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Abstract
Partial differential equations (PDEs) play a crucial role in mathematics and physics to describe
numerous physical processes. In numerical computations within the scope of PDE problems,
the transition from classical to weak solutions is often meaningful. The latter may not precisely
satisfy the original PDE, but they fulfill a weak variational formulation, which, in turn, is suitable
for the discretization concept of Finite Elements (FE). A central concept in this context is the
well-posed problem. A class of PDE problems for which not only well-posedness statements but
also suitable weak formulations are known are the so-called abstract Hodge–Laplace problems.
These can be derived from Hilbert complexes and constitute a central aspect of the Finite
Element Exterior Calculus (FEEC).
This thesis addresses the discretization of mixed formulations of Hodge-Laplace problems, fo-

cusing on two key aspects. Firstly, we utilize Isogeometric Analysis (IGA) as a specific paradigm
for discretization, combining geometric representations with Non-Uniform Rational B-Splines
(NURBS) and Finite Element discretizations. Secondly, we primarily concentrate on mixed
formulations exhibiting a saddle-point structure and generated from Hilbert complexes with
second-order derivative operators. We go beyond the well-known case of the classical de Rham
complex, considering complexes such as the Hessian or elasticity complex. The BGG (Bernstein–
Gelfand–Gelfand) method is employed to define and examine these second-order complexes.
The main results include proofs of discrete well-posedness and a priori error estimates for two

different discretization approaches. One approach demonstrates, through the introduction of a
Lagrange multiplier, how the so-called isogeometric discrete differential forms can be reused.
A second method addresses the question of how standard NURBS basis functions, through a
modification of the mixed formulation, can also lead to convergent procedures. Numerical tests
and examples, conducted using MATLAB and the open-source software GeoPDEs, illustrate
the theoretical findings. Our primary application extends to linear elasticity theory, extensively
discussing mixed methods with and without strong symmetry of the stress tensor.
The work demonstrates the potential of IGA in numerical computations, particularly in the

challenging scenario of second-order Hilbert complexes. It also provides insights into how IGA
and FEEC can be meaningfully combined, even for non-de Rham complexes.
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Zusammenfassung
Partielle Differentialgleichungen (PDEs) spielen eine entscheidende Rolle in Mathematik und
Physik, um zahlreiche physikalische Prozesse zu beschreiben. Bei numerischen Berechnungen
im Rahmen von PDE-Problemen ist oft der Übergang von klassischen zu schwachen Lösungen
sinnvoll. Letztere erfüllen möglicherweise nicht genau die ursprüngliche PDE, jedoch erfüllen
sie eine schwache Variationsformulierung, die sich wiederum für das Diskretisierungskonzept der
Finiten Elemente (FE) eignet. Ein zentraler Begriff in diesem Kontext ist das wohlgestellte
Problem. Eine Klasse von PDE-Problemen, für die nicht nur Wohlgestelltheitsaussagen, son-
dern auch passende schwache Formulierungen bekannt sind, sind die sogenannten abstrakten
Hodge–Laplace Probleme. Diese können aus Hilbertkomplexen abgeleitet werden und stellen
einen zentralen Aspekt des Finite Element Exterior Calculus (FEEC) dar.
Die vorliegende Arbeit setzt hier an und beschäftigt sich mit der Diskretisierung von gemisch-

ten Formulierungen von Hodge–Laplace-Problemen. Dabei liegt der Fokus auf zwei Punkten:
Zum einen nutzen wir die Isogeometrische Analyse (IGA) als spezifisches Paradigma für die Dis-
kretisierung, indem Geometriedarstellungen mit Nicht-Uniforme Rationale B-Splines (NURBS)
und Finite-Elemente-Diskretisierungen kombiniert werden. Zum anderen konzentrieren wir uns
hauptsächlich auf solche gemischten Formulierungen, die eine Sattelpunktstruktur aufweisen und
aus Hilbertkomplexen mit Ableitungsoperatoren zweiter Ordnung generiert werden. Insbesondere
gehen wir über den bekannten Fall der klassischen de Rham-Kette hinaus und betrachten beispiel-
sweise den Hessian- oder Elastizitätskomplex. Zur Definition und Untersuchung der Komplexe
zweiter Ordnung nutzen wir das Bernstein–Gelfand–Gelfand-Verfahren (BGG).
Die Hauptergebnisse umfassen Beweise für diskrete Wohlgestelltheit und a-priori-Fehlerab-

schätzungen von zwei verschiedenen Diskretisierungsansätzen. Ein Ansatz zeigt durch die Ein-
führung eines Lagrange-Multiplikators, wie die sogenannten isogeometrischen diskreten Differen-
tialformen wiederverwendet werden können. Eine zweite Methode geht der Frage nach, wie
standardmäßige NURBS-Basisfunktionen durch eine Modifikation der gemischten Formulierung
ebenfalls zu konvergierenden Verfahren führen können. Numerische Tests und Beispiele, durchge-
führt mit MATLAB und der Open-Source-Software GeoPDEs, veranschaulichen die theoretis-
chen Ergebnisse. Unsere Hauptanwendung erstreckt sich auf die lineare Elastizitätstheorie, wobei
gemischte Methoden mit und ohne starke Symmetrie des Spannungstensors ausführlich diskutiert
werden.
Die Arbeit demonstriert das Potential von IGA bei numerischen Berechnungen im Rahmen

des anspruchsvollen Falls von Hilbertkomplexen zweiter Ordnung. Zudem zeigt sie Zugänge auf,
wie IGA und FEEC auch für nicht-de-Rham-Komplexe sinnvoll zu kombinieren sind.
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1 Introduction
Partial differential equations (PDEs) play a central role in mathematics and physics, as many
physical processes can be described by suitable PDE equations. For various linear equations,
existence and approximation approaches of (local) solutions are known. However, it has proven
meaningful to depart from the restrictive concept of strong or classical solutions and turn to
weak solutions instead. Weak solutions may not exactly satisfy the original PDE, but they are
solutions of a so-called weak formulation, which, in the case of existence, is also satisfied by
the strong solution. The concept of well-posed problems plays a crucial role in this context.
This means, simplistically put, that given appropriate boundary and initial conditions, a unique
solution to the PDE will be obtained. Additionally, small changes in the input data, i.e. the
boundary and initial values, should result in only small changes in the solutions within a limited
time interval. A form of continuous dependence on the input data is sought. Because, given the
inherent inaccuracies in computer calculations involving real numbers, developing a numerical
method for an ill-posed problem is futile.
A class of PDEs for which not only well-posedness is shown but also suitable weak formulations

can be provided are the so-called abstract Hodge–Laplace problems. These time-independent
PDEs can be interpreted as a generalization of the well-known Poisson equation, but they go
far beyond that. In fact, the definition of the Hodge–Laplace operator and its variational for-
mulations can be traced back to Hilbert complexes. Such complexes consist of chains of Hilbert
spaces interconnected by differential operators, such that the composition of two adjacent oper-
ators in the complex yields the zero operator. By choosing the Hilbert spaces in the complex,
many different PDEs can be generated. The Finite Element Exterior Calculus (FEEC) [11, 5]
established by Arnold, Winther and Falk explains the theoretical foundations and constructions
of strong and weak formulations of Hodge–Laplace problems, and also develops criteria for ap-
plying Finite Element Methods (FEMs) in the discrete case in a well-posed manner. A pivotal
tool within FEEC are the - we call it - structure-preserving discretizations of the Hilbert com-
plexes. This means one uses finite-dimensional subcomplexes of the continuous chains, where
the former preserve the key features, like exactness or the validity of the Poincaré inequality.
This elegant and abstract concept serves as the starting point for this present work. The goal

is to utilize a specific paradigm or a specific type of FEMs for the discretization of the Hodge–
Laplace problem, namely Isogeometric Analysis (IGA) [49, 31, 17]. A trigger behind introducing
IGA was to combine geometry representations using Non-Uniform Rational B-splines (NURBS)
with Finite Element discretizations, which now also rely on NURBS. That is why the first and
seminal IGA paper by Hughes et al. was entitled "Isogeometric analysis: CAD, Finite Elements,
NURBS, exact geometry and mesh refinement". The idea of connecting FEEC and IGA is
not new and was demonstrated, at the latest, by Buffa et al. in [27] with the introduction
of isogeometric discrete differential forms in 2011 based on B-splines. However, these results
apply only to the classical de Rham complexes, meaning only first-order differential operators
are involved. When Hilbert complexes with higher derivatives are to be discretized, such as the
elasticity complex in continuum mechanics (see e.g. [4, 10, 6, 59]), this is not always directly
achievable. This is where the present work comes in, addressing the discretization of Hodge–
Laplace equations generated from second-order Hilbert complexes, meaning Hilbert complexes
with appearing differential operators of second order. In doing so, approaches from IGA are
used, i.e. B-splines and NURBS-based function spaces, as well as mixed weak formulations
provided by FEEC. Pivotal for our investigations is the Bernstein–Gelfand–Gelfand (BGG)
construction (compare [12]) procedure which can be utilized to generate from two linked Hilbert
complexes a new output complex. The latter technique not only gives us new chains, but
it helps to understand important properties like the dimension of the cohomology spaces or
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exactness for the output chains. Besides, the BGG algorithm is also appropriate for finding
suitable spline spaces for various second-order complexes, including the Hessian, elasticity and
divdiv complexes. In this context the product structure of B-splines is crucial as well as their
smoothness can be utilized to handle the arising derivatives. But, these considerations still
operate in the cubical reference domain of B-splines, which has limited utility for applications.
Because, in IGA the reference domain is typically deformed into the desired computational
domain through a NURBS parametrization, and the actual Finite Element (FE) spaces are
defined through some push-forward operation from the parametric spaces. Unfortunately, in
this transition from parametric to physical domain via the parameterization function, important
properties of the spline complexes are lost in general, even up to the loss of the Hilbert complex
structure.
In other words, aside from the special case of de Rham complexes, it is quite challenging to
align the design steps of FEEC with IGA. But even if one resolves the focus on IGA and turns
to classical FEEC on simplicial meshes, dealing with other than de Rham chains can often be
difficult and laborious to discretize. Therefore, an approach has been pursued in [10, 42], for
example in the context of elasticity complexes, which involves introducing additional Lagrange
multipliers to bring somewhat mixed formulations back to the case of the de Rham complexes.
This is because a direct discretization of the elasticity sequence based on the FEEC paradigm
leads to complicated non-trivial FE spaces; compare [6, 4].
Aim of this work is to demonstrate how IGA can be meaningfully utilized in approximating

Hodge–Laplace problems, stemming from second-order complexes, in particular not induced
from de Rham sequences. We primarily focus on a specific class of Hilbert complexes derived
through the BGG procedure for Altl-valued forms, where the latter can be seen as an extension
of the well-known differential forms. This class explained and discussed in [12] encompasses
chains in arbitrary dimensions, including the previously mentioned Hessian, elasticity, or divdiv
complexes. Even with this restriction to specific chains, it remains unclear and non-trivial to find
suitable NURBS or spline spaces for discretizations for parameterized geometries. As mentioned
before, a structure-preserving transition between the parametric domain and the physical domain
is generally not known.
To mitigate this issue, the main part of the work considers a specific case of Hodge–Laplace

equations leading to weak formulations in the form of saddle-point problems; cf. [20, §4 in
Chapter 3]. In this context, conditions for the well-posedness of the discretization are established.
Two approaches are pursued: firstly, how the aforementioned isogeometric discrete differential
forms can be reused is discussed, and secondly, standard NURBS basis functions are also allowed,
and provided certain conditions they still lead to well-posed discretizations. For both approaches,
quasi-optimal error estimates can be shown, meaning that the error in the respective choice of
FE spaces is minimal, apart from a multiplicative constant. Particularly, the case of the mixed
formulation with Lagrange multiplier proves to be challenging and requires the application of
the macroelement method (see [23]) to show discrete well-posedness. What is remarkable is
that, while we no longer explicitly require structure-preserving discretizations of the underlying
complexes, this concept emerges in both approaches. In one case, we directly employ structure-
preserving discretizations of the de Rham sequence, and in another, we rely on the existence of
suitable, also structure-preserving spline complexes in cubical domains in a central proof. So,
we are harnessing and accommodating the principles of FEEC, effectively integrating ideas and
insights from both, FEEC and IGA.
These largely theoretical considerations are also illustrated in the work through numerical tests

and examples. The main application lies in linear elasticity theory, where mixed methods with
and without strong symmetry of the stress tensor are introduced, convergence is proved, and error
computations are performed to support the theoretical statements. The numerical examples also
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include so-called IGA multi-patch geometries described by multiple local parameterizations, as
well as mixed-type boundary conditions. As a concluding point and in terms of a perspective,
we discuss whether the existing restriction to specific Hodge–Laplace problems can be extended
or relaxed. This is particularly interesting because for many standard FEMs, the regularity
requirements associated with higher derivatives are often difficult to meet. And, at least in a
single-patch geometry, smoothness of NURBS can easily be varied.
The main assertion and motivation of the work can be summarized as follows: Since it is rel-

atively straightforward to define high-regularity NURBS within a single IGA reference domain,
it is natural to extend the existing isogeometric discrete differential forms to higher-order com-
plexes. However, using IGA in the context of second-order complexes is not a simple extension
of the already known constructions for de Rham chains. Nevertheless, for certain Hodge–Laplace
equations, B-splines and NURBS-based spaces can be sensibly employed, and it is possible to
demonstrate convergence and well-posedness. Despite the limitations, the considerations are
usable for a whole class of saddle-point systems and particularly applicable in the context of
linear elasticity theory.

Before turning to a structuring of the thesis, it should be emphasized that the content of
the thesis did not emerge in a vacuum but is built upon and utilizes existing knowledge in
the literature. This is explicitly acknowledged at various points throughout the text. While
previously mentioned, it is worth highlighting three key references in this context: [5, 27, 12].
These are the primary sources, and we frequently refer back to them. Additionally, we want to
mention the thesis [62], which, although not directly incorporated, inspired us along with [10] to
explore discretization with Lagrange multipliers. For the theory of mixed methods and saddle
point problems, upon which we base our discretization schemes, we recommend the works [26, 24].
Concerning the mathematical foundations of functional analysis, PDEs, and Finite Elements,
our primary references include [2, 69, 41] and [20].
Certainly, there are numerous publications addressing the theory of Hilbert complexes and

their applications. In the field of IGA, for instance, the de Rham sequence is especially suitable
for flow problems ([31, Chapter 4],[29]) and numerical computations within electromagnetism; see
[31, Chapter 3], [28]. Recently we find papers that focus on extending the idea of isogeometric
discrete differential forms to wider settings, application areas, respectively. For instance in
[67, 40], the authors face the connection of hierarchical B-splines with the de Rham structure.
This ansatz allows for local refinements of the mesh structures, an important aspect in the
development of efficient approximation schemes. And in [30] it is shown how spline complexes
can be used for multi-patch geometries. Additionally, in [71] multi-degree and polar spline
complexes are introduced to cover the case of disk-like domains. A similar direction is taken
in [57], where isogeometric discretizations in toroidal domains are considered. While many
numerical approaches in the context of differential forms operate within the classical FEEC
setting of simplicial complexes, our thesis will also turn to and follow the concept of isogeometric
discretizations later. Therefore, we refer to [5] and the references therein for more information
on discretizations on simplicial meshes. Further, to gain an overview of existing literature,
particularly recent publications in the field of Hilbert complexes, we recommend the report [48].
This report not only touches upon various current research directions, but also provides a whole
bunch of relevant publications. Moreover, it should be noted that Hilbert complexes beyond
de Rham, such as the Hessian, elasticity and divdiv complexes, and their discretization, have
received increased attention in the last years ([19, 35, 34, 47, 59, 60]). Numerous works on this
topic have emerged lately, where in this context, the previously mentioned BGG construction
([12]) has proven to be helpful for the understanding of the underlying structure. However, even
in relatively simple geometry, conforming Finite Elements often yield non-trivial basis functions,
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discrete spaces, respectively. The challenge is particularly pronounced in the case of curved
mesh elements, as encountered in IGA. Thus as we address in our thesis the question of how
to integrate second-order Hilbert complexes with IGA, more precisely, how to leverage chains
beyond the de Rham complex for mixed discretization methods, we face a topic that is currently
under intensive discussion in the literature.

As the last point of the introduction let us now clarify the underlying structure of the text.
The organization of the thesis is outlined as follows:

• Section 2: We start with introducing several mathematical notions and present some well-
known results from the field of functional analysis that we will repeatedly use. Therefore,
we commence with a concise preparatory section. Readers familiar with the field of func-
tional analysis and variational formulations may choose to skip this section.

• Section 3: We continue by explaining the fundamental concepts in the realm of FEEC, par-
ticularly the so-called mixed weak formulations and their structure-preserving discretiza-
tion. So, the central points from the important references [5, 11], which are crucial for
understanding, are presented.

• Section 4: Then, we proceed by introducing possibilities how to generate new complexes,
where we mainly face the BGG construction, a method by Arnold and Hu ([12]) suit-
able for building second-order Hilbert complexes. Here, we will also define a special type
of the BGG procedure involving Altl-valued forms and leading to classical second-order
complexes, such as the elasticity or Hessian complex. Within the same section, we also
demonstrate a general approach for reformulating mixed weak formulations with additional
Lagrange multipliers which will assist us later in developing a second discretization scheme.
This yields for example the mixed weak formulation with weakly imposed symmetry within
linear elasticity.

• Section 5: Moving on to the next part, Section 5, we then delve into general and abstract
considerations on how to discretize specific saddle-point problems defined by Hilbert com-
plexes. In other words, we establish various conditions that should lead us to well-posed
discretizations. In proving the main results, we will directly or indirectly employ the con-
cept of structure-preserving discretizations. It should also be noted here that this fifth
section is once again to be considered as a preparatory chapter, as we will later apply the
observations from this part to concrete IGA discretizations.

• Section 6: In the sixth section, which serves as an intermediary section, we take a detour
to the fundamentals of IGA and mention important known estimates. In particular, we
define B-splines and derive from them isogeometric Finite Element spaces. Additionally,
we focus on various projections onto B-spline spaces, which prove to be useful at different
points in the thesis. With this knowledge of IGA, we can become more concrete starting
from Section 7.

• Section 7: We address specific second-order complexes from Altl-valued forms and the cor-
responding discretization utilizing B-splines. We clarify why it is feasible to find suitable
FE spaces in cubic-shaped domains without difficulties, leading to spline complexes. We
further define the isogeometric discrete differential forms, which determine a proper dis-
cretization for the de Rham complex also in the possibly deformed physical domain. Basis
for this section are the references [19] and [27].
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• Section 8: Subsequently, in Section 8 we utilize such structure-preserving discretizations
in the parametric domain and the de Rham complex discretizations to make statements
regarding non-trivial geometries as well, meaning parametrized computational domains
involving curved boundary and shapes. We provide well-posedness results and error esti-
mates for two distinct approaches, namely with and without a Lagrange multiplier, across
a whole class of problems. However, as indicated earlier, we will confine ourselves to mixed
weak formulations with a saddle-point structure. Nevertheless, this chapter can be re-
garded as the centerpiece of the thesis, as it presents the most important proofs and main
results.

• Section 9: A resulting special case for the systems faced in Section 8 are mixed-weak formu-
lations for the equations of linear elasticity. The latter serves as our primary application
example and is extensively treated in Section 9, with again two different discretization
methods. They cover the classical Hellinger-Reissner mixed system, a stress-displacement
formulation, and the variant of it with weakly imposed symmetry. Throughout, we illus-
trate and validate our theoretical investigations with a series of numerical tests.

• Section 10: In the last part, Section 10, we briefly explore the question of whether we can
discretize further problems that do not exhibit a saddle-point structure. Again, we present
several numerical tests to support our conjectures and comment on possible directions for
further generalizations. And finally we end the thesis with a conclusion, in which we draw
an overall summary once again.

Finally, before we come to the first section it should also be noted here that all numerical
tests and calculations were performed using MATLAB and the open-source software package
GeoPDEs; [53, 37, 73]. Additionally, all the illustrations were generated using the mentioned
software together with the LATEX package TikZ.
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2 Mathematical Preliminaries
A central element within the text are Hilbert spaces. We take advantage of structures coming
along with their defining properties and we relate them by considering linear operators. In other
words, some introductory words regarding functional analysis seem reasonable. This should be
the guideline for this chapter. First, we will mention a few important definitions and statements
related to linear operators on Hilbert spaces. Then, we will briefly address the concept of weak
derivatives and Sobolev spaces. And at the end of the first chapter, we will focus on so-called
variational formulations. Beforehand we want to emphasize our very limited perspective, since
we concentrate only on specific aspects that point out to be useful later. The subsequent brief
explanations are mainly to clarify notation and do not constitute a profound introduction. All
the definitions and results of this part are well-known and can be found in different textbooks.
Basis of the formulations and explanations below are the books [5, 2, 20, 1, 38], but we also
recommend [41, 69] for more details. As a final point, we would like to mention that in the
following, fundamental mathematical concepts especially in the field of topology are assumed to
be known, i.e. for example terms like closure and completeness as well as the notions of vector
and Banach spaces will not be explicitly explained.

2.1 Hilbert spaces and (unbounded) operators
In the following we only look at R-Hilbert spaces, meaning Banach spaces over the field R that
are endowed with an inner product structure. To be more precise, we have a pair (W, 〈·, ·〉W )
composed of a vector space W and the inner product 〈·, ·〉W : W ×W → R which defines a norm
‖w‖W :=

√
〈w,w〉W that in turn yields a complete metric space (W, ‖·‖W ). Given the inner

product, we can introduce the orthogonal complement of a subspace V ⊂ W which is the closed
linear space

V ⊥W := {w ∈ W | 〈w, v〉W = 0, ∀v ∈ V }.
Writing V for the closure of V in W one has the decomposition

W = V ⊥ V ⊥W ,

where ⊥ stands for the orthogonal direct sum1; compare Lemma 2.6. If the inner product is
clear from the context we sometimes write just V ⊥ and 〈·, ·〉 for the inner product. Additionally
we should note the useful Cauchy–Schwarz inequality that reads

|〈v, w〉| ≤ ‖v‖W ‖w‖W , ∀v, w ∈ W.

In the last line and in the following | · | stands for the Euclidean norm in Rn, n ∈ N. We call
a linear operator T : X → Y between two Banach spaces X and Y with associated norms ‖·‖X
and ‖·‖Y bounded if ‖Tv‖Y ≤ C ‖v‖X , ∀v ∈ X for a constant C > 0. The smallest possible C
in the last inequality is called the operator norm of T . For the set of bounded linear operators
from X to Y we use the abbreviation L(X, Y ). The dual space of a Hilbert or Banach space X
is denoted just by X ′, i.e.

X ′ := {T : X → R | T linear and bounded}.

Latter space X ′ is in fact again a Banach space, where the corresponding operator norm reads

‖T‖X′ := sup
x∈X,‖x‖X=1

|Tx|, T ∈ X ′.

1Z = X ⊥ Y (X,Y, Z subspaces of Hilbert space (W, 〈·, ·〉)) : ⇐⇒ ∀z ∈ Z, ∃1 y ∈ Y,∃1 x ∈ X s.t.
z = x+ y, 〈x, y〉 = 0.
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In view of weak derivatives we allow also for unbounded operators T : X → Y . Then the
actual domain space Dom(T ) ⊂ X has to be provided and it is reasonable to write (T,Dom(T ))
instead of just T . Further, the range and kernel of such a linear operator T is abbreviated with
R(T,Dom(T )) := {Tv | v ∈ Dom(T )}, N (T,Dom(T )) := {v ∈ Dom(T ) | Tv = 0}. In the case
Dom(T ) = X we just write R(T ), N (T ). Frequently, one can assume dense domain spaces,
particularly when dealing with standard differential operators such as the gradient or divergence
operator, which later appear in the de Rham complex.
For densely defined operators between Hilbert spaces the adjoints can be introduced.

Assumption 2.1. In the following, let U, W denote Hilbert spaces and X, Y Banach spaces.

Definition 2.1 (Adjoint operator, cf. [75, Section 4.4]). Let T : Dom(T ) ⊂ U → W be a densely
defined linear operator.
Set Dom(T ∗) := {w ∈ W | ∃C > 0 s.t. |〈Tv, w〉W | ≤ C ‖v‖U , ∀v ∈ Dom(T )}. Then there is a
unique operator T ∗ : Dom(T ∗) ⊂ W → U s.t.

〈Tv, w〉W = 〈v, T ∗w〉U , ∀v ∈ Dom(T ), w ∈ Dom(T ∗),

which is called the adjoint of (T,Dom(T )).

We have titled the last block as a definition; however, strictly speaking, the introduction of
adjoint operators is connected to a statement that needs to be proven. To establish the well-
definedness of the adjoint operator T ∗ the Riesz representation theorem can be employed, which
we briefly mention here.

Lemma 2.1 (Riesz representation theorem, see e.g. [2, Section 4.1 ]). We obtain with

J : W → W ′ , w 7→
(
v 7→ 〈v, w〉W

)
an isometric isomorphism between Banach spaces.

One observes that in the special case T ∈ L(U,W ) we get by the Cauchy–Schwarz inequality
that T ∗ ∈ L(W,U).
The class of densely defined unbounded operators is still quite large and often more structure is
required. A useful and important subset is that of closed operators.

Definition 2.2 (Closed operators). An operator T : Dom(T ) ⊂ U → W is said to be closed
if for sequences (vm)m∈N ⊂ Dom(T ) with vm U−→ v ∈ U and Tvm W−→ w it is v ∈ Dom(T ) as
well as Tv = w.2

The notation of closed operators can be seen as the generalization of bounded operators, since
for the case Dom(T ) = U the last definition is equivalent to the continuity condition; compare
[75, Theorem 5.2.]. Closed operators allow us to interpret the domain space as Hilbert space
itself. Namely, the graph inner product

〈v, w〉Dom(T ) := 〈v, w〉U + 〈Tv, Tw〉W , v, w ∈ Dom(T )

makes Dom(T ) to a Hilbert space iff the underlying operator is closed. This aspect becomes
crucial if one looks at the domain complexes of Hilbert complexes in FEEC; see Section 3.
An interesting connection between the closedness property and the previously defined adjoint
operators is given in the next lemma.

2If a sequence (xm)m∈N ⊂ X, (X, ‖·‖X) Banach space, converges to x ∈ X w.r.t. ‖·‖X , then we write xm
X−→ x.
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Lemma 2.2 (Adjoint of closed densely defined operator, see Propositions 3.3, 3.4 and
Theorem 3.5 in [5]). In case of a closed densely defined operator T : Dom(T ) ⊂ U → W the
adjoint T ∗ : Dom(T ∗) ⊂ W → U is also closed and densely defined. Moreover, then we have
(T ∗)∗ = T and R(T,Dom(T ))⊥ = N (T ∗,Dom(T ∗)).

It is important to mention again here that a closed operator does not necessarily have a closed
range. However, if the closed range property holds, it also applies to the adjoint.

Lemma 2.3 (Closed range theorem, see Theorem 3.7 in [5]). Let the assumptions of the last
lemma be valid. In this case we have a closed range of T if and only if the range of the adjoint
is closed.

Attempting to provide a profound introduction to the extensive topic of Hilbert spaces and
linear operators within a few pages is bound to fail. It is, therefore, advisable to refer to the
available textbooks like [2, 70, 41, 1]. Nevertheless, we would like to briefly outline the following
statements here, as they will be used multiple times later and will be generally helpful for
understanding the explanations in the upcoming chapters.

Further useful statements
Lemma 2.4 (Bounded inverse theorem,[2, Theorem 5.8]). For a bijective operator T ∈
L(X, Y ) it holds T−1 ∈ L(Y,X).

Corollary 2.1. Let T : U → W be a bounded linear operator between Hilbert spaces with closed
range R(T ) ⊂ W . We have then the property

∀w ∈ R(T ), ∃v ∈ U, s.t. Tv = w and ‖v‖U ≤ C ‖w‖W ,

where C > 0 does not dependent on w. In particular, the mapping T : U → R(T ) has a bounded
right-inverse.

Proof. We look at the restricted operator T| : N (T )⊥ → R(T ) , v 7→ Tv, which is obviously a
bijective and bounded mapping between Hilbert spaces. Hence, due to Lemma 2.4 the inverse
T−1
| is bounded and TT−1

| w = w on R(T ).

Lemma 2.5 (Bounded right-inverse, compare [24, Theorem 0.1]). Let T : U → W be a
bounded linear mapping w.r.t the norms ‖·‖U , ‖·‖W induced by the inner products. Further
assume

inf
06=w∈W

sup
06=v∈U

〈Tv, w〉W
‖v‖U ‖w‖W

≥ C† > 0.

Then there is for all w ∈ W an element v ∈ U s.t. Tv = w and ‖v‖U ≤ 1
C†
‖w‖W .

Proof. We follow the proof steps of [7, Lemma 2].
The adjoint T ∗ : W → U exists and satisfies

C† ‖w‖W ≤ sup
06=v∈U

〈Tv, w〉W
‖v‖U

= sup
06=v∈U

〈v, T ∗w〉U
‖v‖U

= ‖T ∗w‖U , ∀w ∈ W.

Thus we have injectivity of T ∗ and the left-inverse of T ∗ is bounded with operator norm ≤ 1/C†.
This implies the surjectivity of T and the operator norm of the right-inverse T † of T is bounded
by 1/C†.
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Lemma 2.6 (Orthogonal projection, see Theorem 2.2 in [2]). For every closed subspace V
of a Hilbert space W there exists a unique bounded mapping PV : W → V which satisfies

〈PVw − w, v〉W = 0, ∀v ∈ V, w ∈ W.

PV is called the orthogonal projection onto V and clearly PVw − w ∈ V ⊥.

Definition 2.3 (Moore-Penrose inverse). Let us suppose T ∈ L(U,W ) to have a closed range
in W . As in the proof of Corollary 2.1 we see that the restriction T| : N (T )⊥ → R(T ) of T has
a bounded inverse mapping T−1

| . Then we set for w ∈ W

T †w := T−1
| w2, where w = w1 + w2, w1 ∈ R(T )⊥, w2 ∈ R(T ).

We call the implied mapping T † : W → U the Moore-Penrose inverse of T . It it is easy to check
that T † fulfills the properties

T † ∈ L(W,U), T †T = PN (T )⊥ , TT † = PR(T ). (2.1.1)

Standard example and starting point for various different space definitions in the field of
Sobolev spaces is the space L2(Ω) of square integrable functions on a suitable domain Ω ⊂
Rn, n ∈ N in the Euclidean space. For our purposes it is enough to assume bounded Lipschitz
domains Ω that guarantee boundary values and boundary integrals for the spaces we address
later. Furthermore, the class of Lipschitz domains are helpful for extending Sobolev spaces.

Definition 2.4 (Lipschitz domain). A bounded domain Ω ⊂ Rn, n ∈ N≥2 is a Lipschitz
domain, if there are finitely many open sets Ui ⊂ Rn s.t. ∂Ω ⊂ ⋃

i Ui and that the boundary
segments Γi := Ui∩∂Ω can be expressed as a part of the graph of a Lipschitz continuous function
φi : Rn−1 → R. The latter might require a rigid body motion of the coordinate axis. Furthermore,
we assume for each index i, after a possible renaming of the coordinate axis, that {(x, xn) ∈
Rn−1 × R | φi(x) > xn} ∩ Ui = Ω ∩ Ui.

x1

x2
Ui

Γi

Ω

Ti

Figure 1: Obviously, an open disk defines a Lipschitz domain Ω.

Assumption 2.2 (Domains). Here and in the rest of the whole text Ω always stands for a
Lipschitz domain.

Definition 2.5 (The space L2(Ω)). On the set

L2(Ω) :=
{
v : Ω→ R

∣∣∣∣ v Lebesgue measurable,
∫

Ω
|v|2 dx <∞

}
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we can introduce the equivalence relation

f ∼ g in L2(Ω) : ⇔ Lebesgue measure of {x ∈ Ω | f(x) 6= g(x)} is zero,

where we consider the integrals always in the sense of Lebesgue integration theory; see [2, Chapter
1]. Then the quotient vector space

L2(Ω) := L2(Ω)/ ∼

can be endowed with the inner product 〈v, w〉L2(Ω) :=
∫

Ω v w dx which yields a Hilbert space and
we write ‖·‖L2(Ω) for the norm induced by 〈·, ·〉L2(Ω).
Though, L2(Ω) is a quotient space, we stipulate to identify for f ∈ L2(Ω) always f with one
representative. This means in calculations we can think of classical functions.
If the domain is clear from the context we write in the following sometimes just ‖·‖ = ‖·‖L2(Ω)
and 〈·, ·〉 for the L2 inner product.

Before facing the notion of weak derivatives, let us highlight here a crucial density result for
functions in L2(Ω).

Lemma 2.7 (Density of smooth functions, [2, 2.14]). Every mapping in L2(Ω) can be
approximated utilizing test functions, i.e.

L2(Ω) = C∞c (Ω)‖·‖L2(Ω) .

Here, X‖·‖ denotes the closure of X w.r.t. ‖·‖ and C∞c (Ω) is the set of infinitely differentiable
functions with compact support in Ω.

2.2 Weak derivatives and Sobolev spaces
Within the theory of PDEs, especially the numerical investigation of PDE problems, it becomes
apparent that the classical notion of derivatives is often inconvenient. The concept of weak
derivatives, or even more general, distributional derivatives is more appropriate. Also for the
class of Sobolev spaces the notion of weak derivatives is underlying. For this reason we clarify
what we actually mean by a weak derivative.
First of all, for α = (α1, . . . , αn) ∈ Nn

0 let us introduce the multi-index notation ∂α := ∂α1,α2,...,αn :=
∂α1

1 . . . ∂αnn , where ∂αii is the classical αi-th partial derivative w.r.t. the i-th coordinate. And
naturally, we write below just ∂i for ∂1

i . Obviously, ∂α determines a densely defined opera-
tor ∂α : C∞c (Ω) ⊂ L2(Ω) → L2(Ω), due to Lemma 2.7. We can look at the adjoint (∂α)∗ of
(∂α, C∞c (Ω)) for which it is C∞c (Ω) ⊂ Dom((∂α)∗), by the rules of partial integration. Conse-
quently, the next definition makes sense.

Definition 2.6 (Weak derivatives). Let α ∈ Nn
0 . An element v ∈ L2(Ω) has a weak derivative

∂αv if there is a w ∈ L2(Ω) s.t.

〈w, φ〉 = 〈v, (∂α)∗φ〉, ∀φ ∈ C∞c (Ω).

We set ∂αv := w.

For sufficiently regular φ, namely φ ∈ C |α|1(Ω), |α|1 := α1 + · · · + αn, the weak and strong
derivatives coincide.3 Further, by a density argument it is easy to see that weak derivatives are
always unique. Based on this, one defines the scalar Sobolev spaces Hk(Ω) without boundary
conditions.

3Ck(U), k ∈ N0, stands for the space of k-times continuously differentiable functions on U .
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Definition 2.7 (Sobolev spaces). For k ∈ N0 one sets

Hk(Ω) := {w ∈ L2(Ω) | ∂αw ∈ L2(Ω) exists in a weak sense, ∀α ∈ Nn
0 with |α|1 ≤ k}.

In particular H0(Ω) = L2(Ω).

The different Hk(Ω), endowed with the inner products

〈v, w〉Hk(Ω) :=
∑
|α|1≤k

〈∂αv, ∂αw〉 and norms ‖v‖2
Hk(Ω) :=

∑
|α|1≤k

‖∂αv‖2 ,

are Hilbert spaces; for more details we refer to the explanation in [2, Section 1.25]. Regarding
the spaces Hk(Ω) there is a useful density result related to smooth mappings. It reads

Hk(Ω) = C∞(Ω)
‖·‖

Hk(Ω)
, (2.2.1)

which for example follows directly from [2, Lemma A6.7]. Above C∞(Ω) stands for the space
of smooth functions with continuously extendable derivatives to the closure Ω. Such relations
(2.2.1) are especially important because they allow classical rules of differentiation to be extended
to the concept of weak differentiation. Namely we have e.g. the product rule ∂i(v w) = (∂iv)w+
v ∂iw for v, w ∈ Hk(Ω), k ≥ 1 which ensures v w ∈ Hk(Ω). And having a C1-diffeomorphism F
from one Lipschitz domain Ω̂ ⊂ Rn to second one Ω ⊂ Rn one can prove

v ∈ H1(Ω) =⇒ v ◦ F ∈ H1(Ω̂)

as well as the chain rule formula

∂̂i(v ◦ F) = ∑n
j=1(∂jv ◦ F) · Jji.

Above Jji are the entries of the Jacobian matrix field J = DF of F. We further added a hat ·̂
to emphasize the differentiation w.r.t. the new coordinates.
Another point we would like to mention is the possibility to extend Sobolev spaces. For this
purpose let use define

Hk(Rn) := {v : Rn → R |v ∈ Hk(Br(0)),∀r > 0 and r 7→ ‖v‖Hk(Br(0)) is bounded}

and norms
‖v‖Hk(Rn) := lim

r→∞
‖v‖Hk(Br(0)) .

Above Br(0) stands for the open Euclidean r-neighborhood of the origin. The last auxiliary
definitions are exploited in the next extension result.

Lemma 2.8 (Stein extension operator, see [68, Theorem 5 on page 181]). Let Ω ⊂ Rn be a
Lipschitz domain. Further let k ∈ N0. Then there exists an extension operator E of the form

E : Hk(Ω)→ Hk(Rn),

meaning Ev = v on Ω, s.t. ‖Ev‖Hi(Rn) ≤ CE ‖v‖Hi(Ω) ,∀v ∈ Hk(Ω), for i = 0, . . . , k and a proper
constant CE .

The restriction to Lipschitz domains is not only important for the last lemma but is also
needed to define the outward normal vector n to the boundary ∂Ω and to establish the notion of
boundary values. As demonstrated in [2, A6.5], such a normal vector n does indeed exist, and its
components are elements of the boundary Lebesgue space L2(∂Ω). Moreover, the trace theorem
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holds for H1(Ω), which provides the existence of a unique bounded operator γ : H1(Ω)→ L2(∂Ω)
with

γ(φ) = φ|∂Ω, ∀φ ∈ H1(Ω) ∩ C0(Ω̄) (see [2, A6.6]).
For a precise definition of L2 spaces on the domain boundary, i.e. L2(∂Ω), we again refer to [2,
A6.5]. The trace operator allows us to restrict H1 functions to the boundary, where we write
u(x) instead of γ(u)(x) for x ∈ ∂Ω. By utilizing the trace theorem (see [69, Theorem 2.21]) and
the outer unit normal n, it becomes possible to formulate the fundamental integration by parts
equation, which will be repeatedly used in later chapters. Specifically, it can be expressed as
follows: For u, v ∈ H1(Ω) the relation

〈∂iu, v〉 = −〈u, ∂iv〉+
∫
∂Ω
uv ni ds (see [2, A6.8]) (2.2.2)

holds, where above ni is the i-th component of the outer unit normal vector n to the boundary
∂Ω and

∫
∂Ω · ds denotes the usual boundary integral.

A generalization of the spaces Hk(Ω) to the vector-valued or matrix-valued setting is straight-
forward using a component-wise point of view. This corresponds to a tensor product construction
and we write then Hk(Ω)⊗Rn for vector-valued functions. More general for a finite-dimensional
R-Hilbert space E we can consider E-valued Sobolev spaces Hk(Ω) ⊗ E, where we refer to [75,
Section 3.4] for a detailed definition of product Hilbert spaces. Let e1, . . . , ed be an orthonormal
basis of E. Then we can uniquely express each v ∈ Hk(Ω) ⊗ E through a sum of the form
v = ∑d

i=1 vi ei, vi ∈ Hk(Ω) determined by

v : Ω→ E , v(x) := ∑d
i=1 vi(x) ei.

In other words we interpret Hk(Ω)⊗ E as the space of E-valued fields with coefficient functions
in Hk(Ω). The inner products generalize naturally in the sense

〈v, w〉Hk(Ω)⊗E := ∑d
i=1〈vi, wi〉Hk(Ω), if v = ∑d

i=1 vi ei, w = ∑d
i=1wi ei,

which leads again to Hilbert spaces. In the situation k = 0 we will again drop the indices and
write 〈v, w〉H0(Ω)⊗E = 〈v, w〉 and for the corresponding L2 norm ‖·‖. Further, if the underlying
space and domain is clear, we use the notation ‖v‖Hk = ‖v‖Hk(Ω)⊗E for the norm induced by
the mentioned inner product on Hk(Ω) ⊗ E. To emphasize the actual domain we also write
sometimes ‖v‖Hk(Ω) = ‖v‖Hk(Ω)⊗E.
Having two spaces L2(Ω)⊗E, L2(Ω)⊗Ẽ with underlying bases {e1, . . . , ed} ⊂ E, {ẽ1, . . . , ẽm} ⊂

Ẽ, we can define differential operators of the form

D := ∑d,m
i=1,j=1 cij ∂

αi,j ⊗ ẽj, cij ∈ R, αi,j ∈ Nn
0 ,

defined through

Dv := ∑d,m
i=1,j=1 cij (∂αi,jvi) ẽj, where v := ∑d

i=1 vi ei, (2.2.3)

for regular vi. Then this D is a densely defined operator D : L2(Ω)⊗ E→ L2(Ω)⊗ Ẽ as we can
choose C∞c (Ω)⊗E as domain space. And the density of the latter in L2(Ω)⊗E is clear. We say
the operator has order

ord(D) = l, if max
i,j
{|αi,j|1 | cij 6= 0} = l.

Again it is clear that for the above definitions, the adjoint D∗ = (D, C∞c (Ω) ⊗ E)∗ exists and
C∞c (Ω)⊗ Ẽ ⊂ Dom(D∗). Thus one can use an analogous formula like in Definition 2.6 to define
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the differential operator D in a weak sense. For v ∈ L2(Ω)⊗ E we say Dv = w ∈ L2(Ω)⊗ Ẽ in
a weak sense, if

〈w, φ〉 = 〈v,D∗φ〉, ∀φ ∈ C∞c (Ω)⊗ Ẽ.

So one can consider the space

W (Ω,D,E) := {v ∈ L2(Ω)⊗ E | Dv ∈ L2(Ω)⊗ Ẽ},

where here D is again meant in a weak manner.

Lemma 2.9. The space W (Ω,D,E) is a Hilbert space endowed with the graph inner product
〈·, ·〉H(D) = 〈·, ·〉+ 〈D·,D·〉 related to D.

Proof. It is enough to check the closedness of D : W (Ω,D,E) ⊂ L2(Ω)⊗ E→ L2(Ω)⊗ Ẽ.
Therefore assume W (Ω,D,E) 3 vm L2

−→ v, Dvm
L2
−→ w. One observes

〈w, φ〉 = lim
m→∞

〈Dvm, φ〉 = lim
m→∞

〈vm,D∗φ〉 = 〈v,D∗φ〉, ∀φ ∈ C∞c (Ω)⊗ Ẽ,

and sees w = Dv.

With the abbreviation ‖·‖2
H(D) := ‖·‖2 +‖D·‖2 for the graph norm and due to the obvious fact

C∞(Ω)⊗ E ⊂ W (Ω,D,E) we can look at the closure

H(Ω,D,E) := C∞(Ω)⊗ E
‖·‖H(D)

, (2.2.4)

which gives us again a Hilbert space. Latter construction guarantees the possibility to approxi-
mate every element by means of smooth functions. Using (2.2.1) there is no problem to see

H l(Ω)⊗ E ⊂ H(Ω,D,E), with ord(D) = l.

In view of the literature on Sobolev spaces (see e.g. [1, 38] ) we gave above in fact only
the definition for a special class of Sobolev spaces. They will be convenient for weak PDE
formulations later. Nevertheless, e.g. also spaces with negative exponent H−k(Ω), k ∈ N>0
will appear and therefore a brief explanation comes next. Firstly, we need to introduce the
Sobolev spaces with zero boundary values Hk

0 (Ω). They are defined as the closure of the space
of compactly supported test functions w.r.t. to the ‖·‖Hk(Ω) norm. More precisely,

Hk
0 (Ω) := C∞c (Ω)‖·‖Hk(Ω) .

This construction makes also sense if we face more involved spaces. In other words, we can
consider the next spaces with generalized zero boundary conditions

H0(Ω,D,E) := C∞c (Ω)⊗ E‖·‖H(D) . (2.2.5)

Let D∗ be the adjoint differential operator to D obtained through a successive application of
integration by parts. Then, it is easy to check the relation

H0(Ω,D∗, Ẽ) ⊂ Dom
(
(D, H(Ω,D,E))∗

)
. (2.2.6)

Now one defines
H−k(Ω) :=

(
Hk

0 (Ω)
)′
,

as the dual space of the Sobolev space with zero boundary values. The norm ‖·‖H−k(Ω) is then
the associated operator norm. One observes that Lemma 2.1 implies a Hilbert space structure
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on the duals of Hilbert spaces. Namely, having v′, w′ in the dual space W ′ of a Hilbert space
W we get a suitable inner product through 〈v′, w′〉W ′ := 〈J−1v′, J−1w′〉W , where J : W → W ′ is
the Riesz isomorphism. It is therefore justified to later speak of H−k(Ω) as Hilbert spaces.
There is no issue to consider also spaces of the form Hz(Ω) ⊗ E with z ∈ Z. An element
v = ∑d

i=1 v
′
i ei ∈ H−k(Ω)⊗ E, i.e. v′i ∈ H−k(Ω), can be seen as a mapping which acts on Hk

0 (Ω)
per definition as

v(w) := ∑d
i=1 v

′
i(w) ei, ∀w ∈ Hk

0 (Ω).
Note, we assume the ei to form an orthonormal basis of E. Hence we can interpret the rangeR(v)
as a subspace of E. Such spaces H−k(Ω) and differential operators like D from (2.2.3) motivate
the generalization of the weak derivative notion even more. More precisely, one can look at
derivatives in a distributional sense. A distribution on Ω is a linear functional T : C∞c (Ω) → R
that satisfies: ∀K ⊂ Ω, K compact in Rn, ∃NK , CK ∈ N s.t.

|T (φ)| ≤ CK sup{|∂αφ(x)| | x ∈ K, |α|1 ≤ NK}, ∀φ ∈ C∞c (
◦
K). (compare [2, 3.15])

We use the notation
◦
K to denote the interior of K. Consequently, every f ∈ Hz(Ω), z ∈ Z

defines a distribution, where for z ≥ 0 we might identify f with the distribution Tf determined
through

Tf (φ) := 〈f, φ〉, ∀φ ∈ C∞c (Ω).
The partial derivative ∂α of a distribution T is defined by

∂αT (φ) := (−1)|α|1T (∂αφ),

meaning we get a new distribution. A simple calculation involving integration by parts shows
for f ∈ L2(Ω) with existing weak derivative ∂αf ∈ L2(Ω) that we get the equation

∂αTf = T∂αf

and we can identify the weak derivative with the distributional concept. Now, using the distri-
butional derivative idea, it is possible to generalize an operator D of the form (2.2.3) to the case
with vi ∈ H−k(Ω), k ∈ N. If l is the order of differential operator D, we get

D : H−k(Ω)⊗ E→ H−k−l(Ω)⊗ Ẽ (2.2.7)

in the sense of distributions. To be more precise we set for v′ = ∑d
i=1 v

′
i ei ∈ H−k(Ω)⊗ E just

Dv′(φ) := ∑d,m
i=1,j=1 cij

[
∂α

i,j
v′i
]
(φ)ẽj ∈ Ẽ, ∀φ ∈ C∞c (Ω),

with
[
∂α

i,j
v′i
]
(φ) ∈ R denoting the action of the distribution ∂αi,jv′i on φ. Further let us denote

with | · | a norm in the space E, Ẽ, respectively. Then we can estimate

|Dv′(φ)| =
∣∣∣∣∑i,j cij

[
∂α

i,j
v′i
]
(φ)ẽj

∣∣∣∣ ≤ ∑i,j

∣∣∣cij[v′i](∂αi,jφ)ẽj
∣∣∣

≤ C
∑
i,j ‖v′i‖H−k(Ω)

∥∥∥∂αi,jφ∥∥∥
Hk(Ω)

≤ C ′v ‖φ‖Hk+l(Ω) ,

where the constant C ′v depends not on φ. Now by construction we have density of C∞c (Ω) in
Hk+l

0 (Ω). Due to that there is a unique extension of Dv′ to the whole Hk+l
0 (Ω) such that we

have boundedness w.r.t. ‖·‖Hk+l(Ω); see e.g. [70, Lemma 6.5.1]. Thus, Dv′ can be interpreted as
an element in H−k−l(Ω)⊗ Ẽ. This makes the line (2.2.7) clearer. Before we go on let us refer to
the book [50] here for a profound introduction to the topic of distributions.
Sobolev functions and weak derivative operators are the natural ingredients for PDE varia-

tional formulations. The latter will be briefly discussed in the next section.
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2.3 Variational formulations and well-posedness
As already indicated, it is reasonable to interpret an equation like Dv = f with an operator of
the form (2.2.3) no longer in its strong form when introducing Finite Element discretizations
of PDEs. Instead, it is more appropriate to consider the differentials in a weak sense and to
consider so-called weak formulations of the PDEs. To derive the latter one starts in general by
multiplying the equation Du = f with test functions meaning

〈Du, v〉 = 〈f, v〉, ∀v ∈ L2(Ω)⊗ Ẽ. (2.3.1)

This shows the feasibility to interpret the both sides of a PDE as elements in the corresponding
dual space. However, in concrete applications, appropriate boundary and initial conditions also
play a role. Then with possible additional regularity conditions regarding the solution u and the
source function f together with integration by parts, equations of the form (2.3.1) are typically
transformed into modified equations B(u, v) = F(v), ∀v ∈ W involving some bilinear B form
on a proper Hilbert space U ×W . This transformation of a PDE into an equation of this form
leads to the mentioned weak formulation or variational formulation. An element that satisfies
the weak formulation is naturally referred to as a weak solution. The transition from the actual
PDE problem to equations involving test functions must naturally occur consistently. This
means that if there exists a smooth and therefore strong solution to the PDE problem, it must
also satisfy the new weak formulation.
The modified formulation then serves as the starting point for the numerical analysis within
the framework of the FEM. Namely, the fundamental idea is to no longer seeking for u and
choosing v in the continuous spaces U and W , but rather from finite-dimensional subspaces.
The specific choice of the bilinear form B and discrete spaces that make sense for providing a
good approximation of the original PDE obviously depends on the problem itself and is generally
difficult to answer. This is because establishing of B and selecting the spaces W, U is indeed
a central aspect of the theory of Finite Elements. For a detailed introduction and explanation
of the connection between FEM and weak formulations of PDEs, we recommend the book by
Braess [20]. However, we will refrain from delving further into this and proceed with useful
definitions and results in the field of variational formulations.

Definition 2.8 (Abstract variational formulation). Given two Hilbert spaces U and W ,
a bilinear form B : U × W → R as well as a functional F : W → R, we define the abstract
variational problem:
Find all u ∈ U s.t.

B(u, v) = F(v), ∀v ∈ W. (2.3.2)

Such weak formulations allow for relaxing the restrictive regularity requirements of the original
PDE and open the door to an elegant and abstract solution theory based on functional analysis;
see [20, Chapter 2]. Clearly, a variational problem as defined above might have several solutions
or even no solution. Nevertheless, in order to conduct meaningful analysis and subsequently
address discretizations, restrictions must be made. More precisely, one generally deals with
well-posed problems:

Definition 2.9 (Well-posed variational problem). We call the variational problem from
Definition 2.8 well-posed if the next two conditions are fulfilled:

• For every bounded functional F ∈ W ′, there exists a unique solution u ∈ U of (2.3.2).

• The solution u depends continuously on F in the sense

‖u‖U ≤ C ‖F‖W ′ , C = const.
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In the following we assume continuous bilinear forms, i.e. we suppose the relation

B(v, w) ≤ CB ‖v‖U ‖w‖W , ∀v ∈ U, w ∈ W,

for some constant CB > 0. Given a continuous bilinear form a more elegant way of describing a
well-posed variational problem reads as follows:

"well-posedness" ⇐⇒ B : U → W ′ , v 7→ (w 7→ B(v, w)) has a bounded inverse.

In view of Lemma 2.4 this means we have well-posedness if and only if B is bijective. A classical
result from [56] gives us two conditions implying well-posedness.

Lemma 2.10 (Generalized Lax-Milgram theorem; cf. [56, Theorem 3.1]). Assume the
bilinear B : U ×W → R to be continuous. Let B satisfy

• inf
v∈U

sup
06=w∈W

B(v, w) ≥ C ‖v‖U ‖w‖W ,

• inf
w∈W

sup
06=v∈U

B(v, w) ≥ C ‖v‖U ‖w‖W .

Then the abstract variational problem induced by B is well-posed.

We remark here that such formulations can be also considered if we look at bilinear and linear
forms on reflexive Banach spaces X, Y instead of the Hilbert spaces U, W . Analogous inf-sup
conditions still give well-posedness; see e.g. Theorem 2.1 in [46]. In fact all these statements
regarding the well-posedness can be seen as generalizations of the well-known Lax-Milgram
theorem ([2, Theorem 4.2]) which in turn is based on the Riesz representation theorem (Lemma
2.1).
The seek for weak solutions of PDEs usually reduces to the study of variational problems on

specific Sobolev spaces. But, although the inf-sup relations yield a concise pointer for reasonable
weak formulations, they are not trivial to proof in general, especially if we proceed to finite-
dimensional approximation spaces. And the latter is crucial in the design of numerical methods.
Then a reformulated well-posedness condition in case of the class of saddle-point problems might
be helpful.

Definition 2.10 (Saddle-point problem). Here saddle-point problem means that we have
Hilbert spaces U1, U2 and continuous bilinear forms

a : U1 × U1 → R, b : U1 × U2 → R

such that the bilinear form B has the special structure

B
(
(σ, u), (τ, v)

)
:= a(σ, τ)− b(τ, u) + b(σ, v). (2.3.3)

Hence, for F ∈ (U1 × U2)′ we search now for an element (σ, u) ∈ U1 × U2 satisfying

a(σ, τ)− b(τ, u) + b(σ, v) = F((τ, v)), ∀(τ, v) ∈ U1 × U2.

Equivalently, one can place the problem: For g ∈ (U1)′, f ∈ (U2)′ find (σ, u) ∈ U1×U2 such that

a(σ, τ)−b(τ, u) = g(τ), ∀τ ∈ U1, (2.3.4)
b(σ, v) = f(v), ∀v ∈ U2 . (2.3.5)
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It is possible to adapt the well-posedness condition when dealing with saddle-point problems.
From the standard theory on these kind of systems (see [24]) we get the next lemma, which is
e.g. presented in [46]. The only change is our restriction to Hilbert spaces, the natural setting
for the Hilbert complexes appearing later.

Lemma 2.11 (Saddle-point conditions, see [46, Corollary 2.1]). Let U1, U2 be Hilbert spaces
endowed with continuous bilinear forms a : U1 × U1 → R and b : U1 × U2 → R. Then we have
the equivalence of the next three statements:

1. (Well-posedness) For every g ∈ (U1)′, f ∈ (U2)′ there is a unique pair (σ, u) ∈ U1 × U2

satisfying equations (2.3.4)-(2.3.5). For this solution it is ‖σ‖U1 + ‖u‖U2 ≤ C
(
‖g‖(U1)′ +

‖f‖(U2)′
)
for a proper constant C > 0.

2. (Inf-sup condition) Set Z := {τ ∈ U1 | b(τ, v) = 0, ∀v ∈ U2}. We have the relations

sup
06=τ∈Z

a(σ, τ) ≥ C̃ ‖σ‖U1 ‖τ‖U1 , ∀σ ∈ Z and sup
σ∈Z

a(σ, τ) > 0 ∀τ ∈ Z\{0}. (2.3.6)

for a suitable constant C̃ > 0. Further, it holds

inf
v∈U2

sup
06=τ∈U1

b(τ, v) ≥ C̃ ‖τ‖U1 ‖v‖U2 . (2.3.7)

3. (Coercivity) It exists a constant C̃ > 0 such that the underlying bilinear form B given by
(2.3.3) fulfills the inequalities

inf
(σ,u)∈U1×U2

sup
(0,0)6=(τ,v)∈U1×U2

B
(
(σ, u), (τ, v)

)
≥ C̃

(
‖σ‖U1 + ‖u‖U2

) (
‖τ‖U1 + ‖v‖U2

)
,

and
sup

(σ,u)∈U1×U2
B
(
(σ, u), (τ, v)

)
> 0

for all (τ, v) ∈ U1 × U2\{(0, 0)}.

Applying the last lemma we directly see the next auxiliary result.

Corollary 2.2. Let the assumptions of the last lemma apply. If the variational problem induced
by a(·, ·) on Z×Z is well-posed and if it holds (2.3.7) for b(·, ·), then the corresponding composed
saddle-point problem (2.3.4)-(2.3.5) is well-posed.

Before we continue, we would like to point out Chapter 3 in [20], where the topic of saddle-
point problems is discussed in detail and is therefore recommended for further reading.
The previous statements seem to be more directed towards the continuous case. However,

the concept of well-posedness can be meaningfully applied not only to discretizations but also
to derive error bounds for specific Finite Element (FE) spaces. Therefore, we now assume that
we have a family of discrete subspaces (Uh)h, (Wh)h i.e. Uh ⊂ U ,Wh ⊂ W , and we consider the
next finite-dimensional version of problem (2.3.2): Find all uh ∈ Uh s.t.

B(uh, vh) = F(vh), ∀vh ∈ Wh. (2.3.8)

As usual, we assume that h ∈ R>0, and the smaller the value of h, the larger the trial spaces
become. In other words, in the language of the FEM, h simply corresponds to the mesh size of
the underlying mesh.
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Definition 2.11 (Well-posed discretization). Let (Uh)h and (Wh)h be two families of finite-
dimensional spaces with Uh ⊂ U ,Wh ⊂ W . Further let B be a bilinear form defining a well-posed
variational formulation in the sense of Definition 2.9. We call the discretization (2.3.8) well-
posed if

• lim
h→0

inf
vh∈Xh

‖w − vh‖X = 0, ∀w ∈ X, X ∈ {U,W},

• inf
vh∈Uh

sup
0 6=wh∈Wh

B(vh, wh) ≥ CIS ‖vh‖U ‖wh‖W and

inf
wh∈Wh

sup
06=vh∈Uh

B(vh, wh) ≥ CIS ‖vh‖U ‖wh‖W ,

where CIS does not depend on h.

Obviously, we have the existence of a unique discrete solution uh if the assumptions of the
last definition are valid. Further, the first point in the last definition should emphasize that
the discrete spaces must converge to the continuous pendants in order to be able to calculate
meaningful approximations.
Having a well-posed discretization, one can derive a quasi-optimal statement relatively easily.
The latter is an important standard result that we will use multiple times throughout the text,
so let us briefly explain it here.

Lemma 2.12 (Quasi-optimal approximation). Given finite-dimensional spaces (Uh)h and
(Wh)h defining a well-posed discretization of a well-posed weak formulation (2.3.2). Then for the
error between exact (u) and discrete (uh) solution it holds the estimate

‖u− uh‖U ≤ CQO inf
vh∈Uh

‖vh − u‖U , 0 < CQO = const.

Proof. Let vh ∈ Uh\{uh} be arbitrary but fixed. The inf-sup condition from Definition 2.11
guarantees a 0 6= wh ∈ Wh s.t.

‖vh − uh‖U ≤
B(vh − uh, wh)
CIS ‖wh‖W

= B(vh − u,wh)
CIS ‖wh‖W

≤ CB
CIS
‖vh − u‖U ,

for constants CIS, CB. One notes the exploited continuity of B and the fact B(u − uh, wh) =
0, ∀wh ∈ Wh. Hence the triangle inequality yields

‖u− uh‖U ≤ ‖u− vh‖U + ‖vh − uh‖U ≤
(

1 + CB
CIS

)
‖u− vh‖U .

The arbitrariness of vh finishes the proof.

Based on the last lemma, we see convergence for well-posed discretizations to the exact (weak)
solution and up to a constant factor we obtain the smallest possible deviations.
With our above brief explanations of various mathematical concepts, we have familiarized

ourselves with the key terms needed to delve deeper into the field of Hilbert complexes. The
latter will be examined in the next section, where we look at their connection to PDEs and
variational formulations.
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3 Hilbert Complexes and the Abstract
Hodge–Laplace Problem

Now we turn to the notion of Hilbert complexes the basic framework within the text as well as
basis of the Finite Element Exterior Calculus (FEEC) theory developed by Arnold, Falk and
Winther [11]. While this notion is often connected to differential forms and exterior derivatives,
the concept is quite general and applies to various chains of operators including high-order dif-
ferential operators. Latter aspect becomes useful if PDE problems are considered arising from
non-standard Hodge–Laplace operators. For example, the biharmonic problem appearing in the
Kirchhoff plate theory can be derived from the so-called divdiv complex; cf. [60]. Another ap-
plication in the context of second-order Hilbert complexes would be the Hessian complex which
is used to study the linearized Einstein equations in General Relativity; see [62]. The built-in
generality of the underlying theoretical constructions is a major advantage of FEEC and leads
to elegant proofs and results. Moreover, the abstract point of view might also be beneficial in
understanding the essence of the design steps.
The following results and notations can be found in the original works ([5, 11, 9]) by the men-
tioned authors Arnold, Falk and Winther. We want to collect here the most important parts,
at least the ones useful for the investigations in the subsequent chapters. We orient ourselves
towards the notation in the mentioned literature and begin with abstract formulations. Doing
so, we address the Hodge–Laplace problem and its weak formulation. After that, we present
the example of the de Rham complex. It is something like a standard model in the context of
Hilbert complexes and is related to several applications. Furthermore, in view of the complexes
from complexes approach ([12]) we will exploit properties of the de Rham sequence also for
second-order complexes. Thus, providing some details concerning de Rham sequence is useful.

3.1 Finite Hilbert complexes
First of all we give a precise definition, what is actually meant by a Hilbert complex.

Definition 3.1 (Hilbert complex). Let (W k)k∈Z be a sequence of Hilbert spaces and let there
for each k be closed and densely defined operators dk : W k → W k+1 such that the domain spaces
V k := Dom(dk) ⊂ W k form a Hilbert space endowed with the graph inner product. If for all k
the property R(dk, V k) ⊂ N (dk+1, V k+1) is fulfilled, then the spaces together with the operators
form a Hilbert complex which we denote by (W ◦, d◦).

Since we have by definition dkV k ⊂ V k+1 the domain spaces V k together with the graph inner
products 〈·, ·〉V k := 〈·, ·〉Wk+〈dk·, dk·〉Wk+1 yield again a Hilbert complex, the so-called associated
domain complex which is abbreviated with (V ◦, d◦). When talking about domain complexes we
should always clarify what are the underlying Hilbert complexes, the inner products, respectively.
In other words, it is not sufficient to only specify the domain spaces, but (W ◦, d◦) should be
clear from the context. However, for calculations involving the operators dk or the discretizations
later, the V k become central and have to be known in the specific application case. To increase
readability, we will make some common simplifications regarding notation. Specifically, we will
omit the indices k for inner products and norms and simply write for v, w ∈ V k just 〈v, w〉V :=
〈v, w〉V k , ‖v‖2

V := 〈v, v〉V k as well as 〈v, w〉 = 〈v, w〉Wk , ‖v‖2 := 〈v, v〉Wk for v, w ∈ W k.
Although in the previous definition an infinite sequence appears, one often considers finite Hilbert
complexes, meaning there are two indices z1, z2 ∈ Z s.t. W k = 0, dk = 0 for all k ∈ Z\[z1, z2].
A complex is said to be bounded if all the dk are bounded operators. Obviously, the domain
complex always yields a bounded complex, where the graph norms are underlying. Moreover,
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one speaks of a closed complex when all the operators dk have closed ranges R(dk, V k) in W k+1.
Further basic terms for complexes are summarized in the next definition.

Definition 3.2 (Cocycles, coboundaries and cohomology spaces). Let a Hilbert complex
(W ◦, d◦) with domain complex (V ◦, d◦) be given:

• We write for the kernel Zk := N (dk, V k), also known as the k-th cocycle.

• The range R(dk−1, V k−1) is abbreviated with Bk and is called k-th coboundary.

• We define the k-th cohomology space Hk as the quotient space

Hk := Zk/Bk.

We say the complex is exact at level k if Hk = {0}, meaning R(dk−1, V k−1) = N (dk, V k).

Assumption 3.1. In the following all the considered Hilbert complexes are assumed to be closed.

In view of Lemma 2.2, the (dk, V k) have closed and densely defined adjoints

d∗k+1 := (dk)∗ : W k+1 → W k.

For the domain of the adjoint d∗k+1 we write V ∗k+1. Choosing arbitrary elements v ∈ V k−1 and
w ∈ V ∗k+1 one obtains

0 = 〈w, 0〉 = 〈w, dkdk−1v〉 = 〈d∗k+1w, d
k−1v〉.

This implies that d∗k+1w ∈ V ∗k and it has to be d∗kd∗k+1w = 0. Thus, it is natural to give the next
definition.

Definition 3.3 (Dual complex). Except for a decreasing of the indices, the adjoints and the
Hilbert spaces W k define a Hilbert complex. It is denoted by (W ◦, d∗◦) and called the dual complex
to (W ◦, d◦).

An application of the closed range theorem (see Lemma 2.3 ) guarantees a closed dual complex
if dk have closed ranges. Thinking of differential operators for the dk it becomes clear that the
dk and d∗k can not have the same domains in general, since for integration by parts formulas
boundary integral terms have to be taken into account; see (2.2.2). In other words, at least
one of the domains V k or V ∗k are often endowed with specific boundary conditions and thus
in the domain complex associated to the dual complex usually different type of spaces appear
compared to the V k.
Given a closed Hilbert complex, it is possible to write down the space W k and V k as a

decompositon involving kernels and ranges. The latter is called the Hodge decomposition and is
an important part within the scope of complexes. In view of Assumption 3.1, both Bk and Zk

are closed subspaces of W k, hence Hilbert spaces. In particular the space

Hk := Zk ∩ (Bk)⊥ (3.1.1)

is closed and well-defined. If nothing else is explicitly mentioned, we mean always with X⊥ the
orthogonal complement in the spaces W k, i.e. using the W k inner product. Elements in the
space Hk are called harmonic forms. Furthermore, since Bk ⊂ Zk it is clear that

Zk = Zk ∩Bk ⊥ Zk ∩ (Bk)⊥ = Bk ⊥ Zk ∩ (Bk)⊥ = Bk ⊥ Hk,

where the orthogonal sum is valid for both the W k and V k inner product.
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Lemma 3.1 (Hodge decomposition, see [5, Section 4.2.2.]). One has the decomposition

W k = Zk ⊥ (Zk)⊥ = Bk ⊥ Hk ⊥ (Zk)⊥

One notes dk ◦ dk−1 = 0 and the closed range of dk also with respect to the graph norm ‖·‖V .
Because of this, it is possible to consider a similar orthogonal decomposition with respect to
〈·, ·〉V . In fact, one gets

V k = Bk ⊥ Hk ⊥ (Zk)⊥V ,
where one notes (Zk)⊥V := (Zk)⊥V k = (Zk)⊥ ∩ V k and that the orthogonality is w.r.t. to 〈·, ·〉W
as well as 〈·, ·〉V .

