt) − kajk sin(ωfkt)) .
(3.10)

Substituting (3.9) and (3.10) in (3.8) for q, q̇ and q̈, yields the optimization problem for
generation of persistent excitation trajectory

min
ν

κ(ν)

s.t. qmin ≤ Dqν ≤ qmax

−q̇max ≤ Dvν ≤ q̇max

−q̈max ≤ Daν ≤ q̈max

Dfν = 0
gq(ν) ≤ 0,

(3.11)

with the vector ν ∈ Rn(1+2K) containing all the Fourier coefficients and the offset variables
qj0, ∀j ∈ {1, . . . , n}. The matrices Dq,Dv, and Da contain corresponding Fourier terms
specific to the linear inequality constraints from (3.8). The linear equality constraints
represent conditions on the robot joint configuration, velocities and accelerations at the
initial t0 and terminal time point tT , given by

q(t0) = q(tT )
q̇(t0) = q̇(tT ) = 0
q̈(t0) = q̈(tT ) = 0.

(3.12)
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These constraints are included in the optimization problem to use the trajectory multiple
times and ensure reliable behavior. The nonlinear inequality constraints represent
additional joint restrictions to avoid collisions with the workspace and between the
robot’s links.

Due to the periodic and nonconvex nature of the functions in the observation Matrix
X, any considerable objective function is expected to yield many local minima and
has to be treated by a global optimization approach. Using multiple starting points
is necessary to have a considerable chance of finding a global minimum. Therefore,
genetic algorithms are appropriate, but the known implementations [107–109] lack the
advantages of gradient-based approaches. To this end, a memetic algorithm is proposed
to combine the advantages of both methods, see [76], [110]. Memetic algorithms extend
the allegory of genetic algorithms to cultural terms. "Memes" instead of only "genes"
are transferred between individuals and generations. The difference is that features of
the individuals are not only recombined or slightly mutated but undergo substantial
improvement procedures until the result is passed on to the next generation. The
applied procedures use information about the problem structure and the already known
solutions [111].

The presented memetic algorithm basically consists of two repeated steps. Out of
a predefined maximum number of generations Gmax, GR are randomly generated with
a population P each, which represents the number of individuals ν. The optimized
individuals ν∗ of the generations are computed using an NLP-solver. The remaining
generations GMA are then obtained by applying a recombination procedure introducing a
fitness function, followed by a local search method. By using recombinations, the best
individuals are used to create candidates for new generations, aiming to combine all
successful features in one individual. The local search method aims at finding candidates
for new starting points in the neighborhood of an already known local minimum ν∗.
Depending on whether a new best solution is found or not by applying the NLP-solver,
the optimization parameters used for recombination and local search are tightened or
relaxed, providing more randomness and less reliance on the made assumptions, see [76].

3.3 Parameter estimation
For the considered robot manipulator UR5, the system model linear in the dynamic
parameters ϱ is obtained by applying the recursive Newton-Euler equations (3.2). Ap-
plying symbolic regrouping techniques leads the vector ϱb ∈ Rnϱ consisting of nϱ = 52
base parameters, which are estimated using optimized persistent excitation trajectories.
For the trajectory generation problem (3.11), the joint constraints are chosen to be

−2π
0

−0.7π
−2π
−2π
−2π


≤



q1
q2
q3
q4
q5
q6


≤



2π
π

0.7π
2π
2π
2π


, |q̇| ≤ 3.2 rad/s , and |q̈| ≤ 25 rad/s2 . (3.13)

The constraints on q2 and q3 are essentially part of the non-collision constraints to prevent
the robot from colliding with the table and avoid collisions between robot links. For
further non-collision constraints, simple rules are used instead of a full collision detection
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Figure 3.1: Solutions for the optimized persistent excitation trajectory. The vertical lines indicate
the generation which the solution ν∗

i belongs to. Note that the obtained minima utilizing random
initialization are all worse than the ones obtained by the memetic algorithm. The best solution
is obtained in the third MA-generation GMA3. The fourth MA-generation GMA4 did not yield any
improvements, which caused the algorithm to stop. The solutions are widely scattered, and their
quality depends on initial conditions. By finding better initial conditions for the NLP-solver,
the MA is able to obtain better solutions. Numerical issues lead the NLP-solver to converge to
infeasible solutions, which constitute a great proportion.

scheme to reduce computational effort by restricting the joints applying

|q2 + π

2 + q3| ≤ 3π
4

sin(q4) | cos(q5)| ≤ 0.15 .
(3.14)

To generate persistent excitation trajectories, the memetic algorithm is executed
multiple times for a maximum number of generations Gmax = 10 of which GR = 4
are random generations with a generation size of P = 100. The resulting nonlinear
optimization problem is solved using the Matlab’s fmincon solver. As previously
mentioned, for the cost function the L2 condition number is used, i. e.,

κ(ν) = cond(X(ν)) = σmax(ν)
σmin(ν) , (3.15)

where σmax(ν) and σmin(ν) are the largest and smallest singular values of X(ν). For
the optimization, 20 time samples over a time period of T = 10 s and a fundamental
frequency ωf = π/T are used. The optimization progress of the proposed method over
generations of initial conditions is shown in Figure 3.1. The best solution using only
randomly generated initial conditions is κ(ν∗) = 67. Applying the memetic algorithm, an
improvement is achieved reducing the value of the cost function to κ(ν∗) = 41, obtained
in the third MA-generation GAM3.

The computed optimized position, velocity, and acceleration trajectories are forwarded
to the local robot controller using ROS. The robot follows the planned trajectories
sufficiently accurately, also resulting in only minor deviations from the condition number
of the planned trajectory. The identification trajectory in joint space is given in Fig-
ure 3.2, with the resulting end-effector path in the operational space shown in Figure 3.3.

The robot’s internal control unit takes measurements at a rate of 125 Hz, resulting in
ns = 25000 samples. Relevant measurements for the parameter estimation, which can be
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Figure 3.2: Joint position, velocity and acceleration of the optimized persistently exciting trajectory
over one period.
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Figure 3.3: End-effector path over one period of the optimized persistently exciting trajectory.
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obtained directly, are the actual joint positions, velocities, and electric motor currents.
Due to measurement noise, the velocities and currents are filtered using a robust local
regression to obtain smooth signals. Using the filtered velocities, the accelerations are
calculated by applying the central difference derivation method.

With the smoothed actual currents iaj , it is possible to estimate the actual joint torques
τaj . The control unit also gives access to data of the internal controller, such as targeted
motor currents itj and targeted joint torques τtj . For the relationship between currents
and torques, a linear dependency is assumed. For static configurations, actual and target
currents are equal, and it can be assumed that targeted and actual torques are also equal
for such cases, i. e.,

iaj
τtj
itj

= iajζj = τaj , ∀j ∈ {1, . . . , n} . (3.16)

The robot configurations are chosen such that the static torque acting on the observed
joint is close to its maximum. The current-torque constants ζj for every joint are then
obtained by using average values of measurement data collected for multiple static
configurations, yielding the motor constant vector

ζ =
[
11.4376 11.4376 11.4376 8.3238 8.3238 8.3238

]T
, (3.17)

which is used in the upcoming estimations to compute actual joint torques from measured
actuator current. The considered robot manipulator has two types of actuators, bigger
ones for the first three joints and three smaller ones for the small joints in the wrist area.
This is also reflected in the obtained motor constant values.

With the collected joint measurement data for q, q̇, and q̈, the observation matrix
X ∈ R

ns×nϱ is generated, yielding, along with the measured torque vector τ b, the
overdetermined linear parameter estimation problem (3.5). To provide the opportunity
to compare the obtained results with existing ones found in [124], the same statistical
quality criteria is used by computing the standard deviation for the i-parameter

σi =
√

(XTX)−1
i,i , (3.18)

and the normalized error of the estimated torques over the whole regression

ρN = 1
ns

√
ρTρ , (3.19)

with the residual error vector ρ ∈ Rnϱ . The normalized errors are also calculated for
each single joint

ρNj = 1
ns

√
ρT
j ρj , (3.20)

where ρj is the vector of residuals for the corresponding joint j ∈ {1, . . . , n}.
The parameters are estimated using ordinary Least Square regression (OLS), which

provides a good fit. Because of the chosen kinematic model, some of the base parameters
ϱb were expected to be negative. However, negative values result in a non-symmetric or not
positive definite mass matrix for the rotor inertia, which is physically not valid. The same
result was found in [124]. Therefore, a constraint Least Squares (CLS) approach is also
used, forcing positive rotor inertia values. Since the values for the rotor inertia are small
anyway, the constraint fit deteriorates negligibly in quality. The estimated parameters
obtained from both methods are validated by testing how the calculated models predict
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3.3 Parameter estimation

Table 3.1: Normalized estimation errors.
ρNj Est. OLS Est. CLS Val. OLS Val. CLS
1 0.0122 0.0123 0.0102 0.0094
2 0.0143 0.0146 0.0172 0.0199
3 0.0134 0.0132 0.0151 0.0170
4 0.0034 0.0043 0.0050 0.0058
5 0.0037 0.0038 0.0068 0.0061
6 0.0024 0.0033 0.0025 0.0036
ρN 0.0040 0.0040 0.0044 0.0049

the torques for another excitation trajectory. An overview of the estimation ("Est.")
and validation ("Val.") errors is shown in Table 3.1. It is shown that for both regression
methods, the normalized errors are small when using the identification and validation
trajectories. Referring once more to Table 3.2, it can be seen that the standard deviations
σi for all parameters are sufficiently small. Figure 3.4 shows how close the predictions
τ̂j are to the actual measurements of the joint torques τj . Note that the predictions
using the OLS and CLS parameters are nearly indistinguishable. Therefore, and since we
are mostly interested in validating the sufficiency of the achieved condition number, the
torque results obtained when using the validation trajectory, shown in Figure 3.4c), are
presented only for the parameters obtained by applying the OLS regression method.

The presented results show a very good matching of the computed torques using
identified parameters with measured joint torques for both the identification and validation
trajectory. Especially the predicted torques of the bigger robot joints j ∈ {1, 2, 3} are
very close to the measured ones, indicating a very good estimation of dynamic parameters
related to the bigger robot links, including the actuators. Overall, the obtained normalized
errors for estimation and validation shown in Table 3.1 are close to six, respectively, two
times smaller compared to results presented in [124]. Since the approach presented in this
work with the one from [124] uses similar solving techniques by applying OLS to solve
the overdetermined parameter estimation problem, it is to be expected that the small
values for the normalized torque prediction errors are related to the improved condition
number of the optimized excitation trajectory. The standard deviations for the inertial
parameters presented in Table 3.2 also suggest this. The exciting trajectory is well suited
to excite the dynamics, granting minor standard deviations for the parameters, and the
subsequent regressions yield small normalized errors for the predicted joint torques.

The condition number, chosen as an objective function for the trajectory optimization,
depends on the selection of base parameters and is not invariant to reparameterization.
To show the validity of the proposed methods in broader generality, invariant objective
functions like D-optimality could be used. Further improvements can be made by
introducing a nonlinear estimation model, which allows to consider more sophisticated
friction models and also introducing additional constraints, for instance, to consider joint
flexibility or enforce a positive definite mass matrix, see, e. g., [123], [110]. In addition,
since there exist dynamic aspects of the robot model which can not be expressed linear in
inertial parameters, an advantage of the nonlinear method can be that it breaks free from
the limitations of representing the system dynamics linear in the base parameter vector.
By applying global nonlinear optimization techniques, the physical robot parameters can
be directly estimated without the need of regrouping. However, linear regression models
reduce the computation effort and are also suitable for online parameter estimation.
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(b) OLS on identification trajectory.
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(c) Validation trajectory with parameters obtained by OLS regression.
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Figure 3.4: Predicted torques τ̂j compared to measured torques τj . (a) CLS regression method on
the optimized trajectory, (b) uses the OLS regression method on the same trajectory. (c) Torque
predictions using a validation trajectory with estimated parameters obtained by OLS regression.
Note that (b) OLS and (a) CLS look very similar. The results are shown separately for the large
(Joint 1 - Joint 3) and small (Joint 4 - Joint 6) joints. In all cases, the predicted joint torques are
close to the measured values.
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3.3 Parameter estimation
Table 3.2: Regrouped parameters and standard deviations.

ϱb Symbolic terms σi

1 (m3 + m4 + m5 + m6)a2
3 + (m4 + m5 + m6)d2

4 + 2d4Pz4 + (m4 + m5 +
m6)a2

4 + Θyy3 + Θyy4 + Θzz1 + Θyy2 + ΘA1

0.0094

2 (m4 + m5 + m6)d2
4 + (m4 + m5 + m6)a2

4 + Θxx2 − Θyy2 − (a2
4 + d2

4)(m4 +
m5 + m6) − (m3 + m4 + m5 + m6)a2

3

0.0077

3 Θxy2 0.0042
4 Θxz2 + a3(Pz3 + Pz4 + (m4 + m5 + m6)d4) 0.0055
5 Θyz2 0.0047
6 Θzz2 + (m3 + m4 + m5 + m6)a2

3 + ΘA2 0.0070
7 (−m3 − m4 − m5 − m6)a3 + Px2 0.0019
8 Py2 0.0014
9 (m4 + m5 + m6)d2

4 + Θxx3 − Θyy3 − (a2
4 + d2

4)(m4 + m5 + m6) 0.0070
10 Θxy3 0.0035
11 ((m4 + m5 + m6)d4 + Pz4 )a4 + Θxz3 0.0038
12 Θyz3 0.0041
13 Θzz3 + (m4 + m5 + m6)a2

4 0.0045
14 (−m4 − m5 − m6)a4 + Px3 0.0013
15 Py3 0.0012
16 (m5 + m6)d2

5 + 2Pz5 d5 + Θyy5 + Θxx4 − Θyy4 0.0095
17 Θxy4 0.0047
18 Θxz4 0.0054
19 Θyz4 0.0046
20 Θzz4 + Θyy5 + 2Pz5 d5 + (m5 + m6)d2

5 0.0059
21 Px4 8.88e-4
22 (−m5 − m6)d5 + Py4 − Pz5 0.0013
23 Θxx5 + Θyy6 − Θyy5 0.0048
24 Θxy5 0.0020
25 Θxz5 0.0030
26 Θyz5 0.0045
27 Θzz5 + Θyy6 0.0057
28 Px5 0.0013
29 Pz6 + Py5 0.0010
30 Θxx6 − Θyy6 0.0028
31 Θxy6 0.0013
32 Θxz6 0.0019
33 Θyz6 0.0013
34 Θzz6 0.0032
35 Px6 9.15e-4
36 Py6 9.24e-4
37 Fc1 0.0131
38 Fc2 0.0139
39 Fc3 0.0139
40 Fc4 0.0137
41 Fc5 0.0127
42 Fc6 0.0142
43 Fv1 0.0124
44 Fv2 0.0127
45 Fv3 0.0104
46 Fv4 0.0099
47 Fv5 0.0113
48 Fv6 0.0102
49 ΘA3 0.0035
50 ΘA4 0.0030
51 ΘA5 0.0059
52 ΘA6 0.0047
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CHAPTER 4
Task and Trajectory Planning

Robot manipulators cover in various industrial sectors a wide range of different appli-
cations, whether as stand-alone robotic cells or in combination with other machines,
equipment, or classic feeding, assembly, and packaging stations. The variety of tasks
combined with increasing demands for efficiency and productivity motivates the com-
putation of optimal robot task processing sequences, with the main goal of achieving
predefined performance criteria. One of these criteria is the robot cycle time, which
defines the time it takes for a robot to complete one entire cycle of its assigned tasks.
Although the tasks may be different and diverse, like picking, packing, and handling
various goods and products or the automated execution of specific tasks such as spot
welding, painting, quality inspection, etc., they have in common that for their execution
mostly a point-to-point trajectory planning has to be performed, from the current to the
desired robot position. The problem becomes challenging when multiple task points are
considered. Motivated by the increase of efficiency and productivity, in such cases, the
execution of optimal discrete sequences is typically of interest, this resulting in a difficult
problem due to the excessively large number of involved combinatorial motion scenarios.
In this case, optimization techniques can be used to optimize and coordinate the robot’s
workflow and balance the workload between robots in a multi-robot system.

The problems of robot task allocation and trajectory planning are mostly and tradi-
tionally treated separately and, in many cases, are also solved offline. In this chapter,
optimization-based algorithms that address the problem of robot task allocation and
trajectory planning are introduced. The problem formulation consists of a robot manipu-
lator that has to pick up a set of objects and place them in a set of slots according to their
classification. Therefore, task scheduling is performed first followed by point-to-point
trajectory planning.

By introducing a two-layer hierarchical control structure, task scheduling is decoupled
from trajectory planning, deploying two separate optimization problems: a binary one
for task scheduling and a continuous optimization problem for trajectory planning. In a
further step, both planning layers are integrated into a monolithic layer for online task and
trajectory planning within the framework of a hybrid model predictive controller. The
resulting recursive mixed-integer nonlinear programming (MINLP) problem is transformed
into a relaxed mixed-integer quadratically constrained programming (MIQCP) problem,
suitable to generate feasible robot trajectories online. The proposed algorithms are
implemented and validated on an experimental setup using Robot Operating System
(ROS) and a robot manipulator performing multiple pick-and-place tasks.

49



4.1 Problem formulation

4.1 Problem formulation
Let P denote a set of multiple task points consisting of a subset of objects O and slots S,
i. e., P = O ∪ S. Objects and slots can belong to different classes b ∈ B, with Ob ⊆ O and
Sb ⊆ S denoting the respective objects and slots of class b. In order to be able to allocate
each object to a slot, it is assumed that the number of objects and slots is the same, i. e.,
|O| = |S| = N ∈ N. It is further assumed that for each class, the number of objects and
slots is the same, and there can be at most N different classes, i. e., |Ob| = |Sb|,∀b ∈ B
where B = |B| ≤ N and ∑∀b∈B |Ob| = N .

For the considered test cases, the objects and slots are distributed as shown in Figure 4.1,
consisting of a set of six objects and slots of the same class and a set of six objects
and slots of three different classes B = {"red", "green", "blue"}. Each task point has, in
addition to its position, also a desired orientation that defines the orientation of the robot
gripper when picking up an object or placing it in a slot. If different classes exist, an
object can be placed only into a slot of the same class. Therefore, task scheduling has to
be performed to define a grasping and placing sequence, i. e., in which order the objects
should be picked and in which slots they should be placed. Task scheduling is followed
by an online trajectory planning to execute the assigned tasks.

x

z
y

o1 o2
o3 o4

o5
o6

s1
s2 s3

s4 s5
s6 x

z
y

o1 o2
o3 o4

o5
o6

s1
s2 s3

s4 s5
s6

Figure 4.1: Experimental setup with a collaborative robot manipulator placing the objects o ∈ O
in the slots s ∈ S. The task points can belong to the same class (left) of three different classes
B = {"red", "green", "blue"} (right). The figure shows the initial robot pose and the initial
distribution of objects and slots.

In the following, two optimization-based algorithms that address the problem of robot
task allocation and trajectory planning are introduced, and their performance is analyzed
in terms of robot cycle time. The first algorithm represents a hierarchical control
structure consisting of two-layer control policies. The upper layer, scheduling, performs
task planning and generates a task sequence defining the order in which the tasks should
be executed. The generated task sequence is provided as input to the lower layer, which
plans robot trajectories online from the actual robot position to the assigned target
point. This approach decouples task planning from trajectory planning, considering two
separate optimization problems. The second algorithm represents a hybrid controller for
inherent robot task and trajectory planning by integrating both planning layers into one
monolithic layer in the form of a mixed-integer optimization problem.
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4.2 Hierarchical control structure

4.2 Hierarchical control structure
The schematic illustration of the proposed hierarchical control structure is shown in
Figure 4.2. The scheduling layer gets information about the position and orientation of
the task points, and the actual robot position as denoted by the vector q = [θ1, . . . , θn]T
of the joint angular positions. After computing an optimal task sequence, the scheduling
layer provides information to the trajectory planning layer about the upcoming task by
forwarding the corresponding final robot joint configuration qf ∈ Rn. Using an algorithm
based on model predictive control (MPC), the lower layer recursively performs online
robot trajectory planning from the current position to the assigned target point. The
computed optimal position q∗, velocity q̇∗, and acceleration q̈∗ trajectories are forwarded
to ROS Control [125], which uses a Velocity Controller interface to finally send a reference
velocity profile to the low-level robot controller. The implementation and experimental
section will provide more information regarding ROS Controller. In the following, the
scheduling algorithm and the time-optimal trajectory planning layer will be discussed in
more detail.

ROS
Controller

Robot
Controller

MPC

Scheduling

q, q̇

q
q̇

q∗

q̇∗

q̈∗

qqf

q̇ref

Task
Points

Figure 4.2: Hierarchical control structure.

4.2.1 Task scheduling

According to the problem formulation in Section 4.1, the goal of the scheduling layer
is to compute an optimal picking sequence for the objects o ∈ O and filling sequence
for the slots s ∈ S. To solve the scheduling problem, two types of binary variables
are introduced, δoi ∈ {0, 1}, ∀o ∈ O, ∀i ∈ {1, . . . , |O|}, for the objects and δsi ∈ {0, 1},
∀s ∈ S, ∀i ∈ {1, . . . , |S|}, for the slots. The iteration index i defines the object’s gripping
and slot’s filling order, respectively. δo1 = 1 and δs1 = 1 would mean, for example, that
object o is picked up first, and slot s is filled first. As a consequence, object o is placed
in slot s. Given the same number of objects and slots, i. e., |O| = |S| = N , the binary
decision variables can be written in matrix form as follows

δo =


δo11 · · · δo1N

...
...

δoN 1 · · · δoNN

 , δs =


δs11 · · · δs1N

...
...

δsN 1 · · · δsNN

 . (4.1)
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4.2 Hierarchical control structure

The optimization variables related to the object assignment must satisfy the following
equality constraints ∑

∀o∈O
δoi = 1 , ∀i ∈ N = {1, . . . , N} , (4.2)

to ensure that exactly one object has to be selected at each picking iteration i, and the
constraints ∑

∀i∈N
δoi = 1 , ∀o ∈ O = {o1, . . . , oN} , (4.3)

to guarantee that across all picking iterations, each object has to be selected only once.
Similarly, for the slot variables, the constraints∑

∀s∈S
δsi = 1 , ∀i ∈ N = {1, . . . , N} (4.4)

and ∑
∀i∈N

δsi = 1 , ∀s ∈ S = {s1, . . . , sN} (4.5)

have to be applied to ensure that exactly one slot is being filled at each placing iteration,
and across all iterations each slot has to be filled only once.

Since the objects and slots can belong to different classes, the equality constraints∑
∀o∈Ob

δoi =
∑

∀s∈Sb

δsi , ∀b ∈ B and ∀i ∈ N = {1, . . . , N} (4.6)

are applied to ensure that an object is placed only into a slot of the same class. If in the
picking iteration i an object o ∈ Ob is selected, the following slot s at the placing iteration
i has to belong to the same class, i. e., s ∈ Sb. Note that for |B| = 1, all objects and slots
belong to the same class. In this case, constraints (4.6) correspond to (4.2)-(4.4)=0 and
are trivially satisfied.

This work presents two methods for computing the optimal task execution sequence.
The first one, minimum-distance scheduling, is based on the idea presented in [79] and
minimizes the total Euclidean distance covered by the robot end-effector. The second
method, minimum-time scheduling, is considering the scheduling problem in the robot’s
configuration space and aims to minimize the cycle time needed by the robot to execute
all pick-and-place tasks.

4.2.1.1 Minimum-distance scheduling

The scheduling problem is considered in the three-dimensional workspace of the robot
manipulator. The inputs to the scheduling layer are the position vectors 0po and 0ps of
all objects and slots and the position vector 0pe of the robot end-effector. With all the
vectors given in Cartesian coordinates relative to the robot base, the Euclidean distances
between the robot end-effector and all objects, and between all objects and all slots are
computed as

do = ∥0po − 0pe∥2 , ∀o ∈ O = {o1, . . . , oN} ,
dos = ∥0po − 0ps∥2 , ∀o ∈ O = {o1, . . . , oN} , ∀s ∈ S = {s1, . . . , sN} .

(4.7)

The total path of the robot’s end-effector while executing pick-and-place tasks can be
divided into an initial movement from the actual robot position to the first object, the
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4.2 Hierarchical control structure

movement from the object to its assigned slot of the same class, and the movement from
a slot to the next object. The minimum-distance scheduling problem results thus in an
integer bilinear programming (IBLP) problem of the following form

min
δo, δs

∑
∀o∈O

do δo1︸ ︷︷ ︸
Initial robot movement

+
∑

∀b∈B

 ∑
∀i∈N

∑
∀s∈Sb

∑
∀o∈Ob

dos δoi δsi


︸ ︷︷ ︸

Movement from the objects to the slots

(4.8)

+
∑

∀i∈N \{N−1}

∑
∀s∈S

∑
∀o∈O

dos δo i+1 δsi

︸ ︷︷ ︸
Movement from the slots to the objects

s.t.
∑

∀o∈O
δoi = 1 , ∀i ∈ N = {1, . . . , N} (4.8a)

∑
∀i∈N

δoi = 1 , ∀o ∈ O = {o1, . . . , oN} (4.8b)

∑
∀s∈S

δsi = 1 , ∀i ∈ N = {1, . . . , N} (4.8c)

∑
∀i∈N

δsi = 1 , ∀s ∈ S = {s1, . . . , sN} (4.8d)

∑
∀o∈Ob

δoi =
∑

∀s∈Sb

δsi , ∀b ∈ B and ∀i ∈ N = {1, . . . , N} . (4.8e)

The initial movement depends on which object is selected first and is expressed as a linear
term of the overall cost function. The modeling of the movements from the objects to the
slots and back to the objects involves both optimization variables resulting in bilinear
terms of the cost function. While the robot can only move from a selected object to a
slot of the same class, there are no restrictions for the vice versa motion as the robot
can select any object after filling a slot with a corresponding object. The optimization is
subject to the equality constraints (4.2)-(4.6) to ensure that all objects are placed in the
slots while taking into account the class association.

Since task scheduling is performed in the Euclidean space, the orientations of the
task points are not taken into account and thus do not influence the planning results.
The shortest end-effector path does not necessarily lead to the shortest task execution
time. Moreover, the trajectory planning is performed in the robot configuration space
and does not result in a straight-line motion of the end-effector. At least not without
additional constraints forcing such a motion, which is required only for specific tasks.
Therefore, the following will transform the scheduling problem in the configuration
space by considering multiple solutions of the inverse kinematics problem, resulting in a
minimum-time scheduling algorithm.

