Cyclopentadienylzirconium(IV)halogenide und -hydridozirconiumcluster

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Vom Fachbereich Chemie der Rheinland-Pfälzischen Technischen Universität Kaiserslautern Landau zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation

D 386

vorgelegt von

Dipl.-Chem. Dan Scheibe

geboren in Lauchhammer

Betreuer der Arbeit: apl. Prof. Dr. Helmut Sitzmann

Tag der wissenschaftlichen Aussprache: 11. Januar 2024

1.Berichterstatter: apl. Prof. Dr. Helmut Sitzmann

2.Berichterstatter: Prof. Dr. Werner R. Thiel

Die dieser Arbeit zugrunde liegenden Experimente wurden im Arbeitskreis Sitzmann des Fachbereichs Chemie der Technischen Universität Kaiserslautern im Zeitraum von März 2015 bis Mai 2018 durchgeführt.

Abkürzungen

äq	äquivalent
b	breites Signal
Bu	Butyl-
Ср	Cyclopentadienyl-
Cp*	Pentamethylcyclopentadienyl-
Cp″	1,3-di- <i>tert</i> -butylcyclopentadienyl-
Cp'''	1,2,4-tri-tert-butylcyclopentadienyl-
⁴ Cp	Tetraisopropylcyclopentadienyl-
⁵ Cp	Pentaisopropylcyclopentadienyl-
δ	chemische Verschiebung
d	Dublett
DEE	Diethylether
DFT	Dichtefunktionaltheorie
eq	equilibrium
Et	Ethyl-
НОМО	Highest Occupied Molecular Orbital
ⁱ Bu	iso-Butyl-
ⁱ Pr	Isopropyl-
LUMO	Lowest Unoccupied Molecular Orbital
m	Multiplett
MAO	Methylaluminoxan
Me	Methyl-
NMR	Nuclear Magnetic Resonance
MO	Molekülorbital
Naph	Naphthyl-
OX.	Oxidation
OZ	Ordnungszahl
Ph	Phenyl-

qintQuintettracRacematRed.ReduktionRTRaumtemperatursSingulettseptSeptetttTriplett ^t Butert-Butyl-THFTetrahydrofuranTMSTrimethylsilan	aint Ouinte	ett
racRacematRed.ReduktionRTRaumtemperatursSingulettseptSeptetttTriplett*Butert-Butyl-THFTetrahydrofuranTMSTrimethylsilan	9 Quinte	
Red.ReduktionRTRaumtemperatursSingulettseptSeptetttTriplett*Butert-Butyl-THFTetrahydrofuranTMSTrimethylsilan	rac Racem	at
RTRaumtemperatursSingulettseptSeptetttTriplett ^t Butert-Butyl-THFTetrahydrofuranTMSTrimethylsilan	Red. Reduk	tion
s Singulett sept Septett t Triplett ^t Bu <i>tert</i> -Butyl- THF Tetrahydrofuran TMS Trimethylsilan	RT Raumt	emperatur
sept Septett t Triplett ^t Bu <i>tert</i> -Butyl- THF Tetrahydrofuran TMS Trimethylsilan	s Singul	ett
t Triplett ^t Bu <i>tert</i> -Butyl- THF Tetrahydrofuran TMS Trimethylsilan	sept Septet	t
^t Bu <i>tert</i> -Butyl- THF Tetrahydrofuran TMS Trimethylsilan	t Triplet	t
THFTetrahydrofuranTMSTrimethylsilan	^t Bu <i>tert</i> -Bu	utyl-
TMS Trimethylsilan	THF Tetrah	ydrofuran
	TMS Trimet	hylsilan
zent Zentroid	zent Zentro	id