Remark 3.1. In the papers concerning Hodge theory or FEEC (see [11, 5]) one often finds more
general results, e.g. a Hodge decomposition is also available in non-closed Hilbert complexes.
Nevertheless, other key features require the closedness, like the famous Poincaré inequality shown
below. Due the last point and the closed range property for the standard differential operators
we will use later, we suppose closed ranges R(dk, V k) ⊂ W k+1.
In view of the last decomposition we see that dk : (Zk)⊥V → Bk is a V -bounded and bijective

mapping between Hilbert spaces, hence Lemma 2.4 gives us

Lemma 3.2 (Poincaré inequality, [5, Theorem 4.6]). It holds

‖v‖V ≤ CP
∥∥∥dkv∥∥∥ , ∀v ∈ (Zk)⊥V ,

where ‖·‖ is the W -norm and CP > 0 is referred to as Poincaré constant.
When it comes to the Hodge–Laplace problem and related calculations a fundamental relation
between the cohomology spaces and the harmonic forms is pivotal. In fact, they are isomorphic,
meaning

Hk ∼= Hk.

Basically, this relation is a consequence of the defining equation (3.1.1). An element w ∈ Hk is
identified with the equivalence class [w] ∈ Hk by the canonical projection π : Hk → Hk , w → [w].
Indeed the identification leads to a bijective mapping. First of all let [w] = 0 as a class with
w ∈ Hk. But then we have w ∈ Bk ∩ (Bk)⊥ = 0. On the other hand let [w̃] ∈ Hk arbitrary.
Obviously, w̃ = w ⊥ v, where w ∈ (Bk)⊥, v ∈ Bk. Hence [w̃] = [w] and w ∈ Hk which implies
surjectivity.

3.2 The abstract Hodge–Laplacian
In this section we are again given a closed Hilbert complex (W ◦, d◦) with associated domain
complex (V ◦, d◦). With the basic definitions from the previous section we are ready to introduce
the fundamental problem in the context of FEEC, the Hodge–Laplace equation. First define
formally the operator

T kHL := d∗k+1 ◦ dk + dk−1 ◦ d∗k (3.2.1)
that is called in [5] the abstract Hodge Laplacian. The natural domain is

Dom(T kHL) := {v ∈ V k ∩ V ∗k | dkv ∈ V ∗k+1 and d∗kv ∈ V k−1},

which gives us a well-defined mapping T kHL : Dom(T kHL) → W k. It is easy seen that in general
T kHL might not be invertible. Namely, adding a harmonic form p ∈ Hk to a v ∈ Dom(T kHL) we
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obtain T kHL(v+w) = T kHLw. One observes Lemma 2.2 which ensures Hk ⊂ Dom(T kHL). But, with
the short calculation

〈T kHLv, w〉 = 〈dkv, dkw〉+ 〈d∗kv, d∗kw〉 = 0 + 0, ∀v ∈ Dom(T kHL), ∀w ∈ Hk , (3.2.2)

one has
T kHL : Dom(T kHL) ∩ (Hk)⊥ → W k ∩ (Hk)⊥. (3.2.3)

A central and interesting result is the invertibility of the last mapping. Even more, we have
in some sense a continuous inverse; see [5, Theorem 4.8]. Before we come to an explanation and
the proof idea used by Arnold et al., we give another useful definition.

Definition 3.4 (Hodge–Laplace problem). The k-th level (abstract) Hodge–Laplace problem
reads:
For f ∈ W k ∩ (Hk)⊥ find an u ∈ Dom(T kHL) ∩ (Hk)⊥ s.t.

T kHLu = f. (3.2.4)

At a first glance, the solvability of (3.2.4) seems to be an issue. Already, the operator T kHL itself
has a complicated domain in general and its domain might lead to non-standard linear spaces.
If, for example, the dk are differential operators, one must be prepared for the fact that they
may lead to spaces that do not correspond to the well-understood Sobolev spaces of the form
Hk(Ω). This, in turn, can make it difficult to find or implement suitable spaces for discretization.
However, to show the existence of a suitable solution to equation, Arnold presents in [5, Section
4.4.1] an elegant approach by introducing an equivalent weak formulation. This offers at least
two major advantages. On the one hand, the proof concerning invertibility of the operator T kHL
becomes clearer and uses the classical theory on variational problems, cf. Section 2.3. On the
other hand, the consideration of the so-called mixed weak form paves the way for establishing
dicretization methods.
So let us define the mentioned weak formulation first.

Definition 3.5 (Mixed weak formulation of the Hodge–Laplace problem, see [5, Section
4.4.1]). Given f ∈ W k ∩ (Hk)⊥ one seeks (σ, u, p) ∈ V k−1 × V k × Hk with

〈σ, τ〉 − 〈u, dk−1τ〉 = 0, ∀τ ∈ V k−1, (3.2.5)
〈dk−1σ, v〉 + 〈dku, dkv〉 + 〈p, v〉 = 〈f, v〉, ∀v ∈ V k, (3.2.6)

〈u, q〉 = 0, ∀q ∈ Hk . (3.2.7)

The procedure outlined in [5] can be divided in two main steps. First one shows the equivalence
of latter mixed weak form an the original Hodge–Laplace problem. Afterwards, in a second step
the well-posedness of (3.2.5) (3.2.7) in the sense of Definition 2.9. Due to importance and
relevance of the mentioned steps, also in view of understanding, and for reasons of completeness
we sketch the underlying proofs similar to the ones in literature. However, we use a slightly
different wording and notation.

Lemma 3.3 (Feasibility of the mixed weak formulation, compare Theorem 4.7 in [5]). If
u ∈ Dom(T kHL) is a solution to (3.2.4), then (d∗ku, u, 0) is a solution to (3.2.5)-(3.2.7). Conversely,
if (σ, u, p) is solution of the latter, then it follows u ∈ Dom(T kHL) and (3.2.4) holds.

Proof. We show both directions separately.
” ⇒ ” : Let u solve the abstract Hodge–Laplace problem. Hence (3.2.7) is fulfilled and u ∈
V ∗k , d

ku ∈ V ∗k+1. We can set σ := d∗ku ∈ V k−1 which gives the validity of (3.2.5). And setting
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p = 0 we get equation (3.2.6).
” ⇐ ” : Let (σ, u, p) fulfill (3.2.5)-(3.2.7). Since V k−1 ⊂ W k−1 is dense, one has u ∈ V ∗k , σ =
d∗ku ∈ V k−1 by the first equation of the system. Analogously, the second line (3.2.6) implies
dku ∈ V ∗k+1 as well as T kHLu = f −p. Clearly, u ∈ Dom(T kHL). Using an arbitrary element v ∈ Hk

in the mentioned line one obtains 〈p, v〉 = 0. Thus p = 0, meaning T kHLu = f .

Lemma 3.4 (Well-posedness of the mixed weak formulation, see [5, Theorem 4.8]). The
underlying variational problem of the mixed weak system is well-posed. More precisely, for every
(g, f, h) ∈ (V k−1)′ × (V k)′ × (W k)′ there is a unique solution (σ, u, p) ∈ V k−1 × V k × Hk of the
weak formulation (2.3.2), with

B
(
(σ, u, p), (τ, v, q)

)
:= 〈σ, τ〉 − 〈u, dk−1τ〉 − 〈dk−1σ, v〉 − 〈dku, dkv〉 − 〈p, v〉 − 〈u, q〉

and F
(
(τ, v, q)

)
= g(τ) + f(v) + h(q). Further one obtains the estimate

‖u‖V + ‖σ‖V + ‖p‖ ≤ C
(
‖g‖V ′ + ‖f‖V ′ + ‖h‖W ′

)
.

Remark 3.2. We interpret here Hk as a closed subspace ofW k and hence endowed with the norm
‖·‖ = ‖·‖W .

Proof. We sketch the proof idea of Theorem 4.9 in [5] and we refer to it for more details.
In reference to Section 2.3 it is enough to show the inf-sup conditions of Lemma 2.10 for B to
prove the statement. First we fix an element (σ, u, p) ∈ V k−1×V k×Hk. One exploits the Hodge
decomposition, meaning one can write u = uB + uH + u⊥, uB ∈ Bk, uH ∈ Hk, u⊥ ∈ (Zk)⊥ ∩ V k.
An application of the Poincaré inequality (cf. Lemma 3.2) twice yields a constant CP > 0 and
a ρ ∈ (Zk)⊥V s.t.

dk−1ρ = uB, ‖ρ‖V ≤ CP ‖uBk‖ , ‖u⊥‖V ≤ CP ‖du⊥‖ = CP ‖du‖ .

Using the latter, then the choice

τ := σ − 1
C2
P

ρ, v := −u− dk−1σ − p, q := −p+ uH

leads to the estimates B
(
(σ, u, p), (τ, v, q)

)
≥ Cη

(
‖u‖2

V +‖σ‖2
V +‖p‖2

)
and ‖v‖V +‖τ‖V +‖q‖ ≤

Cη
(
‖u‖V + ‖σ‖V + ‖p‖

)
with a Cη > 0 not depending on (σ, u, p), (τ, v, q). Note, here B is

symmetric which finishes the proof.

Remark 3.3. In order to get a symmetric bilinear form, one multiplies in fact (3.2.6) and (3.2.7)
by −1 to define B in the last lemma. Obviously, this does not change the well-posedness property.

3.3 The (Sobolev) de Rham complex
Up to now we concentrated on a very abstract setting suitable for more insight. Let us move
on to something more concrete as we consider differential forms and exterior derivatives. This
in turn will be specified even more leading to the classical de Rham chain in 2D and 3D using
vector proxies. We need to begin with some definitions from the field of exterior calculus, e.g.
multilinear k-forms or the wedge product. We restrict us only to very few aspects in order to
explain the concept behind the de Rham chain on a Lipschitz domain. For instance, we omit a
description of the general case for Riemannian manifolds which is possible but not needed for
our purposes.
It should be noted again that we are presenting well-known results here, which can be found in
references [11, 5], but also in [39] and are more extensively discussed there.
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3.3.1 A little exterior calculus and the de Rham complex on differential
forms

Definition 3.6 (K-forms). Let U be a linear space of dimension n and let k ∈ N, k ≤ n.
A k-form is a R-multilinear mapping of the form ω : U × · · · × U︸ ︷︷ ︸

k−times

→ R.

Further, a k-form ω is called alternating if it holds:

ω(u1, . . . , ui, . . . , uj, . . . , uk) = 0, if ui = uj, and i 6= j ,

meaning ω vanishes if two entries coincide. This implies the change ω 7→ −ω if we swap exactly
two entries.
The space of alternating k-forms on U is denoted by Altk(U). Formally we set Altk(U) = 0 if
k > n and Alt0(U) = R.

An easy example for a given U would be the space of 1-forms, linear functionals, respectively.
If e1, . . . , en is a basis of U we can introduce the canonical dual basis dxi : U → R with dxi(ej) =
δij.4 Obviously, the dxi form a basis of Alt1(U). Moreover, all the possible k-forms can be
constructed from the dxi by means of the exterior or wedge product ∧. Given a k- and an l-form
ω and η on U one defines

ω ∧ η(u1, . . . , uk+l) :=
∑
σ<

sgn(σ)ω(uσ1 , . . . , uσk) η(uσk+1 , . . . , uσk+l),

where sgn(σ) is the sign of the permutation σ = (σ1, . . . , σk+l) of (1, 2, . . . , k + l). Further, the
index σ< means that we only sum over all permutations σ satisfying σ1 < · · · < σk as well as
σk+1 < · · · < σk+l.
It can be checked that this wedge-product indeed gives us an element in Altk+l(U). Moreover it
satisfies the property

ω ∧ η = (−1)klη ∧ ω.
And an iterative application makes it possible to obtain k-forms dxσ1 ∧· · ·∧dxσk using the basic
1-forms. Even more, every k-form ω in Altk(U) can be uniquely represented as

ω =
∑

σ∈Σ<(k,n)
cσ dx

σ1 ∧ · · · ∧ dxσk , (3.3.1)

with
Σ<(k, n) := {σ = (σi)i ∈ Nk | 1 ≤ σ1 < · · · < σk ≤ n}.

For a proof we see [39, Proposition 1]. We simply refer to the cσ ∈ R from above as coefficients
of ω. A closer look at the last equation shows us that the dimension of Altk(U) is n|k :=

(
n
k

)
, i.e.

equal to a binomial coefficient. In particular we can naturally identify the k-forms with their
coefficients as elements in Rn|k. In the following we assume that we have fixed an ordering of
the terms in (3.3.1) which justifies the usage of a vector cω = (c1, . . . , cn|k)T ∈ Rn|k to represent
a ω, where cj corresponds to the j-th term in the sum.5 We call then cω the coefficient
vector related to Ω. Exploiting the representation (3.3.1) it is possible to equip Altk(U) with
an inner product structure, which turns it to a Hilbert space. Namely, for two basis k-forms
ω = dxσ1 ∧ · · · ∧ dxσk , η = dxs1 ∧ · · · ∧ dxsk with σ, s ∈ Σ<(k, n) one sets

〈ω, η〉 :=
{

1, if σi = si, ∀i
0, else .

4δij ∈ {0, 1} stands for the Kronecker delta; it is δij = 1 iff i = j .
5wT denotes the transpose of a vector or matrix w.
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Bilinearity determines then the complete inner product.
The standard example and the only case we will consider in the following is U = Rn for which
we assume the dxi to be the dual basis corresponding to the canonical basis of the Euclidean
space.
In order to move again towards the field of Hilbert complexes, we introduce the notion of

differential forms on a Lipschitz domain Ω.

Definition 3.7 (Differential forms). In our setting, a differential k-form on Ω ⊂ Rn is just
a mapping

ω : Ω→ Altk(Rn).
Hence, in (3.3.1) we then obtain coefficient functions cσ = cσ(x) with cσ(x) corresponding to
ωx := ω(x), x ∈ Ω. And, trivially, the coefficient vector cω becomes a vector field on Ω.
The set of differential k-forms with coefficients cσ ∈ L2(Ω) is denoted with L2Λk(Ω). If the
coefficients are elements of some Sobolev space Hq(Ω) we write HqΛk(Ω), and in case of smooth
coefficients in C∞c (Ω) we write analogously C∞c Λk(Ω).

The Hilbert space structure on L2(Ω)⊗ Rn|k yields that L2Λk(Ω) is a Hilbert space, too. For
two k-forms ω, η ∈ L2Λk(Ω) we just set

〈ω, η〉L2Λk(Ω) := 〈cω, cη〉L2(Ω) ,

where cω and cη denote the coefficient vector fields of ω and η. Completely analogous, one can
define a H l-inner product on the space H lΛk(Ω). For the induced norms we will write again just
‖ω‖L2(Ω) , and ‖ω‖Hk(Ω) for a smooth enough k-form ω.
It should be pointed out here that with the preceding remarks, it becomes clear that we can
interpret the spacesHqΛk(Ω) as a product space of two Hilbert spaces, namelyHq(Ω)⊗Altk(Rn).
Next we utilize the representation (3.3.1) to define the exterior derivative operator.

Definition 3.8 (Exterior derivative). Suppose ω ∈ L2Λk(Ω) of the form (3.3.1) with co-
efficients cσ ∈ L2(Ω). We define the exterior derivative as the densely defined linear operator
dk : L2Λk(Ω)→ L2Λk+1(Ω) determined by

dkω :=
∑

σ∈Σ<(k,n)

n∑
i=1

(∂icσ) dxi ∧ dxσ1 ∧ · · · ∧ dxσk .

The domain of dk is denoted with HΛk(Ω) with

HΛk(Ω) := {ω ∈ L2Λk(Ω) | dkω ∈ L2Λk+1(Ω)},

where derivatives are meant in a weak sense; see the subsequent explanations.

The operator is indeed densely defined since it is straightforward to see that the k-forms with
smooth coefficients are dense in L2Λk(Ω). We can introduce the notion of a weak derivative
dkω = η ∈ L2Λk+1(Ω) in a similar manner like the one on standard Sobolev spaces, namely it
has to hold

〈η, φ〉L2Λk+1(Ω) = 〈ω, δφ〉L2Λk(Ω), ∀φ ∈ C∞c Λk(Ω) ,
where δ : L2Λk+1(Ω) → L2Λk(Ω) is the existent adjoint of the exterior derivative, meaning
(dk, C∞c Λk(Ω))∗. It is obvious that C∞c Λk+1(Ω) ⊂ Dom(δ). But, since we have a connection
between L2Λk(Ω) and L2(Ω)⊗Rn|k via the coefficients of the forms, the derivatives here can be
reduced to classical weak derivatives in the sense of Sobolev spaces.
The exterior derivative is appropriate to define Hilbert complexes as the next lemma implies.
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Lemma 3.5 (The L2 de Rham complex; compare [5, Section 6.2.6]). The exterior derivative
operators dk are closed densely defined with domains HΛk(Ω) and closed ranges
R(dk, HΛk(Ω)) ⊂ L2Λk+1(Ω). Besides, it is dkHΛk(Ω) ⊂ HΛk+1(Ω) and it holds

dk+1 ◦ dk = 0 .

In other words the chain

L2Λ0(Ω) L2Λ1(Ω) L2Λn(Ω)d0 d1 dn−1
0 0. . .

determines a closed Hilbert complex with associated domain complex

HΛ0(Ω) HΛ1(Ω) HΛn(Ω)d0 d1 dn−1
0 0.. . .

In the next lemma we use the term starlike domain Ω ⊂ Rn from [36], which is in our case a
Lipschitz domain for which we can find an open Ball B ⊂ Rn s.t. for every x ∈ Ω the convex
hull of {x} ∪B is a subset of Ω.

Lemma 3.6 (Exactness on starlike domains, see [36, Theorem 1.1 and Proposition 4.1]).
Let the domain Ω ⊂ Rn be starlike. Then the de Rham complex is exact at each level except for
k = 0. More precisely, for k > 0 one has

N (dk, HΛk(Ω)) = R(dk−1, HΛk−1(Ω)).

Even more, it can be shown that we indeed have N (dk, HΛk(Ω)) = R(dk−1, H1Λk−1(Ω)).

Remark 3.4. The theory regarding the de Rham sequence is actually valid in a more general
framework of smooth manifolds; compare e.g. [5, Section 6.2.6] or [51, Chapter 17]. A well-
known and deep result is the fact that the dimension of the cohomology spaces is a topological
invariant; see [51, Corollary 17.12]. Thus if we consider a domain diffeomorphic to a starlike
domain, we still get the exactness of the L2 de Rham sequence from above. The latter can also be
seen utilizing the pullback operation under a smooth map (see Definition 3.9, [5, Section 6.2.1]
for more details). Because, this pullback commutes with the exterior derivative (cf. (3.3.4))
and thus implies exactness of the de Rham complex in one domain Ω if it is exact in a domain
diffeomorphic to Ω. Furthermore, the second equation in the last lemma remains also valid after
a diffeomorphic deformation of the domain.
In a arbitrary Lipschitz domain we also see by the results from [36], especially Theorem 4.9.

therein, we always have finite-dimensional cohomology spaces. Even though we do not have
exactness of the de Rham complex at level k > 0 in general Lipschitz domains, it turns out that
we get this property always at level n. The latter follows by [36, Remark 4.10]. This means
that in this case, more complicated topologies would not be a problem, which is advantageous
for numerical considerations.

Lemma 3.7 (Exactness at level n, [36, Remark 4.10]). For every η ∈ L2Λn(Ω) there exists a
ω ∈ H1Λn−1(Ω) s.t.

dn−1ω = η.
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A further point that should be mentioned here and is also useful for proofs is the density
of C∞Λk(Ω) in HΛk(Ω).6 As mentioned in [11, page 323], this can be proven using a classical
smoothing argument; cf. [41, Section 5.3].
Let us insert here the useful definition of the pullback operation on differential forms. This

pullback makes it possible to relate de Rham sequences on different domains, which turns out
to be central point in the context of discrete differential forms; cf. [27].

Definition 3.9 (Pullback of a differential form). Let F : Ω̂ → Ω be a C1-diffeomorphism
between two Lipschitz domains in Rn with Jacobian matrix J = J(x̂). Then for k > 0 one defines
the pullback YkF : L2Λk(Ω)→ L2Λk(Ω̂) , ω 7→ η, determined through

ηx̂ : Rn × · · · × Rn → R , (v1, . . . , vk) 7→ ωF(x̂)(Jv1, . . . ,Jvk), ∀x̂ ∈ Ω̂.

For the case k = 0 for which we make the identification L2Λ0(Ω) = L2(Ω) we further introduce

Y0
Fω = ω ◦ F, ∀ω ∈ L2(Ω).

This pullback operation satisfies several properties and is discussed in most textbooks related
to exterior calculus and differential forms; we refer to [72, §17] for details on the pullbacks in a
more general framework involving manifolds. Before we explain the connection of the YkF with
the de Rham complex we insert here

Lemma 3.8. Let the assumptions from the last definition hold and let l ∈ N0, where we assume
the mapping F to be C l+1-smooth on the closure Ω̂. Then we have for k = 0, . . . , n the following
properties:

• It is
YkF
(
H lΛk(Ω)

)
⊂ H lΛk(Ω̂)

and there is a constant C s.t.∥∥∥YkFω∥∥∥Hl(Ω̂)
≤ C ‖ω‖Hl(Ω) , ∀ω ∈ H lΛk(Ω). (3.3.2)

• If l ≥ 1, then we have
YkF
(
H1

0 Λk(Ω)
)
⊂ H1

0 Λk(Ω̂), (3.3.3)

where H1
0 Λk(U) is the space of differential forms on U with coefficients in H1

0 (U).

• The pullback is compatible with the exterior derivative, meaning

d̂kYkFω = Yk+1
F dkω, ∀ω ∈ HΛk(Ω), (3.3.4)

where we added a hat on the left side to emphasize that the exterioir derivative is meant
w.r.t. to the coordinates x̂ in Ω̂, i.e. F(x̂) = x.

Proof. The last point above concerning the commutativity property is a fundamental result in
exterior calculus for a smooth differential k-form ω; see e.g. [51, Proposition 14.23]. A density
argument yields the validity of (3.3.4) for every ω ∈ HΛk(Ω). The rest of the points can be
shown without difficulty and a proof sketch is given in Appendix 11.1.

6Again C∞Λk(Ω) means that the smooth coefficients of the k-form can be extended continuously to the bound-
ary.
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With property (3.3.4), one can now recognize the connection between the pullback operation
and the de Rham complex. Because, for ω ∈ HΛk(Ω), we have YkFω ∈ HΛk(Ω̂). This means
that the pullbacks transform the de Rham complex in Ω to its counterpart in Ω̂ and preserve
the complex structure. Therefore, it is possible to switch from one de Rham chain to another.
More precisely, we obtain the commutative diagram:

. . . . . .

. . . . . .

HΛk(Ω) HΛk+1(Ω)dk

HΛk(Ω̂) HΛk+1(Ω̂)d̂k
Yk+1

FYkF
.

This particular property of the pullback is of central importance in the definition of isogeometric
discrete differential forms; see Section 7.3. If we have a good, namely structure-preserving
discretization of the de Rham complex in the domain Ω, then the pullbacks of the discrete chain
automatically provide us with a structure-preserving discretization of the complex in Ω̂. The
reverse direction is, of course, also possible by simply replacing F with F−1.
After we showed in some sense the classical de Rham complex as a L2 Hilbert complex,

we briefly address now de Rham sequences with different inner products and Hilbert spaces
underlying. We will call them Sobolev de Rham complexes. Although the latter are not directly
utilized in numerical computations later, they are central for the complexes from complexes
approach by Arnold and Hu (see [12]), a concept we will exploit later.
On the basis of the last considerations we can introduce an analogous de Rham chain on Ω, but
with underlying Hilbert spaces of the form HzkΛk(Ω), zk ∈ Z instead of L2Λk(Ω). Basically, if
we have zk = q − k with q ∈ N≥n one directly sees that we get a bounded Hilbert complex

HqΛ0(Ω) Hq−1Λ1(Ω) Hq−nΛn(Ω)d0 d1 dn−1
0 0,. . .

since the exterior derivatives are differential operators of order 1. Interpreting the dk in the
distributional sense allows us to consider the chain even in the case where γ < n. More precisely,
the exterior derivative extends to a bounded mapping

dk : HzΛk(Ω)→ Hz−1Λk+1(Ω), z ∈ Z.

Lemma 3.9 (Sobolev de Rham complex). As a result, we obtain with the pairs (Hq−◦Λ◦(Ω), d◦)
for each q ∈ Z a bounded Hilbert complex. This complex is referred to as a Sobolev de Rham
complex.

Sequences of this nature, and even more general ones, are subjects of the papers [36, 12]. In
[12] we see the appropriateness of the sequences (Hq−◦Λ0(Ω), d◦) for the construction of new and
higher order complexes. Regarding the latter, we will give more details in the Section 4.2 below.
But still, we want to mention here useful outcomes of [36] and [12].
On one hand it should be remarked that the Sobolev de Rham sequences have finite-dimensional
cohomology spaces. A complex with this property is also called Fredholm and due to [5, Theorem
3.8] it is a closed Hilbert complex. Furthermore, a smooth element in the kernel dk can be
expressed as image of another smooth element, at least in starlike domains.

Lemma 3.10 (Exactness of the Sobolev de Rham complex, [36, Proposition 4.1 and
Theorem 4.9]). Let Ω ⊂ Rn be a starlike domain. For k > 0, q ∈ Z and η ∈ HqΛk(Ω) with
dkη = 0, there exits a ω ∈ Hq+1Λk−1(Ω) s.t.

dk−1ω = η.
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Besides for every Lipschitz domain Ω ⊂ Rn, it is

HqΛn(Ω) = R(dn−1, Hq+1Λn−1(Ω)), ∀q ∈ Z.

Lemma 3.11 (Bounded regular potential, compare [36, Proposition 4.1]). Given a q ∈ Z.
Assume η ∈ L2Λk(Ω) s.t. η ∈ R(dk−1, Hq+1Λk−1(Ω)).
Then there is a ω ∈ Hq+1Λk−1(Ω) with

dk−1ω = η, ‖ω‖Hq+1(Ω) ≤ C ‖η‖Hq(Ω) ,

where C does not depend on η.

Remark 3.5. If some Lipschitz domain is given by a smooth and invertible deformation of a
starlike domain. Then Lemma 3.10 is still applicable. Namely, using the pullback operation
Definition 3.9 together with [36, Proposition 4.1] one obtains the statement for the deformed
domain.

3.3.2 Proxy complex
Actually, there are different possibilities to identify k-forms with vectors in Rn|k. As already
mentioned, the coefficient vector cω of a k-form ω relates it to a vector in the Euclidean space,
where we assume cω to be a column vector. But obviously, given an invertible matrix Ak ∈
R(n|k)×(n|k), we might also use c̃ω := Akcω for identification. To give us some leeway when
transitioning between differential forms and classical Sobolev functions, we want to introduce
the concept of a proxy map. The latter is actually just a tool to be able to express various
statements more compactly and with a certain generality as we proceed.

Definition 3.10 (Proxy map). Let k ∈ {0, . . . , n} and let Ak ∈ R(n|k)×(n|k) be an invertible
matrix. We call a mapping of the form

Jk : Altk(Rn)→ Rn|k , ω 7→ Akcω (3.3.5)

a proxy map.
This Jk trivially induces for each set U ⊂ Rn the identification

Jk : L2Λk(U)→ L2(U)⊗ Rn|k , ω 7→
(
x 7→ Akcω(x)

)
, (3.3.6)

mapping a k-form ω with coefficient vector field cω = (c1, . . . , cn|k)T to the vector-field Akcω(·).
In the case of differential forms, we use the same notation Jk and also refer to them as proxy
maps.

Depending on the maps Jk we obtain densely defined operators on the space L2(Ω) by setting

Dk : L2(Ω)⊗ Rn|k → L2(Ω)⊗ Rn|k+1 , u 7→ Jk+1dkJ −1
k u, (3.3.7)

where we use above and in the following the abbreviation

n|k ± z := n|(k ± z) :=
(

n

k ± z

)

for z ∈ Z.
By the definition of the Jk, we obtain operators Dk of the form (2.2.3). Thus, they are also
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closed and we obtain the Hilbert space H(Ω,Dk,Rn|k); see (2.2.4). We also have Dk+1 ◦Dk = 0.
Namely, if v ∈ C∞(Ω)⊗ Rn|k it is

Dk+1Dkv = Jk+2dk+1J −1
k+1Jk+1dkJ −1

k v = Jk+2 0J −1
k v = 0.

Applying a density argument shows then Dk+1 ◦ Dk = 0 on H(Ω,Dk,Rn|k).
Furthermore, one obtains indeed a closed operator

Dk : H(Ω,Dk,Rn|k)→ H(Ω,Dk+1,Rn|k+1),

because: Given a w ∈ H(Ω,Dk,Rn|k) there is a sequence (wm)m ⊂ C∞(Ω)⊗ Rn|k s.t.
‖wm − w‖H(D)

m→∞−→ 0. Thus Dkwm ∈ C∞(Ω)⊗ Rn|k+1 with∥∥∥Dkwm −Dkw∥∥∥
H(D)

=
∥∥∥Dkwm −Dkw∥∥∥ m→∞−→ 0.

This means we have a smooth approximating sequence and Dkw ∈ H(Ω,Dk+1,Rn|k+1).
Hence, analogously to the statement in Lemma 3.5 the chain

L2(Ω) L2(Ω)⊗ Rn L2(Ω)D0 D1 Dn−1
0 0. . .

is a Hilbert complex with domain complex

H(Ω,D0,R1) H(Ω,D1,Rn) H(Ω,Dn,R1)D0 D1 Dn−1
0 0.. . .

Even more, we get a closed complex.

Lemma 3.12 (Proxy complex). The tuples (L2(Ω)⊗Rn|◦,D◦) determine a closed L2 Hilbert
complex, meaning the L2 inner product structure is underlying. If Ω ⊂ Rn is starlike then it
holds

N (Dk, H(Ω,Dk,Rn|k)) = R(Dk−1, H1(Ω)⊗ Rn|k−1), ∀k > 0.

Proof. The first part of the assertion is clear by Lemma 3.5 and the definition of the Dk.
The only thing we show is the direction "⊂" of the equation.
Choosing an element w ∈ N (Dk, H(Ω,Dk,Rn|k)), we get with w̃ = J −1

k w an element w̃ ∈
N (dk, HΛk(Ω)). Thus, applying Lemma 3.6, there is ṽ ∈ R(dk−1, H1Λk−1(Ω)) with dk−1ṽ = w̃.
But then Dk−1Jk−1ṽ = w. And clearly, Jk−1ṽ ∈ H1(Ω)⊗ Rn|k−1.

A direct consequence of Lemma 3.7 is

Corollary 3.1. For every w ∈ L2(Ω), there is a v ∈ H1(Ω)⊗ Rn with Dn−1v = w.

One observes that actually Jk maps bijectively from HΛk(Ω) to H(Ω,Dk,Rn|k). Because,
by definition of the Dk it is straightforward to see that Dk(Jkω) = Jk+1dkω, if ω ∈ HΛk(Ω)
and dk(J −1

k v) = J −1
k+1Dkv, if v ∈ H(Ω,Dk,Rn|k). Thus, we have the next commuting diagram

structure.

HΛk(Ω) HΛk+1(Ω)dk

Dk
H(Ω,Dk,Rn|k) H(Ω,Dk+1,Rn|k+1)

Jk+1Jk
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At the end of Section 3.3.1, we briefly discussed the Sobolev de Rham complex. This means
that we departed from the L2 Hilbert space structure and considered the exterior derivative as
a distributional derivative on spaces of the form HzΛk(Ω), z ∈ Z. Naturally, in a completely
analogous manner, we can also view the operators Dk as distributional derivatives in the sense
of

Dk : Hz(Ω)⊗ Rn|k → Hz−1(Ω)⊗ Rn|k+1, z ∈ Z.

Hence for q ∈ Z this results again in a bounded Hilbert complex
(
Hq−◦(Ω)⊗ Rn|◦,D◦

)
, i.e. we

have the chain

Hq(Ω)⊗ R Hq−1(Ω)⊗ Rn Hq−n(Ω)⊗ RD0 D1 Dn−1
0 0.. . .

It is clear that, due to our special type of proxy maps (3.3.5) and the definition (3.3.7), the state-
ments of the Lemmata 3.10, 3.11 also apply analogously to the complex

(
Hq−◦(Ω)⊗ Rn|◦,D◦

)
.

Something we have somewhat neglected are the dual complexes, which play a role in the
formulation of the Hodge–Laplace problems. To derive the dual domain spaces, one approach,
for instance in [5], involves introducing a generalization of the trace operator for differential
forms; for more detailed information, we refer to [5, Section 6.2.6]. However, it turns out that,
in the end, one obtains a relatively elegant description for the dual domains.

Lemma 3.13 (Dual de Rham complex, cf. [5, Theorem 6.5]). Let (δk, V ∗k ) denote the adjoint
of (dk−1, HΛk−1(Ω)), i.e. V ∗k = Dom(δk). Then it is

V ∗k = C∞c Λk(Ω)‖·‖H(δ) ,

where we write for the norm coming from the respective graph inner product of the adjoint δ just
‖·‖H(δ). One notes, that δ is indeed a closed densely defined operator due to Lemma 2.2.

Before we illustrate de Rham complexes for Ω ⊂ R3 and Ω ⊂ R2, considering specific choices
of Jk we want to give some remarks concerning the pullback in the context of proxy maps.
We assume again F : Ω̂ → Ω to be a diffeomorphism between two Lipschitz domains. Be-
sides let Jk : Altk → Rn|k be a proxy map which induces bijections Jk : L2Λk(Ω) → L2(Ω) ⊗
Rn|k, Jk : L2Λk(Ω̂) → L2(Ω̂) ⊗ Rn|k by a point-wise identification; see Definition 3.9.7 For
ω ∈ L2Λk(Ω) let us consider the pullback form η = YkFω ∈ L2Λk(Ω̂). Then, clearly we get for
each x = F(x̂) a matrix M(x̂) ∈ R(n|k)×(n|k) such that

Jkηx̂ = M(x̂)
[
JkωF(x̂)

]
∈ Rn|k,

where on the right-hand side we have a matrix-vector multiplication. Hence, in fact the pullback
can be described by a suitable matrix field M : Ω̂→ R(n|k)×(n|k). The entries of this field depend
by definition of the pullback only on the parametrization and its first derivatives. In other words,
in case of a smooth parametrization such a representation matrix M varies smoothly on Ω̂. To
be more precise, we have

Lemma 3.14 (The pullback in the context proxy fields). Let k ∈ {0, . . . , n} and
Jk : L2Λk(U)→ L2(U)⊗Rn|k, ∀U ⊂ Rn be a proxy map in the sense of Definition 3.10. Further
let F : Ω̂→ Ω be a diffeomorphism between domains in Rn which is C l+1-smooth, i.e. l+ 1-times
continuously differentiable, for some l ∈ N0. Then there exists a matrix field M : Ω̂→ R(n|k)×(n|k)

s.t.
JkYkFω = M

[
(Jkω) ◦ F

]
,

7We use the abbreviation Altk = Altk(Rn)
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where the entries of M only depend on the first derivatives of F and are thus C l-regular. On
the right-hand side above we have point-wise the classical matrix-vector multiplication, i.e. as a
result a vector-field with (n|k) components.
If the inverse F−1 exists and is C l+1-smooth, then we have due to

(
YkF
)−1

= YkF−1 the invertibility
of the matrices M(x̂) and analogously

JkYkF−1ω̂ =
(
M−1(F−1·)

)[
(Jkω̂) ◦ F−1

]
.

In the last line M−1(F−1·) denotes matrix field x 7→M−1(F−1(x)), where the latter is the inverse
matrix of M(F−1(x)).

Proof. The first part of assertion follows directly by the special change of coefficients for differ-
ential forms induced by the pullback. This coefficient change is shown in Appendix 11.1; see
Lemma 11.1. The second part is already answered by the mentioned fact

(
YkF
)−1

= YkF−1 .

Example 3.1 (Proxy de Rham chain for Ω ⊂ R3). Let us choose the proxy maps determined
through:

• J0(c) := c,

• J1(c1 dx
1 + c2 dx

2 + c3 dx
3) := (c1, c2, c3)T,

• J2(c1 dx
1 ∧ dx2 + c2 dx

1 ∧ dx3 + c3 dx
2 ∧ dx3) := (c3,−c2, c1)T,

• J3(c dx1 ∧ dx2 ∧ dx3) := c.

Applying the exterior derivatives and using the ansatz (3.3.7), we obtain the standard de Rham
domain complex in 3D which has the form

H1(Ω) H(Ω,∇×,R3) H(Ω,∇·,R3) L2(Ω)∇ ∇× ∇·0 0 (3.3.8)

with underlying L2 inner product. In this context, ∇, ∇×,∇· represent the classical gradient,
curl and divergence operators in 3D. We remark here the obvious relation H(Ω,∇,R) = H1(Ω)
which justifies the first non-trivial space. In view of Lemma 3.13 together with the definitions
(2.2.5), (3.3.7) and with integration by parts there is no difficulty to see that the dual domain
complex has the structure

L2(Ω) H0(Ω,∇·,R3) H0(Ω,∇×,R3) H1
0 (Ω)−∇· ∇× −∇0 0.

Example 3.2 (Proxy de Rham chain for Ω ⊂ R2). Next we can also define proxy maps for the
planar case. More precisely, we set

• J0(c) := c,

• J1(c1 dx
1 + c2 dx

2) := (c2,−c1)T,

• J2(c dx1 ∧ dx2) := c.
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At this, the exterior derivatives on L2Λk(Ω) imply the operators D0 = curl,
curl(v) := (∂2v,−∂1v)T and D1 is the usual divergence. Consequently, we have the chain

H1(Ω) H(Ω,∇·,R2) L2(Ω)curl ∇·0 0. (3.3.9)

And since obviously for v ∈ H1(Ω), (w1, w2)T ∈ H1
0 (Ω)⊗R2 it is 〈curl(v), w〉 = 〈v,−∂2w1+∂1w2〉

we have the dual chain

L2(Ω) H0(Ω, curl∗,R2) H1
0 (Ω)curl∗ −∇0 0,

with curl∗(w1, w2) = ∂1w2 − ∂2w1.

Before finishing this chapter on Hilbert complexes, we want to emphasize once again that many
of the results presented remain valid in more general contexts. For example, one can consider
Sobolev spaces with real exponents or define differential forms on Riemannian manifolds instead
of just Lipschitz domains. And the statements related to bounded potentials are generalizable
utilizing the existence of a uniform set of cohomology representatives; see also [12, Theorem 2
and Theorem 5]. However, we have chosen to focus only on the versions that we will actually
need later for the discretizations. For more information on exterior calculus also on manifolds
we refer to [39, 5, 51, 72].

3.4 Structure-preserving discretization of Hilbert complexes
The sections above deal with basic aspects from the field of Hilbert complexes. But the original
aim is the design of numerical methods for the Hodge–Laplace problem using the underlying
structure, the underlying complex, respectively. Basically, this was a major trigger for studying
Hilbert complexes in the context of numerical analysis. That is why the seminal paper [11] by
Arnold, Falk and Winther is titled with "Finite Element Exterior Calculus: From Hodge Theory
to Numerical Stability" which suggests the motivation. Remarkably, the FEEC theory yields
abstract sufficient conditions for obtaining good, namely well-posed discretizations (see Defini-
tion 2.11), of the Hodge–Laplace problems associated to a closed Hilbert complex. Admittedly,
a fundamental requirement would be the well-posedness of the continuous problem that has to
be approximated. Otherwise, numerical calculations are not really meaningful. Fortunately, we
focus on the Hodge–Laplace problem and well-posedness is guaranteed; see Lemma 3.4.
Let in the following (V ◦, d◦) denote the domain complex of a closed Hilbert complex (W ◦, d◦).

Further we continue to use here the notation from Section 3.1.
In view of the results of FEEC, especially [5, 11], we see a guideline how to choose a family
of finite-dimensional spaces V j

h ⊂ V j such that discretized versions of the mixed weak form
(3.2.5)-(3.2.7) lead to a well-posed discretization of the continuous pendant; cf. Definition 2.11.
We state and explain here the needed conditions derived in [5], where we restrict ourselves to
the case of trivial cohomology spaces.

Assumption 3.2 (Trivial cohomology). In what follows we have the requirement Hk = {0},
i.e. the corresponding complex is exact at level k.

The last restriction is reasonable since later on, we essentially only consider de Rham complexes
or sequences derived from them and they are exact, except of the first level e.g. for smoothly
deformed starlike domains. By applying Lemmata 3.6 and 3.7, one will find that exactness is
indeed present for our applications. Simultaneously, Hk = {0} brings about a simplification of
the mixed formulation from Definition 3.5.
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Basic idea for the choice of the V j
h is to preserve the structure of the complex, i.e. we want to

obtain a discrete complex (V ◦h , d◦). Then, we can carry over, re-use respectively, the results and
proofs from the Hilbert complex framework in the discrete setting. The hope is that this simplifies
the proofs and allows general statements. In particular, in this section it is not important how
the V j

h are defined exactly. We only focus on the main conditions they should fulfill. As outlined
in [5] the next three properties have to be considered, where the first one is standing to reason
and does not need further explanations.

Convergence property
We assume a convergence of the V j

h to the V j. To be more precise, let us suppose

lim
h→0

inf
vh∈V jh

‖v − vh‖V = 0, ∀v ∈ V j, ∀j.

Subcomplex property
The V j

h satisfy the subcomplex property if V j
h ⊂ V j and djV j

h ⊂ V j+1
h for all j. In other terms,

(V ◦h , d◦) determine Hilbert complexes.
Finally, one requires a proper connection between the continuous and discrete complex via

compatible projections, so-called bounded cochain projections.

Bounded cochain projection property
We assume uniformly W j-bounded projections Πj

h : V j → V j
h with the compatibility relation

dj ◦ Πj
h = Πj+1

h ◦ dj for all j. This means we have a commuting diagram

V kV k−1 V k+1 . . .. . . dkdk−1

V k
hV k−1

h V k+1
h

. . .. . . dkdk−1
Πk
hΠk−1

h Πk+1
h

and the continuity constants of the projections have to be independent of h.

Definition 3.11 (Structure-preserving discretization). We call a family of discrete spaces
(V ◦h )h satisfying the three above properties a structure-preserving discretization of the Hilbert
complex (V ◦, d◦).

For such finite-dimensional complexes (V ◦h , d◦) we can introduce completely analogous to Def-
inition 3.2 cocycles, coboundaries etc. We indicate them with a h, i.e. we write Zkh, H

k
h and so

forth. Certainly, one can also establish a Hodge decomposition for the V k
h .

Next we explain why the three mentioned properties indeed lead to a well-posed discretization.
Beforehand we put an auxiliary lemma.

Lemma 3.15 (Discrete Poincaré inequality, [5, Theorem 5.3]). Given a structure-preserving
discretization V ◦h of (V ◦, d◦). Then

‖vh‖V ≤ C̃P
∥∥∥djvh∥∥∥ , ∀vh ∈ (Zjh)⊥Vh , ∀j ,

where (Zjh)⊥Vh := {w ∈ V j
h | 〈w, v〉V = 0, ∀v ∈ Zjh}.

Above, C̃P > 0 might depend on j, but is independent of h, vh.
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Proof. Using the cochain projections and the subcomplex property this can be derived from the
continuous Poincaré inequality; for more details see the proof of [5, Theorem 5.3].

Hence, a crucial aspect in the context of closed Hilbert complexes and the Hodge–Laplace
problems, namely the Poincaré inequality, is valid for (V ◦h , d◦). Another point is the exactness,
which is preserved for structure-preserving methods. Otherwise, the discrete mixed weak for-
mulation would have a different form from the continuous one, which would contradict the term
"structure-preserving discretization". Indeed, if one has Hk = {0} and dkvh = 0 for vh ∈ V k

h ,
then there is a w ∈ V k−1 s.t. dk−1w = vh. Setting wh := Πk−1

h w gives us directly

dk−1wh = Πk
hd

k−1w = Πk
hvh = vh.

Consequently we can conclude Hk
h = {0}. This makes the next lemma clearer.

Lemma 3.16 (Discretized mixed weak formulation; see [5, Theorem 5.4 and Theorem 5.5]
). Let (V ◦h )h be a structure-preserving discretization of (V ◦, d◦) and let Hk = {0}. Given a f ∈
W k, the mixed weak formulation (3.2.5)-(3.2.7) reduces to the problem: Find (σ, u) ∈ V k−1×V k

with

〈σ, τ〉 − 〈u, dk−1τ〉 = 0, ∀τ ∈ V k−1,

〈dk−1σ, v〉 + 〈dku, dkv〉 = 〈f, v〉, ∀v ∈ V k.

The discretized version seeks (σh, uh) ∈ V k−1
h × V k

h with

〈σh, τh〉 − 〈uh, dk−1τh〉 = 0, ∀τh ∈ V k−1
h , (3.4.1)

〈dk−1σh, vh〉 + 〈dkuh, dkvh〉 = 〈f, vh〉, ∀vh ∈ V k
h . (3.4.2)

The latter is a well-posed discretization of the continuous problem in the sense of Definition 2.11
and the (σh, uh) converge to the exact solution (σ, u) in a quasi-optimal manner. In particular,
we have the estimate

‖σ − σh‖V + ‖u− uh‖V ≤ Cconv

(
inf

(τ,v)∈V k−1
h
×V k

h

‖σ − τ‖V + ‖u− v‖V
)
,

for a proper constant Cconv.

Proof. In principle one can repeat the proof for the continuous case; cf. [5, Theorem 4.9]. The
only steps which seem to imply h-dependent "constants" are the applications of the Poincaré
inequality. But Lemma 3.15 shows that this is not an issue.

With Section 3, we have now familiarized ourselves with the most important terms and con-
cepts in the field of FEEC for the further part of the thesis. Most of the discussion above took
place at a relatively abstract level, and we only became more concrete in the case of the de Rham
complex and the definition of the exterior derivative, a special first-order differential operator.
However, for our thesis plan, we intend to explore Hodge–Laplace problems and their dis-

cretizations that arise from Hilbert complexes involving second-order differential operators. It is
still not clear what these latter complexes look like or what specific type of complexes we want
to consider. We aim to resolve these uncertainties in the next section, where we will address the
question of how to construct new complexes under certain conditions from existing Hilbert com-
plexes. Because one of these methods, the BGG construction, is not only suitable for generating
higher-order complexes but is also used to define the class of second-order complexes, which will
serve as the foundation for the development of numerical methods in Sections 8 and 9.
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4 Construction of New Complexes
This section is dedicated to two methods on how we can construct from given Hilbert complexes
new complexes. The first one is in some sense standard and is based on exploitation of cochain
maps and the second one is the complexes from complexes ansatz from Arnold and Hu ([12]). The
latter uses the so-called BGG (Bernstein-Gelfand-Gelfand) construction and makes it possible
to obtain higher-order complexes. Both approaches are useful for considerations regarding IGA
discretizations and second-order complexes below. On the one hand, we utilize later the pullback
operation which acts as a cochain map between de Rham sequences to define the isogeometric
discrete differential forms. On the other hand, the BGG construction guides us in Section 4.2.3
to a special class of second-order complexes that are used to introduce and discretize specific
saddle-point problems in the main part of the work.

4.1 New complexes via cochain maps
We begin with a simple, but still important way to map one Hilbert complex structure to a
second one, namely using cochain maps.

Lemma 4.1 (Bounded cochain maps). Let (W ◦, d◦) be a closed Hilbert complex with domain
complex (V ◦, d◦). Additionally, we assume Hilbert spaces Ŵ i together with linear, bounded and
bijective mappings Y i : W i → Ŵ i. Further, let us set V̂ i := Y i(V i) and define

d̂j : V̂ j → Ŵ j+1 , v̂ 7→ Yj+1dj
(
Yj
)−1

v̂.

Then (Ŵ ◦, d̂◦) defines a closed Hilbert complex with domain complex (V̂ ◦, d̂◦).
Furthermore, if (V ◦, d◦) is exact at level k so is (V̂ ◦, d̂◦). We call the mappings Y◦ a bounded
cochain map from (W ◦, d◦) to (Ŵ ◦, d̂◦).

Proof. The proof is straightforward. We only show the closed range property. Let d̂j v̂m Ŵ−→ ŵ ∈
Ŵ j+1. Then dj

(
Yj
)−1

v̂m =
(
Yj+1

)−1
d̂j v̂m

W−→
(
Yj+1

)−1
ŵ which implies an û ∈ V̂ j such that

dj
(
Yj
)−1

û =
(
Yj+1

)−1
ŵ and thus d̂jû = ŵ.

One observes that by construction we have d̂j ◦ Yj = Yj+1 ◦ dj and this commutativity yields
the boundedness of the Yj w.r.t. the graph norms.
We have applied a method akin to that presented in the previous lemma within Section 3.3.2

to establish the proxy complex. And, in the end, the transition from the de Rham complex in
Ω to the one in Ω̂ in Section 3.3.1 also aligns with this approach, where the pullback operation
correspond to the cochain map. In this context one notes the relation d̂k ◦ YkF = Yk+1

F ◦ dk for
the exterior derivatives. Hence, we have already utilized the possibility to modify or transform
Hilbert complexes using bijective operators.
Helpful in the context of discretizations is the following obvious auxiliary result, which states

that cochain maps Y◦ are compatible with structure-preserving discretizations.

Lemma 4.2. If (V ◦h )h is a structure-preserving discretization of (V ◦, d◦) and Y◦ a bounded
cochain map from (W ◦, d◦) to (Ŵ ◦, d̂◦) in the sense of Lemma 4.1.
Then the spaces V̂ i

h := Y i(V i
h) define a structure-preserving discretization of (V̂ ◦, d̂◦).

Proof. The subcomplex property is obviously fulfilled by assumption. Also the convergence
property is clear due to the continuity of the Yj w.r.t. the graph norms related to the operators
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dj, d̂j. The natural candidates for the cochain projections are Π̂j
h := Yj ◦ Πj

h ◦
(
Yj
)−1

. A
simple calculation shows us indeed d̂j ◦ Π̂j

h = Π̂j+1
h ◦ d̂j. And clearly we have boundedness of the

projections.

The connection between the different spaces and the projections Π̂j
h introduced in the proof

of the last lemma can be well illustrated in the following commutative diagram

V kV k−1 V k+1 . . .. . . dkdk−1

V̂ kV̂ k−1 V̂ k+1 . . .. . . d̂kd̂k−1
YkYk−1 Yk+1

V̂ k
hV̂ k−1

h V̂ k+1
h

. . .. . . d̂kd̂k−1
.

Π̂k
hΠ̂k−1

h Π̂k+1
h

Even though this transition from one complex to another using the Y◦ is quite obvious, it is
crucial in the definition of isogeometric discrete differential forms; see [27]. The ansatz to define
the latter is outlined in Section 7.3 and can be summarized as follows: First, suitable spaces are
defined for the discretization of the complex in a simple reference domain, e.g., a cube. Then,
cochain maps are used to obtain a discretization in the actual computational domain. As already
mentioned and in view of Lemma 3.8, we see the suitability of the pullback operation to go from
the reference to the computational domain in case of the general de Rham sequence. Besides,
there is no problem to relate the proxy complexes in different domains using the pullback. In
fact, proper cochain maps Y◦ for the proxy de Rham sequences in 2D (3.3.9) and 3D (3.3.8) are
well-known. Below we will list them without proofs.

Example 4.1 (Piola mappings for the de Rham complex). Let F : Ω̂→ Ω be a C1-diffeomorphism
between two Lipschitz domains in Rn and DF = J = (Jij)i,j the corresponding Jacobian. Then
the mappings

Y0
3 (φ) := φ ◦ F, φ ∈ L2(Ω) ,
Y1

3 (v) := JT(v ◦ F), v ∈ L2(Ω)⊗ R3 ,

Y2
3 (v) := det(J)J−1(v ◦ F), v ∈ L2(Ω)⊗ R3 ,

Y3
3 (φ) := det(J)(φ ◦ F), φ ∈ L2(Ω) ,

for Ω ⊂ R3, and

Y0
2 (φ) := φ ◦ F, φ ∈ L2(Ω) ,
Y1

2 (v) := det(J)J−1(v ◦ F), v ∈ L2(Ω)⊗ R2 ,

Y2
2 (φ) := det(J)(φ ◦ F), φ ∈ L2(Ω) ,

in 2D, respectively, define bounded cochain projections from (3.3.8) and (3.3.9) to the chains in
the parametric domain Ω̂. In other words, one obtains the commuting diagrams

H1(Ω) H(Ω,∇×,R3) H(Ω,∇·,R3) L2(Ω)∇ ∇× ∇·0 0

H1(Ω̂) H(Ω̂, ∇̂×,R3) H(Ω̂, ∇̂·,R3) L2(Ω̂)∇̂ ∇̂× ∇̂·0 0

Y0
3 Y1

3 Y2
3 Y3

3
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and
H1(Ω) H(Ω,∇·,R2) L2(Ω)curl ∇·0 0

H1(Ω̂) H(Ω̂, ∇̂·,R2) L2(Ω̂)ĉurl ∇̂·0 0 .

Y0
2 Y1

2 Y2
2

Above the hat indicate that we need to consider the differential operators in the bottom complexes
w.r.t. the new coordinates ζi determined by F(ζ1, . . . , ζn) = (x1, . . . , xn). The commutativity
relations of the mappings can be shown by a simple application of the chain rule. We omit here
details.

After these brief remarks on a first method to modify complexes, we turn to the second ap-
proach, which is important for our work: generating new complexes with the BGG construction.
The latter in rough terms, creates a new output complex by two input complexes including
linking maps.

4.2 The BGG construction
In this part we present the ansatz complexes from complexes by Arnold and Hu based on the
Bernstein-Gelfand-Gelfand (BGG) procedure; see [12].We start our explanations of the concept
in an abstract fashion. Afterwards in the second subsection we move on to a bit more concrete
setting involving Sobolev spaces. In the last subsection, we finally get even more concrete and
introduce a special class of BGG constructions and underlying L2 Hilbert complexes. Moreover,
to define this class the already discussed de Rham sequences again come into play.

4.2.1 The abstract formulation
The approach of Arnold and Hu is useful to derive and study the different second-order complexes
considered later. Also, to establish a special approximation method in the context of second-
order complexes, we utilize in Section 8 the structure behind BGG. This in turn can be exploited
in the context of linear elasticity; see Section 9.
We start with the assumption that we have given two bounded Hilbert chains (V ◦, d◦), (V̄ ◦, d̄◦),
which we sometimes refer to as input complexes. Here, for the inner product we write just
〈·, ·〉V , 〈·, ·〉V̄ and ‖·‖V , ‖·‖V̄ for the induced norms, i.e. again we omit an index for reasons of
readability. Further, we assume both complexes to be finite in the sense that there is an index
n ∈ N>0 with d̄n = 0, dn = 0 and we suppose dz = 0, d̄z = 0, ∀z < 0. In particular we might
set V i = 0, V̄ i = 0 for i /∈ {0, 1, . . . , n − 1}. Now we connect the mentioned two complexes by
proper linking maps Si, namely we require:

Si : V i → V̄ i+1 is bounded with closed range and
d̄i+1 ◦ Si = −Si+1 ◦ di, ∀i . (anti-commutativity) (4.2.1)

Besides, we have to assume the existence of an index J ∈ {0, 1, . . . , n− 1} s.t.

Si is


injective, if i < J,

bijective, if i = J,

surjective, if i > J,

(4.2.2)

where for i < 0 and i ≥ n we set Si just to the zero map. Consequently, we end up with two
coupled complexes as indicated in Figure 2 below. Following the steps and results by Arnold
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V 0 V J V J+1 V J+2d0 dJ dJ+1 dn 00 . . . . . .

V̄ 0 V̄ J V̄ J+1 V̄ J+2d̄Jd̄0 d̄J+1 d̄n 00 . . . . . .

S0 (SJ)−1 SJ+1

Figure 2: As shown in [12] we can built from the coupled complexes a new complex, provided
suitable linking maps.

and Hu ([12]) it is possible to define a new combined complex form the top and bottom line in
the mentioned figure.

Definition 4.1 (BGG output complex). To be more precise, it can be shown that the spaces

V i :=
V̄ i ∩R(Si−1)⊥V̄ , 0 ≤ i ≤ J,

V i ∩N (Si), J < i ≤ n
(4.2.3)

and operators

D i :=


PR(S)⊥ d̄

i, i < J,

dJ(SJ)−1d̄J , i = J,

di, i > J,

(4.2.4)

define another bounded Hilbert complex (V ◦,D◦), the so-called output complex.

Above we write R and N for the range and kernel of the different mappings and PX stands
for the orthogonal projection onto the respective spaces X, where PR(S)⊥ v̄ := PR(Si)⊥V̄ v̄.

Lemma 4.3 (BGG output complex; compare [12, Theorem 6]). The spaces V ◦ together with
the operators D◦ define a bounded Hilbert complex.

Proof. Indeed, we see directly the boundedness of D i and if i ≥ J we get obviously D i+1◦D i = 0.
Further for v ∈ V i, i > J we have Si+1D iv = Si+1div = −d̄i+1Siv = 0. Thus, D iv ∈ V i+1. In
the situation i = J and v ∈ V i we have SJ+1DJv = SJ+1dJ(SJ)−1d̄Jv = −d̄J+1SJ(SJ)−1d̄Jv = 0
which implies DJv ∈ V J+1.
Let now v ∈ V i with i < J − 1. Note

0 = PR(S)⊥ d̄
i+1d̄iv = PR(S)⊥ d̄

i+1(PR(S)⊥ + PR(S))d̄iv,

where PR(S)v̄ := PR(Si)v̄ for v̄ ∈ V̄ i+1 denotes the V̄ -orthogonal projection. Let w ∈ V i s.t.
Siw = PR(S)d̄

iv. Using (4.2.1) we see

PR(S)⊥ d̄
i+1PR(S)d̄

iv = −PR(S)⊥S
i+1diw = 0.

This shows us D i+1D iv = 0 and by definition of D i we also see D iv ∈ V̄ i+1 ∩ R(Si)⊥V̄ for
i < J − 1.
Finally we look at the case i = J − 1 and v ∈ V J−1. Analogously to before set SJ−1w =
PR(S)d̄

J−1v and see

dJ(SJ)−1d̄JPR(S)d̄
J−1v = dJ(SJ)−1d̄JSJ−1w = −dJ d̄J−1w = 0.

Hence 0 = dJ(SJ)−1d̄J d̄J−1v = dJ(SJ)−1d̄JPR(S)⊥ d̄
J−1v = DJDJ−1v. The trivial relation

DJ−1v ∈ V J finishes the proof.
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Checking the proofs and the setting in [12] one sees a slightly different definition of the
involved spaces. In the latter publication they concentrate on Hilbert spaces V i, V̄ i which
are the product of Hilbert spaces times a finite-dimensional inner product spaces, meaning
V i = U i ⊗ E, V̄ i = Ū i ⊗ Ēi, together with the restriction U i = Ū i+1 is made. In this setting
the Si linking maps reduce to operators si : Ei → Ēi+1, i.e. Si = id⊗ si, like taking the trace or
the symmetric part of matrix. Nevertheless, the output complex construction from Definition
is in principle the same as in [12, Section 3], is taken from the latter, respectively. Namely,
suppose V i = U i⊗Ei, V̄ i = Ū i⊗ Ēi, U i = Ū i+1 and si : Ei → Ēi+1, Si = id⊗ si. Then we have
Ū i ⊗R(si−1) = V̄ i ∩R(Si−1), U i ⊗N (si) = V i ∩N (Si) and id⊗ PR(si)⊥ = PR(Si)⊥V̄ .
All the lemmata showing the complex structure of (V ◦,D◦) in [12] and also an estimate for the

cohomology spaces (see next lemma) can be proven effectively in the same way. The only thing
one has to adapt is the Moore-Penrose inverse ti of the operators si−1; see (29) in [12]. Because
for our modified setting, we do not have directly these Moore-Penrose inverse as defined in latter
paper. However, it is enough to replace in the proofs of Arnold and Hu the T i := id ⊗ ti (see
(29) and page 1752 in [12]) by the generalized Moore-Penrose inverse of Si which is well-defined
by the closed ranges of the Si; see Lemma 2.3. Here it is worth to emphasize that the equations
tisi−1 = PN (si−1)⊥ , s

i−1ti = PR(si−1) for the Moore-Penrose inverse ti from line (29) in [12] are
in direct alignment with those presented in (2.1.1).
Thus, if we change the T i from [12] to (Si)† in the sense of Lemma 2.3 one can use the proof
steps of Lemma 1 - Lemma 6 from latter article still for our setting. Thus we obtain the next
Lemma which estimates the dimension of the cohomolgy spaces H ◦ of (V ◦,D◦).
Lemma 4.4 (Cohomology of the output complex, [12, Theorem 6] ). Let Hi and H̄i

denote the i-th level cohomology space of (V ◦, d◦), (V̄ ◦, d̄◦), respectively. Then one can estimate
the dimension of the i-th cohomology space H i of the output complex via the formula

dimH i(V ◦,D◦) ≤ dimHi(V ◦, d◦) + dim H̄i(V̄ ◦, d̄◦).

So if we have the exactness at level k of both, the top and bottom complex in Figure 2, we
also obtain the exactness at level k of the output complex.
Before we go on let us point out that it is no problem to combine the two methods from Section

4.1 and Section 4.2 to get new complexes. This means, provided suitable bijective mappings
between Hilbert spaces for the top and bottom complex in Figure 2 we can still combine the
modified input chains. Namely, let Y◦, Ȳ◦ be bounded cochain maps from (V ◦, d◦) to (V̂ ◦, d̂◦),
(V̄ ◦, d̄◦) to ( ̂̄V ◦, ˆ̄d◦), respectively. Then to apply the BGG approach and to built a new output
complex from the new input chains ( ̂̄V ◦, ˆ̄d◦) and (V̂ ◦, d̂◦) we need to adapt the linking maps.
Because, SiV̂ i might not be defined and we might not get a subspace of ̂̄V i+1

:= Ȳ i+1
(
V̄ i+1

)
.

With an easy modification of the Si we get new proper linking Ŝi maps:

Ŝi : V̂ i → ̂̄
V
i+1

, Ŝi := Ȳ i+1 ◦ Si ◦
(
Y i
)−1

. (4.2.5)

Then Si is injective iff Ŝi is injective. And Si is surjective iff Ŝi is surjective. And also easy to
see is the next auxiliary result.
Lemma 4.5. If the differential operators di, d̄i and the Si satisfy the anti-commutativity property
(4.2.1) so do the modified linking maps Ŝi and the operators d̂i.
Proof. We drop here the composition symbol " ◦ ".

ˆ̄di+1Ŝi = ˆ̄di+1Ȳ i+1Si
(
Y i
)−1

= Ȳ i+2d̄i+1Si
(
Y i
)−1

= −Ȳ i+2Si+1d̄i
(
Y i
)−1

= −Ȳ i+2Si+1
(
Y i+1

)−1 ˆ̄di = −Ŝi+1 ˆ̄di.
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Consequently, it is justified to repeat the BGG construction to get a modified output complex
(V̂ ◦, D̂◦) utilizing the V̂ i,

̂̄
V
i

and the Ŝi; see Figure 3. In particular, the corresponding definitions
(4.2.3), (4.2.4) have to be adapted accordingly. Hence, by changing the linking maps we obtain
in general completely different operators D̂ .

V 0 V J V J+1 V J+2d0 dJ dJ+1 dn 00 . . . . . .

V̄ 0 V̄ J V̄ J+1 V̄ J+2d̄Jd̄0 d̄J+1 d̄n 00 . . . . . .

S0 SJ SJ+1

̂̄
V

0 ̂̄
V
J ̂̄

V
J+1 ̂̄

V
J+2ˆ̄dJˆ̄d0 ˆ̄dJ+1 ˆ̄dn 00 . . . . . .

V̂ 0 V̂ J V̂ J+1 V̂ J+2d̂Jd̂0 d̂J+1 d̂n 00 . . . . . .

Y0 YJ YJ+1 YJ+2

Ȳ0 ȲJ ȲJ+1 ȲJ+2

Figure 3: If we have bounded cochain maps for the top and bottom complexes, it is possible to combine
the modified input chains by a change Si → Ŝi of the linking maps.

Now that we have introduced the BGG construction in an abstract manner, we aim to explore
a specific case of it where we once again find ourselves in the context of Sobolev spaces. The
objective is to establish Hilbert complexes with underlying L2 inner products, which will in turn
prove to be relevant for the numerical methods in the later stages of the work.

4.2.2 L2 output complexes
Now we come back to Sobolev spaces on some Lipschitz domain Ω. Basically, we turn towards
the kind of complexes also considered in [12]. But here we focus on the underlying L2 Hilbert
complexes and their domain complexes. The L2 inner product structure is especially suitable
when it comes to associated Hodge–Laplace problems and their discretization. On the one hand,
standard FE methods and software often deal with L2 spaces. More specifically, common FE
implementations are based on and utilize the L2 Hilbert space structure. On the other hand we
will need only low regularity requirements for the test space definitions as well as for the source
terms. This is an important point if the computational domain has a complicated shape or if in
applications non-smooth load functions appear.
Again we combine two complexes like in the previous section, but now with a specific type
of spaces. To be more precise according to the notation from Section 4.2.1 we assume input
complexes

V i = Hqi+1(Ω)⊗ Ei, V̄ i = Hqi(Ω)⊗ Ēi, (4.2.6)
where Ei and Ēi denote finite-dimensional inner product spaces and qj ∈ Z. Note, in the
definition of V i an exponent qi+1 appears, whereas on the right for V̄ i we use qi. As in Section
4.2.1 we make the restriction V i = V̄ i = 0, Ei = Ēi = {0}, respectively, for indices i /∈ {0, . . . , n}.
Additionally, we require differential operators

dj : V j → V j+1, d̄j : V̄ j → V̄ j+1, ∀j, (4.2.7)

of the form (2.2.3) s.t. (V ◦, d◦), (V̄ ◦, d̄◦) define bounded Hilbert complexes. And according to
the previous section we make the restriction di = 0, d̄i = 0 for i /∈ {0, . . . , n− 1}.
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Besides we have the next underlying assumptions, which further clarify the setting.

Assumption 4.1. For every i ∈ Z and a fixed J ∈ {0, . . . , n− 1} we require:

• We have a linking map Si : L2(Ω)⊗ Ei → L2(Ω)⊗ Ēi+1, where

Si = id⊗ si and si : Ei → Ēi+1 is
{
injective, if i ≤ J,

surjective, if i ≥ J.

• It is d̄i+1 ◦ Si = −Si+1 ◦ di on H(Ω, di,Ei).

• The Sobolev space indices correspond to the orders of the differential operators, i.e.
qi+1 − qi = ord(di−1), qi+1 − qi = ord(d̄i) and it is di+1 ◦ di = 0, d̄i+1 ◦ d̄i = 0.

For the sake of readability we write in the following several times HzW := Hz(Ω) ⊗W for a
inner product space W. In particular, for the current setting we have the diagram structure:

Hq1E0 HqJ+1EJ HqJ+2EJ+1 HqJ+3EJ+2d0 dJ dJ+1 dn 00 . . . . . .

Hq0Ē0 HqJ ĒJ HqJ+1ĒJ+1 HqJ+2ĒJ+2d̄Jd̄0 d̄J+1 d̄n 00 . . . . . .

S0 (SJ)−1 SJ+1

Figure 4: Here we combine two complexes involving Sobolev spaces Hz(Ω). The idea is to obtain
L2 based Hilbert complexes as the previously introduced de Rham complex.