4.2.1.2 Minimum-time scheduling

By transforming the scheduling problem from the workspace W into the configuration
space C of the robot, it is possible to also incorporate the orientation of the task points in
the scheduling model. Furthermore, it can be considered that due to the non-uniqueness
of the inverse kinematics (IK) solutions, the robot can reach a certain task point in
different joint configurations.
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For each task point, p ∈ P , multiple inverse kinematics solutions are computed, leading
to c possible robot configurations per task point. Considering all possible joint angles
for each configuration results, for the used robotic arm with six rotational joints and
eight possible configurations (c = 8), in a set Cp of 512 possible joint configurations
per task point p, see Section 2.1.2. Let p, p̄ ∈ P denote two task points and Cp, Cp̄
the corresponding sets containing all feasible IK solutions. In order to find the fastest
transition time between the two task points, the set

Tpp̄(qc,qc̄) =
{
tpp̄(qc,qc̄) | tpp̄ = max

∣∣∣∣∣θj,c − θj,c̄

θ̇j,max

∣∣∣∣∣ , ∀qc = [θ1,c, . . . , θn,c]T ∈ Cp ,

∀qc̄ = [θ1,c̄, . . . , θn,c̄]T ∈ Cp̄
}
, (4.9)

is used, including the maximum transition times between all feasible robot configurations
corresponding to the respective task points. With θ̇j,max representing the maximum
velocity of robot joint j ∈ {1, . . . , n}, equation (4.9) denotes that the slowest robot
joint determines the transition time between two robot configurations. Since, for the
considered robot manipulator, all joints have the same speed characteristics, the slowest
robot joint is also the farthest from its target. The fastest transition time between the
task points p and p̄ can be found by

t∗pp̄ = min
qc,qc̄

Tpp̄(qc,qc̄) , (4.10)

representing the minimum time needed by the robot to move between the corresponding
joint configurations qp and qp̄, with

{qp,qp̄} = arg min
qc,qc̄

Tpp̄(qc,qc̄) . (4.11)

The goal of the minimum-time scheduling is to compute an optimal task execution
sequence by minimizing the robot cycle time. Similar to the total Euclidean distance
of the robot end-effector, the total cycle time can also be divided into three parts. The
initial part expressed as a linear term of the cost function is modeling the transition
time the robot needs to move from its current position to the first task points, i. e., to
the objects. The second part of the cost function is modeling the transition time from
the objects to the slots of the same class, followed by the transition time from the slots
back to the objects, represented each as bilinear terms of the cost function. The cost
function is minimized by imposing the equality constraints (4.2)-(4.6), resulting in the
minimum-time IBLP problem of the form

min
δo, δs

∑
∀o∈O

t∗o δo1 +
∑

∀b∈B

 ∑
∀i∈N

∑
∀s∈Sb

∑
∀o∈Ob

t∗os δoi δsi

 (4.12)

+
∑

∀i∈N \{N−1}

∑
∀s∈S

∑
∀o∈O

t∗os δo i+1 δsi

s.t.
∑

∀o∈O
δoi = 1 , ∀i ∈ N = {1, . . . , N} (4.12a)

∑
∀i∈N

δoi = 1 , ∀o ∈ O = {o1, . . . , oN} (4.12b)
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∑
∀s∈S

δsi = 1 , ∀i ∈ N = {1, . . . , N} (4.12c)

∑
∀i∈N

δsi = 1 , ∀s ∈ S = {s1, . . . , sN} (4.12d)

∑
∀o∈Ob

δoi =
∑

∀s∈Sb

δsi , ∀b ∈ B and ∀i ∈ N = {1, . . . , N} . (4.12e)

Here,
t∗o = min

qco

To(qco ,q0) , ∀o ∈ O (4.13)

denote the minimum transition times from the actual robot position q0 to all objects
o ∈ O, and

t∗os = min
qco ,qcs

Tos(qco ,qcs) , ∀o ∈ O, ∀s ∈ S, (4.14)

represent the minimum transition times between all objects o ∈ O and all slots s ∈ S.
The corresponding joint configurations qo and qs, which lead to the minimum times
(4.13) and (4.14), are obtained from (4.11).

4.2.2 Trajectory planning

As opposed to the standard applications of the MPC algorithms for path following or
reference tracking, this work considers MPC-based time-optimal trajectory planning
with terminal constraints. Let x(t) = [qT(t), q̇T(t)]T denote the vector of robot joint
positions and velocities. The goal is to generate feasible trajectories online so that the
robot reaches its assigned target in the shortest possible time tf i. e.,

lim
t→tf

||x(t) − xf || = 0 , t ∈ [t0, tf ]. (4.15)

Here, xf = [qT
f ,0T]T denotes the targeted final robot joints position and velocities, t0

the current time point and tf the final time to be minimized. The trajectory planning
problem is thus formulated as a time-optimal optimization problem of the form

min
u(t), tf

∫ tf

t0
dt (4.16)

s.t. ẋ(t) = f(x(t),u(t)), x(t0) = x0 (4.16a)
x ≤ x(t) ≤ x̄ , t ∈ [t0, tf ] (4.16b)
u ≤ u(t) ≤ ū , t ∈ [t0, tf ] (4.16c)
x(tf ) = xf , (4.16d)

where (4.16a) denotes the dynamic system representing the robot with the states x(t)
and the inputs u(t), with their upper and lower bounds (4.16b) and (4.16c). The robot
should reach the assigned target xf at the end of the time horizon, as represented by
the terminal constraint (4.16d). The final time tf represents the a priori unknown time
needed for the robot to reach the desired target point starting from its current position.
This results in a free terminal time trajectory planning problem, which is transformed
into a fixed terminal time problem by introducing the time scaling

τ := t− t0
tf − t0

, (4.17)

to map the time interval t ∈ [t0, tf ] to τ ∈ [0, 1].
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4.2.2.1 Prediction model

For optimization-based online robot trajectory generation, the nonlinear robot dynamic
model can be considered resulting in a nonlinear and non-convex optimization problem,
which, in addition to position, velocity, and acceleration constraints, can account for
torque limitations as well. However, considering that these optimization problems require
a high computational effort and the update rate of time-optimal robot trajectories should
be in the range of tens of milliseconds, one can reconsider using a simplified dynamic
model. In addition, the robots usually offer a lower-level controller that can be used
to control the robot via the corresponding interfaces by forwarding the joint position,
velocity, or acceleration. The robot considered in this work can be controlled by using a
position or velocity interface. Therefore, it is convenient to consider a chain of n double
integrators

q̈(t) = u(t) (4.18)
as a prediction model for online robot trajectory generation, by which also constraints
in joint angular position q(t) ∈ Rn, velocity q̇(t) ∈ Rn, and acceleration u(t) ∈ Rn can
be incorporated in the planning algorithm. The use of a simplified kinematic prediction
model can also be motivated by assuming a local robot controller based on dynamic
inversion (Computed Torque), cf., e. g., [87], given by

τ (t) = M̂(q(t))u(t) + η̂(q(t), q̇(t)) = Wb(q(t), q̇(t), q̈(t))ϱ̂b , (4.19)

with the input vector u(t) ∈ Rn and the estimated parameter vector ϱ̂b. Substituting
(4.19) in (2.76) leads the closed loop dynamics

u(t) = q̈(t) + M̂−1(q(t))
[(

M(q(t)) − M̂(q(t))
)

q̈(t) + η(q(t), q̇(t)) − η̂(q(t), q̇(t))
]
,

(4.20)
which can be expressed in the form

u(t) = q̈(t) + M̂−1(q(t))Wb(q(t), q̇(t), q̈(t))∆ϱb . (4.21)

Here, ∆ϱb represents the difference between real and estimated robot dynamic parameters.
For small estimation errors, the closed loop dynamics can be approximated by u(t) ≈ q̈(t)
yielding (4.18).

Using the state space vector x(t) and the input vector u(t) the dynamic model can be
written as

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0 , (4.22)
with

A =
[
0n×n In×n

0n×n 0n×n

]
, B =

[
0n×n

In×n

]
, and x(t) =

[
q(t)
q̇(t)

]
. (4.23)

The solution of the linear time-invariant system (4.22) by successively applying Picard’s
iteration method is given in the form

x(t) = Φ(t− t0)x0 +
∫ tf

t0
Φ(t− t̃)Bu(t̃) dt̃ , (4.24)

with the state-transition matrix

Φ(t) =
∞∑
i=0

Ai t
i

i! = I + At . (4.25)
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4.2 Hierarchical control structure

With the time transformation τ = (t− t0)/∆tf , the joint trajectories q(t) = q(τ), and
the time derivatives

d
dtq(t) = 1

∆tf
d
dτ q(τ), d2

dt2 q(t) = u(t) = 1
(∆tf )2

d2

dτ2 qr(τ) , (4.26)

where ∆tf = tf − t0, the solution of the scaled linear time-invariant system for the time
interval τ ∈ [k∆τ, (k + 1)∆τ) can be written as

x(k + 1) = Φ(∆τ)x(k) + (∆tf )2
∫ (k+1)∆τ

k∆τ
Φ((k + 1)∆τ − τ̃)Bu(t0 + τ̃∆tf ) dτ̃ (4.27)

Applying the substitution t̃ = t0 + τ̃∆tf yields

x(k + 1) = Φ(∆τ)x(k) + ∆tf
∫ t0+(k+1)∆τ∆tf

t0+k∆τ∆tf
Φ
(

(k + 1)∆τ − (t̃− t0)
∆tf

)
Bu(k) dt̃ ,

(4.28)
with the input vector u(t̃) = u(k) for t̃ ∈ [t0 + k∆τ∆tf , t0 + (k + 1)∆τ∆tf ). Finally, the
discrete time dynamics in the scaled time τ is given by

x(k + 1) = (I + ∆τA)x(k) + (∆tf )2∆τ
(

I + ∆τ
2 A

)
Bu(k), (4.29)

with the identity matrix I ∈ R2n×2n and the input vector u(k), which is constant over the
time interval τ ∈ [k∆τ, (k + 1)∆τ), i. e., t ∈ [tk, tk + ∆τ∆tf ), see [82]. In the following,
without loss of generality, t0 = 0, i. e., ∆tf = tf , is assumed.

4.2.2.2 MPC-based trajectory planning

After transforming the trajectory planning problem (4.16) into a discrete fixed terminal
time optimization problem, the resulting MPC algorithm for recurrent time-optimal
robot trajectory planning can be written as a static optimization problem in the form

min
u(·), tf

tf (4.30)

s.t. x(j + 1 | k) = (I + ∆τA)x(j | k) + ∆τt2f
(

I + ∆τ
2 A

)
Bu(j | k) (4.30a)

u ≤ u(j | k) ≤ ū (4.30b)

diag(I, tfI) x ≤ x(j + 1 | k) ≤ diag(I, tfI) x̄ (4.30c)

x(0 | k) = diag(I, tfI) x0(k) (4.30d)

x(NT | k) = xf (k) , (4.30e)

with the iteration index j ∈ {0, . . . , NT − 1}, the prediction horizon NT and the sam-
pling time of the scaled discrete dynamics (4.30a) ∆τ = 1/NT . In each optimization
step k the robot trajectories are recursively planned from the actual measured state
xT

0 (k) =
[
qT

0 (k), q̇T
0 (k)

]
to the desired state xT

f (k) =
[
qT
f (k),0T

]
, as expressed by the

initial and terminal constraints (4.30d) and (4.30e), respectively. The desired final robot
configuration qf is given by the scheduling layer, as schematically shown in Figure 4.2.
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4.3 Hybrid control structure

The input variables u(k), representing the joint accelerations, are limited to the maximum
ū respective minimum values u. Similarly, the robot joint position and velocity are
limited in (4.30c) to the maximum x̄ and minimum x bounds, to satisfy the kinematic
limitations of the robot and avoid self-collisions between the robot links and collisions
with the static working environment. Note that the joint velocities q̇(k) in (4.30c) and
(4.30d) are scaled by tf to transform them in the scaled time τ since the velocity upper
and lower bounds and the measured robot state are given in time t. Time scaling for the
terminal constraints is not applied since the desired final robot speed is zero. Due to
time scaling, the ∆τ intervals are mapped to increasingly tighter ∆t-intervals as time
t propagates, because computed optimal value t∗f reduces with each optimization step.
The closer the robots approach the target, the smaller the solution t∗f gets leading to a
finer prediction towards the end. In early iterations, the time resolution of the computed
trajectories is lower and increases after each MPC iteration, resulting in sequentially
finer robot trajectories. This has the advantage that, towards the end, when the robot
approaches the target, the time resolution of the trajectories is higher, leading to more
accurate planning required to reach the target points.

4.3 Hybrid control structure
As opposed to the two-layer hierarchical control structure, a hybrid controller represents a
co-design approach which integrates both task and trajectory planning into a monolithic
framework, as shown in Figure 4.3. The inherent incorporation of binary optimization
variables for task scheduling and continuous optimization variables for trajectory planning
leads to an MINLP problem for time-optimal robot tasks and trajectory planning. First,
a single-step hybrid controller is presented, which consists of selecting the nearest possible
task point out of a set of task points and planning the trajectory to it in the minimum
possible time, see [77]. In a further step, the algorithm is extended in [78] to a multiple-
step hybrid controller by considering the future task sequences in the scheduling since
a task sequence resulting from successively selecting the nearest task points does not
necessarily lead to the shortest overall cycle time. Binary constraints similar to (4.6)
ensure that objects are assigned to slots of the same class.

ROS
Controller

Robot
Controller

Online Task
and Trajectory

Planning

q, q̇

q
q̇

q∗

q̇∗

q̈∗

q̇ref

Task
Points

Figure 4.3: Hybrid controller for online task and trajectory planning.

In the problem formulation in Section 4.1, a set P of task points containing objects O
and slots S is defined. Let Pb

p ⊂ P denote a set of task points p ∈ P of class b ∈ B. The
task points p ∈ Pb

p can be either objects (Pb
p ⊆ Ob) or slots (Pb

p ⊆ Sb), i. e., Pb
p ∩ Pb

p̄ = ∅,
so the robot continuously alternates between objects and slots. Suppose the trajectory
planning is performed from a previously reached slot to the objects. In that case, Pb

p ⊆ Ob
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4.3 Hybrid control structure

and Pb
p̄ ⊆ Sb. And vice versa, if the current trajectory is planned from the previously

reached object, then Pb
p ⊆ Sb and Pb

p̄ ⊆ Ob. Furthermore, the sets Pp and Pp̄ are defined
as follows

Pp =
⋃

∀b∈B
Pb
p and Pp̄ =

⋃
∀b∈B

Pb
p̄ , (4.31)

where Pb
p ∩ Pb

p̄ = ∅ holds true. The binary parameter

δ̃P =
{

1, if Pp ⊆ S
0, if Pp ⊆ O

(4.32)

is introduced to distinguish between the cases when the subsequent task point is a slot
or an object.

4.3.1 Single-step hybrid controller

The final robot configuration leading to a specific task point p ∈ Pp is not known a priori
and is subject to the optimization problem along with the online trajectory planning.
Combining the robot task scheduling with the trajectory planning into a monolithic MPC
framework results in a time optimal mixed-integer optimization problem as follows

min
u(·), δ1,...,δ|Pp |, tf

J(tf ) = tf (4.33)

s.t. x(j + 1 | k) = (I + ∆τA)x(j | k) + ∆τt2f
(

I + ∆τ
2 A

)
Bu(j | k) (4.33a)

u ≤ u(j | k) ≤ ū (4.33b)

diag(I, tfI) x ≤ x(j + 1 | k) ≤ diag(I, tfI) x̄ (4.33c)

x(0 | k) = diag(I, tfI) x0(k) (4.33d)

x(NT | k) =
∑

∀p∈Pp

xf,p(k)δp ,
∑

∀p∈Pp

δp = 1 (4.33e)

δ̃P
∑

∀p̄∈Pb
p̄

δ∗
p̄ = δ̃P

∑
∀p∈Pb

p

δp , ∀b ∈ B . (4.33f)

Here, j ∈ {0, . . . , NT −1} is the iteration index, NT the prediction horizon and ∆τ=1/NT

the sampling time of the scaled discrete dynamics (4.33a). The idea is to recursively sched-
ule the robot’s tasks and replan its joint trajectories in each optimization step k, from the
actual measured state xT

0 (k) =
[
qT

0 (k), q̇T
0 (k)

]
to the desired state xT

d (k) =
[
qT
d (k),0T

]
,

as expressed by the initial and terminal constraints (4.33d) and (4.33e), respectively.
Since the desired final robot configuration qd(k) is subject to the optimization problem,
it can be expressed as

qd(k) =
∑

∀p∈Pp

qf,p(k)δp , (4.34)

with the possible final configurations qf,p(k) computed using equation (4.11) ∀p ∈ Pp.
The discrete decision variables δp ∈ {0, 1} must satisfy the constraint∑

∀p∈Pp

δp = 1 , (4.35)
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4.3 Hybrid control structure

to force the robot manipulator to go to exactly one of the |Pp| task points, leading to
the constraints (4.33e) with xT

f,p(k) =
[
qT
f,p(k), 0T

]
. The constraints (4.33f) apply for

Pp ⊆ S implying that a previously selected object of class b ∈ B, denoted by the optimal
values δ∗

p̄, can be placed only in a slot of the same class. If the robot moves from a
slot to an object, i. e., δ̃P = 0, the constraints are trivially satisfied. The optimization
problem (4.33) is, similar to the trajectory planning problem (4.30), subject to additional
inequality constraints (4.33b) and (4.33c), representing minimum / maximum bounds for
the control inputs u and the state vector x.

The mixed-integer optimization problem (4.33) is nonlinear and nonconvex due to
the cubic equality constraints (4.33a) and thus falls into the class of NLMIP problems,
which are computationally demanding and time-intensive to solve. However, the resulting
NLMIP problem can be relaxed into an MIQCP problem based on the McCormick
envelopes approach [126] by introducing the auxiliary variables

ς = t2f , and w(k) = ςu(k) , (4.36)

with the upper and lower bounds

tf ∈ [0, t̄f ] , ς ∈ [0, t̄2f ] , and u(k) ∈ [u, ū]. (4.37)

The under- and overestimators of the auxiliary variables are represented by

0 ≤ ς ≤ tf t̄f , ς ≥ 2tf t̄f − t̄2f ,

ςu ≤ w(k) ≤ ςū , (4.38)

t̄2fu(k) + ςū − t̄2f ū ≤w(k) ≤ t̄2fu(k) + ςu − t̄2fu .

With (4.36) and the substitutions

Ad = I + ∆τA , Bd = ∆τ
(

I + ∆τ
2 A

)
B , (4.39)

the dynamic equality constraints (4.33a) can be written as

x(k + 1) = Adx(k) + Bdw(k) , (4.40)

with the new input w(k) ∈ Rn. Besides the additional linear inequality constraints (4.38),
the convex relaxation also enforces the quadratic and bilinear constraints (4.36). The
quadratic equality constraint can be written as a quadratic inequality constraint

t2f ≤ ς ≤ t2f . (4.41)

The bilinear constraints

ςuj(k) − wj(k) = 0 j ∈ {1, · · ·n} (4.42)

can be transformed by introducing the auxiliary variables

y1,j(k) = 1
2(ς + uj(k)) , y2,j(k) = 1

2(ς − uj(k)) (4.43)

into the separable form

y2
1,j(k) − y2

2,j(k) − wj(k) = 0 , j ∈ {1, · · ·n} , (4.44)
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4.3 Hybrid control structure

with the lower and upper bounds

1
2uj ≤ y1,j(k) ≤ 1

2(t̄2f + ūj)

−1
2 ūj ≤ y2,j(k) ≤ 1

2(t̄2f − uj) .
(4.45)

The non-convex equality constraints (4.44) can then be written as

ξT
j (k)Qξj

ξj(k) + cT
wj

ξj(k) = 0 , (4.46)

with ξT
j (k) = [y1,j(k), y2,j(k), wj(k)] and a symmetric positive semi-definite matrix Qξj

.
Finally, they can be transformed into convex inequality constraints of the form

y2
1,j(k) − y2

2,j(k) − wj(k) ≤ 0
−y2

1,j(k) + y2
2,j(k) + wj(k) ≤ 0 ,

(4.47)

with j ∈ {1, . . . n}.
For smooth robot motions, the cost function of the optimization problem (4.33) is

extended to minimize the time derivative of the robot accelerations along the prediction
horizon NT , yielding

J(tf ,w) = αtf + β
NT −1∑
j=1

||w(j | k) − w(j − 1 | k)||2 , (4.48)

with the weights α and β.
To solve the MPC-based problem (4.33) in each optimization step k (sampling step tk)

all binary and continuous variables, including the auxiliary variables, are merged into a
vector z(k) of optimization variables

z(k) = [xT(0|k) · · · xT(NT |k) uT(0|k) · · · uT(NT − 1|k)

wT(0|k) · · · wT(NT − 1|k) yT
1 (0|k) · · · yT

1 (NT − 1|k)

yT
2 (0|k) · · · yT

2 (NT − 1|k) ς tf δ1 · · · δ|Pp|]T ,

(4.49)

leading the MIQCP problem for minimum-time minimum-jerk robot task and trajectory
planning

min
z(k)

zT(k)Qz(k) + cTz(k)

s.t. Aeqz(k) = 0
Ainz(k) ≤ a(t̄f ,u, ū)
zT(k)Qmz(k) + cT

m z(k) ≤ 0 ,

(4.50)

with m ∈ {1, . . . , 12NT +2}. The quadratic cost function (4.48) is being minimized subject
to the linear equality constraints (4.40), (4.33d), (4.33e), and (4.33f) the linear inequality
constraints (4.33b), (4.33c), (4.38) and (4.45), and the quadratic inequality constraints
(4.41) and (4.47).
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4.3.2 Multiple-step hybrid controller

The single-step hybrid controller results in a robot task execution sequence where always
the fastest possible task point is selected. However, subsequent execution of the fastest
possible task does not necessarily result in a minimum robot cycle time. Therefore, an
extension of the hybrid controller in the form of a multi-step controller is introduced that
considers the future task sequence in the optimization problem.

To systematically model the overall transition time of the robot depending on the
considered future task sequence, the two auxiliary parameters

δ̃pp̄ =

1, if Pp ⊆ S ∨
(
Pb
p ⊆ Ob ∧ p ∈ Ob ∧ p̄ ∈ Sb, ∀b ∈ B

)
0, otherwise

(4.51)

and

δ̃p̄p =

1, if Pp ⊆ O ∨
(
Pb
p ⊆ Sb ∧ p ∈ Sb ∧ p̄ ∈ Ob, ∀b ∈ B

)
0, otherwise

(4.52)

are introduced. The robot cycle time is then modeled by three parts

J(tf , δ) = tf +
∑

∀p∈Pp

∑
∀p̄∈Pp̄

NS∑
i=1

δ̃pp̄ t
∗
pp̄ δpi δp̄i +

∑
∀p∈Pp

∑
∀p̄∈Pp̄

NS−1∑
i=1

δ̃p̄p t
∗
pp̄ δp i+1 δp̄i , (4.53)

with the vector δ containing all occurring binary optimization variables. The first part, tf ,
is modeling the transition time to the first task points Pp. The second part is modeling
the time between Pp and Pp̄, where δ̃pp̄ is used to exclude the times between objects
and slots of different classes if the trajectory is planned from an object Pp ⊆ O to a
slot Pp̄ ⊆ S. The last part is modeling the robot motion from Pp̄ back to the task
points Pp. Here, the parameter δ̃p̄p is used to exclude transition times between objects
and slots of different classes in case Pp ⊆ S and Pp̄ ⊆ O. The scheduling horizon NS

indicates the extend to which the future planning sequence is included in the current
task planning. The cost function is extended by the finite time derivatives of the robot
joint accelerations for smooth trajectory planning. The optimization is further subject to
trajectory planning and task scheduling constraints leading the hybrid controller

min
u(·), δ, tf

αtf + α
∑

∀p∈Pp

∑
∀p̄∈Pp̄

t∗pp̄

δ̃pp̄ NS∑
i=1

δpi δp̄i + δ̃p̄p

NS−1∑
i=1

δp i+1 δp̄i

 (4.54)

+ β
NT −1∑
j=1

||u(j | k) − u(j − 1 | k)||2

s.t. x(j + 1 | k) = (I + ∆τA)x(j | k) + ∆τt2f
(

I + ∆τ
2 A

)
Bu(j | k) (4.54a)

u ≤ u(j | k) ≤ ū (4.54b)

diag(I, tfI) x ≤ x(j + 1 | k) ≤ diag(I, tfI) x̄ (4.54c)

x(0 | k) = diag(I, tfI) x0(k) (4.54d)

x(NT | k) =
∑

∀p∈Pp

xf,p(k)δp1 (4.54e)
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∑
∀p∈Pp

δpi = 1 ∧
∑

∀p̄∈Pp̄

δp̄i = 1, ∀i ∈ {1, . . . , NS} (4.54f)

NS∑
i=1

δpi = 1 ∧
NS∑
i=1

δp̄i = 1, ∀p ∈ Pp, ∀p̄ ∈ Pp̄ (4.54g)

δ̃P
∑

∀p̄∈Pb
p̄

δp̄ i−1 + (1 − δ̃P)
∑

∀p∈Pb
p

δpi = δ̃P
∑

∀p∈Pb
p

δpi + (1 − δ̃P)
∑

∀p̄∈Pb
p̄

δp̄i ,

∀b ∈ B, ∀i ∈ {1, . . . , NS} . (4.54h)

Since the task scheduling is subject to optimization, the robot recursively selects a task
point p at each optimization step k and plans the trajectory to it. This is achieved by
applying the terminal constraint (4.54e), with the binary variables δp1,

∑
∀p∈Pp

δp1 = 1,
and the final robot configurations xT

f,p(k) =
[
qT
f,p(k), 0T

]
, denoting that, out of |Pp|

task points with the respective joint configurations qf,p, only one has to be selected and
reached in the minimum possible time at the end of the prediction horizon NT , i. e., at
τ = 1. The desired final robot configurations qf,p satisfy equation (4.11), i. e., ∀p ∈ O
and ∀p̄ ∈ S

{qf,p,qf,p̄} = {qo,qs} = arg min
qco ,qcs

Tos(qco ,qcs) , ∀o ∈ O, ∀s ∈ S . (4.55)

For NS ≥ 1, the future task sequence is also considered in the optimization by including the
binary variables δpi,∀p ∈ Pp and ∀i ∈ {2, . . . , NS}, and δp̄i, ∀p̄ ∈ Pp̄ and ∀i ∈ {1, . . . , NS}.
Thus, the binary constraints (4.54f) and (4.54g) also apply. They imply that, at each
iteration along the scheduling horizon, exactly one task point should be selected and that
each task point has to be selected only once across all iterations. From the predicted
future task sequence only the first one, i. e., δ∗

p1, is used for trajectory planning.
The binary equality constraints (4.54h) are introduced to ensure that an object o ∈ Ob

of class b can be only placed into a slot s ∈ Sb of the same class. For Pp ⊆ S, it should
be considered that out of |Pp| slots the one should be selected next which belongs to the
same class as the previously picked object δ∗

p1. The same applies also for the future slot
sequence along the scheduling horizon NS. With δp̄0 = δ∗

p1 denoting the previous optimal
task planning solution, the constraints (4.54h) obtained for δ̃P = 1, see (4.32), read∑

∀p̄∈Pb
p̄

δp̄ i−1 =
∑

∀p∈Pb
p

δpi , ∀b ∈ B, ∀i ∈ {1, . . . , NS} . (4.56)

Since the robot can move from a previously filled slot to any object, the previous
scheduling results are not considered if the subsequent task is an object, i. e., δ̃P = 0. In
this case, the constraints∑

∀p∈Pb
p

δpi =
∑

∀p̄∈Pb
p̄

δp̄i , ∀b ∈ B, ∀i ∈ {1, . . . , NS} . (4.57)

are applied to ensure that the object-slot assignment along the scheduling horizon is
within the same class b ∈ B.

The convexification techniques presented in Section 4.3.1 are again applied to transform
the MINLP problem (4.54) into a relaxed MIQCP problem, suitable for online task and
trajectory planning of robot manipulators. In the following section, some implementation
details followed by experimental results will be presented to demonstrate, validate and
compare the performance of the proposed algorithms.
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4.4 Implementation
The experimental setup consists of a UR5 collaborative robotic arm from UniversΛl
Robots equipped with gripper, and a Host-PC where the planning algorithms are
implemented. The planned time-optimal trajectories are sent to the robot controllers
via TCP / IP (Transmission Control Protocol / Internet Protocol) communication pro-
tocol using ROS melodic [127]. The resulting system and implementation architecture
is shown in Figure 4.4. The computed minimum-time joint trajectories consisting of
position q∗(·) = [q∗(0), . . . ,q∗(NT )], velocity q̇∗(·) = [q̇∗(0), . . . , q̇∗(NT )], and acceler-
ation u∗(·) = [u∗(0), . . . ,u∗(NT )] data points are forwarded, along with a time vector
t∗ = [0, . . . , t∗f ], to ROS Control to finally generate reference points for the low-level
robot controller. In this work, joint velocity interface in conjunction with joint velocity
controller is used by ROS Control to send and receive control commands to the underly-
ing robot controller. More specifically, joint trajectory controller is used for executing
joint-space trajectories on a group of joints. Since the trajectories are planned iteratively,
the action interface is used, which grants the possibility of replacing trajectories at each
optimization step when the new ones are available.