Inhaltsverzeichnis

	ürzungen	II	
1	Zusa	ammenfassung	1
2	Einl	eitung	4
	2.1	Metallocene	4
	2.2	Synthese und Reaktivität von Zirconiumcyclopentadienylverbindungen	9
3	Stru	kturelle Aufklärung von Tri(<i>tert</i> -butyl)- cyclopentadienylkomplexen der	
	4. G	ruppe	14
	3.1	Trichloridotri(<i>tert</i> -butyl)cyclopentadienyltitan(IV) (20)	14
	3.2	Trichloridotri(<i>tert</i> -butyl)cyclopentadienylzirconium(IV) (21)	17
	3.3	Trichloridotri(<i>tert</i> -butyl)cyclopentadienylhafnium(IV) (22)	20
	3.4	Vergleich der Tri(<i>tert</i> -butyl)cyclopentadienyltrichloride der vierten	
		Gruppe mit ihren Di(<i>tert</i> -butyl)cyclopentadienylanaloga	23
	3.5	Substitution der Chloridoliganden	26
		3.5.1 Triiodidodi(<i>tert</i> -butyl)cyclopentadienylzirconium(IV) (24)	27
		3.5.2 Triiodidotri(<i>tert</i> -butyl)cyclopentadienylzirconium(IV) (25)	31
		3.5.3 Tribromidotri(<i>tert</i> -butyl)cyclopentadienylzirconium(IV) (27)	33
		3.5.4 Tribromidodi(<i>tert</i> -butyl)cyclopentadienylzirconium(IV) (26)	35
	3.6	Reduktion von Tribromidodi- <i>tert</i> -butylcyclopentadienylzirconium (26).	37
	3.7	Diskussion zum Halogenidaustausch	41
4	Zirco	oniumhydridcluster	43
	4.1	Tetrakis(1,3-di(<i>tert</i> -butyl)cyclopentadienyl)-di-µ-chlorido-octa-µ-hydrido-	-
		tetrazirconium(III/IV) (37)	46
	4.2	Untersuchungen zum Reaktionshergang	54
		4.2.1 Umsetzung mit Natriumhydrid	56
		4.2.2 Umsetzung mit Natriumborhydrid	56
		4.2.3 Umsetzung mit Diisobutylaluminiumhydrid (Dibal)	58
		4.2.4 Umsetzung mit Lithiumtriethylborhydrid (Superhydrid)	59
		4.2.5 Variation des stöchiometrischen Verhältnisses	60
		4.2.6 weitere Optimierungen der Reaktionsführung	65
	4.3	Tris{di(<i>tert</i> -butyl)cyclopentadienyldi(µ-hydrido)zirconium} {chloridotri(µ-	
		hydrido)aluminat} (39)	66

	4.4	Disku	ssion der hydridoverbrückten Zirconiumcluster	72
5	Zirc	onocen	e	75
	5.1	Oktais	sopropylzirconocen (47)	77
	5.2	Hexa(<i>tert</i> -butyl)zirconocen (48)	80
		5.2.1	Strukturelle Aufklärung von Cp‴Li · THF (50)	82
	5.3	Decai	sopropylzirconocen (51)	86
	5.4	Disku	ssion der Zirconocene	89
6	Schl	ussfolg	erung und Ausblick	93
	6.1	Cyclop	pentadienylzirconiumhalogenide	93
	6.2	Hydrid	dozirconiumcluster	93
	6.3	Zircon	ocene	94
7	Exp	eriment	eller Teil	96
	7.1	Arbeit	stechniken und Geräte	96
		7.1.1	Allgemeine Arbeitstechnik	96
		7.1.2	Kernresonanzspektroskopie	96
		7.1.3	Elementaranalyse	96
		7.1.4	Schmelzpunktbestimmung	97
		7.1.5	Kristallstrukturanalyse	97
	7.2	Ausga	ngsverbindungen	97
	7.3	Versu	chsbeschreibungen	98
		7.3.1	Trichlorido(1,2,4-tri(<i>tert</i> -butyl)cyclopentadienyl)titan(IV) (20)	98
		7.3.2	Trichlorido(1,2,4-tri(<i>tert</i> -butyl)cyclopentadienyl)zirconium(IV)	
			(21)	99
		7.3.3	Trichlorido(1,2,4-tri(<i>tert</i> -butyl)cyclopentadienyl)hafnium(IV) (22)	100
		7.3.4	Triiodido(1,3-di(<i>tert</i> -butyl)cyclopentadienyl)zirconium(IV) (24) .	101
		7.3.5	Triiodido(1,2,4-tri(<i>tert</i> -butyl)cyclopentadienyl)zirconium(IV) (25)	102
		7.3.6	Tribromido(1,3-di(<i>tert</i> -butyl)cyclopentadienyl)zirconium(IV)(26)	103
		7.3.7	Tribromido(1,2,4-tri(<i>tert</i> -butyl)cyclopentadienyl)zirconium(IV)	
			(27)	104
		7.3.8	tetrakis(1,3-di(<i>tert</i> -butyl)cyclopentadienyl)-di-(µ-chlorido)- octa-	-
			(µ-hydrido)-tetrazirconium(III/IV) (37)	105
		7.3.9	tris(1,3-di(<i>tert</i> -butyl)cyclopentadienyl)-hexa-(µ-hydrido)trizir-	
			conium(III)tri-(µ-hydrido)aluminiumchlorid (39)	106