With the choice in line 4.2.6 and the last point of Assumption 4.1 we see that it is enough
to specify the first exponent q0 and then the rest of the qi are determined by the orders of the
differential operators. In other words having

q0 = q we obtain successively qi = qi−1 − ord(d̄i), i = 1, 2, . . . . (4.2.8)

In the following, we want to assume that we can choose this first exponent q0 arbitrarily in Z,
meaning we are now considering a whole family of complexes.

Assumption 4.2. For each q0 = q ∈ Z the spaces (4.2.6) together with the operators (4.2.7)
define bounded Hilbert complexes, meaning the top and bottom sequences in Figure 4 define
bounded Hilbert complexes.

Here it should be pointed out that we have already encountered a family of Sobolev Hilbert
complexes, namely the Sobolev de Rham complexes in Section 3.3.1. To express it more clearly,
if we set Ei = Alti, Ēi = Alti and chose for di and d̄i in (4.2.7) the exterior derivatives, we would
have bounded Hilbert complexes in Figure 4 as long as qj − qj+1 = 1, ∀j. Later in a subsequent
section, we will also explain why we can find suitable linking maps for de Rham type complexes.
Before we address again a BGG type construction, we insert here a remark that should clarify,

what we mean by exactness in the context of a complexes family.
Remark 4.1 (Regarding exactness). If we demand exactness at a certain level k and do not
specify the exponents qi, we require

R(d̄k−1, Hq+l̄Ēk−1) = N (d̄k, HqĒk) and R(dk−1, Hq+lEk−1) = N (dk, HqEk), ∀q ∈ N0,

where l̄ = ord(d̄k−1) and l = ord(dk−1). The latter is especially fulfilled if we use Sobolev de
Rham sequences as top and bottom chains; see Lemma 3.10.
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With regard to linking maps, it is worth noting that, based on Assumption 4.1, bounded
mappings Si : Hz(Ω) ⊗ Ei → Hz(Ω) ⊗ Ēi+1 are clearly obtained independently of z. Hence,
utilizing the aforementioned assumption and the choice (4.2.6)-(4.2.7), we can once again apply
the BGG construction, but now with a focus on the L2 inner product.
For this purpose, let us introduce the auxiliary abbreviations

Wi :=
Ēi, i ≤ J,

Ei, i > J.

Having this in mind we come to the next

Definition 4.2. We introduce the spaces W i := L2(Ω)⊗Wi and analogously to [12], to Section
4.2, respectively, we define the operators

D i : W i →W i+1, with D i :=


PR(S)⊥L2 d̄

i, i < J,

dJ(SJ)−1d̄J , i = J,

di, i > J.

(4.2.9)

We interpret the differential operators D i in a weak sense, which are obviously densely defined.
Moreover, exploiting the special linking maps Si = id⊗si, we can find linear mappings ri : Ēi →
Ēi such that PR(Si−1)⊥L2 = id⊗ ri. Thus, the operators D i can be re-written in the form (2.2.3)
and they determine closed operators.

Corollary 4.1. The differential operators D i : W i →W i+1 are closed and densely defined.

Proof. One notes Lemma 2.9 and Section 2.2.

This means, the spaces
U i := H(Ω,D i,Wi) (4.2.10)

define Hilbert spaces endowed with the graph inner product and the norm

‖v‖2
H(D) := ‖v‖2

U := ‖v‖2 +
∥∥∥D iv

∥∥∥2
, ∀v ∈ U i. (4.2.11)

Next we change the underlying spaces W i according to the BGG construction to obtain later a
Hilbert complex whose cohomology is related to the cohomology of the input sequences. Namely,
we set

W i :=
W i ∩R(Si−1)⊥L2 , for i ≤ J

W i ∩N (Si), for i > J.
(4.2.12)

Lemma 4.6 (BGG L2 output complex). If we restrict the mappings D i from Definition 4.2
to the spaces in W i then we get closed and densely defined operators

D i : W i → W i+1 ,

with domains

V i := H(Ω,D i,Vi), where Vi :=
{
Wi ∩R(si−1)⊥, for i ≤ J,

Wi ∩N (si), for i > J .
(4.2.13)

Further we have the property D i+1D iv = 0 for all v ∈ V i and it is D iV i ⊂ V i+1.
Consequently, (D◦,V ◦) is indeed the domain complex to the Hilbert complex (D◦,W ◦), where
for the latter we have the L2 inner product structure underlying.
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Proof. The second part related to the property D i+1 ◦D i = 0 can be seen by a density argument
similarly to the case of the proxy de Rham complex in Section 3.3.
For the first part of the assertion we show in view of Corollary 4.1 for reasons of completeness
only the relation D iV i ⊂ W i+1.
Note, the W i ⊂ W i are closed subspaces. First assume i < J . Then we see directly D iv ∈ W i+1

for smooth v ∈ U i and thus D iV i ⊂ W i+1. Now let i = J . Choose a sequence of smooth vm
converging to a v ∈ V J and φ ∈ C∞c (Ω)⊗ ĒJ+1. One has the chain

〈SJ+1DJv, φ〉 = lim
m→∞

〈SJ+1dJ(SJ)−1d̄Jvm, φ〉 = − lim
m→∞

〈d̄J+1d̄Jvm, φ〉 = 0.

Thus we also get a closed and densely defined operator DJ : W J → W J+1. Finally let i > J and
v ∈ V i. For an approximating sequence of smooth functions (vm)m ⊂ C∞(Ω)⊗Vi, vm

V−→ v one
sees

〈Si+1D iv, φ〉 = lim
m→∞

〈Si+1divm, φ〉 = − lim
m→∞

〈d̄i+1Sivm, φ〉 = 0,

for all φ ∈ C∞c (Ω)⊗ Ēi+2. This implies D iV i ⊂ W i+1 for i > J .

We refer to the complex (D◦,W ◦) of the last lemma as the L2 output complex to emphasize
the inner product structure. Although this complex (D◦,W ◦) is not directly the same as the
one we would obtain by doing directly the BGG construction in the sense of Definition 4.1 with
the spaces (4.2.6), we still can exploit Lemma 4.4 to make a statement regarding exactness.

Lemma 4.7 (Exactness of L2 output complex). Let the top and bottom complex in Figure
4 be exact at level k, in the sense of Remark 4.1.
Then it holds

R(Dk−1,V k−1) = N (Dk,V k). (4.2.14)
Consequently Dk−1 has closed range. Furthermore, it holds

R(Dk−1, Hq+lk−1Vk−1) = N (Dk, HqVk), ∀q ∈ N0, (4.2.15)

with lk−1 denoting the order of the differential operator Dk−1.

Proof. We only show equation (4.2.14), since the rest of the assertion follows directly by Lemma
4.4.
Let us consider an element w ∈ V k s.t. Dkw = 0. By assumption together with Lemma 4.4 we
have a trivial cohomology space in the sense that we find for w an element v ∈ H lk−1Vk−1 such
that Dk−1w = v. Since obviously H lk−1Vk−1 ⊂ V k−1, we get v ∈ R(Dk−1,V k−1), N (Dk,V k) ⊂
R(Dk−1,V k−1), respectively. The other direction "⊃" is clear from Lemma 4.6 above and we get
N (Dk,V k) = R(Dk−1,V k−1).

If we have exactness one obtains in the same manner like in Lemma 3.11 the existence of
bounded regular potentials. More precisely, it holds:

Corollary 4.2. Let the equation in line (4.2.15) be fulfilled for a q ∈ N0. Then there is a constant
C > 0 s.t. for every v ∈ V k ∩HqVk with Dkv = 0 we find a w ∈ Hq+lk−1Vk−1 satisfying

Dk−1w = v, ‖w‖Hq+lk−1 (Ω) ≤ C ‖v‖Hq(Ω) .

In the next section we finally consider a special class of BGG constructions utilizing de Rham
sequences which lead to standard second order Hilbert complexes like the Hessian, divdiv or
elasticity complex.
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4.2.3 Second-order complexes from Altl-valued forms
After considering these abstract deliberations, one may naturally wonder whether there are
concrete instances of Hilbert complexes that align with the framework outlined in the preceding
sections. The affirmative response to this question can also be found in the publication by Arnold
et al. [12], where the authors present evidence of suitable spaces Ei and Ēi, along with linking
maps Si, for an entire class of illustrative examples. Their work establishes the feasibility of
BGG coupling of two sequences akin to de Rham complexes, thereby yielding a second-order
complex applicable in arbitrary dimensions. The aim of this section is to briefly present this
example class from [12] involving Altl-valued forms.
To explain the underlying ansatz, we need to introduce a tensor product notion on k-forms.
Namely, given a basis k-form ω = dxσ1 ∧ · · · ∧ dxσk and a basis l-form η = dxs1 ∧ · · · ∧ dxsl on
Rn then the tenor product ω ⊗ η is defined as the multi-linear map

ω ⊗ η : Rn × · · · × Rn → R , (v1, . . . , vl+k) 7→ ω(v1, . . . , vk) η(vk+1, . . . , vk+l).

By linearity, the tensor product between arbitrary k- and l-forms is clear. We write Altk,l :=
Altk ⊗ Altl, Alti := Alti(Rn), for the space of elements of the form ω ⊗ η, ω ∈ Altk, η ∈ Altl.
Thus, it is clear that the set{

(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl)
∣∣∣ σ ∈ Σ<(k, n), s ∈ Σ<(l, n)

}
(4.2.16)

yields a basis for Altk,l. It is worth mentioning here that we can also interpret Altk,l as the space
of Altl-valued k-forms.
Next, let us define for k ∈ {0, . . . , n− 1}, J ∈ {1, . . . , n} the linear mapping

sk,J : Altk,J → Altk+1,J−1 ,

determined by its action on basis forms, namely

sk,J
(
(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsJ )

)
:=

J∑
l=1

(−1)l−1(dxsl ∧ dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧���dxsl ∧ · · · ∧ dxsJ ),

which corresponds to [12, (72)]. The crossed-out term in the above definition is omitted, so that
one indeed has a J − 1-form on the right-hand side. For these maps it can be shown

Lemma 4.8 ([12, Lemma 2]). Let k ∈ {0, . . . , n− 1}, J ∈ {1, . . . , n}. If 0 ≤ k ≤ J − 1 then the
mapping sk,J is injective, whereas we have surjectivity for J − 1 ≤ k ≤ n− 1, which also implies
the bijectivity of sJ−1,J .

So, the last lemma provides an initial indication that these sk,J might be candidates for
coupling of complexes in the sense of Section 4.2.2. Because, by a tensoring we have directly
Sk,J = id⊗sk,J : Hq(Ω)⊗Altk,J → Hq(Ω)⊗Altk+1,J−1 and the injectivity/surjectivity properties
of sk,l are trivially valid for Sk,J . Here Ω ⊂ Rn is again a Lipschitz domain.
But in view of the BGG construction we additionally require a proper Hilbert complex structure
on such spaces Hq(Ω)⊗ Altk,l. The latter is obtained by the following natural extension of the
classical exterior derivative:

dk : H1(Ω)⊗ Altk,l → L2(Ω)⊗ Altk+1,l ,

cσ,s(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl) 7→
n∑
i=1

∂icσ,s(dxi ∧ dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl), (4.2.17)
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where we assume cσ,s ∈ H1(Ω) to be the coefficient function and the general case is again obtained
by linearity. It is clear, and is also handled as such in [12], that in the sense of distributional
differentiation, we indeed have

dk : Hq(Ω)⊗ Altk,l → Hq−1(Ω)⊗ Altk+1,l, q ∈ Z.

Further, it should also be noted that in (4.2.17), we can simply regard dk as a j-fold copy of the
classical exterior derivative, since the operator leaves the last term (dxs1 ∧ · · ·∧dxsl) untouched.
For this reason, we also use the same notation dk as for the original exterior derivative. Properties
of the classical de Rham sequence (cf. Lemma 3.9, Lemma 3.10) are directly transferred to the
new setting (4.2.17).
Corollary 4.3. Let Ω ⊂ Rn be a Lipschitz domain and l ∈ {0, . . . , n}. We obtain with
(Hq−◦(Ω)⊗Alt◦,l, d◦) bounded Hilbert complexes for each q ∈ Z. In case of starlike domains we
further have R(dk−1, Hq+1(Ω)⊗ Altk−1,l) = N (dk, Hq(Ω)⊗ Altk,l), if 0 < k ≤ n.
Moreover, in any Lipschitz domain we have R(dn−1, Hq+1(Ω)⊗ Altn−1,l) = Hq(Ω)⊗ Altn,l.
Besides we can consider analogously to the original de Rham complex the underlying L2

complex with associated domain complex, i.e. utilizing the spaces

L2Λk,l(Ω) := L2(Ω)⊗ Altk,l,
HΛk,l(Ω) :=

{
ω ∈ L2Λk,l(Ω)

∣∣∣ dkω ∈ L2Λk+1,l(Ω)
}
,

we obtain for each l ∈ {0, . . . , n} a Hilbert complex (L2Λ◦,l(Ω), d◦) with associated domain
complex (HΛ◦,l(Ω), d◦).
Remark 4.2 (Extending the sequences). Even though it has not been explicitly stated until now,
we always extend the de Rham sequences to the left and right with zeros, meaning dk = 0 for
k /∈ {0, . . . , n − 1}. Accordingly, we expand the definition of sk,J for indices k /∈ {0, . . . , n − 1}
as follows:

sk,J : {0} → {0}, if k < −1,
s−1,J : {0} → Hq(Ω)⊗ Alt0,J−1,

sn,J : Hq(Ω)⊗ Altn,J → {0},
sk,J : {0} → {0}, if k > n.

With this convention, definitions and statements can be expressed more concisely.
After these technical definitions, the connection to the BGG construction is revealed with the

next result, again from [12].
Lemma 4.9 (Output complex from Altl-valued forms, cf. [12, Lemma 2] and [12, Section
4.2] ). Let k ∈ {0, . . . , n− 1}, J ∈ {1, . . . , n} and let Ω ⊂ Rn be a Lipschitz domain.
For Sk,J := id ⊗ sk,J : L2(Ω) ⊗ Altk,J → L2(Ω) ⊗ Altk+1,J−1 we have the anti-commutativity
relation

dk+1 ◦ Sk,J = −Sk+1,J ◦ dk

on HΛk,J(Ω), in the sense of distributions, respectively.
Hence, we can apply the BGG construction from Section 4.2.2 with Ēi = Alti,J−1, Ei = Alti,J
and Si = Si,J . As a result, we obtain a L2 Hilbert complex (L2(Ω)⊗ A◦,Jn ,D◦,Jn ) with associated
domain complex (V ◦,Jn ,D◦,Jn ), where

Ai,J
n :=

{
R(si−1,J)⊥, if i ≤ J − 1,
N (si,J), if i ≥ J,

(4.2.18)

V i,J
n := H(Ω,D i,J

n ,Ai,J
n ), (4.2.19)
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and the operators D i,J
n are determined according to the general construction given Definition 4.2.

One further notes Remark 4.2.

Exploiting the well-known properties of the de Rham sequence (compare Corollary 4.3) and
Lemma 4.7 we directly get the next

Corollary 4.4. Let Ω be a starlike Lipschitz domain. Then, the output complex (V ◦,Jn ,D◦,Jn ) is
exact at level k ≥ 1 with

R(Dk−1,J
n , Hq+l(Ω)⊗ Ak−1,J

n ) = N (Dk,J
n , Hq(Ω)⊗ Ak,J

n ), q ∈ Z, l = ord(Dk−1,J
n ).

Furthermore we have the equation

R(Dn−1,J
n , H l(Ω)⊗ An−1,J

n ) = L2(Ω)⊗ An,J
n , l = ord(Dn−1,J

n ),

for each Lipschitz domain Ω.

It may be somewhat confusing here that, in the coupling just mentioned, the spaces Altk,l
appear, which in turn represent tensor products of spaces of mappings. However, one can
trace this setting back to the situation with Ei = R(n|J)×(n|i), Ēi = R(n|J−1)×(n|i) by a proper
identification Altk,l ∼= R(n|l)×(n|k). To be more precise, let us proceed as follows here. First, let us
have proxy maps Jk : Altk → Rn|k, 0 ≤ k ≤ n in the sense of Definition (3.10), which associate
a vector to a k-form. Furthermore, we number the basis elements in {dxs1 ∧ · · · ∧ dxsl | s ∈
Σ<(l, n)} ⊂ Altl. Now, let dxs1 ∧ · · · ∧ dxsl be the i-th element in the ordered basis of Altl.
Then, we make the association

(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl) ∈ Altk,l ←→ E ∈ R(n|l)×(n|k)

with E being the matrix whose i-th row is equal to the vector Jk
(
dxσ1 ∧ · · · ∧ dxσk

)
and

that contains only zeros elsewhere. This approach with all possible basis elements in (4.2.16)
determines how we want to relate Altk,l to R(n|l)×(n|k). We will again simply write Jk for the
resulting proxy map on Altk,l and if ω ∈ L2(Ω) ⊗ Altk,l, then Jkω stands for the element
L2(Ω)⊗R(n|l)×(n|k) obtained by a point-wise identification. Thus we get proxy maps of the form

Jk : L2(Ω)⊗ Altk,l → L2(Ω)⊗ R(n|l)×(n|k). (4.2.20)

Definition 4.3 (Proxy map for Altk,l). We call the mappings (4.2.20) obtained by the above
explained identification procedure again just proxy maps.

The underlying row-wise ansatz has the effect that (4.2.17) reduces to a differential operator
D̃k : Hq(Ω) ⊗ R(n|l)×(n|k) → Hq−1(Ω) ⊗ R(n|l)×(n|k+1), which simply corresponds to a row-wise
application of the proxy operator Dk := Jk+1 ◦ dk ◦ J −1

k from (3.3.7).
Remark 4.3. We can relate to the de Rham complex (HΛ◦(Ω), d◦) the proxy complex
(H(Ω,D◦,Rn|◦),D◦); see Section 3.3.2. Obviously, the analogous is possible if we have the
extended chain (HΛ◦,l(Ω), d◦) to which we can associate the extended proxy complex(
H(Ω,D◦,R(n|l)×(n|◦)),D◦

)
, where D◦ is just acting row-wise.

Then modifying the linking maps according to

sk,J 7→ s̃k,J := Jk+1 ◦ sk,J ◦ J −1
k and Sk,J 7→ S̃k,J := Jk+1 ◦ Sk,J ◦ J −1

k , (4.2.21)

we can indeed trace the BGG construction back to the case Ei = R(n|J)×(n|i), Ēi = R(n|J−1)×(n|i)

and Si = S̃i,J .
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Definition 4.4 (Proxy output complex). Consequently, utilizing the proxy maps and applying
the BGG construction we obtain some proxy L2 output complex on the spaces

L2(Ω)⊗ Vi,J
n , Vi,J

n :=
R(s̃i−1,J)⊥ ⊂ R(n|J−1)×(n|i), if 0 ≤ i ≤ J − 1,
N (s̃i,J) ⊂ R(n|J)×(n|i), if J ≤ i ≤ n,

(4.2.22)

which we want to denote as (L2(Ω) ⊗ V◦,Jn ,D◦,Jn ). Again we extend the space definitions for
indices i /∈ {0, . . . , n} though a zero extension, i.e. for this case we set Vi,J

n := {0}, Di,J
n := 0.

The domain complex is then given accordingly by

(V◦,Jn ,D◦,Jn ) :=
(
H(Ω,D◦,Jn ,V◦,Jn ),D◦,Jn

)
. (4.2.23)

We call (V◦,Jn ,D◦,Jn ) the proxy output complex.

Finally, before we delve into specific examples, we would like to relate the various introduced
spaces and operators once more through the following commutative diagram:

. . . . . .HqR(n|J−1)×(n|k) Hq−1R(n|J−1)×(n|k+1) Hq−2R(n|J−1)×(n|k+2)Dk Dk+1

Jk Jk+1 Jk+2

. . . . . .HqAltk,J−1 Hq−1Altk+1,J−1 Hq−2Altk+2,J−1dk dk+1

. . . . . .HqAltk−1,J Hq−1Altk,J Hq−2Altk+1,Jdk−1 dk

Jk−1 Jk Jk+1

. . . . . .HqR(n|J)×(n|k−1) Hq−1R(n|J)×(n|k) Hq−2R(n|J)×(n|k+1)Dk−1 Dk

Sk−1,J −Sk,J Sk+1,J

. (4.2.24)

From the diagram, it also becomes clear how one can transit from Hilbert complexes on Altl-
valued forms to those on matrix fields.
There is no doubt that a similar statement as in Corollary 4.4 is also true if we move to the
proxy complex, and for reasons of completeness let us state

Corollary 4.5. Let Ω be a starlike Lipschitz domain. Then, the proxy output complex (V◦,Jn ,D◦,Jn )
is exact at level k ≥ 1. Furthermore we have the equation

R(Dn−1,J
n , H l(Ω)⊗ Vn−1,J

n ) = L2(Ω)⊗ Vn,J
n , l = ord(Dn−1,J

n ),

for each Lipschitz domain Ω.

Now we turn to examples, which fit to the case of Sobolev de Rham complexes. Strictly
speaking, the diagrams presented below are just special cases of a general construction shown
before. We focus on such complexes, which will also play a role later in the context of numerical
examples. Furthermore, we directly present the proxy de Rham chains and thus proxy output
complexes. And doing so, we utilize the proxy maps Jk determined through Example 3.1 (3D)
and Example 3.2 (2D). It should be pointed out that in the subsequent diagrams we insert the
L2 spaces emphasizing the inner product structure and thus the differential operators should be
seen as densely defined mappings.

Example 4.2 (Chains in 2D). In two dimensions there are two possibilities to obtain a proxy
output complex (V◦,Jn ,D◦,Jn ), namely for J = 1 and J = 2. With the ansatz (4.2.21) for the
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linking maps one can assemble the double diagram (4.2.25) which is a slightly different version
of [12, (54)]. Here it is

mskew(φ) :=
[

0 φ
−φ 0

]
, 2sskew

[
M11 M12
M21 M22

]
:= M21 −M12

and for this example we write M := R2×2.

L2(Ω) L2(Ω)⊗ R2 L2(Ω)0 0curl ∇·

L2(Ω)⊗ R2 L2(Ω)⊗M L2(Ω)⊗ R20 0curl ∇·
id −2sskew

L2(Ω) L2(Ω)⊗ R2 L2(Ω)0 0curl ∇·

−mskew id

. (4.2.25)

Above, in the second row the differential operators act row-wise. The highlighted linking maps
in red are the bijective ones, whereas the green and blue linking maps are injective, surjective,
respectively. The domain complex induced by the BGG coupling of the first two rows from (4.2.25)
yields the elasticity complex in 2D, namely

H2(Ω) H(Ω,∇·,S) L2(Ω)⊗ R20 0,curl2 ∇·
(4.2.26)

with S denoting the space of symmetric matrices. As the name suggests, one can (and we will
later) exploit this chain to handle the problem of plane linear elasticity, where the last two levels
are identified with the stress and displacement field. The curl2 operator is in fact the so-called
airy stress operator from continuum mechanics. By the Nečas inequality ([55, Lemma 2.2]) we
see H2(Ω) = H(Ω, curl2,R), which explains the appearing of H2(Ω) in the elasticity complex.
Another domain complex is obtained by the combination of the last two rows in diagram 4.2.25.
More precisely, we get the 2D divdiv complex

H1(Ω)⊗ R2 H(Ω,∇ · ∇·,S) L2(Ω)0 0,symcurl ∇ · ∇·
(4.2.27)

with

2 symcurl
(
(v1, v2)T

)
:=
[
curl(v1)
curl(v2)

]
+
[
curl(v1)
curl(v2)

]T

.

In view of the Korn inequality, see [16, Theorem 2], we have used above H(Ω, symcurl,R2) =
H1(Ω)⊗ R2; because it is∥∥∥symcurl

(
(v1, v2)T

)∥∥∥
L2(Ω)

=
∥∥∥sym∇((v2,−v1)T

)∥∥∥
L2(Ω)

.

Similarily, one can derive the proxy output complexes (V◦,Jn ,D◦,Jn ) for Ω ⊂ R3, i.e. n = 3.

Example 4.3 (Chains in 3D). First let us define

mskew

v1
v2
v3

 :=

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , skewM := 1
2(M −MT), vskew := mskew−1 ◦ skew

58



and

ι(φ) :=

φ 0
φ

0 φ

 , SM = MT − tr(M)I.8

Then, using the BGG construction in [12] they established for the three-dimensional setting the
diagram

L2(Ω) L2(Ω)⊗ R3 L2(Ω)⊗ R3 L2(Ω)0 0∇ ∇× ∇·

L2(Ω)⊗ R3 L2(Ω)⊗M L2(Ω)⊗M L2(Ω)⊗ R30 0∇ ∇× ∇·
id 2vskew tr

L2(Ω)⊗ R3 L2(Ω)⊗M L2(Ω)⊗M L2(Ω)⊗ R30 0∇ ∇× ∇·

−mskew S 2vskew

L2(Ω) L2(Ω)⊗ R3 L2(Ω)⊗ R3 L2(Ω)0 0∇ ∇× ∇·

ι −mskew id

,

(4.2.28)
with M := Rn×n. Again, in the second and third row of the last diagram the different differential
operators act row-wise. It is relatively easy to determine that S is bijective with S−1M =
MT − 1

2tr(M)I. Additionally, we once again have the surjectivity of the blue and the injectivity
of the green linking maps in diagram (4.2.28). By BGG coupling of the first two, the second
two and the last two rows of diagram (4.2.28), this leads us to the Hessian, elasticity and divdiv
complexes in 3D.
The Hessian complex reads

H2(Ω) H(Ω,∇×,S) H(Ω,∇·,T) L2(Ω)⊗ R30 0,∇2 ∇× ∇·

(4.2.29)
where S and T denote the spaces of symmetric and trace-free 3 × 3 matrices. Here we used the
fact H2(Ω) = H(Ω,∇2,R); compare [55, Lemma 2.2].
The 3D elasticity complex is given by

H1(Ω)⊗ R3 H(Ω, inc,S) H(Ω,∇·,S) L2(Ω)⊗ R30 0,sym∇ inc ∇·

(4.2.30)
with inc = ∇× ◦S−1 ◦ ∇×. We note here that the Korn inequality [16, Theorem 2] justifies the
first non-zero entry in the chain, because H(Ω, sym∇,R3) = H1(Ω) ⊗ R3, where sym∇ is the
symmetric gradient.
And finally, for the combination of the last two rows in (4.2.28) we get the divdiv complex:

H1(Ω)⊗ R3 H(Ω, sym∇×,T) H(Ω,∇ · ∇·,S) L2(Ω)0 0,dev∇ sym∇× ∇ · ∇·

(4.2.31)
where dev∇v = ∇v− 1

3tr(∇v)I is the deviatoric gradient and sym∇×M := 1
2

(
∇×M+(∇×M)T

)
.

Interestingly, an application of [60, Lemma 3.2] gives us directly H(Ω, dev∇,R3) = H1(Ω)⊗R3

which justifies the space H1(Ω)⊗ R3 in the divdiv chain.
8tr(M) stands for the trace of the matrix M and I denotes the identity matrix.
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An important property of all the sequences above follows directly from Lemma 3.10 and
Lemma 4.7,namely:

Corollary 4.6. If the domain Ω is a starlike domain. Then all the chains (4.2.26),(4.2.27),(4.2.29)-
(4.2.31) are exact except at the first level. Further in every chain the last differential operator is
a surjection onto the respective L2 spaces.

We have now become acquainted with a method that generates a new L2 output complex from
two de Rham complexes on Altl-valued forms. As special cases, we obtain e.g. the chains in
Examples 4.2, 4.3 above. Due to the BGG construction and the corresponding choice of operators
(4.2.9), we got second-order complexes, meaning second-order differential operators. In (4.2.29),
for example, this would be the Hessian operator∇2 or in (4.2.31), the double divergence∇·∇·. In
fact with Lemma 4.9, we have introduced an entire class of second-order complexes in arbitrary
dimensions, namely the pairs (V ◦,Jn ,D◦,Jn ), (V◦,Jn ,D◦,Jn ), respectively. Chains like these form the
basis for the establishment and examination of numerical methods in Sections 8 and 9. There,
we will primarily focus on the discretization of the Hodge–Laplace problems of level n induced
by (V ◦,Jn ,D◦,Jn ). We will present and consider two approximation methods, both of them will
involve the connection to the BGG construction and the de Rham complexes.
One approach follows the idea of incorporating the conditions in (4.2.12) related to the linking

maps through suitable additional variables. In the next section, we will explain in a somewhat
more abstract context what we mean by additional variables and how we can modify mixed weak
formulations for the Hodge–Laplace problem by adding appropriate variables. In this phase, we
will not perform discretizations yet and will remain in a continuous setting. Nevertheless, in
the context of numerical analysis later, we will refer back to and make use of the forthcoming
explanations.

4.2.4 Mixed formulation with Lagrange multiplier
In this section we show the feasibility of mixed weak forms for the Hodge–Laplace problem with
Lagrange multipliers in the context of the L2 complexes arising from a coupling of complexes.
Here we suppose the assumptions and follow the framework explained in Section 4.2.2. In
particular, we utilize the notation from this part.
The construction of the output complex utilizing the linking maps leads to subspaces of kernels
N (Si) or of the orthogonal complements R(Si)⊥L2 ; see (4.2.12). But if we want to choose
proper discrete spaces in order to approximate the underlying Hodge–Laplace problem, then such
constraints in the definition might become problematic or not easy to be fulfilled. Here we show
the possibility to set up equivalent mixed weak forms on the spaces U i defined in (4.2.10) instead
of the V i from Lemma 4.6. We hope that a reduction to the former is beneficial for numerical
considerations. Indeed we will use this re-formulation ansatz for a special discretization method
in Section 8.3 and it will also be exploited within the field of linear elasticity later. It guides us
for example to the Hellinger-Reissner formulation with weakly imposed symmetry also part of the
paper [10]. Doing so, we exploit the mentioned approach only for a special sub-class of problems
later. Nevertheless, for reasons of completeness we show applicability of the Lagrange multiplier
idea in more general situations. The concept of incorporating constraints in an optimization
problem or a variational formulation using auxiliary variables, known as Lagrange multipliers,
is well-established; see e.g. [20, §4, Chapter 3]. However, the following explanations can also be
understood without a detailed knowledge of this concept.

Assumption 4.3. We are in the setting of Section 4.2.2, i.e. we import the notation and
all assumptions from that part, meaning e.g. (V ◦,D◦) denotes the BGG L2 output complex
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introduced in Lemma 4.6. Besides, here the underlying bottom and top complexes in Figure 4
are exact at level k in the sense of Remark 4.1. Consequently the corresponding output domain
complex (V ◦,D◦) is exact at some fixed level k; cf. Lemma 4.7.

Hence, in view of Definition 3.5 and Lemma 3.4 we obtain for the level k Hodge–Laplace
problem the next well-posed variational problem:

Definition 4.5 (Output mixed weak formulation). For f ∈ W k find (σ, u) ∈ V k−1 × V k

s.t.

〈σ, τ〉 −〈u,Dk−1τ〉 = 0, ∀τ ∈ V k−1, (4.2.32)
〈Dk−1σ, v〉+〈Dku,Dkv〉 = 〈f, v〉, ∀v ∈ V k. (4.2.33)

Below, the notation 〈·, ·〉, ‖·‖ means always the L2 inner products and norms related to
the respective L2(Ω) ⊗ Ei, L2(Ω) ⊗ Ēi spaces. Moreover, we denote with X⊥ the orthogonal
complement w.r.t. the L2 inner product and write ‖·‖U for the graph norm on U i; cf. (4.2.11).
As already mentioned the basic idea is now to enforce the subspace conditions for the elements in
V i, coming from the linking maps Si, weakly; see (4.2.12). The aim is to set up a new mixed weak
formulation for the Hodge–Laplace problem, utilizing the spaces U i given in (4.2.10) instead of
the V i. In preparation for this purpose we prepend two lemmata. In the explanations below, J
denotes the index from Assumption 4.1 and we write in proofs A ≺ B, if expression A is smaller
than B up to some constant C, where C does not depend on appearing specific space elements.

Lemma 4.10. Let i < J . The inf-sup relation

inf
06=µ∈L2(Ω)⊗Ei

sup
06=τ∈U i+1

〈τ, Siµ〉
‖τ‖U ‖µ‖

> 0

is valid.

Proof. We fix some 0 6= µ ∈ L2(Ω) ⊗ Ei. There is a sequence of smooth mappings (µm)m ⊂
C∞c (Ω)⊗ Ei which converges in the L2 sense to µ. Hence τm := Siµm ∈ U i+1. For i < J − 1 it
is D i+1Siµm = PR(Si+1)⊥ d̄

i+1Siµm = −PR(Si+1)⊥S
i+1diµm = 0 and further, if i = J − 1, one has

DJSJ−1µm = dJ(SJ)−1d̄JSJ−1µm = −dJ(SJ)−1SJdJ−1µm = 0 .

This implies

‖τm − τl‖2
U = ‖τm − τl‖2 ≤ CS ‖µm − µl‖2 −→ 0, for m, l→∞ and it is ‖τm‖U = ‖τm‖ ,

for some Si-dependent constant CS. The completeness of the space U i+1 yields a τ ∈ U i+1

with τm
U−→ τ . Due to the injectivity of si we have |sie| ≥ C|e|, ∀e ∈ Ei which implies

‖Siµm‖ ≥ C ‖µm‖ for a proper constant C.9 Consequently, we get

〈τ, Siµ〉
‖τ‖U ‖µ‖

←−
m→∞

〈τm, Siµm〉
‖τm‖U ‖µm‖

≥ ‖Siµm‖
2

‖Siµm‖ ‖µm‖
≥ C > 0 ,

where C does not depend on µ.

9Here | · | is an abbreviation for norms in Ei and Ēi+1.
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The second auxiliary lemma also deals with an inf-sup inequality. For the following we use
the notation ‖·‖Ū , 〈·, ·〉Ū for the graph norm and inner product for the spaces

Ū i := H(Ω, d̄i, Ēi); see in Figure 4.

Further using 4.2.9 and (4.2.10) one notes U i = H(Ω, di,Ei) as well as Siv ∈ Ū i+1, ∀v ∈ U i for
i > J , since d̄i+1Siv = −Si+1div. Finally we remark that we use the abbreviation

l̄j := ord(d̄j)

at different places of this section.

Lemma 4.11. Let i > J . We assume that the underlying top complex (Hq◦Ē◦, d̄◦) be exact at
level i+ 1 and i+ 2 in the sense R(d̄m−1, H l̄m−1Ēm−1) = N (d̄m, Ūm), for m ∈ {i+ 1, i+ 2}; see
Figure 4. Then the inequality

inf
06=µ∈Ū i+1

sup
0 6=τ∈U i

〈Siτ, µ〉Ū
‖τ‖U ‖µ‖Ū

> 0

holds.

Proof. We follow the proof idea of Theorem 3 in [12]. Fix some non-vanishing µ ∈ Ū i+1. By
assumption together with Corollary 2.1 we can choose an u ∈ H l̄i+1Ēi+1 s.t. d̄i+1u = d̄i+1µ
and ‖u‖

H l̄i+1 ≺
∥∥∥d̄i+1µ

∥∥∥, since d̄i+1 : H l̄i+1Ēi+1 → R(d̄i+1, H l̄i+1Ēi+1) is a bounded map between
Hilbert spaces. By the assumed exactness we find a y ∈ H l̄iĒi with d̄iy = µ− u. Again in view
of Corollary 2.1 we can assume ‖y‖H l̄i

≺ ‖µ− u‖. Since Si defines a bounded and surjective
mapping from H l̄i+1Ei to H l̄i+1Ēi+1, we can choose a η ∈ H l̄i+1Ei s.t. Siη = u, ‖η‖

H l̄i+1 ≺
‖u‖

H l̄i+1 ; see Corollary 2.1.
In an analogous manner we find κ ∈ H l̄iEi−1 with Si−1κ = y, ‖κ‖H l̄i

≺ ‖y‖H l̄i
. Now set

τ := −di−1κ+ η ∈ U i. (4.2.34)

It holds Siτ = d̄iSi−1κ+ Siη = d̄iy + u = µ. Furthermore we have the chain

‖τ‖U ≤
∥∥∥di−1κ

∥∥∥+ ‖η‖U ≺ ‖y‖H l̄i
+ ‖u‖

H l̄i+1

≺ ‖µ− u‖+
∥∥∥d̄i+1µ

∥∥∥ ≺ ‖µ‖+ ‖u‖+
∥∥∥d̄i+1µ

∥∥∥ ≺ ‖µ‖Ū .
In other words, plugging the chosen µ and τ from (4.2.34) into the fraction in the assertion we
get something greater than a positive constant C, which in turn does not depend on the chosen
µ.

Next we face the reformulation of (4.2.32)-(4.2.33) with weakly enforced kernel and range
conditions in the defining equation (4.2.12). For this purpose, additional variables, Lagrange
multipliers respectively, need to be introduced. These lead to extra equations and columns
compared to the original mixed weak system. We distinguish three cases k ≤ J, k = J + 1 and
k > J + 1.
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Case k ≤ J :
Firstly, let k ≤ J and consider the modified problem: Find (σ, u, λ1, λ2) ∈ U k−1×U k×L2(Ω)⊗
Ek−2 × L2(Ω)⊗ Ek−1 s.t.

〈σ, τ〉 − 〈u,Dk−1τ〉 +〈Sk−2λ1, τ〉 = 0, ∀τ ∈ U k−1, (4.2.35)
〈Dk−1σ, v〉 + 〈Dku,Dkv〉 + 〈Sk−1λ2, v〉 = 〈f, v〉, ∀v ∈ U k, (4.2.36)
〈σ, Sk−2µ1〉 = 0, ∀µ1 ∈ L2(Ω)⊗ Ek−2, (4.2.37)

+ 〈u, Sk−1µ2〉 = 0, ∀µ2 ∈ L2(Ω)⊗ Ek−1, (4.2.38)

for some f ∈ W k. Latter mixed weak form omits the spaces V i but still yields the solution to
(4.2.32)-(4.2.33).

Lemma 4.12. The system (4.2.35)-(4.2.38) is well-posed and the solution (σ, u, λ1, λ2) gives the
solution (σ, u) to the original problem (4.2.32)-(4.2.33) for k ≤ J .

Proof. First with (4.2.10) and (4.2.13) we observe that

Z :=
{

(τ, v) ∈ U k−1 ×U k | 〈τ, Sk−2µ1〉+ 〈v, Sk−1µ2〉 = 0,

∀(µ1, µ2) ∈ L2(Ω)⊗ Ek−2 × L2(Ω)⊗ Ek−1
}

= V k−1 × V k.

Besides, we set

a((σ, u), (τ, v)) := 〈σ, τ〉 − 〈u,Dk−1τ〉 − 〈Dk−1σ, v〉 − 〈Dku,Dkv〉,

for (σ, u), (τ, v) ∈ U k−1 × U k. The well-posedness of the original mixed weak form (4.2.32)-
(4.2.33) yields the inf-sup property (2.3.6) for a on Z ×Z; compare Lemma 2.10. Besides, using
Lemma 4.10 we find for 0 6= µi ∈ L2(Ω) ⊗ Ek−3+i, i ∈ {1, 2} elements (τ, v) ∈ U k−1 × U k

satisfying

〈τ, Sk−2µ1〉+ 〈v, Sk−1µ2〉 ≥ ‖µ1‖2 + ‖µ2‖2 , ‖τ‖U + ‖v‖U ≺ ‖µ1‖+ ‖µ2‖ .

But this shows us the validity of the inf-sup property (2.3.7) for the bilinear form

b((τ, v), (µ1, µ2)) := 〈τ, Sk−2µ1〉+ 〈v, Sk−1µ2〉,

with U1 = U k−1 × U k, U2 = (L2(Ω) ⊗ Ek−2) × (L2(Ω) ⊗ Ek−1). Hence in view of Corollary
2.2 we established the well-posedness. And clearly the solution (σ, u, λ1, λ2) to (4.2.35)-(4.2.38)
yields the solution (σ, u) of (4.2.32)-(4.2.33). This finishes the proof.

Case k = J + 1:
Next we switch to the situation k = J + 1 and look at the problem: Find (σ, u, λ1, λ2) ∈
U J ×U J+1 × L2(Ω)⊗ EJ−1 × ŪJ+2 s.t.

〈σ, τ〉 − 〈u,DJτ〉 +〈SJ−1λ1, τ〉 = 0, ∀τ ∈ U J , (4.2.39)
〈DJσ, v〉 + 〈dJ+1u, dJ+1v〉 + 〈λ2, S

J+1v〉Ū = 〈f, v〉, ∀v ∈ U J+1, (4.2.40)
〈σ, SJ−1µ1〉 = 0, ∀µ1 ∈ L2(Ω)⊗ EJ−1,

(4.2.41)
+ 〈SJ+1u, µ2〉Ū = 0, ∀µ2 ∈ ŪJ+2, (4.2.42)

provided a f ∈ W J+1.
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Lemma 4.13. We assume R(d̄m−1, H l̄m−1Ēm−1) = N (d̄m, Ūm), for m ∈ {J + 2, J + 3}. Then
System (4.2.39) -(4.2.42) is well-posed and yields the solution (σ, u) to (4.2.32)-(4.2.33) for k =
J + 1.

Proof. The proof uses a similar argumentation as the one for the previous lemma. Again using
(4.2.10) and (4.2.13) we can conclude that

Z :=
{

(τ, v) ∈ U J ×U J+1 | 〈τ, SJ−1µ1〉+ 〈SJ+1v, µ2〉Ū = 0,

∀(µ1, µ2) ∈ L2(Ω)⊗ EJ−1 × ŪJ+2
}

is equal to V J ×V J+1. By the well-posedness of the original mixed weak form (4.2.32) - (4.2.33)
and due to Corollary 2.2, it is enough to check the related inf-sup condition (2.3.7) for

b((τ, v), (µ1, µ2)) := 〈τ, SJ−1µ1〉+ 〈SJ+1v, µ2〉Ū ,

where the underlying spaces are U1 = U J ×U J+1 and U2 = L2(Ω) ⊗ EJ−1 × ŪJ+2. Applying
both, Lemma 4.10 and Lemma 4.11 one obtains for µ1 ∈ L2(Ω) ⊗ EJ−1, µ2 ∈ ŪJ+2 elements
(τ, v) ∈ U J ×U J+1 satisfying

〈τ, SJ−1µ1〉+ 〈SJ+1v, µ2〉Ū ≥ ‖µ1‖2 + ‖µ2‖2
Ū , ‖τ‖U + ‖v‖U ≺ ‖µ1‖+ ‖µ2‖Ū .

Consequently, the needed inf-sup property for b is fulfilled. The fact that the new formulation
with Lagrange multipliers gives us the solution of the original problem is clear.

Case k > J + 1:
And for the third case, meaning k > J + 1 one might consider the reformulation:
Given f ∈ W k, we seek for (σ, u, λ1, λ2) ∈ U k−1 ×U k × Ūk × Ūk+1 with

〈σ, τ〉 − 〈u, dk−1τ〉 +〈λ1, S
k−1τ〉Ū = 0, ∀τ ∈ U k−1, (4.2.43)

〈dk−1σ, v〉 + 〈dku, dkv〉 + 〈λ2, S
kv〉Ū = 〈f, v〉, ∀v ∈ U k, (4.2.44)

〈Sk−1σ, µ1〉Ū = 0, ∀µ1 ∈ Ūk, (4.2.45)
+ 〈Sku, µ2〉Ū = 0, ∀µ2 ∈ Ūk+1 . (4.2.46)

Again one can assure oneself that the mixed formulation involving the U i makes sense.

Lemma 4.14. Let k > J + 1 and for the top complex in Figure 4 we require the property
R(d̄m−1, H l̄m−1Ēm−1) = N (d̄m, Ūm), for m ∈ {k, k + 1, k + 2}. Then we obtain a well-posed
problem (4.2.43)-(4.2.46) which yields the solution (σ, u) of problem (4.2.32)-(4.2.33).

Proof. The proof is very similar and analogous to the one of Lemma 4.13 and applies basically
Lemma 4.11. That is why we omit here details.

Remark 4.4. For k > 0 the technical assumptions in the different lemmata above are satisfied if
the row complexes in Figure 4 are vector-valued de Rham complexes on starlike domains, due
to Lemma 3.10. Thus, e.g. for the chains (4.2.29) -(4.2.31) and the L2 output complexes from
Lemma 4.9 we might apply the procedure involving Lagrange multipliers.
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With admittedly somewhat involved new formulations, our intention was merely to highlight
a potentially useful observation. Namely, as long as the input complexes are exact, it is possible
to incorporate the conditions coming from the Si in (4.2.12) through auxiliary variables in a
weak form. In doing so, these new formulations lead to the solution to the original mixed
weak form, even though the spaces V i no longer appear explicitly. It is, however, entirely clear
that the introduction of new variables also brings about the issue of an increasing number of
degrees of freedom when dealing with discretizations. Nevertheless, there are examples where
the utilization of Lagrange multipliers might make it easier to find suitable FE spaces. This
has already been demonstrated, for example, in [10] in the context of linear elasticity, where
the symmetry condition is imposed weakly. And we will follow this path involving Lagrange
multipliers in Section 8.3.
Now we have reached the point at which we have introduced the second-order complexes

(V ◦,Jn ,D◦,Jn ) relevant to us in the numerical part, and have also explained how to transform the
mixed weak formulation into a modified version through additional variables. With this, we
have actually defined everything we need to finally focus on discretizations in the context of
such output complexes. Before we turn to isogeometric analysis, which we will later use as a
fundamental basis for the concrete definition of FE spaces, we will precede with a chapter in
which we present generally useful and more general auxiliary results and observations regarding
discretizations of mixed weak formulations of the form (4.2.32)-(4.2.33). In the next section,
statements will be shown that we will then reuse in a concrete context of the section. However,
for the sake of completeness, we will also consider and deal with statements that are not directly
used in the mentioned section but still appear noteworthy to us.
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5 Regarding the Discretization of the
Output Complex

In this section, we would like to address aspects concerning the discretization of the output
complexes (V ◦,D◦) from Lemma 4.6 defined on some Lipschitz domain Ω ⊂ Rn. More precisely,
here we have Assumption 4.3 underlying and we face the discretization of (4.2.32)-(4.2.33). In
doing so, as already mentioned at the end of the previous chapter, we make relatively general
statements and observations, which have two underlying motivations. Firstly, we want to become
familiar with the problem and difficulties of discretization and foster a better understanding of it.
Secondly, we aim to demonstrate technical auxiliary results that we can later refer to in Section
8 . So, at least in part, one can consider the following discussions as a preparatory chapter for
later ones.
Actually, everything seems to have been clarified in this regard through the abstract FEEC the-

ory; see Section 3. The ideal approach would be to employ a structure-preserving discretization
for the complex (V ◦,D◦) in order to solve the mixed weak formulation in the finite-dimensional
setting. However, that is where the challenge lies. When going from the classical de Rham chain
to different type of Hilbert complexes, constructing such spaces that are suitable according to
the FEEC theory is not straightforward. This is particularly true for the second-order complexes
(V ◦,Jn ,D◦,Jn ) introduced through Lemma 4.9. Especially when considering non-trivial domains
with curved boundaries, the form of structure-preserving discretizations is an open question.
Nevertheless, our goal remains to apply IGA in the context of second-order complexes. In order
to do this, we need to relax conditions and may not always satisfy all three properties from
Section 3.4 simultaneously. This seems to be a problematic step, as we should expect not to
achieve well-posedness. With the explanations in this section, however, we aim to establish
various conditions that still guide us to well-posed discretizations and will turn out later to be
useful for isogeometric methods.
These explanations can be broadly divided into two parts. First, let us explore how well-

posedness can be achieved if we use conforming FE spaces but ignore the subcomplex property.
In this context, we will introduce an equivalent but modified weak formulation. Afterwards,
we will pursue the approach of utilizing the Lagrange multiplier formulation from Section 4.2.4,
focusing on the case of saddle-point systems meaning the case where k = n. Latter approach
will also lead us back to FEEC, in the sense that structure-preserving discretizations will once
again play a role.

5.1 Considerations for the case of trivial cohomology
Here we have an abstract point of view and assume the existence of families of discrete spaces
V k−1
h ⊂ V k−1, V k

θ ⊂ V k, where k is a fixed index; cf. Assumption 4.3. In this context, we use two
distinct indices, h and θ, to emphasize that the spaces can be defined entirely differently. We call
θ and h the mesh sizes of the spaces and they might differ. This notation is convenient, as we will
see in later examples, making mesh refinements for the individual spaces more distinguishable.
However, as before, we maintain the natural and intuitive assumption:

lim
h→0

inf
τh∈V k−1

h

‖τ − τh‖V = 0, ∀τ ∈ V k−1, lim
θ→0

inf
vθ∈V k

θ

‖v − vθ‖V = 0, ∀v ∈ V k,

with ‖·‖2
V := ‖·‖2 + ‖D i·‖2 denoting the respective graph norms. And as always, ‖·‖ stands for

L2-based norms on the respective spaces of the form L2(Ω) ⊗W. For the order of the output
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differential operators D i we write again li := ord(D i).
Regarding the different mesh sizes, it is important to clarify and explain the following:
Assumption 5.1 (Regarding the different mesh sizes). When we talk about discretizations us-
ing V k−1

h , V k
θ , we mean that we are actually dealing with tuples of finite-dimensional spaces

(V k−1
h ,V k

θ ), i.e. for each space V k
θ there is an associated space V k−1

h . Thus, while we allow
distinct meshes for V k−1

h and V k
θ , we still require that a reduction in θ also implies a reduction

in h. In other words, the mesh sizes may be different, but they are coupled, and if we talk about
families of discrete spaces consider them as a family in θ and determine h through a mapping
h = h(θ). This means strictly speaking, we have to write in the following everywhere V k−1

h(θ) ,
instead of V k−1

h . However, below we often find it more convenient and easier to write down the
expressions, when we simply refer to two indices, θ and h, while keeping the coupling in mind.
In particular we abbreviate below

(V k−1
h , V k

θ )θ := (V k−1
h(θ) , V k

θ )θ.

Next we introduce the discrete version of problem (4.2.32)-(4.2.33), namely: For f ∈ W k find
(σh, uθ) ∈ V k−1

h × V k
θ s.t.

〈σh, τh〉 −〈uθ,Dk−1τh〉 = 0, ∀τh ∈ V k−1
h , (5.1.1)

〈Dk−1σh, vθ〉+〈Dkuθ,D
kvθ〉 = 〈f, vθ〉, ∀vθ ∈ V k

θ . (5.1.2)

From the theory we know what should be satisfied in order to have a reasonable discrete scheme,
namely we need inf-sup stability; compare Definition 2.11 and Lemma 2.12. This means we want
to have

inf
(0,0)6=(τh,vθ)∈V k−1

h
×V k

θ

sup
(0,0)6=(σh,uθ)∈V k−1

h
×V k

θ

B
(
(σh, uθ), (τh, vθ)

)
‖(σh, uθ)‖B ‖(τh, vθ)‖B

≥ CIS > 0, (5.1.3)

with

B
(
(σ, u), (τ, v)

)
:= 〈σ, τ〉 − 〈u,Dk−1τ〉 − 〈Dk−1σ, v〉 − 〈Dku,Dkv〉,

‖(σ, u)‖2
B := ‖σ‖2

V + ‖u‖2
V ,

and CIS independent from mesh refinement. If we would have structure-preserving discretizations
we would get automatically a well-posed scheme, due to Lemma 3.16. However, the output spaces
V i and their connection to the linking maps Si coming from the BGG construction (see Lemma
4.6) are sometimes difficult to handle and, as already mentioned, for chains with higher order
differential operators the construction of such structure-preserving discretization is not trivial
or even not known in general. For reasons of completeness, we start by giving first a criterion
which leads at least to the invertibility of the discrete systems. For this purpose, we need the
next
Assumption 5.2 (Discrete spaces). In view of Lemma 4.6, let us assume for the discrete spaces
the following:

• V k−1
h ⊂ V k−1 and V k

θ ⊂ V k .

• There is a projection Πk−1
h : V k−1 → V k−1

h s.t.∥∥∥Dk−1Πk−1
h τ −Dk−1τ

∥∥∥ ≤ C1h ‖τ‖Hlk−1+1 , ∀τ ∈ H lk−1+1(Ω)⊗ Vk−1,∥∥∥Πk−1
h τ

∥∥∥
V
≤ C1 ‖τ‖Hlk−1 , ∀τ ∈ H lk−1(Ω)⊗ Vk−1,

for a constant C1 independent of h. Note, lk−1 := ord(Dk−1).
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• It is V k
θ ⊂ H1(Ω)⊗ Vk. Further, there is constant C2 independent of θ with

‖vθ‖H1 ≤
C2

θ
‖vθ‖ , ∀vθ ∈ V k

θ .

Lemma 5.1. Let the Assumptions 4.3 and 5.2 hold. Then, there is a positive constant cR s.t.
if the mesh sizes fulfill h ≤ cRθ we have the invertibility of the discrete system (5.1.1)-(5.1.2).
Consequently, after a suitable mesh refinement related to the discrete space V k−1

h we have a
unique discrete solution.

Proof. Let us look at the system (5.1.1)-(5.1.2) with f = 0. Then it follows directly σh =
0, Dkuθ = 0 just by setting τh = σh and vθ = uθ. By assumption we know uθ ∈ H1Vk. Hence,
because of the exactness at level k for our setting, we find a τ ∈ H lk−1+1Vk−1 s.t. Dk−1τ = uθ
and ‖τ‖Hlk−1+1 ≤ C ‖uθ‖H1 for a proper C; see Corollary 4.2 or [12, Theorem 2]. In particular
due to the first line (5.1.1) one has the estimate

0 = 〈uθ,Dk−1Πk−1
h τ〉 = ‖uθ‖2 + 〈uθ,Dk−1Πk−1

h τ −Dk−1τ〉
≥ ‖uθ‖2 − ‖uθ‖

∥∥∥Dk−1Πk−1
h τ −Dk−1τ

∥∥∥
≥ ‖uθ‖2 − C1h ‖uθ‖ ‖τ‖Hlk−1+1 ≥ ‖uθ‖2 − C1Ch ‖uθ‖ ‖uθ‖H1

≥ ‖uθ‖2 − C1C2C
h

θ
‖uθ‖2 .

One notes the application of the Cauchy–Schwarz inequality and Assumption 5.2. Hence if
C1C2C

h
θ
< 1, we get also uθ = 0 and consequently the invertibility of the whole system.

The conditions we have imposed on the spaces V k−1
h , V k

θ may seem difficult. However, when
applying classical estimates from IGA theory, it becomes apparent that such inequalities and
conditions are satisfied for standard IGA spaces; see Section 6. In other words, without signifi-
cant effort, it can be shown using the Lemma 5.1 that various mixed weak formulations of the
Hodge–Laplace problems for the complexes (V ◦,D◦) from Altl-valued forms, along with IGA
discretizations, yield unique solutions. With the aforementioned lemma in mind, it is natural to
choose the space V k−1

h to be sufficiently large compared to V k
θ . However, this does not necessar-

ily result in well-posedness of the discretization scheme, as in (5.1.3) the infimum is also taken
over elements in V k−1

h . To establish a somewhat more manageable well-posedness condition,
we will therefore introduce an equivalent but modified mixed weak form. This change in the
variational formulation is inspired by the method of augmented Lagrangian functions from [52].

Definition 5.1 (Modified weak formulation). Given a f ∈ W k one seeks for (σ, u) ∈
V k−1 × V k with

〈σ, τ〉V − 〈u,Dk−1τ〉 = 〈f,Dk−1τ〉, ∀τ ∈ V k−1, (5.1.4)
〈Dk−1σ, v〉+ 〈Dku,Dkv〉 = 〈f, v〉, ∀v ∈ V k, (5.1.5)

where 〈·, ·〉V = 〈·, ·〉+ 〈Dk−1·,Dk−1·〉 denotes the graph inner product.

The new formulation is indeed equivalent to the one in Definition 4.5. Because, if on the one
hand (σ, u) solves the modified system we get by (5.1.5):

〈Dk−1σ,Dk−1τ〉 = 〈Dk−1σ,Dk−1τ〉+ 〈Dku,DkDk−1τ〉 = 〈f,Dk−1τ〉, ∀τ ∈ V k−1. (5.1.6)

Using this we get with (5.1.4) directly (4.2.32). On the other hand, let (σ, u) be the solution to
(4.2.32)-(4.2.33), then (4.2.32) together with (5.1.6) shows the validity of the modified system.
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More generally, we have the following. Namely, let us change the right-hand sides of the modified
system (5.1.4) and (5.1.5) to some arbitrary g ∈ (V k−1)′ and f ∈ (V k)′ in the dual spaces. Then
one sees with an analogous argument as above that there is a unique solution (σ, u) which satisfies
the original system (4.2.32)-(4.2.33) with right-hand sides g̃ = g− f(Dk−1·) and f̃ = f. In the last
sentence f(Dk−1·) denotes the linear form τ 7→ f(Dk−1τ). By the well-posedness of the original
mixed weak form we have

‖u‖V + ‖σ‖V ≤ C
(
‖g̃‖V ′ +

∥∥∥̃f∥∥∥
V ′

)
≤ C

(
‖g‖V ′ + 2 ‖f‖V ′

)
,

since |f(Dk−1τ)| ≤ C̃
∥∥∥Dk−1τ

∥∥∥
V
≤ C̃ ‖τ‖V , for proper constants C, C̃. By this observation, we

can conclude the well-posedness also for the new formulation from Definition 5.1.
After having justified why it is possible to consider the modified system as well, we now aim

to establish a first auxiliary statement concerning well-posedness.

Lemma 5.2. Assume

∀uθ ∈ V k
θ , ∃ηh ∈ V k−1

h s.t. |〈Dk−1ηh−PN (Dk)uθ, uθ〉| ≤ cΠ ‖uθ‖2 and ‖ηh‖V ≤ CΠ

∥∥∥PN (Dk)uθ
∥∥∥ ,

where 0 < cΠ < 1
2 , 0 < CΠ are constants independent of h and θ and PN (Dk) is the V -orthogonal

projection onto the kernel N (Dk,V k). Then the related discretization of the system from Defi-
nition 5.1 is well-posed.10

Proof. We follow the proof steps of Arnold from [5, Theorem 4.9], but with alterations at different
places.
By multiplying the second line (5.1.5) by −1 we see immediately that it is allowed to consider
the symmetric and bounded bilinear form

B̃
(
(σ, u), (τ, v)

)
:= 〈σ, τ〉V − 〈u,Dk−1τ〉 − 〈Dk−1σ, v〉 − 〈Dku,Dkv〉

to check well-posedness. To be more precise, we show for B̃ the discrete inf-sup stability; cf.
Definition 2.11. For this purpose fix some arbitrary (σh, uθ) ∈ V k−1

h ×V k
θ . In view of the Hodge

decomposition (Lemma 3.1) we can assume uθ = uB+u⊥B with 〈uB, u⊥B〉 = 0 and uB = PN (Dk)uθ.
Next we set

τh := σh −
1
C2

Π
ηh ∈ V k−1

h , vθ := −uθ ∈ V k
θ ,

where ηh is chosen such that it satisfies the two inequalities in the assertion. Inserting this choice
into the formula for B̃, we obtain

B̃
(
(σh, uθ), (τh, vθ)

)
= ‖σh‖2

V +
∥∥∥Dkuθ

∥∥∥2
− 1
C2

Π
〈σh, ηh〉V + 1

C2
Π
〈uθ,Dk−1ηh〉. (5.1.7)

Then, analogous to the proof of Theorem 4.9 in [5], we estimate the second last term of (5.1.7)
utilizing the Cauchy–Schwarz inequality together with the algebraic-geometric mean inequality.
More precisely,

|〈σh, ηh〉V | ≤
C2

Π
2 ‖σh‖

2
V + 1

2C2
Π
‖ηh‖2

V ≤
C2

Π
2 ‖σh‖

2
V + 1

2 ‖uB‖
2 . (5.1.8)

10V -orthogonal means orthogonality w.r.t. the graph inner product 〈·, ·〉V = 〈·, ·〉+ 〈Dk·,Dk·〉.
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Moreover for the last term in (5.1.7) one has the inequality

〈uθ,Dk−1ηh〉 = 〈uB, uB〉+ 〈uθ,Dk−1ηh − uB〉 (5.1.9)

and by assumption
|〈uθ,Dk−1ηh − uB〉| ≤ cΠ ‖uθ‖2 . (5.1.10)

By the Poincaré inequality (Lemma 3.2), applied to the continuous complex, one can estimate
∥∥∥Dkuθ

∥∥∥2
≥ 1
C2
P

∥∥∥u⊥B∥∥∥2
. (5.1.11)

W.l.o.g. we can suppose CΠ ≥ CP . Otherwise we can just set CΠ := CP and redo the previous
proof steps. Thus we can combine the lines (5.1.8)-(5.1.11) to see

B̃
(
(σh, uθ), (τh, vθ)

)
≥
(

1− 1
2

)
‖σh‖2

V + 1
C2

Π

(
1− 1

2

)
‖uB‖2 +

∥∥∥Dkuθ
∥∥∥2
− cΠ

C2
Π
‖uθ‖2

≥ 1
2 ‖σh‖

2
V + 1

2C2
Π
‖uB‖2 + 1

2
∥∥∥Dkuθ

∥∥∥2
+ 1

2C2
Π

∥∥∥u⊥B∥∥∥2
− cΠ

C2
Π
‖uθ‖2

≥ 1
2 ‖σh‖

2
V + 1

2
∥∥∥Dkuθ

∥∥∥2
+
( 1

2C2
Π
− cΠ

C2
Π

)
‖uB‖2 +

( 1
2C2

Π
− cΠ

C2
Π

) ∥∥∥u⊥B∥∥∥2
.

One notes ‖uθ‖2 = ‖uB‖2 +
∥∥∥u⊥B∥∥∥2

. Setting C = min{1
2 ,

1
2C2

Π
− cΠ

C2
Π
} > 0 we get

B̃
(
(σh, uθ), (τh, vθ)

)
≥ C

(
‖σh‖2

V + ‖uh‖2
V

)
. (5.1.12)

Moreover, one easily sees ‖τh‖V ≤ ‖σh‖V + 1
CΠ
‖uB‖ ≤ ‖σh‖V + 1

CΠ
‖uθ‖ and ‖vθ‖V = ‖uθ‖V .

The last norm estimates, (5.1.12) and the arbitrariness of (σh, uθ) imply the inf-sup property
(5.1.3) with B replaced by B̃. This finishes the proof.

The assumptions required in the previous Lemma 5.2 may appear complex and not immedi-
ately evident. In fact, these are satisfied when a special inf-sup condition is met, as the next
lemma demonstrates.

Lemma 5.3. Let PN (Dk) denote the V -orthogonal projection onto the kernel N (Dk,V k). If we
have a family of discrete spaces (V k−1

h , V k
θ )θ in the sense of Assumption 5.1, such that

inf
vθ∈V k

θ
, PN (Dk)vθ 6=0

sup
06=τh∈V k−1

h

〈Dk−1τh,PN (Dk)vθ〉
‖τh‖V

∥∥∥PN (Dk)vθ
∥∥∥ ≥ CIS > 0 , (5.1.13)

with CIS not depending on θ, then the corresponding discretization of the mixed weak form
(5.1.4)-(5.1.5) is well-posed.

Proof. We define the finite-dimensional linear space Rθ := PN (Dk)V
k
θ ⊂ L2(Ω) ⊗ Vk. And we

write PR : L2(Ω)⊗ Vk → Rθ for the L2-orthogonal projection onto that space. Furthermore,

T : V k−1
h → Rθ , w 7→ PRDk−1w

is a bounded linear map in the sense ‖Tw‖ ≤ C ‖w‖V . In particular, due to the assumed inf-sup
condition we can apply Lemma 2.5 to see for each PN (Dk)uθ ∈ Rθ the existence of a τh ∈ V k−1

h

with
‖τh‖V ≤

1
CIS

∥∥∥PN (Dk)uθ
∥∥∥ , PRDk−1τh = PN (Dk)uθ. (5.1.14)
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Let uθ = uB + u⊥B with uB = PN (Dk)uθ, u
⊥
B ∈ N (Dk,V k)⊥V . Hence, we obtain

〈Dk−1τh − PN (Dk)uθ, uθ〉 = 〈Dk−1τh, uB〉 − 〈uB, uB〉
= 〈PRDk−1τh, uB〉 − 〈uB, uB〉 = 0. (5.1.15)

Combining (5.1.14) and (5.1.15) the assertion follows directly by Lemma 5.2.

Remark 5.1. The inf-sup condition occurring in the last lemma is valid in the continuous setting
because of the Poincaré inequality; see Lemma 3.2. Hence, this condition is in some sense natural
and we can set for the non-discretized spaces just CIS = 1/CP , where CP is the underyling
Poincaré constant related to Dk−1. Indeed, assuming the Poincaré inequality we find for each
v ∈ V k a ρ ∈ N (Dk−1,V k−1)⊥V with Dk−1ρ = PN (Dk)v, ‖ρ‖V ≤ CP

∥∥∥PN (Dk)v
∥∥∥. Hence,

inserting this special ρ into the expression from (5.1.13) we see directly the possibility to set
indeed CIS = 1/CP for the continuous case.
The inf-sup condition of the Lemma 5.3 is particularly interesting because it provides a di-

rection on how to modify the discrete spaces in order to increase the chance of achieving well-
posedness. In equation (5.1.13), the infimum is taken only over elements in PN (Dk)V

k
θ , and the

supremum is taken over elements in V k−1
h . This suggests that by considering a sufficiently large

space V k−1
h compared to V k

θ , the inf-sup condition might be satisfied. In other words, mesh
refinements for the σ space, meaning for theV k−1

h , appear to stabilize the modified weak system.
This line of thought also aligns with the Lemma 5.1, which requires sufficiently small fractions
h
θ
. Later, we will revisit this point regarding inf-sup stability for the modified system in Section

10.1. In the next section, we will delve into the important special case of k = n in Definition
5.1, leading us to a saddle-point structure for which more precise statements are available.

5.2 Restriction to saddle-point systems
Next we show special conditions how to achieve well-posedness for the situation k = n. This
means in alignment with the BGG construction in Lemma 4.6 we assume here Dk = Dn = 0 in
(5.1.4)-(5.1.5). Besides we suppose Assumption 4.3 and that the output complex fulfills

Assumption 5.3.

R(Dn−1, H l(U)⊗ Vn−1) = L2(U)⊗ Vn, l := ord(Dn−1), (5.2.1)

on each bounded Lipschitz domain U .

Then the modified continuous mixed weak form given in Definition 5.1 for the Hodge–Laplace
problem reduces to:

Find (σ, u) ∈ V n−1 × V n s.t.

〈σ, τ〉V −〈u,Dn−1τ〉 = 〈f,Dn−1τ〉, ∀τ ∈ V n−1, (5.2.2)
〈Dn−1σ, v〉 = 〈f, v〉, ∀v ∈ V n, (5.2.3)

with its discrete pendant: Find (σh, uθ) ∈ V n−1
h × V n

θ s.t.