Given a set of position, velocity, and acceleration data points to be reached at specific
time instants, the controller performs a spline interpolation using quintic polynomials. As
shown in Figure 4.4 the used velocity controller provides a closed-loop control structure
using a proportional integral derivative (PID) controller in combination with a feedforward
term, given by

q̇ref(t) = KF q̇d(t) + KPeq(t) + KI

∫ t

0
eq
(
t̃
)

dt̃+ KDėq(t), (4.58)

with the diagonal matrices KP for the proportional gain, KI the integral gain, KD the
derivative gain and KF the feedforward gain. The velocity controller generates a reference
velocity profile which is forwarded to the underlying robot controller (UR controller) via
a velocity interface.

To realize the feedback loops needed for MPC and the ROS velocity controller, fast
reading of the current position and velocity of the robot joints is crucial. Measuring and
reading the necessary feedback data requires time, depending on the update frequency

MPC

Trajectory
Approx.

KF

PID
Robot

Controller
& Dynamics

q̇ref

q̇d

ėq

eq
qd

q̇
q

q̇qq∗(·) q̇∗(·) u∗(·)

RT
D

E

ROS
(Robot Operating System)

Figure 4.4: Schematic illustration of the hardware implementation using ROS. The gener-
ated minimum-time trajectories q∗(·) = [q∗(0), . . . ,q∗(NT )], q̇∗(·) = [q̇∗(0), . . . , q̇∗(NT )], and
u∗(·) = [u∗(0), . . . ,u∗(NT )] are approximated by quintic polynomials and forwarded to the
low-level robot controller via a PID-feedback controller in combination with a feedforward term
using ROS and Velocity Control Interface.
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of the UR controller and ROS itself. The control and update frequency of the robot
controller is 125 Hz, providing sufficient performance for online robot trajectory planning.
However, when using ROS to access the measurement data via ROS messages, the
performance of the reading time is poor, causing time delays between 15 ms − 60 ms per
robot, as shown in Figure 4.5. To overcome this problem, a direct synchronization for
data exchange between the UR controller and the Host-PC is established using Real-Time
Data Exchange (RTDE) interface over a standard TCP / IP connection, without breaking
any real-time properties of the UR controller [128]. Although the ROS driver uses the
RTDE interface for data exchange, the processing overhead when using ROS messages
causes significant delays far greater than the delays resulting from RTDE, see Figure 4.5.

The parameters of the feedforward PID controller are tuned using sinusoidal reference
trajectories following some basic guidelines described in [87]. The sinusoidal reference
trajectories were created considering the position and velocity limits of the robots in order
not to exceed physical limitations and to avoid self-collision between the links. Therefore,
optimization-based trajectories can also be considered, similar to those introduced in
[76] for robot dynamic parameter estimation. To evaluate the tracking performance of
the tuned parameters shown in Table 4.1, pick-and-place tasks are performed to track
trajectories other than those used during the tuning process. As can be seen in Figure 4.6,
the chosen parameters result in a very good tracking performance with nonsignificant
tracking errors in the range of single-digit milli-radian for the position and double-digit
milli-radian for the velocity. The position error is slightly smaller than the velocity error,
given the fact that accurate positioning of the robots is crucial for the task execution.

The algorithms are implemented in Python on a standard Host-PC with Intel Core
i7-8700 Processor and a 3.20 GHz clock rate using Ubuntu 18.04.6 LTS with a real-time
kernel. To model the optimization problems the CasADi framework [129] is used. The
IBLP optimization problems (4.8) and (4.12) for task scheduling are solved with the
gurobi solver. The gurobi solver is also applied to solve the mixed-integer optimization
problems (4.33) (4.54), after applying convexification techniques and transform them
into MIQCP problems of the form (4.50). The nonlinear optimization problem (4.30)
for minimum-time robot trajectory planning is solved by applying the Interior Point
OPTimizer (IPOPT) [130].
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Figure 4.5: Direct comparison of reading time delays coming from RTDE and ROS while performing
pick-and-place tasks. Evidently ROS delays far exceed the ones coming from RTDE. The mean
value of ROS delay is approximately 28 ms as represented with the black dashed line.
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Figure 4.6: Comparison between the target and the measured position and velocity of the robot
joints and depiction of the resulting tracking error.
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Table 4.1: Tuned PID parameters.
Description Parameter Value
Proportional gain KP 5I
Integral gain KI 0.05I
Derivative gain KD 0.05I
Feedforward gain KF I

4.5 Experimental results
The experiment setup used to demonstrate the functionality and evaluate the performance
of the proposed approaches is presented in Section 4.1. It involves a single robot
manipulator, six objects O = {o1, . . . , o6}, and six slots S = {s1, . . . , s6}. The overall
task is to place the objects in the slots in the shortest possible time. Therefore, three test
cases are considered. In all cases, the distribution of the objects o ∈ O and slots s ∈ S, as
well as the initial position of the robot are chosen as shown in Figure 4.1. In Test Case 1
and 2 all objects and slots belong to the same class B = {"black"}. The orientation of
the gripper when picking up the objects and placing them in the slots in Test Case 1 is
chosen to be the same for all objects and slots. It corresponds to the initial end-effector
orientation shown in Figure 4.1. In Test Case 2, on the other hand, the orientation of
the end-effector when grasping objects o1, o3, and o5, and filling slots s2, s4, and s6 is
rotated by 90◦ about the z-axis compared to its initial orientation. In Test Case 3 the
task points belong to three different classes B = {"red", "green", "blue"}. Compared to
its initial orientation, the robot gripper when picking object {o1, o2, o3} and filling slots
{s1, s3, s5} is rotated by 90◦ about the z-axis.

Test Case 1 and Test Case 2

The computed optimal scheduling sequences and the resulting optimal final times t∗f
for both test cases are shown in Figure 4.7. Figure 4.7a) and Figure 4.7b) present the
experimental results of the hierarchical control structure for minimum-distance and
minimum-time scheduling. Figure 4.7c), Figure 4.7d), and Figure 4.7e) display the results
of the hybrid MPC algorithm for one (1S-HMPC), two (2S-HMPC) and three (3S-HMPC)
scheduling horizons, i. e., NS ∈ {0, 1, 2}. Note that, the multi-step hybrid controller (4.54)
is for NS = 0 equal to the optimization problem (4.33), i. e., to the single-step hybrid
controller. The prediction horizon for the trajectory planning is chosen NT = 10; the
robot joint velocity limits ±π/2 rad/s, and the joint acceleration limits ±2π rad/s2.

The computed minimum final time t∗f is shown for each test case and optimization
algorithm separately. The time periods denoting the robot’s motion to the respective
objects and slots are denoted by light and dark gray areas, respectively. A peak in
the optimal time course represents the beginning of the trajectory planning to lead the
robot from its current position to an object or a slot. Accordingly, the minimum time is
maximal at the beginning and decreases continuously as the robot approaches its target
with each sampling step (MPC iteration). As can be seen, the optimal time course for the
considered test cases has twelve maximum and twelve minimum peaks, representing each
the beginning and the end of task execution (picking or placing an object), respectively.
The higher the maximum peak, the longer the robot needs to finish the selected task.

In Test Case 1, the robot will start from its initial position, pick and place all objects
without changing the end-effector’s orientation. Given the fact that, the gripper is

67



4.5 Experimental results

0.5
1

1.5
t∗ f

(s
)

Test Case 1

0.5
1

1.5

t∗ f
(s

)

Test Case 2

0 6 12 18
1
2
3
4
5
6

21.5

i
:δ

∗ i
=

1

a) Hierarchic controller with minimum-distance scheduling.

moving towards object moving towards slot

0 6 12 18
1
2
3
4
5
6

23.5

i
:δ

∗ i
=

1

0.5
1

1.5

t∗ f
(s

)

0.5
1

1.5

t∗ f
(s

)
0 6 12 18

1
2
3
4
5
6

21.4

i
:δ

∗ i
=

1

b) Hierarchic controller with minimum-time scheduling.
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c) HMPC with one step scheduling horizon (1S-HMPC).
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d) HMPC with two steps scheduling horizon (2S-HMPC).
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e) HMPC with three steps scheduling horizon (3S-HMPC).
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Figure 4.7: Minimum final time t∗f and computed optimal values for the binary decision variables
δ∗

i for Test Case 1 (left) and Test Case 2 (right). a) and b) show the results of the hierarchical
control structure using minimum-distance (4.8) and minimum-time (4.12) scheduling, respectively.
c), d) and e) show the results of the hybrid planning algorithm (4.54) with NS = 0 (1S-HMPC),
NS = 1 (2S-HMPC) und NS = 2 (3S-HMPC), respectively. The light gray areas represent the
period when the robot is on the way to pick up an object, and the dark gray regions display the
time span after picking up the object until placing it in the chosen slot.
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grasping and placing the objects perpendicular to them, the orientation of the gripper at
the target points is depending mainly on the sixth robot joint (θ6), see Section 2.1. In
this test case, the sixth robot joint only needs to compensate for the change in orientation
caused by the rotation of the first (θ1) robot joint to keep the gripper’s direction constant.
Considering that the objects are located on the xy-plane, joint two (θ2) three (θ3) and the
first joint are the dominant ones since they are decisive for stretching the robot arm along
the xy-plane. Thus, the problem formulation in the joint space is quite similar to the one
in the robot workspace, where the Euclidean distance is minimized. Furthermore, the
location of the objects is symmetrical, i. e., objects o3 and o4 have approximately the same
distance from the robot base. The same also holds for objects o2, o5 and o1, o6. Since the
minimum-distance scheduling (4.8) is performed in the workspace and the minimum-time
scheduling (4.12) in the configuration space, the computed optimal sequences are different
(Figure 4.7a) and 4.7b) left), but the scheduling performance in terms of overall task
execution time is similar, with the minimum-time scheduler performing slightly better.
The computed minimum-distance scheduling sequence is

{o2, s2, o1, s1, o3, s3, o4, s5, o6, s6, o5, s4} ,

meaning that, first Object o2 will be placed in Slot s2, then Object o1 in Slot s1 and so
on. The minimum-time scheduling sequence, on the other side, reads

{o1, s5, o3, s1, o2, s2, o4, s6, o6, s3, o5, s4} .

Note that both scheduling algorithms consider all possible combinations while computing
the optimal task sequences. According to the hierarchical control structure in Section 4.2,
the computed optimal task sequences from the scheduling layer are forwarded to the
lower layer for minimum-time online trajectory planning to finally execute the assigned
tasks.

Next, focusing again on Test Case 1, the performance of the hybrid controller will be
analyzed, starting with the single-step hybrid controller (NS = 0) for online task and
trajectory planning. The resulting optimal scheduling sequence, as shown in Figure 4.7c),
reads

{o1, s1, o6, s5, o5, s3, o2, s2, o3, s6, o4, s4} .
To better understand the performance of the single-step hybrid controller, the maximum
angular distances between the objects and slots in conjunction with resulting optimal
task execution sequence are shown in Table 4.2. According to the computation of the
fastest transition time between two task points (4.9), the maximum angular distance
between two joint configurations denotes the joint farthest from its target, which, in
case all robot joints have the same speed characteristics, determines the time needed
by the robot to move from the current to the next task point, see also [77]. Starting
from the initial robot position qin, the computed maximum angular distances to all
objects, i. e., max |qin − qoi | in Table 4.2, indicate that objects o1 and o6 are closest to
the actual robot configuration. Considering that they are located at the same distance
along the x-axis (see Figure 4.1), the maximum angular distance is the same for both
objects. The resulting value corresponds to the distance of robot joint three (θ3), which,
compared to the other joints, has to cover the largest angular distance on the way from
the initial robot position to the objects. From the two nearest possible objects, the robot
decides to pick up Object o1, i. e., δ∗

o11 = 1 and place it in Slot s1 (δ∗
s11 = 1), which is the
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Table 4.2: Maximum angular distances for Test Case 1 when applying 1S-HMPC.

Object oi / Slot si 1 2 3 4 5 6
max |qin − qoi

| 0.903 1.096 1.342 1.342 1.096 0.903
max |qo1 − qsi

| 0.855 1.015 0.924 1.085 0.855 1.015
max |qs1 − qoi | 1.048 1.294 1.294 1.048 0.928
max |qo6 − qsi

| 1.059 0.924 1.085 0.855 1.015
max |qs5 − qoi

| 1.048 1.294 1.294 1.048
max |qo5 − qsi

| 1.207 1.116 1.277 1.207
max |qs3 − qoi | 1.116 1.362 1.362
max |qo2 − qsi | 1.207 1.277 1.207
max |qs2 − qoi

| 1.453 1.453
max |qo3 − qsi

| 1.524 1.453
max |qs6 − qoi | 1.453
max |qo4 − qsi | 1.524

nearest task point according to the maximum angular distances max |qo1 − qsi | shown in
Table 4.2. From there, the robot will go to Object o6 (δ∗

o62 = 1) and place it in Slot s5
(δ∗
s52 = 1), continue further to Object o5, place it in Slot s3, and so on. It can be seen

that towards the end, the task execution time becomes larger, which is consistent with
the proposed algorithm aiming to choose the fastest possible task point and plan the
trajectory to it. This is also evident from the values in Table 4.2, where the objects and
slots corresponding to the smallest angular distance are always selected (represented by
bold values). The objects o3 and o4 will be selected last, as their execution requires more
time compared to the other objects. The empty cells in the table represent task points
that are no longer available.

When using the single-step hybrid control strategy, the resulting optimal task sequence
does not necessarily lead to an overall time-optimal robot task execution. As previously
presented in Figure 4.7c) and Table 4.2, always selecting the fastest possible task point
results in an overall task execution time of about 22 s, which is higher compared to the
performance of the hierarchic controllers shown in Figure 4.7a) and Figure 4.7b). To
improve the performance of the hybrid controller, the scheduling horizon NS can be
increased to consider more possible task point combinations while recursively deciding
which task point to execute next. Increasing the scheduling horizon by one (NS = 1)
results in an hybrid MPC algorithm with two steps scheduling horizon (2S-HMPC),
which, as shown in Figure 4.7d) for Test Case 1, leads to a different task sequence and
an improvement on the overall task execution time. A further increase of the scheduling
horizon to NS = 2 in the form of a three-step hybrid MPC (3S-HMP) results in slightly
different task execution order and shorter overall task execution time, see Figure 4.7e)
for Test Case 1.

Comparing the performance of all presented optimization approaches for Test Case 1,
it can be seen that, the hierarchic controller with the minimum-time scheduling performs
slightly better. This is to be expected, since the problem is modeled in the configuration
space and it considers all possible task point combinations when generating the optimal
task sequence. In general, the co-design approach in form of the multi-step hybrid
controller should perform best, if the scheduling horizon is chosen to consider all possible
task point combinations in the recursive task and trajectory planning. However, increasing
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Figure 4.8: Solver time over MPC iterations.

the scheduling horizon also increases the number of binary optimization variables resulting,
as shown in Figure 4.8, in a larger computation time. The computation time is significantly
higher at the beginning, where more task points are available but never exceeds 60 ms at
any iteration. When comparing the performance of the hierarchic and hybrid controller
one should consider also that the hybrid controller beside the time, which is parameterized
depending on the scheduling horizon, minimizes also the robot joint jerk to generate
smooth robot trajectories.

In Test Case 2, where the gripper orientation at the task points {o1, o3, o5, s2, s4, s6}
is rotated by 90◦ about the z-axis compared to its initial orientation, the sixth robot
joint (θ6) significantly influences the optimization results. However, this is not the case
for the hierarchic structure with minimum-distance scheduling since the orientation of
the task points can not be incorporated into the scheduling model when considering the
problem in the workspace. Given that the distribution of the task points in Test Case 1
and Test Case 2 remains the same, and only the orientation of some task points changes,
the minimum-distance scheduling computes the same scheduling sequence in both cases,
see Figure 4.7a). However, in comparison to the results of the other proposed algorithms,
minimum-distance scheduling delivers the poorest performance in terms of overall task
execution time. The best performance is again given by the hierarchic controller with
minimum-time scheduling and the computed optimal sequence

{o6, s3, o2, s5, o4, s6, o3, s1, o5, s2, o1, s4} ,

resulting in an overall task execution time of about 21.6 s.
The scheduling results for the single-step hybrid controller (1S-HMPC) and Test Case 2

are shown to the right of Figure 4.7c) in conjunction with Table 4.3. Starting form its
initial position qin the robot will pick up Object o6 which is with an angular distance of
∆θ3 = 0.903 rad nearest to the actual robot configuration. Because of the 90◦-orientation
of the end-effector while picking up Object o1, this object is with an angular distance
∆θ6 = 1.842 rad the farthest to the actual robot configuration. Note that, the angular
distance of robot joint six, is larger than π/2, although the end-effector orientation at
object o1 is rotated by 90◦ about the z-axis compared to its orientation at the initial
position, see Figure 4.1. This is because the sixth robot joint also has to compensate for
the end-effector rotation over the negative z-axis, which is imposed by the displacement of
the first robot joint (θ1), moving the end-effector along the negative y-axis. The angular
distance ∆θ3 = 1.096 rad also underpins this fact, as the maximum distance comes from
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Table 4.3: Maximum angular distances for Test Case 2 when applying 1S-HMPC.

Object oi / Slot si 1 2 3 4 5 6
max |qin − qoi

| 1.842 1.096 1.467 1.342 1.096 0.903
max |qo6 − qsi

| 0.928 2.630 0.924 2.214 0.855 1.727
max |qs5 − qoi | 2.300 1.048 1.925 1.294 1.517
max |qo2 − qsi

| 1.048 1.864 1.116 1.447 1.207
max |qs1 − qoi

| 1.556 1.294 1.294 1.048
max |qo5 − qsi

| 1.207 1.126 1.277 1.207
max |qs6 − qoi | 1.015 1.453 1.453
max |qo1 − qsi | 1.015 1.910 1.085
max |qs2 − qoi

| 1.453 2.288
max |qo3 − qsi

| 1.534 1.524
max |qs4 − qoi | 1.871
max |qo4 − qsi | 1.362

robot joint three, although the end-effector orientation while picking up Object o5 is also
rotated by π/2 over the z-axis. Joint number six is not the dominant one in this case,
since to move the end-effector along the positive y-axis, robot’s basis (θ1) is rotating also
over the positive z-axis. By this, the end-effector is being rotated towards the desired
final orientation and the sixth robot joints needs, in this case, to cover only the difference
between the desired final gripper-orientation and the one imposed by the movement of
the robot base. Following the single-step hybrid controller where the fastest possible task
point is always executed next, Object o6 is placed in Slot s5, Object o2 in Slot s1, and so
on, resulting in the task sequence

{o6, s5, o2, s1, o5, s6, o1, s2, o3, s4, o4, s3} .

Increasing the scheduling horizon by one (2S-HMPC) results in the same task sequence
as when applying 1S-HMPC without reducing the overall task execution time. A slight
improvement is achieved by a further increase of the scheduling horizon (3S-HMPC),
which, compared to 1S-HMPC and 2S-HMPC, results in a change in the sequence
order, where Object o2 is placed in Slot s3 instead of s1, Object o3 is placed in Slot s1
instead of Slot s4, and Object o4 is placed in Slot s4 instead of Slot s3, (see right of
Figure 4.7c)-4.7d))

Test Case 3

In Test Case 3, there exist three different object and slot types distributed as follows

Ored = {o1, o5} , Ogreen = {o2, o4} , Oblue = {o3, o6} , and
Sred = {s3, s4} , Sgreen = {s5, s6} , Sblue = {s1, s2} .

The experimental results for both control structures and the hybrid controller’s computa-
tion time are jointly displayed in Figure 4.9. The orientation of the robot end-effector for
the task points {o1, o2, o3, s1, s3, s5} is rotated by 90◦ about the z-axis compared to its
initial orientation. The hierarchic controller with minimum-time scheduling, shown in
Figure 4.9e), delivers again the best performance resulting in the task execution sequence

{o6, s2, o3, s1, o1, s3, o2, s5, o4, s6, o5, s4} .

72



4.5 Experimental results

0.5
1

1.5
2

t∗ f
(s

)

0.5
1

1.5
2

t∗ f
(s

)

0 6 12 18
1
2
3
4
5
6

23.1
Time (s)

i
:δ

∗ i
=

1

a) HMPC with one step scheduling horizon (1S-HMPC).

moving towards object moving towards slot

0 5 10 15 20
1
2
3
4
5
6

25.7
Time (s)

i
:δ

∗ i
=

1

d) Minimum-distance scheduling.

moving towards object moving towards slot

0.5
1

1.5
2

t∗ f
(s

)

0.5
1

1.5
2

t∗ f
(s

)
0 6 12 18

1
2
3
4
5
6

22.5
Time (s)

i
:δ

∗ i
=

1

b) HMPC with two steps scheduling horizon (2S-HMPC).

0 6 12 18
1
2
3
4
5
6

21.6
Time (s)

i
:δ

∗ i
=

1

e) Minimum-time scheduling.

0.5
1

1.5
2

t∗ f
(s

)

0 100 200 300 400 500 600

20

40

Iterations

C
om

p.
T

im
e

(m
s)

f) Computation time of the hybrid controller.

1S − HMP C 2S − HMP C 3S − HMP C

0 6 12 18
1
2
3
4
5
6

22.2
Time (s)

i
:δ

∗ i
=

1

c) HMPC with three steps scheduling horizon (3S-HMPC).

Figure 4.9: Task and trajectory planning results for Test Case 3. a)-c) show the experimental
results of the hybrid controller for NS ∈ {0, 1, 2} with the resulting computation time shown in f).
d) and e) display the experimental results of the hierarchic structure with minimum-distance and
minimum-time scheduling, respectively.

As expected, the hierarchic controller with minimum-distance scheduling in Figure 4.9d)
performs poorest, resulting in an overall robot cycle time being about 4 s slower compared
to the hierarchic structure with minimum-time scheduling.

Applying the hybrid controller with one step scheduling horizon (1S-HMPC) leads to
the task execution sequence

{o6, s2, o5, s4, o4, s5, o1, s3, o2, s6, o3, s1} ,
which corresponds to selecting the nearest possible feasible task point, see Table 4.4.
Starting from the initial robot configuration, Object o6 is selected first and placed in
Slot s2 of the same class. Then Object o5 is picked and placed in Slot s4. In Table 4.4,
it can be seen that, when moving from a slot to an object, always the object with the
smallest angular distance is selected. When moving from an object to a slot, the slot
that belongs to the same class as the previously selected object and has the minimum
angular distance to it, i. e., the fastest to reach, is chosen.

Increasing the scheduling horizon by one, respectively two, leads to the optimal task
sequences presented in Figure 4.9b) and Figure 4.9c), which improve the overall robot
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Table 4.4: Maximum angular distances for Test Case 3 when applying 1S-HMPC.

Object oi / Slot si 1 2 3 4 5 6
max |qin − qoi

| 1.842 1.964 1.467 1.342 1.096 0.903
max |qo6 − qsi

| 2.499 1.059 2.146 1.085 1.755 1.015
max |qs2 − qoi | 1.425 1.277 1.453 1.453 1.207
max |qo5 − qsi

| 2.368 2.015 1.227 1.624 1.207
max |qs4 − qoi

| 1.842 1.693 1.524 1.524
max |qo4 − qsi

| 2.157 1.804 1.413 1.453
max |qs5 − qoi | 0.855 1.048 1.294
max |qo1 − qsi | 0.855 0.924 2.328
max |qs3 − qoi

| 1.116 1.362
max |qo2 − qsi

| 1.048 2.180
max |qs6 − qoi | 1.953
max |qo3 − qsi | 1.294

task execution time. A larger scheduling horizon results in an increased computation
time of the hybrid controller as displayed in Figure 4.9f). Compared to Test Case 1 and
Test Case 2, the computation time is slightly shorter since the additional class-assignment
constraints reduce the number of potential combinatorial decisions.

The presented control structures and optimization-based approaches have each their
benefits and drawbacks. The hierarchic control structure consists of two decoupled
optimization problems, out of which only the robot trajectory planning problem is
solved online. The scheduling layer is performed offline as it considers all possible robot
task combinations and is thus computationally demanding with a computation time
varying between 100 ms-250 ms for the considered test cases with six objects and six
slots. The minimum-distance scheduling approach is easier to implement as it requires
only the computation of the Euclidean distances between the task points. The inverse
kinematics is needed after scheduling is performed to compute the robot joint configuration
corresponding to the allocated task. Therefore, a numerical IK-solver can also be used,
which converges into a single IK solution. However, minimizing the Euclidean distance
provides good results when the robot end-effector motions are rectilinear and when the
orientation of the end-effector does not matter when performing tasks. If the aim is to
minimize the robot cycle time, the problem should be transferred to the configuration
space considering multiple IK solutions. The drawback hereby is the necessity to compute
all feasible IK solutions for each task point.

The co-design approach in the form of a hybrid controller is expected to perform
better the larger the scheduling horizon is chosen. Since the algorithm inherently plans
robot tasks and trajectories, it should be performed online, which poses a limitation,
particularly for high-dimensional MIQCP problems. We can see in the results that, for
Test Case 2 and Test Case 3, even a scheduling horizon of one performs better than
minimum-distance scheduling in terms of overall robot cycle time. The algorithm is
particularly well suited when considering a few non-stationary task points, as it constantly
recalculates the optimal task sequence.
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CHAPTER 5
Cooperative Task and Trajectory Planning

Advanced assembly, production, and packaging tasks enhance the need to employ two
or more robot manipulators working in the same or highly overlapping physical areas.
Efficient deployment of multiple cooperating robots brings the promise of shorter robot
cycle times and faster task execution. In a shared workspace, multiple robots can perform
a wider variety of tasks, either as a composition of different subtasks into a more complex
task or by extending the operating space, e. g., by passing a tool or workpiece from one
robot to another. Typically, in such settings, the robots can communicate with each other,
share sensor information and coordinate their actions and motion to jointly perform the
assigned tasks. The complexity of these systems poses new computational challenges,
especially when the robot arrangement leads to a significant overlap of robot working
areas and, thus, an increased collision risk. Therefore, the setup, control, and operation
of multi-robot systems is still primarily an active field of research, see, e. g., [131–135].

The efficient and safe use of cooperating robots in a shared workspace relies on balancing
the robots’ workload and ensuring certain safety aspects for safe and collision-free robot
operation. Analogous to the case of a single robot manipulator, these challenges can
be addressed by introducing two optimization-based control policies, a discrete one for
task scheduling and a continuous one for point-to-point trajectory planning. Following
this approach, task scheduling can be decoupled from trajectory planning, resulting in
a hierarchic control structure, or they can be combined into a single hybrid controller
for inherent task and trajectory planning. Multi-robot systems in a confined working
environment are subject to challenging manipulation tasks where moving robots appear to
each other as dynamic obstacles of complex geometries. This poses additional challenges
to optimization-based trajectory planning as it involves the incorporation of highly
nonlinear collision avoidance constraints. Moreover, robot trajectories must be computed
online to update the planned robot motions continuously. Consequently, the hybrid
controller leads to an MINLP problem that cannot be relaxed into a less computationally
intensive class of mixed-integer optimization problems suitable for online applications.