		7.3.10	Octa(<i>iso</i> -propyl)di(tetrahydrofuran)zirconocen (47)	. 107
		7.3.11	Deca(<i>iso</i> -propyl)di(tetrahydrofuran)zirconocen ((51))	. 108
		7.3.12	Tri(<i>tert</i> -butyl)(tetrahydrofuran)Lithium (50)	. 109
8	Lite	aturver	zeichnis	110
Ab	bildu	ngsverz	eichnis	116
Sc	hema	taverzei	chnis	119
Та	belleı	nverzeic	hnis	121
9	Anh	ang		123
	9.1	Datens	atz von Cp‴TiCl ₃ (20) (15143o)	. 123
	9.2	Datens	atz von Cp ^{///} ZrCl ₃ (21) (14100o)	. 124
	9.3	Datens	atz von Cp ^{///} HfCl ₃ (22) (15166o)	. 125
	9.4	Datens	atz von Cp″Zrl ₃ (24) (hasj171020b_1)	. 126
	9.5	Datens	atz von (Cp″Zr) ₄ (µ-H) ₈ (µ-Cl) ₂ (37) (15188o)	. 127
	9.6	Datens	atz von (Cp"(µ-H) ₂ Zr) ₃ (µ-H) ₃ AlCl (39) (17114o)	. 128
	9.7	Datens	atz von [Cp‴Li] · THF (50) (19164o)	. 129
	Dan	ksagung	Γ	130
	Lebe	enslauf		131
	Eide	sstattlic	he Erklärung	132

1 Zusammenfassung

Schema 1.1: Syntheseschema der Trichloridotri(*tert*-butyl)cyclopentadienylkomplexe von M = Ti, Zr und Hf.

Die von *Zhou* bereits 1994 erhaltenen tri(*tert*-butyl)cyclopentadienyltrichloride der vierten Gruppe [Cp^{'''}MCl₃] (M = Ti, Zr, Hf)^[64] konnten reproduziert, kristallisiert und strukturell untersucht werden. Auch konnten neue Di- und Tri(*tert*-butyl)cyclopentadienyl-zirconiumbromide und -iodide synthetisiert werden. Von [Cp^{''}Zrl₃] wurden röntgen-diffraktometertaugliche Kristalle erhalten, an denen die Struktur der Verbindung aufgeklärt werden konnte.

Schema 1.2: Syntheseschema der Trihalogenidotri(*tert*-butyl)cyclopentadienylzirconiumkomplexe (R = H, ^tBu; X = Br, I).

Bei Substitutionsversuchen mit weiteren Liganden konnten Hydridocluster erhalten werden. Strukturelle Untersuchungen zeigte einen Clusterkomplex mit der Formel $(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2$.

Es handelt sich hierbei um einen vierkernigen Zirconiumcluster, welcher von acht Hydrido- und zwei Chloridoliganden verbrückt wird. Jedes Zirconiumatom ist weiterhin mit einem Di(*tert*-butyl)cyclopentadienylliganden verbunden. Bei der Untersuchung des Reaktionshergangs wurde ein weiterer Zr-Cluster gefunden.

Schema 1.3: Syntheseschema der Hydridokomplexe (Al: blau, C: grau, Cl: grün, Hydride: rosa, Zr: gelb).

Es konnten röntgendiffraktometertaugliche Kristalle von Tris{di(*tert*-butyl)cyclopentadienyldi(µ-hydrido)zirconium} {chloridotri(µ-hydrido)aluminat} erhalten werden. Der Cluster besteht aus drei Zirconiumatomen, welche in einem Dreieck angeordnet sind und mit je zwei Hydridoliganden verbrückt. Jedes Zirconium ist über eine Hydridobrücke mit einem Aluminiumchloridfragment verbunden. Zudem ist an je Zirconiumatom je ein Di(*tert*-butyl)cyclopentadienylligand koordiniert.

Schema 1.4: Syntheseschema der Isopropylzirconocene.

Weiterhin wurden Experimente zur Herstellung von Alkylderivaten des bislang nicht bekannten Zirconocengrundkörpers Cp₂Zr unternommen. Hierzu wurde Zirconiumtetrachlorid mit n-Butyllithium zum Dichlorid ZrCl₂(THF)₂ reduziert. Das Reduktionsprodukt wurde mit Natriumtetra(isopropyl)cyclopentadienid, Natriumtri(*tert*butyl)cyclopentadienid oder Lithiumpenta(isopropyl)cyclopentadienid umgesetzt. Die Ergebnisse zeigen keinen eindeutigen erhalt von Zirconocenen, jedoch wurde ein Tri(*tert*-butyl)cyclopentadienyllithium- salz erhalten, welches strukturell aufgeklärt werden konnte.

Schema 1.5: Syntheseschema zum Hexa(*tert*-butyl)zirconocenexperiment.