〈σh, τh〉V −〈uθ,Dn−1τh〉 = 〈f,Dn−1τh〉, ∀τh ∈ V n−1
h , (5.2.4)

〈Dn−1σh, vθ〉 = 〈f, vθ〉, ∀vθ ∈ V n
θ . (5.2.5)
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In our discussions in Section 4.2.2, the assumption was always dn = 0, d̄n = 0, which explains
why indeed Dn = 0. Hence, we obtain the nice property PN (Dn) = id and in this situation the
inf-sup condition from Lemma 5.3 simplifies to

inf
06=vθ∈V n

θ

sup
06=τh∈V n−1

h

〈Dn−1τh, vθ〉
‖τh‖V ‖vθ‖

≥ CIS > 0. (5.2.6)

In view of the trivial coercivity relation a(τ, τ) := 〈τ, τ〉V = ‖τ‖2
V the latter line obviously

corresponds to the classical inf-sup condition for saddle-point problems; see Lemma 2.11 . So
we can interpret (5.1.13) as a generalized version of the inf-sup condition for non-saddle-point
problems induced by the Hodge–Laplace problem.
Similar to Lemma 5.2, we see immediately the following

Corollary 5.1. Let (V n−1
h , V n

θ )θ be a family of discrete spaces in the sense of Assumption 5.1.
Assume the existence of constants 0 < cΠ < 1, 0 < CΠ not depending on θ s.t. we find for each
vθ ∈ V n

θ a τh ∈ V n−1
h with∥∥∥Dn−1τh − vθ

∥∥∥ ≤ cΠ ‖vθ‖ and ‖τh‖V ≤ CΠ ‖vθ‖ .

Then the discretization (5.2.4)-(5.2.5) of the saddle-point system is well-posed.

Proof. We get directly (5.2.6), which finishes the proof, due to Lemma 5.3.

The conditions of Corollary 5.1 are easy to write down, but so far it is not clear how we can
actually satisfy them in concrete cases. Moreover, for a given output complex and FE spaces, it
is not immediately apparent whether we can apply the aforementioned corollary. Therefore, it
is reasonable to demand some additional structure for the discrete spaces, so that we can arrive
at conditions that are easier to fulfill. We aim to do this in the following.
The idea now is as follows. While it is true that for the second-order complexes (V ◦,Jn ,D◦,Jn )

from Section 4.2.3, no structure-preserving IGA method is known for arbitrary domains Ω, there
are indeed such methods for very simple geometries. Specifically, as long as Ω has a cubic
shape, it is relatively easy to derive structure-preserving discretizations for various second-order
complexes. We will delve into this point further in Section 7. Therefore, it is reasonable to
leverage these known results for other Lipschitz domains as well. This is precisely what we aim
to demonstrate with the next lemma. Namely, the existence of suitable structure-preserving
discretizations on cubical domains yields well-posed discretizations for the saddle-point problem
(5.2.2)-(5.2.3) on deformed domains. In doing so, we need to consider not only the original
complex of the computational domain Ω but also the analogous complex (Ṽ ◦,D◦) on an auxiliary
domain K ⊃ Ω. In particular, in addition to (V n−1

h ,V n
θ ), we have spaces Ṽ i

ρ that discretize the
auxiliary complex (Ṽ ◦,D◦). How exactly these additional spaces can be used for our original
saddle-point problem is illustrated by the following lemma.

Lemma 5.4. The points from Assumptions 5.2 and 5.3 apply for the case k = n and let
l = ord(Dn−1). Besides, we have the following additional requirements and assumptions:
Let Ω ⊂ K, K bounded Lipschitz domain, such that there is a structure-preserving discretization
(Ṽ ◦ρ )ρ, ρ = 1

m
, m ∈ N>0 of the output complex (Ṽ ◦,D◦) on the auxiliary domain K; see Defini-

tion 3.11. We require Ṽ n−1
ρ ⊂ H l+1(K) ⊗ Vn−1, Ṽ n

ρ ⊂ H1(K) ⊗ Vn and further the associated
bounded cochain projections Π̃i

ρ : Ṽ i → Ṽ i
ρ should satisfy

•
∥∥∥Π̃n−1

ρ w
∥∥∥
Hs(K)

≤ C̃1 ‖w‖Hs(K) , ∀w ∈ Hs(K)⊗ Vn−1, 0 ≤ s ≤ l + 1 ,
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•
∥∥∥Π̃n

ρw − w
∥∥∥
Hs(K)

≤ C̃1ρ
j−s ‖w‖Hj(K) , ∀w ∈ Hj(K)⊗ Vn, 0 ≤ s ≤ j ≤ 1 .

Moreover there is a constant C̃2 with

• ‖wρ‖Hl+1(K) ≤ C̃2ρ
−1 ‖wρ‖Hl(K) , ∀wρ ∈ Ṽ n−1

ρ ,

• ‖wρ‖H1(K) ≤ C̃2ρ
−1 ‖wρ‖L2(K) , ∀wρ ∈ Ṽ n

ρ .

Let (V n−1
h , V n

θ )θ be a family of discrete spaces in the sense of Assumption 5.1. Then, there is a
constant cR > 0 s.t. if h = h(θ) ≤ cR θ, we obtain a well-posed discretization of (5.2.2)-(5.2.3).

Proof. The basic idea is to apply at the end Corollary 5.1.
We start by choosing some vθ ∈ V n

θ . By the Stein extension theorem (see Lemma 2.8) we find
a ṽ ∈ H1(K)⊗ Vn s.t.

ṽ = vθ on Ω and ‖ṽ‖Hi(K) ≤ CE ‖vθ‖Hi(Ω) , i = 0, 1. (5.2.7)

Set now ṽρ := Π̃n
ρ ṽ ∈ H1(K)⊗Vn. By the exactness of the output complex (see (5.2.1)) we find

a τ̃ ∈ H l(K)⊗ Vn−1 with

‖τ̃‖Hl(K) ≤ C̃B ‖ṽρ‖L2(K) , Dn−1τ̃ = ṽρ, (5.2.8)

for a suitable constant C̃B; cf. Corollary 4.2. Hence, by the structure-preserving discretization
on K we have for τ̃ρ := Π̃n−1

ρ τ̃ directly

Dn−1τ̃ρ = Dn−1Π̃n−1
ρ τ̃ = Π̃n

ρD
n−1τ̃ = ṽρ, ‖τ̃ρ‖Hl(K) ≤ C̃1 ‖τ̃‖Hl(K) ≤ C̃1C̃B ‖ṽρ‖L2(K) , (5.2.9)

where the last inequalities are due to assumption and (5.2.8). Further we define

τh := Πn−1
h τ̃ρ,| ,

where τ̃ρ,| ∈ H l+1(Ω) ⊗ Vn−1 is the restriction of τ̃ρ to Ω and Πn−1
h is the projection from

Assumption 5.2 (Note: k = n). Then, with the different definitions we can go ahead with some
estimates.∥∥∥Π̃n

ρ ṽ − ṽ
∥∥∥
L2(K)

≤ C̃1ρ ‖ṽ‖H1(K) ≤ C̃1CEρ ‖vθ‖H1(Ω) ≤ C̃1CEC2
ρ

θ
‖vθ‖L2(Ω) . (5.2.10)

In the last line we utilized (5.2.7) and Assumption 5.2. Next we see∥∥∥Dn−1τh − vθ
∥∥∥
L2(Ω)

≤
∥∥∥Dn−1τh −Dn−1τ̃ρ

∥∥∥
L2(Ω)

+
∥∥∥Dn−1τ̃ρ − vθ

∥∥∥
L2(Ω)

=
∥∥∥Dn−1τh −Dn−1τ̃ρ

∥∥∥
L2(Ω)

+ ‖ṽρ − vθ‖L2(Ω)

(5.2.7)
≤ C1h ‖τ̃ρ‖Hl+1(Ω) +

∥∥∥Π̃n
ρ ṽ − ṽ

∥∥∥
L2(Ω)

(see Assumption 5.2)

≤ C1C̃2
h

ρ
‖τ̃ρ‖Hl(K) + C̃1CEC2

ρ

θ
‖vθ‖L2(Ω)

(5.2.9)
≤ C1C̃2C̃1C̃B

h

ρ
‖ṽρ‖L2(K) + C̃1CEC2

ρ

θ
‖vθ‖L2(Ω)

(5.2.7)
≤ C1C̃2C̃1C̃BCE

h

ρ
‖vθ‖L2(Ω) + C̃1CEC2

ρ

θ
‖vθ‖L2(Ω) .
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For the second inequality sign one notes Dn−1τ̃ρ = ṽρ and for the fourth one we applied (5.2.10).
Consequently, there are constants c1, c2 independent of mesh sizes with

∥∥∥Dn−1τh − vθ
∥∥∥
L2(Ω)

≤
(
c1
h

ρ
+ c2

ρ

θ

)
‖vθ‖L2(Ω) =: CRes ‖vθ‖L2(Ω) . (5.2.11)

The idea is now to show that there is a cR > 0 such that the condition h ≤ cRθ implies a ρ s.t.(
c1
h
ρ

+ c2
ρ
θ

)
= CRes ≤ 4

5 . Let now h ≤ cRθ for some cR > 0. In more detail, let us consider the
two conditions

c1
h

ρ

!
≤ 2

5 , c2
ρ

θ

!
≤ 2

5 .

Hence,
5c1

2 h ≤ ρ ≤ 2
5c2

θ,
5c1 cR

2 θ ≤ ρ ≤ 2
5c2

θ , respectively.

Inserting our assumption ρ = 1
m

one gets the conditions

5c2

2θ ≤ m ≤ 2
5c1cRθ

and m ∈ N.

In other words, if the last conditions for m are satisfied, we can set CRes ≤ 4
5 , provided h ≤ cRθ.

In fact, we can choose always such an m since 1
θ

(
2

5c1cR −
5c2
2

)
> 1 for cR small enough. Noting

that a mesh refinement means a decreasing of θ we indeed get a constant cR.
Furthermore, we obtain for the norm of τh the next inequality chain:

‖τh‖V ≤ C1 ‖τ̃ρ‖Hl(Ω) (see Assumption 5.2)
(5.2.9)
≤ C1C̃1C̃B ‖ṽρ‖L2(K)

≤ C1C̃1C̃B(1 + C̃1) ‖ṽ‖L2(K)
(5.2.7)
≤ C1C̃1C̃B(1 + C̃1)CE ‖vθ‖L2(Ω) . (5.2.12)

So we have now demonstrated two things. On the one hand, we have seen that it is possible
to choose CRes < 1 in (5.2.11). And on the other hand, we have the norm estimate (5.2.12).
Further, all the different constants appearing above do not depend on the mesh sizes or specific
space elements. This means that when we apply Corollary 5.1 now, we directly obtain the
claim.

By exploiting the structure-preserving discretizations on K, we now obtain a practical condi-
tion h

!
≤ cRθ, with an appropriate constant cR, to see the well-posedness of the discretization.

Although a series of constants appear in the actual proof, giving the impression that this cR
must be chosen very small, later numerical tests show that only very moderate and in some
cases no additional mesh refinements, i.e. h = θ, are necessary to observe stable convergence
behavior. This raises the hope that cR is often larger than what the pessimistic estimates in the
proof might indicate.
Remark 5.2. To simplify the proof of Lemma 5.4 we made the assumption that the mesh sizes
for the auxiliary spaces are of the form ρ = 1

m
. Certainly, other mesh sizes are still possible and

lead to analgous results. For example, there is no issue to have ρ = c
m
, m ∈ N>0 for a constant

c in the proof. The only thing that might change is the constant cR that relates h and θ.
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5.3 Discretization approach utilizing Lagrange multiplier
Within last section, we have now established different well-posedness criteria for a modified vari-
ational problem (see Definition 5.1) coming from the Hodge–Laplace problem. One drawback
of the above elaborations is the departure from the concept of a structure-preserving discretiza-
tion in the sense of FEEC. For example, we did not care about the subcomplex property and
for sure we have in general Dn−1V n−1

h * V n
θ . This is already clear by the mentioned possible

choice of different meshes for the σ and u variable. However, in constructing complexes using
the BGG procedure in Section 4.2.2, it shows that for a linking map SJ 6= Sn−1 a different
discretization approach is appropriate. In such a case, the suitability of the Lagrange multiplier
method from Section 4.2.4 becomes apparent, as it allows us to reintroduce the concept of a
structure-preserving complex discretization. We would like to briefly explain this approach in
the following. However, we also want to emphasize that this ansatz has already been demon-
strated and utilized in other works, such as [10, 7, 42]. Nevertheless, in this context, we aim to
present a somewhat modified and more abstract version.
Here, for the second discretization ansatz we are still in the framework of Section 4.2.2. But

to clarify our setting once more, let us summarize additional key assumptions for the upcoming
explanations.

Assumption 5.4.

• We require Assumption 4.3 for the situation k = n. In particular we also take the points
from Assumption 4.1 for granted.

• The differential operators di, d̄i from (4.2.7) define closed L2 Hilbert complexes (W̄ ◦, d̄◦)
and (W ◦, d◦), where

W̄ i := L2(Ω)⊗ Ēi, W i := L2(Ω)⊗ Ei.

Then the associated domain complexes are denoted with (Ū◦, d̄◦) and (U◦, d◦), meaning

Ū i := H(Ω, d̄i, Ēi), U i := H(Ω, di,Ei).

Thus, we require

R(dn−1, H l(Ω)⊗ En−1) = Un = L2(Ω)⊗ En, l := ord(dn−1). (5.3.1)

• The index J appearing in the BGG construction (see Definition 4.2) fulfills the condition
J < n − 1, i.e. in view of the notation from Section 4.2.2, line (4.2.10) and Lemma 4.6,
respectively, it is U i = U i,D i = di for i = n− 1 and i = n.

One notes that the linking maps Si : L2(Ω)⊗Ei → L2(Ω)⊗ Ēi+1 from Assumption 4.1 satisfy
d̄i+1 ◦ Si = −Si+1 ◦ di on H(Ω, di,Ei). Thus, we directly have Si : U i → Ū i+1. Consequently,
with the above mentioned points and remarks we obtain the diagram structure

Un−2 Un−1 Undn−2 dn−1
0.. . .

Ūn−2 Ūn−1 Ūnd̄n−2 d̄n−1
0. . .

Sn−2 Sn−1

Now let us use this connection of the different spaces to discretize the mixed weak formulation
of the Hodge–Laplace problem ((4.2.32)-(4.2.33)) of level k = n.
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In Section 4.2.4 we saw the feasibility of the Lagrange multiplier formulations for the mixed weak
Hodge–Laplace formulation. One notes that for the special setting clarified through Assumption
5.4 we have n = k > J + 1. Thus, in view of (4.2.43)-(4.2.46) we see that one can consider
instead of (4.2.32)-(4.2.33) the new problem: Find (σ, u, κ) ∈ Un−1 × Un × Ūn s.t.

〈σ, τ〉 −〈u, dn−1τ〉+ 〈κ, Sn−1τ〉 = 0, ∀τ ∈ Un−1, (5.3.2)
〈dn−1σ, v〉 = 〈f, v〉, ∀v ∈ Un, (5.3.3)
〈Sn−1σ, η〉 = 0, ∀η ∈ Ūn, (5.3.4)

given a f ∈ Un. One observes that for our setting here Un−1 = U n−1, Un = U n and Ūn+1 = {0},
which yields only one multiplier κ in contrast to the system (4.2.43)-(4.2.46).
Since Dn−1 = dn−1 and due to the appearing spaces Un−1, Un in the system with Lagrange
multiplier the idea is to exploit structure-preserving discretizations for (U◦, d◦). Attaining the
latter is often easier in applications when compared to directly discretizing the BGG output
complex. Then one can prove another well-posedness statement.

Lemma 5.5. Let Assumption 5.4 hold and suppose that suitable spaces (U j
h)h ⊂ U j define a

structure-preserving discretization of the bottom domain complex (U◦, d◦); cf. Definition 3.11.
Further let Ūn

h ⊂ Ūn s.t. the inf-sup condition

inf
06=ηh∈Ūnh

sup
0 6=τh∈Un−2

h

〈d̄n−1Sn−2τh, ηh〉
‖τh‖U ‖ηh‖

≥ CIS > 0 (5.3.5)

is valid, where CIS does not depend on h and ‖τ‖2
U := ‖τ‖2 + ‖dn−2τ‖2.

Then the discrete system with multiplier, i.e. the problem to seek for (σh, uh, κh) ∈ Un−1
h ×Un

h ×
Ūn
h s.t.

〈σh, τh〉 −〈uh, dn−1τh〉+ 〈κh, Sn−1τh〉 = 0, ∀τh ∈ Un−1
h , (5.3.6)

〈dn−1σh, vh〉 = 〈f, vh〉, ∀vh ∈ Un
h , (5.3.7)

〈Sn−1σh, ηh〉 = 0, ∀ηh ∈ Ūn
h , (5.3.8)

determines a well-posed discretization; see Definition 2.11.

Proof. The proof is inspired by the proof steps in [42, Theorem 9.1].
At different places below we will write for the reason of readability A ≺ B, if expression A is
smaller than B up to some constant C, where C does not depend on appearing specific space
elements. Further, we use the abbreviation ‖·‖U for the graph norms related to the di, U i,
respectively.
First we set

Z :=
{
τh ∈ Un−1

h

∣∣∣ 〈vh, dn−1τh〉+ 〈ηh, Sn−1τh〉 = 0, ∀(vh, ηh) ∈ Un
h × Ūn

h

}
and a(σ, τ) := 〈σ, τ〉. By the subcomplex property, meaning dn−1Un−1

h ⊂ Un
h , we see that

a(σh, σh) = ‖σh‖2
U , ∀σh ∈ Z. (5.3.9)

Fix some arbitrary (uh, κh) ∈ Un
h × Ūn

h and set l := ord(dn−1).
By the exactness assumption (5.3.1) at level n we find due to Corollary 2.1 a ν ∈ H l(Ω)⊗En−1

that satisfies
dn−1ν = uh and ‖ν‖Hl ≺ ‖uh‖ .
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This implies
dn−1νh = uh, ‖νh‖U ≺ ‖uh‖ , (5.3.10)

if νh := Πn−1
h ν with Πj

h denoting the L2-bounded cochain projections onto (U◦h , d◦).
Let P̄ n

h : L2(Ω)⊗ Ēn → Ūn
h denote the L2-orthogonal projection onto the space Ūn

h .
Consequently, 〈d̄n−1Sn−2τ, ηh〉 = 〈P̄ n

h d̄
n−1Sn−2τ, ηh〉, ∀ηh ∈ Ūn

h , τ ∈ Un−2. Hence, because of the
inf-sup inequality (5.3.5) from the assertion and applying Lemma 2.5 we see that

P̄ n
h d̄

n−1Sn−2 : Un−2
h → Ūn

h (compare Figure 5)

has a bounded right-inverse, where the operator norm bound for the right-inverse does not
depend on h. More precisely, it is possible to choose a wh ∈ Un−2

h s.t.

P̄ n
h d̄

n−1Sn−2wh = P̄ n
h S

n−1νh − κh and ‖wh‖U ≺
∥∥∥P̄ n

h S
n−1νh − κh

∥∥∥ .
Set τh := dn−2wh + νh ∈ Un−1

h . Then, on the one hand, it follows dn−1τh = dn−1νh = uh and

〈Sn−1τh, κh〉 = 〈−d̄n−1Sn−2wh + Sn−1νh, κh〉 = 〈−P̄ n
h d̄

n−1Sn−2wh + P̄ n
h S

n−1νh, κh〉
= 〈κh − P̄ n

h S
n−1νh + P̄ n

h S
n−1νh, κh〉 = ‖κh‖2 . (5.3.11)

One notes d̄n−1Sn−2wh = −Sn−1dn−2wh. And on the other hand, we can estimate

‖τh‖U ≤
∥∥∥dn−2wh

∥∥∥+ ‖νh‖+
∥∥∥dn−1νh

∥∥∥
≺
∥∥∥Sn−1νh − κh

∥∥∥+ ‖uh‖ ≺ ‖κh‖+ ‖uh‖ . (5.3.12)

The last estimates (5.3.10)-(5.3.12) yield

‖κh‖2 + ‖uh‖2 = 〈dn−1τh, uh〉+ 〈Sn−1τh, κh〉
‖τh‖U ≺ ‖κh‖+ ‖uh‖ .

The arbitrariness of the tuple (uh, κh) leads to the inf-sup relation

inf
(0,0)6=(vh,ηh)∈Un

h
×Ūn

h

sup
06=σh∈Un−2

h

〈dn−1σh, vh〉+ 〈Sn−1σh, ηh〉
‖σh‖U (‖ηh‖+ ‖vh‖)

≥ C > 0 . (5.3.13)

This and (5.3.9) finish the proof, due to Lemma 2.11.

For the sake of clarity and a better understanding, in the next figure, we have displayed all
the relevant spaces and projections appearing in the proof of the previous lemma for this second
approach involving the Lagrange multiplier.
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Figure 5: If k = n and J < n− 1 one can use structure-preserving discretizations of the bottom chain
to state a well-posedness condition for the Lagrange multiplier formulation. In this situation
we only need Un−1

h , Unh , Ū
n
h for disretization, whereas Un−2

h is an auxiliary space relevant for
the mentioned condition.

For the specific Hodge–Laplace problem implied by the output complex at level n, we see
here that knowledge of a discretization of the input complexes might be helpful. This raises
the question: Why not always discretize the input complexes in a structure-preserving manner
during the BGG construction procedure to create Finite Element spaces for the actual output
complex (V ◦,D◦) ? Although this approach initially sounds promising, it becomes evident
that generally the discretization of the input chains is not compatible with the linking maps.
By the previously introduced notation and the properties of Si we have e.g. Si : U i → Ū i+1.
Such relations often do not hold if we go to the discrete setting and use structure-preserving
discretizations U j

h ⊂ U j, Ū j
h ⊂ Ū j. This is why the BGG construction from Section 4.2 is an

important tool for generating and studying new Hilbert chains. However, in general, it does not
directly address the question of how to find proper discretizations of the generated sequences.
We want to conclude the investigation regarding the discretization of the complex (V ◦,D◦)

within the more abstract setting for now and finally take a step towards concrete numerical
methods and applications. Specifically, we will now turn to the theory of isogeometric analysis
and briefly outline the key ideas and fundamental concepts of this numerical paradigm. This will
lay the groundwork, or rather, define the FE spaces that we will also use to develop discretization
schemes. The plan and long-term objective is to apply both Lemmata 5.4 and 5.5 in the context
of the complexes (V ◦,Jn ,D◦,Jn ) from Altl-valued forms (defined though Lemma 4.9) exploiting
results and ideas of isogeometric analysis.
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6 Isogeometric Analysis
The objective of this section is to summarize main aspects within the field of Isogeometric
Analysis (IGA) and to state some expedient results for the considerations later in the text. Fun-
damental idea behind IGA is to use the same function spaces for representing or parameterizing
the computational domain as well as for defining the actual FE spaces. Typically, B-splines or
NURBS are used for this purpose, bridging the capabilities of Computer-Aided Design (CAD)
with classical FE theory. In addition to providing greater flexibility in representing geometries,
this approach also allows for easier manipulation of the regularity of the basis functions. The de-
velopment of the underlying numerical paradigm was triggered by Hughes et al. in 2005 through
the seminal paper [49].
Certainly, the subsequent remarks and statements should not be seen as an exhaustive introduc-
tion into this wide field and we refer interested readers to the publications [61] or [31, 17] on this
subject to get more detailed information. Below we divide the explanations roughly into three
parts. We start with the definition of B-splines and NURBS which are the elementary function
classes for isogeometric methods. Thereafter we show how one can define isogeometric discrete
functions spaces utilizing the mentioned B-splines. And as a last point we look at properties of
the introduced objects. In particular we concentrate on projections onto the finite-dimensional
spline spaces and related approximation properties. Here, our main references are [31, 49] as
well as [17, 27] and we orient ourselves towards the results and notions of them.

6.1 B-splines and NURBS
Our starting point are some very basic definitions that however are necessary to understand the
important properties of isogeometric function spaces, e.g. the possibility to regulate the function
smoothness.

6.1.1 Univariate case
As done quite often in books and papers dealing with B-splines and NURBS we begin with
definitions in the one-dimensional case. Because, the definition of the multivariate splines will
be obtained from the 1D case by a tensor product argument.
An non-decreasing sequence of real numbers

Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1} (6.1.1)

for some p ∈ N is named a knot vector. If the multiplicity of the first and last knots ξ1 and
ξn+p+1 is p+ 1, which means ξ1 = ξ2 = · · · = ξp+1 and ξn+1 = ξn+2 = · · · = ξn+p+1, then the knot
vector is referred to as p-open. Further, we write mj for the multiplicity of the j-th knot, i.e. it
is

{ξ1, . . . , ξ1︸ ︷︷ ︸
m1 times

, ξ2, . . . , ξ2︸ ︷︷ ︸
m2 times

, . . . } .

Definition 6.1 (B-splines). The B-spline functions B̂i,p of degree p corresponding to a given
p-open knot vector Ξ = {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1} is defined recursively by the Cox–DeBoor
formula:

B̂i,0(ζ) :=
1, if ζ ∈ [ξi, ξi+1),

0, else,
(6.1.2)
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and if p ∈ N≥1 we set

B̂i,p(ζ) := ζ − ξi
ξi+p − ξi

B̂i,p−1(ζ) + ξi+p+1 − ζ
ξi+p+1 − ξi+1

B̂i+1,p−1(ζ). (6.1.3)

In the last line we use the convention 0/0 := 0 to obtain well-definedness.

In view of the previous definition we obtain n splines B̂1,p, . . . , B̂n,p for degree p if the knot
vector has the form (6.1.1).

Assumption 6.1. If we consider B-splines of degree p then we require the underlying knot
vector to be p-open and that the multiplicity of each knot is bounded by p + 1. Further, w.l.o.g.
we assume the first and last knot to be 0, 1, respectively.

Due to the recursive definition we get several properties for B-spline functions. The most
important ones, at least for our purposes, are listed in the subsequent lemma.

Lemma 6.1 (Properties of the B-splines). alskdj

• B-splines are piecewise smooth. To be more precise, B̂i,p restricted to each open interval
(ξj, ξj+1) is a polynomial of degree p. The support of the spline B̂i,p is a subset of the
interval [ξi, ξi+p+1].

• If the multiplicities of all inner knots mj fulfill 1 ≤ mj ≤ m ≤ p then one has
B̂i,p ∈ Cp−m((ξ1, ξn+p+1)). Further, if the multiplicity at a knot ξj fulfills m(ξj) = p + 1,
then there exist B-splines which are discontinuous at ξj; cf. Figure 7 (b).

• The B-spline functions B̂1,p, . . . , B̂n,p are linearly independent and form a partition of unity,
this means ∑i B̂i,p = 1.

• For p ≥ 1 and in the interior of each open knot interval we can compute the derivative
∂ζB̂i,p via the formula

∂ζB̂i,p(ζ) = p

ξi+p − ξi
B̂i,p−1(ζ)− p

ξi+p+1 − ξi+1
B̂i+1,p−1(ζ) (6.1.4)

with B̂1,p−1(ζ) := B̂n+1,p−1(ζ) := 0. Consequently, derivatives of B-splines yield again
B-splines and the differentiation can be implemented efficiently.

Proof. Follows by induction utilizing the Cox–DeBoor formula and the remarks in [31, Section
2.1.1].

As an example, we display in Figure 6 the six B-spline functions of degree p = 2 and their
first derivatives corresponding to the knot vector Ξ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}.
Next we define NURBS (Non-uniform rational B-splines) with the help of B-splines and

so-called weights w1, . . . , wn ∈ R>0.11 That is done by the following formula.

Definition 6.2 (NURBS). For given knot vector Ξ of the form (6.1.1) and positive weights
w1, . . . , wn we define the NURBS basis functions

N̂i,p(ζ) := wi B̂i,p(ζ)∑n
j=1wj B̂j,p(ζ)

, for i = 1, . . . , n. (6.1.5)

11R>0 denotes the set of positive real numbers.
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(a) Quadratic B-spline functions
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Figure 6: Due to the multiplicity m = 1 of the interior knots we obtain C1-regular B-splines B̂i,p on
the left. The corresponding first derivatives ∂ζB̂i,p are shown on the right.

To show the influence of the wi we display in Figure 7 (a) the quadratic NURBS obtained by
the B-splines from Figure 6 (a) together with a vector of weights w = (1, 4, 2, 1, 3, 1). Obviously,
NURBS can be interpreted as generalized B-splines since the choice w1 = 1, . . . , wn = 1 yields
the usual B-splines. Without difficulties, similar properties as in Lemma 6.1 can be proven for
NURBS, too. This means the piecewise smoothness holds and one sees N̂i,p ∈ Cp−m((ξ1, ξn+p+1))
if m bounds the multiplicity of the inner knots. Furthermore, the functions N̂1,p, . . . , N̂n,p remain
linearly independent. The space spanned by the NURBS determined by the knot vector Ξ, the
weights w1, . . . , wn and the degree p is denoted as

N̂(Ξ, p,W ) := span{N̂1,p, . . . , N̂n,p},

where W (ζ) := ∑n
j=1wj B̂j,p(ζ) is called weight function. Using NURBS we can parameterize

curves. Namely, provided control points C1, . . . ,Cn ∈ Rn we get with

F (ζ) =
n∑
i=1

N̂i,p(ζ) Ci,

a curve which starts in C1 and ends at Cn. The idea of using NURBS for the description of
geometric objects or for parametrization is fundamental. Admittedly, the one-dimensional case
with its curves is quite limiting, but an analogous combination of NURBS and control points is
also carried out in the multi-dimensional case later on. However, before that, we would like to
explain two ways to refine a given NURBS space. In other words, we are looking for ways to
obtain a new space N̂(Ξ̃, p̃,W ) ⊃ N̂(Ξ, p,W ) from N̂(Ξ, p,W ). In doing so, we aim to maintain
regularity at the internal knot points, and the weight functionW should also remain unchanged.
The latter is important for NURBS parametrizations in order to modify the NURBS spaces
without changing the geometry.

• h-refinement: On the one hand, it is possible to successively insert additional knots
ξ̃1, . . . , ξ̃k so that a new knot vector Ξ̃ ⊃ Ξ is obtained. The polynomial degree remains
fixed in this process, i.e. p̃ = p. The knot insertion will later correspond to a step of mesh
refinement in isogeometric methods. The procedure for inserting a single knot ξ̃1 can be
condensed in three steps:
– Find j such that ξj ≤ ξ̃1 ≤ ξj+1.
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(a) Quadratic NURBS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) B-splines with discontinuity

Figure 7: On the left we see the deformed B-splines from Figure 6 (a) due to a non-trivial weight
function. On the right we see B-splines with a discontinuity at 0.6 because of the knot vector
{0, 0, 0, 0.25, 0.6, 0.6, 0.6, 0.75, 1, 1, 1} and p = 2.

– Set

αi =


1, for i ≤ j − p
ξ̃1−ξi

ξi+p+1−ξi , for i = j − p+ 1, . . . , j
0, for i > j .

– Define a new vector of weights

(w̃1, . . . , w̃n+1) := (w1, . . . , wj−p, w
a
j−p+1, . . . , w

a
j , wj, . . . , wn),

with wai = αiwi + (1− αi+1)wi+1 for i = j − p+ 1, . . . , j.
Then the new basis functions are determined by the new knots and weights w̃i.

• p-refinement: On the other hand one can increase the polynomial degree p → p + 1
while maintaining the regularity of the basis functions. Therefore, we also obtain a new
knot vector Ξ̃ to ensure the correct regularity at the inner knots. More specifically, if we
initially have s distinct knots, applying a p refinement algorithm that preserves regularity
results in an addition of s extra knots.We refrain from providing an explicit description of
a degree elevation procedure here and refer to [61] for further information.

In the both latter refinement cases we have N̂(Ξ, p,W ) ⊂ N̂(Ξ̃, p̃,W ).
It should be noted the existence of another refinement strategy, namely the k-refinement which
is a combination of degree elevation and knot insertion step. First one elevates the degree and
then one inserts new knots in such a way that the regularity at the new knots is maximal.
However, for our purposes it is enough to know the degree elevation and the knot insertion
procedure. That is why we do not give details on k-refinement here.
As a last point for this subsection, we want to introduce an abbreviation for special NURBS

spaces. In case of a constant weight function W and if all internal knots have multiplicity
m = p− r, r ∈ {−1, 0, . . . , p− 1}, we write for the space N̂(Ξ, p,W ) just

Srp := span{B̂1,p, . . . , B̂n,p}. (6.1.6)

In other words, Srp denotes always a space of B-splines with degree p and global regularity r, i.e.
Srp ⊂ Cr((0, 1)). Clearly, the Srp still depend on the actual knot values, but often for explanations
the exact knots are not directly needed. More important is the mesh size of the subdivisions
induced by the knot distribution. More details on that in the after next section.
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6.1.2 Multivariate case
Multivariate B-splines are defined utilizing univariate splines following a tensorization argument.
Unfortunately, this comes along with a somewhat more elaborate notation. Again we write n for
the number of spatial dimensions. Then we define the polynomial degree vector p := (p1, . . . , pn)
and for each spatial dimension a pl-open knot vector Ξl = {ξl1, . . . , ξlnl+pl+1}, l = 1, . . . , n. Besides
we write Ξ := Ξ1 × Ξ2 × · · · × Ξn. Using the multi-index set

I := {(i1, . . . , in) | 1 ≤ il ≤ nl, l = 1, . . . , n}

and the already defined univariate spline basis functions, we introduce multivariate B-spline
basis through:

Definition 6.3 (Multivariate B-splines). sds

B̂i,p(ζ) :=
n∏
l=1

B̂il,pl(ζl), ∀ i ∈ I, (6.1.7)

where ζ = (ζ1, . . . , ζn) ∈ Rn. This leads us to an obvious definition for multivariate NURBS.
We only need to change the weights set to {wi | i ∈ I, 0 < wi} and use

Definition 6.4 (Multivariate NURBS).

N̂i,p(ζ) := wi B̂i,p(ζ)∑
j∈I wj B̂j,p(ζ)

, ∀ i ∈ I. (6.1.8)

The set Ω̂ := (ξ1
1 , ξ

1
n1+p1+1)× · · · × (ξn1 , ξnnn+pn+1) is referred to as the parametric domain. The

regularity properties of multivariate splines stem from the characteristics of univariate B-splines
and NURBS. For instance, N̂i,p exhibits piecewise smoothness within Ω̂, and N̂i,p ∈ Cp−m(Ω̂) if
the polynomial degrees satisfy 1 ≤ p ≤ pi and all multiplicities of the internal knots of each knot
vector Ξl are bounded by m. Additionally, we denote N̂(Ξ,p,W ) as the space spanned by the
NURBS functions N̂i,p within Ω̂. Here, W represents the weight function in the denominator of
(6.1.8).
Moreover, analogous refinement strategies to those in one dimension are also applicable to

N̂(Ξ,p,W ), namely knot insertion and degree elevation. These strategies are just employed for
each coordinate direction separately.
The generalization of NURBS curves to the case of multivariate splines leads to NURBS surfaces,
NURBS volumes etc. and are defined in the subsequent chapter.

6.2 Mesh structure and discrete function spaces
The extension to multi-dimensions gives us the possibility to parametrize various geometries in
different dimensions. For example if we choose a set of control points {Ci | i ∈ I} in Rm then
we obtain with

F : Ω̂→ Rm , ζ 7→ F(ζ) :=
∑
i∈I
N̂i,p(ζ) Ci, (6.2.1)

the parametrization of a manifold in Rm.
As already mentioned, we assume after some rescaling w.l.o.g. that the knot vectors satisfy
ξl1 = 0 and ξnl+pl+1 = 1 for l = 1, . . . , n. For this reason the parametric domain has the form
Ω̂ = (0, 1)n, i.e. it is the interior of an n-dimensional unit hypercube.
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To apply isogeometric methods for approximating weak solutions of PDEs, such as the abstract
Hodge–Laplacian, one follows a procedure similar to the standard FE approach. Firstly, a
partition of the computational domain Ω ⊂ Rn is needed to create a mesh. Secondly, discrete
spaces must be defined that correspond to this mesh. However, while classical FE methods
often approximate curved geometries using triangles or more general polyhedra, the isogeometric
analysis approach allows for accurate representations for various shapes, e.g. conic sections as
demonstrated in [18]. The fundamental concept of IGA, as implied by its name, is to utilize
B-splines and NURBS for both describing the computational domain Ω and defining the discrete
function spaces. This implies that, given a knot vector Ξ0 and polynomial degree p, the domain
Ω can be represented as a mapping of the form (6.2.1), meaning Ω = F(Ω̂), with appropriately
chosen control points. Specifically, we assume that it holds F ∈ (N̂(Ξ0,p0,W ))n.
Subsequently, we will consider two types of meshes associated with a refinement N̂(Ξ,p,W ) ⊃

N̂(Ξ0,p0,W ). The so-called Bézier mesh M̂ in the parametric domain Ω̂ is determined by the
knots in Ξ as follows:

Let Ψ = {ψ1
1, . . . , ψ

1
L1} × · · · × {ψ

n
1 , . . . , ψ

n
Ln} be the knot vector Ξ without knot repetitions.

Then M̂ := {Kj := (ψ1
j1 , ψ

1
j1+1)× · · · × (ψnjn , ψ

n
jn+1) | j = (j1, . . . , jn), with 1 ≤ ji < Li}

determines the parametric mesh.

And the second meshM in the domain Ω often termed physical mesh is just given by the image
of the mesh M̂ .

M := {K ⊂ Ω | K = F(Kj), Kj ∈ M̂}.

For a meshM one defines the global mesh size h := max{hK | K ∈ M}, where for K ∈ M the
diameter hK := diam(K) is the element size. A physical mesh with mesh size h is denoted in the
following withMh.

K K
F

F−1

Ω̂ Ω

Figure 8: Mesh in the physical domain is obtained from mesh in the parametric domain.

In order to exploit approximation results and to obtain appropriate functions in the physical
domain when using isogeometric methods, we have to require additional properties for the mesh.
Further, there are also some restrictions on F. The different assumptions are summarized in the
next definition.

Definition 6.5 (Regular mesh and parametrization). sds
We will call a family of countably infinite meshes

(
Mh

)
h
, h > 0, h → 0, defined utilizing the

parametrization F regular, if we have:

• Regular parametrization: F is globally Lipschitz continuous with Lipschitz continuous
inverse F−1. Besides, F restricted to the closure of one element K = F−1(K) ∈ M̂ is
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smooth with smooth inverse, i.e. F|K , F−1
|K are C∞-regular. Here, M̂ stands for the non-

refined mesh, i.e. the parametric mesh with maximal mesh size h.

• Quasi-uniform mesh: Further there exists a constant cu independent from the mesh
size such that hK ≤ h ≤ cu hK for all K ∈Mh.

• Shape-regular mesh: We can choose a cs > 0 independent of the mesh size h and
element sizes hK s.t. hK ≤ cs|K|, ∀K ∈ Mh, where |K| denotes the volume of element K
in Rn.

Assumption 6.2. From now on we assume all meshes and parametrizations to fulfill the regu-
larity properties from above. And when we are talking about a regular meshMh alone, we simply
mean that there exists a family of regular meshes, as defined above, to whichMh belongs.
Remark 6.1 (Regarding mesh sizes). To enhance reproducibility and simplify the explanation of
the examples, we will consistently use in the different examples later meshes generated through
uniform parametric Bézier meshes. Additionally, in all following numerical tests the term "mesh
size ρ" refers to the situation where the corresponding Bézier mesh consists of ρ−n many elements.
This implies that we have 1/ρ subdivisions in each coordinate direction. Since we consistently
employ smooth parametrizations, this new concept of mesh size is equivalent to the previously
introduced one, ensuring that the mesh sizes are of the same order as the original mesh sizes.
Having such a regular mesh we can introduce the IGA basis functions corresponding to the

mesh.
Definition 6.6 (Isogeometric discrete function spaces). sds
Let N̂(Ξ,p,W ) ⊃ N̂(Ξ0,p0,W ) be a refinement of the NURBS space which defines the geometry
Ω and let the refinement define a regular meshMh with mesh size h.
Then we define two types of discrete spaces. On the one hand we consider

Uh,p := {uh = ûh ◦ F−1 | ûh ∈ Ûh,p}, where Ûh,p := N̂(Ξ,p,W ).

This means for latter definition we follow the isoparametric paradigm meaning we use the same
NURBS for geometry description and the spaces. But sometimes, especially if one considers
discrete Hilbert chains, it is convenient to focus on the push-forwards of B-splines. Hence, on
the other hand, we set

Vh,p := {vh = v̂h ◦ F−1 | v̂h ∈ V̂h,p}, where V̂h,p := N̂(Ξ,p, 1),

i.e. the parametric basis functions have a constant weight function W = 1.
Sometimes, we will simply refer to spaces from the last definition as IG spaces. Further, in

view of (6.1.7) and the abbreviation (6.1.6), we write for special spaces of the form N̂(Ξ,p, 1)
just Sr1,...,r2p1,...,pn or Sr

p for proper p = (p1, . . . , pn), r = (r1, . . . , rn). To be more precise, we define

Sr
p := Sr1,...,r2p1,...,pn

:= Sr1p1 ⊗ . . . ⊗ Srnpn . (6.2.2)

Consequently, for reasons of readability, we drop the mesh size h or the knot vector in the
notation. Such spaces Vh,p and also the Uh,p will be used later to get approximate solutions to
different PDE problems and they take on the role of Finite Element spaces in the context of the
numerical methods.
Finally we want to remark that the spaces Vh,p and Uh,p are spanned by the basis functions

Ni,p := N̂i,p ◦ F−1, i ∈ I, (6.2.3)
Bi,p := B̂i,p ◦ F−1, i ∈ I, (6.2.4)
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respectively. Note, above N̂i,p, B̂i,p stand for the basis functions in the parametric domain.
Up to know we had the point of view that the parametrization has the form F : (0, 1)n → Rn

meaning we have a so-called single patch parametrization. In applications frequently domains
have to be considered which can not be parameterized accurately by means of a single patch.
To achieve more flexibility one decomposes Ω into several simpler shapes and defines IG spaces
for each patch separately. In other words, in multi-patch framework one has

Ω = ∪mk=1Ωk, F|Ωk := Fk : (0, 1)n → Ωk , ζ 7→
∑

i∈I(k) N̂
(k)
i,p (ζ) C(k)

i ,

where the index k should indicate that the NURBS and the control points might depend on the
specific patch. This means each patch is determined by some suitable NURBS parametrization.
The multi-patch IG spaces are then defined patch-wise together with suitable coupling conditions
between the patches. These conditions depend on the wanted global regularity. If we consider
later for numerical examples multi-patch geometries, then for reasons of simplification we restrict
ourselves to the case of conforming multi-patch discretizations, i.e. the next assumption is
underlying.

Ω1 Ω2

Ω3Ω4

Ω̂
F1

ζ1

ζ2

(a) A 4-patch geometry (b) A related conforming mesh.

Figure 9: In order to consider complicated computational domains, in IGA a multi-patch ansatz is
possible (left). We require conforming meshes, meaning, the mesh structures defined by the
different patches fit at the interfaces (right).

Assumption 6.3 (Conforming multi-patch geometries; cf. [32, Assumption 3.3]). sds

• Each of the parametrizations Fk are regular in the sense of Definition 6.5.

• Either Γi,j := Ωi ∩ Ωj, ∀i, j is empty or the image of a vertex, a full edge, or a full face
for both related parametric domains.

• The control points and mesh structure induced by the patches at an interface coincide,
meaning we have a well-defined global mesh.

With the assumption of conforming multi-patch geometries it is easy to define globally con-
tinuous IG spaces. For more details on IGA in the context of multi-patch geometries, we refer
to [32].
After we clarified the type of spaces we use, it is natural to have a closer look on the prop-

erties of isogeometric spaces, especially with regard to approximation estimates. Because these
estimates are crucial to check the feasibility of specific choices and suggest convergence rates in
numerical applications.
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6.3 Projections onto IG spaces
6.3.1 Results in the physical domain
In order to state approximation estimates it is helpful to introduce projections onto the single-
patch spaces Vh,p and Uh,p. Here, in this chapter we restrict ourselves sometimes just to the
statements and will drop the proofs. Nevertheless, we will give references at different places for
interested readers.
We directly start with the central approximation property of the discrete IGA spaces. The goal
is to approximate functions u in various Sobolev norms ‖·‖Hs(Ω) using functions from discrete
IGA spaces. The key observation is that the smoother the function u, the more accurate the
approximation becomes. Following lemma condenses this.

Lemma 6.2 (IGA approximation estimates). Let Vh,p and Uh,p, p = (p1, . . . , pn) be the
discrete IG spaces on Ω, where the underlying mesh is regular with mesh size h and let l, s ∈ N
such that the polynomial degrees pi fulfill 0 ≤ s ≤ l ≤ p + 1, p := mini{pi}. Then there exist
projection operators

ΠU
h : L2(Ω)→ Uh,p, ΠV

h : L2(Ω)→ Vh,p,

such that∥∥∥u− ΠU
h u
∥∥∥
Hs(Ω)

≤ CΠ h
l−s ‖u‖Hl(Ω) and

∥∥∥u− ΠV
h u
∥∥∥
Hs(Ω)

≤ CΠ h
l−s ‖u‖Hl(Ω) ,

for all u ∈ H l(Ω), provided that Vh,p ⊂ Hs(Ω), Uh,p ⊂ Hs(Ω). Thereby CΠ can be chosen
independently from the mesh size h and the mapping u.

Proof. For the first estimate, see Corollary 2 on page 129 in [31] or [17, Theorem 3.1]. For the
estimate involving ΠV

h we refer to [27, Remark 5.1].

Up to now we focused on scalar NURBS functions. It becomes apparent that for a lot of prob-
lems vector-valued mappings are necessary. In fact one might define discretizations for spaces of
the form L2(Ω)⊗ E with E being a suitable finite-dimensional space, just by a component-wise
generalization. It is straightforward to derive similar estimates for such a vector-valued case.
Remark 6.2 (Vector-valued projection operators). Let {e1, . . . , ek} denoting an orthonormal basis
of some R-Hilbert space E, then we can define

V E
h,p := span

{
(x 7→ ui(x)ei) ∈ L2(Ω)⊗ E

∣∣∣ ui ∈ Vh,p, i = 1, . . . , k
}
.

And then for an element ui ei ∈ L2(Ω)⊗ E we set

ΠV,E
h u :=

(
ΠV
h ui

)
ei,

which defines the projection by linearity. The approximation properties from Lemma 6.2 are
still true for the vector-valued case, since for u = ∑k

i=1 ui ei ∈ H l(Ω)⊗ E it is

∥∥∥u− ΠV,E
h u

∥∥∥2

Hs(Ω)
=

k∑
i=1

∥∥∥ui − ΠV
h ui

∥∥∥2

Hs(Ω)
≤ C2

Π h
2(l−s)

k∑
i=1
‖ui‖2

Hl(Ω) = C2
Π h

2(l−s) ‖u‖2
Hl(Ω) .

Clearly, we can substitute the B-spline space Vh,p with Uh,p without encountering any challenges.
Furthermore, it is evident that we can employ distinct IG spaces for different components.
Subsequent inverse inequalities provide other valuable estimates for IGA discretizations.
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Lemma 6.3 (Inverse inequalities). Let vh ∈ Vh,p ∩ Hs(Ω) or vh ∈ Uh,p ∩ Hs(Ω). Then the
estimate

‖vh‖Hs(Ω) ≤ Cinv h
l−s ‖vh‖Hl(Ω) , for 0 ≤ l ≤ s (6.3.1)

holds. The constant Cinv is independent of h and vh if we have a family of regular meshes. But
it might depend on the parametrization F, the parameters s, l and on p.

Proof. The estimate follows directly by Theorem 4.2 in [17] and the regular mesh assumption;
see Definition 6.5.

In case of B-spline spaces of the form Sr
p = Sr1,...,rnp1,...,pn the mentioned NURBS projections can be

chosen in such a way that they are compatible with derivatives and such that they respect the
product structure of the multivariate B-splines. More details on this point in the next section.

6.3.2 Derivative-compatible projections onto B-spline spaces
In this section we follow the approach and the results of Buffa et al. ([27]). In particular we
follow the idea to introduce spline projections which commute with derivative operators. To
explain the relevant parts for our purposes, we first go back to the parametric 1D situation,
i.e. we deal with the spaces Srp defined above; cf. (6.1.6). If we consider spline spaces in the
following, we always assume that they belong to a regular mesh structure with a mesh size of h.

Definition 6.7 (Compatible projections). We define different projections onto univariate
spline spaces, where they are inspired by the approach from paper [27]. We just generalize the
projections to the case of higher derivatives. These projection operators are the basis of the
projections in the multivariate case which commute with differential operators.
First, for −1 ≤ r ≤ p− 1 define

Π̂0
p,r : L2((0, 1))→ Srp , v 7→

n∑
i=1

λpi (v) B̂i,p,

where λpi (·) stand for the dual basis vectors for the B-spline basis {B̂1,p, . . . , B̂n,p} of Srp from [65,
Theorem 6.60]. This means the λpi (·) fulfill λpi (B̂j,p) = δij.
We mention here that the latter projection Π̂0

p,r corresponds to (3.6) in [27]. Next, for l ∈ N≥1
and l − 1 ≤ r ≤ p− 1 we introduce recursively

Π̂l
p,r : L2((0, 1))→ Sr−lp−l , v 7→ ∂ζ

(
Π̂l−1
p,r

∫ ζ

0
v(τ) dτ

)
, (6.3.2)

where the derivative is meant in a weak sense. For l = 1 we obtain the projection (3.9) in [27].

Before we come to some statements regarding the introduced projections, we bring us the
well-definedness of the Π̂l

p,r to mind. Namely, assuming l = 1, 0 ≤ r ≤ p − 1 we get Π̂l−1
p,r w ∈

Srp ⊂ H1(Ω) = H l(Ω) for w ∈ L2((0, 1)). In fact, applying [20, 5.2, Chapter 2] we have
Srp ⊂ Hr+1((0, 1)) if −1 ≤ r ≤ p − 1. Thus the derivative operator ∂ζ in (6.3.2) makes sense.
Furthermore, in view of the formula (6.1.4) one sees directly ∂ζSrp ⊂ Sr−1

p−1 . Even more, it is easy
to check that indeed ∂ζSrp = Sr−1

p−1 . Hence, the definition of Π̂1
p,r is clear. And using an inductive

argument one has the well-definedness for every Π̂l
p,r.

Let now {ψ1 < · · · < ψL} be the knot vector without knot repetitions of the underlying spline
space, which defines a subdivision of the interval (0, 1). Then, for each element I = (ψj, ψj+1)
we can find an i with (ψj, ψj+1) = (ξi, ξi+1) and in this case we write Ĩp := (ξi−p, ξi+p+1) for the
so-called support extension of I. In the next lemma these auxiliary intervals Ĩp appear.
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Lemma 6.4 (Projection properties - univariate case). Let I = (ψj, ψj+1) be some element
of the mesh induced by the underlying knots. Then, the above univariate projections satisfy the
following properties, where we have the assumption −1 ≤ r ≤ p− 1.

Π̂0
p,rs = s ∀s ∈ Srp , (6.3.3)

|Π̂0
p,rv|Hm(I) ≤ C |v|Hm(Ĩp) ∀v ∈ Hm((0, 1)), 0 ≤ m ≤ p+ 1, (6.3.4)

for some constant C independent of mesh refinement. Above |·|Hk stands for the classical Sobolev
seminorm.12

And if it is 0 ≤ l − 1 ≤ r ≤ p− 1, we further have

Π̂l
p,rs = s ∀s ∈ Sr−lp−l , (6.3.5)

∂ζΠ̂l−1
p,r ∂

l−1
ζ v = Π̂l

p,r∂
l
ζv ∀v ∈ H l((0, 1)), (6.3.6)

|Π̂l
p,rv|Hm(I) ≤ C |v|Hm(Ĩp) ∀v ∈ Hm((0, 1)), 0 ≤ m ≤ p+ 1− l. (6.3.7)

Proof. The first two statements correspond to the properties (3.7)-(3.8) in [27] if we keep the
regular mesh assumption in mind. Also the other points in the assertion for l = 1 are obtained
by (3.10)-(3.12) in latter reference. For reasons of completeness we show (6.3.5)-(6.3.7) for the
case l > 1 utilizing a proof by induction. This means we assume the validity of the different
points for some l ≥ 1 and we have the requirement l ≤ r ≤ p− 1.
Firstly, we have by definition

Π̂l+1
p,r s = ∂ζ

(
Π̂l
p,r

∫ ζ

0
s(τ) dτ︸ ︷︷ ︸
∈Sr−l

p−l

)
= ∂ζ

(∫ ζ

0
s(τ) dτ

)
= s, ∀s ∈ Sr−l−1

p−l−1 .

Further, for v ∈ H l+1((0, 1)), 1 ≤ l ≤ r ≤ p − 1 we write in view of the spline preserving
property

Π̂l+1
p,r ∂

l+1
ζ v = ∂ζ

(
Π̂l
p,r

∫ ζ

0
∂l+1
ζ v(τ) dτ

)
= ∂ζΠ̂l

p,r

(
∂lζv + a

)
= ∂ζΠ̂l

p,r∂
l
ζv, (6.3.8)

with a ∈ R being a proper integration constant. The last point can be proven using the fact
that if v ∈ Hm((0, 1)), 0 ≤ m ≤ p− l then w(ζ) :=

∫ ζ
0 v(τ)dτ ∈ Hm+1((0, 1)). Then it is

|Π̂l+1
p,r v|Hm(I) ≤ |Π̂l

p,rw|Hm+1(I) ≤ C |w|Hm+1(Ĩp) = C |v|Hm(Ĩp).

The second inequality sign in the last line comes from the induction hypothesis. We note that
we used the proof ansatz from [27, Lemma 3.2] above.

For the multivariate case we define projections exploiting a tensor product construction, mean-
ing one respects the product structure of the multivariate B-splines. More precisely, given vectors
p = (li)i, r = (li)i, l = (li)i in Zn with −1 ≤ li − 1 ≤ ri ≤ pi − 1 we set

Π̂l
p,r : L2(Ω̂)→ Sr−l

p−l = Sr1−l1,...,rn−lnp1−l1,...,pn−ln , v 7→ (Π̂l1
p1,r1 ⊗ . . . ⊗ Π̂ln

pn,rn)v, (6.3.9)

where Ω̂ = (0, 1)n. Like explained in [27, Section 4.1] one can regard such tensor product
mappings as a composition of the different 1D projection operators. In more detail, let v ∈ L2(Ω̂)

12|v|2Hk := |v|2Hk(Ω) :=
∑
|α|=k ‖∂αv‖

2
L2(Ω) .
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be a smooth mapping, meaning for i ∈ {1, . . . , n} and ζk ∈ (0, 1),∀k we can define the univariate
mappings

v[ζ1, . . . , ζi−1, ζi+1, . . . , ζn] : (0, 1)→ R , τ 7→ v(ζ1, . . . , ζi−1, τ, ζi+1, . . . , ζn).

This means we only vary the i-th input parameter. Consequently, we can consider
Π̂li
pi,ri

v[ζ1, . . . , ζi−1, ζi+1, . . . , ζn]. Since the result depends on the ζk it again can be interpreted as a
mapping in L2(Ω̂), namely v̄li,⊗ : (ζ1, . . . , ζi−1, τ, ζi+1, . . . , ζn) 7→

(
Π̂li
pi,ri

v[ζ1, . . . , ζi−1, ζi+1, . . . , ζn]
)
(τ).

Hence, it makes sense to introduce
Π̂li,⊗
pi,ri

v := v̄li,⊗.

With this consideration one gets

Π̂l
p,rv =

(
Π̂l1,⊗
p1,r1 ◦ · · · ◦ Π̂ln,⊗

pn,rn

)
v.

A density argument extends the last projection to the whole L2 space. The product construction
directly implies similar properties for the multivariate projections as those for Π̂l

p,r. In the style
of Lemma 4.1 and Lemma 4.2 of [27] we summarize them below.

Lemma 6.5 (L2-stability and spline preservation). Let K ∈ M̂ be an element of the Bézier
mesh and −1 ≤ li − 1 ≤ ri ≤ pi − 1. The projection Π̂l

p,r is continuous in the sense∥∥∥Π̂l
p,rv

∥∥∥
L2(K)

≤ C ‖v‖L2(K̃) , ∀v ∈ L
2(Ω̂),

for a suitable constant C. Above K̃ denotes the extended support of the mesh element K. This
means if K = (ψ1

i1 , ψ
1
i1+1) × · · · × (ψnin , ψnin+1), we find indices jl with K = (ξ1

j1 , ξ
1
j1+1) × · · · ×

(ξnjn , ξnjn+1) for suitable knots. Then we set

K̃ := (ξ1
j1−p1 , ξ

1
j1+p1+1)× · · · × (ξnjn−pn , ξ

n
jn+pn+1).

Further if s ∈ Sr−l
p−l := Sr1−l1,...,rn−lnp1−l1,...,pn−ln it holds

Π̂l
p,rs = s.

Hence, we have indeed a projection.

Proof. The statement follows by the regular mesh assumption, the product structure of the
multivariate projections and the properties of the univariate spline projections; see Lemma
6.4.

Lemma 6.6 (Compatibility with derivatives). Assume −1 ≤ li − 1 ≤ ri ≤ pi − 1, k ∈
{1, . . . , n} with pk− lk ≥ 1, rk− lk ≥ 0 and let v ∈ L2(Ω̂), such that the (weak) partial derivative
w.r.t. the k-th coordinate ∂ζkv ∈ L2(Ω̂) exists in the sense v ∈ H(Ω̂, ∂ζk ,R); cf. (2.2.4). In this
case we have

∂ζkΠ̂l
p,rv = Π̂l+ek

p,r ∂ζkv,

where ek ∈ Nn is the k-th canonical basis vector.

Proof. We show the proof only for n = 2 and k = 2. The other situations can be proven
completely analogous, just with a more cumbersome notation.
By a density argument, we can choose a sequence (vm)m ⊂ C∞([0, 1]n) s.t. ∂ζ2vm

L2
−→ ∂ζ2v and

vm
L2
−→ v.
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The smoothness of the vm, the product structure of the projection and the commutativity
relation for the derivatives in Lemma 6.4 yield

∂ζ2Π̂l
p,rvm = ∂ζ2

(
Π̂l1
p1,r1 ⊗ Π̂l2

p2,r2

)
vm =

(
Π̂l1
p1,r1 ⊗ ∂ζ2Π̂l2

p2,r2

)
vm

=
(
Π̂l1
p1,r1 ⊗ Π̂l2+1

p2,r2∂ζ2
)
vm = Π̂l+e2

p,r ∂ζ2vm. (6.3.10)

This means, because of the L2 continuity of the projections, ∂ζ2Π̂l
p,rvm converges for m → ∞

to some spline τ . Assume now τ 6= ∂ζ2Π̂l
p,rv. Then, by the piecewise smoothness of the splines

we find a non-empty open set U ⊂ (0, 1)2 s.t. w.l.o.g. τ − ∂ζ2Π̂l
p,rv > 0 in U . Next, choose a

non-negative φ ∈ C∞c (U) with φ > 0 on a non-empty open set B ⊂ U . Such a choice is indeed
possible, cf. [2, U1.3]. Taking the limit m→∞ on both sides of the next equation

〈∂ζ2Π̂l
p,rvm − ∂ζ2Π̂l

p,rv, φ〉 = −〈Π̂l
p,rvm − Π̂l

p,rv, ∂ζ2φ〉

gives for the left-hand side just 〈τ − ∂ζ2Π̂l
p,rv, φ〉 6= 0. On the right-hand side we get by the

continuity of the projections 0. In particular we have a contradiction which implies τ = ∂ζ2Π̂l
p,rv.

Thus, taking the limit m→∞ in (6.3.10) finishes the proof.

As already mentioned, the spline spaces as well as the corresponding projections can be gen-
eralized easily to product spaces of the form L2(Ω) ⊗ E appearing in Section 2.2, where E is
a finite-dimensional Hilbert space. One just uses a component-wise approach, coefficient-wise,
respectively, analogously to Remark 6.2.
Next we show an approximation result for the introduced projections of the type Π̂l

p,r.

Lemma 6.7 (Approximation estimate). Let Π̂l
p,r be the projection onto Sr−l

p−l =: Ss1,...,snq1,...,qn , i.e.
qi = pi − li, si = ri − li. And let 0 ≤ q ≤ qi and −1 ≤ s ≤ si ≤ qi − 1 for q, s ∈ Z and all
i. Furthermore, we assume the corresponding Bézier mesh M̂h of the spline space to be regular
with mesh size h.
Then there exists a constant ĈΠ > 0 independent of mesh refinement s.t.∥∥∥v − Π̂l

p,rv
∥∥∥
Hk(Ω̂)

≤ ĈΠh
m−k ‖v‖

Hm(Ω̂) , if 0 ≤ k ≤ m ≤ q + 1, k ≤ s+ 1, (6.3.11)

and provided that v ∈ Hm(Ω̂).
Proof. We follow the proof steps from Lemma 5.1 in [27].
Note, by assumption we have Π̂l

p,rv ∈ Hk(Ω̂). By [17, Lemma 3.4] we see the existence of spline
s ∈ Sq−1,...,q−1

q,...,q ⊂ Ss1,...,snq1,...,qn s.t.

‖v − s‖
H k̃(Ω̂) ≤ Chm̃−k̃ ‖v‖

Hm̃(Ω̂) , for 0 ≤ k̃ ≤ m̃ ≤ q + 1. (6.3.12)

Above C does not depend on h. By the spline preserving property of the projection (see Lemma
6.5) and the triangle inequality we get the next line∥∥∥v − Π̂l

p,rv
∥∥∥
Hk(Ω̂)

≤
∥∥∥Π̂l

p,r(v − s)
∥∥∥
Hk(Ω̂)

+ ‖v − s‖
Hk(Ω̂) . (6.3.13)

Since the B-splines are piecewise polynomials we can apply a standard inverse estimate, which
yields ∥∥∥Π̂l

p,r(v − s)
∥∥∥
Hk(Ω̂)

≤ C
1
hk

∥∥∥Π̂l
p,r(v − s)

∥∥∥
L2(Ω̂)

≤ CΠC
1
hk
‖v − s‖

L2(Ω̂) , (6.3.14)

for some constant C > 0. One observes the L2-stability of the projection which yields some
additional constant CΠ. Now inserting (6.3.14) into (6.3.13) we obtain the wanted estimate due
to (6.3.12).
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Now we have learned various properties of NURBS and B-splines, and we have also intro-
duced corresponding projections. In other words, we finally have the tools ready to address the
discretization of Hilbert complexes. The investigation and development of numerical methods
using the IGA theory will accompany us from the next chapter until the end of the work.
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7 Spline Complexes and Isogeometric
Discrete Differential Forms

In this section we want to demonstrate how the B-splines introduced in the last part can be uti-
lized to set up structure-preserving discretizations for several Hilbert complexes in Ω̂ = (0, 1)n.
The cube domain enables us to exploit the product structure of the spaces Sr

p. Doing so, we first
focus on the de Rham sequence, but in the second subsection we explain also the feasibility of
B-splines to discretize the second-order complexes induced by the coupling of Altl-valued forms;
see Section 4.2.3. For example, we show the possibility to construct finite-dimensional versions
of the diagrams in Figures 4.2.25 and 4.2.28.
Certainly, it is clear that the restriction to the domain (0, 1)n questions the applicability of the
observations within the framework of numerical methods. It is indeed shown that at least for
the de Rham sequence, the transition to other geometries is possible, with the help of the pull-
back operation. We then obtain the so-called isogeometric discrete differential forms which will
be introduced in the third subsection below. However, it is easily apparent that this pullback
operation is not directly applicable in the case of second-order complexes. In other words, the
later defined second-order spline complexes cannot be readily extended to non-trivial domains.
Nevertheless, restricting to case of cubical domains will lead us to results that are still useful for
the considerations of different saddle-point problems also in deformed computational domains.
The latter is explained and will become clear in Section 8, in which we will reuse the considera-
tions that will follow now within the framework of mixed weak formulations for Hodge–Laplace
problems. More specifically, we want to establish the prerequisites now to be able to later apply
the auxiliary results from above Section 5 in the context of isogeometric FE spaces.
Before we delve into discrete spline spaces, we would like to note in advance that this chapter

is built upon existing results in the literature. Regarding the de Rham complexes, we follow the
work of Buffa et al. [27], while the constructions in the realm of second-order spline complexes
align with the approach and results of [19]. This will be highlighted at various points by providing
the corresponding references. However, it is worth mentioning that we employ our own notation,
and in contrast to the three-dimensional setting in [27], we will introduce isogeometric differential
forms in arbitrary dimensions.
To begin with, let us clarify some points concerning notation. Namely, if we have in the

following some differential operator of the form D : H(Ω,D,E) → L2(Ω) ⊗ Ẽ with E, Ẽ finite-
dimensional spaces and D as in (2.2.3), we use for s ∈ N the abbreviations Hs(Ω,D,E) :=
H(Ω,D,E) ∩ {v ∈ Hs(Ω)⊗ E | Dv ∈ Hs(Ω)⊗ Ẽ} and

‖·‖2
Hs(D) := ‖·‖2

Hs(Ω) + ‖D·‖2
Hs(Ω) ,

‖·‖2
H(D) := ‖·‖2

L2(Ω) + ‖D·‖2
L2(Ω) .

And, to emphasize that we are considering derivatives with respect to the parametric coordinates
in Ω̂, we use the hat symbol " ·̂ " above the differential operators, meaning for example ĉurl instead
curl. Additionally, when dealing with the exterior derivative on the parametric domain, we use
the notation d̂j as opposed to the original dj. Furthermore, for the spline spaces below within
one chain or diagram we have a single regular mesh underlying, which implies in this context
Sr1,...,rnp1,...,pn ⊂ Ss1,...,snq1,...,qn as long as ri ≥ si, qi ≥ pi, ∀i. And as a last point, we remark that appearing
vectors and matrices with spline spaces as entries should be an abbreviation for spaces of vector-
or matrix valued mappings with entries in the respective spline spaces.
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7.1 De Rham spline sequence
Prior to the facing of second-order complexes discretizations on the parametric domain Ω̂, we
first make sure how the classical de Rham sequence can be approximated utilizing B-splines.
Actually, also discrete versions of the second-order output complexes like shown in Examples 4.2
and 4.3 on a cubical domain can be constructed utilizing the de Rham sequences, since they are
derived exploiting the complexes from complexes idea from [12]. So it makes sense to go first a
step back and check how suitable B-splines for the de Rham sequences, especially (3.3.8) and
(3.3.9), look like. Fortunately, the problem in 3D is addressed and analyzed in detail by Buffa
et al. in [27] by the introduction of isgeometric discrete differential forms. Since in the latter
reference a tensor product construction is exploited like in [8] the procedure is generalizable to
arbitrary dimensions. For the subsequent definitions of the spaces, we use again the language
of differential forms in order to explain the spline complexes in a systematic manner. For more
details concerning the related notions and notation we refer to Section 3.3.1
Let again Ω̂ = (0, 1)n be assumed. In this section we make use of the fact that one can describe

an element in ω ∈ L2Λk(Ω̂) through its coefficients and its representation ω = ∑
σ∈Σ<(k,n) cσ dx

σ1∧
· · · ∧ dxσk . So, let us consider the left ending of the de Rham sequence (see Lemma 3.5), namely
the space HΛ0(Ω̂). We might discretize the latter simply through some spline space

Qr
pΛ0 := Sr

p = Sr1,...,rnp1,...,pn ,

assuming once again that pi > ri ≥ 0, ∀i. This allows the application of the exterior derivative
in a weak sense, which for an element ω ∈ Qr

pΛ0 results in d̂0
ω = ∑n

i=1 ∂̂iω dx
i by definition.