This chapter introduces an extension of the proposed hierarchic controller for a multi-
robot system with overlapping robot working areas. To this end, a novel collision avoidance
approach is presented based on robot geometry approximation by smooth Bézier curves
and spherical objects. Velocity restrictions as constraints of a time-optimal MPC-based
trajectory planning algorithm are introduced to enforce the geometry approximating
spheres slide along tangent separating planes and ensure collision-free robot operation.
The performance of the proposed control scheme is demonstrated by experiments with a
robotic system consisting of two robot manipulators performing pick-and-place tasks.
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5.1 Problem formulation

5.1 Problem formulation
Let R represent a set of robots that have to execute a set of task points P = O ∪ S
consisting of picking objects o ∈ O and placing them in the slots s ∈ S. Objects and
slots can belong to different classes b ∈ B, i. e., O = ⋃

∀b∈B Ob and S = ⋃
∀b∈B Sb. It is

assumed that all task points are reachable for both robots and each class contains an
equal number of objects and slots, i. e., |Ob| = |Sb|, ∀b ∈ B, with ∑∀b∈B |Ob| = |O| and∑

∀b∈B |Sb| = |S|. It is also assumed that, depending on the number of robots, sufficient
tasks points are available for simultaneous task completion.

Arranging the robot such that both can reach all task points results in a significant
overlap of their working area, as shown in Figure 5.1 for the considered demonstrator
with two robot manipulators. The position of the task points is given relative to the
coordinate frame attached to the base of Robot 1. In addition, each object and each slot
is assigned a picking, respectively filling gripper orientation.

Robot 2 Robot 1

o1o2o3o4o5 o6o7o8
o9 o10o11 o12

y2

x2

y1
x1

{s1, . . . , s6}

{s7, . . . , s12}

0.25 m

1.2 m

Figure 5.1: Two robot manipulators performing pick-and-place tasks with twelve objects o ∈ O
and slots s ∈ S, which belong to the classes B = {"black", "red", "green", "blue", "white"}. The
chosen distribution of the task points, with Swhite = {s1, s2},Sblack = {s3, s4, s9, s10},Sblue =
{s5, s6},Sred = {s11, s12}, and the robot arrangement relative to each other lead to challenging
robot motions with high collision potential.

The robots should simultaneously pick one object each and place them in the cor-
responding slots of the same class. The task points belong to four different classes
B = {"black", "red", "green", "blue", "white"}. For the considered test case, placing objects
according to their class often leads to robot motions with intersecting end-effector paths.
Therefore, when computing the optimal gripping and filling sequences, it is essential to
ensure that the resulting final robot configurations are feasible and do not lead to collisions
between the robot arms. Feasible and collision-free initial and final robot configurations
do not guarantee collision-free robot motions along the entire trajectories between the
start and target points. Consequently, both layers of the hierarchic controller, which
address task scheduling and trajectory planning, must consider safety-related constraints
to guarantee collision-free robot task execution.
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5.2 Hierarchical control structure

5.2 Hierarchical control structure
The hierarchical control structure is similar to the control architecture for task and
trajectory planning of a single robot manipulator presented in Section 4.2. It consists of a
discrete upper layer for task scheduling followed by an underlying trajectory planning layer
based on model predictive control. In a multi-robotic system, the trajectory planning
layer can be organized as a centralized algorithm [79] common to all robot arms or
as a distributed planning layer [80] where each robot has its local planning algorithm.
A schematic illustration of the hierarchical control structure with a centralized and
distributed MPC-based trajectory planning layer for the considered robotic setup with
two robot manipulators is shown in Figure 5.2.

ROS
Controller

Robot
Controller

MPC

SchedulingTask
Points

q̇1,ref, q̇2,ref

q1, q̇1
q2, q̇2

q1, q̇1
q2, q̇2

q∗
1, q̇∗

1,u∗
1

q∗
2, q̇∗

2,u∗
2

q1,q2q1f ,q2f

a) Centralized MPC

ROS
Controller

ROS
Controller

Robot
Controller

Robot
Controller

DMPC DMPC

Scheduling

Robot 1 Robot 2

Task
Points

q̇1,ref q̇2,refq1, q̇1 q2, q̇2

q∗
1, q̇∗

1,u∗
1 q∗

2, q̇∗
2,u∗

2

q1
q̇1

q2
q̇2

q1f q2f
q1 q2
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b) Distributed MPC

Figure 5.2: Hierarchical control structure with centralized (a) and distributed (b) trajectory
planning layer.

The scheduling layer involves a centralized binary optimization problem that gets
information about the distribution of the task points and the position of the robot
arms and computes an optimal task execution for the robots to balance their workload
and ensure fast and safe robot task execution. Task scheduling is performed offline,
providing a sequence of feasible task points to the underlying trajectory planning layer,
which computes robot trajectories online by minimizing the task execution time. In the
centralized trajectory planning scheme, a single MPC algorithm is deployed to plan time-
optimal trajectories for both robots. The computed optimal trajectories are forwarded
to the local robot controllers using ROS Control via a velocity control interface, see
Section 4.2. Each robot has its local MPC-based planning algorithm in the distributed
planning architecture, resulting in a layer of communicating distributed model predictive
controllers (DMPC). The DMPC-based planners communicate with each other and share
information about the optimal value of their cost functions (t̂1f , t̂2f ) and the computed
robot position (q̂1, q̂2) and velocities (ˆ̇q1, ˆ̇q2), which are considered in the next planning
iteration to coordinate the motions of the robots. The following will discuss the two
layers of the hierarchical control structure in more detail.
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5.2 Hierarchical control structure

5.2.1 Task scheduling

The goal of the task scheduling is to compute an optimal task sequence for the robots
r ∈ R so that they simultaneously pick objects o ∈ O and place them in the slots s ∈ S.
Therefore, two types of binary variables are introduced. The variables δroi ∈ {0, 1},
∀o ∈ O and ∀r ∈ R, model the robot-object assignment at each picking iteration
i ∈ N = {1, . . . , N}. To model the robot-slot assignment at each filling iteration
i ∈ N = {1, . . . , N}, the binary variables δrsi ∈ {0, 1}, ∀s ∈ S and ∀r ∈ R are used.
By computing the optimal values of the binary variables, the robot task sequences are
uniquely defined. δro1 = 1 and δrs1 = 1 would mean, for instance, that robot r will pick
up object o first and place it in slot s. The number of the required maximum scheduling
iterations N = |N | depends on the number of the available task points |P| = |O| + |S|
and robots |R|. According to the problem formulation in Section 5.1, it is assumed that
for |O| = |S|, N = |P|/(2|R|) ∈ N.

In order to balance the workload between the robots, it is required that at each picking
and placing iteration i ∈ N each robot has to pick an object o ∈ O and fill a slot s ∈ S.
This is imposed by applying the binary equality constraints∑

∀o∈O
δroi = 1 and

∑
∀s∈S

δrsi = 1 , ∀i ∈ N , ∀r ∈ R . (5.1)

The constraints∑
∀r∈R

∑
∀i∈N

δroi = 1 and
∑

∀r∈R

∑
∀i∈N

δrsi = 1 , ∀o ∈ O, ∀s ∈ S (5.2)

imply that across all scheduling iterations each object is picket only once and each slot is
filled only once by one of the robots r ∈ R. Further, the equality constraints∑

∀o∈Ob

δroi =
∑

∀s∈Sb

δrsi, ∀b ∈ B, ∀r ∈ R, ∀i ∈ N (5.3)

are used, ensuring that an object o ∈ Ob of class b ∈ B that is selected by robot r ∈ R
can be placed only in a slot s ∈ Sb of the same class.

Two simultaneously selected task points executed each by one robot have to lead to
feasible, i. e., collision-free robot configurations. Let p, p′ ∈ P denote two simultaneously
chosen task points, which can be either objects or slots. The vectors

r ppp′ = r pp − r pp′ , ∀p, p′ ∈ O or ∀p, p′ ∈ S, p ̸= p′, r ∈ R, (5.4)

represent the relative position vector from task point p to p′ expressed in the base
coordinate frame of robot r. Here, r pp and r pp′ denote the position vectors from the
base frame of robot r to the respective task points, i. e., to the robot end-effector. If
robot r is executing task point p at the scheduling iteration i ∈ N (δroi = 1), and robot
r′ is executing task point p′ at the same scheduling iteration i (δr′

o′ i = 1), it is required
that the Euclidean distance between the task points dpp′ = ∥r ppp′∥2, does not undercut
a minimum distance value, i. e.,

dpp′ ≥ dmin e(eT
x r ppp′) . (5.5)

The function argument eT
x r ppp′ , with eT

x = [1, 0, 0], represents an overlapping measure
for the given robot arrangement in Figure 5.1. A larger eT

x r ppp′ > 0 value results in a
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5.2 Hierarchical control structure

stronger overlapping of the robot working areas, increasing thus the value of the applied
safety minimum distance. Therefore, the binary inequality constraints for the objects

doo′ +
(
2 − δroi − δr′

o′ i

)
dmin e(eT

x r poo′) ≥ dmin e(eT
x r poo′) ,

∀o, o′ ∈ O, o ̸= o′, ∀r, r′ ∈ R, r ̸= r′, ∀i ∈ N (5.6)

and slots

dss′ +
(
2 − δrsi − δr′

s′ i

)
dmin e(eT

x r pss′) ≥ dmin e(eT
x r pss′) ,

∀s, s′ ∈ S, s ̸= s′, ∀r, r′ ∈ R, r ̸= r′, ∀i ∈ N (5.7)

are applied to ensure that two simultaneously selected task points are not located close
to each other. If the task points p and p′ are not selected both at the same scheduling
iteration i, the constraints are trivially satisfied.

The binary optimization problem for task scheduling, analogous to the case of a single
robot manipulator, can be modeled in the robot working W or configuration C space.
The problem formulation in the robot joint space leads to a time-optimal IBLP problem
of the form

min
δro , δrs

∑
∀r∈R

∑
∀o∈O

t∗ro δro1︸ ︷︷ ︸
Initial robot movement

+
∑

∀b∈B

 ∑
∀i∈N

∑
∀r∈R

∑
∀s∈Sb

∑
∀o∈Ob

t∗rors
δroi δrsi


︸ ︷︷ ︸

Movement from the objects to the slots

(5.8)

+
∑

∀i∈N \{N−1}

∑
∀r∈R

∑
∀s∈S

∑
∀o∈O

t∗rors
δro i+1 δrsi︸ ︷︷ ︸

Movement from the slots to the objects

s.t.
∑

∀o∈O
δroi = 1 ∧

∑
∀s∈S

δrsi = 1 , ∀i ∈ N , ∀r ∈ R (5.8a)

∑
∀r∈R

∑
∀i∈N

δroi = 1 ∧
∑

∀r∈R

∑
∀i∈N

δrsi = 1 , ∀o ∈ O, ∀s ∈ S (5.8b)

∑
∀o∈Ob

δroi =
∑

∀s∈Sb

δrsi, ∀b ∈ B, ∀r ∈ R, ∀i ∈ N . (5.8c)

doo′ +
(
2 − δroi − δr′

o′ i

)
dmin e(eT

x r poo′) ≥ dmin e(eT
x r poo′) ,

∀o, o′ ∈ O, o ̸= o′, ∀r, r′ ∈ R, r ̸= r′, ∀i ∈ N (5.8d)

dss′ +
(
2 − δrsi − δr′

s′ i

)
dmin e(eT

x r pss′) ≥ dmin e(eT
x r pss′) ,

∀s, s′ ∈ S, s ̸= s′, ∀r, r′ ∈ R, r ̸= r′, ∀i ∈ N . (5.8e)

The first part of the cost function is modeling the transition time from the initial robot
positions to all objects, with

t∗ro = min
qcro ,qcr

To(qcro ,qr0) , ∀o ∈ O, ∀r ∈ R (5.9)

representing the minimum transition times between the initial robot configurations qr0

and the robot configurations qcro corresponding to objects o ∈ O. The second part of
the cost function is modeling the overall transition time required by the robots to move
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5.2 Hierarchical control structure

from the objects to the slots, and the last part represents the vice-versa motion from the
slots to the objects. Here,

t∗rors
= min

qcro ,qcrs

Trors(qcro ,qcrs) , ∀o ∈ O, ∀s ∈ S, ∀r ∈ R (5.10)

represent the minimum transition times needed by robot r ∈ R to move between an
object o ∈ O and a slot s ∈ S, see Section 4.2.1.2.

The task scheduling optimization problem in the robot operating space W can be
modeled by simply replacing the transition times t∗ro and t∗rors

by the Euclidean distances

dro = ∥0po − 0pre∥2 , ∀o ∈ O, ∀r ∈ R
dos = ∥0po − 0ps∥2 , ∀o ∈ O, ∀s ∈ S , (5.11)

resulting in a minimum-distance IBLP problem, see Section 4.2.1.1.

5.2.2 Centralized trajectory planning

Similar to the problem formulation in Section 4.2.2, the goal of trajectory planning is to
generate feasible robot trajectories online so that they safely reach the assigned targets
in the shortest possible time tf i. e.,

lim
t→tf

||x(t) − xf (t)|| = 0 , with x(t) ∈ χfree , t ∈ [t0, tf ]. (5.12)

Both robots are represented by the generalized coordinates q1(t) ∈ C1 and q2(t) ∈ C2,
which along with the respective joint velocities span the state space

x(t) =[xT
1 (t),xT

2 (t)]T = [qT
1 (t), q̇T

1 (t),qT
2 (t), q̇T

2 (t)]T . (5.13)

The trajectory planning problem is then formulated as a time-optimal optimization
problem of the form

min
u(t), tf

∫ tf

t0
dt (5.14)

s.t. ẋ(t) = f(x(t),u(t)), x(t0) = x0 (5.14a)
x(t) ∈ χfree , t ∈ [t0, tf ] (5.14b)
u ≤ u(t) ≤ ū , t ∈ [t0, tf ] (5.14c)
x(tf ) = xf (tf ) . (5.14d)

Here, t0 denotes the current time point, tf the final time to be minimized subject to
the dynamic system (5.14a), representing the robots with the states x(t) and inputs
u(t) = [uT

1 (t),uT
2 (t)]T. The latter are confined by the component-wise constrains (5.14c).

The robots should simultaneously reach the assigned tasks at the end of the time
horizon, as represented by the terminal constraints (5.14d) for a desired task point
xf = [qT

1f , q̇T
1f ,qT

2f , q̇T
2f ]T. The computed trajectories should be collision-free and respect

the physical robot limitations, which is ensured by applying the constraints (5.14b). χfree
describes the feasible safe region (i. e., free of collisions) in the state space. To solve
the trajectory planning problem the time scaling (4.17) is applied transforming the free
terminal time optimization problem into a fixed terminal time problem.
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5.2.2.1 Prediction model

Following the same idea as presented in Section 4.2.2.1, a simplified kinematic prediction
model of n double integrators for each robot, i. e.,

q̈r(t) = ur(t) , r ∈ {1, 2} , (5.15)

is used to predict robot trajectories while accounting for position qr(t), velocity q̇r(t),
and acceleration ur(t) constraints. Obviously, using a kinematic model does not allow
direct constraints to be applied to the robot’s torque. In this case, a dynamic robot
model must be considered, which is computationally intensive and is more suitable if
direct torque control is applied to control the robots.

Considering a centralized minimum-time MPC-based planning algorithm for both robot
manipulators represented by the state space x(t) ∈ R4n from (5.13) yields the overall
prediction model

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x0 , (5.16)

with the input vector u(t) ∈ R2n, state matrix A ∈ R4n×4n, and input matrix B ∈ R4n×2n

A = diag
([

0 I
0 0

]
,

[
0 I
0 0

])
, B = diag

([
0
I

]
,

[
0
I

])
, (5.17)

where 0 ∈ Rn×n and I ∈ Rn×n denote the zero and identity matrix, respectively.
Applying the time transformation (4.17) and the Picard’s iteration method (4.24) the

continuous time system is discretized yielding the discrete time dynamics

x(k + 1)=(I + ∆τA)x(k) + ∆τt2f
(
I + ∆τ

2 A
)

Bu(k), (5.18)

with the identity matrix I ∈ R4n×4n and the input u(k) being constant within the time
interval τ ∈ [k∆τ, (k + 1)∆τ). Here, without loss of generality, t0 = 0 is assumed, see
Section 4.2.2.1.

5.2.2.2 Collision avoidance

In this section, a feasible set χfree of robot trajectories is defined to ensure that the robots
on their way to the assigned targets do not collide with each other and the working
environment, and there is also no self-collision between the links of a robot.

Performing cooperative tasks in a shared workspace with highly overlapping operating
space between the robots significantly increases the potential for inter-robot collisions and
imposes more complexity on trajectory planning. When formulating collision avoidance
constraints, the entire robot geometry must be considered to exclude the possibility
of collisions occurring between any robot parts. Therefore, each robot link is usually
approximated by convex polyhedral objects, mostly spheres and ellipsoids. Collision
avoidance conditions are then defined to prohibit intersection between all possible inter-
robot links. Assuming five to six convex objects per robot for two robots with six joints
each results in 25 to 36 constraints in the worst case. Moreover, in optimization-based
planning algorithms with a rolling horizon, such as MPC, the constraints are applied along
the horizon, which can increase their multiplicity to several hundred. This significantly
increases the computational complexity of the underlying optimization problem and poses
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Figure 5.3: Robot geometry approximation with smooth polynomial Bézier curves. Collision
avoidance conditions are defined using two sliding spheres, whose positions are updated according
to the minimum distance between the corresponding linkage Bézier curves.

a substantial barrier to the fast solution of the optimization problem and, thus, to the
online planning of collision-free robot trajectories. To overcome this problem, we have
presented in [81] and [82] a novel approach based on a smooth approximation of the
robot geometry that significantly reduces the number of collision avoidance constraints.
For the approximation of the robot linkage, Bernstein basis polynomials

bnr
i (λr) :=


(
nr

i

)
λir(1 − λr)nr−i, for 0 ≤ i ≤ nr

0 , otherwise ,
(5.19)

are used, with a sequence of nr + 1 control points pri(qr) ∈ R3 per robot r ∈ R, resulting
in a parametric curve of the form

pr(λr,qr) =
nr∑
i=0

bnr
i (λr)pri(qr) , 0 ≤ λr ≤ 1 , (5.20)

known as Bézier functions [136]. Here and in the following, we suppress the time
dependence of the joint variables and other related functions for better readability until
further notice.

A schematic illustration of the Bézier approximation using five control points per robot
is shown in Figure 5.3. The coordinate frame (o1x1y1z1) attached to the base of Robot 1
is also assumed to represent the inertial frame of reference (o0x0y0z0). Robot 2 with
the base frame (o2x2y2z2) is displaced by rb relative to the first robot and rotated by
90 degrees around the z−axis. For further calculations the control points p1i(q1) and
p2i(q2) are represented in the inertial coordinate frame by

0p1i(q1) = p1i(q1) and
0p2i(q2) = 0rb + Rz,π

2
p2i(q2) , ∀i ∈ {0, · · ·nr}

(5.21)

using the SO(3) rotation matrix Rz,π
2
. Thus for n1 = 4, the Bézier curve of Robot 1 is
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given as

0p1(λ1,q1) =(1 − λ1)4
0p10(q1) + 4λ1(1 − λ1)3

0p11(q1) (5.22)
+ 6λ2

1(1 − λ1)2
0p12(q1) + 4λ3

1(1 − λ1) 0p13(q1)
+ λ4

1 0p14(q1) , 0 ≤ λ1 ≤ 1.

As opposed to the standard approach in the literature, we do not apply a static convex
approximation of the robot geometry but introduce a dynamic approximation scheme
based on the Bézier curves by continuously computing the minimum distance between
them. According to the computed minimum distance, which reflects the collision potential,
parts of the robots are locally approximated by spheres followed by collision-avoiding
constraints, see Figure 5.3. The position of the spheres is not directly linked to the
robot links but rather to the approximation curves, and their position is continuously
updated depending on the robot configurations, i. e., collision potential along the robots.
This results in sliding collision spheres along the robot geometries following the minimal
distance between the robots. Here, the center of the spheres coincides with the points
where the distance between the Bézier curves is minimal.

Minimum distance computation

The computation of maximum and minimum distance between geometric models in the
Euclidean space is widely used not only in robotics for path planning and collision avoid-
ance but also in various other fields, including computer-aided design and manufacturing
(CAD / CAM), computer graphics, computer games, physical simulations, and geometric
modeling [137]. Existing approaches for calculating the minimum distance between
two parametric curves and surfaces can be classified into root-finding and culling-based
methods [138].

An overview of different global solution techniques that can be applied to find all
roots of a nonlinear system of polynomial equations is given in [139] where also a global
solution method is introduced combining a subdivision algorithm with a local searching
method to numerically guarantee that certain subdomains do not contain solutions. The
presented iterative solution method is based on the Projected Polyhedron (PP) algorithm
[140], which is used to isolate the roots of the polynomials. After isolating the roots, the
Newton-Raphson method is applied to finally compute the roots to high precision.

The culling-based approach is a geometric rather than a numerical method and was
originally introduced in [137] as a hierarchical framework for computing minimum
distances between geometric objects. The framework includes an estimate of the lower
and upper bounds of the minimum distance between nodes, followed by a subdivision of
the nodes, with a node representing a curve segment or surface section resulting from the
subdivision. These steps are adopted in [138] to compute the minimum distance between
Bézier curves and surfaces. By using the convex hull property of the Bézier curves, a
dynamic scheme for node subdivision is introduced, which can improve the convergence
compared to the standard binary subdivision approach. A sweeping sphere clipping
method for minimum distance computation between two Bézier curves is proposed in
[141]. The squared distance function is computed in Bézier form, and the minimum
distance problem is formulated as an intersection testing problem between a sphere and
a curve. The geometric approaches is reported to be more robust and have a higher
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computational efficiency, especially when computing the minimum distance between
high-order surfaces [137].

Given that information for the initial guess can be extracted from the control points of
the curves, the computation of the minimum distance is formulated as an optimization
problem

λ∗ = argmin
λ

∥0p1(λ1,q1) − 0p2(λ2,q2)∥2

s.t. 0 ≤ λ ≤ 1,
(5.23)

with λ = [λ1, λ2]T. To provide a good initial guess for the minimum distance, we
use the heuristic approach that the closest point pair of the control points is a good
approximation of the closest point pair of the underlying Bézier curves. However, this
assumption does not always hold, such as when at least one edge of the control polygon
defined by connecting the control points of a Bézier curve is not an edge of the convex
hull formed by those control points. For a better approximation the minimum distance
between the two convex hulls can also be computed by applying the Gilbert Johnson
Keerthi (GJK) algorithm [142] as used in [138] to dynamically compute the subdivision
regions. Using the indices

{i∗, j∗} = arg min
i,j

{ ∥0p1i(q1) − 0p2j(q2)∥2 |

i ∈ {0, . . . , n1}, j ∈ {0, . . . , n2}}
(5.24)

of the closest pair of control points, the initial guess for the optimization problem (5.23)
is chosen as λ0 = [i∗/n1, j∗/n2]T. Finally, after solving the optimization problem the
distance between the centers of the two spheres corresponds to the value of the cost
function

d = ∥0p1(λ∗
1,q1) − 0p2(λ∗

2,q2)∥2 . (5.25)

Inter-robot collision avoidance

To avoid collisions between the two robots, we define, following the idea of tangent
separating planes presented in [41], velocity constraints prohibiting the geometry ap-
proximating spheres to intersect with each other at any time [81]. Let p1(λ∗

1,q1) and
p2(λ∗

2,q2) denote the centers of the spheres, see Figure 5.4, and v1(λ∗
1,q1),v2(λ∗

2,q2)
the respective velocities, the collision avoidance constraint forcing the spheres to stay on
their respective side of the separating plane read

nT(v2(λ∗
2,q2) − v1(λ∗

1,q1)) ≥ ϵ, (5.26)

with the vector n ∈ R3 normal to a tangent separating plane, and sufficiently large
ϵ ∈ R>0. Using the translational component of the analytical Jacobian matrices

J1(q1) = ∂0p1(λ∗
1,q1)

∂q1

J2(q2) = ∂0p2(λ∗
2,q2)

∂q2
,

(5.27)
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where 0p1(λ∗
1,q1) and 0p2(λ∗

2,q2) are the vectors from the center of the inertial frame to
the points p1(λ∗

1,q1) and p2(λ∗
2,q2), the constraint (5.26) is transformed in the robot’s

configuration space
nT(J2(q2)q̇2 − J1(q1)q̇1) ≥ ϵ , (5.28)

and finally expressed in the state space[
01×n −nTJ1(x) 01×n nTJ2(x)

]
x ≥ ϵ , (5.29)

with the state space vector x ∈ R4n×1 from (5.13) and the Jacobian matrices J1(x) ∈ R
3×n,

J2(x) ∈ R
3×n. Applying the time transformation yields the collision avoidance con-

straints in the scaled time τ

δcϵ ≤ (1 − δc)ϵ+ δc
1
tf

[
0 −nTJ1(x(k)) 0 nTJ2(x(k))

]
x(k) (5.30)

with the switching parameter

δc =
{

1, if d ≤ din

0, if d > din ∨ t∗f ≤ tmin.
(5.31)

By introducing δc, the constraint is activated only if the computed minimum distance
d between the Bézier curves lies within the influence distance din. Otherwise, or if the
robots are close to their targets, i. e., t∗f ≤ tmin, the constraint is trivially satisfied. Here,
t∗f denotes the optimal final time computed at the previous sampling time k − 1. This is
motivated by the fact that, the chosen robot targets result in feasible, i. e., collision-free,
configurations by applying a scheduling algorithm presented in Section 5.2.1.

To solve the optimization problem and compute robot trajectories x satisfying the
inter-robot collision avoidance constraints (5.29), the normal vector n must be predefined
at each optimization step k, as it is not subject to the optimization. Therefore, we
introduce the direction vector nv of the relative movement of the proximity spheres,

nv = ∆0p2(λ∗
2) − ∆0p1(λ∗

1)
||∆0p2(λ∗

2) − ∆0p1(λ∗
1)||2

, (5.32)

with
∆0p1(λ∗

1) = 0p1(λ∗
1,q1f ) − 0p1(λ∗

1,q1),

∆0p2(λ∗
2) = 0p2(λ∗

2,q2f ) − 0p2(λ∗
2,q2),

(5.33)

denoting the vectors from the position of the proximity spheres at the actual robot
configurations q1 and q2 to the position of the spheres at the target configurations
q1f and q2f , respectively. This vector provides information about the spheres’ relative
direction when placing the robots from the actual to their final configuration. In fact, nv
describes the tentative relative movement of the spheres in Figure 5.4 during a conflict
resolution phase. Roughly speaking, we hereby invoke global information referring to
the relative motion of the distance spheres over the prediction of the conflict resolution
horizon. Extensive simulations and experiments indicate that this alternative over the
strategy based on local, i. e., the instantaneous relative motion of the collision distance
spheres is more efficient and stable in resolving the conflicts [81].

In the following, two methods for choosing the normal vector n are presented. The first
one is based on a 2D projection of the problem and is more suitable for pick-and-place
robot tasks. The second method describes an optimal normal vector calculation in 3D.
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Figure 5.4: Collision spheres and a tangent separating plane. Schematic illustration of separating
common tangents of the circles representing the spheres projected on the x0y0−plane.

1) 2D projection method

Considering the size and shape of robot manipulators in relation to the tasks to be
performed, it is unlikely that feasible robot end configurations with overlapping robot
arms will be found. Hence, one way of defining the normal vector n is to project
the considered spheres onto 2D in the x0y0−plane, thus reducing the problem to the
calculation of tangential separating lines, as shown in Figure 5.4. The vector normal to
the separating tangent is then chosen to be equal to n1 or n2 depending on the relative
robot movements. The collision avoidance constraints prevent the circles representing a
2D projection of the spheres from intersecting, which also results in motions that do not
allow the robots to move on top of each other. As already stated, projecting the spheres
onto 2D in the x0y0−plane results in two possible separating lines tangent to both circles,
i. e., two possible perpendicular vectors n ∈ {n1,n2}. To define the vectors n1 and n2
perpendicular to the corresponding tangent separating lines, we conventionally use the
direction of the vector between the centers of the circles

n12 = 0p2(λ∗
2,q2) − 0p1(λ∗

1,q1)
d

, (5.34)

as well as the length h and the resulting angle φ, defined by

h = ρ1d

ρ1 + ρ2
, φ = arcsin

(
ρ1
h

)
, (5.35)

according to Figure 5.4. The perpendicular vectors are then uniquely obtained by

n1 = RT
z,π

2 −φn12 , n2 = RT
z,φ− π

2
n12 . (5.36)

The direction vector of the relative motions of the spheres (5.32) is then used to
choose one of the computed perpendicular vectors and apply it to the collision avoidance
constraint (5.29). If the scalar product of the vector nv with one of the perpendicular
vectors is positive, the vector n is chosen to be equal to this vector, i. e.,

n = n1
1
2(1 + sgn(nT

1 nv)) + n2
1
2(1 + sgn(nT

2 nv)) . (5.37)

Otherwise, if
sgn(nT

1 nv)sgn(nT
2 nv) ≥ 0, (5.38)

holds true, the vector n is chosen to be equal to the vector with the smaller angle to the
vector nv, i. e.,

n = n1
1
2(1 − sgn(|nT

1 nv| − |nT
2 nv|)) + n2

1
2(1 + sgn(|nT

1 nv| − |nT
2 nv|)) . (5.39)
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Figure 5.5: Schematic illustration in 3D: optimal vector perpendicular to a separating common
tangential plane of both spheres.