2 Einleitung

2.1 Metallocene

Die Entdeckung des Ferrocens 1952 durch *Miller, Tebboth* und *Tremaine*^[1] und unabhängig davon durch *Kealy* und *Pauson*^[2] und der Aufklärung dessen Struktur führte zur Synthese zahlreicher weiterer Metallocene. Es entwickelte sich ein eigenes Forschungsgebiet, welches die Synthese derartiger Verbindungen zum Gegenstand hatte. Insbesondere *Wilkinson*^[3,4,5,6,7] und *Fischer*^[8,9] leisteten wichtige Beiträge durch die Publikation zahlreicher Cyclopentadienyl-Metallverbindungen^[10]. Allerdings konnten homoleptische Metallocene zunächst nur von den späten Übergangsmetallen erhalten werden. Homoleptische Metallocene der schweren Homologen wurden über kompliziertere Verfahren erhalten. Metallocene der frühen Übergangsmetalle wurden zunächst nur als Metallocenhalogenide erhalten. Dies liegt an der niedrigen Valenzelektronenzahl (z.B. 14 VE für Cp₂Zr) und an den großen Ionenradien der frühen Übergangsmetalle, die durch zwei Cp-Liganden nur unvollständig abgeschirmt werden. Auch sind die früheren Übergangsmetalle elektronenärmer und benötigen damit mehr Elektronendonoren, damit der Komplex elektronisch stabil ist.

Um Metallocene der frühen Übergangsmetalle zu stabilisieren, kann der Cyclopentadienylligand mit Alkyl- und Silylsubstituenten derivatisiert werden. Die Veränderung des Substitutionsmusters führt dazu, dass der sterische Anspruch und die Elektronendichte modifiziert werden können. Hierbei ist der Pentamethylcyclopentadienylligand (HCp*) hervorzuheben. Durch stärkeres Elektronendonorvermögen und erhöhten sterischen Aufwand wurden manche kinetisch labilen Cyclopentadienylkomplexe so weit stabilisiert, dass diese isoliert und charakterisiert werden konnten. Bis heute ist HCp* einer der wichtigsten Liganden in der Organometallchemie.

Die Zufallsentdeckung von Pentamethycyclopentadienyltitan(IV)chlorid ist der gründlichen Aufarbeitung der Reaktionsprodukte aus einem Gemisch aus ungesättigten Kohlenwasserstoffen und Titantetrachlorid zu verdanken. Diese hatten *Röhl, Lange, Gößl* und *Roth* 1962 für zwei Stunden in einem Autoklaven bei ca. 30 - 60 bar auf 300 °C erhitzt. Nach der erschöpfenden Destillation fanden sie den Titankomplex Cp*TiCL₃ in der letzten Fraktion^[11].

Schema 2.1: Erste Darstellung von Cp*TiCl₃ (1).

Heutzutage wird CpTiCl₃ entweder über Ligandenumverteilung zwischen Dichloridobis(cyclopentadienyl)titan und Titan(IV)chlorid, oder über die Umsetzung von 1trimethylsilyl-2,4-cyclopentadien mit Titan(IV)chlorid erhalten^[12].

Ein frühes Synthesekonzept von *Fischer* und *Wilkinson* zur Herstellung von Titanocen war 1956 die Umsetzung von TiCl₂ mit NaCp^[13]. Spätere Anstrengungen bestanden in der Reduktion von Titanocendihalogeniden. *Drummond*^[14] reduzierte hierfür Titanocendichlorid mit Natriumnaphtalen, *Mosimann*^[15] und *Miller*^[16] nutzten hierfür metallisches Natrium. Untersuchungen durch *Bercaw* und *Brinzinger*^[17], *Tebbe* und *Guggenberger*^[18,19] und *Davison* und *Wreford*^[20] boten Hinweise, dass es sich bei der hellgrünen Verbindung um einen zweikernigen dihydridoverbrückten Komplex mit einer zusätzlichen Fulvalendiyl-Brücke handelt. Den endgültigen Beweis lieferten *Troyanov*, *Antropiusova* und *Mach* 1992 durch eine Röntgenstrukturanalyse von Verbindung **2**^[21]. Dieses Beispiel zeigt die Neigung von Titan zur oxidativen Addition, wenn dessen Koordinationsstellen unzureichend abgeschirmt sind.

Schema 2.2: Herstellung von μ -(η^5 : η^5) Fulvalendiyl-bis (μ -hydrido- η^5 -cyclopendienyl-titan) (**2**)^[13,14,16].

Erste Hinweise auf ein homoleptisches Titanocen wurden von *Bercaw* gefunden^[22]. Er synthetisierte Decamethyltitanocen, konnte aber keine strukturellen Daten erhalten.

2 Einleitung

Bei der Verbindung handelt es sich um einen Titan(II)komplex. Niedrige Oxidationsstufen sind in Abwesenheit starker Akzeptorliganden in der vierten Gruppe schwer zu erreichen, da sie zu einer hohen Reaktivität neigen. NMR-spektroskopische Untersuchungen zeigten, dass die Verbindung bei höheren Temperaturen tautomerisiert. Wie auch schon in Verbindung **2** ist hier eine oxidative Addition am Titanzentrum zu erkennen. Einer der Methylsubstituenten spaltet ein H-Atom ab, welches dann vom Titanzentrum koordiniert wird. Als Folge darauf koordiniert das entstandene CH₂-Fragment des Cyclopentadienylliganden ebenfalls an das Titanzentrum. Die Tautomerisierung erkennt man an einer Farbänderung. Es handelt sich bei der gelben Verbindung **3a** um einen paramganetischen Komplex mit zwei ungepaarten Valenzelektronen am Titan(II)-Zentralatom. Verbindung **3b** zeigt eine grüne Färbung in Lösung und ist diamagnetisch. Ein Lösungsmitteleffekt wird ausgeschlossen, da diese Beobachtung in diversen organischen Lösungsmitteln gemacht wurde. Beide Tautomere liegen in Lösung im Gleichgewicht vor. Pentamethylcyclopentadienylkompexe, wie man sie bei Verbindung **3b** sieht, werden auch als "tuck-in"-Komplex bezeichnet.