The last equation gives rise to a space of suitable spline differential 1-forms, namely we set

Qr
pΛ1 := span

{∑n
i=1 ci dx

i
∣∣∣ ci ∈ Sr−ei

p−ei

}
,

with ei denoting the i-th canonical basis vector. Because, then we trivially get d̂0
Qr

pΛ0 ⊂ Qr
pΛ1.

Inductively, one can now determine the remaining appropriate spline spaces for a discretization
of the de Rham sequence using the definition of the exterior derivative. One then sees that a
successive approach gives spaces

Qr
pΛk :=

{ ∑
σ∈Σ<(k,n)

cσ dx
σ1 ∧ · · · ∧ dxσk

∣∣∣∣∣ cσ ∈ Sr−eσ
p−eσ

}
, k = 1, . . . , n, (7.1.1)

where

Nn 3 eσ, (eσ)i =
1, if i ∈ {σ1, . . . , σk},

0, else.
(7.1.2)

The latter can also be seen by the tensor product approach from [8].
Indeed, let ω ∈ Qr

pΛk. By the definition of the exterior derivative and the properties of the
wedge product one has

d̂kω =
∑

σ∈Σ<(k,n)

n∑
i=1

i/∈{σ1,...,σk}

∂̂icσ dx
i ∧ dxσ1 ∧ · · · ∧ dxσk , (7.1.3)

with cσ ∈ Sr−eσ
p−eσ . Obviously, for i ∈ {1, . . . , n}\{σ1, . . . , σk} there are unique increasing numbers

1 ≤ s1 < · · · < sk+1 ≤ n s.t. {i} ∪ {σ1, . . . , σk} = {s1, . . . , sk+1} and then ∂̂icσ ∈ Sr−es
p−es .

Consequently,

d̂kω ∈
{ ∑
s∈Σ<(k+1,n)

cs dx
s1 ∧ · · · ∧ dxsk+1

∣∣∣∣∣ cs ∈ Sr−es
p−es

}
= Qr

pΛk+1.
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Hence, by the remarks from above it is clear, that the spaces in (7.1.1), (Qr
pΛ◦, d̂◦), respectively,

determine a discrete Hilbert complex. One notes that if pi > ri ≥ 0, the piecewise smoothness of
the splines imply directly Qr

pΛk ⊂ HΛk(Ω̂) and we get a discrete subcomplex of the L2 de Rham
domain complex (HΛ◦(Ω̂), d̂◦) from Lemma 3.5. The next step is to realize that these spline
differential forms determine a structure-preserving discretization of the continuous complex, at
least in case of underlying regular meshes. To see this, we need to show the existence of L2-
bounded cochain projections. It becomes apparent, the special projections Π̂l

p,r from Section
6.3.2 are suitable for defining these cochain projections. To be more precise, we introduce

Π̂k,Λ
h,n : L2Λk(Ω̂)→ Qr

pΛk ,∑
σ∈Σ<(k,n)

cσ dx
σ1 ∧ · · · ∧ dxσk 7→

∑
σ∈Σ<(k,n)

(
Π̂eσ

p,rcσ
)
dxσ1 ∧ · · · ∧ dxσk .

The mesh size index h is added to emphasize the dependence on the mesh structure, which we
require to be regular. In other words, Π̂k,Λ

h,n means, we project onto a spline space with mesh
size h. Further one notes that with Lemma 6.5 we get Π̂eσ

p,r : L2(Ω̂) → Sr−eσ
p−eσ and we have L2

stability. Consequently, the above definition indeed gives us a well-defined projection. The next
lemma demonstrates the feasibility of these projections.

Lemma 7.1. The mappings Π̂◦,Λh,n define L2-bounded cochain projections from the de Rham chain
(HΛ◦(Ω̂), d̂◦) onto the complex (Qr

pΛ◦, d̂◦), which means we have

d̂k ◦ Π̂k,Λ
h,n = Π̂k+1,Λ

h,n ◦ d̂k

on HΛk(Ω̂).

Proof. Two things are clear by Lemma 6.5 and the definition of the Π̂k,Λ
h,n. They are projections

onto the spaces Qr
pΛk and they are L2-bounded where the boundedness does not depend on the

mesh size, provided a family of regular meshes. Thus, the only thing to check is the commuta-
tivity relation involving the exterior derivative. But also the latter is relative easy to see, namely
for smooth v ∈ L2(Ω̂) and choice σ ∈ Σ<(k, n) we obtain utilizing Lemma 6.6 directly

∂̂iΠ̂eσ
p,rv = Π̂eσ+ei

p,r ∂̂iv = Π̂es
p,r∂̂iv, if i /∈ {σ1, . . . , σk},

where 1 ≤ s1 < · · · < sk+1 ≤ n s.t. {i} ∪ {σ1, . . . , σk} = {s1, . . . , sk+1}. Thus, for a smooth
differential k-form ω we see by (7.1.3) that

d̂kΠ̂k,Λ
h,nω = Π̂k+1,Λ

h,n d̂kω.

The general statement follows by a density argument.

Moreover, these projections satisfy classical approximation estimates as the next lemma shows.

Lemma 7.2. Let 0 ≤ k < n and p = (pi)i, r = (ri)i ∈ Nn s.t. pi > ri ≥ 0 and set p =
mini{pi}, r = mini{ri}. Further let a family of regular meshes be given. Then for the projections
Π̂k,Λ
h,n related to the meshes, degrees p and regularities r, we obtain the estimates∥∥∥ω − Π̂k,Λ

h,nω
∥∥∥
Hs(d̂k)

≤ CΠ̂h
l−s ‖ω‖

Hl(d̂k) , ∀ω ∈ H l(Ω̂, d̂k,Altk), 0 ≤ s ≤ l ≤ p, s ≤ r,

with CΠ̂ independent of h. Besides, it is∥∥∥ω − Π̂k,Λ
h,nω

∥∥∥
Hs
≤ CΠ̂h

l−s ‖ω‖Hl , ∀ω ∈ H lΛk(Ω̂), 0 ≤ s ≤ l ≤ p̃, s ≤ r,

with abbreviation p̃ = p for k > 0 and p̃ = p+ 1 for k = 0.
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Proof. We begin with the second inequality. For ω ∈ H lΛk(Ω̂) with representation
ω = ∑

σ∈Σ<(k,n) cσ dx
σ1 ∧ · · · ∧ dxσk , i.e. coefficients cσ ∈ H l(Ω̂), it is Π̂k,Λ

h,nω ∈ HsΛk(Ω̂) and∥∥∥ω − Π̂k,Λ
h,nω

∥∥∥
Hs
≤

∑
σ∈Σ<(k,n)

∥∥∥cσ − Π̂eσ
p,rcσ

∥∥∥
Hs
≤

∑
σ∈Σ<(k,n)

Chl−s ‖cσ‖Hl ≤ C̃hl−s ‖ω‖Hl , (7.1.4)

for proper constants C, C̃, due to Lemma 6.7. Here we remark that for the special case k = 0
it is HsΛ0(Ω̂) = Hs(Ω̂) and Π̂k,Λ

h,n = Π̂(0,...,0)
p,r which explains the possibility of s = p+ 1.

Next we show the first estimate in the assertion. Therefore let ω ∈ H l(Ω̂, d̂k,Altk). By the
choice of parameter s ≤ r ≤ ri and because of Lemma 7.1 we get beside Π̂k,Λ

h,nω ∈ HsΛk(Ω̂) also
d̂kΠ̂k,Λ

h,nω ∈ HsΛk+1(Ω̂). Then, we see the wanted estimate by applying the already shown one
(7.1.4), namely ∥∥∥ω − Π̂k,Λ

h,nω
∥∥∥2

Hs(d̂k)
=
∥∥∥ω − Π̂k,Λ

h,nω
∥∥∥2

Hs
+
∥∥∥∥d̂kω − d̂kΠ̂k,Λ

h,nω

∥∥∥∥2

Hs

=
∥∥∥ω − Π̂k,Λ

h,nω
∥∥∥2

Hs
+
∥∥∥∥d̂kω − Π̂k+1,Λ

h,n d̂kω
∥∥∥∥2

Hs

≤ C
(
h2(l−s) ‖ω‖2

Hl + h2(l−s)
∥∥∥∥d̂kω∥∥∥∥2

Hl

)
= Ch2(l−s) ‖ω‖2

Hl(d̂k) .

Of course, one can also return from differential forms back to classical functions and Sobolev
spaces, by identifying the coefficients of the k-forms using proxy maps Jk with elements in
L2(Ω̂) ⊗ Rn|k; see Section 3.3.2 and Definition 3.3.2. The resulting proxy Hilbert complex
(D̂◦, H(Ω̂, D̂◦,Rn|◦)), generated by operators of the form D̂k = Jk+1 ◦ d̂

k
◦ J −1

k , can also be
discretized in a structure-preserving manner using B-splines. We simply take

V̂ k
h,n := Jk

(
Qr

pΛk
)
, k = 0, . . . , , n, (7.1.5)

as the discretization spaces. The corresponding projections are then given through
Π̂k
h,n := Jk ◦ Π̂k,Λ

h,n ◦ J −1
k ,

which ensures
D̂k ◦ Π̂k

h,n = Jk+1 ◦ d̂
k
◦ J −1

k ◦ Jk ◦ Π̂k,Λ
h,n ◦ J −1

k = Jk+1 ◦ Π̂k+1,Λ
h,n ◦ d̂k ◦ J −1

k = Π̂k+1
h,n ◦ D̂k

on H(Ω̂, D̂k,Rn|k). From the two Lemmata 7.1, 7.2 and the definition of D̂k, the next result
follows directly.
Corollary 7.1. Let the Jk : L2Λk(Ω) → L2(Ω) ⊗ Rn|k be proxy maps as defined in (3.3.6) and
D̂k = Jk+1 ◦ d̂

k
◦ J −1

k ; see (3.3.7). For a family of regular meshes, the spaces V̂ k
h,n define a

structure-preserving discretization of the proxy complex
(
H(Ω̂, D̂◦,Rn|◦), D̂◦

)
. Moreover, if the

assumptions and notation of the previous lemma apply, then it is∥∥∥v − Π̂k
h,nv

∥∥∥
Hs(D̂k)

≤ CΠ̂h
l−s ‖v‖

Hl(D̂k) , ∀v ∈ H l(Ω̂, D̂k,Rn|k), 0 ≤ s ≤ l ≤ p, s ≤ r,∥∥∥v − Π̂k
h,nv

∥∥∥
Hs
≤ CΠ̂h

l−s ‖v‖Hl , ∀v ∈ H l(Ω̂)⊗ Rn|k, 0 ≤ s ≤ l ≤ p̃, s ≤ r,

for a proper constant CΠ̂.
Now that we have established the construction of de Rham sequences using B-splines, our

primary focus shifts to second-order complexes. In the upcoming section, we will elucidate how
splines can be employed within the framework of the BGG construction.
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7.2 Second-order spline complexes
The aim for this section is to explain the existence of B-spline discretizations of the second-order
complexes derived by the coupling of two de Rham sequences with the procedure from Section
4.2.3. Therefore, please refer to this section for notation-related matters, as we will be reusing
the spaces and notation introduced from there. Once more we restrict ourselves to complexes in
the reference cube Ω = Ω̂ = (0, 1)n and we add a hat, meaning we write e.g. D̂k,J

n , V̂ k,J
n instead

of Dk,J
n , V k,J

n , where the latter operators and spaces are defined through Lemma 4.9. For the
special setting of a cubical domain a general construction of discrete Altl-valued forms that fit
to the BGG procedure from the mentioned Section 4.2.3 is outlined in [19]. In the following
let us briefly discuss the relevant spaces and projections established in the latter paper. Again
we first start with a abstract notation involving differential forms, subspaces of L2(Ω̂) ⊗ Altk,l,
respectively, to highlight the underlying structure. Nevertheless at the end of the section we
explain why the results directly transfer to cases where we deal with proxy complexes and
classical matrix- or vector-fields.

7.2.1 General construction for complexes from Altl-valued forms
Analogously to the approach for the de Rham complex we introduce subspaces of L2(Ω̂)⊗Altk,l
by utilizing B-spline coefficient functions. But, whereas in case of the de Rham sequence the
convenient spline spaces are easily implied by the definition of the exterior derivative and the
property ∂̂iSr

p = Sr−ei
p−ei , the situation is more complicated for the output complexes (V̂ ◦,Jn , D̂◦,Jn ).

Because, now the new differential operators depend on the appearing linking maps Sk,l and
might be more complicated to handle. That is why we describe and define the important spaces
and projections, but we refer to [19] for more details and proofs.

Firstly, let the components of the degree and regularity vectors p = (pi)i ∈ Nn and r = (ri)i ∈
Nn fulfill this time pi > ri > 0 and let us use again the notation eτ ∈ Nn

0 for the characteristic
vector of an element τ ∈ Σ<(k, n); compare (7.1.2).
Then, for k, l ∈ {0, . . . , n} we start with the definition

Qr
pΛk,l =

{ ∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

cσ,s(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl)
∣∣∣∣∣ cσ,s ∈ Sr−eσ−es

p−eσ−es

}

⊂ L2Λk,l(Ω̂). (7.2.1)

One notes our restriction pi > ri > 0. Consequently, the entries of the vector p − eσ − es are
greater or equal to zero and similarly the entries of r − eσ − es are greater or equal to −1. In
particular these spaces Qr

pΛk,l above are well-defined.
By the definition (4.2.17) of the exterior product in the context of these Altk,l-forms and the
observations from Section 7.1 we see for an element ω = cσ,s(dxσ1∧· · ·∧dxσk)⊗(dxs1∧· · ·∧dxsl) ∈
Qr

pΛk,l, i.e. cσ,s ∈ Sr−eσ−es
p−eσ−es , that

d̂kω =
n∑
i=1

i/∈{σ1,...,σk}

∂̂icσ,s(dxi ∧ dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl)

=
n∑
i=1

i/∈{σ1,...,σk}

(−1)ji
(
∂̂icσ,s

)
(dxη

(i)
1 ∧ · · · ∧ dxη

(i)
k+1)⊗ (dxs1 ∧ · · · ∧ dxsl),

where above η(i) ∈ Σ<(k + 1, n) is the unique element s.t. {i} ∪ {σ1, . . . , σk} = {η(i)
1 , . . . , η

(i)
k+1}

and ji are suitable numbers in {0, 1}. For an i /∈ {σ1, . . . , σk} we have ∂̂icσ,s ∈ Sr−eσ−es−ei
p−eσ−es−ei ,
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which gives with τ := η(i) directly ∂̂icσ,s ∈ Sr−eτ−es
p−eτ−es . Again d̂k stands for the exterior derivative

in the reference cube (0, 1)n. Thus we indeed see d̂kω ∈ Qr
pΛk+1,l and linearity implies

d̂kQr
pΛk,l ⊂ Qr

pΛk+1,l.

So the Qr
pΛk,l seem to be candidates for a discretization of the output complexes (V̂ ◦,Jn , D̂◦,Jn ).

But actually, it becomes quickly clear that it is not enough to have discrete versions of the input
chains, namely the (HΛ◦,l(Ω̂), d̂◦). Since, we also need to take the linking maps sk,l or Sk,l into
account, which are central to the BGG construction of the output complexes. In [19, Section
2.3], it is shown that we indeed obtain a diagram of the form

Qr
pΛk,J−1 Qr

pΛk+1,J−1 Qr
pΛk+2,J−1 . . .. . . d̂k d̂k+1

Qr
pΛk−1,J Qr

pΛk,J Qr
pΛk+1,J . . .. . . d̂k−1 d̂k ,

Sk−1,J Sk,J Sk+1,J

(7.2.2)

where the anti-commutativity property d̂l+1
◦ Sl,J = −Sl+1,J ◦ d̂l is satisfied. Furthermore, the

simple structure Sk,l = id ⊗ sk,l of the linking maps implies that the injectivity/surjectivity
properties of sk,l given in Lemma 4.8 also remain analogously valid in the case of the above
diagram; see [19, Remark 3].
Remark 7.1 (Notation in [19]). When checking the results from [19] to which we referred to,
there might arise some confusion at first glance. Namely, if one looks e.g. at equation (23)
in the mentioned paper, there appear spaces of the form Alti1,j1 ⊗ · · · ⊗ Altin,jn , where in this
situation Altil,jl = Altil(R) ⊗ Altjl(R). As implied by [19, Lemma 1], however, we have for
σ ∈ Σ<(k, n), s ∈ Σ<(l, n) the identification

(dxσ1 ∧ · · ·∧dxσk)⊗ (dxs1 ∧ · · ·∧dxsl)←→ Alti1,j1⊗· · ·⊗Altin,jn , im = (eσ)m, jm = (es)m, ∀m.

In other words, in (7.2.1) we simply use a slightly different representation of the spaces compared
to [19]. A similar adaptation of notation is used below in the definition of the various projections.

Corollary 7.2 (Discrete output complex). So, by applying the BGG construction as in
Lemma 4.9 now to diagram (7.2.2), we actually obtain subcomplexes of the continuous pendants
(V̂ ◦,Jn , D̂◦,Jn ). We will write for the resulting discrete complexes simply (V̂ ◦,Jh,n , D̂

◦,J
n ), although it

is clear that there is a dependence on the underlying meshes as well as on the vectors p, r.

Naturally, the question arises as to whether these V̂ ◦,Jh,n also represent a structure-preserving
discretization, allowing us to construct bounded cochain projections from V̂ ◦,Jn onto V̂ ◦,Jh,n once
again. Before we clarify this question, we make a naive attempt inspired by the projections in
the case of the de Rham sequence. More precisely, we set

Π̂k,l,Λ
h,n : L2(Ω̂)⊗ Altk,l → Qr

pΛk,l ,∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

cσ,s(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl) 7→

∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

(
Π̂eσ+es

p,r cσ,s
)
(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl). (7.2.3)

Through this definition, two things are automatically fulfilled. Firstly, they are projections
onto the Qr

pΛk,l. And secondly, these mappings are L2-bounded, as follows from the Lemma
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6.5. Demonstrating compatibility with the operators D̂◦,Jn and the linking maps Sl,J is more
challenging to see, but follows from the results in [19]. For this purpose, let us define for
i = 1, . . . , n the projections

πk,li : L2((0, 1))→ L2((0, 1)) , πk,li :=



Π̂0
pi,ri

, if k = 0, l = 0,
Π̂1
pi,ri

, if k = 1, l = 0,
Π̂1
pi,ri

, if k = 0, l = 1,
Π̂2
pi,ri

, if k = 1, l = 1,

(7.2.4)

utilizing notation from Definition 6.7 and with pi, ri denoting the entries of the degree and regu-
larity vectors. Due to Definition 1 and Section 3.1 in [19] suitable bounded cochains projections
for the output complex are obtained by

Π̃k,l
h,n : L2(Ω̂)⊗ Altk,l → Qr

pΛk,l ,∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

cσ,s(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl) 7→

∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

(
πσ,scσ,s

)
(dxσ1 ∧ · · · ∧ dxσk)⊗ (dxs1 ∧ · · · ∧ dxsl),

where
πσ,s := πi1,j11 ⊗ · · · ⊗ πin,jnn , il = (eσ)l, jl = (es)l, ∀l. (7.2.5)

What we mean by suitable in this context is clarified by the next lemma. But before stating this
lemma we go back to the definition (7.2.4) of the auxiliary projections and see for the last line
directly πil,jll = Π̂il+jl

pi,ri
.

Consequently, utilizing our definition (6.3.9), then (7.2.5) yields

πσ,s = Π̂eσ+es
p,r . (7.2.6)

That is, the projections introduced in (7.2.3) above coincide with those derived through the
tensor product approach in [19].
Therefore, we can summarize the following because of Theorem 2, Theorem 3, and the Section

3.1 in [19]:

Lemma 7.3 (Spline output complexes, see [19, Theorem 2, Theorem 3]). Applying the BGG
construction to diagram (7.2.2), we obtain as result a subcomplex (V̂ ◦,Jh,n , D̂

◦,J
n ) of the continuous

output complex (V̂ ◦,Jn , D̂◦,Jn ) from Section 4.2.3, where here J ∈ {1, . . . , n}. Moreover the pro-
jections Π̂k,l,Λ

h,n determine in fact L2-bounded cochain projections onto the discrete sequence. In
more detail, with

Pk,J,Λ
h,n :=

Π̂k,J−1,Λ
h,n , if k ≤ J − 1,

Π̂k,J,Λ
h,n , if k ≥ J

(7.2.7)

and the notation from Lemma 4.9, it is

P◦,J,Λ
h,n : L2(Ω̂)⊗ Ak,J

n → V̂ k,J
h,n ,

Pk+1,J,Λ
h,n ◦ D̂k,J

n = D̂k,J
n ◦Pk,J,Λ

h,n , on V̂ k,J
n , and∥∥∥Π̂k,l,Λ

h,n ω
∥∥∥
L2
≤ CΠ̂ ‖ω‖L2 , on L2Λk,l(Ω̂),

for some positive constant CΠ̂. Thus, (V̂ ◦,Jh,n , D̂
◦,J
n ) represents a structure-preserving discretization

of (V̂ ◦,Jn , D̂◦,Jn ).
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Proof. This is a direct consequence of the Lemmata 2–4 from [19] and the remarked equivalence
between the projections discussed on the mentioned reference and the ones we defined in (7.2.3);
see (7.2.6).

In view of the previous lemma and the properties related to projections of the form Π̂l
p,r

(Lemma 6.7) one can proof completely analogously to the situation of a de Rham sequence, see
Lemma 7.2, the next approximation estimates.

Lemma 7.4. Let us assume to have a family of regular meshes on Ω̂ and let us consider the
corresponding spaces V̂ ◦,Jh,n from Lemma 7.3 forming a discrete output complex. Further we
assume for the underling degree and regularity vector p = (pi)i, r = (ri)i ∈ Nn that pi > ri ≥ 1
and we set p = mini{pi}, r = mini{ri}. Then there exists a constant CΠ̂ independent of mesh
size h with∥∥∥ω −Pk,J,Λ

h,n ω
∥∥∥
H(D̂)

≤ CΠ̂h
l ‖ω‖

Hl(D̂) , ∀ω ∈ H l(Ω̂, D̂k,J
n ,Ak,J

n ), 0 ≤ l ≤ p− 1.

Moreover, one has the inclusions V̂ k,J
h,n ⊂ Hr−1(Ω̂)⊗ Ak,J

n and the additional error estimate∥∥∥ω −Pk,J,Λ
h,n ω

∥∥∥
Ht
≤ CΠ̂h

l−t ‖ω‖Hl , ∀ω ∈ H l(Ω̂)⊗ Ak,J
n , 0 ≤ t ≤ l ≤ p− 1, t ≤ r − 1.

Certainly, all the above estimates are fulfilled for every k ∈ {0, . . . , n}.

Proof. In principle we use the same steps as in the proof of Lemma 7.2, but now with the
restriction pi > ri > 0. For example, we obtain for ω ∈ H t(Ω̂) ⊗ Ak,l

n with (7.2.3) and Lemma
6.7 directly∥∥∥ω − Π̂k,l,Λ

h,n ω
∥∥∥
L2
≤

∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

∥∥∥cσ,s − Π̂eσ+es
p,r cσ,s

∥∥∥
L2
≤ C

∑
σ∈Σ<(k,n)

∑
s∈Σ<(l,n)

ht ‖cσ,s‖Ht

≤ C̃ht ‖ω‖Ht , 0 ≤ t ≤ p− 1,

where ω is represented w.r.t. the standard basis (4.2.16). And this gives the first inequality
in the assertion due to abbreviation (7.2.7) and Lemma 7.3, the commutativity property of
the projections, respectively. The mentioned inclusions are clear by the definition of r and the
additional estimates are again a straightforward application of Lemma 6.7.

Since all the V̂ ◦,Jh,n are built by standard spline spaces, we can directly conclude from Lemma
6.3 the next inverse estimates.

Corollary 7.3 (Inverse estimates). Let the assumptions of the previous Lemma 7.4 hold.
Then there is a constant Cinv s.t.

‖ωh‖Hs ≤ Cinvh
l−s ‖ωh‖Hl , ∀ωh ∈ V̂ k,J

h,n , 0 ≤ l ≤ s ≤ r − 1,

with Cinv independent from h.

As outlined in Section 4.2.3 (see Definition 4.3), we can reduce the situation of coupled Altk-
valued forms to the situation of matrix- or vector-valued mappings. The only things we need
are proxy maps Jk on Altk-forms and the resulting proxy output complex was denoted with
(V◦,Jn ,D◦,Jn ). For more details on the exact identification approach, we refer to the mentioned
section. So, there is no problem to analogously identify elements in the spaces Qr

pΛk,J , Qr
pΛk,J−1

with matrix-valued mappings. To be more precise, we consider the proxy spaces

V̂ k,l
h,n := Jk(Qr

pΛk,l), l ∈ {J − 1, J}. (7.2.8)
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Just as in the continuous case (see Section 4.2.3), where the proxy maps yield a proxy output
complex, applying the BGG construction to the setting in diagram (7.2.9) results in a discrete
proxy output complex. We will denote the latter as (V̂◦,Jh,n, D̂◦,Jn ). It should also be mentioned here
that when transitioning from de Rham involving differential forms to proxy complexes in Section
4.2.3, we have replaced the exterior derivative dk with operators of the form Dk := Jk+1◦dk◦J −1

k .
Now, if we add a hat, meaning we write D̂k, highlighting our current restriction to the reference
domain, we obtain in the case of proxy complexes a following diagram analogous to (7.2.2):

V̂ k,J−1
h,n V̂ k+1,J−1

h,n V̂ k+2,J−1
h,n

. . .. . . D̂k D̂k+1

V̂ k−1,J
h,n V̂ k,J

h,n V̂ k+1,J
h,n

. . .. . . D̂k−1 D̂k .

S̃k−1,J S̃k,J S̃k+1,J

(7.2.9)

In this process, the new linking maps S̃l,J result from the original ones by setting S̃l,J = Jl+1 ◦
Sl,J ◦ J −1

l .
Since we are not altering the underlying structures but only switching between the spaces

L2(Ω̂) ⊗ Altk,l and L2(Ω̂) ⊗ R(n|l)×(n|k) using the Jk, it is clear that the same results as in
Lemma 7.3 and Lemma 7.4 also apply to the discrete proxy output complex. For the sake of
completeness, we would like to briefly summarize them here once again.

Corollary 7.4. The discrete complexes (V̂◦,Jh,n, D̂◦,Jn ), given by a BGG construction applied to
the proxy complexes, meaning diagram (7.2.9), determine a structure-preserving discretization
of the continuous proxy output complex (V̂◦,Jn , D̂◦,Jn ) on Ω̂, provided a family of regular meshes.
L2-bounded cochain projections are given by

Pk,J
h,n := Jk ◦Pk,J,Λ

h,n ◦ J −1
k , (7.2.10)

with proxy maps Jk : L2(Ω) ⊗ Altk,l → L2(Ω) ⊗ R(n|l)×(n|k); compare the explanations before
Definition 4.3.
The estimates from Lemma 7.4 hold in an analogous manner also for Pk,J

h,n , hence e.g. it is∥∥∥v −Pk,J
h,nv

∥∥∥
H(D̂)

≤ CΠ̂h
l ‖v‖

Hl(D̂) , ∀v ∈ H l(Ω̂, D̂k,J
n ,Vk,J

n ), 0 ≤ l ≤ p− 1,

where we refer to (4.2.22) for a definition of the V◦,Jn .

7.2.2 Complexes in 2D
Here we want to be more specific and use the general definitions from the last subsection in a con-
crete setting. More precisely, similarly to the discussions in [19] we present a finite-dimensional
approximation of the diagram (4.2.25) given in Example 4.2. It should be noted that the last di-
agram has been created with the help of proper proxy maps Jk defined in Example 3.1 (3D) and
Example 3.2 (2D). But, as we explained how to incorporate such proxy mappings in the BGG
framework, the below concentration on specific vector- or matrix valued mappings is justified;
compare (7.2.8). To simplify the analysis, we will assume that the underlying spaces in (7.2.1)
have degree and regularity vectors in the form of p = (p, p) and r = (r, r), with p > r > 0. If we
now map the resulting spaces Qr

pΛk,l back to those in L2(Ω̂)⊗R(n|l)×(n|k), in the sense of (7.2.8),
then the following diagram structure is obtained:
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Sr,rp,p

[
Sr,r−1
p,p−1

Sr−1,r
p−1,p

]
Sr−1,r−1
p−1,p−10 0ĉurl ∇̂·

[
Sr,r−1
p,p−1

Sr−1,r
p−1,p

] [
Sr,r−2
p,p−2 Sr−1,r−1

p−1,p−1

Sr−1,r−1
p−1,p−1 Sr−2,r

p−2,p

] [
Sr−1,r−2
p−1,p−2

Sr−2,r−1
p−2,p−1

]
0 0ĉurl ∇̂·

id −2sskew

Sr−1,r−1
p−1,p−1

[
Sr−1,r−2
p−1,p−2

Sr−2,r−1
p−2,p−1

]
Sr−2,r−2
p−2,p−20 0ĉurl ∇̂·

−mskew id

Figure 10: Each row represents a discrete de Rham sequence, where the blue (green) linking map is
surjective (injective) between the discrete spaces.

One verifies easily that the spaces in Figure 10 fit, i.e. that the individual rows represent
bounded Hilbert complexes and the linking maps satisfy the surjectivity and injectivity condi-
tions from (4.2.2) and similarly to (4.2.25). In other words, the coupling of consecutive rows
provides discrete versions of the elasticity and divdiv complexes in 2D on Ω̂; compare Example
4.2. However, we require more than just subcomplexes, rather, we aim for structure-preserving
discretizations. This necessitates bounded cochain projections from the continuous chains to the
corresponding spline spaces, whereby the operator norm of the projections must not depend on
the mesh size. In other words, we must also provide projections onto the spaces in Figure 10.
But we already know in the general case, which projections are suitable, namely the one from
(7.2.3), (7.2.10), respectively. To provide an overview, we would like to summarize the relevant
projections in a further diagram. In Figure 11, we repeat the diagram from Figure 10, but at
the respective places, we incorporate the associated projections, not the spline spaces, where we
use the abbreviation Π̂l1,l2 := Π̂l

p,r, l = (l1, l2), for a better readability.

Π̂0,0

Π̂0,1

Π̂1,0

 Π̂1,10 0ĉurl ∇̂·

Π̂0,1

Π̂1,0

 Π̂0,2 Π̂1,1

Π̂1,1 Π̂2,0

 Π̂1,2

Π̂2,1

0 0ĉurl ∇̂·

id −2sskew

Π̂1,1

Π̂1,2

Π̂2,1

 Π̂1,10 0ĉurl ∇̂·

−mskew id

Figure 11: In this diagram we summarize the projections onto the related spaces in the previous Figure
10 which in fact determine the cochain projections onto the respective output complexes.

We have a possible discretization of the general BGG construction in 2D, as discussed in
Section 4.2.3. Consequently, it is also evident how we obtain finite-dimensional versions of
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elasticity and divdiv complexes; see (4.2.26). and (4.2.27). We only need to combine the first or
last two rows in Figure 10, following the BGG construction principles. One gets:

Corollary 7.5 (Discrete elasticity complex-2D). The spaces

V̂0,1
h,2 := Sr,rp,p, V̂1,1

h,2 :=
[
Sr,r−2
p,p−2 Sr−1,r−1

p−1,p−1

Sr−1,r−1
p−1,p−1 Sr−2,r

p−2,p

]
∩ L2(Ω̂)⊗ S, V̂2,1

h,2 :=
[
Sr−1,r−2
p−1,p−2

Sr−2,r−1
p−2,p−1

]

determine a structure-preserving discretization of the elasticity complex on (0, 1)2; see (4.2.26).
Thus we especially have the discrete complex

V̂0,1
h,2 V̂1,1

h,2 V̂2,1
h,20 0.ĉurl2 ∇̂·

(7.2.11)

Corollary 7.6 (Discrete divdiv complex-2D). The spaces

V̂0,2
h,2 :=

[
Sr,r−1
p,p−1

Sr−1,r
p−1,p

]
, V̂1,2

h,2 :=
[
Sr,r−2
p,p−2 Sr−1,r−1

p−1,p−1

Sr−1,r−1
p−1,p−1 Sr−2,r

p−2,p

]
∩ L2(Ω̂)⊗ S, V̂2,2

h,2 := Sr−2,r−2
p−2,p−2

determine a structure-preserving discretization of the divdiv complex on (0, 1)2; see (4.2.27). We
have the Hilbert complex

V̂0,2
h,2 V̂1,2

h,2 V̂2,2
h,20 0.

̂symcurl ∇̂ · ∇̂·
(7.2.12)

In the simple reference area, i.e., (0, 1)2, the exactness of the complexes from the previous
corollaries holds for levels k > 0. We will exploit this in the following two examples.

Example 7.1 (Elasticity complex: Hodge–Laplace problem of level k = 1). We now intend
to demonstrate how one can utilize the spline spaces to approximately solve a Hodge–Laplace
problem on Ω̂ induced by the elasticity complex (4.2.26). In particular, we aim to illustrate
through a numerical test that we can achieve the convergence behavior suggested by the theory.
In view of Definition 4.5 and the notation from Section 4.2.2 we consider the continuous complex
(V ◦,D◦) with differential operators D0 := ĉurl2 , D1 := ∇̂· and spaces V 0 := H2(Ω̂), V 1 :=
H(Ω̂, ∇̂·,S), V 2 := L2(Ω̂) ⊗ R2. Using integration by parts one gets the adjoint differential
operators D∗2 = −sym∇̂ : L2(Ω̂)⊗R2 → L2(Ω̂)⊗S and D∗1 = (ĉurl2)∗ : L2(Ω̂)⊗S→ L2(Ω̂) which
are related to suitable boundary conditions. The Hodge–Laplace equation of level k = 1 has the
form

T 1
HLu :=

(
ĉurl2(ĉurl2)∗ − sym∇̂∇̂ ·

)
u = f, u ∈ H(Ω̂, ∇̂·,S), f ∈ L2(Ω̂)⊗ S, cf. Section 3.2.

(7.2.13)

Actually, one searches for u ∈ Dom(T 1
HL) :=

{
H(Ω̂, ∇̂·,S) ∩ V ∗1

∣∣∣ ∇̂ · u ∈ V ∗2 and (ĉurl2)∗u ∈
H2(Ω̂)

}
, where the V ∗i := Dom

(
(D i−1,V i−1)∗

)
denote the domains of the adjoints. Using Corol-

lary 7.5, the associated discrete mixed weak form is then given by: Find (σh, uh) ∈ V̂0,1
h,2 ×

V̂1,1
h,2 with

〈σh, τh〉 −〈uh, ĉurl
2
τh〉 = 0, ∀τh ∈ V̂0,1

h,2, (7.2.14)

〈ĉurl2σh, vh〉+〈∇̂ · uh, ∇̂ · vh〉 = 〈f, vh〉, ∀vh ∈ V̂1,1
h,2. (7.2.15)
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We now choose the right-hand side f such that the exact solution of equation (7.2.13) is given
by

u =
[
2w w
w −2w

]
, w(ζ1, ζ2) := sin(πζ1)2 sin(πζ2)2 .

There is no doubt that u ∈ Dom(T 1
HL), and our choice fits with the abstract Hodge–Laplace

problem. Considering the discretization (7.2.14)-(7.2.15) and the smooth manufactured solution,
we should expect an error decrease of O(hp−1) for polynomial degree p, where the errors are
measured through ‖σ − σh‖H2 and ‖u− uh‖H(∇̂·).

13 Note Lemma 3.16 and Corollary 7.4 for
this matter. The computed errors between the exact and approximated solution are summarized
in Figure 12 for polynomial degrees p = 2, . . . , 5 and regularities r = p − 1. In the plots, by
"mesh size h", we mean that the corresponding Bézier mesh consists of 1/h2 identical squares;
see Remark 6.1. Indeed, in Figure 12, we observe the expected stable convergence behavior, and
the test numerically supports the statements of Corollary 7.4.

0.035 0.05 0.075 0.1 0.15 0.25
10−5

10−4

10−3

10−2

10−1

100

101

Mesh size h

O(h1)
O(h2)
O(h3)
O(h4)

(a) ‖u− uh‖H(∇̂·)

0.035 0.05 0.075 0.1 0.15 0.25

10−2

10−1

100

101

102

Mesh size h

p = 2 p = 3
p = 4 p = 5

(b) ‖σ − σh‖H2

Figure 12: We see the error decay for the mixed weak formulation and the spaces V̂i,1
h,2, where the

regularity is chosen as r = p − 1. The observed convergence rates fit to theoretically
expected ones.

Of course, we can also utilize Corollary 7.5 for another Hodge–Laplace problem by going to
the next level k = 2. This then leads us to a saddle-point problem, which appears in a modified
form again in the application example of linear elasticity; see Section 9.2 which explains the
frequently used term "elasticity complex".

Example 7.2 (Elasticity complex: Hodge–Laplace problem of level k = 2). We look at a test
case analogous to Example 7.1. But this time we have the equation

T 2
HLu := −∇̂ · sym∇̂u = f, u, f ∈ L2(Ω̂)⊗ R2. (7.2.16)

since for the 2D elasticity complex D1 = ∇̂· and D2 = 0. Thus we seek for u ∈
{
H1

0 (Ω) ⊗
R2

∣∣∣ sym∇̂u ∈ H(Ω̂, ∇̂·,S)
}
where the zero boundary conditions ensure the validity of the related

13We use the standard Big-O-Notation; ‖v − vh‖ ∈ O(hp) : ⇐⇒ ‖v − vh‖ ≤ Chp for h→ 0.
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mixed weak form. The discretized version of the latter reads: Find (σh, uh) ∈ V̂1,1
h,2 × V̂2,1

h,2 with

〈σh, τh〉 −〈uh, ∇̂ · τh〉 = 0, ∀τh ∈ V̂1,1
h,2, (7.2.17)

〈∇̂ · σh, vh〉 = 〈f, vh〉, ∀vh ∈ V̂2,1
h,2, (7.2.18)

where one observes the definitions in Corollary 7.6. If we select f such that the exact solution is

u = (w,−w)T, w(ζ1, ζ2) := sin(πζ1) sin(πζ2) ,

we should observe for our well-posed discretization analogous convergence rates ‖u− uh‖ +
‖σ − σh‖H(∇̂·) ∈ O(hp−1) (‖·‖ = ‖·‖L2) as for the first Example 7.1. This is confirmed by
Figure 13 which shows a very stable decay behavior, although we increase regularity in the sense
r = p− 1.

0.035 0.05 0.075 0.1 0.15 0.25
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Mesh size h

O(h1) O(h2)
O(h3) O(h4)

(a) ‖u− uh‖

0.035 0.05 0.075 0.1 0.15 0.25

10−5

10−4

10−3

10−2

10−1

100

Mesh size h

p = 2 p = 3
p = 4 p = 5

(b) ‖σ − σh‖H(∇̂·)

Figure 13: Convergence plots for the manufactured solution and discretization (7.2.17)-(7.2.18). These
plots demonstrate the feasibility of the spaces V̂1,1

h,2, V̂
2,1
h,2 .

The examples have once again clarified how, in 2D and in the case of a square domain, we
can discretize the second-order complexes implied by the coupling in the previous section in a
structure-preserving manner. There is no doubt about the possibility of discretizing the diagram
(4.2.28) in 3D using spline spaces as well, in such a way that we also obtain suitable finite-
dimensional counterparts for the three second-order complexes mentioned earlier in (4.2.29)-
(4.2.31). For the sake of completeness, we would like to summarize the most important spaces
and the corresponding diagrams in three dimensions in the next section.

7.2.3 Complexes in 3D
The idea here in the three-dimensional case n = 3 is entirely the same as in the previous chapter,
this means we use the general construction outlined in Section 7.2.1 together with the proxy maps
to establish a discrete version of (4.2.28) from Example 4.3. Again we make the assumption of
pi = p, ri = r, ∀i for the components of degree and regularity vectors p, r. As a result one
obtains the diagram in Figure 14, in which each row is a vector-valued spline de Rham sequence.
The injectivity of the green, the surjectivity of the blue as well as the bijectivity of the red linking
maps in the mentioned figure can be checked easily. The relevant projections are further given
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in Figure 15, with an analogous notation simplification as in 2D, i.e. Π̂l1,l2,l3 := Π̂l
p,r, l = (li)i.

Then we can apply the BGG construction in the discrete setting for consecutive rows in Figs. 14
to get a discrete Hessian, elasticity and divdiv complex in 3D. Note, the latter chains are also
introduced in Example 4.3. Exploiting the observations from Section 7.2.1, especially Corollary
7.4, we directly obtain the next three corollaries:
Corollary 7.7 (Discrete Hessian complex-3D). The spaces

V̂0,1
h,3 := Sr,r,rp,p,p, V̂1,1

h,3 :=


Sr−2,r,r
p−2,p,p Sr−1,r−1,r

p−1,p−1,p Sr−1,r,r−1
p−1,p,p−1

Sr,r−2,r
p,p−2,p Sr,r−1,r−1

p,p−1,p−1

sym Sr,r,r−2
p,p,p−2

 ∩ L2(Ω̂)⊗ S,

V̂2,1
h,3 :=


Sr−1,r−1,r−1
p−1,p−1,p−1 Sr−2,r,r−1

p−2,p,p−1 Sr−2,r−1,r
p−2,p−1,p

Sr,r−2,r−1
p,p−2,p−1 Sr−1,r−1,r−1

p−1,p−1,p−1 Sr−1,r−2,r
p−1,p−2,p

Sr,r−1,r−2
p,p−1,p−2 Sr−1,r,r−2

p−1,p,p−2 Sr−1,r−1,r−1
p−1,p−1,p−1

 ∩ L2(Ω̂)⊗ T, V̂3,1
h,3 :=

S
r−2,r−1,r−1
p−2,p−1,p−1
Sr−1,r−2,r−1
p−1,p−2,p−1
Sr−1,r−1,r−2
p−1,p−1,p−2


determine a structure-preserving discretization of the Hessian complex on (0, 1)3; see (4.2.29).
We have the Hilbert complex

0 V̂0,1
h,3 V̂1,1

h,3 V̂2,1
h,3 V̂3,1

h,3
∇̂2 ∇̂× ∇̂· 0.

Corollary 7.8 (Discrete elasticity complex-3D). The spaces

V̂0,2
h,3 :=


Sr−1,r,r
p−1,p,p

Sr,r−1,r
p,p−1,p

Sr,r,r−1
p,p,p−1

 , V̂1,2
h,3 :=


Sr−2,r,r
p−2,p,p Sr−1,r−1,r

p−1,p−1,p Sr−1,r,r−1
p−1,p,p−1

Sr,r−2,r
p,p−2,p Sr,r−1,r−1

p,p−1,p−1

sym Sr,r,r−2
p,p,p−2

 ∩ L2(Ω̂)⊗ S

V̂2,2
h,3 :=


Sr,r−2,r−2
p,p−2,p−2 Sr−1,r−1,r−2

p−1,p−1,p−2 Sr−1,r−2,r−1
p−1,p−2,p−1

Sr−2,r,r−2
p−2,p,p−2 Sr−2,r−1,r−1

p−2,p−1,p−1

sym Sr−2,r−2,r
p−2,p−2,p

 ∩ L2(Ω̂)⊗ S, V̂3,2
h,3 :=


Sr−1,r−2,r−2
p−1,p−2,p−2

Sr−2,r−1,r−2
p−2,p−1,p−2

Sr−2,r−2,r−1
p−2,p−2,p−1


determine a structure-preserving discretization of the elasticity complex on (0, 1)3; see (4.2.30).
We have the Hilbert complex

0 V̂0,2
h,3 V̂1,2

h,3 V̂2,2
h,3 V̂3,2

h,3
sym∇̂ înc ∇̂· 0.

Corollary 7.9 (Discrete divdiv complex-3D). The spaces

V̂0,3
h,3 :=


Sr,r−1,r−1
p,p−1,p−1

Sr−1,r,r−1
p−1,p,p−1

Sr−1,r−1,r
p−1,p−1,p

 , V̂1,3
h,3 :=


Sr−1,r−1,r−1
p−1,p−1,p−1 Sr,r−2,r−1

p,p−2,p−1 Sr,r−1,r−2
p,p−1,p−2

Sr−2,r,r−1
p−2,p,p−1 Sr−1,r−1,r−1

p−1,p−1,p−1 Sr−1,r,r−2
p−1,p,p−2

Sr−2,r−1,r
p−2,p−1,p Sr−1,r−2,r

p−1,p−2,p Sr−1,r−1,r−1
p−1,p−1,p−1

 ∩ L2(Ω̂)⊗ T

V̂2,3
h,3 :=


Sr,r−2,r−2
p,p−2,p−2 Sr−1,r−1,r−2

p−1,p−1,p−2 Sr−1,r−2,r−1
p−1,p−2,p−1

Sr−2,r,r−2
p−2,p,p−2 Sr−2,r−1,r−1

p−2,p−1,p−1

sym Sr−2,r−2,r
p−2,p−2,p

 ∩ L2(Ω̂)⊗ S, V̂3,3
h,3 := Sr−2,r−2,r−2

p−2,p−2,p−2

determine a structure-preserving discretization of the divdiv complex on (0, 1)3; see (4.2.31). We
have the Hilbert complex

0 V̂0,3
h,3 V̂1,3

h,3 V̂2,3
h,3 V̂3,3

h,3
dev∇̂ sym∇̂× ∇̂ · ∇̂· 0.
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At the end of this section, we would like to make a not particularly surprising but still note-
worthy remark that we will use later.
Remark 7.2. Firstly, the entire definition of spline spaces, or rather the splines, was based
on the specification that the smallest and largest knot values are 0 and 1, in every coordinate
direction; compare Assumption 6.1. Hence, we focused on the situation of the parametric domain
Ω̂ = (0, 1)n. However, it is obvious that all these definitions can also be established if we replace
0 and 1 with two other real numbers a < b. This means that we can consider a different cube
(a, b)n as the parameter domain and adjust the introduced spaces V̂ k,J

h,n , Qr
pΛk,l etc. and related

projections accordingly. The various estimates and approximation properties remain valid in
this context. Only the involved constants might need to be adjusted as necessary.
We have explained now with the help of references [19] and [27] how to discretize the second-

order complexes (V ◦,Jn ,D◦,Jn ) from Section 4.2.3 in the reference domain Ω̂ while preserving the
structure. This allows us to leverage the results of FEEC and approximate various Hodge–
Laplace problems, albeit initially in the rather restrictive case of cubical domains. As illustrated
by the numerical tests in the Examples 7.1 and 7.2, we have clarified this for two specific prob-
lems. However, our plan remains to investigate mixed formulations for Hodge–Laplace problems
in curved geometries as well. Before we finally delve into the central chapter of this work, where
the main results are to be found, namely the application of spline complexes for isogeometric
discretizations of a class of saddle-point problems, we need to introduce the isogeometric discrete
differential forms mentioned at various points and later relevant. We aim to do this briefly in
the next section.

7.3 Isogeometric discrete differential forms
Until now the discrete complexes were explained and defined on the reference cube Ω̂ = (0, 1)n.
Unfortunately, the definitions cannot be easily extended to other domains due to the central
role played by the tensor product structure of B- splines. However, for the specific case of the
Rham sequence, a generalization can indeed be made, as demonstrated extensively, for instance,
in 3D in [27]. The idea is to reuse the previously introduced spline differential forms and
projections, meaning the outcomes of Section 7.1, provided a C1-diffeomorphic parametrization
F : Ω̂ → Ω, Ω ⊂ Rn of the actual computational domain. More precisely, the approach made
in the framework of isogeometric (discrete) differential forms in [27] is the use of the pullback
operation related to F−1; see Definition 3.9. Because this operation commutes with the exterior
derivative (i.e. it holds (3.3.4)), we automatically obtain, with the spaces

Qr
pΛk :=

{
YkF−1ω | ω ∈ Qr

pΛk
}
,

a discrete version of the de Rham complex on Ω. The mentioned commutativity and the L2-
boundedness also imply that we are dealing with a structure-preserving discretization, where
suitable bounded cochain projections are given by

Πk,Λ
h,n : L2Λk(Ω)→ Qr

pΛk , Πk,Λ
h,n := YkF−1 ◦ Π̂k,Λ

h,n ◦ YkF.

For details regarding the mentioned spaces Qr
pΛk and the projections Π̂k,Λ

h,n we refer to Section
7.1.
Due to Lemma 3.8 we see the existence of constants 0 < c1 < c2 such that

c1

∥∥∥YkF−1ω
∥∥∥
L2(Ω)

≤ ‖ω‖
L2(Ω̂) ≤ c2

∥∥∥YkF−1ω
∥∥∥
L2(Ω)

, ∀ω ∈ L2Λk(Ω̂).

Hence, in view of (3.3.4), we get from Lemma 7.2 the next corollary.
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Corollary 7.10 (Isogeometric discrete differential forms). Let the assumptions of Lemma
7.2 be fulfilled and let further let the parametrization F : Ω̂→ Ω be a C1-diffeomorphism. Besides,
we require F and F−1 as well as their first derivatives to be continuously extendable to the closures
Ω̂, Ω, respectively.
Then the above defined spaces Qr

pΛ◦ determine a structure-preserving discretization of the de
Rham complex (HΛ◦(Ω), d◦) in Ω. Further, we have for some constant CΠ the inequalities∥∥∥ω − Πk,Λ

h,nω
∥∥∥
HΛk
≤ CΠh

l ‖ω‖Hl(dk) , ∀ω ∈ H
l(Ω, dk,Altk), 0 ≤ l ≤ p,∥∥∥ω − Πk,Λ

h,nω
∥∥∥
L2
≤ CΠh

l ‖ω‖Hl , ∀ω ∈ H lΛk(Ω), 0 ≤ l ≤ p̃.

Note, p̃ = p for k > 0 and p̃ = p+ 1 for k = 0.
We refer to the Qr

pΛ◦ as isogeometric discrete differential forms.

Sometimes it is more convenient to leave behind the abstract notation with differential forms
and work with a proxy complex in the sense of Section 3.3.2. Now, if we define proxy maps
Jk : L2Λk(U)→ L2(U)⊗ Rn|k as in the mentioned section, we can introduce discrete spaces for
the proxy complex on Ω once again using the pullback. More precisely, we define

V̂ k
h,n := Jk

(
Qr

pΛk
)

and simply set

V k
h,n :=

{
JkYkF−1J −1

k v
∣∣∣ v ∈ V̂ k

h,n

}
=
{
Jkω

∣∣∣ ω ∈ Qr
pΛk

}
. (7.3.1)

By our construction of the spaces we get that V k
h,n ⊂ H(Ω,Dk,Rn|k), where the latter is the

proxy de Rham complex on Ω associated to the proxy maps Jk, i.e. Dk = Jk+1 ◦ dk ◦J −1
k . This

time, we obtain with

Πk
h,n : L2(Ω)⊗ Rn|k → V k

h,n , Πk
h,n := Jk ◦ Πk,Λ

h,n ◦ J −1
k = Jk ◦ YkF−1 ◦ Π̂k,Λ

h,n ◦ YkF ◦ J −1
k (7.3.2)

bounded cochain projections, which satisfy analogous estimates as in the last corollary.

Corollary 7.11. Let the assumptions of Lemma 7.2 and Corollary 7.10 hold and let Jk : L2Λk(U)→
L2(U)⊗Rn|k denote proxy maps in the sense of Definition 3.10. In this situation the spaces V ◦h,n
define a structure-preserving discretizaton of the proxy de Rham complex (H(Ω,D◦,Rn|◦),D◦)
with bounded cochain projections Π◦h,n. One has the estimates∥∥∥v − Πk

h,nv
∥∥∥
H(Dk)

≤ CΠh
l ‖v‖Hl(Dk) , ∀v ∈ H l(Ω,Dk,Rn|k), 0 ≤ l ≤ p,∥∥∥v − Πk

h,nv
∥∥∥
L2
≤ CΠh

l ‖v‖Hl , ∀v ∈ H l(Ω)⊗ Rn|k, 0 ≤ l ≤ p̃,

for a suitable constant CΠ.

At the end of the section let us further illustrate these isogeometric discrete differential forms
in the context of the classical proxy sequences in 2D and 3D; cf. Examples 3.1 and 3.2. This
might make the above abstract definitions somewhat more comprehensible.

Example 7.3 (Discrete proxy de Rham sequences). In principle, the procedure is relatively
straightforward. Firstly, we naturally utilize the abstract definition (7.1.1) involving differential
forms and select the appropriate proxy spline complex by employing the identifications from
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Examples 3.1 and 3.2. This leads us in 3D for p = (p1, p2, p3), r = (r1, r2, r3) with 0 ≤ ri ≤ pi−1
to the spaces

V̂ 0
h,3 := Sr1,r2,r3p1,p2,p3 ,

V̂ 1
h,3 :=

[
Sr1−1,r2,r3
p1−1,p2,p3 Sr1,r2−1,r3

p1,p2−1,p3 Sr1,r2,r3−1
p1,p2,p3−1

]T
,

V̂ 2
h,3 :=

[
Sr1,r2−1,r3−1
p1,p2−1,p3−1 Sr1−1,r2,r3−1

p1−1,p2,p3−1 Sr1−1,r2−1,r3
p1−1,p2−1,p3

]T
,

V̂ 3
h,3 := Sr1−1,r2−1,r3−1

p1−1,p2−1,p3−1,

if the associated Bézier mesh M̂h is regular and has mesh size h. Besides in 2D let us set
similarly

V̂ 0
h,2 := Sr1,r2p1,p2 ,

V̂ 1
h,2 :=

[
Sr1,r2−1
p1,p2−1 Sr1−1,r2

p1−1,p2

]T
,

V̂ 2
h,2 := Sr1−1,r2−1

p1−1,p2−1.

The spaces V̂ ◦h,2, V̂ ◦h,3 discretize the proxy de Rham sequences (3.3.8) and (3.3.9) on the parametric
domain. This is a direct consequence of the remarks in Section 7.1. To extend the last spaces
to Ω, where the latter is parametrized by some smooth parametrization F : (0, 1)n → Ω, the
important thing are the pullbacks. But in Example 4.1 we introduced mappings Y in that define
compatible pullbacks, i.e. they commute with the respective differential operators in the de Rham
complex. Choosing

V i
h,n :=

(
Y in
)−1(

V̂ i
h,n

)
, 0 ≤ i ≤ n, n = 2, 3 ,

hence indeed provides structure-preserving discretizations of the de proxy Rham complexes (3.3.8)
and (3.3.9) on Ω.

Remark 7.3 (Structure-preserving discretization of the extended de Rham complex). We saw
how we can discretize the (proxy) de Rham complex in structure-preserving manner using the
isogeometric discrete differential forms. But we considered in Section 4.2.3 also the extended
de Rham sequence (HΛ◦,l, d◦). As already explained in the mentioned section we can interpret
(HΛ◦,l, d◦) as an

(
n
l

)
-fold copy of the classical de Rham sequence (HΛ◦, d◦). So there is no

doubt, that the spaces Qr
pΛk yield also a structure-preserving discretization of (HΛ◦,l, d◦) just

by copying the discrete complexes. Certainly, this is also true, if we use proxy maps and go to
the extended proxy de Rham complex

(
H(Ω,D◦,R(n|l)×(n|◦)),D◦

)
; see Remark 4.3. We clarified

in Section 4.2.3 further that we can assume the differential operators D◦ in the extended complex
to act row-wise which means

Ṽ k
h,n :=

{
τ ∈ L2(Ω)⊗ R(n|l)×(n|k)

∣∣∣ each row of τ is element of V k
h,n

}
give a structure-preserving discretization of

(
H(Ω,D◦,R(n|l)×(n|◦)),D◦

)
. The row-wise applica-

tion of the projections Πk
h,n defined in (7.3.2) yield then L2-bounded cochain projections, which

trivially fulfill the estimates from Corollary 7.11.
Now, finally, comes the chapter where we bring together the various statements and auxiliary

results from the previous chapters to discretize a class of saddle-point problems. This per-
tains to the mixed formulation for the level n Hodge–Laplace problem induced by the complex
(V ◦,Jn ,D◦,Jn ). In this process, we will even acquaint ourselves with two different discretization
methods, demonstrating their convergence and stability.
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8 Discretization of Mixed Formulations
from Altl-valued Forms

In the following, we want to focus on the discretization of the mixed formulation of the Hodge-
Laplace problem (see Definition 3.5) exploiting spline spaces, IG spaces, respectively. We will
restrict ourselves to formulations that are derived from the output complexes (V ◦,Jn ,D◦,Jn ), which
we introduced and explained in Section 4.2.3 (compare Lemma 4.9), using a certain class of
BGG construction. In principle, it is now a matter of applying the observations and preparatory
results from Section 5 to the specific complexes (V ◦,Jn ,D◦,Jn ), whereby this time we want to specify
concrete Finite Element spaces (FE spaces). And for the definition of the discrete spaces, we
in turn use what we have learned about IGA in Section 6. Therefore, we start analogously to
Section 5.1 (see (5.1.1)-(5.1.2)) with the following mixed formulation:

Definition 8.1 (Continuous problem). Let k ∈ {1, . . . , n}, J ∈ {1, . . . , n} and Ω ⊂ Rn

be a Lipschitz domain and set D i := D i,J
n , ∀i. Given f ∈ L2(Ω) ⊗ Ak,J

n we seek for (σ, u) ∈
V k−1,J
n × V k,J

n s.t.

〈σ, τ〉 −〈u,Dk−1τ〉 = 0, ∀τ ∈ V k−1,J
n , (8.0.1)

〈Dk−1σ, v〉+〈Dku,Dkv〉 = 〈f, v〉, ∀v ∈ V k,J
n . (8.0.2)

It is worth noting that we used above and will continue to employ the notation established in
Section 4.2.3.
The last definition still requires an assumption to truly represent a meaningful weak version of
the Hodge–Laplace problem. Specifically, we require for (V ◦,Jn ,D◦,Jn ) trivial cohomology spaces
Hk spaces, meaning the exactness of the output complexes at the corresponding level k; cf.
Definition 3.5. Because of Corollary 4.4 it is sufficient to assume the following:

Assumption 8.1. We have k ∈ {1, . . . , n}, J ∈ {1, . . . , n} and Ω ⊂ Rn is a Lipschitz domain.
In case of k < n we require Ω to be a starlike domain.

Additionally, we aim to reuse the ideas and tools introduced and discussed regarding IGA in
Section 6. Therefore, we need to demand more from the computational domain Ω. The latter
must be defined by a regular parametrization, which is at least C1 smooth. This leads us to the
stricter

Assumption 8.2. There is a regular parametrization F : (0, 1)n → Ω in the sense of Definition
6.5 which is at least C1-diffeomorphic. In particular the F is piecewise smooth.

With our setting clarified, we can now turn our attention to the actual discretization, this time
in the physical domain Ω. This is not a straightforward extension of the results in the parametric
domain Ω̂. While we could rely on pullbacks for the definition of isogeometric discrete differential
forms (see Section 7.3), which commuted with the exterior derivative, it can be easily verified
that these pullbacks are not compatible with the operators D◦,Jn . However, at first glance, it
seems that the next steps are still clear. One must now simply define new or modified pullback
operations that commute with the operators D◦,Jn . If we indeed have such compatible pullbacks at
hand, we could apply the same procedure used for the transition from de Rham spline complexes
to isogeometric differential forms for the second-order output complexes; see Section 7.3. The
outcome would be structure-preserving discretizations of (V ◦,Jn ,D◦,Jn ) in Ω, and the results of the
FEEC theory imply that we have automatically found suitable spaces for treating the problem
from Definition 8.1. However, there is a weakness in this apparent straightforward train of
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thought, and that weakness lies in the compatible pullbacks. To this day, neither we nor the
literature are aware of pullbacks that are valid for arbitrary (smooth) parameterizations and
that are also reasonably easy to compute. We have indeed dealt with modified pullbacks in the
context of the elasticity complex in [3], which might be usable for discretization. However, there
are several disadvantages that have led us not to delve further into this approach here. First, the
obtained pullbacks are complicated and not really suitable for efficient implementation. Second,
it is not clear whether this approach can be used to discretize other complexes. And since the
definition of various spaces in [3] also involves Hilbert complexes with boundary conditions, which
is a separate topic in itself, we will refrain from going into further details here. In summary,
it can be said once again that discretizing (8.0.1)-(8.0.2) is quite difficult in general, and it
is not entirely clear what suitable spaces should look like. For this reason, we want to start
by addressing the simpler question of whether we can always expect at least a unique discrete
solution with IG ansatz functions, i.e., clarifying the question of the invertibility for a finite-
dimensional version. After that, we will again focus on the case of saddle-point problems, that
is, k = n. For this latter class of problems, we can present two discretization approaches and
demonstrate the existence of well-posed IGA discretizations for them.

8.1 Invertibility of the mixed formulation
But first let us define again some spaces utilizing the notation from Section 4.2.3. For the next
definition one notes Assumptions 8.1 and 8.2.

Definition 8.2 (Choice of spaces). Let lk−1 and lk denote the order of the differential operators
Dk−1,J
n and Dk,J

n and set l := max{1, lk}. Further, let p = (pi)i, r = (ri)i, q = (qi)i, s = (si)i be
vectors in Nn s.t. pi > ri ≥ lk − 1, as well as qi > si ≥ l − 1, ∀i. Then we set

V̂ k−1,J
h,n := Ss

q ⊗ Ak−1,J
n ⊂ H lk−1(Ω̂)⊗ Ak−1,J

n ,

V̂ k,J
θ,n := Sr

p ⊗ Ak,J
n ⊂ H l(Ω̂)⊗ Ak,J

n ⊂ H1(Ω̂)⊗ Ak,J
n ,

where the h and θ denote the mesh sizes of the underyling regular meshes. We again use two
indices to emphasize the possibility of different meshes for V̂ k−1,J

h,n and V̂ k,J
θ,n .

The spaces in the physical domain are then just defined through

V k−1,J
h,n := V̂ k−1,J

h,n ◦ F−1 ⊂ H lk−1(Ω)⊗ Ak−1,J
n , (8.1.1)

V k,J
θ,n := V̂ k,J

θ,n ◦ F−1 ⊂ H l(Ω)⊗ Ak,J
n ⊂ H1(Ω)⊗ Ak,J

n . (8.1.2)

One observes, that the above inclusions are a direct consequence, of the conditions ri ≥
lk − 1 and si ≥ l − 1 and Assumption 8.2. In particular we obtain subspaces of V k−1,J

n , V k,J
n ,

respectively.
Straightforwardly, the projections ΠV

h from Lemma 6.2 induce projections onto the spaces
V k−1,J
h,n , V k,J

θ,n ; see Remark 6.2. For reasons of clarification, we write in the following ΠV
h (p, r)

for the respective projection onto the spline space with degree and regularity vectors p and r.
Then, given orthonormal bases {e1, . . . , em} ⊂ Ak−1,J

n and {ẽ1, . . . , ẽt} ⊂ Ak,J
n of Ak−1,J

n and Ak,J
n ,

we just set

Πk−1
h : L2(Ω)⊗ Ak−1,J

n → V k−1,J
h,n , ci ei 7→

(
ΠV
h ci) ei, with ΠV

h = ΠV
h (q, s),

Πk
θ : L2(Ω)⊗ Ak,J

n → V k,J
θ,n , c̃i ẽi 7→

(
ΠV
h c̃i) ẽi, with ΠV

h = ΠV
h (p, r),

where ci ∈ L2(Ω) denotes the coefficient function and the actual mapping is determined through
linearity. For theses projections we get by Lemma 6.2 directly
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Corollary 8.1. Writing p := mini{pi}, q := mini{qi}, we have∥∥∥τ − Πk−1
h τ

∥∥∥
Hs
≤ CΠh

l−s ‖τ‖Hl , ∀τ ∈ H lAk−1,J
n , 0 ≤ s ≤ l ≤ q + 1, s ≤ ord(Dk−1,J

n ),∥∥∥v − Πk
θv
∥∥∥
Hs
≤ CΠθ

l−s ‖v‖Hl , ∀v ∈ H lAk,J
n , 0 ≤ s ≤ l ≤ p+ 1, s ≤ 1,

for some constant CΠ.14 Besides, there is no issue to see the validity of the inverse estimates

‖τh‖Hs ≤ Cinvh
l−s ‖τh‖Hl , ∀τh ∈ V k,J

h,n , 0 ≤ l ≤ s ≤ ord(Dk−1,J
n ),

‖vθ‖Hs ≤ Cinvθ
l−s ‖vθ‖Hl , ∀vθ ∈ V k,J

θ,n , 0 ≤ l ≤ s ≤ 1,

because this is true for standard spline spaces; see Lemma 6.3. The positive numbers CΠ, Cinv
can be chosen independently of h and θ, provided a family of regular meshes.

After defining the discrete spaces, we can now turn our attention to the following finite-
dimensional problem:

Definition 8.3 (Discrete problem). In view of the assumptions in Definition 8.1 and the
previously introduced spaces we want to find (σh, uθ) ∈ V k−1,J

h,n × V k,J
θ,n s.t.

〈σh, τh〉 −〈uθ,Dk−1τh〉 = 0, ∀τh ∈ V k−1,J
h,n , (8.1.3)

〈Dk−1σh, vθ〉+〈Dkuθ,D
kvθ〉 = 〈f, vθ〉, ∀vθ ∈ V k,J

θ,n , (8.1.4)

for some given f ∈ L2(Ω)⊗ Ak,J
n .

In principle, we can always find a unique solution for such a discretization formulation.

Theorem 8.1 (Discrete invertibility). Let the Assumptions 8.1 and 8.2 hold. Assume we
have a family of pairs (V k−1,J

h,n ,V k,J
θ,n )θ in the sense of Assumption 5.1 with underlying regular

meshes, where the spaces are given by (8.1.1)-(8.1.2). Then there is a positive constant cR s.t.
h = h(θ) ≤ cRθ implies a unique discrete solution of (8.1.3)-(8.1.4) for each θ.

Proof. If we combine the approximation and inverse estimates of Corollary 8.1 with the statement
of Corollary 4.4 the assertion follows directly from Lemma 5.1.

So looking at the last theorem, one can see that it might be necessary to use different meshes for
σ and u. However, with suitable mesh refinement, one can always compute a unique approximate
solution. The apparent issue here is the lack of a statement regarding whether well-posed
discretizations can also be obtained. It turns out that in the special case of k = n, i.e. saddle-
point problems, after a slight modification of the mixed formulation, we can indeed achieve the
inf-sup stability or well-posedness for the type of spaces (8.1.1)-(8.1.1). We will explain this in
more detail in the next section.

8.2 The case of saddle-point problems
We now move from the problem in Definition 8.1 to the case of k = n. Since setting the exterior
derivative dn = 0 also implies Dn,J

n = 0, i.e. we get a saddle-point problem. In Section 5.2 we
also explained why for (8.0.1)-(8.0.2), in the case of Dk = 0, we may also employ the equivalent
modified formulation from Definition 5.1. This modified mixed weak form utilizes the graph
inner product associated with Dk−1 = Dn−1,J

n and is more suitable for making statements about
14As already done, we use the abbreviation H lE := H l(Ω)⊗ E; E inner product space.
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well-posedness. To be more precise, our continuous problem for k = n can be reformulated:
Seek for (σ, u) ∈ V n−1,J

n × V n,J
n s.t.

〈σ, τ〉V −〈u,Dn−1τ〉 = 〈f,Dn−1τ〉, ∀τ ∈ V n−1,J
n , (8.2.1)

〈Dn−1σ, v〉 = 〈f, v〉, ∀v ∈ V n,J
n , (8.2.2)

with Dn−1 = Dn−1,J
n and 〈σ, τ〉V = 〈σ, τ〉+ 〈Dn−1σ,Dn−1τ〉.