2) 3D optimal perpendicular vector calculation

The proposed 2D projection method for choosing a separation tangent line between
the collision avoiding objects leads to non-overlapping circles on the 2D plane. Since the
circles represent the 2D projection of the collision spheres, it is evident that they can not
cross over each other in a 3D space. This results in motions forcing the robots to move
away from each other to avoid collisions instead of overcrossing each other. While this
strategy may be intuitive for pick-and-place tasks, it can also be restrictive in general
when other robot tasks are considered.

In the three-dimensional space there is an infinite number of separating planes tangential
to both spheres. In this case, the direction of the relative velocity vector of the spheres
(5.32) is used to define the corresponding tangential plane and compute the vector n
perpendicular to this plane. The optimal normal n∗ is then chosen by maximizing nT

v n
under the constraint of separation of solids (nT

12n ≥ d12) [41], i. e.,

n∗ = argmax
n

nT
v n

s.t. nTn = 1
nT

12n ≥ d12,

(5.40)

with d12 = (ρ1 + ρ2)/d. Using the Lagrangian function

L(n, µ1, µ2) = nT
v n + µ1(nTn − 1) + µ2(nT

12n − d12), (5.41)

and applying the first optimality condition ∇nL(n∗, µ∗
1, µ

∗
2) = 0, it is evident that the

optimal normal n∗ lies in the plane spanned by the vectors nv and n12 (see Figure 5.5),
yielding

n∗ = − 1
µ∗

1
nv − µ∗

2
µ∗

1
n12 . (5.42)

Here, µ∗
1 and µ∗

2 are the Langrange multipliers. Following the idea from [41], the optimal
normal n∗ is computed as

n∗ = d12n12 +
√

1 − d2
12

n⊥
v (n12)

∥n⊥
v (n12)∥2

, (5.43)

with
n⊥
v (n12) = nv − nT

v n12
nT

12n12
n12, (5.44)

being the projection of the relative velocity vector nv onto the plane normal to n12.
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Self-robot collision avoidance

In addition to the constraint for collision avoidance between the robots, we need to
further restrict the movement of the robots to avoid collisions with the static environment
and self-collisions between the links of a robot. Considering pick-and-place tasks on a
workbench, the constraints

eT
3 r pr2(qr) ≥ dz1 and

eT
3 r pr4(qr) ≥ dz2 , r ∈ R ,

(5.45)

are introduced to limit the respective robot’s working area to a certain minimum operating
height and avoid collisions with the bench. Here, rpr2(qr) and rpr4(qr) denote the vectors
from the origin of the respective base frame of the robots to the control points in the
area of the robot wrist and end-effector, see Figure 5.3. eT

3 = [0, 0, 1] is the unit vector,
and dz1, dz2 are distance parameters defining the minimum operating height along the
z−axis. Furthermore, to avoid collisions between the gripper and the robot’s shoulder,
we restrict the distance between the control points of the basis and the end-effector to a
minimum distance ds by applying constraint

||r pr4(qr) − r pr0(qr)||2 ≥ ds , r ∈ R . (5.46)

Again, rpr0(qr) and rpr4(qr) denote the vectors from the origin of the base frame of the
robots to the first and last control points modeling the robot kinematic chain. In order
to avoid self-collisions on the wrist robot area, the motions of robot joints four and five
are further restricted using the constraints

sin (eT
4 qr)| cos (eT

5 qr)| ≤ ε , r ∈ R . (5.47)

with the joint angles eT
4 qr = qr4, eT

5 qr = qr5, and a sufficiently large ε ∈ R>0. Additional
linear constraints are considered in form of minimum and maximum bounds of the robot
joints, i. e., x ≤ x ≤ x̄.

5.2.2.3 Time-optimal MPC

The centralized trajectory planning algorithm (5.14) is transformed in the scaled time τ by
applying the time transformation (4.26) and discretized using Picard’s iteration method,
yielding a discrete fixed terminal time optimization problem. Finally, the resulting MPC
algorithm for recurrent time-optimal robot trajectory planning can be written as a static
optimization problem in the form

min
u(·), tf

tf (5.48)

s.t. x(j + 1 | k) = (I + ∆τA)x(j | k) + ∆τt2f
(
I + ∆τ

2 A
)

Bu(j | k) (5.48a)

diag(I, tfI, I, tfI)x ≤ x(j + 1 | k) ≤ diag(I, tfI, I, tfI)x̄ (5.48b)

u ≤ u(j + 1 | k) ≤ ū

u̇ ≤ (u(j + 1 | k) − u(j | k))/(tf∆τ) ≤ ¯̇u
(5.48c)

x(0 | k) = diag(I, tfI, I, tfI)x0(k)

x(NT | k) = diag(I, tfI, I, tfI)xf (k)
(5.48d)
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eT
3 r pr2(x(j + 1|k)) ≥ dz1

eT
3 r pr4(x(j + 1|k)) ≥ dz2

(5.48e)

||r pr4(x(j + 1|k)) − r pr0(x(j + 1|k))||2 ≥ ds

sin (eT
4 x(j + 1|k))| cos (eT

5 x(j + 1|k))| ≤ ε

sin (eT
16x(j + 1|k))| cos (eT

17x(j + 1|k))| ≤ ε

(5.48f)

δcϵ ≤ (1 − δc) (5.48g)

+ δc
1
tf

[
0 −nTJ1(x(j̄ + 1 | k)) 0 nTJ2(x(j̄ + 1 | k))

]
x(j̄ + 1 | k),

where j ∈ {0, . . . , NT − 1} is the iteration index, NT the prediction horizon, and r ∈ R
the index denoting the robots. In each optimization step k, the time minimizing static
optimization problem is solved to generate robot trajectories from the current measured
state x0(k) to a desired final state xf (k), as expressed by the initial and terminal
constraints (5.48d). Note that both robots share the same terminal constraints imposing
a simultaneous task execution by forcing them to reach their targets at the same time
t = tf at the end of the trajectory planning horizon NT , which corresponds to the scaled
time τ = 1. The scaled discrete-time dynamic model (5.48a) with the sampling time
∆τ = 1/NT is used to predict robot trajectories along the prediction horizon. The
optimization is also subject to minimum / maximum bounds on the states (5.48b), the
inputs and their time derivatives (5.48c). The time transformation is applied to the
upper and lower bounds of the joint’s velocities, yielding

diag(I, tfI, I, tfI)x ≤ x(k) ≤ diag(I, tfI, I, tfI)x̄ , (5.49)

with xT = [qT, q̇T,qT, q̇T] and x̄T = [q̄T, ¯̇qT, q̄T, ¯̇qT]. Here, I ∈ Rn×n denotes the
identity matrix, q ∈ Rn, q̇ ∈ Rn the lower bounds, and q̄ ∈ Rn, ¯̇q ∈ Rn the upper
bounds of the position and velocity of the robot joints in the time t. Similarly, the initial
and terminal constraints are also transformed in the scaled time τ .

The constraints to avoid collisions with the workbench (5.48e) and between the robot’s
links (5.48f) are always active along the entire prediction horizon. Here, eT

4 x(·) = q14(·),
eT

5 x(·) = q15(·), and eT
16x(·) = q24(·), eT

17x(·) = q25(·) represent the variables of the
robot’s joints four and five, see (5.47). The inter-robot collision avoidance constraints
(5.48g), on the other side, are applied only along a part of the prediction horizon NT , as
denoted by the index j̄ = j ∈ {0, . . . , NC} with NC < NT . This is motivated by the fact
that robot trajectories are iteratively replanned at each optimization step k. Therefore,
it is sufficient to ensure collision-free planning along a section of the prediction horizon
that is sufficiently larger than the control horizon.

The scaled time interval τ ∈ [0, 1] is subdivided into NT equidistant time intervals ∆τ ,
which are mapped by ∆t = ∆τt∗f into increasingly tighter ∆t-intervals as time propagates,
since the computed optimal final time t∗f reduces with each optimization step. This
results in robot trajectories with varying time resolution, which increases as the robots
approach their targets while the prediction horizon remains the same.
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5.2.3 Distributed trajectory planning

The proposed centralized MPC planning layer results in a synchronous robot task
execution, with the robots reaching the assigned tasks simultaneously. While cooperatively
executing pick-and-place tasks, a synchronous robot operation is useful in coordinating
the robot motions, and it simplifies the scheduling problem since the rescheduling for
both robots takes place simultaneously and, thus, less frequently. In addition, robot
coordination and collision avoidance are less elaborate and require less computing power
compared to an unsynchronized approach. On the other hand, synchronization entails a
loss of performance since one of the robots may work slower than it eventually could.
Theoretical and experimental analyses indicate that this does not significantly impair
solution quality [143].

Time synchronization is not inherently given in the distributed case compared to
the centralized MPC approach since each robot plans its trajectory locally. Therefore,
coupling in the cost functions of the distributed optimization algorithms is introduced to
synchronize the robot motions in order to reach their targets simultaneously. Additionally,
coupling in the constraints is introduced to impose collision avoidance restrictions. This
leads to DMPC algorithms of decoupled systems with coupling in the cost functions and
the constraints. At each MPC iteration, the controllers share the calculated minimum
time and their predicted trajectories.

The main feature of the proposed DMPC is that each of the local controllers optimizes
its cost function, i. e., the local robot transition time trf , r ∈ R, while additionally taking
into account the previously achieved optimal value of the local cost function of the
other controller. By coupling the cost functions, it is possible to coordinate the robots’
motions in time so that they perform their tasks simultaneously following the synchronous
approach. The time synchronization can be ensured by choosing the cost function for
Robot 1 as

J1(t1f ) =
(
t1f − t̂1fδt

(
t̂2f
t̂1f

))2

, (5.50)

with the switch function

δt

(
t̂2f
t̂1f

)
= 2

1 + e
−α̃
(

t̂2f

t̂1f
−1
) − 1 . (5.51)

Here, t1f describes the optimization variable, and t̂1f , t̂2f are the previously calculated
optimal values of the cost functions of the respective controllers. The cost function
for Robot 2 is defined analogously. If Robot 1 requires less time to reach its target
than Robot 2, i. e., t̂2f > t̂1f , then δt becomes positive for the Robot 1 and negative
for Robot 2, see Figure 5.6. In the current optimization step, δt > 0 implies that the
minimum point of the cost function (5.50) is shifted to t̂1fδt. Consequently, depending
on δt, the faster robot is required to have a minimum time t∗1f that is not far from the
minimum time t̂1f of the preceding optimization step. The faster robot is thus slightly
slowed down in each optimization step as long as the optimal values of the cost functions
do not converge toward the same point. On the other hand, δt < 0 in the cost function
J2(t2f ) of the second robot does not influence the optimization. Therefore, Robot 2
continues its attempt to reach the target as quickly as possible.

Note that in the proposed distributed approach, the controllers exchange the optimal
values of their cost functions and the resulting optimal trajectories at each optimization
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Figure 5.6: Switch functions for α̃ = 20 to coordinate the robots movements ensuring that they
reach their targets simultaneously. The switch functions show a symmetrical behavior to each
other since only one of the robots, the faster one, should be slowed down without any influence
on the other.

step. While the calculated optimal times are needed in the cost functions, the predicted
trajectories are used in the constraints to establish the conditions for avoiding collisions
between the robots. This results in a DMPC algorithm of the decoupled systems with
coupled cost functions and constraints. At each iteration k of the optimization, each
controller optimizes its own set of inputs keeping the information needed from the other
controller constant as previously received.

With the state space vectors x1 ∈ R2n, x2 ∈ R2n from (5.13), and the input vector
u1 ∈ Rn, the trajectory planning problem for Robot 1 reads as follows

min
u1(·), t1f

J1(t1f ) (5.52)

s.t. x1(j + 1 | k) = (I + ∆τA)x1(j | k) + ∆τt21f
(
I + ∆τ

2 A
)

Bu1(j | k) (5.52a)

diag(I, t1fI)x1 ≤ x1(j + 1 | k) ≤ diag(I, t1fI)x̄1 (5.52b)

u1 ≤ u1(j + 1 | k) ≤ ū1

u̇1 ≤ (u1(j + 1 | k) − u1(j | k))/(t1f∆τ) ≤ ¯̇u1
(5.52c)

x1(0 | k) = diag(I, t1fI)x10(k)

x1(NT | k) = diag(I, t1fI)x1f (k)
(5.52d)

eT
3 1p12(x1(j + 1|k)) ≥ dz1

eT
3 1p14(x1(j + 1|k)) ≥ dz2

(5.52e)

||1p14(x1(j + 1|k)) − 1p10(x1(j + 1|k))||2 ≥ ds

sin (eT
4 x1(j + 1|k))| cos (eT

5 x1(j + 1|k))| ≤ ε
(5.52f)

δcϵ ≤ (1 − δc) (5.52g)

+ δc

[
0 − nTJ1(x1(j̄ + 1 | k))

t1f
0 nTJ2(x̂2(j̄ + 1 | k − 1))

t̂2f

][
x1(j̄ + 1 | k)

x̂2(j̄ + 1 | k − 1)

]
.

Here, the prediction model (5.52a) corresponds to the prediction model (4.29) of a single
robot manipulator. The optimization problem is similar to the centralized trajectory
planning problem (5.48), which jointly plans trajectories for both robots. As previously
mentioned, in the distributed scheme robots share the computed optimal values of
the respective cost functions and the planned trajectories to coordinate their motions
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(a) Unsynchronized trajectory planning (δt = 0).
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(b) Synchronized trajectory planning (δt ̸= 0).
Figure 5.7: Comparison of the calculated minimum times t∗f of the two robots for both cases,
unsynchronized (a) and synchronized (b). As a result of the time synchronization, the difference
between the calculated optimal times decreases with each optimization step until they finally
equalize. Due to the synchronization, the robots will reach their targets simultaneously.

for synchronous and collision-free task execution. Therefore, the inter-robot collision
avoidance constraints (5.52g) involve the trajectory of Robot 2, denoted by x̂2(k − 1),
which represents the optimal robot trajectory computed at the previous planning step
k − 1. The local controller plans the trajectory for Robot 1 from its actual state x10(k)
to the desired final state x1f (k), taking into account the collision avoidance constraints
(5.52e) and (5.52g), and respecting the robot limitations expressed as lower and upper
bounds on the state variables (5.52b), and the input variables including their time
derivatives (5.52c). The trajectory planning problem for Robot 2 is defined analogously.

In order to analyze the performance of the proposed time synchronization, simulation
results are presented next, with the robot arms performing pick-and-place tasks in
a confined working place. At the beginning of the trajectory planning, the computed
minimum time reaches a maximum value corresponding to the assigned task and decreases
with each MPC step as the robot approaches its target with each applied control input.
The minimum final time becomes nearly zero when the robot reaches the target, triggering
the re-execution of the planning algorithm, and thus leading the robot to the next
destination. As can be seen in Figure 5.7, this results in a sawtooth-like progression of
the optimal time over the simulation duration. According to the results, Robot 1 needs
more time to reach the first target than Robot 2, i. e., t∗1f > t∗2f .

In case the robots’ trajectories are not synchronized, i. e., δt = 0, Robot 2 will reach
its first target faster than Robot 1. This is due to the fact that for the selected targets,
the second robot has to cover a shorter distance compared to the first one. Robot 2
will reach the first task point after approximately 0.46 s and the following task point
after 1 s, whereas Robot 1 after 0.58 s and 1.2 s, respectively, see Figure 5.7a). Since it is
required that the robots perform their tasks simultaneously, the faster robot is gradually
slowed down until the final times become equal. Synchronizing the trajectories in time,
results in a lower slope of the optimal time curve of the slower robot compared to the
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Figure 5.8: Comparison between the unsynchronized (δt = 0) and synchronized (δt ̸= 0) case for
each robot individually. For t∗1f > t∗2f , the time synchronization does not affect the slower Robot 1
and vise-versa in case of Robot 2 for t∗2f > t∗1f . The time synchronization ensures that the optimal
time of the faster robot changes more slowly in each optimization step until it matches the time
of the slower robot. For t∗1f ≈ t∗2f , i. e., δt ≈ 0, both robots try to reach their targets as fast as
possible (see also Figure 5.7).

uncoordinated case, see Figure 5.7b). As long as the calculated optimal times of the two
robots differ, the faster robot is slowed down slightly in each step until the final times
converge towards the same value. Nevertheless, this does not affect the slower robot, as
it must not be slowed down any further. This can be seen by the comparison between
the synchronized (δt ̸= 0) and the unsynchronized (δt = 0) trajectory planning for both
robots as shown in Figure 5.7 and Figure 5.8. For the slower robot (Robot 1 for t∗1f > t∗2f
and Robot 2 for t∗2f > t∗1f ) the outcome of the optimization for the synchronized and
the unsynchronized planning is the same. For the faster robot, on the other hand, the
decrease of the final time becomes smaller due to the synchronization of the trajectory
planning. The difference between the optimal final times (t∗1f , t∗2f ) of the robots becomes
smaller with each iteration until they finally approach to zero simultaneously. In case the
robots need about the same time to reach their targets, i. e., t∗1f ≈ t∗2f , the synchronization
has no influence on the optimal final times, and both robots try to achieve their goals as
fast as possible.

5.3 Experimental results
The system and control architecture of the experimental setup with two robotic manipu-
lators used to validate the performance of the proposed hierarchical control structure
is shown in Figure 5.9 for the case of the centralized trajectory planning layer. The
scheduler gets information about the position and orientation of the task points and
computes feasible robot targets, which are transformed into final robot joint positions
qrf and velocities q̇rf . ROS Hardware Interface is used to control the grippers via the
input / output robot interface. With the measured actual robot state and the given final
target state, the trajectories are predicted along the prediction horizon using (5.18) and
provided as an initial guess to the MPC algorithm to initialize the motion planning.
The input vector u(k) needed to predict trajectories is approximated by a bang-bang
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eqr
qrd

q̇r

qr q̇rqr

R
ea

l-T
im

e-
D

at
a

Ex
ch

an
ge

(R
T

D
E)

ROS

q̇rfqrf qr

q∗
r(·) q̇∗

r(·) u∗
r(·)

Figure 5.9: System architecture consisting of two robotic arms inclusive controllers, grippers, a
real-time-communication unit, and a Host-PC. The minimum-time planning algorithms inclusive
forward and inverse kinematics are implemented on the Host-PC. The generated trajectories
q∗

r(·) = [q∗
r(0), . . . ,q∗

r(NT )], q̇∗
r(·) = [q̇∗

r(0), . . . , q̇∗
r(NT )], and u∗

r(·) = [u∗
r(0), . . . ,u∗

r(NT )], r ∈
R, are approximated by quintic polynomials and forwarded to the low-level robot controller via
a PID-feedback controller in combination with a feedforward term using ROS and a Velocity
Control Interface.

acceleration / deceleration profile, typical for time-optimal planning. The CasADi [129]
framework is used to model the optimization problems. The bilinear binary scheduling
problem is solved applying the gurobi solver with a feasibility tolerance of 10−6. The
nonlinear optimization problems for minimum-distance calculation (5.23) and MPC-based
trajectory planning (5.48) are solved using ipopt [130] with the linear solver ma57 [144]
for the solution of the underlying linear system for step computations. The maximum
number of iterations is limited to 100 with an overall acceptable relative convergence
tolerance of 10−6. Refer to Implementation Section 4.4 and [145] for more information
about implementing the algorithms using ROS.

The parameters used during the experiments are listed in Table 5.1. For the presented
results a prediction horizon of NT = 10 is chosen, and the constraints for inter-robot
collision avoidance (5.48g) are applied along its first half, i. e., NC = 5. The velocity
parameter ϵ is chosen to be updated dynamically using ϵ = 0.24 t∗f , depending on the value
of the minimum final time t∗f (cost function) computed in the previous planning iteration.
The value of the optimal final time may locally increase during a collision avoidance
phase as the robots slow down their motions, leading to a higher time to reach the targets.
In this case, a larger ϵ-value is beneficial to resolve a conflict situation. Contrary, in
less critical scenarios with low collision potential, the final time decreases faster, also
relaxing the inter-robot collision avoidance constraints by reducing ϵ. Considering the
shape and size of robot’s links, the radius of the geometry approximating spheres is
chosen to be constant and equal for both robots. However, a varying sphere radius can
also be considered as a function of the path variable λ.

The choice of the prediction horizons NT is related to the expected maximum value
for the cost function tf,max, which for the considered tasks lies between 0.6 s-1.2 s. In the
scaled time τ , the prediction horizon covers the entire period until the final time point
and is subdivided into NT equidistant intervals ∆τ . The interval boundaries serve as
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Table 5.1: Parameters used for experiments.
Description Parameter Value Unit
Prediction horizon NT 10
Collision-free horizon NC 5
Influence distance din 0.38 m
Minimum distance dmin 0.30 m
Sphere radius ρ1 = ρ2 0.11 m
Self collision angular parameter ε 0.15
Self collision distance parameter dz1 0.10 m
Self collision distance parameter dz2 0.35 m
Self collision distance parameter ds 0.18 m
Velocity parameter ϵ 0.24 t∗f m/s
Minimum time tmin 0.2 s
Joint velocity limits q̇, ¯̇q ∓π rad/s
Joint acceleration limits u, ū ∓3π/2 rad/s2

Joint jerk limits u̇, ¯̇u ∓5 rad/s3

control points reshaping the trajectories after each MPC iteration. The aim is to achieve
a control point distribution at tf,max in time steps of about 100 ms, i. e.,

∆tmax = ∆τtf,max = 100 ms , with ∆τ = 1
NT

. (5.53)

Considering on average tf,max ≈ 1 s, the prediction horizon is chosen as

NT =
⌊
tf,max
∆tmax

⌋
= 10 , (5.54)

with ⌊·⌋ denoting the integer (floor) operator. Since the time interval ∆t = ∆τt∗f is
becoming shorter with decreasing t∗f , the collision-free horizon NC has to be sufficiently
large to ensure collision-free operation along the entire control horizon tc, which is mainly
defined by the computation time. Here, it is referred to the minimum time tmin = 200 ms
which denotes that for t∗f < tmin the robots are near their target points (approximately
two control horizons far). Therefore, for tc ≤ ∆tmax, it is sufficient to ensure that at least
one control horizon is collision-free, i. e., ∆τtminNC ≥ ∆tmax, yielding

NC ≥ ∆tmax
tmin

NT . (5.55)

Choosing NC = NT/2 satisfies equation (5.55) for the used time parameters.
For the considered test case with twelve objects and slots shown in Figure 5.1, the task

points are chosen af follows

Ored = {o1, o4}, Ogreen = {o2, o5}, Oblue = {o7, o11},
Owhite = {o9, o10}, Oblack = {o3, o6, o8, o12}

Sred = {s11, s12}, Sgreen = {s7, s8}, Sblue = {s5, s6},
Swhite = {s1, o2}, Sblack = {s3, s4, s9, s10} .

(5.56)

For simplicity, and since the effect of different grippe orientation is described in the
previous chapter, the orientation of the gripper while picking and placing the objects is
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5.3 Experimental results

chosen to remain equal to the initial orientation. Applying the minimum-time scheduling
algorithm (5.8), yields the optimal task execution sequence for Robot 1

{o3, s10, o9, s1, o1, s11, o10, s2, o6, s4, o4, s12} (5.57)

and Robot 2
{o8, s3, o2, s7, o7, s5, o5, s8, o12, s9, o11, s6} . (5.58)

which are graphically displayed in Figure 5.10 along with the computed minimum final
time t∗f .

For the generation of collision-free robot trajectories, the centralized MPC approach
(5.48) is used. Since the robots execute the tasks simultaneously, they share a common
final time t∗f . Starting from the initial robot position, Robot 1 will pick up first Object
o3 ∈ Oblack and place it in Slot s10 ∈ Sblack. During the same time, Robot 2 will pick
up Object o8 ∈ Oblack and place it in Slot s3 ∈ Sblack. After placing the first objects,
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b) Task sequence for Robot 1: {o3, s10, o9, s1, o1, s11, o10, s2, o6, s4, o4, s12}.
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c) Task sequence for Robot 2: {o8, s3, o2, s7, o7, s5, o5, s8, o12, s9, o11, s6}.

moving towards object moving towards slot

Figure 5.10: Computed minimum final time t∗f , and obtained time-optimal task sequences for
Robot 1 and Robot 2.
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Robot 1 will pick up o9 ∈ Owhite and place it in s1 ∈ Owhite, while Robot 2 will pick up
o2 ∈ Ogreen and place it in s3 ∈ Sgreen, see Figure 5.11. The objects are placed in the
slots of the same class, resulting, for the chosen object and slot distribution, in motions
where the robots have to avoid each other when moving from the objects to the slots
to ensure collision-free operation. Therefore, the collision-avoidance constraints using
the 2D projection method are applied, forcing the robots to move aside from each other.

a) Initial robot position. b) Picking up first two objects {o3, o8} ⊂ Oblack.

c) Collision avoidance on the way to the first slots. d) Placing objects in the slots {s3, s10} ⊂ Sblack.

e) Collision avoidance on the way to the next slots. f) Collision avoidance on the way to the slots.

g) Collision avoidance on the way to the slots. h) Picking up the last two objects o4 ∈Ored, o11 ∈Oblue.

i) Collision avoidance on the way to the last slots. j) Placing last two objects in s6 ∈Sblue, s12 ∈Sred.

Figure 5.11: The pictures show a side and top view of the experiment. Scenes a)-d) show an
entire pick-and-place cycle starting from the initial point a), picking up the assigned objects b),
avoiding collisions on the way to the slots c), and placing the objects in the slots d). The pictures
e)-g) show different collision avoidance scenes when the robots are moving from the objects to the
slots. The last pictures h)-j) show the completing final sequence of picking the objects o4 ∈Ored
and o11 ∈Oblue, and placing them in the corresponding slots s6 ∈Sblue, respectively s12 ∈Sred
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Task scheduling is performed such that the robots always maintain a safety distance
while picking and placing the objects, imposed by the constraints (5.6) and (5.7).

The computed optimal time t∗f has twelve maximum and twelve minimum peaks,
representing each the beginning and the end of task execution (picking or placing an
object), respectively. This corresponds to picking six objects each and placing them in the
respective slots. Accordingly, the minimum time is maximal at the beginning denoting
the start of the trajectory planning, and decreases continuously as the robots approach
their targets with each sampling step (MPC iteration). The slope of the decreasing
cost function varies with time, and at some points, a local increase compared to the
previous value can also be observed. This occurs especially during a conflict resolution
and collision avoidance situation, which causes the robots to take more time to achieve
their goals. A local change in the course of the computed minimum time is also reflected
in the profile of the minimum distance between the robots, shown in Figure 5.12, and
the robot trajectories, especially the velocity and acceleration, see Figure 5.13.