Schema 2.3: Tautomergleichgewicht von Decamethyltitanocen (3)^[22].

Lawless konnte 1998 das erste "echte" Titanocen erhalten in dem er eine Methylgruppe im Cp*-Liganden durch eine *tert*-butyldimethylsilyl-Gruppe ersetzte. Dies veränderte die elektronischen Eigenschaften des Cp-Liganden in soweit, dass keine Tautomerisierung mehr auftrat^[23].

Schema 2.4: Synthese des ersten homoleptischen Titanocens (6)^[23].

Für die höheren Homologen Zirconium und Hafnium konnten bis heute keine homoleptischen Metallocene synthetisiert werden. Das Problem hier besteht auch wieder darin, dass die Oxidationsstufe +II, welche in den jeweiligen Metallocenen vorliegen müsste, nur schwer zu erreichen ist. *Chirik* erhielt bei Experimenten mit verschieden substituierten Indenylsalzen Dichloridodiindenylzirconium(IV)komplexe. Diese wurden unter anderem mit Isopropyllithium umgesetzt. Die Bis(indenyl)zirconiumkomplexe werden durch anschließende reduktive Eliminierung erhalten, bei der Isobutan abgespalten wird. Ebenfalls wird die Reduktion der Dichloride mit Natriumamalgam beschrieben^[24].

Schema 2.5: Allgemeines Syntheseschema für Bis(indenyl)Zirconiumkomplexe (R = SiMe₃, SiPhMe₂, SiMe₂^tBu, CHMe₂, CMe₃)^[24].

Die bisher entdeckten Metallocenhalogenide von Titan und Zirconium und deren Derivate sind mittlerweile aus der chemischen Industrie nicht mehr wegzudenken. Sie dienen als Grundstoffe für Katalysatoren oder besitzen selbst gute katalytische Eigenschaften. Vor allem in der Polymerchemie nehmen sie einen hohen Stellenwert ein. Die klassischen Ziegler-Katalysatoren für die Olefinpolymerisation zum Beispiel bestanden aus metallorganischen Hauptgruppen-Verbindungen der Gruppen I, II oder III und einer Übergangsmetallverbindung der Gruppen IV bis VI (z.B. Titantetrachlorid). In jüngerer Zeit werden ebenfalls Kaminsky-Katalysatoren für das Verfahren genutzt. Diese sind Gemische aus Gruppe IV Metallocenen und Methylaluminoxan (MAO), welche wesentlich besseren turn-over bei der Polymerisierung von Olefinen aufweisen^[25].

Schema 2.6: Vereinfachtes Schema zu C–C-Spaltungs- und Kupplungsreaktionen von Cp_2M (M = Ti, Zr)^[26].

Schema 2.6 zeigt ein vereinfachtes Katalyseschema des Cp_2M -Fragments. Demnach wird sowohl im Spaltungs- sowie im Kupplungsprozess über Metallacyclocumulene die intramolekulare Koordination der inneren Doppelbindung durch eine intermolekulare ersetzt. Diese Intermediate orientieren sich abhängig vom Metall M und der Substituenten R im Folgenden so um, dass Produkte erhalten werden, die entweder intakte oder gespaltene C₄-Ketten aufweisen^[26].

Schema 2.7: Beispiele für Kaminsky-Katalysatoren^[25].

2.2 Synthese und Reaktivität von

Zirconiumcyclopentadienylverbindungen

Schon *A. Werner* hat sich Ende des neunzehnten Jahrhunderts mit mehrkernigen Metallkomplexen beschäftigt. Allerdings konnte er noch keine Clusterkomplexe mit direkten Metall-Metall-Bindunge erhalten. Die mehrkernigen Verbindungen wiesen ausschließlich Ligandbrücken auf. Demnach wurden direkte Metall-Bindungen auch nicht diskutiert. Dies änderte sich zwischen 1950 und 1960, als die Röntgenstrukturanalyse von "TaCl₂·H₂O" Tantaloktaeder mit kurzen Ta-Ta-Abständen zeigte. Dementsprechend musste die Verbindung als $[Ta_6Cl_{14}]$ neu formuliert werden. Um die gleiche Zeit wurde durch die Einkristallstrukturanalyse von $Mn_2(CO)_{10}$ eine unverbrückte Metall-Bindung beobachtet.