Our goal is to build upon the approach and statements from Section 5.2, which is why consider
for discretization

Definition 8.4 (Discrete modified saddle-point problem). Find (σ, u) ∈ V n−1,J
h,n × V n,J

θ,n

s.t.

〈σh, τh〉V −〈uθ,Dn−1τh〉 = 〈f,Dn−1τh〉, ∀τh ∈ V n−1,J
h,n , (8.2.3)

〈Dn−1σh, vθ〉 = 〈f, vθ〉, ∀vθ ∈ V n,J
θ,n . (8.2.4)

The question now is whether we obtain with this approach a well-posed discretization for
(8.2.1)-(8.2.2), at least under certain conditions. To answer this, we now rely on our knowledge
that, for the output complex in a cubical domain, we even have a structure-preserving discretiza-
tion. The latter was introduced in Section 7.2 and satisfies several properties (see Lemmata 7.3
and 7.4), such as the ability to vary the regularity of the test functions. This proves to be useful
for the proof of the next theorem.

Theorem 8.2 (Discrete well-posedness). Let the Assumptions 8.1 and 8.2 with k = n hold.
Assume we have a family of pairs (V n−1,J

h,n ,V n,J
θ,n )θ in the sense of Assumption 5.1 with underlying

regular meshes, where the spaces are given by (8.1.1)-(8.1.2). Then there is a positive constant cR
s.t. h = h(θ) ≤ cRθ implies that (8.2.3)- (8.2.4) is a well-posed discretization of (8.2.1)-(8.2.2).

Proof. The basic idea is to apply Lemma 5.4. For the proof we first consider the special case
Ω ⊂ (0, 1)n. The important point is now that we have through the outcomes of Section 7.2,
especially Lemma 7.3, a structure-preserving discretization of the output complex on the unit
cube K := (0, 1)n. We will denote this discretization on the auxiliary domain with (V̂ ◦,Jρ,n ,D

◦,J
n ),

i.e. here the mesh size parameter is denoted with ρ. For the existing bounded cochain projections
onto this chains we write P◦,J,Λ

ρ,n and they are given through (7.2.7). Note, we drop the hat on
top of the operator D◦,Jn since we use the same differential operators for K and Ω, meaning K
is the unit cube w.r.t. to the physical coordinate system. By dividing the unit cube into mn

equal sub-cubes we can generate obviously a uniform mesh with mesh size ρm =
√
n/m for every

m ∈ N>0.
Let l = ord(Dn−1,J

n ). Then, by choosing in the construction from Section 7.2 degrees pi =
l+ 3, ri = pi − 1 = l+ 2, ∀i we have V̂ j,J

ρ,n ⊂ H l+1(K)⊗Aj,J
n , ∀j ; compare Lemma 7.4. Due to

the mentioned lemma and Corollary 7.3 we can assume constants C̃1, C̃2 with

•
∥∥∥Pn−1,J,Λ

ρ,n w − w
∥∥∥
Hs(K)

≤ C̃1ρ
j−s ‖w‖Hj(K) , ∀w ∈ Hj(K)⊗ An−1,J

n , 0 ≤ s ≤ j ≤ l + 1 ,

•
∥∥∥Pn,J,Λ

ρ,n w − w
∥∥∥
Hs(K)

≤ C̃1ρ
j−s ‖w‖Hj(K) , ∀w ∈ Hj(K)⊗ An,J

n , 0 ≤ s ≤ j ≤ 1 ,

• ‖wρ‖Hl+1(K) ≤ C̃2ρ
−1 ‖wρ‖Hl(K) , ∀wρ ∈ V̂ n−1,J

ρ,n ,

• ‖wρ‖H1(K) ≤ C̃2ρ
−1 ‖wρ‖L2(K) , ∀wρ ∈ V̂ n,J

ρ,n .
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One notes that we changed above the mesh size parameter from h to ρ compared to the notation
in Section 7.2. In view of Remark 5.2 and Corollary 4.4, the assertion follows then directly by
Lemma 5.4 in case of Ω ⊂ (0, 1)n.
It is clear that after a shift of the coordinate system we find a R > 0 s.t Ω ⊂ (0, R)n. But then,
we obtain with Remark 7.2 and analogous proof steps again the well-posedness.

If we have a well-posed discretization, we can easily provide an approximation error estimate
with the help of the general theory regarding variational problems.

Theorem 8.3 (Error estimate). We assume the family of space pairs
(
V n−1,J
h(θ),n ,V

n,J
θ,n

)
θ
define

a well-posed discretization in the sense of the last Theorem 8.2. Further let the exact solution
(σ, u) to system (8.2.1)-(8.2.2) fulfill the regularity assumptions σ ∈ H t(Ω) ⊗ An−1,J

n and u ∈
Hm(Ω)⊗ An,J

n for l ≤ t ≤ q + 1 , 0 ≤ m ≤ p+ 1, with l := ord(Dn−1).
Then the error between exact and approximate solution satisfies

‖σ − σh‖H(Dn−1) + ‖u− uθ‖ ≤ Cconv
(
ht−l ‖σ‖Ht + θm ‖u‖Hm

)
,

for a constant Cconv independent of θ. Note, ‖τ‖2
H(Dn−1) := ‖τ‖2 + ‖Dn−1τ‖2.

Proof. This is an easy consequence of the estimates in Corollary 8.1 and the general result in
Lemma 2.12 for variational problems.

When defining the spaces (8.1.1)-(8.1.2), we deal with Altl-valued forms. It is worth noting
that a similar approach can be employed when considering proxy maps and the proxy output
complex, denoted as (V◦,Jn ,D◦,Jn ); see Section 4.2.3.
Remark 8.1 (Proxy complex). If we replace in (8.1.1)-(8.1.2) the spaces A◦,Jn by the V◦,Jn
appearing in the definition of the proxy output complex in (4.2.22), we get analog statements
as above also for the proxy output complex. This is clear since for the proxy chains we have
similar properties; cf. Corollary 7.4.
It is worthwhile to emphasize the following. With the last two theorems, we have now demon-

strated a key result of the work. Specifically, we showed the possibility to discretize saddle point
problems of the form (8.2.3)-(8.2.4) using standard isogeometric spaces in a well-posed manner.
In particular, we have the ability to incorporate geometries with curved boundaries exactly into
the calculations, into the Finite Element spaces, respectively. This is achieved even though the
mixed problem involves the differential operators of the second-order complexes (V ◦,Jn ,D◦,Jn ),
presenting a non-trivial extension beyond the case of classical differential forms. It is also im-
portant to mention that the opportunity to increase the regularity of the underlying B-splines
is advantageous. By doing so, at least in the single-patch IGA case, obtaining H2-smooth Fi-
nite Element functions becomes relatively straightforward, which is necessary when dealing with
second-order differential operators in the formulation. We will leverage this in the next example.
In Section 4.2.3 we outlined, why the Hessian, elasticity or divdiv complexes

((4.2.26),(4.2.27),(4.2.29)-(4.2.31)) can be interpreted as the (proxy) output complexes of the
form (V ◦,Jn ,D◦,Jn ). Hence, we can approximate saddle point problems derived from these chains
using isogeometric spaces. We would like to illustrate this through an example, where our
objective is to compute approximations to the biharmonic equation. Subsequently, we will revisit
this approach based on Definition 8.4, but this time within the framework of linear elasticity
theory.
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Example 8.1 (Bilaplacian). We assume Ω ⊂ Rn, n = 2, 3 to be a bounded Lipschitz domain,
then we get for the Hodge–Laplace problem of level k = n for the divdiv complex (see (4.2.27)
and (4.2.31)) the associated mixed weak form: Find (σ, u) ∈ H(Ω,∇ · ∇·,S)× L2(Ω) s.t.

〈σ, τ〉 −〈u,∇ · ∇ · τ〉 = 0, ∀τ ∈ H(Ω,∇ · ∇·,S), (8.2.5)
〈∇ · ∇ · σ, v〉 = 〈f, v〉, ∀v ∈ L2(Ω), (8.2.6)

where again S denotes the space of symmetric n× n-matrices.
We suppose here a regular parametrization F : (0, 1)n → Ω, which is at least a C1-diffeomorphism.
One notes the exactness of the divdiv complex at this level for each bounded Lipschitz domain.
Hence, the theory of FEEC yields the well-posedness of the above system. The associated Hodge–
Laplace equation itself (compare (3.2.1)) reads

∇ · ∇ · ∇2u = f, u, f ∈ L2(Ω), (8.2.7)

as the adjoint operator to ∇ · ∇· is the Hessian ∇2. To obtain the mentioned mixed weak form
and uniqueness for the continuous problem, additional assumptions have to be required. Namely
we want to find the solution u ∈ H(Ω,∇2,R) s.t. ∇2u ∈ H(Ω,∇ · ∇·,S) and s.t. u is in the
domain of the adjoint

(
∇ · ∇·, H(Ω,∇ · ∇·,S)

)∗
.

In order to apply Theorems 8.2 and 8.3 we choose for discretization

V n−1
h := V̂ n−1

h ◦ F−1 with V̂ n−1
h := Ss1,...,snq1,...,qn ⊗ S, (8.2.8)

V n
θ := V̂ n

θ ◦ F−1 with V̂ n
θ := Sr1,...,rnp1,...,pn , 0 ≤ ri < pi and 1 ≤ si < qi, ∀i, (8.2.9)

and we look at the modified problem to find (σh, uθ) ∈ V n−1
h × V n

θ , satisfying

〈σh, τh〉V −〈uθ,∇ · ∇ · τh〉 = 〈f,∇ · ∇ · τh〉, ∀τh ∈ V n−1
h , (8.2.10)

〈∇ · ∇ · σh, vθ〉 = 〈f, vθ〉, ∀vθ ∈ V n
θ . (8.2.11)

Certainly, here we have the graph inner product 〈σ, τ〉V := 〈σ, τ〉+ 〈∇ · ∇ · σ,∇ · ∇ · τ〉.
Then for pairs

(
V n−1
h(θ) ,V

n
θ

)
θ
with h(θ) ≤ cRθ and cR small enough but fixed, we obtain a well-

posed discretization. This is now demonstrated in the two-dimensional setting using a concrete
manufactured test setting.
To be more specific, now the computational domain Ω ⊂ R2, i.e. n = 2, is parametrized by
the smooth mapping F : (0, 1)2 → Ω , (ζ1, ζ2) → (ζ1, ζ2 − ζ2

1 + ζ1); cf. Figure 22. Further, the
right-hand side f in (8.2.7) is chosen such that the exact solution is given by

u ◦ F = w, w(ζ1, ζ2) = sin(πζ1)2 sin(πζ2)2 .

We compute the errors ‖u− uθ‖ and ‖σ − σh‖H(∇·∇·) between the exact solution of (8.2.5)- (8.2.6)
and approximate solutions obtained from (8.2.10)-(8.2.11) together with the spline spaces (8.2.8)-
(8.2.9). It is natural to use degrees

qi = p+ 2, pi = p, si = p− 1, ri = p− 1, ∀i and θ = h ,

since then Theorem 8.3 suggests up to order p + 1 convergence. Moreover, we choose θ = h,
meaning we have for the spaces V 1

h , V 2
θ the same underlying mesh structure. Admittedly, it is

not directly clear if the previous spaces yield well-posedness. In view of Theorem 8.2 a mesh
refinement for V 1

h , h < θ, respectively, might be needed. Hence, if we see a stable error decay
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Figure 16: On the left we show the inf-sup constants CIS for the first numerical test with mixed degrees
(q = p + 2). On the right we display the errors for the σ variable which we obtain for the
manufactured test problem if we use the original saddle-point system (8.2.5)-(8.2.6).

behavior and invertible system matrices associated to the weak form, then this indicates well-
posedness. Otherwise, one would e.g. refine the meshes for the σ space and start the computations
again. However, to have a more grounded explanation, whether our discrete spaces ensure well-
posedness, we preliminary compute numerically the discrete inf-sup constants

CIS = CIS(V 1
h ,V

2
θ ) := inf

06=vθ∈V 2
θ

sup
0 6=τh∈V 1

h

〈∇ · ∇ · τh, vθ〉
‖τh‖H(∇·∇·) ‖vθ‖

,

using the MATLAB ([53]) eigs() function and following the procedure of Bathe et al. ([15,
33]); see Appendix 11.2. Because, if these CIS are bounded from below by a positive constant
independent of mesh refinement, we directly see the well-posedness of the discretization. For
more details regarding this inf-sup test we refer to Appendix 11.2. These values CIS are depicted
in the diagram Figure 16 (a) for the degrees p = 2, . . . , 5 and regularities r = s = p − 1. We
observe stable CIS values around 1 for the different spaces and mesh sizes. Thus, we can conclude
the appropriateness of V 1

h ,V
2
θ , at least for the shown degrees and regularities. Consequently, we

can move on to the actual convergence test.
One notes the feasibility of the manufactured solution since it is smooth and u ∈ H2

0 (Ω). Looking
at the plots in Figure 17 we see a stable error decay fitting to the theoretical statement from
Theorem 8.3. Because we indeed see an error decrease of approximately order p+ 1 and thus we
can achieve high-order convergence for the approximations of the fourth-order Bilaplace equation
(8.2.7).
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Figure 17: Errors for the mixed-degree situation meaning qi = p + 2, pi = p. This degree elevation
should guarantee a convergence decay of O(hp+1) which is also observed in the plots.

It would also be interesting to see if we can discretize system (8.2.5)-(8.2.6) directly instead of
(8.2.10)-(8.2.11), without the modification involving the inner product. Therefore, we repeated
the error calculation using the same spaces but the original formulation. When examining the
errors in the σ variable in Figure 16 (b), one can immediately notice a significantly worse con-
vergence behavior compared to Figure 17 (b), and even growing errors despite mesh refinement.
This allows us to clearly see that the transition to the modified system not only simplifies mak-
ing statements regarding well-posedness but also seems to make a distinct difference concerning
convergence.
Remark 8.2. One aspect that should definitely be noted here is the occurrence of large condition
numbers for the mixed formulations. This is primarily caused by the presence of second deriva-
tives. High condition numbers for high-order problems are not uncommon, but they should be
particularly taken into account during convergence analyses. Therefore, for all calculated errors
for the errors in Figure 17, we have also computed the relative and absolute errors when solving
the underlying linear system. To be more precise, we checked

errrel := |Ax− b|
|b|

, errabs := |Ax− b|,

where A, b are the system matrix and righthand-side related to the discrete problem and x is the
solution vector obtained by the MATLAB ([53]) mldivide() function. In all cases we obtained
the absolute errors to be smaller than 1.4 · 10−9 and the relative errors are always smaller then
1.5 · 10−14. These observations reinforce our assumption that the plots of the example are
meaningful, despite the large condition numbers.

Remark 8.3 (Isoparametric IGA spaces). The well-posedness proofs as well the convergence
estimates hold analogously, if we follow the isoparametric paradigm. In other words it is possible
to have a non-trivial weight function W = 1 for the space definition leading to NURBS spaces;
cf. Definition 6.3. Indeed the important approximation properties and inverse estimates are still
valid when considering smooth weight functions; see Lemma 6.2 and Lemma 6.3. However, from
a computational point of view it is sometimes better to use a non-isoparametric approach, since
the evaluation of B-splines an their derivatives can be implemented more efficiently compared to
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the situation with weight function. Because then additional evaluations caused by the product
rule, chain rule, respectively, are necessary.
So we explained so far, why it is possible to use standard IG spaces to discretize the mixed

weak formulation for the Hodge–Laplace problems of the output complex (V ◦,Jn ,D◦,Jn ) at level n.
Although we ignored the basic properties coming along with a structure-preserving discretization
we still can achieve well-posedness. This is interesting, because we do not need special or adapted
implementations for the test spaces, but we can use standard IG spaces pre-implemented in
common IGA software; like in the GeoPDEs [37, 73] package we utilize.
However, the important point is that we exploited the existence of such dicretization in cubical
domain to show the feasibility of the standard IG spaces. So there is still a connection between
the concept of structure-preserving Hilbert complex discretizations and our modified saddle-point
problem from Definition 8.4.
In Section 5.3, we introduced an alternative method for discretizing saddle-point problems

arising from a BGG construction. Notably, we stipulated a prerequisite for a structure-preserving
discretization of an input complex. In the upcoming section, we endeavor to clarify that this
approach, outlined in the mentioned section and using Lagrange multipliers, can be employed
for complexes (V ◦,Jn ,D◦,Jn ) and the Hodge–Laplace problem of level k = n.

8.3 Saddle-point problems with Lagrange multiplier
Again we are in the setting of Section 4.2.3, meaning we deal with Altl-valued forms and Hilbert
spaces of type L2(Ω)⊗Altk,l. In particular, we re-use notation and definitions from this mentioned
part. Further, here we make
Assumption 8.3. Let in the whole section J ∈ {1, . . . , n − 1}. Consequently, the mappings
Sn−2,J , Sn−1,J introduced in Section 4.2.3 are surjective and with the notation from Section
4.2.1 it is SJ = SJ−1,J .
Further the Assumption 8.2 applies, where we require F : Ω̂ → Ω, Ω̂ := (0, 1)n to be C2-smooth
with C2-smooth inverse.
The objective of this section is to show the feasibility of isogeometric discretizations in the

context of the saddle-point problems from the last section, but now for the modified formulation
involving a Lagrange multiplier. For this purpose one notes that by the anti-commutativity
property (see Lemma 4.9), and the extended de Rham complexes (HΛ◦,J , d◦) we obtain the
diagram structure:

. . . HΛn−2,J(Ω) HΛn−1,J(Ω) HΛn,J(Ω) 0.dn−2 dn−1

. . . HΛn−1,J−1(Ω) HΛn,J−1(Ω) 0dn−1

Sn−2,J Sn−1,J

(8.3.1)
One notes that di are the extended exterior derivatives defined in (4.2.17).
This means according to the considerations in Section 4.2.4 we have now instead of the system
(8.0.1)-(8.0.2) from Definition 8.1 the next continuous problem underlying:
Definition 8.5 (Saddle-point problem with Lagrange multiplier). Given a f ∈ L2(Ω)⊗
An,J
n , we seek for (σ, u, κ) ∈ HΛn−1,J(Ω)×HΛn,J(Ω)× L2(Ω)⊗ An,J−1

n , s.t.
〈σ, τ〉 −〈u, dn−1τ〉 + 〈κ, Sn−1,J τ〉 = 0, ∀τ ∈ HΛn−1,J(Ω),
〈dn−1σ, v〉 = 〈f, v〉, ∀v ∈ HΛn,J(Ω), (8.3.2)
〈Sn−1,J σ, η〉 = 0, ∀η ∈ L2(Ω)⊗ An,J−1

n .
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The system just described corresponds indeed to the mixed weak formulation of the Hodge–
Laplace problem for the output complex (V ◦,Jn ,D◦,Jn ) at level k = n. It is important to note,
under the Assumption 8.3, we have Dn−1,J

n = dn−1 and Dn,J
n = 0. Furthermore, following

the BGG construction outlined in Section 4.2.3, we demand that V n−1,J
n ⊂ N (Sn−1,J), and

we incorporate this condition by introducing the additional variable κ ∈ L2(Ω) ⊗ An,J−1
n =

R(Sn−1,J). For details on these formulations with Lagrange multipliers we refer to the discussion
in Section 4.2.4. In particular, the exactness of the de Rham complex at level n with the property
R(dn−1, H1(Ω)⊗Altn−1,J) = L2(Ω)⊗Altn,J implies the well-posedness of the latter saddle-point
problem, due to Lemma 4.14. But this well-posedness property can also be shown with an
analogous proof as in the discrete setting; cf. Lemma 5.5. The crucial point is the validity of
the auxiliary inf-sup inequality

inf
06=η∈HΛn,J−1

sup
06=τ∈HΛn−2,J

〈dn−1Sn−2,Jτ, η〉
‖τ‖HΛ ‖η‖

> 0.15

In Section 5.3 we have seen how we can utilize these modified formulations within the context
of discretizations. With Lemma 5.5, we have demonstrated conditions under which a well-posed
discretization can be achieved. Our goal for the upcoming sections is to show that with the
help of isogeometric discrete differential forms (see Section 7.3), we can always satisfy these
conditions for C2-smooth parametrizations of the computational domain.
The basic idea for the proof is to apply the so-called macroelement technique in order to show a
inf-sup property stability in the discrete case. In doing so, we will follow the steps and reasoning
outlined in [22, 23]. To emphasize the parallelism with the approach taken in the mentioned
papers and to make our exposition easier and more comprehensible we reduce our problem
from Definition 8.5 to a specific setting. However, before delving into the actual proofs and
the macroelement technique, we will not only clarify this particular reduction but also explain
why it does not impose any limitations compared to the general framework involving differential
forms.

8.3.1 Reduction to a special setting
First, according to the definition of the exterior derivative dk on the spaces L2(Ω) ⊗ Altk,l, as
mentioned earlier, this simply represents a

(
n
l

)
-fold copy of the classical de Rham operator on

L2Λk(Ω); see (4.2.17). Additionally, for ω ∈ L2Λn−1,l, under sufficient regularity, it is

dn−1
( ∑
σ∈Σ<(n−1,n)

cσ,s(dxσ1 ∧ · · · ∧ dxσn−1)⊗ (dxs1 ∧ · · · ∧ dxsl)
)

=
∑

σ∈Σ<(n−1,n)

n∑
i=1

∂icσ,s(dxi ∧ dxσ1 ∧ · · · ∧ dxσn−1)⊗ (dxs1 ∧ · · · ∧ dxsl)

=
n∑
j=1

(−1)ij
(
∂jcσ,s

)
(dx1 ∧ dx2 ∧ · · · ∧ dxn)⊗ (dxs1 ∧ · · · ∧ dxsl),

for suitable ij ∈ {0, 1}. The factors (−1)ij are caused by the re-ordering (dxi∧dxσ1∧· · ·∧dxσn−1)
to (dx1 ∧ dx2 ∧ · · · ∧ dxn). As explained in Section 4.2.3 we can use proxy maps to identify
L2(Ω) ⊗ Altk,l with L2(Ω) ⊗ R(n|l)×(n|k); compare diagram (4.2.24). Let σ ∈ Σ<(n − 1, n) and
i ∈ N s.t. {i} ∪ {σ1, . . . , σn−1} = {1, . . . , n}. Then we look at the next special identifications

Jn−1
(
c dxσ1 ∧ · · · ∧ dxσn−1

)
:=
{
c, if dx1 ∧ dx2 ∧ · · · ∧ dxn = dxi ∧ dxσ1 ∧ · · · ∧ dxσn−1 ,

−c, else.
15‖τ‖HΛ denotes the graph norm related to dn−2.
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and
Jn
(
c dx1 ∧ · · · ∧ dxn

)
:= c.

We directly see that with these proxy maps and the ansatz Dn−1 := Jn ◦ dn−1 ◦ J −1
n−1 we obtain

the divergence operator ∇·. Thus the exterior derivative dn−1 as densely defined operator from
L2(Ω)⊗Altn−1,l to L2(Ω)⊗Altn,l, can be interpreted as a

(
n
l

)
-fold copy of the classical divergence

operator acting on the coefficients. Consequently, in view of diagram (4.2.24) we find proxy maps
Jk such that (8.3.1) can be rewritten equivalently as

. . . H(Ω,Dn−2,R(n|J)×(n|2)) H(Ω,∇·,R(n|J)×n) L2(Ω)⊗ Rn|J 0,Dn−2 ∇·

. . . H(Ω,∇·,R(n|J−1)×n) L2(Ω)⊗ Rn|J−1 0∇·

S̃n−2,J S̃n−1,J

(8.3.3)

where Dn−2 is a first order differential operator, acting row wise and S̃m,l are the modified
linking maps given through (4.2.21). As we just mentioned, we can assume the divergence acting
row-wise, too, and we still have the anti-commutativity property

S̃n−1,J ◦ Dn−2 = −∇ · ◦S̃n−2,J .

Considering the previous comments, we can observe that it is justified to simplify system (8.3.2)
to a version, where dn−1 aligns with the divergence ∇·. Additionally, discussing matrix or vector
fields is adequate, eliminating the need for direct usage of differential forms.

Assumption 8.4 (Fixed proxy maps). We figured out why it is enough to work with diagram
(8.3.3). We only need suitable proxy maps J◦ in the sense of Definition 3.10. Until Section 9
we require the proxy map to be fixed and to be exactly those which transfer (8.3.1) to (8.3.3).

Consequently, we can rewrite the problem from Definition 8.5 into a more specialized one.
More precisely, first we set:

Definition 8.6 (Auxiliary abbreviations).

S̃ := S̃n−1,J , En−2 := R(n|J)×(n|2), En−1 := R(n|J)×n,

En := Rn|J , Ēn−1 := R(n|J−1)×n, Ēn := Rn|J−1,

And exploiting these abbreviations we consider

Definition 8.7 (Proxy saddle-point problem with Lagrange multiplier). Find σ ∈
H(Ω,∇·,En−1), u ∈ L2(Ω)⊗ En and κ ∈ L2(Ω)⊗ Ēn, s.t.

〈σ, τ〉 − 〈u,∇ · τ〉 + 〈κ, S̃τ〉 = 0, ∀τ ∈ H(Ω,∇·,En−1),
〈∇ · σ, v〉 = 〈f, v〉, ∀v ∈ L2(Ω)⊗ En, (8.3.4)
〈S̃σ, η〉 = 0, ∀η ∈ L2(Ω)⊗ Ēn.

Before we address the choice of proper discrete spaces in order to compute approximations in
a well-posed manner let us add here some simple but useful observations:

Corollary 8.2 (Auxiliary right-inverse). sdf
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• The operators S̃n−i,J have the structure S̃n−i,J = id⊗ s̃n−i,J , with

s̃n−i,J : R(n|J)×(n|i) → R(n|J−1)×(n|i−1), i ∈ {1, 2},

being linear and surjective. This is a direct consequence of the S̃m,l (see (4.2.21)) and
Assumption 8.3.

• Due to the surjectivity of s̃n−2,J we have a bounded right-inverse t̃n−2 := (s̃n−2,J)†, meaning
s̃n−2,J t̃n−2 = id on Ēn−1.
Clearly, by a tensoring

T̃ := id⊗ t̃n−2

we obtain a right-inverse of
S̃n−2,J : L2(Ω)⊗ En−2 → L2(Ω)⊗ Ēn−1. Then we directly have

T̃ τ ∈ H1
0 (Ω)⊗ En−2, ∀τ ∈ H1

0 (Ω)⊗ Ēn−1,

and obviously

T̃

((
Sr

p ◦ F−1
)
⊗ Ēn−1

)
⊂
(
Sr

p ◦ F−1
)
⊗ En−2,

for an arbitrary spline space Sr
p. Furthermore, the boundedness of t̃n−2 implies∥∥∥T̃ τ∥∥∥

Hl
≤ C ‖τ‖Hl , ∀τ ∈ H l(Ω)⊗ Ēn−1, l ∈ N0,

for some constant C.

Next we want to move on to the discretization of (8.3.4) and end this section with an abstract
discrete system which we can refer to.

Definition 8.8 (Discrete proxy saddle-point problem with Lagrange multiplier). asd
Let Σh ⊂ H(Ω,∇·,En−1), Uh ⊂ L2(Ω) ⊗ En, K̄h ⊂ L2(Ω) ⊗ Ēn be given finite-dimensional
spaces.
Find (σh, uh, κh) ∈ (Σh, Uh, K̄h) s.t.

〈σh, τh〉 − 〈uh,∇ · τh〉 + 〈κh, S̃τh〉 = 0, ∀τh ∈ Σh,

〈∇ · σh, vh〉 = 〈f, vh〉, ∀vh ∈ Uh, (8.3.5)
〈S̃σh, ηh〉 = 0, ∀ηh ∈ K̄h.

8.3.2 Choice of spaces
It is evident that we cannot choose Σh, Uh, K̄h arbitrarily. However, revisiting Lemma 5.5
and its conditions we can already discern that Σh, Uh should be part of a structure-preserving
discretization of the bottom complex in (8.3.3). Moreover, in the mentioned lemma an auxiliary
space Un−2

h appears, which also needs to align with Σh and K̄h. These various aspects, prompted
by the Lemma 5.5, inspire the following definitions.
First let us write V j

h,n(q, s), j = 0, . . . , n for the isogeometric discrete differential forms from
(7.3.1) in Section 7.3 with underlying degree and regularity vector p = (q, . . . , q) ∈ Nn

0 , r =
(s, . . . , s) ∈ Nn

0 . And as in Remark 7.3 we consider the row-wise extended spaces

Ṽ j
h,n(q, s) :=

{
τ ∈ L2(Ω)⊗ R(n|J)×(n|j)

∣∣∣ τi ∈ V j
h,n(q, s), ∀i

}
, (8.3.6)
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writing τi for the i-th row of τ . In fact, for the definition of the V ◦h,n in (7.3.1) we utilized proxy
mappings J◦, but here we demand that we are precisely using these J◦ that we also need to go
from (8.3.1) to (8.3.3); see Assumption 8.4. In other words, we proceed with the understanding
that the spaces Ṽ ◦h,n(q, s) represent a structure-preserving discretization of the bottom complex
in (8.3.3), provided q > s. As explained in the Remark 7.3, this last assumption can always be
met and does not pose any limitation.
With the underlying requirement

p− 1 > r ≥ 0
we introduce the next abbreviations:

Rh := Ṽ n−2
h,n (p+ 1, r), Σh := Ṽ n−1

h,n (p+ 1, r), Uh := Ṽ n
h,n(p+ 1, r), (8.3.7)

as well as

K̄h :=
{
v = (vi)i ∈ L2(Ω)⊗ Ēn

∣∣∣ vi ∈ V 0
h,n(p− 1, r)

}
. (8.3.8)

Besides we introduce two further auxiliary spaces

Rh,0 := Rh ∩H1
0 (Ω)⊗ En−2, K̄h,0 := K̄h ∩ L2

0(Ω)⊗ Ēn, (8.3.9)

with
L2

0(Ω) := L2(Ω) ∩
{
v
∣∣∣∣ ∫

Ω
v dx = 0

}
.

The next helpful points can be easily verified:

Corollary 8.3. asdkjfh

• Since for a 0-form ω ∈ L2(Ω̂) the pullback w.r.t. F−1 is just ω ◦ F−1 (see Definition 3.9)
we have

K̄h =
(
Sr,...,rp−1,...,p−1 ◦ F−1

)
⊗ Ēn ⊂ H1(Ω)⊗ Ēn.

• Let us consider Lemma 3.14. With the latter and by the row-wise ansatz in (8.3.6) together
with C2-smoothness assumption for F−1 we find a C1-smooth field M̄ : Ω→ R(n|2)×(n|2) of
invertible matrices such that

Rh =
{(
τ ◦ F−1

)
M̄−1

∣∣∣∣ τ : Ω→ En−2 , τi ∈ V̂ n−2
h,n (p+ 1, r),∀i

}
,

where V̂ n−2
h,n (p+1, r) is the parametric test space defined in (7.1.5) with degree and regularity

vectors p = (p+ 1, . . . , p+ 1), r = (r, . . . , r). Hence, because obviously

Sr,...,rp,...,p ⊗ Rn|2 ⊂ V̂ n−2
h,n (p+ 1, r),

it is also [(
Sr,...,rp,...,p ⊗ En−2

)
◦ F−1

]
M̄−1 ⊂ Rh.

Since we used spaces from the isogeometric de Rham sequences to define Σh, Uh, K̄h, Rh

one can introduce L2-bounded projections onto the mentioned spaces by means of the row-wise
application of the Πj

h,n from Section 7.3; see (7.3.2). We denote the resulting projections in the
following with

ΠR
h : L2(Ω)⊗ En−2 → Rh, ΠΣ

h : L2(Ω)⊗ En−1 → Σh,

ΠU
h : L2(Ω)⊗ En → Uh, ΠK̄

h : L2(Ω)⊗ Ēn → K̄h.
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Consequently, as we have row-wise discrete differential forms with the matching row-wise cochain
projections we obtain a commutative diagram

H(Ω,Dn−2,En−2) H(Ω,∇·,En−1) L2(Ω)⊗ EnDn−2 ∇·

Rh Σh Uh
Dn−2 ∇·

ΠR
h ΠΣ

h ΠU
h

. (8.3.10)

In view of the above remarks and Corollary 7.11 we can summarize the next approximation
properties of latter projections.

Corollary 8.4. Supposing smooth enough mappings (σ, u,κ) ∈ L2(Ω) ⊗ En−1 × L2(Ω) ⊗ En ×
L2(Ω)⊗ Ēn and w ∈ L2(Ω)⊗ En−2 , it holds for 0 ≤ r < p− 1, 0 ≤ l ≤ p and proper constants
CR, CΣ, CU , CK:∥∥∥w − ΠR

hw
∥∥∥ ≤ CRh

l ‖w‖Hl ,
∥∥∥σ − ΠΣ

hσ
∥∥∥
H(∇·)

≤ CΣh
l ‖σ‖Hl(∇·) ,∥∥∥u− ΠU

h u
∥∥∥ ≤ CUh

l ‖u‖Hl ,
∥∥∥κ− ΠK̄

h κ
∥∥∥ ≤ CKh

l ‖κ‖Hl .

In the inequalities regarding ΠR
h , ΠΣ

h , ΠU
h we allow for 0 ≤ l ≤ p+ 1.

Proof. These estimates follow directly by a row-wise application of the results regarding the
isogeometric discrete differential forms; see Section 7.3, Corollary 7.11, respectively.

For the proof of the inf-sup stability later we also need the space Rh,0 from (8.3.9) with zero
boundary conditions. The next step is to show that for such spaces with boundary conditions
we also have proper L2-bounded projections.
First let us insert an well-known result from IGA theory.

Lemma 8.1 (See (4.6) in [27] or [17, Section 3.4]). Let q = (qi)i, s = (si)i ∈ Nn
0 s.t. qi > si ≥ 0

and thus Ss
q ⊂ H1(Ω̂).

Then there exist L2-bounded projections Π̂q,s,0 : H1
0 (Ω̂)→ Ss

q ∩H1
0 (Ω̂) s.t.∥∥∥v − Π̂q,s,0v

∥∥∥
Hs
≤ CP1h

l−s ‖v‖Hl , ∀v ∈ H1
0 (Ω̂), 0 ≤ s ≤ l ≤ 1, (8.3.11)

where h is the mesh size of the underlying spline space and CP1 does not depend on h. Here we
assume as always regular meshes.

If we have p > r ≥ 0 and consider the degree and regularity vector p = (p+ 1, . . . , p+ 1), r =
(r+ 1, . . . , r+ 1) we directly have for the corresponding discrete differential forms Qr

pΛk defined
through (7.1.1) that Qr

pΛk ⊂ H1Λk(Ω̂). Because then all the spline coefficients are piecewise
smooth and globally continuous. Writing H1

0 Λk(Ω̂) for the differential forms with coefficients in
H1

0 (Ω̂) we introduce the next mapping

Π̂j,Λ
h,n,0 : H1

0 Λj(Ω̂)→ Qr
pΛj ∩H1

0 Λj(Ω̂) ,∑
σ∈Σ<(j,n)

cσ dx
σ1 ∧ · · · ∧ dxσj 7→

∑
σ∈Σ<(j,n)

(
Π̂p−eσ ,r−eσ ,0 cσ

)
dxσ1 ∧ · · · ∧ dxσj ,

where we exploited the special projections from Lemma 8.1. Further eσ ∈ {0, 1}n denotes the
characteristic vector of σ ∈ Σ<(j, n); see (7.1.2). One observes that our choice of p and r ensures
p− eσ ≥ 1 and r− eσ ≥ 0. An application of Lemma 8.1 implies
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Corollary 8.5. Assume p = (p+ 1, . . . , p+ 1), r = (r + 1, . . . , r + 1) with p > r ≥ 0.
Then, assuming regular meshes, it is∥∥∥ω − Π̂j,Λ

h,n,0ω
∥∥∥
Hs
≤ CP1h

l−s ‖ω‖Hl , ∀ω ∈ H1
0 Λj(Ω̂), 0 ≤ s ≤ l ≤ 1, (8.3.12)

for some CP1 independent of mesh size h.

Let still p > r ≥ 0 and p = (p+1, . . . , p+1), r = (r+1, . . . , r+1). Thus, by the C2-regularity
of the parametrization mapping F : Ω̂ → Ω we can conclude V j

h,n(p + 1, r + 1) ⊂ H1(Ω) ⊗ Rn|j.
Using the proxy maps J◦ and the pullback operation YjF (see Definition 3.9) we introduce

Πj
h,n,0 : H1

0 (Ω)⊗ Rn|j →
(
H1

0 (Ω)⊗ Rn|j
)
∩ V j

h,n(p+ 1, r + 1) ,

Πj
h,n,0 := Jj ◦ YjF−1 ◦ Π̂j,Λ

h,n,0 ◦ Y
j
F ◦ J −1

j (8.3.13)

Let us make clear why the above mapping is well-defined. Since F−1 is C2-regular we see
by Lemma 3.8 that for u ∈ H1

0 (Ω) ⊗ Rn|j we obtain v := YjFJ −1
j u ∈ H1

0 Λj(Ω̂). This means
w := Π̂j,Λ

h,n,0v yields an element in Qr
pΛj∩H1

0 Λj(Ω̂). By the definition of the space V j
h,n(p+1, r+1)

we have JjYjF−1w ∈ V j
h,n(p+1, r+1). But additionally, again the smoothness of F−1 and Lemma

3.8 implies also JjYjF−1w ∈ H1
0 (Ω)⊗ Rn|j. Hence the definition in (8.3.13) is justified.

Note, using Lemma 3.8 we can find constants c1 < c2 such that

c1

∥∥∥YjFJ −1
j v

∥∥∥
Hs(Ω̂)

≤ ‖v‖Hs(Ω) ≤ c2

∥∥∥YjFJ −1
j v

∥∥∥
Hs(Ω̂)

, ∀v ∈ Hs(Ω)⊗ Rn|j, 0 ≤ s ≤ 1.

With this norm equivalence we obtain from Corollary 8.5 directly

Corollary 8.6. Let p = (p+ 1, . . . , p+ 1), r = (r + 1, . . . , r + 1) with p > r ≥ 0.
Then, assuming regular meshes, it is∥∥∥v − Πj

h,n,0v
∥∥∥
Hs
≤ CP1h

l−s ‖v‖Hl , ∀v ∈ H1
0 (Ω)⊗ Rn|j, 0 ≤ s ≤ l ≤ 1, (8.3.14)

for some CP1 independent of mesh size h.

Now we extend the above projection in the sense

Πj
h,n,0 : H1

0 (Ω)⊗ R(n|J)×(n|j) → H1
0 (Ω)⊗ R(n|J)×(n|j),

by a row-wise application of the original projection from (8.3.13). Then we trivially have the
same type of estimates as in the previous corollary. Besides, for v ∈ H1

0 (Ω)⊗En−2 together with
(8.3.6) and (8.3.9) we get

Πn−2
h,n,0v ∈ Ṽ

n−2,J
h,n (p+ 1, r + 1) ∩

(
H1

0 (Ω)⊗ En−2
)
⊂ Rh,0.

In other words, Πj
h,n,0 is a projection onto a subspace of the auxiliary space Rh,0 in (8.3.9).

At the end of this section let us introduce here a further abbreviation. Namely, for the following
we set

ΠR
h,0 := Πn−2

h,n,0. (8.3.15)
After we clarified the discrete spaces and introduced proper projections, we should check

whether we get with (8.3.5) a reasonable discretization scheme. We focus on this in the subse-
quent sections.

126



8.3.3 Well-posedness
Next we check the well-posedness of our finite-dimensional problem (8.3.5), provided the choice
(8.3.7) and (8.3.8), where we require p− 1 > r ≥ 0. Then, exploiting Lemma 5.5 we see that the
only missing part for a proof of the well-posedness in the discrete setting is the inf-sup condition
(5.3.5) related to the diagram (8.3.3). Because, the important point is that the spaces Rh,Σh, Uh
define a structure-preserving discretization of the bottom chain in (8.3.3). The latter is clear,
since we use in (8.3.7) row-wise isogeometric discrete differential.

Theorem 8.4 (Well-posed discretization). Let Assumption 8.3 hold and we require a family
of regular meshes (Mh)h in the sense of Definition 6.5. Then the choice (8.3.7) and (8.3.8) of
discrete spaces with p− 1 > r ≥ 0 implies the existence of a hmax > 0 s.t. we obtain for (8.3.5)
and for all h ≤ hmax a unique solution. Moreover, the discretization is well-posed, meaning we
have inf-sup stability independent of h.

Proof. As just indicated we want to apply Lemma 5.5 to obtain the statement. And in fact we
already explained why it is enough to look at the following inf-sup inequality

inf
06=ηh∈K̄h

sup
0 6=τh∈Rh

〈∇ · (S̃τh), ηh〉
‖τh‖H(Dn−2) ‖ηh‖

≥ C > 0, S̃ := S̃n−2,J , (8.3.16)

to prove the global inf-sup stability, where C must not depend on h. Namely, one notes, the last
inf-sup relation corresponds to (5.3.5) for our choice of discrete spaces and (8.3.3). Unfortunately,
latter condition is not trivial to check and we follow the proof for the Taylor–Hood stability
in [22] that is based on the so-called macroelement technique. Before we go into detail, we
need to adapt the preliminary steps made in the mentioned paper to our setting. Basic idea
for preparations is to first reduce the above inf-sup condition to a different one, that is derived
utilizing Verfürth’s trick. Applying this trick, we will consider an even stronger inf-sup condition
involving the H1-norm in the denominator. One observes, by construction the order of Dn−2 is
1 and ‖τ‖H(Dn−2) ≤ C̃ ‖τ‖H1 ,∀τ ∈ H1(Ω)⊗ En−2, for a fixed constant C̃.
The detailed steps for the proof of the inf-sup conditions are outlined in the subsequent sections
which result in Lemma 8.3. This lemma finally yields a hmax > 0 and a C > 0 s.t. (8.3.16) is
satisfied ∀h ≤ hmax.

Remark 8.4. To increase readability we will write in the following

inf
η∈X

sup
τ∈Y

instead of inf
06=η∈X

sup
06=τ∈Y

,

although we only consider non-vanishing space elements.

8.3.4 Verfürth’s trick
We want to emphasize that the proof structure and steps are inspired by the stability proof
of the Taylor–Hood space pair in [22] and [23]. Nevertheless, since the spaces we use differ
and since in our setting matrix fields appear, we write down the important steps in a detailed
fashion. We begin with a new auxiliary inf-sup condition which involves boundary conditions.
Since S̃ defines a H1-bounded surjection H1

0 (Ω) ⊗ En−2 → H1
0 (Ω) ⊗ Ēn−1, Ēn−1 := R(n|J−1)×n,
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with bounded right-inverse T̃ (see Corollary 8.2) one has

inf
η∈L2

0(Ω)⊗Ēn
sup

τ∈H1
0 (Ω)⊗En−2

〈∇ · (S̃τ), η〉
‖τ‖H1 ‖η‖

≥ inf
η∈L2

0(Ω)⊗Ēn
sup

w∈H1
0 (Ω)⊗Ēn−1

〈∇ · (S̃T̃w), η〉∥∥∥T̃w∥∥∥
H1
‖η‖

≥ inf
η∈L2

0(Ω)⊗Ēn
sup

w∈H1
0 (Ω)⊗Ēn−1

〈∇ · w, η〉
C ‖w‖H1 ‖η‖

> CIS1 > 0,

where the last inequality sign is clear due to the classical result of Girault and Raviart [43].
Now let η ∈ K̄h,0\{0} arbitrary, but fixed. Then we find a τ ∈ H1

0 (Ω)⊗ En−1 s.t.

〈∇ · (S̃τ), η〉 ≥ CIS1 ‖η‖2 , (8.3.17)
‖τ‖H1 = ‖η‖ .

Integration by parts and (8.3.17) lead to

〈∇ · (S̃ΠR
h,0τ), η〉 = 〈∇ · (S̃τ), η〉+ 〈∇ · (S̃ΠR

h,0τ − S̃τ), η〉
≥ CIS1 ‖η‖+ 〈(S̃ΠR

h,0τ − S̃τ),∇η〉. (8.3.18)

The gradient above acts naturally row-wise and we utilized the projection (8.3.15) which pre-
serves zero boundary conditions. And then we see for the last term in (8.3.18):

〈(S̃ΠR
h,0τ − S̃τ),∇η〉 ≤

∑
K∈Mh

|〈S̃ΠR
h,0τ − S̃τ ,∇η〉L2(K)|

≤
∑
K∈Mh

∥∥∥S̃ΠR
h,0τ − S̃τ

∥∥∥
L2(K)

‖∇η‖L2(K)

≤ CS̃
∑
K∈Mh

h−1
K

∥∥∥ΠR
h,0τ − τ

∥∥∥
L2(K)

hK ‖∇η‖L2(K)

≤ CS̃

( ∑
K∈Mh

h−2
K

∥∥∥ΠR
h,0τ − τ

∥∥∥2

L2(K)

)1/2( ∑
K∈Mh

h2
K ‖∇η‖

2
L2(K)

)1/2
,

withMh being the underlying regular mesh. Again we wrote and will write hK for the element
size of the mesh element K.
In view of the regular mesh assumption, Lemma 8.6 and definition (8.3.15), there is a constant
CV 1 <∞ with

〈(S̃ΠR
h,0τ − S̃τ),∇η〉 ≤ CV 1 ‖τ‖H1(Ω)

( ∑
K∈Mh

h2
K ‖∇η‖

2
L2(K)

)1/2

≤ CV 1 ‖η‖ ‖η‖K,h ,

where ‖η‖K,h :=
(∑

K∈Mh
h2
K ‖∇η‖

2
L2(K)

)1/2
.

Remark 8.5. Indeed ‖·‖K,h defines a norm on K̄h,0 ⊂ L2
0(Ω)⊗ Ēn−1.

The above estimate and (8.3.18) yield directly the inequality

〈∇ · (S̃ΠR
h,0τ), η〉 ≥ CIS1 ‖η‖2 − CV 1 ‖η‖ ‖η‖K,h . (8.3.19)
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Consequently, setting Cc := 1 + CP1 it is
∥∥∥ΠR

h,0τ
∥∥∥
H1
≤ Cc ‖τ‖H1 (see Corollary 8.6) and

sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
‖τ‖H1

≥ 1
Cc ‖τ‖H1

(
CIS1 ‖η‖2 − CV 1 ‖η‖ ‖η‖K,h

)
= CIS1

Cc
‖η‖ − CV 1

Cc
‖η‖K,h . (8.3.20)

The last relation holds for all η ∈ K̄h,0. Now, consider the inf-sup condition

∃CIS > 0 s.t. ∀h > 0 : inf
η∈K̄h,0

sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
‖τ‖H1 ‖η‖

≥ CIS. (8.3.21)

The Verfürth trick ([74]) can now be used to reduce latter inf-sup condition (8.3.21) to the new
condition

∃CV > 0 s.t. ∀h > 0 : sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
‖τ‖H1

≥ CV ‖η‖K,h , ∀η ∈ K̄h,0. (8.3.22)

Namely, using (8.3.22) and (8.3.20) we have for η ∈ K̄h,0 the estimate

sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
‖τ‖H1

≥ CIS1

Cc
‖η‖ − CV 1

Cc
‖η‖K,h

≥ CIS1

Cc
‖η‖ − CV 1

CcCV
sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
‖τ‖H1

.

Hence

sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
‖τ‖H1

≥ CIS ‖η‖ , ∀η ∈ K̄h,0,

with CIS = CIS1
Cc

(
1 + CV 1

CcCV

)−1
= CIS1

Cc

(
CcCV +CV 1

CcCV

)−1
= CIS1CV

CcCV +CV 1
.

Applying the well-known Friedrichs’s inequality ([20, §1 in Chapter 2]), ‖τ‖H1 ≤ (1+CFr)|τ |H1 , ∀τ ∈
H1

0 (Ω)⊗ En−2, for a suitable CFr, we can simplify (8.3.22) to

∃C ′V > 0, s.t. ∀h > 0 : sup
τ∈Rh,0

〈∇ · (S̃τ), η〉
|τ |H1

≥ C
′

V ‖η‖K,h , ∀η ∈ K̄h,0. (8.3.23)

Above | · |H1 stands for the standard Sobolev seminorm.
Thus it is justified to consider (8.3.23) instead of (8.3.21).

8.3.5 Macroelement technique
Analogously to [22, 23] we use the macroelement technique to prove the condition (8.3.23);
compare [22, Section 3.3]. Therefore we first define the set of macroelement domains ML

h corre-
sponding to the triangulationMh.

Definition 8.9 (Macroelement domains). For L ∈ N>0 the set of macroelement domains ML
h

in an n-dimensional meshMh is defined as follows: If L = 1 we have

M1
h :=

{
m1
K

∣∣∣ K ∈Mh, #{U ∈Mh |U ⊂ m1
K} = 3n

}
, where for K ∈Mh it is

m1
K :=

⋃
U∈Mh, U∩K6=∅

U.
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Figure 18: Illustration of the macroelements m1
K and m2

K for the red highlighted mesh element
K ∈ Mh. For decreasing h the macroelement shapes can be approximated by affine
transformed squares. This observation together with the possibility of a covering of Ω
by use of the macroelements yields the basic idea for the reduction of a global inf-sup
condition to a localized version.

And recursively, for L > 1

ML
h :=

{
mL
K

∣∣∣ K ∈Mh, #{U ∈Mh |U ⊂ mL
K} = (2L+ 1)n

}
, where for K ∈Mh it is

mL
K :=

⋃
U∈Mh, U∩mL−1

K 6=∅

U.

We write #Q for the cardinality of a set Q.

The ML
h satisfy three obvious but important properties:

• ∀Mh, ∀K ∈Mh, ∃m ∈ML
h s.t. K ⊂ m.

• ∀Mh, ∀K ∈ Mh, there are at most Coverlap = (2L + 1)n many macroelement domains m
in ML

h s.t. K ⊂ m.

• ∀Mh, ∀m ∈ML
h , there are Celem = (2L+ 1)n different mesh elements in m.

To see the last properties one notes the tensor-product structure of the parametric meshes in
the context of IGA.
An illustration of macroelements as collection of mesh elements is sketched in Figure 18 for
n = 2. Basic idea of the technique of macroelements is to reduce the global inf-sup condition
(8.3.23) to a local alternative on the macroelements. Due to this localization step and a regular
mesh assumption one can then prove the new condition more easily by means of considerations
on the simple parametric spline spaces and parametric meshes. In the following we assume L to
be a fixed natural number and thus drop the index L. Later, we will clarify what L actually is.
Macroelement domains can be defined analogously in the parametric domain and in this case

we use the notation M̂h as well as m̂K , K ∈ M̂h for the parametric pendants. For each m ∈Mh

we can define the spaces

Vm :=
{
τ|m

∣∣∣ τ ∈ Rh,0, supp(τ) ⊆ m
}
, (8.3.24)

Pm :=
{
v|m

∣∣∣∣∣ v ∈ K̄h,
∫
m
v dx = 0

}
(8.3.25)
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and interpret mappings in Vm as mappings on Ω through a straight-forward zero extension.16

We equip Pm with the norm

‖η‖Pm
:=
( ∑
K∈Mh, K⊂m

h2
K ‖∇η‖

2
L2(K)

)1/2

and note that
ΠPmη := η|m −

1
|m|

∫
m
η dx

defines a projection from K̄h onto Pm. The integral is meant in a component-wise manner.
As already mentioned, the idea of the macroelement technique is to reduce the global inf-sup

condition (8.3.23) to a local version on macroelements. To be more precise, assume that

∃Cmacro > 0, s.t. ∀h, ∀m ∈Mh : inf
η∈Pm

sup
τ∈Vm

〈S̃τ,∇η〉
|τ |H1 ‖η‖Pm

≥ Cmacro. (8.3.26)

Then this inf-sup stability on the macroelements leads to stability in the sense of (8.3.23); cf.
[22, Section 3.3]. This can be seen as follows. Let η ∈ K̄h,0 arbitrary, but fixed. Further let
τm ∈ Vm chosen such that

〈S̃τm,∇ΠPmη〉 ≥ Cmacro ‖ΠPmη‖
2
Pm

|τm|H1(Ω) = ‖ΠPmη‖Pm
.

On the one hand, one obtains
sup
τ∈Rh,0

〈S̃τ,∇η〉 ≥ 〈
∑

m∈Mh

S̃τm,∇η〉 =
∑

m∈Mh

〈S̃τm,∇η〉

≥
∑

m∈Mh

Cmacro ‖ΠPmη‖
2
Pm

=
∑

m∈Mh

Cmacro

( ∑
K⊂m

h2
K ‖∇ΠPmη‖

2
L2(K)

)

≥ Cmacro
∑
K∈Mh

(
h2
K ‖∇η‖

2
L2(K)

)
= Cmacro ‖η‖2

K,h .

On the other hand, one can estimate
|
∑

m∈Mh

τm|2H1(Ω) =
∑
K∈Mh

|
∑

m∈Mh

τm|2H1(K)

≤
∑
K∈Mh

( ∑
m∈Mh
K⊂m

|τm|H1(K)

)2

≤ Coverlap
∑
K∈Mh

∑
m∈Mh
K⊂m

|τm|2H1(K)

≤ Coverlap
∑

m∈Mh

|τm|2H1(Ω)

≤ Coverlap
∑

m∈Mh

‖ΠPmη‖
2
Pm

≤ Coverlap
∑

m∈Mh

∑
K⊂m

h2
K ‖∇η‖

2
L2(K)

≤ C2
overlap ‖η‖

2
K,h .

16·|m denotes the restriction to m ⊂ Ω.
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Then, it is easy to see that the both inequality chains from above lead to the wanted result
(8.3.23). One can set C ′V = CmacroC

−1
overlap.

Thus, to show the inf-sup stability (8.3.21) it remains to prove (8.3.26).

8.3.6 Proof of the auxiliary inf-sup condition
As mentioned, we face now the inf-sup stability in the sense (8.3.26). For this purpose, we apply
a result from [23], where the inf-sup stability of a similar space pair is proven.

Lemma 8.2. Assume p − 1 > r ≥ 0. Then there is a constant Cmacro > 0 and a mesh size
hmax > 0 s.t. for allMh and ∀m ∈Mh it holds

inf
q∈Pm

sup
v∈Vm

〈v,∇q〉
|v|H1 ‖q‖Pm

≥ Cmacro, if h ≤ hmax, (8.3.27)

where

Vm :=
{
v|m

∣∣∣ v ∈ (Sr,...,rp,...,p ◦ F−1
)
⊗ Rn, supp(v) ⊆ m, v ∈ H1

0 (m)
}
, (8.3.28)

Pm :=
{
η|m

∣∣∣∣∣ η ∈ (Sr,...,rp−1,...,p−1 ◦ F−1
)
,
∫
m
η dx = 0

}
(8.3.29)

and ‖η‖Pm
is analogously defined like ‖η‖Pm

, i.e. ‖q‖Pm
:=
(∑

K⊂m h
2
K ‖∇q‖

2
L2(K)

)1/2
.

Proof. Since we only consider spline basis functions this follows by Section 4.3 and Theorem
4.1 in [23] with NURBS weight function ω = 1. The mentioned reference shows that the
macroelements with L = p− 1 are suitable.

Remark 8.6. Our definition of macroelements depends on L. However, the results in [23, Theorem
4.1] imply that the choice L = p − 1 leads to the inf-sup inequality of the last lemma. That is
why we assume Mh = Mp−1

h in the rest of the section.
A row-wise application of the last lemma yields the existence of a constant C ′macro > 0 s.t. for

all macroelements m ∈Mh and η ∈ Pm we find a

τm ∈
{
τ ∈ (Sr,...,rp,...,p ◦ F−1)⊗ Ēn−1

∣∣∣ supp(τ) ⊆ m
}

with

〈τm,∇η〉 ≥ C
′

macro|τm|H1(m) ‖η‖Pm
, (8.3.30)

if h ≤ hmax. One notes that C ′macro is independent from h, η and the macroelement. Next
we choose for each macroelement one xm ∈ m, e.g. the push-forward of the center in the
corresponding parametric macroelement m̂, meaning F(m̂) = m. Then define M̄xm := M̄(xm)
and set

τ̃m :=
[
T̃ (τm)

]
M̄xmM̄−1 ∈ Vm,

with M̄ : Ω→ R(n|2)×(n|2) denoting the C1-regular matrix field implied by the pullback operation;
see the second point in Corollary 8.3. In particular M̄−1 above means that we consider point-
wise the inverses of the matrices M̄(·).
Indeed, using Corollary 8.2, we have τm :=

[
T̃ (τm)

]
M̄xm ∈ (Sr,...,rp,...,p ◦ F−1) ⊗ En−2 and thus
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by Corollary 8.3 τmM̄−1 ∈ Rh. One observes that (8.3.28) implies also τmM̄−1 ∈ Rh,0 and
supp(τmM̄−1) ⊆ m.
Then, one gets

〈S̃τ̃m,∇η〉 =
〈
S̃
[
τmM̄−1

xm

]
,∇η

〉
+
〈
S̃
[
τm
(
M̄−1 − M̄−1

xm

)]
,∇η

〉
=
〈
τm,∇η

〉
+
〈
S̃
[
τm
(
M̄−1 − M̄−1

xm

)]
,∇η

〉
. (8.3.31)

The second term in line (8.3.31) can be estimated as follows.
Introduce the auxiliary matrix field M̃ := M̄xm

(
M̄−1− M̄−1

xm

)
. We set σm := S̃

[
[T̃ (τm)]M̃

]
and

by the transformation rule for integrals

〈σm,∇η〉L2(m) = 〈σ̂m|det(J)|, (∇̂η̂)J−1〉L2(m̂),

where σ̂m := σm ◦F, η̂ = η ◦F and J denotes the Jacobian of the parametrizaton F. We use the
hat notation " ·̂ " to indicate differentiation w.r.t. the parametric coordinates. With τ̂m = τm ◦F
we can find bounded and Lipschitz continuous coefficient functions cklij = cklij (M̃, det(J),J−1, S̃, T̃ )
s.t.

〈σm,∇η〉L2(m) =
∫
m̂

(τ̂m)kl cklij ∂̂j η̂i dx̂

≤ C
∥∥∥cklij∥∥∥L∞(m̂)

‖τ̂m‖L2(m̂)

∥∥∥∇̂η̂∥∥∥
L2(m̂)

(here ‖v‖L∞(U) := sup
x∈U
|v(x)| )

≤ CC̃
∥∥∥cklij∥∥∥L∞(m̂)

h|τ̂m|H1(m̂)

∥∥∥∇̂η̂∥∥∥
L2(m̂)

≤ C̄
∥∥∥cklij∥∥∥L∞(m̂)

|τ̂m|H1(m̂)

( ∑
K⊂m̂

h
∥∥∥∇̂η̂∥∥∥

L2(K)

)

≤ C̄
√
Celem

∥∥∥cklij∥∥∥L∞(m̂)
|τ̂m|H1(m̂)

( ∑
K⊂m̂

h2
∥∥∥∇̂η̂∥∥∥2

L2(K)

)1/2
, (8.3.32)

where we drop the sum symbol ∑i,j,k,l for better readability. To obtain the second inequality
sign above we use the estimate for the Friedrichs’s constant CFr(D) of rectangular domains D:

CFr(D) ≤ diam(D) ⇒ CFr(m̂) ≤ C̃h, for a proper C̃, see [20, §1, Chapter 2].

Analogously to [22], one introduces the auxiliary mapping η̂a := η̂− 1
|m̂|
∫
m̂ η̂ dx̂. Obviously, we

have ∇̂η̂ = ∇̂η̂a. Besides, with the norm equivalence statement in line (3.37) of [22] we obtain
for some constant CH1 independent of the mesh size

|τ̂m|H1(m̂) ≤ CH1|τm|H1(m). (8.3.33)

Further, by the assumed C2-smoothness of F and F−1, there is for each ε > 0 a mesh size hε > 0
s.t. for all h ≤ hε we get

|M̃| =
∣∣∣M̄xm

(
M̄−1(x̂)− M̄−1

xm

)∣∣∣ < ε, ∀m ∈Mh,∀x̂ ∈ m̂.

Hence, since σm = S̃
[
[T̃ (τm)]M̃

]
, there is a constant Cpara < ∞ which is independent of h and

the macroelement such that
|cklij | < Cparaε on m̂, (8.3.34)

for h ≤ hε small enough. Combining (8.3.33) and (8.3.34) we find a constant C ′para <∞ with

|〈σm,∇η〉L2(m)| ≤ C
′

paraε|τm|H1(m)

( ∑
K⊂m̂

h2
∥∥∥∇̂η̂a∥∥∥2

L2(K)

)1/2

. (8.3.35)
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Applying the inequality chain (3.47) in [22] we obtain a constant Cest s.t.( ∑
K⊂m̂

h2
∥∥∥∇̂η̂a∥∥∥2

L2(K)

)1/2

≤ Cest ‖η‖Pm
. (8.3.36)

In view of (8.3.35) and (8.3.36) it is

〈S̃τ̃m,∇η〉 ≥ C
′

macro|τm|H1(m) ‖η‖Pm
− C ′paraεCest|τm|H1(m) ‖η‖Pm

. (8.3.37)

Hence, if we choose h ≤ hmax for some suitable hmax > 0 we get C ′′macro = C
′
macro−C

′
paraεCest > 0.

And since M̄−1 is piece-wise smooth and Lipschitz continuous by assumption, we obtain for
some Cest,1, Cest,2 and with the Friedrichs’s inequality:

|τ̃m|H1(m) =
∣∣∣∣∣[T̃ (τm)

]
M̄xmM̄−1

∣∣∣∣∣
H1(m)

≤ Cest,2 ‖τm‖H1(m)

≤ Cest,2(1 + CFr(Ω))|τm|H1(m).

One notes m ⊂ Ω, i.e. the Friedrichs’s constant can be chosen independently from m.
With the last estimate and (8.3.37) we can conclude now

〈S̃τ̃m,∇η〉 ≥ C
′′

macro|τm|H1(m) ‖η‖Pm
≥ C

′′
macro

Cest,2(1 + CFr(Ω)) |τ̃m|H
1(m) ‖η‖Pm

. (8.3.38)

In other words with Cmacro = C
′′
macro

Cest,2(1+CFr(Ω)) > 0 and for h ≤ hmax we have shown the property
(8.3.26).

8.3.7 Inf-sup condition for spaces without boundary conditions
From the last section together with the Verfürth trick we get the validity of (8.3.21) if h ≤ hmax.
However, there we assumed special boundary conditions and the property of vanishing mean
value for the variable η. Thus, we want to prove the next lemma.

Lemma 8.3. There is a mesh size hmax > 0 and a constant C ′IS > 0 s.t.

∀0 < h ≤ hmax : inf
η∈Kh

sup
τ∈Rh∩(H1(Ω)⊗En−2)

〈∇ · (S̃τ), η〉
‖τ‖H1 ‖η‖

≥ C
′

IS. (8.3.39)

Before proving this lemma we first look at a useful auxiliary result.

Lemma 8.4. It exists a h̃ > 0 such that ∀h ≤ h̃, we find M i
h ∈ Rh ∩

(
H1(Ω) ⊗ En−2

)
,

i = 1, . . . , (n|J − 1), with∥∥∥M i
h

∥∥∥
H1
≤ Ci <∞,∥∥∥∇ · (S̃M i

h)− ei
∥∥∥ ≤ min

{
CIS

2
√
CΩ

,
1

2
√
CΩ(n|J − 1) + 1

}
=: CL,1, ∀i, CΩ := 1/|Ω|.

Above the Ci are independent of h and ei denote the canonical basis vectors in Rn|J−1.
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Proof. In this proof we write Πh = Πn−2
h,n ⊗ Rn|J−1, i.e. we have a row-wise application of

Πn−2
h,n , where here Πn−2

h,n = Πn−2
h,n (p + 1, r + 1) denotes the projection from (7.3.2) onto the space

V n−2
h,n (p+ 1, r + 1) with degree p+ 1 and regularity r + 1. In particular it holds

Πhτ ∈ Rh ∩
(
H1(Ω)⊗ En−2

)
, ∀τ ∈ H1(Ω)⊗ En−2.

Let us define the smooth mappings

Xi : Ω→ En−2 , x 7→ Xi(x) = Xi(x1, . . . , xn) = x1


0 . . . 0

ei
... 0 ...
0 . . . 0

 ,
meaning the first column of the matrix is the i-th basis vector.
Next we introduce the matrices M i

h := Πh

[
T̃Xi

]
∈ Rh, where T̃ is the right-inverse of S̃; see

Corollary 8.2. Exploiting the approximation properties of the splines, cf. [27, Theorem 5.3 and
Remark 5.1], one obtains∥∥∥∇ · (S̃M i

h)− ei
∥∥∥ ≤ ∥∥∥S̃M i

h − S̃T̃Xi

∥∥∥
H1
≤ CS̃

∥∥∥M i
h − T̃Xi

∥∥∥
H1

≤ CS̃

∥∥∥ΠhT̃Xi − T̃Xi

∥∥∥
H1

≤ CS̃CRh
∥∥∥T̃Xi

∥∥∥
H2

= CS̃CRh
∥∥∥T̃Xi

∥∥∥
H1
, (8.3.40)

for proper constants CR, CS̃. And by the continuity of the projection operators it is∥∥∥M i
h

∥∥∥
H1

=
∥∥∥ΠhT̃Xi

∥∥∥
H1
≤ C̃R

∥∥∥T̃Xi

∥∥∥
H1

=: Ci, (8.3.41)

for constants C̃R, Ci independent of the underlying mesh size h. Hence, combining the estimates
(8.3.40) and (8.3.41) finishes the proof.

Proof of Lemma 8.3. Let η ∈ Kh arbitrary, but fixed. Further we write η̃ := η − η̄, where

η̄ = (η̄i)i with η̄i := 1
|Ω|

∫
Ω
ηidx = const.

Then we define
M

i
h := η̄iM

i
h,

with theM i
h from Lemma 8.4. By the previous section we know that there is a τ̃ ∈ Rh∩

(
H1

0 (Ω)⊗
En−2

)
with

〈∇ · (S̃τ̃), η̃〉 ≥ CIS ‖η̃‖2 ,

‖τ̃‖H1 = ‖η̃‖ .

Set
τ := τ̃ +

∑
i

M
i
h,

where here and in the remaining part of the proof all the indices run from 1 to (n|J − 1). This
means

〈∇ · (S̃τ), η〉 = 〈∇ · (S̃τ̃), η̃〉+
∑
i

〈∇ · (S̃M i

h), η̃〉︸ ︷︷ ︸
=:(?,1)

+ 〈∇ · (S̃τ̃), η̄〉︸ ︷︷ ︸
=:(?,2)

+∑
i〈∇ · (S̃M

i

h), η̄〉︸ ︷︷ ︸
=:(?,3)

.
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Set N := (n|J − 1). Using Lemma 8.4 the three last terms can be estimated as follows:

|(?, 1)| ≤
∑
i

|〈∇ · (S̃M i
h), η̃〉| ≤

∑
i

|〈∇ · (S̃M i
h)− η̄iei, η̃〉|+ |〈η̄iei, η̃〉|

≤
∑
i

|η̄i||〈∇ · (S̃M i
h)− ei, η̃〉|+ 0

≤
∑
i

CL,1|η̄i| ‖η̃‖

=
∑
i

CL,1
√
CΩ ‖η̄i‖ ‖η̃‖

≤
√
NCL,1

√
CΩ ‖η̄‖ ‖η̃‖

≤
√
N

2 CL,1
√
CΩ
(
‖η̄‖2 + ‖η̃‖2

)
.