In order to analyze the performance of the collision avoidance constraints, the experi-
ment is also conducted with deactivated constraints, i. e., δc = 0. The dark gray area in
Figure 5.12 marks the collision zone, and the light gray area denotes the influence distance
where the collision avoidance constraints are active when enabled, i. e., δc = 1. For δc = 0,
the resulting trajectories are not feasible since the distance between the spheres undercuts
the safety distance, defined by the sum of the radii of the proximity spheres, which would
result in collisions between the robots. Therefore, when experimenting with δc = 0, the
robots were arranged relative to each other so that no collisions occurred. Activating
the collision avoidance constraints prohibits the minimum distance from falling below
the critical value, ensuring safe robot operation during the entire experiment. It is
evident that after entering the influence zone, the activation of the constraints imposes an
immediate reaction on the robots’ motions, enforcing a safe minimum distance between
them.

It can be observed that whenever the slope of the decreasing cost function becomes
smaller or locally positive, the distance between the robots usually increases as well. As
a reaction to this, there are sometimes sudden changes in the velocity and acceleration
in order to avoid collisions, but the robot trajectories remain smooth, as can be seen
in Figure 5.13. The acceleration profile of at least one robot joint exhibits a time
characteristic that is typical for time-optimal trajectory planning. In the trajectory
planning problem, the terminal constraints impose that all robot joints reach their target
angles simultaneously. Given that, for the considered robots, all robot joints have the
same speed characteristics, the robot joints farthest from their targets or those who are
more involved in avoiding collisions determine the time needed by the robots to reach
the final configurations, i. e., the optimal value of the final time t∗f . In Figure 5.13, it is
shown that these robot joints exhibit bang-bang acceleration profiles.

For the trajectory planning algorithm, it is required to generate feasible robot tra-
jectories online, with a computation time not exceeding 100 ms, in order to be able to
replan and update trajectories during runtime. Since the planning algorithm contains
two nonlinear optimization problems, namely minimum distance computation (5.23)
and centralized MPC-based trajectory generation (5.48), the computation times for
both problems obtained during the experiment are recorded separately and displayed in
Figure 5.14. The computation time depends on the chosen parameters, especially the
prediction NT and the collision-free NC horizon since they influence the dimension of the
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Figure 5.12: Minimum distance d between the robots computed during the experiment. For δc = 0
the collision avoidance constraints are deactivated. In this case, the distance between the spheres
undercuts the safety distance, defined by the sum of the radii of the proximity spheres, which
would lead to collisions between the robots. In order to perform the experiment with δc = 0,
the robots were arranged outside the operational area of each-other so that no collisions occur.
δc ∈ {0, 1} represents the feasible case, where the collision avoidance constraints are active within
the influence zone.
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Figure 5.13: Measured joint positions, velocities, and computed optimal accelerations for Robot 1,
displayed for half of experiment duration.
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Figure 5.14: Computation time for the centralized MPC-based trajectory planning problem and
the minimum distance calculation for NT = 10 and NC = 5.

Table 5.2: Experimental results for NT = 10 and NC = 5.
Two robots min.
time scheduling

Two robots min.
distance scheduling

Single robot min.
time scheduling

t∗f,max (s) 1.13 1.17 1.10
Max solver time (ms)

(MPC / min. distance) 77 / 15 68 / 17 39 / -

Experiment duration (s) 37.14 38.12 66
Average solver iterations
(MPC / min. distance) 11 / 6 10 / 6 8 / -

optimization problems. The peaks in the computation time of the MPC algorithm are
strongly related to the nonlinear collision-avoidance constraints. In general, for the chosen
parameters, the computation time remains below 100 ms, cf., Table 5.2. To analyze the
influence of the horizon lengths and other optimization parameters on the computation
time and the overall algorithm performance, in Section 7.2.3 experiments are performed
for a more challenging test case using different values for the prediction horizon NT , the
collision-free NC horizon, and the velocity parameter ϵ.

The same experiment setup with the object and slot distribution from (5.56) is used
to conduct experiments applying minimum-distance scheduling algorithm, resulting in
the task execution sequences presented in Figure 5.15. Since the orientation of the task
points is chosen to be the same, there is not much difference in the overall task execution
time when comparing minimum-distance scheduling results with the one obtained by
applying minimum-time scheduling, with the latter one being around 1 s faster. Involving
objects and slots with different picking, respectively, placing orientations demonstrates,
in general, the efficiency of the minimum-time approach in terms of overall task execution
time, see Section 4.5. However, the performance difference would not be that significant
compared to the single robot solution since the task execution time mainly depends on
whether the computed sequences lead to robot motions with high collision potential.
The scheduling algorithm considers the collision risk only at the discrete task points
and not along the entire robot paths. Hence, it may also occur that the computed
minimum-distance task sequences are easier and, thus, faster to execute than the ones
resulting from the minimum-time scheduling.

When deploying a single robot manipulator to perform the pick-and-place tasks applying
the hierarchic controller presented in Section 4.2 with the minimum-time scheduling
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a) {o3, s3, o2, s8, o10, s2, o1, s12, o11, s6, o6, s4}.
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b) {o8, s9, o9, s1, o5, s7, o7, s5, o4, s11, o12, s10}.

moving towards object moving towards slot

Figure 5.15: Computed minimum distance task sequences for Robot 1 a) and Robot 2 b).
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Figure 5.16: Computed minimum time task sequence when using a single robot manipulator to
perform the pick-and-place tasks.

algorithm (4.12), which was performing best compared to other algorithms, leads the
task execution sequence shown in Figure 5.16. Compared to the dual arm solution, a
single robot requires about 66 s to perform the same experiment and place the objects
in the slots according to their classification. An advantage of the single-arm solution is
that it is easier to implement since it is not subject to collision avoidance between robots.
Also, the solution space of the scheduling algorithms in this case is larger. Performing
pick-and-place tasks with two robot manipulators requires excluding possible task points
that lie close to each other from being executed simultaneously. This reduces the feasible
region and, for some test cases, especially involving task points of different classes, might
also lead to nonfeasible problems. However, efficient deployment of cooperating robots
in shared working environments promises improvements in terms of overall cycle time
and operation throughput. For the considered test case, a single robot takes nearly 29 s
longer to finish the tasks than the dual manipulator system. Table 5.2 summarizes some
key parameters to compare the three methods used during the experiments.

As optimization-based planners, the performance of the proposed approaches relies
besides the problem formulation itself on the chosen parameters of the algorithm and
the numerical solver. Task scheduling is performed offline, with computation times that
mainly depend on the number of the considered task points and the involved object and
slot classes. Experimenting with twelve objects and twelve slots of different classes, the
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encountered computation times range from a few hundred milliseconds to a few seconds.
Reducing the number of classes increases the amount of feasible task combinations, often
resulting in increased computation times needed to find the optimal task sequence.

For the trajectory planning algorithm, a longer prediction horizon is beneficial in terms
of increased time resolution. However, this requires a longer collision-checking horizon,
increasing the dimension of the optimization problem and, thus, the computation time.
A longer computation time is reflected in increased control horizon and overall robot task
execution time as it reduces the convergence rate of the cost function. Overall, the solver
converges within a few iterations toward a feasible solution, but the iteration evaluation is
computationally costly, cf., Table 5.2. The number of iterations varies between 6 to 40 for
the MPC problem and 2 to 12 for the minimum distance computation. The experimental
results obtained with different horizon lengths show that, although the average number
of iterations does not considerably increase with the horizon, the computation time
increases, see Section 7.2.3 and [82]. This comes from the collision avoidance formulation
as nonlinear state-dependent constraints but also from the terminal constraints. The
exact satisfaction of the equality constraints at the end of the prediction horizon may
require high computational effort.

The success rate of the trajectory planner depends mainly on the difficulty of the
tasks regarding inter-robot collisions, the horizon lengths, and the velocity parameter
ϵ, which directly influences the collision avoidance constraints. Limiting the number
of solver iterations to 100, experiments are performed considering the execution of 100
randomly chosen pick-and-place tasks subject to inter-robot collision avoidance. With
ϵ varying between 0.1t∗f to 0.35t∗f , for NT = 15 and NC = 8 the success planning rate
varies from 86% at worst to 94% at best [82]. In all cases where the solver fails to find
an optimal solution, the maximum number of iterations is reached, so the trajectory
execution is aborted. For smaller ϵ, this is usually the case when the robots get very close
to each other. Consequently, the robot’s speed is very low, and the solver has difficulties
resolving the conflict situation within a time span applicable for online trajectory planning.
Contrary, a larger ϵ might bring the robots outside the influence zone defined by (5.31),
deactivating the collision-avoidance constraints. Reentering the influence zone generates
repulsive forces pushing the robots again outside the influence zone. Here, the trajectory
planning results in high-velocity motions with robots leaving and entering the influence
zone without being able to pass each other. The solver always converges to a feasible
solution within a few iterations for pick-and-place tasks with low inter-robot collision
risks since the trajectory planning problem in this case is simple.
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CHAPTER 6
Predictive Path-Following Control for Mobile Robots

This section presents a path-following feedback controller based on model predictive
control (MPC), driving a mobile robot to converge to a given geometric path and track it
at the maximum possible speed. The MPC controller is formulated in the Frenet-Serret
frame, and aims to minimize the error to a given parametrized reference path while
maximizing the robot speed, i. e., the covered robot distance, by introducing a suitable
time law for the dynamics of the path parameter. Since hyperparameters of the MPC
formulation greatly affect the tradeoff between path-tracking error and maximum possible
speed, a Bayesian optimization-based algorithm presented in [83] is used to automatically
select suitable parameters that maximize the speed while keeping the tracking error low.
The algorithm is implemented on an omnidirectional mobile robot and validated using
different predefined geometric paths.

6.1 Problem formulation
Path-following robot control aims to design a feedback controller that makes the robot
approach and follow a predefined geometric path. In order to derive the dynamics of the
path-following error, a Frenet-Serret frame is considered attached to a reference point
moving along a spatial path, as shown in Figure 6.1, cf. [63, 65]. The reference path
pr(ϖ) ∈ R2 is given as a continuous parameterized curve

pr(ϖ) =
[
xr(ϖ)
yr(ϖ)

]
: Π → R

2 , (6.1)

with the path parameter ϖ, which is element of a nonempty set Π ⊆ R, see, e. g., [146].
The orientation of the reference velocity vector relative to the inertial frame of reference
(o0x0y0z0) is given by

ψr(ϖ) = arctan
(
y′

r(ϖ)
x′

r(ϖ)

)
, (6.2)

with x′
r(ϖ) = ∂xr(ϖ)

∂ϖ
and y′

r(ϖ) = ∂yr(ϖ)
∂ϖ

. By introducing a similar Frenet-Serret frame
attached to the center point of the mobile robot, the alignment error between the robot
velocity vector and the reference velocity vector is given by

eψ(ϖ) = ψp − ψr(ϖ) . (6.3)
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Figure 6.1: Path-following problem: (xϖ, yϖ) represents the two dimensional Frenet-Serret frame
attached to a reference point, and (xm, ym) the reference frame attached to the mobile robot.

Using the reference path (6.1) and the actual robot position pp = [x, y]T relative to the
inertial frame, the path error in Frenet coordinates is given by

ϖep(ϖ) =

ex(ϖ)
ey(ϖ)
eψ(ϖ)

 = RT
z (ψr(ϖ))

([
pp
ψp

]
−
[
pr(ϖ)
ψr(ϖ)

])
, (6.4)

where Rz(ψr(ϖ)) ∈ SO(3) represents a rotation matrix around the positive z0-axis, i. e.,

Rz(ψr) =

cos (ψr) − sin (ψr) 0
sin (ψr) cos (ψr) 0

0 0 1

 . (6.5)

The time derivative of the path-following error equations yields the error dynamics

ϖėp = ṘT
z (ψr)

([
pp
ψp

]
−
[
pr
ψr

])
+ RT

z (ψr)
([

ṗp
ψ̇p

]
−
[
ṗr
ψ̇r

])
(6.6)

with the velocity vectors

[
ṗp
ψ̇p

]
= Rz(ψp)

vp
0
ωp

 , [
ṗr
ψ̇r

]
= Rz(ψr)

ϖ̇0
ωr

 . (6.7)

Here, for notational convenience, the dependence on the path parameter ϖ is omitted.
Using equations (6.3), (6.4), and (6.7) the error dynamics can be represented as

ϖėp =

 0 ωr 0
−ωr 0 0

0 0 0


exey
eψ

+ Rz(eψ)

vp
0
ωp

−

ϖ̇0
ωr

 , (6.8)

with the angular velocities ωp and ωr = κ(ϖ)ϖ̇, where κ(ϖ) = ∥p′′
r (ϖ)∥2 denotes the

curvature of the reference path.
Since the considered mobile robot has omnidirectional kinematics, its orientation, given

by angle θ, does not depend on the orientation ψp of the velocity vector, cf., Figure 6.1.
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6.2 Predictive-based path-following control

Therefore, the error equations (6.4) are further extended by the error between the actual
θ and a desired θd robot orientation, i. e., eθ = θ − θd, to consider the robot orientation
as an additional degree of freedom. Finally, the resulting path error dynamics reads

ėx(ϖ) = κ(ϖ)ϖ̇ey(ϖ) + vp cos (eψ(ϖ)) − ϖ̇

ėy(ϖ) = −κ(ϖ)ϖ̇ex(ϖ) + vp sin (eψ(ϖ))

ėψ(ϖ) = ωp − κ(ϖ)ϖ̇

ėθ(ϖ) = ω − θ′
d(ϖ)ϖ̇ ,

(6.9)

with the robot angular velocity ω = θ̇.
Different approaches exist to choose the time evolution of the path parameter ϖ. In

the presented path-following problem, the idea is to design a feedback controller based
on model predictive control so that the robot can track a predefined geometric path at
the maximum possible speed. Projecting the robot speed on the reference path leads the
path parameter dynamics

ϖ̇ = ρ(ϖ)vp cos (eψ(ϖ))
∥[0,−ρ(ϖ)]T + [ex(ϖ), ey(ϖ)]T∥2

, (6.10)

with the path error (6.4) in Frenet coordinates and ρ(ϖ) = 1/κ(ϖ), cf. [65]. An initial
value for the path parameter can be found by computing the minimum distance between
the actual robot position pp and the parameterized reference curve pr(ϖ), which requires
solving the following optimization problem

ϖ∗ = arg min
ϖ∈Π

∥pp − pr(ϖ)∥2 . (6.11)

For Π ⊂ R is a compact set, the solution of the optimization problem (6.11) is equivalent
to solving the equality

(pp − pr(ϖ∗))T p′
r(ϖ∗) = 0 (6.12)

and inequality equation

∥p′
r(ϖ∗)∥2

2 − (pp − pr(ϖ∗))T p′′
r (ϖ∗) > 0 , (6.13)

resulting from the first-order necessary and second-order sufficient condition for optimality
[147]. Since p′

r(ϖ∗) is tangent to the path at the reference point pr(ϖ∗), (6.12) implies
that the error vector pp −pr(ϖ∗) is orthogonal to the path at that point, i. e., ex(ϖ∗) = 0.
Using (6.10), the time evolution of the optimal path parameter reads

ϖ̇∗ = vp cos (eψ(ϖ∗))
1 − ey(ϖ∗)κ(ϖ∗) . (6.14)

6.2 Predictive-based path-following control
The goal of the predictive path-following control is to minimize the error to a given geomet-
ric path along a chosen prediction horizon Np and simultaneously attempt to maximize
the covered path distance, i. e., following the path at the highest possible speed. Intro-
ducing the error state vector xe = [ex, ey, eψ, eθ]T and the angular velocity input vector
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6.2 Predictive-based path-following control

uω = [ω, ωp]T, the error dynamics (6.9) used to predict the time evolution of the path-
following error can be written as ẋe(t) = fe(xe, vp,uω, ϖ, t). Let xm = [pT

p , ψp, θ,ϖ]T ∈
R

5 denote the state of the robot, x = [xT
m,xT

e ]T ∈ R9 the full state (along with the
path-following error) of the robot, and u = [vp,uT

ω ] ∈ R3 denote the input vector. Further-
more, let xNp = [xT(1), . . . ,xT(Np)]T ∈ R(Np−1)×9, uNp = [uT(0), . . . ,uT(Np − 1)]T ∈
R

(Np−1)×3. Finally, the objective function J(ϖ0,uNp ; x0(t),κ) to minimize the error of
the robot path with respect to the reference path is given as

J(ϖ0,uNp ; x0(t),κ) =
Np∑
k=1

∥xe(k)∥2
Qe

+
Np−2∑
k=0

∥∆uω(k)∥2
Qdu

+
Np−1∑
k=0

(
∥uω(k)∥2

Qu
+ ∥∆x(k)∥2

Qdx
− qvvp(k)

)
,

(6.15)

where ∆υ(k) = υ(k + 1) − υ(k), for υ ∈ {x,uω}. Here, J is a function of the decision
variables ϖ0 and uNp , state feedback x0(t) = [xm(0)T,xe(0)T]T obtained at time t and
some fixed parameters κ. Based on this, the path-following controller reads

u∗
Np , ϖ

∗
0 = argmin

uNp ,ϖ0
J(ϖ0,uNp ; x0(t),κ) (6.16)

s.t. xe(k + 1) = xe(k) + Tsfe(xe, vp,uω, ϖ, k) (6.16a)
xe(0) = (x0(t))e

ϖ(k + 1) =ϖ(k) + Ts
vp(k) cos (eψ(ϖ(k)))
1 − ey(ϖ(k))κ(ϖ(k)) (6.16b)

ϖ(0) =ϖ0, ϖ(k) ∈ Π

uω ≤ uω(k) ≤ ūω (6.16c)

0 ≤ vp(k) ≤ v̄p (6.16d)

xe(xm) ≤ xe(k) ≤ x̄e(x̄m) , (6.16e)

with the iteration index k ∈ {0, . . . , Np − 1} along the prediction horizon Np, and the
initial conditions

0 = (pp0 − pr(ϖ0))T p′
r(ϖ0) (6.16f)

0 < ∥p′
r(ϖ0)∥2

2 − (pp0 − pr(ϖ0))Tp′′
r (ϖ0) (6.16g)

(x0(t))e =

RT
z (ψr(ϖ0)

([
pp0
ψp0

]
−
[
pr(ϖ0)
ψr(ϖ0)

])
θ0 − θd(ϖ0)

 . (6.16h)

Here, the diagonal positive definite matrices Qe ∈ R4×4, Qu ∈ R
2×2, Qdx ∈ R

9×9,
and Qdu ∈ R

2×2 represent the weighting coefficients for the error state, angu-
lar input vector, difference of state, and input vectors, respectively. The coefficient
qv > 0 denotes the weight for the robot velocity, which should be maximized. The
parameter vector κ ∈ R11

+ consists of non-zero elements of weight matrices given by
κ := [diag(Qe),diag(Qu), qv, diag(Qdu),diag(Qdx[: 2, : 2])]T. The optimization is per-
formed for the input variables uω(k) and vp(k) with the upper and lower bounds as
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expressed by the inequality constraints (6.16c) and (6.16d). The equality constraints
(6.16a) and (6.16b) represent the discretized dynamic equations (6.9) and (6.14), with
the upper and lower bounds expressed by (6.16e) as function of the bounds of the robot
state xm and the set Π , and the respective initial conditions satisfying equations (6.16f),
(6.16g), and (6.16h). Here, pp0 ∈ R2 and θ0 denote the actual measured robot position
and orientation, and ψp0 the orientation of the current velocity vector, i. e.,

ψp0 = θ0 + arctan
(
vy0
vx0

)
, (6.17)

with the measured robot velocities vx0 and vy0 in the x- respective y-axis, cf., Figure 6.1.
The time discretization of the continuous time path error prediction model is performed
using the forward Euler integration method with the sampling time Ts.

6.3 Experimental results
The path-following controller is implemented and validated on an omnidirectional mobile
robot shown in Figure 6.6. The implementation architecture of the experimental setup
follows the idea presented in Section 4.4 for the robot arm and consists of three parts,
as schematically illustrated in Figure 6.2. The MPC algorithm is planning at each time
step tk = kTs optimal robot position, orientation, and velocity trajectories along the
prediction horizon represented by the vectors q∗

m(tk) = [x∗(tk), y∗(tk), θ∗(tk)]T and
q̇∗

m(tk) = [v∗
x(tk), v∗

y(tk), ω∗(tk)]T. The optimal values for the robot position and the
orientation of the velocity vector are obtained using equation (6.4), i. e.,x

∗

y∗

ψ∗
p

 = RT
z (ψr(ϖ∗))ϖe∗

p(ϖ∗) +
[
pr(ϖ∗)
ψr(ϖ∗)

]
. (6.18)

Using angle ψ∗
p and the optimal robot orientation θ∗ = eθ(ϖ∗) + θd(ϖ∗) the robot velocity

in the local frame is given by

v∗
x = v∗

p cos (ψ∗
p − θ∗) , v∗

y = v∗
p sin (ψ∗

p − θ∗) . (6.19)

The optimal trajectories are forwarded to the local robot controller (a programmable
logic controller - PLC) using a velocity control interface. Optionally, the velocity interface
can be used in combination with a proportional integral derivative (PID) controller with

MPC

Trajectory
Approx.

KF

PID PID

Robot Controller
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q̇m
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eωC
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N

Figure 6.2: Schematic illustration of the implementation architecture.
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a feedforward term in the form of (4.58). A polynomial trajectory approximation can be
performed in case acceleration variables are included in the path-following optimization
problem, see, cf., Section 4.4. The reference linear and angular velocities q̇m,ref are
transformed to reference velocities ωref for the mecanum wheels by applying the inverse
velocity kinematics (2.103). An internal PID controller is used to make the speed of
the mecanum wheels ωm = [ω1, ω2, ω3, ω4]T track the reference values. Using an inertial
measurement unit (IMU) and forward velocity kinematics (2.105), information about
the robot’s position and velocity are forwarded back to the MPC controller as shown in
Figure 6.2.

The MPC algorithm is implemented in Python using the CasADi framework [129] on
a CarPC with Intel Core i7-8700T Processor and a clock rate of 2.40 GHz running on
Ubuntu 18.04.6 LTS. To solve the resulting optimization problem the ipopt solver [130]
with ma57 [144] is used. The communication between the PC and the robot controller is
realized via CAN-Bus and is implemented in C++ [148].

The performance of the proposed approach is experimentally analyzed and validated
on three test cases, representative of a circular, a lemniscate, and a pinched circular path.
These are given by the following parametric curves

pr(ϖ) =
[
sin (ϖ), cos (ϖ)

]T
,

pr(ϖ) =
[
1.5 sin (ϖ), 1.5 sin (ϖ) cos (ϖ)

]T
,

pr(ϖ) =
[
1.5 sin (ϖ), 0.75 cos (ϖ)(1 + sin (ϖ))

]T
, ϖ ∈ [0, 2π].

The experimental results for the three paths are presented in Figure 6.3, Figure 6.4,
and Figure 6.5. For each path, the reference and realized robot path are shown in plot
a), with the path-following error displayed in plots c) and d). The computed normalized
optimal velocities are shown in subfigure b). Following the idea presented in [83], for the
parameter vector κ an automatic tuning procedure based on Bayesian optimization is
used, yielding the offline tuned parameters

κ = [3200, 5100, 7.1, 0.57, 26, 0.18, 0.63, 1.6, 0.226, 0.21, 0.343]T.

While performing the experiments, these parameters are online iteratively tuned during
every MPC iteration. The maximum value of the velocity vector is chosen v̄p = 0.25 m/s,
and the robots state is upper and lower bounded by x̄m = [2 m, 2 m, 2π, 2π, 2π]T and
xm = [−2 m,−2 m,−2π,−2π, 0]T. For the path-following MPC, the prediction horizon
Np = 20 and sampling time Ts = 100 ms are used.

The presented path-following controller with the selected parameters results in a very
good convergence toward the reference path and good overall tracking performance while
maintaining maximum speed to the end of the path. The pinched circular path presented
in Figure 6.5 involves a singular point for the omnidirectional robot, which, in general,
poses a challenging path-following problem. Difficult paths usually require a readjustment
of the weighting parameters of the underlying path-following optimization problem, which
can result in a lengthy tuning process. In this case, automated tuning provides a remedy
for fast, and even at runtime, updating of the weighting parameters. In combination with
the proposed high-speed path-following strategy, the built-up momentum helps finding a
suboptimal solution around the singular point making the robot continue following the
path to the end.
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Figure 6.3: Experimental results of path-following control using a circular reference path.

−1 0 1

−0.5

0

0.5

x (m)

y
(m

)

a)

Reference path Robot path

0 2 4 6

−20

0

20

ϖ∗

E
rr
o
r
(c
m
)

c)

x-error y-error

0 2 4 6

−1

0

1

ϖ∗

N
o
rm

.
v
el
o
ci
ty

b)

v∗x v∗y v∗p

−3

0

3

A
n
g
le
(r
a
d
)

Ψr Ψ∗
p

0 2 4 6

−6

0

ϖ∗

E
rr
o
r
(r
a
d
)

d)

Figure 6.4: Experimental results of path-following control using a lemniscate reference path.
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Figure 6.5: Experimental results of path-following control using a pinched circular reference path.
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Figure 6.6: Mobile robot platform with omnidirectional wheels.
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CHAPTER 7
Demonstrators

With increased automation in the food and beverage industry, multiple robots are
often used for pick-and-place operations along sorting, packing, and processing lines,
supplementary to high payload industrial robots usually deployed for palletizing [149].
For fast pick-and-place task execution, primarily non-collaborative SCARA (Selective
Compliance Assembly Robot Arm) or Delta robots with three to four degrees of freedom
(DoF) are used [150]. While these highly automated systems allow for high production
throughput, they tend to be product-specific and usually require significant modifications
to make changes and adjustments to production lines. With the increased diversity and
personalization of goods and products driven by the latest developments in Industry
4.0, production in short batches becomes more attractive. Despite the highly automated
food industry, manual methods are currently seen as the only cost-effective solution for
production in short batches. To this end, this section deals with the integration of 6-DoF
robots into existing processes to increase the level of automation on manual sorting
and packaging stations, typical for small and seasonal producers or distributors. The
robot integration can be either as static workplaces by deploying single or double robot
manipulators along conveyors or as mobile platforms by mounting them on a mobile
omnidirectional robot.

The demonstrators presented in this chapter are built within the scope of the research
projects KORINS, CooPick, and KIMKO, supported by the German Federation of Indus-
trial Research Associations (AiF) with the grant numbers ZF4335715DB9, ZF4335706DB7,
and ZF4335711PO9, respectively.

7.1 Bottle sorting system
Due to the wide range of beverage products on the market, where each product is filled in
different bottle designs in terms of size, color, and shape, it is common for the returned
empty crates to be filled with inconsistent bottle brands, colors, or types. Existing bottle
inspection systems perform sophisticated image processing, identify bottles that belong
to the same brand as the inspected crate, and apply an exclusion algorithm to exclude
bottles or at least classify those that do not belong to the same brand. Bottles whose
type cannot be determined or whose condition is unclear are also identified. In addition
to standardized bottle and crate pools, various manufacturers and fillers are increasingly
using individual glass bottles and crates for marketing purposes. This makes sorting
more difficult and leads to a steady increase in the number of incorrectly sorted bottles.
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7.1 Bottle sorting system

Automated inspection systems usually feature a manual inspection downstream to
visually inspect and manually sort crates that are not clearly marked or are highly
unlikely to contain bottles at certain slots, adding a manual workload to the otherwise
highly automated bottle inspection and sorting system. Human inspection involves
visually identifying each bottle in the crates, picking up and inspecting each bottle,
replacing bottles that do not belong to the crate brand, and disposing of unidentifiable
and damaged bottles. Workers must also keep track of the different types of bottles
and swap bottles between crates to fill them with the correct type. A robotic system
complementary to the automated inspection systems is presented to support the manual
sorting process. It consists of a conveyor belt, a robot manipulator equipped with a
pneumatic bottle gripper, and a camera system for individual bottle inspection, as shown
in Figure 7.1.