Cotton definierte 1964 Cluster als Gruppe von Metallatomen, welche ausschließlich oder zumindest in beträchtlichem Maße von Metall-Metall-Bindungen zusammengehalten wird. Es können auch zusätzlich verbrückende und terminale Nichtmetallatome vorliegen.

Cluster werden in vier verschiedene Arten unterteilt. So genannte "nackte" Cluster sind kleine Einheiten von ligandfreien Metallatomen. Durch die hohe Reaktionsfähigkeit ist diese Art nur in inerten Matrizes bei sehr tiefen Temperaturen stabil. Diese hohe Empfindlichkeit kann durch Umgeben der "nackten" Cluster mit einer Ligandhülle verringert werden. Die Hülle blockiert freie Valenzen der Oberflächenatome und behindert so den Angriff des bedeckten Clusters durch andere Atome, Moleküle und Cluster. In anorganischen Clustern liegen neben Metall-Metall-Bindungen auch Verbrückungen durch Halogene oder Chalkogene vor. Organometallcluster weisen dazu noch organische Liganden wie Carbonyl, Alkyliden, Alkylidin und Cyclopentadienyl auf. Die Bildung von Metall-Metall-Bindungen wird durch drei Bedingungen begünstigt: eine niedrige formale Oxidationsstufe, eine hohe Kernladungszahl, welche große d-Orbitale mit guten Überlappungseigenschaften verursachen und große Atomisierungsenthalpien^[27].

Schema 2.8: Beispiele für Clusterarten: nackter Cluster (Ag_6) (7)^[28], bedeckter Cluster $(Au_{55}[P(C_6H_5)_3]_{12}Cl_6)$ (8)^[29], anorganischer Cluster ([Nb₆Cl₁₂])(9)^[30], Organometallcluster ([Cp*Co₃(CO₂)]) (10)^[31].

Die Synthese von homoleptischem Zirconocen gestaltet sich deshalb schwierig, weil Zirconiumverbindungen in niedrigen Oxidationsstufen, bedingt durch hohe Reaktivität, zu Oligomerisierung und Clusterbildung neigen. Sowohl die Kernladungszahl (OZ = 40) als auch die Atomisierungsenthalpie (609 kJ·mol⁻¹) liegen im mittleren bis hohen Bereich und begünstigen die Bildung von kleinen bis mittelgroßen Clustern. *Manriquez* und *Bercaw* erhielten 1974 beim Versuch der Reduktion von Decamethylzirconocendichlorid mit Natriumamalgam einen dimeren, N₂-verbrückten Zirconocenkomplex. Zudem koordiniert je Zirconoceneinheit je noch ein Distickstoffmolekül^[32].

Schema 2.9: Reduktion von $(Cp^*)_2 ZrCl_2$ (**11**) durch Na/Hg in N₂-Atmosphäre^[32].

Die Gruppen um *Gambarotta* und *Chiang* berichteten 1987 als erste von der strukturellen Untersuchung einer zweikernigen organometallischen Zirconium(III)-Verbindung^[33]. $(\eta^5:\eta^5-C_{10}H_8)[(\eta^5-C_5H_5)Zr(\mu-Cl)]_2$ wurde durch eine Komproportionierungsreaktion von Zirconocendichlorid und Zirconocenbis(trimethylphosphan) erhalten. Bei der Reaktion bildet sich durch H₂-Abspaltung Fulvalen, welches neben den Chloridobrücken die Zirconiumzentren miteinander verbindet. Drei Brückenliganden führen hier zu einem Zr–Zr-Abstand von 3.233 Å, bei dem paramagnetisches Verhalten der beiden Zr(III)-Zentralatome beobachtet wird.

Schema 2.10: Komproportionierung von Cp_2ZrCl_2 (13) und $Cp_2Zr[P(CH_3)_3]_2$ (14)^[33].

1992 berichteten *Ryan et al.* von der Synthese und der strukturellen Untersuchung des ersten paramagnetischen, zweikernigen Zirconocenderivats. In den Cp-Ligand wurden zwei 1,3-ständige Trimethylsilylgruppen eingebaut. Der erhöhte sterische Anspruch der Liganden verhindert bei der Reduktion von Tetrakis(trimethylsilyl)zirconocendichlorid (**16**) durch Natriumamalgam die Fulvalenbildung. Dadurch werden die

Metallzentren nicht in eine Bindungsnähe gezwungen und weisen demnach Paramagnetismus auf. Auch haben Silylgruppen einen elektronenziehenden Effect, welcher Elektronendichte aus dem mesomeren Ringsystem zieht und dadurch die C-H-Bindung der Ringwasserstoffe stabilisiert.

Schema 2.11: Reduktion von $[(\eta - C_5 H_3 (SiMe_3)_2 - 1, 3)ZrCl_2]$ (16).