(?, 2) = 〈S̃τ̃ ,∇η̄〉 = 0.
(?, 3) =

∑
i

〈∇ · (S̃M i
h), η̄〉 =

∑
i,j

〈∇ · (S̃M i
h), η̄jej〉

=
∑
i,j

〈∇ · (S̃M i
h)− η̄iei, η̄jej〉+

∑
i,j

〈η̄iei, η̄jej〉

≥
∑
i

‖η̄i‖2 −
∑
i,j

√
CΩCL,1 ‖η̄i‖ ‖η̄j‖

≥
∑
i

‖η̄i‖2 −N
√
CΩCL,1 ‖η̄i‖2

≥ (1−N
√
CΩCL,1) ‖η̄‖2 .

Consequently, on the one hand we have

〈∇ · (S̃τ), η〉 ≥ CIS ‖η̃‖2 + (1−N
√
CΩCL,1) ‖η̄‖2 − CL,1

√
CΩ
(
‖η̄‖2 + ‖η̃‖2

)
=
(
CIS − CL,1

√
CΩ
)
‖η̃‖2 +

(
1− (N + 1)CL,1

√
CΩ
)
‖η̄‖2

≥ CIS,2(‖η̃‖+ ‖η̄‖)2, (8.3.42)

for a suitable CIS,2 > 0 if CL,1 is small enough, see Lemma 8.4.
And on the other hand, we can estimate

‖τ‖H1 ≤ ‖τ̃‖H1 +
∑
i

∥∥∥M i

h

∥∥∥
H1

≤ ‖η̃‖+
∑
i

|η̄i|
∥∥∥M i

h

∥∥∥
H1

≤ ‖η̃‖+
∑
i

√
CΩCi ‖η̄i‖

≤ CIS,3(‖η̃‖+ ‖η̄‖), (8.3.43)

where CIS,3 := maxi{1, N
√
CΩCi}. Finally, we can combine (8.3.42) and (8.3.43) to see

〈∇ · (S̃τ), η〉
‖τ‖H1

≥ CIS,2
CIS,3

(‖η̃‖+ ‖η̄‖) ≥ CIS,2
CIS,3

‖η‖ .

The arbitrariness of η finishes the proof.
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With Lemma 8.3 it follows the well-posedness of the discretization method, we showed Theo-
rem 8.4, respectively . Thereby, we obtain the next error estimate which corresponds to Lemma
2.12 in the abstract setting.

Theorem 8.5 (Error estimate). We consider a well-posed discretization (8.3.5) in the sense
of Theorem 8.4. Further let the solution (σ, u, κ) of the continuous problem (8.3.4) fulfill the
regularity assumptions σ ∈ H l(Ω,∇·,En−1), u ∈ H l(Ω)⊗ En, κ ∈ H l(Ω)⊗ Ēn for 0 ≤ l ≤ p.
Then the error between exact and approximate solution satisfies

‖σ − σh‖H(∇·) + ‖u− uh‖+ ‖κ− κh‖ ≤ Cconvh
l
(
‖σ‖Hl(∇·) + ‖u‖Hl + ‖κ‖Hl

)
for a constant Cconv independent of h.
Additionally we have

‖∇ · σ −∇ · σh‖ ≤ Cconvh
p+1 ‖∇ · σ‖Hp+1 ,

provided enough regularity for σ.

Proof. By the well-posedness, we have a quasi-optimal estimate like in Lemma 2.12. Thus, due
to projection properties in Corollary 8.4 one obtains easily the first estimate. More precisely,
setting ‖(τ, v, η)‖2

B := ‖τ‖2
H(∇·) + ‖v‖2 + ‖η‖2, there is a constant CQO with

‖(σ − σh, u− uh, κ− κh)‖B ≤ CQO
∥∥∥(σ − ΠΣ

hσ, u− ΠU
h u, κ− ΠK̄

h κ)
∥∥∥
B

≤ CQO
( ∥∥∥σ − ΠΣ

hσ
∥∥∥
H(∇·)

+
∥∥∥u− ΠU

h u
∥∥∥+

∥∥∥κ− ΠK̄
h κ
∥∥∥ )

≤ Chl
(
‖σ‖Hl(∇·) + ‖u‖Hl + ‖κ‖Hl

)
.

The second estimate of the assertion can be obtained by a standard approach. We observe the
fact 〈∇ · σ−∇ · σh, wh〉 = 0, ∀wh ∈ Uh and that ∇ · τh ∈ Uh, ∀τh ∈ Σh. This means we have the
equality chain

‖∇ · σ −∇ · σh‖2 = 〈∇ · σ −∇ · σh,∇ · σ −∇ · σh〉
= 〈∇ · σ − ΠU

h∇ · σ,∇ · σ −∇ · σh〉+ 〈ΠU
h∇ · σ −∇ · σh,∇ · σ −∇ · σh〉

≤
∥∥∥∇ · σ − ΠU

h∇ · σ
∥∥∥ ‖∇ · σ −∇ · σh‖+ 0.

Thus, again in view of Corollary 8.4, we get
‖∇ · σ −∇ · σh‖ ≤

∥∥∥∇ · σ − ΠU
h∇ · σ

∥∥∥ ≤ Chp+1 ‖∇ · σ‖Hp+1 . Since we use in (8.3.7) isogeometric
discrete differential forms with degree p+ 1 to define Σhcurl the last estimate is clear.

With the two Theorems 8.4 and 8.5, we have now encountered a second approach to dis-
cretization in the context of the BGG construction from Section 4.2.3 using IGA. The proof
of the convergence estimate and well-posedness constitutes a second main result of the thesis.
Although we indicated at the beginning of Section 5.3 that analogous types of discretizations
with Lagrange multipliers can be found in the literature ([42, 10, 63, 7]), the referenced works
focus on FEMs based on classical triangulations with quadrilateral or tetrahedral elements, i.e.,
elements with straight or flat boundaries. In contrast, we have followed the concept of isogeo-
metric analysis, and therefore, we have not only used completely different test function spaces.
It further allows us to incorporate curved geometries in an exact manner but also enables the use
of basis functions with high regularity. These last two aspects cannot be readily realized with the
methods in above publications. Furthermore, we have indeed investigated the discretization for
an entire class of saddle point problems, specifically for the (V ◦,Jn ,D◦,Jn ) complexes in arbitrary
dimensions. In a certain sense, one can consider the above as a generalization of the approaches
in [42, 10, 63, 7].
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Actually, for the second approach with the Lagrange multiplier, we have not yet provided an
explicit demonstration example, a numerical test, respectively. However, we plan to address this
in the next section in which we will consider a specific application field, namely the theory of
linear elasticity. But before we move on to the next chapter, let us briefly recap what we have
achieved with this last and central chapter of the thesis. In general terms, we have demonstrated
that we can discretize and approximate the Hodge–Laplace problem of level k = n induced by
the complex (V ◦,Jn ,D◦,Jn ), or rather its mixed formulations, using isogeometric basis functions.
More specifically, we have presented two different discretization approaches in Sections 8.2 and
8.3, and shown that we can obtain a well-posed discretization for each (following possible mesh
refinement). In both approaches, we can use arbitrarily high polynomial degrees, and with
sufficient regularity of the exact solution, our error estimates theoretically imply arbitrarily high
convergence rates. What is noteworthy here is the fact that for both discretization methods, we
have indirectly employed the central FEEC concept of structure-preserving for Hilbert complexes.
While it is true that we did not explicitly demand such a discretization of the underlying chain
in the physical domain, in Section 8.2, we leverage the existence of discretization of the output
complexes in cubical domains in the proof of Lemma 8.2. Additionally, in Section 8.3, we utilize
isogeometric discrete differential forms to define the Finite Element spaces, which precisely
represent a structure-preserving discretization of the de Rham complex.
So far, we have mostly worked in an abstract manner and examined entire classes of problems.

Therefore, it is reasonable to consider whether there are relevant application areas for what we
have learned. In principle, as we have already seen in Example 8.1, we can use at least the first
approach to compute approximate solutions for the biharmonic equation. The latter can, for
instance, be used in the context of Kirchhoff plate theory ([54]) to calculate plate deflections,
providing us with one potential application. Another area in the field of continuum mechanics
suitable for both systems (8.2.1) and (8.3.4) is the deformation of elastic bodies. We aim to
illustrate and explore the latter in detail in the upcoming section.
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9 Application to Linear Elasticity
This section focuses on our primary application field, the theory of linear elasticity. It revolves
around the computation of approximate solutions for mechanical displacements and stresses,
following the approximation paradigm of IGA. We aim not only to demonstrate how and why
the results from Section 8.2 and Section 8.3 can be applied here, but we will also address
generalization directions such as multi-patch IGA geometries and mixed boundary conditions,
illustrating our considerations through numerous examples. Additionally, we will show that the
numerically challenging case of (nearly) incompressible materials can also be handled. In other
words, we want to demonstrate the relevance of the results from Section 8 in an important part
of computational mechanics.
Let us begin with some introductory remarks on the physical background and derive the

underlying equations. It is essential to mention that we are only examining the stationary case,
meaning there is no time dependence in what follows.

9.1 Linear elasticity
The theory of linear elasticity elucidates how a solid undergoes deformation and changes in stress
state when subjected to external forces, assuming only infinitesimal deformations. The latter
allows to derive a reasonable linear relationship between the stress and strain components.
This connection is summarized in the so-called generalized Hooke’s law. Considering small
deformations makes it meaningful for many materials to exhibit elastic behavior, meaning that
deformations are reversible, and in the absence of forces, the solid returns to a specific reference
configuration. To establish a mathematical description one usually identifies the elastic body
with some domain Ω ⊂ Rn, n ∈ {2, 3}, where we, as always, think of some bounded Lipschitz
domain.
In this subsection, we briefly want to address the famous Hooke’s law, as it is fundamental
for equations of linear elasticity. For the sake of clarity, we start with the definitions of the
terms stress tensor and displacement. The derivation should be carried out mainly for the three-
dimensional case, but analogous arguments and notions are also valid for the planar situation.
All the considerations below can be regarded as basic knowledge in the field of continuum
mechanics and are explained in more detail in every standard textbook on this subject. We
refer, for example, to Chapter 6 in the book [20].
The application of external forces to a solid induces direction-dependent internal stresses at
each point p within the solid. To capture the relation between the stresses and the forces,
a tensor relation becomes essential. Since the analysis is conducted within three-dimensional
space, rank-2 tensors can be conveniently represented using 3 × 3 matrices. Now, if we focus
on an infinitesimal area element dA containing point P , with its orientation defined by the unit
normal vector n, then the force dfP ∈ R3 acting on dA satisfies the equation

dfP
dA

= σ · n,

where

σ :=

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


is the Cauchy stress tensor from continuum mechanics. The vector tnP := dfP

dA
is called traction

vector which shows us that the unit of the stress tensor entries is force per area. Indeed, a
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close look reveals that the traction vector is influenced not only by the point P (indicating its
spatial location) but also by the orientation of the associated area element dA. Consequently,
we should interpret the traction vectors as constituents of an internal vector field denoted by
t : S3×Ω→ R3 , (n, P ) 7→ tnP = σ(P ) ·n, where S3 represents the unit sphere in R3. This vector
field determines the internal stress distribution for different points and orientations within the
solid.

ΩΩ dA

tP

n
force field f

Figure 19: Loading gives rise to internal stresses within a material. The traction vector tP quantifies
the resultant force per infinitesimal area element dA of a cutting plane at point P ∈ Ω.

Let us further emphasize that within a three-dimensional context, the entire stress state
at a given point, and thereby the stress tensor, can be fully characterized by three mutually
perpendicular cutting areas. These areas can be thoughtfully chosen with their orientation
vectors n1, n2, and n3 aligned parallel to the coordinate axes. As depicted in Figure 20, the
corresponding orientations of stress components are illustrated through a conceptual infinitesimal
cube. In this configuration, the off-diagonal entries of σ correspond to shear stresses, forces acting
tangentially to the cutting areas, respectively, while the diagonal components represent normal
stresses, implying forces perpendicular to the different cutting areas. Analogously it is possible
to define a stress tensor σ ∈ R2×2 for planar elasticity, i.e. n = 2. For more details on that we
refer to [20, §5 on page 309].
In order to guarantee a conservation of angular momentum one can show in both situations
n = 2 and n = 3 the symmetry of the stress tensor.
Within the context of linear elasticity and under the assumption of deformability, applied

forces induce alterations in the solid’s shape. Consequently, to quantify and explain this defor-
mation, the concepts of strains and displacements must be introduced.

x1

x3

x2σ11
σ12

σ33

σ13

σ23

σ21

σ22

σ32
σ31

Figure 20: The components of the stress tensor.

Let now the undeformed solid be given as the closure of a Lipschitz domain Ω ⊂ Rn. Selecting
a fixed coordinate system, a point P within the solid is characterized by its Cartesian coordinates
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P = xP . When a force field f is applied, it induces a displacement of point P to a new position
P̃ = x̃P . The displacement experienced by point P is subsequently quantified by the disparity
between these positions, expressed as:

u(xP ) := x̃P − xP .

In other words, the shape of the body can be described through the displacement field u : Ω→ Rn

that measures the difference between current configuration Ω+u and initial configuration, namely
Ω. The displacement is now used to define the strain tensor ε another rank-2 tensor, i.e. a matrix
field, which measures the degree of deformation. The linearized version of the strain tensor is
symmetric and given by the symmetric gradient

ε(u) := sym∇u,

which again yields a matrix field; see [20, §1 on page 273].

Ω

f

Ω̃

P

P̃

Figure 21: A force field f causes a deformation.

Now we can come to the already mentioned generalized Hooke’s law which connects the strain
and stress components in a linear manner. More precisely, we assume in linear elasticity the
validity of the relation

σ = Cε, meaning σij = ∑n,n
k,l=1Cijkl εkl, ∀i, j, (9.1.1)

where C =
(
Cijkl)n,n,n,ni,j,k,l=1 is the rank-4 elasticity tensor. An often made assumption in continuum

mechanics is that the materials are homogeneous and isotropic. In this case Hooke’s law can be
expressed by means of the so-called Lamé parameters 0 ≤ λ, 0 < µ. To be more precise one has

σ = 2µε+ λtr(ε)I, (Here, I denotes the identity tensor.) (9.1.2)

which simplifies calculations significantly.
Next, to derive the governing equations that specify how displacements and stresses change

due to a force field, we employ a balance of momentum argument. Namely, choosing some local
control volume U ⊂ Ω then the integral sum∫

∂U
σ · n ds+

∫
U
f dx (9.1.3)

conforms with the total forces acting on the volume U . In this context, the first term corresponds
to the contribution arising from internal stresses, and the second term in (9.1.3) represents the
contribution provided by a load field f : Ω → Rn. Since we are working in a static setting, all
forces must cancel out according to Newton’s laws. In other words, (9.1.3) must vanish for any
arbitrary volume U , which yields

−∇ · σ = f in Ω, (9.1.4)
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through the use of partial integration.
Both equations (9.1.1) and (9.1.4) can now be exploited to calculate stresses and displacements,

given some f . However, we still need to establish boundary conditions to obtain a well-defined
problem in the first place. Initially, we want to confine ourselves to the simple scenario of zero
displacements on the entire boundary ∂Ω. Later on, we will also address other conditions known
as traction boundary conditions and discuss numerical examples for them. Furthermore, it is
not difficult to demonstrate that through an appropriate transformation, non-zero displacement
boundary conditions can be reduced to the zero case.
One standard approach to solve the problem of linear elasticity in case of homogeneous bound-

ary conditions weakly, is the primal formulation (cf. [20, §3 in Chapter 6]):

Find u ∈ H1
0 (Ω)⊗ Rn s.t. 〈Cε(u), ε(v)〉 = 〈f, v〉, ∀v ∈ H1

0 (Ω)⊗ Rn. (9.1.5)

The latter line is obtained by inserting (9.1.1) into (9.1.4) together with integration by parts.
Exploiting the Korn inequality (see [45, Theorem 2]), one can prove the well-posedness of the
previous variational problem, at least if the elasticity tensor is bounded and uniformly elliptic;
compare [20, 3.4, page 292].17 However, the formulation (9.1.5) is not optimal, especially when
we face discretizations. Even in the isotropic case for large λ stability issues arise, and in the
limit as λ → ∞, the formulation becomes undefined. This issue becomes evident in numerical
examples for nearly incompressible materials (λ >> µ), leading to stress oscillations and incor-
rect displacement values. This phenomenon is sometimes referred to as volumetric locking; we
refer to [20, §4 in Chapter 6] for detailed information regarding locking.
Furthermore, another aspect that could be considered disadvantageous for the primal for-

mulation is that relying solely on displacements contradicts the fact that stresses are typically
the variables of interest in applications. Therefore, a weak formulation that also incorporates
stresses as variables would be more appropriate. Another point is the non-locality of stress-
strain relations in more general material situations as viscoelasticity. Consequently, the primal
weak formulation is not optimal also in view of generalizability. Due to these mentioned points,
alternative weak formulations and approximations schemes have been and continue to be inves-
tigated in the literature; see e.g. [63, 7, 76, 14, 21] or [25]. One of them is the Hellinger–Reissner
method ([44]), which is a stress-displacement mixed formulation we want to address and exploit
in the next subsection.

9.2 Mixed weak formulation with strong symmetry
The latter assumes that the elasticity tensor is invertible, allowing the utilization of the compli-
ance tensor A := C−1. With the resulting equations

Aσ = ε(u) and −∇ · σ = f in Ω, (9.2.1)
u = 0 on ∂Ω, (9.2.2)

establishing the next mixed weak formulation is straightforward:

Definition 9.1 (Hellinger–Reissner formulation, cf. [20, (3.22) in Chapter 6]). Find σ ∈
H(Ω,∇·,S), u ∈ L2(Ω)⊗ Rn s.t.

〈Aσ, τ〉 + 〈u,∇ · τ〉 = 0, ∀τ ∈ H(Ω,∇·,S), (9.2.3)
〈∇ · σ, v〉 = 〈−f, v〉, ∀v ∈ L2(Ω)⊗ Rn. (9.2.4)

17C is uniformly elliptic if
∑
i,j,k,l Cijkl xkl xij ≥ C

∑
i,j x

2
ij for a constant C > 0 and all x = (xmn)m,n.
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One notes, the physics-induced symmetry of the stress tensor is directly included, as S denotes
the space of symmetric n × n-matrices. Importantly, a key aspect becomes apparent: The
new saddle-point problem aligns well with the abstract theory of Hodge–Laplace problems, as
discussed in [5, Chapter 8.7]. Because, if one assumes that A(σ, τ) := 〈Aσ, τ〉 is a bounded and
coercive bilinear form on

(
L2(Ω)⊗S

)2
, then 〈A·, ·〉 can be seen as a new weighted inner product.

And the "+" in the first line becomes a "−" if we change u to −u. Thus, the Hellinger–Reissner
system can be interpreted as the mixed weak formulation for the level n Hodge–Laplace problem
of the elasticity complexes

H2(Ω) H(Ω,∇·,S) L2(Ω)⊗ R20 0,curl2 ∇·
(9.2.5)

and

H1(Ω)⊗ R3 H(Ω, inc,S) H(Ω,∇·,S) L2(Ω)⊗ R30 0,sym∇ inc ∇·

(9.2.6)
from Examples 4.2 and 4.3. In other words, we now have the opportunity to apply knowledge
and results from the context of FEEC to compute approximate solutions. Before we move on,
we should remark for reason of completeness here similar to (9.1.2) what the compliance tensor
looks like for isotropic materials, namely

Aσ = 1
2µ

(
σ − λ

nλ+ 2µtr(σ)I
)
. (9.2.7)

In particular, by simple calculations we get that λ ≥ 0, µ > 0 imply a bounded and cercive A.
In fact it is

2µ〈Aτ, τ〉 ≥ ∑i 6=j ‖τij‖
2 + 2µ

nλ+2µ
∑
i ‖τii‖

2 , ∀τ ∈ L2(Ω)⊗M, (9.2.8)
where we have an equality if all components τij are constant.
From the previous Section 7.2 we know how to construct various structure-preserving B-spline

discretizations of the elasticity complexes in the case of cubical domains, i.e. Ω = (a, b)n. For
more details we refer to Corollary 7.5, Corollary 7.8 and Remark 7.2. It was possible to vary
not only the polynomial degree but also the regularity of the corresponding splines. And these
complex discretizations can be directly utilized to calculate approximations to the Hellinger–
Reissner system for Ω = (a, b)n. However, such a restriction to cubes is not truly what one
desires in the IGA context. Therefore we want to follow the approach from Section 8.2 that allows
for arbitrary domains with C1-regular parametrizations F : (0, 1)n → Ω. First, analogously to
Definition 8.2 let us define and clarify the discrete spaces: We set

V n−1
h := V̂ n−1

h ◦ F−1 with V̂ n−1
h := Ss

q ⊗ S, (9.2.9)
V n
θ := V̂ n

θ ◦ F−1 with V̂ n
θ := Sr

p ⊗ Rn. (9.2.10)

This means V n−1
h corresponds to the stresses whereas V n

θ is the discrete displacement space. To
fulfill the regularity conditions we require p = (pi)i, r = (ri)i, q = (qi)i, s = (si)i with

0 ≤ si < qi, 0 ≤ ri < pi (9.2.11)

for all the possible indices, meaning V n−1
h ⊂ H1(Ω)⊗ S, V n

θ ⊂ H1(Ω)⊗ Rn. Secondly, we have
to write down the modified discrete system in the sense of Definition 8.4. For this purpose we
define with a modified graph inner product 〈σ, τ〉A := 〈Aσ, τ〉 + 〈∇ · σ,∇ · τ〉. By doing so, we
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aim to pave the way for later applying Theorem 8.2. In other words, we intend to determine
(σh, uθ) ∈ V n−1

h × V n
θ that satisfy

〈σh, τh〉A + 〈uθ,∇ · τh〉 = 〈−f,∇ · τh〉, ∀τh ∈ V n−1
h , (9.2.12)

〈∇ · σh, vθ〉 = 〈−f, vθ〉, ∀vθ ∈ V n
θ , (9.2.13)

The corresponding continuous problem seeks for (σ, u) ∈ H(Ω,∇·,S)× L2(Ω)⊗ Rn with

〈σ, τ〉A + 〈u,∇ · τ〉 = 〈−f,∇ · τ〉, ∀τ ∈ H(Ω,∇·,S), (9.2.14)
〈∇ · σ, v〉 = 〈−f, v〉, ∀v ∈ L2(Ω)⊗ Rn, (9.2.15)

and is equivalent to the original Hellinger–Reissner formulation (9.2.3)-(9.2.4).
Now we have everything we need to apply Theorems 8.2 and 8.3 to the system (9.2.14)-

(9.2.15) and its discrete pendant (9.2.12)-(9.2.13). Both, the spaces in (9.2.9)-(9.2.10) and the
made regularity assumptions align with the considerations in Section 8.2. With this in mind,
one thing is clear: when we examine the above systems with the canonical graph inner product
associated with divergence, i.e. 〈σ, τ〉V = 〈σ, τ〉+ 〈∇ ·σ,∇· τ〉, instead of the new inner product
〈σ, τ〉A , the mentioned theorems provide a statement on well-posedness and also offer an error
estimate. Because, using 〈σ, τ〉V instead of 〈σ, τ〉A , the system (9.2.14)-(9.2.15) corresponds to
the modified saddle-point problem from Definition 8.4, for the above proxy output complexes
(9.2.5) (n = 2), (9.2.6) (n = 3), respectively.
This means, here we just are dealing with a special case of the problem class outlined in

Section 8.2. One notes, regarding well-posedness the presence of the inner product 〈σ, τ〉A is,
inconsequential as the norms induced by 〈σ, τ〉A and 〈σ, τ〉V are equivalent. Thus, we obtain
due to Theorem 8.2 directly

Corollary 9.1 (Discrete well-posedness for linear elasticity). Let the Assumptions 8.1 and
8.2 hold. Assume we have a family of pairs

(
V n−1
h(θ) ,V

n
θ

)
θ
with underlying regular meshes, where

the spaces are given by (9.2.9)-(9.2.10). Then there is a positive constant cR s.t. h = h(θ) ≤ cRθ
implies that (9.2.12)- (9.2.13) is a well-posed discretization of (9.2.14)-(9.2.15).

Besides we can again estimate the discretization error analogous to Theorem 8.3.

Corollary 9.2 (Error estimate). We assume the family of space pairs
(
V n−1
h(θ) ,V

n
θ

)
θ
define

a well-posed discretization in the sense of the last corollary. Further let the exact solution
(σ, u) to (9.2.14)-(9.2.15) fulfill the regularity properties σ ∈ H t(Ω) ⊗ S, 1 ≤ t ≤ q + 1 and
u ∈ Hm(Ω) ⊗ Rn, 0 ≤ m ≤ p + 1, where q = mini{qi}, p = mini{pi} with qi, pi denoting the
entries of the underlying degree vectors p, q.
Then the error between exact and approximate solution satisfies

‖σ − σh‖H(∇·) + ‖u− uθ‖ ≤ Cconv
(
ht−1 ‖σ‖Ht + θm ‖u‖Hm

)
,

for a constant Cconv independent of θ.

Before we come to numerical test examples let us insert two remarks.
Remark 9.1 (Well-posedness in the isoparametric case). As already mentioned and explained in
Remark 8.3. there is no problem to incorporate also weight functions and to use NURBS instead
of B-spline basis functions.
Remark 9.2 (Non-zero boundary displacement). The first line (9.2.3) corresponds to the weak
enforcement of zero displacement boundary conditions. Different boundary values can be handled
by a standard argument. To be more precise let us consider the condition u = uD on Γ := ∂Ω
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with uD ∈ L2(∂Ω) ⊗ Rn. And let us suppose there is a ũ ∈ H1(Ω) ⊗ Rn s.t. ũ = uD on ∂Ω
in the sense of the trace theorem. Then we solve for the auxiliary displacement ū := u − ũ
with condition ū = 0 on ∂Ω. This reasoning together with integration by parts explains why
condition u = uD on ∂Ω results in the modified first line (9.2.3):

〈Aσ, τ〉 + 〈u,∇ · τ〉 = 〈τ · n, uD〉Γ, ∀τ ∈ H(Ω,∇·, S),

where 〈τ · n, uD〉Γ denotes the dual pairing between the normal trace operator and uD; see
[5, Theorem 3.12]. If τ is H1-regular this dual pairing is just the standard integration on the
domain boundary. In the same way we get an additional term 〈τh · n, uD〉Γ on the right-hand
side in (9.2.12).
Next, we concentrate in the following on numerical tests for the mixed weak form (9.2.12)-

(9.2.13) for planar domains; i.e. n = 2. Further we restrict ourselves to the equal degrees and
equal regularities in each coordinate direction, meaning we make

Assumption 9.1. In the next examples and numerical tests we always have

qi = q, pi = p, ri = r, si = s, ∀i,

and for different q, p, s, r, where p = (pi)i, r = (ri)i, q = (qi)i, s = (si)i are the underlying degree
and regularity vectors; see (9.2.9)-(9.2.10). Besides, below σ and u denote the different exact
solutions to the continuous Hellinger–Reissner formulation. For a better understanding of the
discretizations, the appearing mesh sizes are meant in the sense of Remark 6.1, i.e. mesh size ρ
corresponds to the uniform Bézier mesh consisting of ρ−n squares.

Example 9.1 (Curved square). Our first test problem in the planar (n = 2) case reads as
follows. We have the parametrization mapping F : (0, 1)2 → Ω , (ζ1, ζ2) 7→ (ζ1, ζ2 − ζ2

1 + ζ1)
leading to the geometry in Figure 22 below.

10
0

1

1

1

0
0

1
4

5
4

x1

x2

Ω

F

Figure 22: Here we display the computational domain for the first test example which is re-utilized at
different places later. In this situation we say the mesh size is h = 1/3.

Furthermore, we choose an equal degree ansatz with

q = p, s = p− 1, r = p− 1, and λ = 2, µ = 1 ,

where λ, µ denote the Lamé parameters, i.e. we assume an isotropic material. Then, setting the
source function such that the exact solution of the linear elasticity problem is

u ◦ F = (w,−w)T, w(ζ1, ζ2) := sin(πζ1)2 sin(πζ2)2
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we might expect a convergence rate

‖σ − σh‖H(∇·) + ‖u− uθ‖ ∈ O(hq) +O(θp+1) (9.2.16)

when we utilize the previously defined spaces V 1
h , V 2

θ (see (9.2.9)-(9.2.10)) together with the
mixed weak form (9.2.12)-(9.2.13). At least the estimate in Corollary 9.2 suggests such a result.
One notes that u ∈

(
H2

0 (Ω)∩C∞(Ω)
)
⊗R2 is indeed an element of the domain of the level n = 2

Hodge–Laplace operator for the elasticity complex; cf. (2.2.6). But, looking at the statement in
Theorem 8.2, the proof of it respectively, we probably have to enlarge the space V 1

h by a mesh
refinement step to guarantee inf-sup stability. Indeed, equal meshes i.e. h = θ yield close to
singular warnings in MATLAB ([53]) for the system matrices which is a clear indication for the
loss of well-posedness and that our spaces are not suitable. This observation, however, is not
surprising, as the relevant inf-sup expression for the saddle-point problem (9.2.12)-(9.2.13) given
in (9.2.17) resembles the one obtained for Taylor–Hood IGA elements. And for Taylor–Hood
elements it is easy to check that in general a degree elevation is needed to have inf-sup stability;
see [23]. Since we also have an additional symmetry condition for the stresses here, we cannot
expect equal degrees to directly lead to well-posedness. Thus, we do the calculations with refined
σ-mesh, namely h = θ/2. Besides the obtained errors in Figure 23, we display in Figure 24 (b)
also the numerically computed inf-sup constants

CIS = CIS(V 1
h ,V

2
θ ) := inf

06=vθ∈V 2
θ

sup
06=τh∈V 1

h

〈∇ · τh, vθ〉
‖τh‖H(∇·) ‖vθ‖

. (9.2.17)

To compute these values numerically we again apply the inf-sup test approach of Bathe et al.
[15, 33]; see Appendix 11.2 for more details. On the one hand, we obtain in Figure 23 an error
decay of about O(hp) = O(hp) + O(θp+1) that is consistent with the theory. Although the L2

errors of the displacements seem to decrease slightly faster, this can be explained by the choice
of equal degrees, which is not the most natural choice when looking at (9.2.16), since there the
terms hq and θp+1 appear. And on the other hand, the stable behavior of the discrete inf-sup
constants in Figure 24 (b) underscores that the choice of the trial spaces is admissible, and that
we have a well-posed discretization if h = θ/2.
As we just mentioned, it is not the best choice to use the same polynomial degree for all

component functions, as we would then expect a damping of convergence for the displacements
since we measure the stress errors w.r.t. the H(∇·)-norm and the displacement errors only in
the L2 sense. A much more reasonable choice is to select q = p + 1, which means using mixed
degrees. In this situation, we can hope for convergence order O(hp+1) if θ ∈ O(h). Thus we
repeat the above convergence test with change

q = p+ 1 .

This enlargement of the spaces V 1
h due to the elevated degrees leads to stable inf-sup constants CIS

even for h = θ, as seen in Figure 24(a). In particular we can expect a well-posed discretization.
Therefore, we show in Figure 25 the errors for mixed degrees and the same meshes for σ and u.
The results align well with theoretical convergence estimate.
For the sake of completeness and illustration, in Figure 26 we show the approximated first

displacement component and the stresses σ11, σ12 for the mixed degree case. More precisely, we
choose q = p+ 1 = 5, r = s = 3, and consider the coarse grid consisting of 9 elements as shown
in Figure 22. Despite the coarse grid, reasonable approximations are obtained. It should also be
emphasized here that we use globally C3-regular B-splines to obtain Figure 26. Such smooth test
functions are very difficult to define and implement with classical FE approaches.
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(b) ‖σ − σh‖H(∇·)

Figure 23: The errors for the choice q = p, p = 1, . . . , 4 with regularities s = r = p − 1 and a refined
mesh for the stress tensor (h = 1

2θ).
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(a) Inf-sup values CIS (q = p+ 1)
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Figure 24: The inf-sup constants CIS for the two numerical tests; see (9.2.17). On the left we show
them for mixed degrees q = p+ 1 and on the right for q = p. Further in the former case it
is h = θ, whereas for the latter we have 2h = θ.
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(b) ‖σ − σh‖H(∇·)

Figure 25: The errors for mixed degrees, meaning q = p+1, p = 1, . . . , 4 with regularities s = r = p−1
and equal meshes for stress and displacement, i.e. h = θ.

u1

(a) displacement u1

σ11

(b) stress σ11

σ12

(c) stress σ12

Figure 26: For illustration, we present here results for the case q = p+ 1 = 5, r = s = 3, and the very
coarse grid from Figure 3, meaning we have only 9 mesh elements. Nevertheless, satisfactory
approximations are obtained.
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(a) Inf-sup values CuIS
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Figure 27: The inf-sup constants CmIS (modified system) and CuIS (original system) for the mixed degree
case, i.e. q = p+ 1, where the regularities are r = s = p+ 1. Here we use the same meshes
for stresses and displacements, i.e. h = θ.

We want to perform one final test for this example here briefly. Because, up to now, we
used the modified weak form (9.2.12)-(9.2.13). However, it is reasonable to question whether the
discretized original mixed weak form (9.2.3)-(9.2.4) suggests well-posedness, too. But now, we
aim to demonstrate that replacing 〈·, ·〉A with 〈A·, ·〉 makes a significant difference in terms of
inf-sup stability. To achieve this, we numerically compute the inf-sup values

Cs
IS = Cs

IS(V 1
h ,V

2
θ ) := inf

(0,0)6=(τ,v)∈V 1
h
×V 2

θ

sup
(0,0) 6=(σ,u)∈V 1

h
×V 2

θ

Bs
(
(σ, u), (τ, v)

)
‖(σ, u)‖B ‖(τ, v)‖B

, s ∈ {m,u}, with

(9.2.18)
Bm

(
(σ, u), (τ, v)

)
:= 〈σ, τ〉A − 〈u,∇ · τ〉 − 〈∇ · σ, v〉,

Bu
(
(σ, u), (τ, v)

)
:= 〈Aσ, τ〉 − 〈u,∇ · τ〉 − 〈∇ · σ, v〉,

‖(τ, v)‖2
B := ‖τ‖2

H(∇·) + ‖v‖2 ,

for the mixed degree case (q = p + 1, h = θ). Here the bilinear form Bm determines the modi-
fied weak formulation ( (9.2.12)-(9.2.13)), whereas Bu defines the Hellinger–Reissner mixed form
( (9.2.3)-(9.2.4)). From the theory on variational problems we have a well-posed discretization if
CIS ≥ C > 0 and C does not depend on the mesh size θ.
The results for different polynomial degrees and mesh sizes are summarized in Figure 27. While
in Figure 27 (b), we obtain stable values around 0.167, Figure 27 (a) shows small, decreasing inf-
sup values. This clearly illustrates how the modification leads to enhanced stability. In particular
from 27 (a) we can not hope for a well-posed discretization.

9.2.1 Multi-patch domains
Understandably, in applications with more complex geometries, a single-patch domain is not
suitable. Decomposing the computational domain into multiple patches becomes necessary;
see Figure 9. We also know that in case of conforming patch couplings (see Assumption 6.3), a
continuous coupling of NURBS basis functions can be relatively easily achieved; cf. [32, 31]. Since
we require continuous, piecewise smooth test functions for the mixed weak formulation of linear
elasticity, we can extend the spaces V n−1

h , V n
θ from above for the multi-patch context without
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much effort. More precisely, for the multi-patch framework, i.e. Ω := ∪jΩj ⊂ Rn, Fj : (0, 1)n →
Ωj, we use spaces of the form

V n−1,M
h :=

{
τ ∈ C0(Ω)⊗S

∣∣∣ τ|Ωj ∈ V n−1,j
h

}
, V n,M

θ :=
{
v ∈ C0(Ω)⊗Rn

∣∣∣ v|Ωj ∈ V n,j
θ

}
, (9.2.19)

where V n−1,j
h , V n,j

θ are the single-patch IGA spaces corresponding to the j-the patch.
To demonstrate the feasibility of the mixed weak form (9.2.12)-(9.2.13) also in the multi-

patch context we add in this section two further examples. For reasons of simplification we
assume for each coordinate and each patch the same polynomial degree q and regularity s for
the space V n−1,M

h . And analogously, we have equal degree p and regularity r for the spaces
V n,j
θ . Further, we have mesh size h for the multi-patch case, if there are 1/h subdivisions per

coordinate direction in each patch. While this may deviate from the actual mesh size, the
smooth parametrization of the patches results in an equivalent mesh size notion. This means
that convergence considerations are also meaningful with this type of mesh size and lead to the
same convergence rates.

Example 9.2 (Multi-patch curved square). We are now considering a very similar test case
as in Example 9.1. That means we have the same geometry, the same exact solution, and also
the same Lamé parameters. However, here we divide Ω into a total of 9 patches, as shown in
Figure 28 (b). Note that this also creates curved interfaces. Therefore, for the computations this
time, we are using the multi-patch B-spline spaces in the sense of (9.2.19), meaning patch-wise
we utilize (9.2.9)-(9.2.10). Below, we will again denote the polynomial degrees and regularities
of the underlying spline spaces used patch-wise as q, p and r, s.
Calculating the errors for mixed degrees q = p+ 1 with regularities r = s = p− 1 between the

exact solution and approximations, we obtain the plots in Figure 29. We choose h = θ for our
calculations and observe stable error decreases at approximately order O(hp+1) in the mentioned
figure. Although we do not have a well-posedness result for multi-patch geometries available,
this is an indication of a well-posed discretization, as we cannot expect faster convergence from
classical IGA estimates; compare Lemma 6.2. Furthermore, we have once again computed the
inf-sup values CIS (see (9.2.17)) for this multi-patch case. We observe practically constant values,
affirming inf-sup stability.
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(a) Inf-sup values CIS (q = p+ 1)
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(b) Multi-patch decomposition and mesh (h = 1/3)

Figure 28: On the left we have the inf-sup constants CIS for the multi-patch convergence test with
q = p + 1, r = s = p − 1 and equal meshes for both variables σ and u, i.e. h = θ. The
underlying multi-patch decomposition and mesh for h = 1/3 is depicted on the right.
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Figure 29: The error decay for the multi-patch test involving a mixed degree ansatz, namely q = p+ 1,
r = s = p− 1. We observe convergence rates of approximately O(hp+1), the best rates we
can expect from the theoretical approximation estimates for the respective NURBS spaces.

We would like to remark one point regarding multi-patch domains. Namely, to obtain a well-
posed discretization in the single-patch case (see Corollary 9.1 and Theorem 8.2) we only need
global C0 smoothness of the test functions. But this is not an issue when we are dealing with
conforming patch coupling. Although we cannot provide a strict proof regrading well-posedness,
various numerical experiments show that the coupling does not significantly deteriorate stability.
For instance, when we examine the inf-sup constants (9.2.17) for the mixed degrees (q = p+ 1)
case and the decomposition in Figure 28 (b), we can observe stable values once again.
We think that an application of the results in [32] might be a good starting point for a closer
investigation of the multi-patch situation and maybe helpful to prove a statement similar to
Theorem 8.2. Nevertheless, the last simple example shows that an implementation of the mod-
ified mixed weak form for multi-patch geometries is manageable, and we do not observe any
unexpected stability problems.
Before we address the issue of traction boundary conditions for the mixed formulation with

strong symmetry, we want to demonstrate its utility also for complicated geometries in the next
second multi-patch example.

Example 9.3 (Fixed violin). Our multi-patch grid now has a shape of a planar violin, which
is assembled from 180 patches. The domain, the multi-patch decomposition and the actual grid
for the calculations are given in Figure 30. This computational mesh is obtained by subdividing
each patch into 9 elements. In this case, a grid was intentionally chosen that also includes very
small and thin mesh elements to test whether non-trivial meshes can also be used. For the exact
definition of the domain we refer to the repository [64], where the boundary splines are available.
Since the natural boundary conditions for the Hellinger–Reissner mixed weak form are zero dis-
placements, we assume the complete boundary to be fixed. Furthermore we set

q = 4, p = 3, s = 2, r = 2, and λ = 20, µ = 1 ,

together with a constant load function f = (0,−1)T .
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(a) Violin geometry (b) Multi-patch decomp. (c) Multi-patch mesh

Figure 30: The shape of the computational domain for the violin example is given on the left, whereas
the used multi-patch decomposition is shown in the middle. For the calculations we utilize
the mesh on the right.

Since we do not have an exact solution available for such a setting, we compare in Figure
31 the approximate displacements with those obtained using the primal formulation; see (9.1.5).
For the latter reference solution, we use the same mesh but with patch-wise C0-continuous B-
splines of degree 4. The surprisingly good agreement between the two formulations strengthen
our assumption that the modified mixed formulation is robust even for intricate meshes.
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u1

(a) mixed weak form.

u1

(b) primal form.

u2

(c) mixed weak form.

u2

(d) primal form.

Figure 31: Here we see the comparison of the displacements between the classical primal formulation
from (9.1.5) (right column) with degree 4 and C0 B-splines as well as the displacements for
the modified mixed weak form (9.2.12)-(9.2.13) (left column). For the latter we use globally
C0-smooth B-splines of degree q = p + 1 = 4 and C2-inner patch regularity. Despite the
complicated mesh structure we obtain very similar results.

9.2.2 Traction boundary conditions in 2D
So far, we have only discussed the straightforward scenario involving pure displacement boundary
conditions prescribed by some uD ∈ L2(∂Ω)⊗Rn; see Remark 9.2. However, a complexity arises
when we delve into the treatment of traction boundary conditions within the context of the strong
symmetry formulation employing conventional NURBS or B-spline spaces. More precisely, one
has a disjoint partition of the boundary Γt ∪ ΓD = ∂Ω, Γt ∩ ΓD = ∅ together with a suitable
mapping tn ∈ L2(∂Ω)⊗ Rn and the requirement

σ · n = tn on Γt and u = uD on ΓD.

When we encounter situations where traction forces, meaning non-empty Γt, are stipulated by a
predetermined auxiliary stress mapping σ̃, that is σ̃ ·n = tn, we can simplify the mixed boundary
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conditions to the situation tn = 0. This simplification is achieved by considering the difference
between the stress tensors σ− σ̃. This adjustment effectively brings us to a scenario where tn is
equal to zero.
Below we want to explain an approach in the planar case, how traction forces can be incor-

porated, i.e. we restrict ourselves to n = 2. Nevertheless, we think that the ideas are still
applicable for 3D.
By the above remarks it is justified, for reasons of simplification, to look first at the situation
tn = 0 together with uD = 0. Then, in view of the Hellinger–Reissner mixed formulation we
shall now consider in the continuous setting the space

HΓt(Ω,∇·,S) := {τ ∈ H(Ω,∇·,S) | τ · n = 0 on Γt}

for the stresses.18 However, in the discrete setting (9.2.12)-(9.2.13) this would lead to test spaces

V 1
h,Γt := V 1

h ∩HΓt(Ω,∇·,S).

But for curved boundaries with varying normal vector it is apparently non-trivial to find a basis
for the latter. Because, the standard push-forward "◦F−1" as used in (9.2.9)-(9.2.10), does not
preserve normal components. Therefore we modify the basis functions relevant for the boundary
conditions in order to facilitate the implementation. This approach is explained for a special case
to illustrate the underlying idea. Afterwards we comment on generalizations and give several
examples.
Let Γt correspond to one edge of our single-patch domain as it is shown in the next Figure

32 below, meaning Γt = Γ2. Besides we restrict ourselves for explanations to the situation with
equal degree q and regularity 0 ≤ s ≤ q − 1 for each component and coordinate direction. In
particular, we utilize for each stress component the same discrete spaces. This allows to drop in
the following indices related to degrees and regularities to improve readability.
Then the normal vector n along the mentioned edge Γt can be expressed as a function depending
on ζ2; compare Figure 32. More precisely, we have

n(x̃1, x̃2) =
[
n ◦ F

]
(1, ζ2) = 1√

J2
22(1, ζ2) + J2

12(1, ζ2)

[
J22(1, ζ2)
−J12(1, ζ2)

]
=:
[
â(ζ1, ζ2)
b̂(ζ1, ζ2)

]
on Γt.

Above Jij denote the entries of the parametrization Jacobian DF = J and we assume (x̃1, x̃2) =
F(1, ζ2). Then, we obtain for a sufficient regular parametrization F continuous functions

a := â ◦ F−1, b := b̂ ◦ F−1 on Ω. (9.2.20)

These auxiliary mappings a and b are utilized to adapt IG basis functions along the traction
edge Γt. But, before we actually define the modified stress basis functions we need to clarify
some notation.

18The boundary conditions are meant in the sense of the normal trace operator ; see [5, Theorem 3.12].
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n(ζ2)

Γ2 = ΓtΓ1

Γ3

Γ4

x1

x2

Ω

Ω̂
F

ζ1

ζ2

0 10

1

Γ̂1 Γ̂2

Γ̂4

Γ̂3

Figure 32: We assume on a part of the computational domain a zero traction force condition. Here
Γt = Γ2 is curved which implies a varying normal vector along the mentioned edge. This
fact causes an extra effort to enforce the traction boundary conditions since the standard
push-forward "◦F−1" does not preserve normal components.

We suppose the stress component spaces to be spanned by

{N1,1, N2,1, . . . , Nn1,1, N1,2, N2,2, . . . , Nn1,2, N1,3 . . . , Nn1,n2}
=: {N1, N2, . . .Nn1n2}, i.e. Ni+(j−1)n1 = Ni,j with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, (9.2.21)

where Ni,j := N̂i,j ◦F−1, N̂i,j(ζ1, ζ2) := N̂(i,j),q(ζ1, ζ2) are proper scalar basis NURBS functions;
cf. Definition 6.1.8. Further, the basis functions τh,i for the discrete stress space V 1

h shall be
ordered as follows:

τh,i =
[
Ni 0
0 0

]
, i = 1, . . . , n1 n2,

τh,i =
[

0 Ni

Ni 0

]
, i = n1 n2 + 1, . . . , 2 n1 n2,

τh,i =
[
0 0
0 Ni

]
, i = 2 n1 n2 + 1, . . . , 3 n1 n2.

In other words, we assume

V 1
h = span{τh,i | i = 1, . . . , 3 n1 n2}.

Having the above ordering of the basis mappings in mind we see directly that the only basis
functions τh,i with indices

i ∈ I :=
{
kn1n2 + ln1 | k ∈ {0, 1, 2}, l ∈ {1, . . . , n2}

}
do not vanish at Γt, i.e. in total 3 n2 mappings. The latter will now be changed (τh,i → τ̃h,i) in
the following manner

τh,ln1 =
[
1 0
0 0

]
Nln1 −→ τ̃h,ln1 =

[
a b
b −a

]
Nln1 , l = 1, . . . , n2,

τh,ln1+n1n2 =
[
0 1
1 0

]
Nln1 −→ τ̃h,ln1+n1n2 =

[
−b a
a b

]
Nln1 , l = 1, . . . , n2,

τh,ln1+2n1n2 =
[
0 0
0 1

]
Nln1 −→ τ̃h,ln1+2n1n2 =

[
b2 −ab
−ab a2

]
Nln1 , l = 1, . . . , n2,
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using (9.2.20) and the numbering (9.2.21). We denote the discrete stress space spanned by the
mappings τh,i, i /∈ I and new ones τ̃h,i, i ∈ I by Ṽ 1

h , i.e.

Ṽ 1
h := span

{
{τh,i | i = 1, . . . , 3n1n2, i /∈ I} ∪ {τ̃h,i | i ∈ I}

}
. (9.2.22)

The question arises whether the modification preserves the linear independence, meaning if the
elements on the right-hand side of (9.2.22) form a basis of Ṽ 1

h . Therefore assume coefficients
c1,l, c2,l, c3,l, l = 1, . . . , n2 s.t.

n2∑
l=1

(
c1,l

[
a b
b −a

]
Nln1 + c2,l

[
−b a
a b

]
Nln1 + c3,l

[
b2 −ab
−ab a2

]
Nln1

)
= 0.

By the linear independence of the standard NURBS mappings we get the condition

c1,l

[
a b
b −a

]
+ c2,l

[
−b a
a b

]
+ c3,l

[
b2 −ab
−ab a2

]
= 0, ∀l,

⇔

 a −b b2

b a −ab
−a b a2


︸ ︷︷ ︸

=:M

c1,l
c2,l
c3,l

 = 0, ∀l.

A straightforward computation yields for the determinant of M just det(M) = (a2 + b2)2 = 1.
In particular all the ci,l have to vanish. Hence, since the unmodified τh,i, i /∈ I vanish at Γt
one obtains indeed with the elements (9.2.22) a basis for Ṽ 1

h . The reason to introduce the τ̃h,i
becomes clear through the next simple calculations: Along Γt we have by construction (see
(9.2.20)), that the outer unit normal vector n corresponds to the tuple (a, b), consequently, on
Γt it is

τ̃h,ln1 · n =
[
a b
b −a

]
·
[
a
b

]
Nln1 =

[
1
0

]
Nln1 ,

τ̃h,ln1+n1n2 · n =
[
−b a
a b

]
·
[
a
b

]
Nln1 =

[
0
1

]
Nln1 ,

τ̃h,ln1+2n1n2 · n =
[
b2 −ab
−ab a2

]
·
[
a
b

]
Nln1 =

[
0
0

]
.

Thus the basis for space
Ṽ 1
h,Γt := Ṽ 1

h ∩HΓt(Ω,∇·,S) (9.2.23)
is given by

{τh,i | i = 1, . . . , 3n1n2, i /∈ I} ∪ {τ̃h,i | i = 2n1n2 + ln1, l = 1, . . . , n2}.

In other words, we have now an easy way to construct discrete spaces which can be exploited for
the incorporation of the traction boundary condition. In more detail, we use instead of V 1

h now
the spaces Ṽ 1

h,Γt in the mixed weak formulation (9.2.12)-(9.2.13) to enforce the condition tn = 0
on Γt in a strong sense.
One point we want to mention here is the following. Due to the local support property of

NURBS and in case of regular parametrizations we can approximate n(x1, x2) around a point
P ∈ Γt by a constant vector (c1, c2)T ≈ n(x1, x2). See Figure 33 for an illustration. This means
for a basis NURB Nln1 non-vanishing at P we get the approximation relations

τh,ln1 ≈
[
c1 c2
c2 −c1

]
Nln1 , τh,ln1+n1n2 ≈

[
−c2 c1
c1 c2

]
Nln1 , τh,ln1+2n1n2 ≈

[
c2

2 −c1c2
−c1c2 c2

1

]
Nln1 .
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Hence, the modified basis can be approximated just by a linear combination of the non-modified
functions. This suggests the feasibility of the modification approach especially for fine enough
meshes to enforce the mentioned traction boundary conditions.
Here we concentrated so far on a very special case with Γt = Γ2 (see Figure 32). However, the

next remarks and examples explain, why more general situations can be handled, too. Below
we follow the isoparametric paradigm, meaning we use NURBS for the basis function definitions
and take into account possible weight functions needed for the parametrizations; see Definition
6.6.

n(ζ2)
Ω P [

c1
c2

]

Figure 33: If we have a piece-wise smooth boundary we can approximate small boundary parts using
straight lines. By the continuity, the normal vector changes only slightly in a suitable
neighborhood of point P away from the corners. In particular it can be approximated
around P by a suitable constant vector (c1, c2)T. This means for decreasing mesh size the
modified local basis functions τ̃h,i converge to linear combinations of the unmodified ones.

Yet, we would like to start with a test example that corresponds to the specific case mentioned
in the above explanations.

Example 9.4 (Quarter ring with free edge). As a first numerical test we again consider a
quarter ring domain, where the inner and outer radii are 1 and 2. Further, as in Figure 32 we
suppose a zero traction force on Γt = Γ2 , together with a load mapping f = (1, 0)T and material
parameters λ = 20, µ = 1 . On the rest of the boundary ∂Ω\Γt we assume zero displacements
and for the discretization we choose

qi = 3, pi = 2, si = 1, ri = 1, ∀i and θ = h = 1/9

in the sense of Assumption 9.1. This means we use for the mixed formulation the same mesh
for stresses and displacements; see Figure 34 (a). To have a comparative solution we solve this
test problem twice. Once with the mixed formulation (9.2.12)-(9.2.13) with strong symmetry
combined with the basis modification approach from above; i.e. we use the FE stress space of
the form (9.2.23). And one time with the standard primal formulation which is pre-implemented
in the GeoPDEs package [73]. For the latter we utilize a fine tensor Bézier mesh of 25 × 25
subdivisions and for the displacement variable we use continuous NURBS of degree 4. The
corresponding mesh is shown in Figure 34 (b).
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(a) mesh for mixed formulation (b) mesh for primal formulation

Figure 34: In Examples 9.4 and 9.5 we utilize for the mixed weak formulation the mesh structure on the
left (h = 1/9), whereas to generate a comparative solution we use for the primal elasticity
formulation the fine mesh on the right (h = 1/25).

The results are summarized in Figure 35 in which we compare the primal and mixed formula-
tion. Although we have a relative coarse mesh and low degrees for the mixed ansatz, we obtain
very similar displacements. Also the stresses are broadly similar. Only at the vertices one ob-
serves a deviation. But this is explicable since in the vertices on the outer radius we expect
singular stress values. Therefore, we see for the primal formulation a locally oscillatory behavior
of the stresses at the mentioned vertices. Further the zero traction condition is only applied
weakly for the primal ansatz. In contrast to that the mixed form seeks for stresses which fulfill
the mentioned condition strongly. This leads to a smoothing effect and we do not see a compara-
ble blow up of the stress values at the corners. However, the weakly enforced zero displacement
in the mixed formulation leads to non-vanishing u at the vertices. Nevertheless, we think this
example demonstrates the possibility of the stress basis modification for the implementation of
traction boundary conditions.

After this first test regarding traction boundary conditions we have to address several arising
questions, especially respecting generalizations. This shall be done by means of the next remarks
and examples.
Remark 9.3 (Zero traction on several edges). At first glance there seems to be no problem
to transfer the basis modification to a situation with several involved edges by a edge-wise
procedure. Though, if there is a vertex Pc adjacent to two zero traction edges in Γt we get
an additional requirement for the stresses at Pc; see Figure 36. Namely, by regularity of the
parametrization the normal vectors nL, nR defined by the two meeting edges are not linearly
dependent at the vertex Pc and hence we can conclude:

σ · nL != 0 and σ · nR != 0 =⇒ σ = 0 at Pc,

if we assume continuous stresses. One notes the piece-wise smoothness of the IGA basis functions.
Thus, if we have vertices being part of two edges in Γt one drops before the basis modification
all stress basis functions which do not vanish at theses vertices. For example, let Pc correspond
to the left top corner of the ring domain discussed above and assume Γt = Γ1 ∪ Γ2 ∪ Γ4 as shown
in Figure 36. Then supposing zero traction on Γt implies vanishing stresses at Pc in the discrete
setting.
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u1

(a) mixed form.

u1

(b) primal form.

u2

(c) mixed form.

u2

(d) primal form.

σ11

(e) mixed form.

σ11

(f) primal form.

σ12

(g) mixed form.

σ12

(h) primal form.

σ22

(i) mixed form.

σ22

(j) primal form.

Figure 35: Here we see the comparison between the mixed weak formulation with the basis modification
approach (left) and the results of the standard primal formulation implemented in GeoPDEs
[73] (right). Up to deviations at the corners, we obtain very similar results.
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Γ2Γ1

Γ3

Γ4

nR(Pc)

nL(Pc) Pc

Ω

Figure 36: In Example 9.5 we have zero traction condition on three of four edges, namely Γt =
Γ1 ∪ Γ2 ∪ Γ4. Due to the piece-wise smoothness of the test functions the stresses have
to vanish at the left two vertices.

Example 9.5 (Quarter ring with three free edges). We consider a similar numerical test like in
Example 9.4. We only change two things. On the one hand, the traction boundary part is now
Γt = Γ1 ∪ Γ2 ∪ Γ4 . And on the other hand, we have here a constant source f = (0.05, 0.05)T .
Using the mixed and the primal formulation we obtain the deformed rings in Figure 37. For both
approaches we obtain similar deformations and away from the bottom vertices also the stress
magnitudes fit. So we get reasonable results also if Γt is composed of multiple edges.

|σ|

(a) mixed form.

|σ|

(b) primal form.

Figure 37: Here we see the deformed ring domains for the mixed formulation on the left and as a
comparative solution the deformation obtained by the primal formulation on the right. The
coloring is according to the stress magnitude |σ| =

√
σ2

11 + 2σ2
12 + σ2

22.

Remark 9.4 (Zero traction condition for multi-patch domains). With no difficulties it is
possible to utilize the basis modification approach in the context of a multi-patch domain. The
continuous coupling of the patches as we consider for the strong symmetry mixed formulation
has to be taken into account. This means, analogous to the previous remark we can set the
stress to zero at boundary vertices which are part of two meeting traction edges in Γt if the two
normal vectors in the vertex determined by the two edges are linearly independent. Whereas
if the outer normal vector varies continuously in a whole neighborhood of a vertex point we
only adapt the basis functions for the stresses without setting all the stress components to zero.
Such a situation of a multi-patch domain with a globally smooth boundary is part of the next
example.

Example 9.6 (Ring with free outer boundary). We have a 4-patch ring domain as shown in
Figure 38 (a). Further we suppose the outer boundary to be free endowed with a zero traction
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condition, and the inner boundary circle is fixed with u = 0. For the mesh in Figure 38 (b) and
the choices

qi = 3, pi = 2, si = 1, ri = 1, ∀i, h = θ and λ = 20, µ = 1, f = (0, 1)T

we get with the mixed weak formulation the displacements in the left column of Figure 39. In the
right column of the latter figure we show the displacements computed by the primal formulation
with C0-regular degree 4 NURBS in a refined mesh. The latter is obtained by a halving of the mesh
elements from Figure 38 (b). Both methods lead to nearly the same displacement approximate
field.

Γt

1

2

(a) 4-patch geometry (b) Mesh for σ and u

Figure 38: On the left the 4-patch ring domain with a highlighted boundary part Γt is shown. The
black arrows indicate the underlying source function f = (0, 1) for Example 9.6. On the
right the mesh utilized for the mixed method is displayed.
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u1

(a) mixed form.

u1

(b) primal form.

u2

(c) mixed form.

u2

(d) primal form.

Figure 39: Here we see the similarity of the displacements between the mixed method with strong
symmetry (combined with the modified basis explained above) and the primal formulation
for Example 9.6. To obtain a meaningful comparative solution we halved the mesh size
compared to the mesh in Figure 38 and utilized C0 NURBS of degree 4 to get the results
on the right.

Remark 9.5 (Non-trivial Γt). For simplicity, we only considered the boundary conditions in
the case where Γt is composed of multiple whole edges. However, it is evident that, in terms
of applications, Γt can also consist of different sub-sections of the boundary. In principle, it
is reasonable to assume, for the sake of implementation simplification, that Γt consists of full
boundary mesh facets. The latter is a natural assumption in the context of IGA. By doing so, we
can proceed in at least two ways. Firstly, the mesh elements themselves can be interpreted and
considered as patches, and Γt can be easily defined as the union of full mesh edges in a suitable
multi-patch geometry. In this case, we already know how to incorporate the corresponding zero
traction conditions. Secondly, the modifications for stresses can be performed only for those basis
functions that are non-zero on Γt. However, even though the latter approach seems reasonable,
we have not further investigated it and only mention it here for the sake of completeness.
Remark 9.6 (Non-zero traction forces). As already mentioned at the beginning of Section
9.2.2, many traction boundary conditions can be reduced to zero traction. However, it should
be noted that in the case of non-smooth traction forces or piecewise defined traction forces, it is
often not possible to enforce them exactly. Also due to the symmetry of the stress tensor, non-
continuous stress values might implied, which cannot be reproduced by the continuous NURBS
we are using. One way to handle this problem would be to approximate and replace σ̃ with
a smoother version σ̃h based on the NURBS basis functions. In this case, an L2 projection
approach might be used, for example.
A situation with non-zero traction forces arises in the context of the famous Cook’s membrane

(see e.g. [13, Section 5.3]) test case. We address this problem in a further numerical example,
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(c) x1-displacement at P

Figure 40: The standard Cook’s membrane test case is shown here for the mixed weak form with
strong symmetry, where the basis functions are modified according to the procedure at the
beginning of this section. We observe a good accordance to the reference values taken from
[13].

below.

Example 9.7 (Cook’s membrane). As a final numerical test regarding traction boundary con-
ditions for the mixed formulation with strong symmetry, we would like to consider the clas-
sical example of Cook’s membrane, for two reasons. Firstly, to demonstrate the possibility
of considering non-vanishing and non-smooth traction forces. Secondly, the example show-
cases the stability of the mixed formulation for the incompressible limit case, where we set
λ = +∞ and µ = 0.375 . Here, we orient ourselves towards the experiment [13, Section 5.3].
We use a bilinear parametrization to define the membrane in Figure 40 (a) . This means we see
in the mentioned figure the mesh for h = 1/9. Only the left boundary of the domain is fixed and
on the top and bottom boundary parts we have zero traction. But on the right edge we apply a
tangential traction force tn = (0, 1/16)T . Furthermore, in view of Assumption 9.1, let

qi = q = p+ 1, pi = p, si = p− 1, ri = p− 1, ∀i, h = θ and f = (0, 0)T .

Hence, we follow a mixed degrees ansatz and use the same mesh for stress and displacement
computations.
Then, we obtain at the highlighted point P = (48, 52)T displacements which tend to the reference
solution from [13, Section 5.3]. In particular, our ansatz to enforce traction BC does not lead to
locking effects here. Additionally, we added in Figure 41 example plots for the stresses σ12, σ22
and illustrated the deformation.
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σ11

(a) σ11(q = 4, p = 3)

σ12

(b) σ12(q = 4, p = 3)

|σ||u|

(c) displacement magnitude

Figure 41: For the shown stresses and deformation we have the underlying degrees q = 4, p = 3 and
the regularities are r = s = 2. The corresponding parametric mesh consists of 242 equal
square.

9.2.3 Stability in the (nearly) incompressible regime
Within the context of an isotropic elastic material, we have already mentioned the two Lamé
parameters λ and µ, which determine the compliance tensor A; see (9.2.7). A special case
is represented by (almost) incompressible materials, which correspond to large values of λ. An
important motivation for considering mixed formulations is to obtain reasonable approximate so-
lutions even for this regime. Therefore, we aim to demonstrate here that we can achieve stability
for λ→∞ with our discretization approach, at least in the case of NURBS parameterizations.
To establish the latter, we follow the reasoning of Arnold et al. in [7] and make use of [20, 66].

Furthermore, we assume the discrete IGA spaces (V n−1
h ,V n

θ ) to define a well-posed discretization
of the modified mixed weak formulation (9.2.12)-(9.2.13), meaning we obtain a quasi-optimal
error estimate

‖u− uθ‖+ ‖σ − σh‖H(∇·) ≤ CQO
(

inf
τh∈V n−1

h
, vθ∈V n

θ

‖u− vθ‖+ ‖σ − τh‖H(∇·)

)
,

similar to Lemma 2.12. But, this means that a certain constant CQO appears. As can be observed
in the proof of the mentioned lemma, CQO depends on the global inf-sup condition, cf. (9.2.18),
and on the continuity constant of the underlying bilinear form

Bm
(
(σ, u), (τ, v)

)
:= 〈σ, τ〉A − 〈u,∇ · τ〉 − 〈∇ · σ, v〉.

Thus the constant CQO might depend on various quantities, e.g. Ω,F,J, etc. However, to
ensure stable convergence behavior with respect to λ, we must verify whether we can choose
CQO independently of λ.
Due to the estimate

〈σ, τ〉A = 〈Aσ, τ〉+ 〈∇ · σ,∇ · τ〉 ≤ 1
µ
‖σ‖ ‖τ‖+ ‖∇ · σ‖ ‖∇ · τ‖ , ∀σ, τ ∈ H(Ω,∇·,M),

we see directly that the continuity constant of the bilinear form Bm does not depend on λ.
Hence, it is enough to look at the inf-sup value Cm

IS from (9.2.18).
Using [7] we explain briefly why we get stability for the case of homogeneous Dirichlet boundary
condition if the identity tensor is part of the discrete space, i.e. I ∈ V n−1

h . There is no difficulty
to see that we get λ-stability if the coercivity of the bilinear form

a(σ, τ) := 〈σ, τ〉A
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does not depend on λ. This is clear by the saddle-point structure of (9.2.12)-(9.2.13) and the
fact that b(τ, v) := 〈v,∇ · v〉 is independent of material parameters. On the one hand, the first
equation of the mixed system (9.2.12) yields in the discrete setting

〈σh, I〉A = 〈Aσh, I〉 = 1
2µ
(
1− nλ

nλ+ 2µ
) ∫

Ω
tr(σh) dx = 0, ∀σh ∈ V n−1

h ,

if we set τh = I. Hence we have
∫

Ω tr(σh)dx = 0 and it is justified to use in the numerical
computations the spaces

V n−1
h,tr := V n−1

h ∩
{
τ
∣∣∣ ∫

Ω
tr(τ) dx = 0

}
to seek for the solution. Clearly, the trace mean vanishes also in the continuous case.
Let us denote with dev(σh) the deviatoric part19 of σh. On the other hand, if we apply now [20,
Bemerkung 5.3 and Hilfssatz 5.4 in Chapter VI] one gets a constant C̃ only dependent on the
domain Ω s.t.

〈σh, σh〉A = 〈Aσh, σh〉+ 〈∇ · σh,∇ · σh〉

≥ 1
2µ ‖dev(σh)‖2 + 1

2 ‖∇ · σh‖
2 + 1

2 ‖∇ · σh‖
2

≥ C̃ min
{ 1

2µ,
1
2
}
‖σh‖2 + 1

2 ‖∇ · σh‖
2 , for all σh ∈ V n−1

h,tr .

Remark 9.7. The proof and derivations in [20, Bemerkung 5.3 and Hilfssatz 5.4 in Chapter VI]
are given for the 2D case. However, using completely analogous steps lead to the same results
in 3D.
In particular, we can choose a coercivity constant for a independent of λ. Consequently,

utilizing V n−1
h,tr and following the isoparametric paradigm, we obtain stability in the (nearly)

incompressible regime.

Corollary 9.3. Let (V n−1
h ,V n

θ )θ, where h = h(θ), be a well-posed IGA discretization of (9.2.12)-
(9.2.13) following the isoparametric paradigm, meaning I ∈ V n−1

h . Then, if we use V n−1
h,tr instead

of V n−1
h , we get a well-posed discretization which is stable w.r.t. λ.

The scenario involving non-zero uD can be effectively managed by initially solving the original
problem within the space V n−1

h,tr . Subsequently, to the obtained solution σh we add the term cI,
where the constant c is determined by the first equation of the mixed formulation, specifically
through the equation:

〈A(σh + cI), I〉 != 〈I · n, uD〉Γ, (see Remark 9.2).

Another point is the incompressibility stability for mixed boundary conditions. Below we
follow the steps in [20] and [66] to comment on the case of non-vanishing, open traction part Γt.
Let us assume discrete spaces Ṽ 1

h,Γt ⊂ HΓt(Ω,∇·,S) and σh ∈ Ṽ 1
h,Γt . It is well-known (see e.g.