Light beam

Camera
o ∈ Oun

o ∈ Obu

s ∈ Sb

Figure 7.1: Experimental setup for bottle sorting. A robot manipulator has to pick up unknown
bottles o ∈ Oun and place them in the respective slots s ∈ Sb according to their classification
b ∈ B, which is determined by a camera system. Empty slots in the inspected crate are filled
with bottles of the same type from a pool of backup bottles o ∈ Obu.

Beverage crates that the automatic system has not completely sorted are transported
to the robotic system via the conveyor belt. The system receives information about
the position of the bottles in the crates, which the supplementary robot system must
check. These bottles are considered as objects of unknown class, i. e., o ∈ Oun. An
unknown object is first undergoing a visual inspection by the camera and needs, therefore,
to be held in front of the light beam at a certain distance from the camera to detect
bottle-specific features and labels required for identification. The identified bottle is then
placed according to its classification b ∈ B either in a corresponding slot s ∈ Sb of the
empty crates or back in the crate under inspection if it turns out that the bottle was in
the right crate but not correctly identified by the automatic system. Empty slots in the
inspected crate resulting from removing foreign bottles must be filled with bottles of the
same class as the crate, which are taken from the pool of backup bottles o ∈ Obu.

The problem formulation is similar to the one described in Section 4.1 for the task
and trajectory planning of a robot manipulator. Investigations in the beverage industry
show that crates that are only partially sorted contain one to three foreign bottles to
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be examined by the robotic system since most bottles are detected and sorted by the
automatic sorting system. Hence, the resulting planning problems are of comparably
small dimension, which can be handled by the hybrid controller for inherent task and
trajectory planning. During the inspection process, the crate remains stopped before the
robot, resulting in pick-and-place tasks with static task points.

In the test case shown in Figure 7.1, the crate under inspection is of type "Paderborner"
(Pa) and contains two bottles which are labeled as unknown, i. e., |Oun| = 2. By applying
the single-step hybrid controller (4.33), the robot will pick up the unknown object that
is fastest to reach from its actual position and place it between the camera and the
light beam. The bottle is identified as type "Hasseröder" (Ha) and is therefore placed
in a slot s ∈ SHa. Next, the robot can either pick up the next unknown object or an
object o ∈ OPa,OPa ⊂ Obu from the backup pool to fill the empty slot in the crate,
resulting from removing the first foreign bottle. By selecting the fastest possible task
point, the robot will pick up the second unknown object and place it in a slot s ∈ SRa,
since the bottle is identified as type "Radeberger" (Ra). Finally, the two empty slots
in the inspected crate will be filled with bottles of the same type o ∈ OPa, completing
the sorting process. Some sequences of the pick-and-place tasks performed during the
experiment are depicted in Figure 7.2.

a) Picking up first bottle. b) Bottle inspection. c) Placing first bottle.

d) Inspecting second bottle. e) Placing second bottle. f) Picking up first backup bottle.

Figure 7.2: Robot performing pick-and-place tasks on the bottle sorting system. Pictures a)-d)
show the sequence from picking the first unknown object, bottle inspection, and placing the bottle
in the slot according to its type. Picture d) shows the inspection of the second unknown bottle,
which is then placed in the corresponding slot e). In f), the robot picks up the first backup bottle
to fill the empty slots in the inspected crate.
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7.2 Fruit packing station
The use of robots on existing assembly or packing lines aims to increase the flexibility
of the production lines, reduce the production cost and to maximize throughput and
machine utilization. In order to partially meet these requirements and to minimize the
space required for the robot use or to enable cooperative tasks to be performed, multiple
robot arms in the same workspace are increasingly used. As shown in Figure 7.3, the
considered application of a fruit packing station consists of a conveyor, fruit feeder, a
vision-based detection and inspection system, and two UR5 collaborative robot arms,
which, by efficient deployment, can increase the packing throughput [82]. The conveyor
belt has a special finger-shaped flexible band to avoid damaging the apples and prevent
them from rolling along the conveyor belt. The packaging system is to be completed by
a foil wrapping station, resulting in a confined robot setup with highly overlapping robot
working areas. Sharing the same workspace by multiple robots can lead to collisions, so
safe operation must be guaranteed. In addition to that, more challenges arise for the
task assignments for randomly distributed objects transported by a conveyor belt and
trajectory planning for grasping moving objects.

Camera
system

Reserved for
foil wrapping

Figure 7.3: Experimental setup consisting of two robotic arms inclusive controllers and grippers,
a conveyor belt with PLC, and a camera system for object detection and quality inspection.

The overall goal of the robotic system is to pick up dynamically moving objects, i. e., the
fruits, and place them into dynamically moving slots in a tray in a time-optimal manner.
In order to minimize the robot cycle time and increase the operating throughput, two
main tasks are of fundamental importance and are addressed following the hierarchical
control structure presented in Section 5.2. A resource allocation problem is raised by
questioning which object is to be picked by which robot and in which slot of a tray it
is to be placed. For this purpose, an iterative scheduling algorithm for the cooperative
selection of non-stationary objects, while additionally considering safety requirements
by adding some safety-related constraints, is used. Since the orientation of the objects
does not play a significant role and fast remodeling is required for iterative scheduling,
the minimum-distance scheduling approach is used to compute optimal task sequences
for the robots. According to the proposed control structure, scheduling is followed by
time-optimal MPC-based trajectory planning.
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7.2.1 Task scheduling and trajectory planning

The goal of the task scheduler is to allocate a set of objects o ∈ O = {o1, · · · , oO} to a set
of slots s ∈ S = {s1, · · · , sS} while minimizing the total distance covered by the robot
end-effectors r ∈ R = {r1, · · · , rR} to execute all necessary tasks. It is assumed that the
number of slots is smaller than the number of objects S ≤ O, and they are uniformly
distributed on a set of trays (boxes) b ∈ B = {b1, · · · , bB}, where Sb ⊂ S, denotes the
subset of slots located on tray b, i. e., S1 = {s1, · · · , sS/B} and S2 = {sS/B+1, · · · , s2S/B}
denote the set of slots located to Tray 1 and Tray 2 respectively. Hence, it is necessary
that both S and B are even numbers.

The scheduling problem is presented in [79] and is based on the algorithm proposed in
Section 5.2.1, with a few application-specific assumptions made for simplicity. To each
robot is assigned a tray and the sequence in which the slots are filled is fixed so as to
eliminate the possibility of collisions during the placement of the objects into the trays.
All slots filled at the same time as slot s belong to the subset Scs . Slot ŝb is the first
one filled in tray b. Since the objects and trays are transported by a conveyor belt it is
assumed that the considered objects and slots are within the workspace of the robots, i. e.,
they are reachable. After the first objects of the sequence have been placed into the trays,
the corresponding slots are removed from the set S, new objects are potentially added
to the set O and the optimization is performed again in an iterative fashion. Therefore,
and to be able to fast rebuild the scheduling model, its cost function and constraints are
represented directly in matrix notation decoupled from any modeling frameworks.

The scheduling model includes two types of binary variables δT
d =

[
δT
rb δT

os

]
, with

δrb = [δr1b1 · · · δr1bB
δr2b1 · · · δrRbB

]T , (7.1)

modeling the robot-tray assignment and the variables

δos = [δo1s1 · · · δo1sS δo2s1 · · · δoOsS ]T (7.2)

for the object-to-slot allocation.
The robot-tray assignment must ensure that each robot serves a single tray and each

tray can only be served by a single robot. Therefore, by considering the next R upcoming
trays it is assumed that the number of trays equals the number of available robots, i. e.,
B = R. The robot-tray assignment can then be expressed by the following B+R equality
constraints ∑

∀r∈R
δrb = 1, ∀b ∈ B ,

∑
∀b∈B

δrb = 1, ∀r ∈ R , (7.3)

which can be written as [[
IB×B ⊕ 11×R

]
0B×O·S

]
δd = 1B×1 (7.4)[[

11×B ⊕ IR×R
]

0R×O·S
]

δd = 1R×1 . (7.5)

In order to meet the product requirements, each tray has to be filled with a specified
amount of objects, i. e., each slot in the trays must contain exactly one object to not
leave empty slots in the trays. However, since the number of objects can be greater than
the number of slots, not every object has to be allocated to a slot. Nevertheless, each
object can at most be allocated to one slot, but does not necessarily have to be allocated
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to a slot at all. The first condition is modeled by S equality and the second one by O
inequality constraints∑

∀o∈O
δos = 1, ∀s ∈ S ,

∑
∀s∈S

δos ≤ 1, ∀o ∈ O , (7.6)

leading to [
0S×R·B

[
IS×S ⊕ 11×O

]]
δd = 1S×1 (7.7)[

0O×R·B
[
11×S ⊕ IO×O

]]
δd ≤ 1O×1 . (7.8)

The proposed synchronous approach to accomplish pick-and-place tasks involving
dynamic objects implies that the robots simultaneously pick-and-place the objects. The
sequence in which the slots are filled is fixed such that the robots maintain a safe distance
from each other while placing the objects. Therefore, safety-related constraints need to
be applied only for simultaneously picket objects to impose a minimum distance between
the robots. Considering that the density of the objects on the conveyor is not high, the
binary inequality constraints (5.6) are slightly modified, keeping the safety minimum
distance equal dmin, yielding

doo′ + (2 − δos − δo′s′)dmin ≥ dmin, ∀o, o′ ∈ O, o ̸= o′, s ∈ S, s′ ∈ Scs . (7.9)

Scs denotes the subset of slots being filled at the same time as slots s ∈ S. Assuming that
the first S/B and the next S/B slots from S are filled simultaneously, the constraint can
be written as

δos1
...

δosS


︸ ︷︷ ︸

δoS

+


0 S

B
× S

B I S
B

× S
B

I S
B

× S
2 0 S

B
× S

B

⊕ I(B−1)×(B−1)


︸ ︷︷ ︸

Ic


δo′s1

...
δo′sS


︸ ︷︷ ︸

δo′S

≤
(

1 + doo′

dmin

)
1S×1 , (7.10)

with doo′ denoting the Euclidean distance between two objects. For any o ∈ O and
∀ o′ ∈ O, (7.10) can be written as[

δoS ⊕ 1(O−1)×1
]

+ [Ic ⊕ Io] δb ≤ 1(O−1)S×1 + 1
dmin

[
1S×1 ⊕ Io

]
doO, (7.11)

with doO = [doo1 doo2 · · · dooO ]T and the matrix I(O−1)×O
o resulting from the identity

matrix IO×O by removing the first row and shifting the first column vector to the column
o. By this the case o = o′ is excluded. For instance, o = o2 results in

Io2 =


1 0 0 · · · 0
0 0 1 . . . 0
: : 0 . . . 0
0 · · · 0 · · · 1

 .
Finally, with the identity vector eO×1

o equation (7.11) can be represented as

[
0(O−1)S×R·B

[[
IS×S ⊕ eT

o

]
⊕ 1(O−1)×1+ [Ic ⊕ Io]

]] [δrb
δos

]

≤ 1(O−1)S×1 + 1
dmin

[
1S×1 ⊕ Io

]
doO (7.12)
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Figure 7.4: Schematic illustration of the fruit packing station.

depending linearly on the binary optimization variables.
Since the objects and the trays move on the conveyor belt and their positions change

with time, scheduling has to be performed online. As described in Section 4.2.1, minimum-
time scheduling requires the transformation of the scheduling problem in the robot
configuration space and the computation of multiple inverse kinematics solutions, which
are computationally demanding in the case of moving target points. In contrast, minimum-
distance scheduling is modeled in the robot workspace and requires only the computation
of the Euclidean distances between all objects and slots dos, all pair of objects doo′ , and
between all objects and robots dor, ∀o ∈ O,∀s ∈ S,∀r ∈ R, see Figure 7.4. Moreover,
the Euclidean distances doo′ and dos do not change as the objects and trays move since
their relative position remains constant. Therefore, for the considered robotic system,
the objective of the discrete optimization is to minimize the total Euclidean distance
traversed by the robot’s end-effectors. The paths of the end-effectors can be divided
into the initial robot movement from their starting pose to the first picked object, the
movement from the object’s position to its assigned slot, and the movement from a slot
to the next object. The total distance can be expressed as a bilinear function

f(δd) =
∑

∀r∈R

∑
∀b∈B

δrb

 ∑
∀o∈O

δoŝb
dor


︸ ︷︷ ︸

Initial robot movement to the objects

+
∑

∀o∈O

∑
∀s∈S

δos dos︸ ︷︷ ︸
Movement from the objects to the slots

+
∑

∀o′∈O

∑
∀b∈B

∑
∀si∈Sb

δo′si+1 do′si
.

︸ ︷︷ ︸
Movement from the slots back to the objects

(7.13)

The initial movement of the robots is modeled by the bilinear part of the cost function
and depends on the allocation of a robot to a tray and on the object allocated to the
first slot of that tray. The movement from an object to its assigned slot is considered in
the middle part of the cost function and can be derived from the binary object to slot
allocation variable. Finally, the last part is modeling the path from the current slot si to
the object o′ assigned to the next slot si+1, as the sequence in which the slots are filled is
fixed. The bilinear part of the cost function f(δd) representing the initial movements of
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the robots can be written as

δT
rb



dT
r1O

⊕ IB×B

...
dT
rrO

⊕ IB×B

...
dT
rRO

⊕ IB×B


︸ ︷︷ ︸

DRO



δo1ŝ1
...

δoO ŝ1

δo1ŝ2
...

δoO ŝB


= δT

d Qδd , (7.14)

where

Q =
[

DRO

0O·S×O·B

]
[
0O×R·B

[
eT
ŝ1

⊕ IO×O
]]

...[
0O×R·B

[
eT
ŝB

⊕ IO×O
]]
 ,

Here, ŝb denotes the slot to be filled first in tray b ∈ B, and drO = [dro1 dro2 · · · droO ]T
the vector of the distances between robot r ∈ R and the objects o ∈ O = {o1, · · · , oO}.
The linear part of the cost function representing the movement from the objects to the
assigned slots and back to the next selected objects can be expressed as

cTδd =
[[

01×R·B dT
OS

]
+
[
01×R·B dT

OSB

]]
δd (7.15)

with
dOS = [do1s1 do1s2 · · · do1sS do2s1 · · · doOsS ]T

dOSB
= [dT

o1SB
dT
o2SB

· · · dT
oSB

· · · dT
oOSB

] , with
doSB

= [0 dos1 dos2 · · · doS/B−1 0 doS/B+1 doS/B+2 · · · doBS/B−1]T .

Finally, the IBLP problem can be given in this form

min
δd

δT
d Qδd + cTδd

s.t. Aeqδd = 1
Ainδd ≤ 1
Ascδd ≤ b(dmin)

(7.16)

with the equality constraints (7.4) - (7.7), the inequality constraints (7.8) and the safety-
related inequality constraints (7.12). The vector b ∈ RO(O−1)S represents the right hand
side of the equation (7.12) ∀ o ∈ O.

The scheduler computes the optimal allocation of the objects and trays to the robots
and provides the position set-points to the MPC layer, which computes the optimal
trajectories of the robot manipulators by minimizing the execution time of the tasks,
while accounting for potential collisions as described in Section 5.2.2. Let P = O ∪ S
denote the set of task points consisting of objects and slots. Moving task points require
continuously updating the desired final robot state xf (k) in the trajectory planning
problem (5.48). Let 0pp denote the position of a task point p ∈ P and 0pp(k) its current
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from the camera system captured position value relative to the inertial frame. The final
target point position is then continuously updated using the prediction

0pf (k) = 0pp(k) + 0vb(k) t∗f (1 − ∆τ) , (7.17)

with 0vb(k) representing the current measured speed vector of the conveyor relative to
the inertial frame. Here, t∗f (1 − ∆τ) models the remaining time period the robots need
to reach the assigned targets with the optimal time value t∗f computed at the previous
planning iteration k − 1. Applying inverse kinematics and inverse differential kinematics
to (7.17) and 0vb, along with a desired end-effector orientation, the final position and
velocities of the robot joints are calculated to update the desired final state vector xf (k).

7.2.2 Simulation results

In the proposed robotics setup, the robots are arranged relative to each other at a distance
of 0.98 m frontally and 0.3 m laterally displaced, as depicted in Figure 7.5. With a robot
working radius of around 1 m each, this results in a high overlap in the robot working
areas and, thus, a high potential for collisions. Therefore, the proposed hierarchical
control structure is initially validated on simulations before implementing it in the real
experimental setup. The simulation architecture shown in Figure 7.5 slightly differs from
the implementation architecture in Figure 5.2 as it is implemented in Matlab/Simulink
without involving ROS. In order to provide high-quality visualization of the robots and
the experimental setup, a dynamic simulation model in Simscape has been developed
using the CAD data provided by the manufacturer. The Simscape model is mainly used
for the simulation of the forward dynamics, whereas the analytically derived equations of
motion are used in feedback control to implement a nonlinear dynamic inversion-based
controller (Computed Torque) to compensate the nonlinear dynamics, resulting in a
linear closed loop system of n double integrators per robot (see Section 4.2.2.1). For
the dynamic model and the Computed Torque controller the robot dynamic parameters
estimated in Chapter 3 are used. According to the proposed architecture in Figure 7.5
the computed optimal robot inputs are forwarded to the Computed Torque controller,
which generates the torque inputs τ 1 and τ 2 for the robot dynamic model.

For evaluating the performance of the scheduling and trajectory planning method,
a data set of randomly distributed points is generated, representing the fruits on the
conveyor belt. The coordinate frame (o1x1y1z1) attached to the base of Robot 1 represents
the inertial frame of reference (o0x0y0z0). Thus, the velocity vector of the conveyor belt

Moving direction 0.3 m

0.
98

m

x1

y1

x2

y2

Robot 1

Robot 2
Computed

Torque
Robot

Dynamics

MPC

SchedulingTask
Points

τ 1, τ 2

q1, q̇1
q2, q̇2

q1, q̇1
q2, q̇2

u∗
1

u∗
2

q1,q2q1f ,q2f

Figure 7.5: Dynamic simulation model along with the used hierarchical control structure with
centralized trajectory planning layer.
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Figure 7.6: Optimal scheduling for two robots, 12 objects and two trays relative to the traversed
distance, which is minimized within the optimization problem. The dashed bars show the planed
sequence, which has not been applied yet, since the optimization is performed iteratively after
each placed object. The white space between the colored bars indicates the distance covered
by the robot to pick up the next object. The final schedule shows the resulting sequence of the
objects placed in the filled trays after six optimization iterations.
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Figure 7.7: Paths of the robots’ end-effectors. (a): From the starting points to the first objects
according to the scheduler results; (b), (d), (f): From the objects to the slots in the corresponding
trays; (c), (e): From the slots to the next objects selected by the scheduler. As desired, two
simultaneously chosen objects do not lie next to each other.
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in (7.17) is given by 0vb = [0,−vb, 0]T, with vb = 5 cm/s. By providing the position
of the first 12 objects and the robots to the scheduler, the resulting IBLP problem is
solved, computing the initial scheduling results shown in Figure 7.6a). According to the
initial schedule, the first tray and the object sequence {o3, o1, o2, o7, o5, o9} are assigned
to Robot 1, and the second tray along with the object sequence {o6, o11, o12, o4, o8, o10} to
Robot 2. From the sequences obtained, only the first element is selected. The remaining
objects of the respective sequence, which are displayed as dashed bars in Figure 7.6a),
are not further considered since the optimization is performed again after the first two
objects have been placed. To grasp the first objects o3 and o6, the end-effectors will
cover a respective distance of 0.31 m and 0.41 m. Once the objects have been grasped,
the MPC for trajectory generation is carried out again, targeting to reach the first slots
in the corresponding trays in the quickest possible time, see Figure 7.7. After placing
the first two objects, the scheduler is executed again, while maintaining the previous
robot-tray assignment. The decision of which robot will be filling which tray is only
made when the current trays are filled.

As shown in Figure 7.6, the object sequence for Robot 1 is not changing compared
to the first iteration. For Robot 2, there is a change in the object sequence resulting in
a shorter overall traversed distance. Contrary to the initial plan, the next object to be
picked up by Robot 2 is Object o12, which is located at a shorter distance than object
o11. With the two selected objects, o1 and o12, MPC is performed again, leading the
end-effectors from the current slots to the objects, see Figure 7.7c). In this way, MPC and
scheduler are executed alternately until the trays are filled. The final sequence of selected
objects after six optimization iterations is displayed in Figure 7.6c). In the subsequent
optimization iteration, each robot is then assigned an object sequence and a tray.

The feasibility of the scheduling model depends mainly on the value of the minimum
distance parameter dmin and the related constraints (7.9). Larger values for dmin, as may
be preferred for safety reasons, reduce the solution space and the performance of the
optimization problem. However, the minimum distance is related to the geometry of the
robots and cannot be chosen arbitrarily small. Hence, for larger dmin values, the number
of slots S = |S| should be much smaller than the number of objects O = |O| to reduce
the required amount of feasible combinations.

When performing task scheduling, the resulting execution sequence of the pick-and-
place task does not usually result in intersecting paths of the robot end-effectors as shown
in Figure 7.7. In Section 5.3, it was presented that path intersections are mainly due to
the restrictions of placing objects in the slots of the same class. With all objects and
slots belonging to the same class, motions with intersecting robot paths will rarely occur.
Therefore, to analyze the performance of the collision avoidance constraints, scheduling
is further constrained, resulting in pick-and-place tasks with high inter-robot collision
potential. The sequence of these tasks is defined in such a way that without considering
collision avoidance restrictions, the robots would always collide with each other. The
focus of the simulation is to analyze the performance of the inter-robot collision avoidance
constraints for the given experimental setup using both the 2D projection method and
3D optimal normal vector calculation as described in Section 5.2.2.2. The parameters
used for simulations are the same used during the experiments in Section 5.3, presented
in Table 5.1, and the trajectory planning problem is solved using ipopt.

A schematic representation of the simulation results when using the 2D projection
method is shown in Figure 7.8. Depending on the robot’s relative position, the robot parts
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Figure 7.8: Two robots performing pick-and-place tasks are exposed to high collision potential.
Collisions would always occur in the absence of their avoiding constraints. As shown, depending
on the robot configurations, the collision spheres restrict the relative motion of the closest
robots’ parts. The illustrations show the effectiveness of the applied 2D projected constraints (cf.
Figure 5.4). The following robot movements are shown: a) to c): from the initial positions to
the first objects; c) to e): from the first objects to the slots; e) to g): from the slots to the next
objects; and g) to j): from the objects to the next slots and on the way to the objects.
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a) a)
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Robot 2

b) b)

Robot 1

Robot 2

Figure 7.9: Collision avoidance when applying 3D collision avoidance constraints according to
Figure 5.5. Robot 2 is, in both cases a) and b), selecting trajectories above Robot 1 on his way
to placing an object into the corresponding slot.
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(a) 2D projection method.
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(b) 3D optimal normal vector.

Figure 7.10: Distance between the centers of the spheres. δc = 0 denotes the case where the
collision constraints are not active. As shown, the distance between the spheres’ centers undercuts
the safety distance, defined by the sum of the radii of the proximity spheres, resulting in collisions
between the robots. For δc ∈ {0, 1}, the collision avoiding constraints are active within the
influence zone, i. e., d ≤ din, in (5.31), resulting in no overlapping of the spheres at any time.
Consequently, for both presented methods on choosing a vector normal to a tangential separating
plane, the minimum distance between the approximating spheres always remains above the safety
distance, ensuring safe robot operation.
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closest to each other are geometrically approximated by spheres. As the robots move,
the spheres’ position is continuously updated following the minimum distance between
the Bézier curves, which approximate the robot kinematics. The collision constraints
force the spheres to slide along the separating tangents, thus preventing the robots from
colliding. Figure 7.8 shows the collision-free robot motions from the initial position to
the first objects (a - c) and back to the corresponding slots (c - e) to place the objects.
Afterward, the robots go to the next objects and place them in the slots (e - i) and so
forth. It can be seen that collision avoidance is performed in such a way that the robot
arms do not move above each other. However, this is not always the case if a vector
normal to a 3D separating plane is used. For the same pick-and-place tasks, it is shown in
Figure 7.9 that sometimes, the robots decide to cross over each other to avoid collisions.

The distance between the centers of the spheres, for the robot motions illustrated
in Figure 7.8 and Figure 7.9, is shown in Figure 7.10. The dark gray area marks the
region where the spheres overlap, i. e., where the robots collide. It is evident that without
collision conditions (δc = 0), collisions would always occur between the robots. The
proposed collision avoidance constraints, which are active (δc = 1) within the defined
influence area, ensure safe robot operation by preventing the minimum distance between
the robots from falling below a certain safety distance.

Detailed results on collision avoidance and its effect on the robot trajectories and the
algorithm’s overall performance are presented in the following implementation section.

7.2.3 Experimental results
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Figure 7.11: System architecture from Figure 5.9 extended by a conveyor belt, camera system for
object detection and inspection, and a pneumatic unit to control the pneumatic robot grippers.

The implementation architecture is presented in Figure 7.11 and is similar to the
architecture described in the Experimental Section 5.3, extended by a conveyor belt,
camera system for object detection, and a pneumatic control unit to control the grippers.
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The scheduler gets information about the position of objects 0po, slots 0ps (relative to
the inertial frame), and the actual conveyor speed vb, and computes feasible robot target
points, which are transformed into final robot joint positions qrf and velocities q̇rf . ROS
Hardware Interface along with the input / output robot interface is used to close or open
the grippers, activate the camera system, and set the reference velocity vb,ref for the PLC.

Experiments on two specific test cases validate the algorithm’s performance. Test Case 1
is mainly constructed to reproduce the simulation results and confirm the effectiveness of
the collision avoidance strategy in ensuring safe robot operation in an actual application.
It is shown that, although the robotic setup with highly overlapping robot workspaces
can lead to challenging manipulation tasks, even in the worst-case scenario, two robot
manipulators achieve shorter cycle times than deploying a single robotic arm. Test Case 2,
on the other hand, shows rather a normal operating mode of the robotic system involving
task scheduling and online trajectory planning to pick and place moving objects on the
conveyor.

Test Case 1

In Test Case 1, a set of twelve objects and two trays with six slots each is considered,
distributed as shown in Figure 7.12. Performing task scheduling results in the task
sequence shown in Figure 7.13b), with objects one to six and Tray 1 assigned to Robot 2,
and objects seven to twelve along with Tray 2 assigned to Robot 1. To generate
challenging robot motions and test the performance of the collision avoidance constraints,
the scheduling algorithm is further constrained, resulting in the task sequence shown in
Figure 7.13a), where the robot-object assignment remains the same with Robot 1 filling
Tray 1 and Robot 2 filling Tray 2. In this case, the assigned object-tray combination
leads to overlaps in the paths of the robot end-effectors and, thus, to motions with high
inter-robot collision potential, similar to the test case considered in simulations.