Übergangsmetallcluster finden vor allem Anwendung in der Katalyse. Allerdings ist es schwierig einen Clusterkomplex als tatsächliche katalytische Spezies zu identifizieren. So kann es sein dass der Cluster im Laufe des Katalysezyklus zersetzt wird und stattdessen ein Zerfallsprodukt als Katalysator wirkt. So ist Ru₃(CO)₁₂ ein Prekatalysator, der ausgiebig zur Aktivierung von kleinen Molekülen wie H₂^[34,35,36] oder CO^[37,38,39,40,41] genutzt wurde. Auch für komplexere Umsetzungen wie beispielsweise (Cyclo)carbonylierung^[42,43,44] und C–H-Aktivierung^[45,46,47,48] wird der Komplex oft verwendet. Mechanistische Studien, die an Ru₃(CO)₁₂-katalysierten Reaktionen durchgeführt wurden, weisen stark darauf hin, dass der Cluster als Prekatalysator fungiert und sich vor der Katalyse in die aktive Form umwandelt.

Bei hohem CO-Druck befindet sich $Ru_3(CO)_{12}$ im Gleichgewicht mit dem Monomeren $Ru(CO)_5^{[49]}$. Die Gleichgewichtseinstellung beschleunigt sich in Anwesenheit von Chloriden^[50]. *Geoffroy* und *Dombek* fanden Rutheniumstrukturen mit unterschiedlichen Clustergrößen, welche sich aus verschiedenen Gleichgewichten bildeten. Diese waren abhängig von Temperatur, CO-Druck und der Halogenzugabe^[51]. Erhitzen des dreikernigen Ru-Komplexes in Anwesenheit von Chloriden und Bromiden resultiert in der Bildung einer vierkernigen Butterfly-Struktur. Führt man dieses Experiment mit lodiden durch, begünstigt es die Abgabe von CO und es bildet sich eine Triruthenium(μ_3 -I) Verbindung. Setzt man Ru₃(CO)₁₂ mit dppe um, erhält man monomeres Ru(CO)₃(dppe)^[52]. *Chatani* zeigte, dass während der Carbonylierung von C–H-Bindungen $Ru_3(CO)_{12}$ in mononukleare Ru-Komplexe fragmentiert^[53,54,55]. *Beller* berichtete, dass precatalytische Mengen von $Ru_3(CO)_{12}$ in Anwesenheit von Phosphanliganden in situ monomere Ru-Verbindungen bilden^[56,57,58].

Periasamy zeigte, dass $Fe_3(CO)_{12}$ auf eine ähnliche Weise in $Fe_2(CO)_8$ und Amin-Fe(CO)₄ fragmentiert, wenn man $Fe_3(CO)_{12}$ mit Amin in THF umsetzt^[59,60,61].

Chini und *Martinengo* berichteten, dass $Rh_4(CO)_{12}$ in N_2 bei 130–140 °C thermisch zerfällt und $Rh_6(CO)_{16}$ bildet^[62]. Dieser Zerfall wurde ebenfalls in Methanol beobachtet, allerdings geschieht der Zerfall nur langsam. Setzt man den Tetra- oder Hexarhodiumkomplex in CO-Atmosphäre mit PPh₃ um, erhält man $Rh_2(CO)_4(PPh_3)_4$. *Chini* fand später, dass sich Lösungen von $Rh_4(CO)_{12}$ unter reduzierenden Bedingungen in einer CO-Atmosphäre in Gemische von Clustern unterschiedlicher Größe umwandeln^[63].

In den letzten Jahren haben heteronucleare Organometallcluster Beachtung in der Katalyse gefunden. Von unterschiedlichen Metallzentren in einem Molekül erhofft man sich kooperative oder synergetische Effekte, welche die katalytischen Eigenschaften positiv beeinflussen.

3 Strukturelle Aufklärung von Tri(*tert*-butyl)cyclopentadienylkomplexen der 4. Gruppe

Bereits **1992** konnte *Zhou* die Tri(*tert*-butyl)cyclopentadienyltrichloride der 4. Gruppe herstellen und charakterisieren. Die strukturelle Aufklärung blieb jedoch aus. Dies ist im Verlauf dieser Arbeit gelungen und wird im Folgenden behandelt. Die Darstellung der Verbindungen erfolgte jeweils nach der gleichen Herangehensweise (Schema 3.1)^[64].

Schema 3.1: Darstellung von Cp^{III}MCl₃ (**20 - 22**).

3.1 Trichloridotri(*tert*-butyl)cyclopentadienyltitan(IV) (20)

Tri(*tert*-butyl)cyclopentadien wurde in Toluol gelöst und mit Butyllithium für zwei Stunden zum Sieden erhitzt. Zum abgekühlten Reaktionsgemisch wurde Titantetrachlorid gegeben und für weitere zwei Tage bei Siedehitze gerührt. Nach Reaktionsende wurde unlöslicher Feststoff entfernt und die rote Lösung eingeengt. Es wurde ein roter kristalliner Feststoff erhalten. Die Ausbeute beträgt 31%. Durch Kristallisation bei -30 °C wurden rote, röntgendiffraktometertaugliche Kristalle erhalten.