[58] or [46, Appendix]) that there exists a

w ∈ H1
ΓD(Ω)⊗ Rn := {v ∈ H1(Ω)⊗ Rn | v = 0 on ΓD := ∂Ω\Γt}20

s.t.
∇ · w = tr(σh), and ‖w‖H1 ≤ C ‖tr(σh)‖ ,

19We have the relation σ = 1
n tr(σ)I + dev(σ).

20The boundary conditions are meant in the sense of the trace theorem.
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where C is a constant depending on Ω,Γt and ΓD. Therefore, we can estimate

1
n
‖tr(σh)‖2 = 1

n
〈tr(σh),∇ · w〉 = 〈σh − dev(σh),∇w〉

= 〈∇ · σh, w〉 − 〈dev(σh),∇w〉
≤ ‖∇ · σh‖ ‖w‖+ ‖dev(σh)‖ ‖w‖H1

≤ C
(
‖∇ · σh‖ ‖tr(σh)‖+ ‖dev(σh)‖ ‖tr(σh)‖

)
. (9.2.24)

Hence, it holds
‖tr(σh)‖2 ≤ C̃

(
‖∇ · σh‖2 + ‖dev(σh)‖2

)
, (9.2.25)

with a C̃ independent of λ. Set c := max{ 1
2µ , 1}. In view of [20, (5.14) in Chapter VI], which

shows us 2µ〈Aσh, σh〉 ≥ ‖dev(σh)‖2, and using (9.2.25) we obtain

〈σh, σh〉A = 〈Aσh, σh〉+ ‖∇ · σh‖2 ≥ 1
2µ ‖dev(σh)‖2 + ‖∇ · σh‖2

≥ 1
4µ ‖dev(σh)‖2 + 1

4µc ‖dev(σh)‖2 + ‖∇ · σh‖2

≥ 1
4µ ‖dev(σh)‖2 + 1

4µc

( 1
C̃
‖tr(σh)‖2 − ‖∇ · σh‖2

)
+ ‖∇ · σh‖2

≥ 1
4µ ‖dev(σh)‖2 + 1

4µcC̃
‖tr(σh)‖2 + 1

2 ‖∇ · σh‖
2

≥ C1

(
‖dev(σh)‖+ ‖tr(σh)‖

)2
+ 1

2 ‖∇ · σh‖
2

≥ C2 ‖σh‖2
H(∇·) ,

where C1, C2 do not depend on λ. So, in the case of mixed boundary conditions, the stability
with respect to the parameter λ is ensured. One can recognize that a difficulty arises here.
Namely, for mixed boundary conditions, we have not provided proofs of well-posedness. Only
various numerical experiments indicate the validity of analogous well-posedness statements as
in the case of Γt = ∅. Nevertheless, we have mentioned a few words here regarding stability in
the incompressible limit, as we intended to emphasize the following. As long as we possess a
conforming well-posed discretization of the modified mixed weak form (with or without traction
boundary conditions), we automatically achieve stability concerning the Lamé parameter λ. This
interesting property is certainly a significant motivation for delving into such a formulation.
Further, we would like to mention that the example of Cook’s membrane (Example 9.7) for

the limit case λ =∞ has already suggested the absence of locking. Since this example involves
traction forces, for the sake of completeness, we would like to attach a simple stability test for
homogeneous displacement boundary conditions.

Example 9.8 (Stability test). We do a stability test inspired by [63, Section 7.2] applied to the
mixed weak form (9.2.12)-(9.2.13). To be more precise we assume F = id, i.e. we work in the
parametric domain and the source function f is chosen such that we get the exact displacement
u = (u1, u2)T with

u1(x1, x2) = (cos(2πx1)− 1) sin(2πx2) + v(x1, x2),
u2(x1, x2) = (1− cos(2πx2)) sin(2πx1) + v(x1, x2),
v(x1, y1) = sin(πx1) sin(πx2)/(1 + λ).
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(b) ‖σ − σh‖H(∇·) (λ =∞, µ = 1)
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(d) ‖σ − σh‖H(∇·) (λ = 2, µ = 1)

Figure 42: For our simple stability test we compute the errors twice. Once with λ = ∞, µ = 1 (top
row) and a second time setting λ = 2, µ = 1 (bottom row). The similarity of the obtained
errors confirm the theoretically predicted stability w.r.t. λ.

Again we use mixed degrees, meaning we consider (9.2.9)-(9.2.10) with

qi = p+ 1, pi = p, si = p− 1, ri = p− 1, ∀i and h = θ, µ = 1 .

The results for uniform meshes are shown in Figure 42. In the top row of the mentioned figure
we see the errors for the limit case λ =∞ , whereas in the bottom row we plotted them for
λ = 2 . The images effectively demonstrate the stability with respect to λ. This is because the
errors in Figure 42 (a)-(b) and Figure 42 (c)-(d) are nearly identical, particularly of the same
order of magnitude. We also do not observe any blow-up or unstable decay.

We have now demonstrated with various examples and remarks how we can apply the special
setting from Section 8.2 within the framework of linear elasticity theory. Doing so we considered
a modified mixed weak formulation equivalent to the well-known Hellinger–Reissner system.
It is important to highlight that the underlying Hodge–Laplace problem is derived from the
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elasticity complex, a second-order complex. So, the discretization in parametrized domains
with curved boundaries is not straightforward. Even more crucial is the fact that we were able
to utilize knowledge about the discretization of this complex in cubic geometries to formulate
statements regarding well-posedness; see Theorem 8.2. Hence, although for the discretization
of the modified saddle-point problem (compare (9.2.12)-(9.2.13)), we did not use structure-
preserving discretizations in the sense of Section 3.4, we still exploited FEEC indirectly.
It is noticeable that in the numerical tests, we have always been working in a planar setting.

But various aspects, including the stability with respect to the λ parameter, were also addressed
for the three-dimensional (3D) case. Since the choice of discrete spaces in the three-dimensional
space is analogous to the planar case, we do not see any difficulty in conducting similar numerical
investigations in 3D. However, one point requires more careful examination: the treatment of
traction boundary conditions for Ω ⊂ R3. In principle, it is conceivable to perform a modification
of the basis functions similar to the explanations in Section 9.2.2 to incorporate these conditions
more easily. Nevertheless, this modification will likely be different and more involved. However,
we intend to explore other discretization approaches and will not delve further into the topic of
traction boundary conditions for the strong symmetry formulation (9.2.12)-(9.2.13).
Above in the context of linear elasticity, we have dealt with a system very similar to the classical

Hellinger–Reissner formulation, which means we directly incorporated the symmetry condition
of the stress tensor into the definition of the discrete spaces. However, we have also become
acquainted with another discretization approach in Section 8.3, which involves introducing an
additional Lagrange multiplier. This is precisely the direction we are turning our attention to
now because we want to demonstrate how we can also apply this second approach to linear
elasticity. It is fair to highlight that the resulting Hellinger–Reissner formulation with weakly
imposed symmetry is not novel and has been addressed, for instance, in [63, 7] and [10, 42].
Especially in the latter two references, the connection between the formulation and the elasticity
complex has also been exploited. Whereas the mentioned works are in the tradition of classical
Finite Elements, we want to show how the concept of IGA can be integrated. This will allow
us to develop methods with smooth test functions and for domains with curved boundaries as
well. While the approach and choice of spaces for the strong symmetry approach from above
are similar in 2D and 3D, for the weak symmetry approach, we obtain different results for 2D
compared to 3D. For this reason, we will provide in the subsequent discussions discretization
details and numerical examples for both, the discretization in the 2D and 3D context.

9.3 Mixed weak formulation with weakly imposed symmetry
Before we exploit the connection between de Rham complexes and linear elasticity as established
in [42, 10], we briefly explain the elasticity formulation with weakly imposed symmetry. It is
basically a specific case for the Lagrange multiplier formulations for output complexes; see Sec-
tion 4.2.4. Because, we already know that the Hellinger–Reissner formulation can be interpreted
as the mixed weak form of the level n Hodge–Laplace problem corresponding to the elasticity
complexes in n dimensions, which in turn are the BGG output complexes of proper de Rham
sequences; see Examples 4.2 and 4.3. The new formulation which was e.g. introduced by Arnold
et al. in [10] seeks for stresses in H(Ω,∇·,M), M = Rn×n. That means we have more flexibility
in the selection of the FE spaces. Even though we are initially considering only the case of
displacement boundary conditions (u = uD on ∂Ω), it will become relatively straightforward to
later address traction boundary conditions as well.
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To be more precise, the underlying continuous formulation for this part is as follows:

Definition 9.2 (Hellinger–Reissner formulation with weak symmetry). For a given
f ∈ L2(Ω)⊗Rn, find σ ∈ H(Ω,∇·,M), u ∈ L2(Ω)⊗Rn and κ ∈ L2(Ω)⊗Rs(n), s(n) := 2n− 3,
s.t.

〈Aσ, τ〉 + 〈u,∇ · τ〉 + 〈κ, Skew τ〉 = 〈τ · n, uD〉Γ, ∀τ ∈ H(Ω,∇·,M),
〈∇ · σ, v〉 = 〈−f, v〉, ∀v ∈ L2(Ω)⊗ Rn, (9.3.1)
〈Skewσ, η〉 = 0, ∀η ∈ L2(Ω)⊗ Rs(n),

where
Skew τ :=

{
−2sskew τ, if n = 2,
2vskew τ, if n = 3 .

Hence, here we directly include the situation of displacement boundary conditions, meaning
the right-hand side of the first line enforces u = uD on ∂Ω; cf. Remark 9.2. Further, one notes,
the system (9.3.1) is obtained by the Hellinger–Reissner formulation by dropping the symmetry
condition for the stress tensor and replacing it by a variational statement, namely we assume

〈Skewσ, η〉 = 0, ∀η ∈ L2(Ω)⊗ Rs(n),

which is equivalent to ∫
Ω
ηi (σij − σji) dx = 0, ∀ηi ∈ L2(Ω), i 6= j.

The mentioned constraint is integrated using a Lagrange multiplier, clarifying the presence of
the additional variable κ and the final line in (9.3.1). Notably, this novel variational problem fits
with the abstract procedure for incorporating constraints from the linking maps, as elucidated
in Section 4.2.4. The only difference is that we now have a weighted inner product 〈Aσ, τ〉 and in
the first line of the system we have a term +〈u,∇·τ〉 instead of −〈u,∇·τ〉. As a result, especially
by the well-posedness of the original Hellinger–Reissner formulation, one has the well-posedness
of (9.3.1) and it yields the solution to (9.2.3)-(9.2.4); cf. [10, Section 1].
Regarding discretizations, we want to utilize next the approach from Section 5.3. To provide

a better overview and in view of the mentioned section, we include here two diagrams, before we
come to the details and specific FE spaces. On one hand, in Figure 43 and Figure 44 we observe
the relevant spaces in the continuous setting analogous to Figure 5. On the other hand, as a
kind of preview or outlook, we have incorporated in the mentioned figures the discrete spaces
and projections that we aim to introduce in the following. For the definition of the different
linking maps we refer to Examples 4.2 and 4.3.
Remark 9.8. Due to the anti-commutativity property of the linking maps from Examples 4.2
and 4.3 the corresponding linking maps in the Figures 43 and 44 are well-defined and ensure the
consistency of the diagrams.
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K̄h

ΠK̄
h

0 H1(Ω)⊗ R2 H(Ω,∇·,M) L2(Ω)⊗ R2 0curl ∇·

0 H1(Ω) H(Ω,∇·,R2) L2(Ω) 0curl ∇·

Rh Σh Uh
curl ∇·

ΠU
hΠΣ

hΠR
h

Skewid

Figure 43: The relevant discrete spaces in 2D.

K̄h

ΠK̄
h

0 H1(Ω)⊗ R3 H(Ω,∇×,M) H(Ω,∇·,R3) L2(Ω)⊗ R3 0∇ ∇× ∇·

0 H1(Ω)⊗ R3 H(Ω,∇×,M) H(Ω,∇·,R3) L2(Ω)⊗ R3 0∇ ∇× ∇·

Rh Σh Uh
∇× ∇·

ΠU
hΠΣ

hΠR
h

SkewS

Figure 44: The relevant spaces in 3D. One notes the special linking map S which appears in Example
4.3.

Looking back at Lemma 5.5, it becomes evident how the Rh, Σh, Uh spaces in the previous
diagrams have to be chosen. Namely, we need structure-preserving discretizations of the respec-
tive bottom complexes. But since we only have vector-valued de Rham complexes appearing it
is clear how to define the discrete spaces. We just use row-wise isogeometric discrete differential
forms; see Section 7.3. Even more, it becomes apparent that the diagrams correspond to special
cases of the general diagram (8.3.3) in Section 8.3.1. Because, the complex couplings in the
above Figures 43 and 44 align with the BGG construction of Altk-valued forms in Section 4.2.3.
Using special proxy maps (see Examples 3.1 and 3.2) yield then the proxy de Rham sequences
in Figure 43 and Figure 44. This is also clear by the diagrams stated in Examples 4.2 and 4.3.
So we could follow the elaborations in Sections 8.3 to get suitable Rh, Σh, Uh and to get error
estimates. In fact, this is what we actually will do for the 3D situation. However, we also
want to demonstrate that in the planar setting a different and somewhat better choice of spaces
is possible. Next we address the precise selection of discrete spaces including the Lagrange
multipliers.
We emphasize that we have for the subsequent investigations Assumption 8.2 underlying, i.e.

we have a C1-diffeomorphic parametrization F : (0, 1)n → Ω of the computational domain.
As the isogeometric de Rham spaces V i

h,2 and V i
h,3 introduced in Example 7.3 result in discretiza-

tions that preserve the underlying structure of the de Rham sequences in both 2D and 3D, it
is natural to opt for the following choices of spaces, Uh, Σh, and K̄h, for the discretization of
(σ, u, κ) in (9.3.1):
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Definition 9.3 (Choice of spaces). For n ∈ {2, 3} and i = 0, . . . , n let V i
h,n(q, s) denote the

discrete differential forms given in Example 7.3 for the case pi = q and ri = s, ∀i.
Then for p− 1 > r ≥ 0 together with abbreviations

W 1
h := V 1

h,3(p+1, r), W 2
h := V 2

h,3(p+1, r), W 3
h := V 3

h,3(p+1, r), W̄ 3
h := V 0

h,3(p−1, r) (9.3.2)

we set in the three-dimensional setting

Σh := (W 2
h ×W 2

h ×W 2
h )T, Uh := (W 3

h ×W 3
h ×W 3

h )T, K̄h := (W̄ 3
h × W̄ 3

h × W̄ 3
h )T, (9.3.3)

and
Rh := (W 1

h ×W 1
h ×W 1

h )T, (9.3.4)
where (X × · · · ×X)T means that we have row-wise spaces X.
In two dimensions we assume p > r + 1 ≥ 1 and choose analogously

Σh :=
(
V 1
h,2(p, r)× V 1

h,2(p, r)
)T
, Uh :=

(
V 2
h,2(p, r)× V 2

h,2(p, r)
)T
, K̄h := V 0

h,2(p− 1, r), (9.3.5)

and define the auxiliary space Rh :=
(
V 0
h,2(p, r)× V 0

h,2(p, r)
)T

.

In contrast to 3D we consider in 2D maximal degree p, whereas in (9.3.2) there appears a
p + 1. It turns out that this change in 2D still leads to convergence and a well-posed scheme.
This degree adaption step for the planar situation is inspired by the FE discretization approach
in [7]. In other words we can save degrees of freedom (DoF) by omitting the degree elevation
step needed in 3D.
As in Section 8.3 we can define L2-bounded projections onto the spaces from above by a row-
wise exploitation of the de Rham cochain projections Πk

h,n defined through (7.3.2). Consequently,
there are projections

ΠΣ
h : L2(Ω)⊗M→ Σh, ΠU

h : L2(Ω)⊗ Rn → Uh, ΠK̄
h : L2(Ω)⊗ Rs(n) → K̄h,

ΠR
h : L2(Ω)⊗M→ Rh (3D), ΠR

h : L2(Ω)⊗ R2 → Rh (2D), respectively,

such that the lower two rows in Figure 43 (2D) and Figure 44 (3D) determine a commutative
diagram and such that for 0 ≤ l ≤ p we have∥∥∥w − ΠR

hw
∥∥∥ ≤ CRh

l ‖w‖Hl ,
∥∥∥σ − ΠΣ

hσ
∥∥∥
H(∇·)

≤ CΣh
l ‖σ‖Hl(∇·) , (9.3.6)∥∥∥u− ΠU

h u
∥∥∥ ≤ CUh

l ‖u‖Hl ,
∥∥∥κ− ΠK̄

h κ
∥∥∥ ≤ CKh

l ‖κ‖Hl , (9.3.7)

for proper constants CR, CΣ, CU , CK and provided enough regularity. To see the validity of
these estimates we refer to Corollary 7.11.
Remark 9.9. Due to the increased degree p+ 1 for the left three spaces in (9.3.2) we can further
see the possibility to set l = p+ 1 in the estimates regarding ΠR

h , ΠΣ
h , ΠU

h in 3D.
After we clarified the spaces, it remains to check whether we obtain well-posed discretizations,

where the finite-dimensional problem reads: Find (σh, uh, κh) ∈ (Σh, Uh, K̄h) s.t.

〈Aσh, τh〉 + 〈uh,∇ · τh〉 + 〈κh, Skew τh〉 = 〈τh · n, uD〉Γ, ∀τh ∈ Σh,

〈∇ · σh, vh〉 = 〈−f, vh〉, ∀vh ∈ Uh, (9.3.8)
〈Skewσh, ηh〉 = 0, ∀ηh ∈ K̄h.

The matter of achieving a well-posed discretization in the context of three dimensions is
relatively straightforward. This simplicity arises from the fact that the choice of function spaces
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in Definition 9.3, specifically in (9.3.3) and (9.3.4), aligns precisely with our earlier approach
in Section 8.3.2. This alignment is tailored to the specific diagram illustrated in Figure 44. It
is worth noting that in equation (9.3.8), we employ a modified inner product, represented as
〈A·, ·〉, as opposed to the standard 〈·, ·〉. This substitution, however, does not pose any issues,
as the resulting norms are equivalent. Consequently, in 3D we directly obtain similar results as
those derived in Theorem 8.4 and Theorem 8.5, signifying stability and convergence.
But in the context of two dimensions, our choice in equation (9.3.5) differs somewhat from the

three-dimensional scenario, meaning Theorem 8.4 is not directly applicable. Nevertheless, we
can resort to Lemma 5.5, which aligns with the specific setting we are considering. Namely, we
have utilize planar row-wise discrete differential forms, as evidenced in (9.3.5), which implies that
the spaces Rh,Σh, Uh offer a structure-preserving discretization of the lower complex depicted in
Figure 43. Hence, to apply Lemma 5.5, the only requirement that remains to be confirmed is the
auxiliary inf-sup condition given in (5.3.5). In our case, pertaining to the complex illustrated in
Figure 44, this entails verifying the existence of a constant CIS > 0 such that

inf
06=vh∈K̄h

sup
06=wh∈Rh

〈∇ · wh, vh〉
‖wh‖H1 ‖vh‖

≥ CIS,

independent of h. The existence of such a CIS is actually quickly apparent. Because with the
definition of the pullback (Definition 3.9) we have in the two-dimensional setting

Rh =
(
Sr,rp,p ◦ F−1

)
⊗ R2, K̄h =

(
Sr,rp−1,p−1 ◦ F−1

)
.

Hence, (Rh, K̄h) corresponds to the well-known isogeometric Taylor–Hood space pair; see e.g.
[23, Theorem 4.1]. Thus, one indeed has the validity of the above inequality for a suitable CIS,
which is independent of h, as long as h ≤ hmax for a proper hmax > 0. This explains why also in
2D we get well-posed discretization. We summarize the last thoughts and remarks in a further
Corollary 9.4 (Well-posedness). Let us assume the parametrization F : Ω̂→ Ω, Ω̂ := (0, 1)n
to be C2-smooth with C2-smooth inverse and we require a family of regular meshes (Mh)h in the
sense of Definition 6.5. Then the choice of discrete spaces specified through Definition 9.3 implies
the existence of a hmax > 0 s.t. we obtain for (9.3.8) and for all 0 < h ≤ hmax a unique solution.
Moreover, the discretization is well-posed, meaning we have inf-sup stability independent of h.
With the statement in the last corollary and the estimates (9.3.6)-(9.3.7) we get analogously

to Theorem 8.5:
Corollary 9.5 (Error estimate). We consider a well-posed discretization (9.3.8) in the sense
of Corollary 9.4. Further let the solution (σ, u, κ) of the continuous problem (9.3.1) fulfill the
regularity assumptions σ ∈ H l(Ω,∇·,M), u ∈ H l(Ω)⊗ Rn, κ ∈ H l(Ω)⊗ Rs(n) for 0 ≤ l ≤ p.
Then the error between exact and approximate solution satisfies

‖σ − σh‖H(∇·) + ‖u− uh‖+ ‖κ− κh‖ ≤ Cconvh
l
(
‖σ‖Hl(∇·) + ‖u‖Hl + ‖κ‖Hl

)
for a constant Cconv independent of h.
Additionally, for n = 3 we have due to Theorem 8.5 and our choice (9.3.2) also

‖∇ · σ −∇ · σh‖ ≤ Cconvh
p+1 ‖∇ · σ‖Hp+1 , (9.3.9)

provided enough regularity for σ.
After the theoretical remarks above, we now want to present different numerical tests that are

intended to support the results condensed in the latter two corollaries. In doing so, we utilize
the discrete spaces specified in Definition 9.3. We start again with a simple convergence test in
2D.
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Example 9.9 (Curved square). In the first example we consider the convergence behavior for the
two-dimensional domain from Figure 22, i.e. with parametrization F(ζ1, ζ2) = (ζ1, ζ2−ζ2

1 +ζ1)T.
We assume homogeneous boundary conditions uD = 0 and here we choose the source function f
in the mixed formulation such that the exact displacement solution is u = (u1, u2)T = (w,−w)T

with
w ◦ F(ζ1, ζ2) = sin(πζ1) sin(πζ2), λ = 2, µ = 1 .

And again, λ and µ stand for the Lamé parameters. Due to this regular problem and the conver-
gence statement in Corollary 9.5, we can expect for degree p ≥ 2 and regularity r = 0 that the
errors ‖σ − σh‖H(∇·) , ‖u− uh‖ , ‖κ− κh‖ are of order O(hp). And indeed, if we look at the
errors in Figure 45 one observes the mentioned convergence order and a stable error decrease.
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Figure 45: Here we plot the different errors w.r.t. h and for the degrees p = 2, 3, 4. For all cases we
have the regularity parameter r = 0; see Definition 9.3. Dashed lines with slopes 2, 3, 4 are
added to verify the convergence rates.

Unlike the approach outlined in Section 9.2, establishing theoretical well-posedness statements
for the formulation with weakly imposed symmetry in 3D proves to be considerably more chal-
lenging. This difficulty arises because, to obtain the statements in Corollaries 9.4 and 9.5 for
the three-dimensional setting, we rely on Theorems 8.4 and 8.5 from Section 8.3. The proofs of
these mentioned theorems were, in turn, intricate and spanned essentially the entirety of Section
8.3. Furthermore, it is noteworthy that our choice of spaces in 2D and 3D (see Definition 9.3)
differs in the case of weak symmetry. Specifically, in 3D, splines of degree p+ 1 come into play,
whereas in 2D, B-splines of degree p are sufficient. This discrepancy explains why, in 3D, with
sufficient regularity of the exact solution, we obtain the property ‖∇ · σ −∇ · σh‖ ∈ O(hp+1);
see (9.3.9). For this reason, our next objective is also to present a convergence test in 3D.

Example 9.10 (Thick ring). We look at a convergence test example in 3D, where the geometry
and the mesh for h = 1/6 are given in Figure 46 (a). We define the source term f such that the
exact solution has zero displacement boundary values and the exact solution is u = (u1, u2, u3)T,
where

u1 = w

2 , u2 = w, u3 = −w2 , with w ◦ F(ζ1, ζ2, ζ3) = sin(πζ1) sin(πζ2) sin(πζ3) .

Above, F : (0, 1)3 → Ω denotes the regular parametrization of Ω. The underlying Lamé parame-
ters for this test are λ = 2, µ = 1 . The weak formulation with weakly imposed symmetry incor-
porates besides the displacement also the stresses and the Lagrange multiplier κ ∈ L2(Ω) ⊗ R3.

173



Consequently, if we have finer meshes or higher degrees one runs into trouble due to a large num-
ber of degrees of freedom. Especially the solving of the underlying large linear systems causes a
lot of computational effort. That is why we applied the iterative solver minres() to solve the sys-
tem of equations in the 3D case. The mentioned solver is pre-implemented in MATLAB ([53])
and as relative tolerance we chose 5 · 10−8, i.e.

|Ax̄− b|
|b|

≤ 5 · 10−8, 2

with A, b denoting the system matrix and right-hand side and x̄ is the approximate solution
obtained by minres(). Since the norms of relative and also of the absolute residuals are much less
than the errors we computed in the convergence test, we think that the plots remain meaningful.
In Figure 47 we see the error decays for p = 2, r = 0 and p = 3, r = 1 and the decreasing basically
fits to the theoretically predicted order O(hp). However, the convergence order of the displacement
field seems to be ones higher than the order suggested by the theory; see Corollary 9.5. This
indicates that the error estimates, especially from Section 8.3, might be too pessimistic. This
observation of faster convergence motivates to establish and consider improved error estimates
analogous to [5, Theorem 5.6] and to examine the proofs in Section 8.3 for feasible simplifications.
We suspect that better estimates might be derived, but we will not delve further into this matter
but mention it as a potential starting point for further investigations. Nevertheless, the refined
error estimate ‖∇ · σ −∇ · σh‖ ∈ O(hp+1) can be realized well in Figure 46 (b). Furthermore,
the approximations for u1 and σ11 on the middle slice x3 = 0.5 through the ring domain are
pictured in Figure 48.

1
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1

(a) Mesh for h = 1/6

x1x2

x3
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Mesh size h

p = 2
p = 3
O(h3)
O(h4)

(b) ‖∇ · σ −∇ · σh‖

Figure 46: A mesh for the 3D convergence example (h = 1/6) is shown on the left, whereas on the
right we see the corresponding errors for the stress divergence. For p = 2 it is r = 0 and for
p = 3 we set r = 1.

2| · | stands for the Euclidean norm.
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Figure 47: Error decay for the 3D ring example. We note that we choose the regularity parameter
r = 0 if p = 2, but r = 1 for the case p = 3.

(a) u1

u1 σ11

(b) σ11

Figure 48: View on the approximate solution of the 3D ring on the middle slice x3 = 1/2. (p = 3, r =
1, h = 1/6)

In the following we provide similar to Section 9.2 a few remarks regarding extensions and
stability for (nearly) incompressible materials.

9.3.1 Multi-patch domains
Supposing that we are in the field of multi-patch IGA, i.e.

Ω =
m⋃
j=1

Ωj , Fj : (0, 1)n → Ωj ,

for a suitable number m. On the j-th patch we can define the discrete spaces Σ(j)
h , U

(j)
h , etc. as

described in Definition 9.3. The global spaces are then straightforwardly defined as

Σh :=
{
σ ∈ H(Ω,∇·,M)

∣∣∣ σ|Ωj ∈ Σ(j)
h

}
, Uh =

{
u ∈ L2(Ω)⊗ Rn

∣∣∣ u|Ωj ∈ U (j)
h

}
, etc. .

Only the stress spaces need a proper coupling between the patches. And the implementation
of the coupling conditions for the stresses can then be achieved rather easily by exploiting the
well-known divergence preserving property of the pullback mappings Y1

2 , Y2
3 (see Example 4.1)

which are utilized to define the isogeometric differential forms in Example 7.3. Because without
difficulties one can show that these two mentioned pullbacks transform boundary normal vectors
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again to boundary normals. In other words the H(∇·)-coupling can effectively be done between
the cubical parametric patches. Thus, if the patches are conforming connected there is no
problem to find a basis of the multi-patch Σh. One further notes the fact that also in the multi-
patch setting ∇ ·Σh ⊂ Uh. Numerical tests suggest the well-posedness of the mixed formulation
for multi-patch parametrizations.
We show the applicability of the weak symmetry approach for the violin mesh from Example
9.3.

Example 9.11 (Fixed violin). In fact, we repeat the test from Example 9.3 here. But, instead of
using the modified mixed weak form with strong symmetry, we now employ the formulation with
weakly imposed symmetry (9.3.8). In particular, we refer to the mentioned example for more
details regarding mesh and computational domain.
By choosing p = 3 and r = 1 patch-wise, and coupling the stresses between the patches, we
obtain the images in the left column of Figure 49. A comparison with the primal formulation as
in Example 9.3 demonstrates the feasibility of multi-patch geometries.
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u1

(a) mixed weak form.

u1

(b) primal form.

u2

(c) mixed weak form.

u2

(d) primal form.

Figure 49: Here we see the comparison of the displacements between the classical primal formulation
(right column) with degree 4 and C0 B-splines as well as the displacements for the mixed
weak form with weakly imposed symmetry (left column). For the latter we use degree
p = 3 and inner patch regularity parameter r = 1. Between the patches only the normal
components σ · n are coupled continuously.

Next we comment on the situation of traction boundary conditions which is easier to handle
for the second discretization approach with weakly imposed symmetry.

9.3.2 Traction boundary conditions
Something that is somewhat problematic for the formulation with strong symmetry is the trac-
tion boundary conditions. This means Γt ∪ ΓD = ∂Ω, Γt ∩ ΓD = ∅ together with a suitable
mapping tn and the requirement

σ · n = tn on Γt and u = uD on ΓD.
However, since we have used structure-preserving discretizations of the bottom complexes in
Figure 43 and Figure 44 in this section, finding a basis for the space

Σh,Γt := {τ ∈ Σh | τ · n = 0 on Γt}
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is not an issue. Between the parametric domain and the physical domain, we have the transfor-
mations Ynn−1 (see Example 4.1), which are compatible with the outer unit normals. In particular,
traction forces tn = 0 can be implemented in 3D and 2D without additional modifications. Thus,
the discretization approach with weakly imposed symmetry considerably simplifies the treatment
of traction boundary conditions.
Clearly, given a proper auxiliary stress mapping σ̃, where σ̃ · n = tn, we can reduce again the
mixed boundary conditions to the case tn = 0 by considering σ − σ̃. Finally, we remark that in
the discrete setting we shall assume for reasons of simplification that Γt and ΓD are the union
of full mesh boundary elements.
For instance, the Cook’s membrane (see Example 9.7) test example can be considered without

problems.

Example 9.12 (Cook’s membrane). Again we look at the classical benchmark problem of Cook’s
membrane; cf. Example 9.7. Hence, we apply our discrete scheme with λ =∞, µ = 0.375
analogous to the example in [13] and utilize the reference displacement values from that paper
at the point P as depicted in Figure 50 (a). Our focus lies in analyzing the convergence of
our approximations towards these established reference values. As illustrated in Figure 50 (b)-
(c), we present the outcomes for the specific cases of r = p − 2 and p = 2, 3, 4. Notably, as
the disparities between the reference and approximate values decrease across all degrees, we can
affirm the absence of locking effects in this context.
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(c) x1-displacement at P

Figure 50: For the Cook membrane we get reasonable displacement values in P although we have set
λ =∞ as well as r = p− 2. The reference values "Auricchio et al." are taken from [13].

As a last aspect in the context of the formulation with weakly imposed symmetry let us
consider the stability for large λ, meaning (nearly) incompressible materials.

9.3.3 Stability in the (nearly) incompressible regime
A point we still want to address here is the case of (nearly) incompressible materials. The ques-
tion is whether we can achieve stability w.r.t. λ even when using the approach of weakly imposed
symmetry. If we initially consider the scenario of pure zero displacement boundary conditions,
we know from [7], for example, that it is sufficient to verify whether I ∈ Σh. Because then, with
an analogous argumentation as in Section 9.2.3, we can reduce the discrete computations to the
spaces

Σ̃h := Σh ∩
{
τ
∣∣∣ ∫

Ω
tr(τ) dx = 0

}
. (9.3.10)
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We want to show here that we can achieve stability for λ → ∞ with our discretization ansatz,
at least in case of B-spline parametrizations. Below we follow again the considerations in [7, 20]
and [66]. However, we restrict ourselves mainly to the three-dimensional case (n = 3), since the
argumentation for 2D is in principle the same.
First we have a look at the three-dimensional situation. In view of the definition of Σh (see also
Examples 4.1 and 7.3) one has

I ∈ Σh ⇔ adj(J)k ∈
(
Sr,r−1,r−1
p+1,p,p × Sr−1,r,r−1

p,p+1,p × Sr−1,r−1,r
p,p,p+1

)T
,∀k,

where adj(J)k is the k-th column of the adjugate matrix adj(J) := det(J)J−1 of J. By the
definition of the adjugate matrix as the transpose of the cofactor matrix, it is easy to see that
for F ∈ (Ss,s,sq,q,q)3 with q > s ≥ 1 we obtain

adj(J)k ∈
(
Ss,s−1,s−1

2q,2q−1,2q−1 × S
s−1,s,s−1
2q−1,2q,2q−1 × S

s−1,s−1,s
2q−1,2q−1,2q

)
, J = (Jij)i,j.

For example, it is
adj(J)11 = J22J33 − J23J32 ∈ Ss,s−1,s−1

2q,2q−1,2q−1.

Similar thoughts lead to the other entries. Thus
(
Y2

3

)−1
(adj(J)k) ∈ V 2

h,3(2q, s) for k = 1, 2, 3.
Consequently, if we choose the discrete spaces such that 2q ≤ p + 1 and r ≤ s, we have indeed
I ∈ Σh. In other words, if one wants stability for large λ it might be advisable to apply a
p-refinement step.
In the 2D case the condition I ∈ Σh is easier to see since then

adj(J) =
[
∂ζ2F2 −∂ζ2F1
−∂ζ1F2 ∂ζ1F1

]
.

For F ∈ (Ss,sq,q)2 one has I ∈ Σh if p ≥ q, s ≥ r. In particular, the isogeometric paradigm fits to
the stability condition.

Corollary 9.6. Suppose a pure displacement boundary condition uD = 0 and let us use the
discrete spaces from Definition 9.3 with Σh replaced by Σ̃h; see (9.3.10). First, in the three-
dimensional case, let F ∈ (Ss,s,sq,q,q)3 with q > s ≥ 1. Then we achieve stability w.r.t. λ if 2q ≤ p+1
and r ≤ s. Secondly, let F ∈ (Ss,sq,q)2 with p ≥ q, s ≥ r. Then, we also have stability for λ→∞
in 2D.

It is natural to ask, whether a generalization to NURBS parametrizations with non-trivial
weight functions is possible. Although numerical experiments indicate a generalization possibil-
ity, we do not have a proof available.
In the presence of a non-vanishing traction boundary component Γt ⊂ ∂Ω, similar to the

transformations and steps shown in Section 9.2.3, we can also establish stability w.r.t. λ. How-
ever, for the sake of completeness, we still intend to present the main idea here.
Let σh ∈ Σh,Γt arbitrary but fixed with ∅ 6= Γt ( ∂Ω. Let ΓD := ∂Ω\Γt. Then, there exists a
w ∈ H1

ΓD(Ω)⊗ Rn s.t.

∇ · w = tr(σh), and ‖w‖H1 ≤ C ‖tr(σh)‖ ,

where C is a constant depending on Ω,Γt and ΓD. In view of Lemma 2.11 and the saddle-point
structure of the mixed weak form (9.3.8), to show stability w.r.t. λ we can assume that

σh ∈ Z := {τh ∈ Σh | 〈∇ · τh, vh〉+ 〈Skew τh, ηh〉 = 0, ∀(vh, ηh) ∈ Uh × K̄h},
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which implies ∇ · σh = 0. Hence, using an estimate of the form (9.2.24), we get the inequality

‖tr(σh)‖ ≤ C ‖dev(σh)‖ ,

with a C independent of λ. With [20, Bemerkung 5.3 in Chapter 6] we finally obtain

〈Aσh, σh〉 ≥
1

2µ ‖dev(σh)‖2 ≥ 1
4µ ‖dev(σh)‖2 + 1

4µ ‖dev(σh)‖2

≥ 1
4µ ‖dev(σh)‖2 + 1

4C2µ
‖tr(σh)‖2 ≥ C̃

(
‖dev(σh)‖+ ‖tr(σh)‖

)2
≥ C̃ ‖σh‖2

= C̃ ‖σh‖2
H(∇·) ,

with C̃ := min
{

1
8µ ,

1
8C2µ

}
. In particular, there is an estimate for the coercivity condition which

does not depend on λ. This guarantees a stable convergence behavior in the incompressible
regime also for traction boundary conditions.
The stability for λ → ∞ is also evident in the next numerical test, which corresponds to

Example 9.8, except this time we utilize the second discretization approach, namely system
(9.3.8).

Example 9.13 (Stability test). As mentioned earlier, we aim to revisit the test from Example
9.8, this time applying the formulation with weakly imposed symmetry (9.3.8). We maintain the
same geometry, boundary conditions, and choose the source function to replicate the exact solu-
tion from the aforementioned example. Utilizing the discrete formulation with the spaces defined
in Definition 9.3, where p = 2, 3, 4, and r = p − 2, we compute the errors for the two cases:
λ =∞, µ = 1 and λ = 2, µ = 1 . The results are summarized in Figure 51. It is noteworthy
that, despite the variation in λ, the errors are almost identical. Additionally, for smaller mesh
sizes, the error decrease is stable and aligns with the theoretically derived error estimates.
In essence, this example illustrates that we have stable convergence, even for (nearly) incom-
pressible materials, using the mixed formulation with weak symmetry.
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Figure 51: We display the errors for the stability test in the square domain. In the top row we have
the errors for the limit case λ =∞, whereas in the bottom row we have λ = 2. The results
confirm to the expected stability w.r.t. λ and thus for (nearly) incompressible materials.

Before delving into potential generalizations and discussing the core findings of our work in the
next and final chapter, let us take a moment to recap what we have demonstrated and learned
in Section 8. We started the latter with a brief explanation of the key equations and notions
within linear elasticity. Then we have illustrated how the discretization methods from Section 8
can be applied in the context of linear elasticity theory. In Sections 9.2 and 9.3, we explored two
different mixed formulations, the Hellinger–Reissner formulation as well as its modification with
weakly imposed symmetry and clarified the conditions under which a well-posed discretization
can be achieved. In both cases, we worked with isogeometric Finite Element spaces, allowing
us to incorporate parameterized geometries into the calculations. Following the conventions
of Isogeometric Analysis, we not only varied the underlying B-spline degrees but also had the
flexibility to alter the regularity of the basis functions. Although our theoretical statements
regarding convergence and stability were tailored to single-patch IGA, we suspect that gener-
alization to multi-patch geometries is feasible, a notion supported by the presented numerical
examples. Through various tests, including cases involving traction boundary conditions and
incompressible materials, we have demonstrated the meaningful application of IGA within the
discussed mixed methods framework. In doing so, we have provided evidence that the initially
abstract considerations from Section 8 are applicable in the realm of continuum mechanics.
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10 Outlook and Conclusion
In the final chapter of this work, we would like to explore some thoughts regarding potential
generalizations of the results and provide a concise summary of our achievements.
Concerning generalizations, there are numerous ways to go. Conducting additional numerical

tests in complex geometries, particularly in 3D, and investigating the potential relaxation of
assumptions in the various proofs presented in the thesis are considerations that seem plausible.
It also appears worthwhile to delve into the realm of multi-patch domains, both theoretically
and through numerical examples. However, a pressing question arises: What happens when we
move beyond the restriction to saddle-point problems, as we have predominantly done? This
would open the door to addressing a broader range of Hodge–Laplace problems. It is clear, and
should be addressed directly here, that for the mixed formulation from Definition 8.1 in Section
8 in the case k < n, i.e., variational problems that do not fall into saddle-point structure, we lack
proofs or concrete statements regarding well-posed IGA discretizations. Nevertheless, below, we
will outline why we think the discretization approach using the modified mixed formulation (see
Definition 5.1) defined in Section 5.1, might be applicable to further Hodge–Laplace problems.
This aims to indicate where we see meaningful directions for further research.

10.1 Outlook
The starting point, basis, respectively, for the discretization considerations in this thesis were the
mixed weak formulations of Hodge–Laplace problems induced by second-order Hilbert complexes.
Doing so , we focused on the case of Hilbert complexes which arose as an output complex (V ◦,D◦)
from a BGG construction procedure. This means, as discussed in Section 5, we were faced with
the problem to find approximations to the variational formulation: For f ∈ W k calculate an
element (σ, u) ∈ V k−1 × V k s.t.

〈σ, τ〉 −〈u,Dk−1τ〉 = 0, ∀τ ∈ V k−1,

〈Dk−1σ, v〉+〈Dku,Dkv〉 = 〈f, v〉, ∀v ∈ V k,

where we refer to the mentioned section for the precise definition of the spaces and the underlying
assumptions.
Even though we also dealt with mixed weak formulations with additional Lagrange multipliers in
Sections 4.2.4, 5.3, and 8.3, all continuous problems appeared could be reduced to a variational
problem of the above structure. Then, to capture general observations and formulate auxiliary
results, we considered in Section 5 an analogous discrete version ((5.1.1)-(5.1.2)), which seeks
(σh, uθ) ∈ V k−1

h × V k
θ with the property:

〈σh, τh〉 −〈uθ,Dk−1τh〉 = 0, ∀τh ∈ V k−1
h , (10.1.1)

〈Dk−1σh, vθ〉+〈Dkuθ,D
kvθ〉 = 〈f, vθ〉, ∀vθ ∈ V k

θ . (10.1.2)

However, as already mentioned throughout the thesis, our primary focus has been on the case
where Dk = 0, that is, saddle-point problems. Specifically, all IGA discretizations in the physical
domain were conducted within the framework of saddle-point problems. But now let us add some
comments regarding the scenario where Dk 6= 0.
First, by modifying the classical mixed formulation in the sense of

〈σ, τ〉V − 〈u,Dk−1τ〉 = 〈f,Dk−1τ〉, ∀τ ∈ V k−1, (10.1.3)
〈Dk−1σ, v〉+ 〈Dku,Dkv〉 = 〈f, v〉, ∀v ∈ V k, (10.1.4)
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(see (5.1.4)-(5.1.5)), we have found in Section 5.1 that the discrete well-posedness can be at-
tributed to the special inf-sup condition

inf
vθ∈V k

θ
, PN (Dk)vθ 6=0

sup
06=τh∈V k−1

h

〈Dk−1τh,PN (Dk)vθ〉
‖τh‖V

∥∥∥PN (Dk)vθ
∥∥∥ ≥ CIS > 0 , (10.1.5)

(compare (5.1.13)).
For this condition, one considers only the infimum over elements in PN (Dk)V

k
θ . On the other

hand, looking at the general discrete inf-sup condition (5.1.3) of the unmodified system (10.1.1)-
(10.1.2), i.e.

inf
(0,0) 6=(τh,vθ)∈V k−1

h
×V k

θ

sup
(0,0)6=(σh,uθ)∈V k−1

h
×V k

θ

B
(
(σh, uθ), (τh, vθ)

)
‖(σh, uθ)‖B ‖(τh, vθ)‖B

≥ CIS > 0, (10.1.6)

with

B
(
(σ, u), (τ, v)

)
:= 〈σ, τ〉 − 〈u,Dk−1τ〉 − 〈Dk−1σ, v〉 − 〈Dku,Dkv〉,

‖(σ, u)‖2
B := ‖σ‖2

V + ‖u‖2
V ,

one takes the infimum over pairs (τh, vθ) ∈ V k−1
h × V k

θ . Thus, the condition (10.1.5) and the
possibility of choosing vθ = −uθ in the proof of Lemma 5.2 suggest that achieving well-posedness
might be easier for the modified version (10.1.3)-(10.1.4). Namely, the naive idea would be to
make the spaces V k−1

h sufficiently large compared to their corresponding V k
θ counterparts since

in the limit case where V k−1
h → V k−1 well-posedness is guaranteed. In contrast to that, for

(10.1.6), one cannot rely on inf-sup stability when performing a refinement or enlargement of
the V k−1

h test spaces, as the infimum is also taken over elements in V k−1
h . Put differently, for the

modified system involving the graph inner product 〈σ, τ〉V , a clear direction is indicated in terms
of what should be done to satisfy the associated inf-sup condition; namely, enlarging V k−1

h . On
the other hand, for the original system system without graph inner product ( (5.1.1)-(5.1.2)), it
is not immediately evident how or what should be refined to achieve its well-posedness. This
is, of course, not a precise mathematical argument, just a first intuition. But numerical tests
show that without dramatic refinements of the spaces for the σ variable and using classical IGA
spaces we can often see inf-sup stability for discretizations of the system (10.1.3)-(10.1.4). We
would like to explain and demonstrate this in the following using a further example in the planar
case.
More precisely, we are examining an additional Hodge–Laplace problem derived from the 2D

elasticity complex (4.2.26). Specifically, we are interested in the level k = 1 Hodge–Laplacian for
this complex. Before specifying the underlying equation, we introduce another test geometry.
In the following, we aim to conduct different numerical inf-sup tests. Therefore, it is beneficial
to choose a non-trivial domain Ω to increase the significance of the results. Hence, we select a
square parametrized with quadratic B-splines and perturb the underlying control points. Figure
52 displays the control points and the resulting geometry, which will be repeatedly used as our
computational domain. It is important to note that this deformed square obviously possesses a
more complex parameterization function, yet it remains globally smooth.
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(a) Mesh for h = 1/9

Ω

(b) Geometry with control points

Figure 52: Here we display the domain utilized for the inf-sup tests below. On the right we highlighted
the control points associated to the B-spline parametrization mapping F. On the left we
see an example mesh for h = 1/9 which illustrates the acting of F.

Example 10.1 (Additional inf-sup test). There is no problem to see that the level k = 1 Hodge–
Laplace equation of the planar elasticity complex, meaning

H2(Ω) H(Ω,∇·,S) L2(Ω)⊗ R20 0,curl2 ∇·
(10.1.7)

takes the form(
curl2(curl2)∗ − sym∇∇ ·

)
u = f, f ∈ L2(Ω)⊗ S, u ∈ H(Ω,∇·,S),

(curl2)∗s = ∂2
2s11 − 2∂1∂2s12 + ∂2

1s22. The continuous mixed weak formulation of the Hodge–
Laplace problem seeks (σ, u) ∈ H2(Ω)×H(Ω,∇·,S) with

〈σ, τ〉 − 〈u, curl2τ〉 = 0, ∀τ ∈ V 0 := H2(Ω), (10.1.8)
〈curl2σ, v〉+ 〈∇ · u,∇ · v〉 = 〈f, v〉, ∀v ∈ V 1 := H(Ω,∇·,S). (10.1.9)

Moreover, the equivalent modified weak form (10.1.3)-(10.1.4) formulation in this situation is
given by: Find (σ, u) ∈ H2(Ω)×H(Ω,∇·,S) s.t.

〈σ, τ〉H(curl2) − 〈u, curl2τ〉 = 〈f, curl2τ〉, ∀τ ∈ V 0, (10.1.10)
〈curl2σ, v〉 + 〈∇ · u,∇ · v〉 = 〈f, v〉, ∀v ∈ V 1, (10.1.11)

where 〈σ, τ〉H(curl2) := 〈σ, τ〉 + 〈curl2σ, curl2τ〉. Now, if we want to discretize the latter system
using isogeometric FE spaces, we might choose analogously to the definitions in Section 8:

V 0
h := Ss,sq,q , V 1

θ := Sr,rp,p ⊗ S, q > s > 0, p > r ≥ 0, (10.1.12)

with h and θ denoting the related mesh sizes. One notes, the necessity of the condition s ≥ 1
due to the H2-regularity requirement for σ. In other words our constraints on r and s guarantee
V 0
h ⊂ V 0, V 1

θ ⊂ V 1. Furthermore, since the associated graph norms are ‖σ‖V = ‖σ‖H2 and
‖u‖V = ‖u‖H(∇·), it is natural to choose a mixed degree approach, specifically setting q = p+1. In
the case of well-posedness and smooth exact solution, this would result in a convergence of order
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O(hp) +O(θp). However, as we do not have a proof of the validity of the corresponding inf-sup
property (10.1.5), we compute for different mesh sizes the inf-sup values Cm

IS of the underlying
variational formulation given by

Cm
IS := inf

(0,0) 6=(τh,vθ)∈V 0
h
×V 1

θ

sup
(0,0) 6=(σh,uθ)∈V 0

h
×V 1

θ

Bm
(
(σh, uθ), (τh, vθ)

)
‖(σh, uθ)‖B ‖(τh, vθ)‖B

,

Bm
(
(σ, u), (τ, v)

)
:= 〈σ, τ〉H(curl2) − 〈u, curl2τ〉 − 〈curl2σ, v〉 − 〈∇ · u,∇ · v〉

and ‖(σ, u)‖2
B := ‖σ‖2

H2 + ‖u‖2
H(∇·), using the MATLAB ([53]) eigs() function together with the

method proposed by Bathe et al. ([15, 33]); see Appendix 11.2. For the regularity of the B-splines
we set s = r = p − 1 and for the first test we have h = θ (i.e. equal meshes for σ and u) with
computational domain shown in Figure 52. Then we obtain the values summarized in Figure
53 for p = 2, 3, 4. In the latter plot, we not only observe consistently positive values but also
a stabilizing behavior of the Cm

IS. These results lead us to the conjecture that the chosen spaces
indeed satisfy the inf-sup condition. In contrast, when we determine the inf-sup values Cu

IS of
the corresponding original system (10.1.8)-(10.1.9) analogously, simply by replacing Bm with

Bu
(
(σ, u), (τ, v)

)
:= 〈σ, τ〉 − 〈u, curl2τ〉 − 〈curl2σ, v〉 − 〈∇ · u,∇ · v〉, (10.1.13)

we observe in Figure 53 (b) a clear decay behavior and very small Cu
IS values. In fact, in the

mentioned figure only very few values appear, since for smaller mesh sizes the MATLAB ([53])
eigs() function yields very small and partly imaginary eigenvalues which reveal an issue with
inf-sup stability. These observations are a clear hint that we do not have well-posedness for
the unmodified mixed weak form. Respectively, it seems that there is no mesh size independent
positive bound for the inf-sup value Cu

IS. Hence, the idea that a modification of the term 〈σ, τ〉
in the mixed formulation to 〈σ, τ〉V yields better and more stable inf-sup values is supported by
this test.
We now proceed to the next test, which is very similar to the last one. However, this time, we
will assume equal degrees, i.e., q = p, s = r = p−1. With these changed and smaller spaces V 0

h ,
it is not clear whether we will still obtain acceptable Cm

IS. However, we observe that by refining
V 1
h through the choice h = θ/2, one gets values Cm

IS that suggest again well-posedness; see Figure
54 (a) for the details. But, when calculating the values Cu

IS for the unmodified system, similar
behavior to the first test is observed again; see Figure 54 (b). Thus, the last computations also
indicate that achieving inf-sup stability for formulation (10.1.10)-(10.1.11) is noticeably easier
with classical IG finite element spaces compared to the classical formulation (10.1.8)-(10.1.9).
As a final point of this example problem (10.1.10)-(10.1.11), we would like to present a small

convergence test. For this purpose, we use the geometry from Example 9.1 which is given by the
parametrization F : (0, 1)2 → Ω , (ζ1, ζ2) → (ζ1, ζ2 − ζ2

1 + ζ1) and choose the source function f
such that we obtain

u =
[
2w w
w −2w

]
, with w ◦ F(ζ1, ζ2) = sin(πζ1)2 sin(πζ2)2

as exact solution. As suggested earlier, it makes sense to use the spaces (10.1.12) with q =
p + 1. We then calculate the errors ‖σ − σh‖H2 , ‖u− uθ‖H(∇·) for the modified formulation
(10.1.10)-(10.1.11). The results can be seen in Figure 55. The convergence behavior is stable and
corresponds approximately to the theoretically optimal rates of O(hp), indicating a well-posed
discretization. With the convergence test, we obtain another indication of the appropriateness of
the formulation (10.1.10)-(10.1.11) for isogeometric discretizations, consistent with the various
inf-sup tests we conducted.
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Figure 53: Here we display the discrete inf-sup values for the planar domain in Figure 52 together with
discrete spaces (10.1.12) with q = p+1, where we have equal meshes for the σ and u variable,
i.e. h = θ. On the left one sees the inf-sup value for the system (10.1.10)-(10.1.11), whereas
to get the values on the right we utilized the original mixed weak formulation determined
(10.1.8)-(10.1.9).
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Figure 54: Analogous to the previous figure, we see the inf-sup values CmIS (left) and CuIS (right), but
now for the situation p = q, r = s, where here we have a refined mesh for the σ-variable,
namely 2h = θ. Again, the CmIS indicate a well-posed discretization, but the CuIS not.
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Figure 55: The discretization errors for the modified mixed weak form (10.1.10)-(10.1.11) and a man-
ufactured test example with smooth exact solution. The underlying degree and regularity
parameters are q = p + 1, r = s = p − 1. Although we do not have a well-posedness
proof available, the stable and fast decay behavior hint at the feasibility of the FE spaces
(10.1.12).

The observations made in the previous example, as well as in additional numerical tests not
shown here, lead us to suspect that classical IG test functions can also be applied to discretize
other mixed formulations of Hodge–Laplace problems. By this, we primarily mean variational
formulations that do not have a saddle-point structure and are not directly derived from the
classical de Rham sequence. For instance, Hodge–Laplace problems arising from second-order
complexes, such as the one in above Example 10.1. However, it seems expedient to rely on
systems with the graph inner product, namely the modified weak system (10.1.3)-(10.1.3). In
our view, a meaningful area for future work would involve a more in-depth and theoretical
examination of this modified mixed weak form in connection with higher-order Hilbert complexes.
In addition, in the thesis we considered also a second discretization method within the context

of the BGG output complex, which is based on the idea of introducing additional Lagrange
multipliers; see Section 5.3. Naturally, the question arises as to whether formulations with
Lagrange multipliers, as discussed in Section 4.2.4, can also be employed for the discretization
of further Hodge–Laplace problems. This includes systems that do not have a simple structure
like the mixed weak formulation with weakly imposed symmetry in the field of linear elasticity,
which involves only one Lagrange multiplier and a first-order differential operator; see Section 9.3.
Certainly, this question can serve as the starting point for generalization studies. However, we
have only conducted numerical tests with Lagrange multipliers in the context of linear elasticity,
so we refrain from making definitive statements regarding the feasibility of IGA discretizations for
other Lagrange multiplier formulations. Furthermore, we want to highlight a central drawback of
introducing additional auxiliary variables, namely the problem of increasing degrees of freedom
and the associated challenge of handling large linear systems. Particularly in higher dimensions,
including 3D, the rapid growth of degrees of freedom is a significant aspect. Therefore, we
consider it more sensible to initially check generalization possibilities within the framework of
mixed formulations without Lagrange multipliers, as these seem to be more suitable for higher
dimensions.
Moreover, there are other directions that could be explored. We have focused on second-order

complexes, but as shown in [12], it is possible to derive complexes with even higher order through
BGG construction by iterating the process. It is therefore, intriguing to investigate whether, for
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instance, third-order chains, classical IG test functions can be employed to approximate saddle
point problems. Using B-splines or NURBS is particularly advantageous in this context, as it
allows the variation of global regularity. At least in the single-patch IGA case combined with
smooth parametrization mappings, the design of sufficiently differentiable test functions is not an
issue. In the case of multiple IGA patches, the situation becomes more complicated. Therefore,
as already hinted at and certainly, there is a need for an in-depth investigation of multi-patch
IGA in the realm of higher-order Hilbert complexes. Connecting different patches essentially
requires an analogous effort to linking degrees of freedom across individual elements in classical
FEM. This aspect deserves further consideration. Indeed, if one aims to develop isogeometric
numerical methods that are applicable in more complicated domains, it is inevitable to address
multi-patch geometries.
One more point regarding generalizations that we want to address leads in a different direc-

tion. In various lemmata and theorems, we have often imposed relatively strict conditions on
the parametrization or meshes. We have e.g. consistently referred to regular, meaning quasi-
uniform meshes, and frequently mentioned C2-smooth parametrizations. While these conditions
have made it easier to establish statements on well-posedness or error estimates, we suspect,
and believe it is worth further investigation, that some of these requirements, such as quasi-
uniformity of the meshes, may not be strictly necessary. In other words, we see also potential
for generalization by studying and examining the assumptions in the lemmatas and theorems.

10.2 Conclusion
Now, at the end of this work, we want to summarize once again what we have considered, where
the difficulties lay, and where they still lie. Further we want to highlight what the main outcomes
of this thesis are.
After introducing a few mathematical concepts and explanations, we delved into the frame-

work of Hilbert complexes right from the beginning. The reason for this lies in the Hodge–
Laplace problems induced by these complexes, which represent a certain class of PDEs. For these
problems, not only solvability statements are known, but the Finite Element Exterior Calculus
(FEEC) also provides criteria for approximation methods that lead to stable and quasi-optimal
convergence behavior. The key idea is to use so-called structure-preserving discretizations of the
underlying Hilbert complexes, along with mixed weak formulations of the Hodge–Laplace prob-
lems. With this concept, we initially have everything we need to compute approximate solutions
for such Hodge–Laplace PDEs. Indeed, we addressed how to structure-preservingly discretize the
important case of the de Rham complexes using B-splines in any dimension. It was essential to
use the pullback operation, compatible with the exterior derivative, to obtain discrete de Rham
sequences in parametrized geometries. Therefore, FEEC and Isogeometric Analysis (IGA) can
be elegantly combined when discussing the de Rham complex. However, when turning to other
Hilbert complexes, things become significantly more complicated. By other complexes, we mean
those where operators other than the exterior derivative appear or where higher-order derivative
operators come into play. Because the idea behind IGA is to introduce ansatz and test spaces
in the parametric domain, which typically represents a cubical domain. And then, the discrete
spaces in the actual computational domain are defined using the parametrization mapping and
parametric test functions. If we have a structure-preserving discretization of the Hilbert complex
in the parametric domain, the transition to the physical domain must be compatible with the
complex structure to follow the design steps of FEEC. Here lies the problem; for complexes with
higher-order differential operators, such as the Hessian or elasticity complex, we lack an analog of
the pullback operation used for the de Rham complex. In other words, the structure-preserving
transition between the parametric and computational domains appears generally infeasible for
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such second-order complexes. Combining FEEC and IGA is thus more challenging for complexes
other than the de Rham complex. With our work, we aimed to demonstrate precisely this: IGA
can also be applied in the context of Hodge–Laplace problems not originating from de Rham
sequences.
We focused on a specific class of complexes, namely those second-order complexes that can be

obtained through a BGG construction utilizing two de Rham-type chains, utilizing in fact Altl-
valued forms. This includes the previously mentioned Hessian and elasticity complexes, as well
as various other complexes in arbitrary dimensions. While existing results in the literature show
that discretization in cubical domains is possible for these class of sequences and leads to special
spline complexes, the question remains of how to proceed with other geometries. To provide
statements on well-posedness and error estimates in parametrized domains, we further narrowed
our focus, largely examining mixed weak forms with a saddle-point structure. Although we could
also prove invertibility for more general mixed weak formulations, ensuring inf-sup stability and
well-posed discretization required exploiting the saddle-point property. For the saddle-point
systems and leveraging the BGG construction, we introduced two approaches for approximation
using IGA. The proof of discrete well-posedness and a priori error estimates for both methods are
considered the two main outcomes of our work. Notably, incorporating the Lagrange multiplier
required a lengthy and technical proof, which also relied on the macroelement technique. For the
other approach, initially considered in the work, we further introduced a modified mixed weak
formulation. In doing so, we demonstrated why simple IGA spaces without specific pullback
mappings can still be used to define well-posed discretizations. It is worth highlighting that in
both discretization approaches, we directly or indirectly utilized the idea of structure-preserving
discretization. We used the existence of structure-preserving second-order B-spline complexes
in the proof of well-posedness, and for the approach with a Lagrange multiplier, we precisely
employed discrete differential forms. Thus, there is indeed a clear connection between IGA and
FEEC in our work.
Moreover, to demonstrate the applicability of our results beyond theoretical considerations,

we turned our attention to the field of linear elasticity theory in detail. The two discretiza-
tion approaches, with and without a Lagrange multiplier, provide two different mixed stress-
displacement methods. For these, we presented several numerical test examples that support
or confirm the theoretical considerations. Additionally, we discussed and illustrated possibilities
for generalizations, such as multi-patch geometries.
However, two questions remain at the end: Firstly, what is the motivation and advantage

of following the IGA paradigm? Firstly, and most obviously, it allows for the computation of
solutions in a wide range of non-polygonal domains. Secondly, the IGA theory enables variations
not only in the polynomial degrees but also in the smoothness of the underlying FE basis
functions. This allows for a reduction in degrees of freedom without compromising the order of
convergence and simplifies the incorporation of second-order differential operators. Furthermore,
extending the approach to more complicated and even higher-order complexes seems for us to
be more realistic with NURBS compared to classical FE methods with polygonal meshes. On
the other hand, what new insights do we gain from our work? We have shown that it is possible
to use standard IGA test functions and isogeometric discrete differential forms to obtain well-
posed discretizations for Hodge–Laplace PDEs arising from second-order complexes. In essence,
we have demonstrated that IGA can meaningfully be utilized within the context of non-de Rham
type complexes.
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11 Appendix
11.1 Proof for Lemma 3.8
We show only the first three points of this lemma, since, as already mentioned, the last point in
the assertion is a well-known result from exterior calculus.
To begin with, we look at an auxiliary statement.

Lemma 11.1. Let the assumptions of Lemma 3.8 hold.
Given a c ∈ L2(Ω), a k ∈ {0, . . . , n} and a basis k-form ω = c dxσ1 ∧ · · · ∧ dxσk there exist
ws ∈ C l(Ω̂), ∀s ∈ Σ<(k, n) s.t.

YkFω =
∑

s∈Σ<(k,n)
(c ◦ F)ws dxs1 ∧ · · · ∧ dssk , (11.1.1)

where the ws depend only on the first derivatives of F.

Proof. We follow a proof-by-induction argument w.r.t. k.

• Case k = 0: By the special definition of Y0
F this is trivial; cf. Definition 3.9.

• Case k = 1: Below we write J = (Jij)i,j for the Jacobian of F. Then for ω = c dxi ∈
L2Λ1(Ω) and v ∈ Rn it is[

Y1
Fω
]
(v) = (c ◦ F) dxi(Jv) = (c ◦ F)∑j Jijvj = ∑

j(c ◦ F) Jij dxj(v).

Consequently,
Y1

Fω =
∑
j

(c ◦ F) Jij dxj (11.1.2)

and we get the wanted representation (11.1.1) for k = 1.

• k 7→ k + 1: We assume the existence of the wanted ws for every basis k-form.
Now let ω = c dxσ1 ∧ · · · ∧ dxσk ∧ dxσk+1 . Then set i := σk+1 and η = cdxσ1 ∧ · · · ∧ dxσk .
The important point is now the compatibility of the pullback operation with the wedge
product. From [51, Lemma 14.16.] we get

Yk+1
F ω =

[
YkFη

]
∧
[
Y1

Fdx
i
]
,

with point-wise wedge product. By assumption we have ws ∈ C l(Ω̂), s ∈ Σ<(k, n) depend-
ing on the first derivatives of F s.t. (11.1.1) holds. Since the wedge-product is bilinear (see
[51, Proposition 14.11]) we obtain with (11.1.2) directly

Yk+1
F ω =

∑
s∈Σ<(k,n)

∑
j

ws Jij (c ◦ F) dxs1 ∧ · · · ∧ dssk ∧ dxj.

Due to the fact ws Jij ∈ C l(Ω̂) we get the desired representation also for k + 1.
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Hence, we have now a better understanding how the pullback operation changes the coefficients
of a k-form. And the first two points in Lemma 3.8 can now be checked easily. Because, if
in (11.1.1) we choose c ∈ H l(Ω) we obviously have ws (c ◦ F) ∈ H l(Ω̂). Besides, utilizing
the chain and product rule for differentiation we find a constant C̃s independent of c such
‖ws (c ◦ F)‖

Hl(Ω̂) ≤ C̃s ‖c‖Hl(Ω). Thus, for ω = c dxσ1 ∧ · · · ∧ dxσk with c ∈ H l(Ω) it is YkFω ∈
H lΛk(Ω̂) and we find another constant C̃ independent of c with∥∥∥YkFω∥∥∥Hl(Ω̂)

≤ C̃s ‖ω‖Hl(Ω) .

Exploiting linearity we see the first point in Lemma 3.8.
It remains to face the second point regarding zero boundary conditions. But the latter is also
clear, because for l = 1 and c ∈ H1

0 (Ω) we have in (11.1.1) certainly ws (c ◦ F) ∈ H1
0 (Ω̂). Again

in view of linearity we see then

YkF
(
H1

0 Λk(Ω)
)
⊂ H1

0 Λk(Ω̂).

This finishes our proof.

11.2 The inf-sup test
At different places in the thesis we display numerically computed inf-sup constants for different
inf-sup expressions. The underlying computations follow the inf-sup test from Bathe et al. which
leads in the discrete setting to generalized eigenvalue problems. Details and applicability of these
tests can be found in [15, 33] . For reasons of completeness we briefly explain here the procedure
what type of eigenvalue problem one uses, where we orient ourselves towards the mentioned
references.
Let use assume we have a bounded bilinear form B : V 1 × V 2 → R on Hilbert spaces V i

related to some variational formulation. Given conforming discrete spaces V i
h ⊂ V i, i = 1, 2 an

important quantity are the inf-sup constants

CIS(h) := inf
wh∈V 1

h

sup
uh∈V 2

h

B(wh, uh)
‖wh‖V 1 ‖uh‖V 2

,

where for the norms in V i we write ‖·‖V i . The question is now, how CIS(h) is computed for a
fixed mesh? This can be done as follows:
First choose bases

{
v

(i)
1 , v

(i)
2 , . . . , v

(i)
Ni

}
⊂ V i

h of the discrete spaces, meaning for wh ∈ V 1
h and

uh ∈ V 2
h it is wh = ∑N1

j=1wj v
(1)
j , uh = ∑N2

j=1 uj v
(2)
j for suitable wj, uj. The coefficients are stored

in column vectors w = (w1, . . . , wN1)T, u = (u1, . . . , uN2)T. Then let

B ∈ RN2×N1 , S ∈ RN1×N1 , T ∈ RN2×N2

be the matrices such that

B(wh, uh) = uTBw, ‖wh‖2
V 1 = wTSw, ‖uh‖2

V 2 = uTTu.

Consequently, one has for the inf-sup constant

CIS = inf
w∈RN1

sup
u∈RN2

uTBw√
wTSw

√
uTTu

.
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Then, as shown in [15, Section 2], the computation of the value CIS can be done equivalently
through the generalized Rayleigh quotient

C2
IS = inf

w∈RN1

wTBTT−1Bw

wTSw
.

One notes that T andM := BTT−1B are symmetric matrices and obviously T is positive definite.
Thus M is positive semi-definite and CIS is the square root of the smallest eigenvalue λmin of
the generalized eigenvalue problem

BTT−1Bx = λSx, x ∈ RN1 (compare (14) in [15]) ,

i.e. CIS =
√
λmin.

After the computation of the different matrices B, T and S we can exploit the MATLAB ([53])
functions eigs() and mrdivide() to compute the respective smallest eigenvalue, so the inf-sup
values CIS. This is done in the different examples through the thesis.
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