A visual representation of the experimental results for Test Case 1a is shown in
Figure 7.14. The scene succession a) to e) represents an entire pick-and-place sequence
starting from the robot’s initial position, picking up the assigned objects o1 and o7, and

Tray 1
Tray 2

Robot 1
Robot 2

o1o2o3o4
o5o6 o7o8 o9o10

o11
o12

y1

y2

x2

0.3 m

0.
98

m

Figure 7.12: Experimental setup for Test Case 1: The robots have to pick up six objects each and
place them in the trays.
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Figure 7.13: Test Case 1: Task scheduling for two robots, 12 objects, and two trays. a) Test
Case 1a: The objects {o7, o8, o9, o10, o11, o12} and Tray 1 are assigned to Robot1̃, and the objects
{o1, o2, o3, o4, o5, o6} along with Tray 2 to Robot 2, leading to tasks with high collision potential.
b) Test Case 1b: The objects {o7, o8, o9, o10, o11, o12} and Tray 2 are assigned to Robot 1, and
the objects {o1, o2, o3, o4, o5, o6} along with Tray 1 to Robot 2, leading to tasks with low collision
potential. The red vertical line denotes the time it would take for a single robot to perform the
pick-and-place tasks.

placing them in the respective slots. On their way to the objects and the respective
slots, the robots sidestep each other to avoid collisions, as shown in the images b) and
d). After placing the first objects, the robots go to the following assigned objects o2 and
o8, according to the schedule shown in Figure 7.13a), and place them in the respective
slots of the trays, and so forth. The other images, f) to l) represent snapshots of collision
avoidance motions of the robots when they are on their way to the objects or slots.
This clearly shows that collision avoidance is performed so that the robot arms do
not move across each other. Subfigures m) to r) show the location of the geometry
approximating spheres corresponding to the robot configurations in b), d), h), and l),
respectively. Therefore, the dynamic simulation model of the experimental setup is
used. In order to perform the same robot motions as in the experiment, a Computed
Torque controller is used by applying the inverse robot dynamics and a PD controller
with feedforward acceleration term, making the robots to track position, velocity, and
acceleration trajectories recorded while performing the experiment. The position of the
spheres is then visualized using recorded optimal curve parameters λ∗

1 and λ∗
2, computed

during the experiment by solving the minimum-distance optimization problem. It is
shown that, similar to the presented simulation results, the spheres approximate the
robot’s geometry following the computed minimum distance between the robot arms.
The computed minimum distance between the centers of the proximity spheres in Test
Case 1 is shown in Figure 7.15.

To further evaluate the performance of the algorithm, the computed minimum final time
t∗f is shown in Figure 7.16, and the joint position, velocity, and acceleration trajectories
for Robot 1 are shown in Figure 7.17. The trajectories are presented only for Robot 1
and half of the experiment duration since the trajectories for Robot 2 and the remaining
tasks have similar profiles and do not provide additional information.

In Test Case 1b, starting from the initial position Robot 1 will pick up Object o7, and
Robot 2 Object o1. This is the same as in Test Case 1a and corresponds to the image
sequence a) - d) in Figure 7.14. However, Robot 1 then places its assigned object in
Slot s7 (Tray 2) and Robot 2 in Slot s1 (Tray 1), see Figure 7.13b). Compared to Case 1a,
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this leads to non overlapping in the paths of the robot end-effectors and thus to low
collision risk. Due to different scheduling, robots need to avoid each other only during the
execution of the first tasks when moving from the initial points to the first objects. This
can also be observed in the time course of the minimum distance and the optimal final
time shown in Figure 7.15b) and Figure 7.16b), respectively. While executing the first
task, the value of the minimum distance enters in the influence zone (d ≤ din) activating
the constraints and thus prohibiting the minimum distance from falling below the critical
value. The computed optimal time for the first task is also higher and the decreasing
slope is changing with time. The remaining task points do not lead to robot motions
with high collision potential as the robots do not get close to each other. In this case the
robots need less time to reach the assigned goals resulting in shorter transition times and

a) Initial robot position b) Collision avoidance: going to o1 & o7 c) Picking up objects o1 & o7

d) Collision avoidance: going to s1 & s7 e) Placing objects o1 & o7 f) Collision avoidance: going to o2 & o8

g) Collision avoidance: going to s2 & s8 h) Collision avoidance: going to o3 & o9 i) Collision avoidance: going to s3 & s9

j) Collision avoidance: going to s5 & s11 k)Collision avoidance:going to o6 & o12 l) Collision avoidance: going to s6 & s12

m) Sphere’s position corresponding to b) n) Sphere’s position corresponding to d) o) Sphere’s position corresponding to g)

p) Sphere’s position corresponding to h) q) Sphere’s position corresponding to j) r) Sphere’s position corresponding to l)

Figure 7.14: The pictures show a side and top view of the experiment for Test Case 1a. Scenes a) -
e) show an entire pick-and-place cycle starting from the start position a), picking up the assigned
objects c), and placing them in the respective slots e). The robots avoid collisions on the way to
the objects and slots, as shown by scenes c) and d), respectively. The other snapshots f) through
l) also show conflict resolution and collision avoidance. The Simulation scenes m) to r) display
the position of the spheres corresponding to the robot configurations shown in b), d), g), h), j)
and l), respectively. The experiment lasted a total of approximately 41.8 s.
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Figure 7.15: Distance between the centers of the spheres for Test Case 1. a) Test Case 1a: For
δc ∈ {0, 1}, the collision avoidance constraints are active within the influence zone, preventing the
robots from colliding with each other. b) Test Case 1b: Robots perform tasks with low collision
potential. The inter-robot collision avoidance constraints are only during the first task execution
active and prohibit the minimum distance from undercutting the critical minimum value.
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Figure 7.16: Minimum final time for Test Case 1a shown in a) and Test Case 1b shown in b).

faster overall mission completion, see Figure 7.16b). The resulting minimum final time
t∗f decreases steadily between a maximum (beginning of a task) and a minimum (end
of a task). The entire experiment lasts about 29.3 s, which is 12.5 s faster compared to
Test Case 1a. Deploying a single robot to execute the same tasks, i. e., fill both trays,
results in an overall task execution time of about 57.2 s. Thus, depending on the task
planning, two robots can perform the entire task between 15.4 s and 27.9 s faster than a
single robot.

A correlation between the inter-robot collision avoidance constraints and the resulting
time evolution of the trajectories in Figure 7.17 is evident. When avoiding collisions,
the wrists of the robots are more involved in the trajectory planning, as the spheres are
mainly located in the wrist and end-effector area, see Figure 7.14. In Figure 7.17, it is
shown that these robot joints or the ones farthest from the target exhibit bang-bang
acceleration profiles. While executing the first task in Test Case 1b, the fifth robot joint
reacts quickly to avoid collisions, which is also reflected in the velocity and acceleration
profile. During the execution of the remaining tasks with low collision potential, the fifth
robot joint is not changing, keeping the orientation of the gripper perpendicular to the
task points. In this case, the robot joints two and three are the dominant ones since they
have to cover a larger distance and exhibit higher velocity and acceleration values.

The experimental results for Test Case 1 are summarized in Table 7.1 with the
resulting computation times shown in Figure 7.18. The constraints for inter-robot collision
avoidance are applied along the first half of the prediction horizon NT , and the velocity
parameter ϵ is chosen to be updated dynamically using ϵ = 0.24 t∗f . For more information
on the choice of the parameters is referred to Section 5.3. The computation time for the
MPC-based trajectory planning problem and the minimum distance calculation increases
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Figure 7.17: Measured joint positions, velocities, and computed optimal accelerations for Robot 1
in Test Case 1a shown in a) and Test Case 1b shown in b).
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Figure 7.18: Computation time for the MPC-based trajectory planning problem and the minimum
distance calculation for three different horizon lengths in Test Case 1a (a) and Test Case 1b (b).

Table 7.1: Experimental results for Test Case 1 using different horizon lengths.

Horizon NT = 10
NC = 5

NT = 15
NC = 8

NT = 20
NC = 10

Max solver time (ms)
(MPC / min. distance)

a) 66 / 13
b) 58 /10

a) 77 / 16
b) 62 /14

a) 86 / 19
b) 74 /17

t∗f,max (s) a) 1.25
b) 1.12

a) 1.30
b) 1.14

a) 1.27
b) 1.17

Experiment duration (s) a) 41.8
b) 29.3

a) 42.8
b) 29.7

a) 43.2
b) 29.9

Average solver iterations
(MPC / min. distance)

a) 13 / 6
b) 8 / 3

a) 14 / 6
b) 8 / 3

a) 15 / 6
b) 8 / 3

with the increased horizon. In Test Case 1a, the computation time is higher since the
collision-avoidance constraints significantly influence the computation time due to their
complexity and nonlinearity. This can be seen Figure 7.18a), where high fluctuations in
the MPC computation time are evident. For NT = 20 and NC = 10, the total computation
time sometimes exceeds 100 ms being slightly larger than the requested maximum control
horizon. In this case, tc > ∆tmax, so NC > NT/2 should be chosen to ensure collision-free
trajectory generation above ∆tmax towards the end of the planning when t∗f ≈ tmin, see
Section 5.3. However, increasing NC will also increase the computation time. In general,
towards the end of the trajectory planning the computation time is shorter as the robots
are before t∗f approaches tmin outside the danger zone for inter-robot collisions ensured
by the minimum-distance scheduling constraints. In Test Case 1b, the computation time
remains below 100 ms and reaches its maximum value at the beginning. This is expected
since the robots only need to avoid collisions in the first task and subsequently perform
tasks with low collision potential.

To analyze the effect of the collision-free horizon NC , experiments are performed with
a fixed prediction horizon NT = 15 and NC ∈ {10, 12, 14}. The experimental results are
summarized in Table 7.2 for the more critical Test Case 1a. Increasing NC increases the
number of the collision avoidance constraints resulting in higher computation times. For
NC ≥ 12 the total computation time is above 100 ms. With the selected values for NC

also toward the end of the trajectory planning the collision-free horizon is longer than the
maximum computation time, i. e., ∆τtminNC ≥ tc holds true. A longer horizon NC has
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Table 7.2: Experimental results for Test Case 1a and NT = 15.
Horizon NC = 10 NC = 12 NC = 14
max solver time (ms)
(MPC / min. distance) 80 / 19 85 / 22 94 / 24

t∗f,max (s) 1.25 1.25 1.26
Experiment duration (s) 44.1 45.6 46.1
average solver iterations
(MPC / min. distance) 14 / 6 15 / 6 14 / 6

Table 7.3: Experimental results for Test Case 1a, with NT = 15 and NC = 8.
Velocity parameter ϵ 0.10 t∗f 0.18 t∗f 0.36 t∗f
max solver time (ms)
(MPC / min. distance) 76 / 16 73 / 17 73 / 24

t∗f,max (s) 1.20 1.22 1.22
Experiment duration (s) 45.6 44.42 44.8
average solver iterations
(MPC / min. distance) 14 / 6 14 / 6 14 / 6

no effect on the obtained maximum value of the cost function t∗f,max. However, we see
that with increased NC the experiment duration increases by about 1 s − 2 s. Applying
the collision avoidance constraints along a longer horizon decreases the slope and the
convergence rate of t∗f , leading to slightly longer overall task execution times.

The velocity parameter ϵ is chosen by trial and error while performing the experiments.
A smaller ϵ-value may lead to robots coming closer to each other, resulting in robots
requiring more time to resolve conflict situations. A larger ϵ, on the other hand, pushes
the robots farther from each other. Consequently, both increasing and decreasing ϵ can
result in longer task execution times as shown in Table 7.3 when comparing to the results
in Table 7.1 for ϵ = 0.24t∗f and NT = 15, NC = 8.

When collisions are not a concern, the interior point solver requires only few iterations
to converge to a feasible solution. The number of iterations increases if inter-robot
collisions pose an issue. In this case, the solver requires, on average, 14 iterations to
converge to a feasible solution for the trajectory planning problem, respectively six
iterations for the minimum distance calculation.

Test Case 2

Test Case 2 demonstrates a normal operating mode of the robotic application with the
two manipulators performing pick-and-place to increase the level of automation of an
existing manual packing process. For object detection and pose estimation the deep
learning-based algorithm presented in [151] is used. To perform the pick-and-place tasks,
scheduling is performed first to assign a tray and a sequence of objects to a robot. Since
the task points are of the same class and each robot is assigned a tray, this rarely results
in motions with intersecting end-effector paths and, thus, high inter-robot collision risks.
Figure 7.19 shows a few sequences of the performed pick-and-place tasks. The picture
sequences a) - d) display an entire pick-and-place sequence starting from the initial robot

131



7.2 Fruit packing station

a) Initial robot position. b) Collision avoidance on the way to the first objects.

c) Picking up the first two assigned objects. d) Placing first objects in the respective slots.

e) Picking up the next two assigned objects. f) Placing next two objects in the respective slots.

g) Continue filling Tray 1 and Tray 2. h) Placing last two objects in Tray 1 and Tray 2.

i) Start filling two next trays 3 and 4. j) Continue filling Tray 3 and Tray 4.

Figure 7.19: Robots performing pick-and-place tasks on a conveyor belt in Test Case 2.

position a), collision-avoidance on the way to the first objects b), picking ap the first two
objects c), and placing the two objects in the respective slots d). In Figure 7.19h) the
robots complete the filling of the first trays and start filling two next upcoming trays i).

From the performance of the task execution, Test Case 2 is similar to Test Case 1b,
as the robots usually perform tasks with low collision potential. The computed optimal
final time t∗f and the overall experimental results for a set of 24 objects and four trays
are shown in Figure 7.20 and Table 7.4, respectively. A local increase of the optimal final
time t∗f towards the end of the execution of the first two tasks is related to the position
prediction (7.17) of the task points. More precisely, this is due to the changes in the belt
speed, which are higher at the beginning due to friction effects and decrease with time,
so that the speed converges to a steady state and maintains the desired value of 5 cm/s
nearly constant. The computation time shown in Figure 7.21 for the entire experiment
duration and three different horizon lengths never exceeds 100 ms.
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The entire experiment of filling four trays with two robots lasts about 48.1 s. The same
experiment is performed deploying a single robot manipulator, resulting in an overall
experiment duration of about 84.2 s. The double-arm solution being 36.1 s faster than the
single-robot-arm solution is a promising indicator that efficient deployment of multiple
robot arms can result in an improved performance in terms of robot cycle time and
overall working throughout.

Table 7.4: Experimental results for Test Case 2.

Horizon NT = 10
NC = 5

NT = 15
NC = 8

NT = 20
NC = 10

max solver time (ms)
(MPC / min. distance) 53 / 11 64 / 15 74 / 18

max t∗f (s) 0.93 0.97 1.04
Experiment duration (s) 48.1 48.4 48.6
average solver iterations
(MPC / min. distance) 8 / 3 8 / 3 8 / 3
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Figure 7.20: Computed minimum final time for Test Case 2 shown for a set of 24 objects and 4
trays.
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Figure 7.21: Computation time for the MPC-based trajectory planning problem and the minimum
distance calculation for three different horizon lengths in Test Case 2.
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7.3 Mobile robot platform
This section presents a mobile robot equipped with two collaborative robotic arms around
a flexible robotic system for collecting, transporting, and distributing parts between
workstations in industrial environments. The focus lies on the autonomous navigation of
the robot in an indoor environment with static obstacles. Figure 7.22 shows the robot
demonstrator along with the control architecture, which involves simultaneous localization
and mapping (SLAM), global path planning, and MPC-based path-following control
presented in Chapter 6. The MPC implementation builds upon the work presented in
[83], see also Section 6.3.

Prior to implementing a global path planner, a map of the environment is generated
using the ROS package gmapping for laser-based SLAM. Using point cloud data from two
laser scanners and robot odometry data, a 2D occupancy grid map of the environment
is created. The generated occupancy grid map is forwarded along with the localized
robot position pp to a global path planner. For the global path planning between the
start and a target robot position, a sampling-based probabilistic roadmap [20] planner is
used. In the construction phase of the planner, the environment is randomly sampled,
building a roadmap (graph). The occupancy map including an example of generated
node graphs lying outside the occupied areas of the map is shown in Figure 7.23. In
the query phase of the planner, an A*-based searching algorithm is applied to connect
the start and goal point and obtain a feasible collision-free path for the robot. With
the selected nodes as control points, the computed path is parametrized using basis
splines (B-splines) [152]. The parametrized path pr(ϖ) = [xr(ϖ), yr(ϖ)]T, ϖ ∈ Π , is then
forwarded to the local MPC-based path-following controller, which generates optimal
robot inputs u∗

m = [v∗
x, v

∗
y , ω

∗]T to follow the reference path at the highest possible speed,
see Chapter 6.

For the performance evaluation of the proposed planning and control architecture,
two paths are considered, as shown in Figure 7.24. The closed path consists of six path
segments pr(ϖ), ϖ ∈ [ϖi, ϖi+1] for i ∈ {1, . . . , 6}, where ϖ1 = ϖ7 denotes the beginning
and the end of the path. The second path pr(ϖ), ϖ ∈ [ϖ1, ϖ2] represents an open path
connecting the start ϖ1 and the goal ϖ2 robot positions.
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Figure 7.22: Mobile robot demonstrator along with the introduced control architecture.
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Figure 7.23: Occupancy map of the environment including PRM nodes.

a) Closed path

ϖ1
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ϖ4

ϖ5

ϖ6

ϖ1

ϖ2

b) Open path
Figure 7.24: Control points of a closed and open path used for experimental validation.

The desired orientation of the robot θd(ϖ) along the reference path is chosen to be
equal to the orientation of the reference velocity vector ψr(ϖ) (6.2), i. e.,

θd(ϖ) = arctan
(
y′

r(ϖ)
x′

r(ϖ)

)
. (7.18)

Due to the omnidirectional kinematics, for the robot orientation it is not required to
exactly match the value of the reference angle to keep the robot heading tangential to
the path. A robot orientation θ = θd(ϖ) ± π would lead to the same heading with the
robot eventually driving in the other direction. To incorporate this in the path-following
problem, the alignment error of the robot eθ = θ − θd is modified to

eθ = 1 − cos (θ − θd) . (7.19)
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Figure 7.25: Experimental results of path-following control using a closed path composed of
different path segments.
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Figure 7.26: Experimental results of path-following control from a start to a desired final robot
configuration.
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The experimental results for both paths are shown in Figure 7.25 and Figure 7.26.
Subfigures c) show a comparison between the reference and the driven robot path with the
path-following errors displayed in subfigures c) and d), respectively. The optimal control
inputs computed by the path-following controller (6.16) are shown in the subfigures
Figure 7.25a) and Figure 7.26a). The parameters of the MPC-based controller are chosen
as described in Section 6.3.

Overall, the path-following controller shows a very good tracking performance with a
maximum path-following error around 10 cm at some points along the path, which at
the target point is, however, reduced to about 1 cm showing a very good convergence of
the robot position towards the final goal. According to the proposed maximum-speed
path-following strategy, see Section 6.2, the robot will follow the reference path aiming to
maximize its speed, i. e., the covered distance along the path. Since the robot heading is
chosen to follow the reference speed vector, the robot will exhibit maximum speed along
its x-axis, which is shown in the profile of the computed optimal speed u∗

m = [v∗
x, v

∗
y , ω

∗]T.
The velocity v∗

y oscillates around the zero value, compensating the path error along
the robot y-axis, while v∗

x maintains most of the time a maximum value, being mainly
responsible for the robot progression along the path. In Figure 7.25a) it can be seen that
in the vicinity of a sharp corner at the end of the path segments, i. e., ϖ ∈ {ϖ1, . . . , ϖ6},
the robot sometimes is switching its direction of motion keeping the alignment error
small by minimizing (7.19).

The closed reference path contains a singular point at the transition between the two
path segments for ϖ ≈ ϖ5, resulting in the reference robot orientation (7.18) switching
between θd(ϖ) ∈ {−π/2, π/2}. Since, in this case, the optimality conditions (6.16f),
(6.16g) are not satisfied, the solver requires more computation effort to converge to a
suboptimal solution resulting in a slower convergence rate of the optimal path variable
ϖ∗. The robot velocities exhibit high-frequency oscillations around the singularity point
for a few iterations, yet the controller can overcome this point and advance the path
following. Although the reference orientation θd(ϖ) is switching, the resulting robot
orientation θ∗ remains continuous according to (7.19).

The computation time of the MPC-based path-following controller is shown in Fig-
ure 7.27 for the more challenging closed path using different prediction horizons Np ∈
{10, 15, 30}. It is evident that the computation time depends on the chosen prediction
horizon, as it influences the size of the optimization problem. A larger prediction horizon
also affects the convergence rate of the path parameter, especially at singular points
or transition points between path segments, resulting in an increased number of MPC
iterations and longer computation times.
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Figure 7.27: Computation time of the path-following controller over MPC iterations.
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CHAPTER 8
Summary and Outlook

The goal of this work was to develop optimization methods for task scheduling and
predictive-based trajectory planning for robot manipulators and path-following control
for omnidirectional mobile robots. In order to increase the efficiency of robot deployment
on working stations involving single or double robot manipulators, the overall robot cycle
time was introduced as a performance criterion for the algorithm development. Therefore,
task scheduling and online trajectory planning are performed directly in the configuration
robot space C, leading to joint position, velocity, and acceleration trajectories sent to
the local robot controller without involving further planning or processing instances. For
the task sequence planning, scheduling models in the operational robot space W are
also introduced, resulting in minimum-distance scheduling without considering multiple
solutions of the inverse kinematics of the robots.

The scheduling algorithms are based on the well-established symmetric TSP, with
modifications involving inverse kinematics of the robots for minimum-time planning and
the incorporation of task-specific and safety-related constraints. Online robot trajectory
planning is based on the formulation of a model predictive controller as time-optimal
optimization problem. Besides the robot kinematics and basic geometric information
of the working environment, the planning algorithms do not require a time-consuming
offline preprocessing stage, as is the case with sampling-based planners. Moreover,
robot limitations to avoid collisions between the robot links, with the static working
environment, and between the robots in a multi-robot operation are incorporated in the
optimization problem as state-dependent constraints ensuring safe robot operation.

In addition to the algorithms for task and trajectory planning for robot manipulators,
this work presented a predictive-based controller for high-speed path-following control of
an omnidirectional mobile robot. All algorithms are validated on experimental setups
and demonstrators involving single and double UR5 robot manipulators from UniversΛl
Robots and the omnidirectional mobile robot DONKEYmotion.

Since kinematic and dynamic models of the considered robots are required for algorithm
development and performance validation, basic information on mathematical modeling
of serial-linked robot manipulators and omnidirectional mobile robots was provided in
Chapter 2. A dynamic parameter identification was performed in Chapter 3 for the
robotic arms. Therefore, the system dynamics was expressed linearly in a set of basis
parameters, which were then estimated by introducing optimized persistently excitation
trajectories. The identification trajectory was computed by minimizing the condition
number and solved by applying a memetic algorithm, resulting in a trajectory well suited
to excite dynamics, granting small standard deviations for the estimated parameters.

Algorithms for task and trajectory planning of a robot manipulator involving multiple
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task points of different classes were introduced in Chapter 4. Therefore, two optimization-
based approaches were presented, a two-layer hierarchical control structure, and a
mixed-integer hybrid controller. The hierarchical structure enables an interaction of a
discrete IBLP scheduling algorithm with a time-optimal MPC problem for trajectory
generation. The hybrid controller represents a codesign approach that combines the
two optimization-based layers into a single optimization problem for online robot tasks
and trajectory planning. What appeared to necessarily result in a challenging MINLP
problem was transformed into a larger MIQCP problem by applying convex relaxation
techniques, implying real-time task and trajectory planning. Experiments have been
conducted with a robotic manipulator using ROS, followed by a brief discussion of the
advantages and disadvantages of the proposed approaches. Experimental validations
showed that the hybrid controller in the form of a mixed-integer optimization problem
has comparable performance to the time-optimal hierarchical controller despite its high
computational cost and can recursively plan robot tasks and trajectories online.

Chapter 5 introduced an extension of the hierarchic controller for two robotic ma-
nipulators performing simultaneous pick-and-place tasks on a shared operational space
with overlapping robot working areas. Both task scheduling and trajectory planning
incorporate collision avoidance constraints for a safe robot operation. Whereas only a
centralized approach was used for the scheduling layer, a distributed layer of communi-
cating DMPC algorithms was proposed for the underlying trajectory planning layer in
addition to that of a centralized MPC architecture. In the effort to generate time-optimal
and real-time trajectories while avoiding collisions between the robots, a continuous
approximation of the robot geometry by Bézier curves was introduced at the cost of a
coarser geometry approximation by moving proximity spheres without compromising the
safe robot use. To this end, an efficient collision avoidance strategy has been formulated
by defining velocity restrictions along tangent separating planes as inequality constraints
of an MPC problem. Thereby, the underlying predictive character of the algorithms is of
eminent interest as potential collisions can be timely anticipated and, thus, avoided in
advance. This fact underpins the key role and necessity of predictive control strategy
in cooperative robotics. From the implementation perspective, however, this invokes
online real-time calculations of trajectory adaptations, which also has been successfully
demonstrated in this work using an experimental setup and demonstrator with two
robotic arms performing pick-and-place tasks with static and moving task points. For
the considered applications, it was shown that using two robot arms in a tight shared
workspace leads, even in the worst case, to an improvement in cycle times compared to
deploying a single robot for the execution of the same tasks.

A path-following model predictive controller for mobile robots was introduced in
Chapter 6, formulated in the Frenet-Serret frame. For a given parametrized geometric
reference path, dynamics of the path parameter were introduced and incorporated into
the path-following optimization problem. Furthermore, an automatic parameter tuning
approach was used to find a balance between path error minimization and robot speed
maximization. The path-following controller was implemented on an omnidirectional
mobile robot, and the performance was analyzed based on three different reference paths.
The performed experiments demonstrated the effectiveness of the MPC controller in
achieving accurate path following while maximizing the robot’s speed.

In Chapter 7, demonstrators motivated by specific industrial applications were pre-
sented, addressing the need and possibility of integrating robot manipulators into existing
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manual processes, which, by an efficient robot deployment driven by the proposed algo-
rithms, can result in increased productivity and flexibility. For a mobile robot platform,
the introduced path-following controller was coupled with a sampling-based global path
planner, showing the effectiveness of the controller for fast and accurate path following
in indoor navigation scenarios.

Task planning and motion control are two fundamental problems in robotics that have
dominated the research landscape in this field over the past few decades and remain an
active field of research. The algorithms for task scheduling introduced in this work are
based on symmetric TSP and do not take into account the dependency of the robot cycle
time or the traversed distance on the motion direction. The motion cost is modeled based
on geometric and kinematic parameters without considering the system’s dynamics. A
possible extension would be to adopt existing asymmetric approaches to consider, besides
gravity, other dynamic phenomena by keeping the incorporation of multiple inverse
kinematics solutions in the optimization problem. Another modification could involve the
minimum-distance scheduling problem defined in the robot operational space to include,
next to the Euclidean distance, the orientation of the task points in the scheduling model
without enhancing the need to compute multiple solutions of the inverse kinematics.

Task planning can be tightly coupled to trajectory planning, as addressed in this work
in the context of the hybrid controller. The introduced approaches do not consider robot
environments where static obstacles or hurdles surround robots and task points. Other
existing methods address these problems by combining task sequencing and path planning
within the scope of computationally costly offline frameworks. Since the hybrid controller
inherently includes task planning in the MPC-based online trajectory generation, it is
possible to incorporate additional constraints and analyze to what extent these or similar
controllers can be applied in obstacle-cluttered environments.

For the cooperative task and trajectory planning of multi-robots in a shared environ-
ment, only the hierarchic controller was used in this work. Future work could incorporate
both planning layers into a single layer analogous to the hybrid controller introduced for
a single robot manipulator, resulting, primarily due to the nonlinearity of the collision
avoidance constraints, in a challenging MINLP problem. The proposed novel collision
avoidance approach based on continuous robot geometry approximations involves the
computation of the minimum distance between approximating curves, formulated as an
optimization problem. Other approaches could be used to solve this problem, reducing
further the computational effort. Furthermore, collision avoidance is mainly concerned
with avoiding collisions between the robot arms without accounting for cluttered working
environments, which can be subject to further improvements. The algorithm can also be
extended to consider more robot manipulators using distributed optimization techniques,
similar to the proposed architecture with a distributed trajectory planning layer.

The indoor navigation of mobile robots involves, besides path following, global path
planning, perception, localization, etc., and remains an open research topic. Regarding
the proposed predictive path-following controller, an obvious extension is incorporating
further constraints in the MPC algorithm to avoid collisions with dynamic obstacles.
To this end, the controller could be tightly coupled to the perception module involving
additional sensors like cameras and LiDAR (Light Detection and Ranging). Recent
research also includes data-driven approaches based on machine learning and artificial
intelligence. An implementation of the introduced MPC controller using Deep Neural
Network (DNN) provided promising results for further research in this direction.
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