Schema 3.2: Darstellung von $Cp'''TiCl_3$ (**20**).

Die Verbindung ist hydrolyseempfindlich und zersetzt sich an Luft. Bei zu langer Lagerung unter Schutzgas verwittern die Kristalle.

Abbildung 3.1: ORTEP-Plot der asymmetrischen Einheit von [Cp^{'''}TiCl₃] (**20**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besseren Übersicht nicht angezeigt (Ti: türkis; Cl: grün; C: grau).

Verbindung **20** kristallisiert als rote Prismen. Bei der Verbindung handelt es sich um einen monomeren Komplex in der monoklinen Raumgruppe P2_{1/c}. Die Röntgenstrukturanalyse zeigt drei unabhängige Moleküle pro asymmetrischer Einheit. Ringebene Eins und Zwei stehen im Winkel von 13.64° fast parallel zueinander. Die Chloridoligenden von Ti(1) sind der Ringebene von Ti(2) zugewandt. Das dritte Molekül steht mit 83.20° und 89.48° nicht ganz im rechten Winkel zu Ebene Eins und Zwei. Die Chloridoliganden sind gestaffelt zu den tert-Butylgruppen orientiert und bilden mit den Cyclopentadienyl-Liganden eine pseudotetraedrische Koordinationsumgebung.

	-	-			•
Bindungen	Winkel/°	Bindungen	Winkel / $^{\circ}$	Bindungen	Winkel / $^{\circ}$
Cl(1)-Ti(1)-Cp _{zent}	115.94	Cl(4)-Ti(2)-Cp _{zent}	118.97	Cl(7)-Ti(3)-Cp _{zent}	118.71
Cl(2)-Ti(1)-Cp _{zent}	118.78	Cl(5)-Ti(2)-Cp _{zent}	114.74	Cl(8)-Ti(3)-Cp _{zent}	116.97
Cl(3)-Ti(1)-Cp _{zent}	114.99	Cl(6)-Ti(2)-Cp _{zent}	116.02	Cl(9)-Ti(3)-Cp _{zent}	114.34
Cl(1)-Ti(1)-Cl(2)	99.07(2)	Cl(4)-Ti(2)-Cl(5)	102.36(2)	Cl(7)-Ti(3)-Cl(8)	99.53(3)
Cl(2)-Ti(1)-Cl(3)	104.05(2)	Cl(5)-Ti(2)-Cl(6)	103.61(2)	Cl(8)-Ti(3)-Cl(9)	102.96(3)
Cl(3)-Ti(1)-Cl(1)	101.54(3)	Cl(6)-Ti(2)-Cl(4)	98.64(2)	Cl(9)-Ti(3)-Cl(7)	101.77(3)

Tabelle 3.1: Ausgewählte Bindungswinkel in $^{\circ}$ von Cp^mTiCl₃ (**20**).

Die Bindungslängen der Ti–C-Bindungen liegen zwischen 2.3284(19) und 2.3929(19) Å. Daraus ergeben sich Ti–Zentroid-Abstände von 2.026, 2.027 und 2.030 Å. Die Abstände zwischen Titan und Chlor liegen zwischen 2.2269(6) und 2.2517(6) Å. Tabelle

3.2 zeigt die Bindungslängen im Detail.

Die Bindungswinkel zwischen dem Zentroid, dem Titan und den Chloriden liegen zwischen 114.34° und 118.97°. Die Cl–Ti–Cl-Winkel liegen im Bereich von 98.64(2)° bis 104.05(2)°. Alle Winkel sind in Tabelle 3.1 aufgeführt.

	3	5 5			
Bindung	Å	Bindung	Å	Bindung	Å
Ti(1)-Cp _{zent}	2.027	Ti(2)-Cp _{zent}	2.026	Ti(3)-Cp _{zent}	2.030
Ti(1)-C(1)	2.3645(18)	Ti(2)-C(20)	2.3627(17)	Ti(3)-C(40)	2.3708(18)
Ti(1)-C(2)	2.3389(19)	Ti(2)-C(21)	2.3372(18)	Ti(3)-C(41)	2.3284(19)
Ti(1)-C(3)	2.3909(17)	Ti(2)-C(22)	2.3864(17)	Ti(3)-C(42)	2.3862(18)
Ti(1)-C(4)	2.3818(17)	Ti(2)-C(23)	2.3851(17)	Ti(3)-C(43)	2.3929(19)
Ti(1)-C(5)	2.3287(17)	Ti(2)-C(24)	2.3290(17)	Ti(3)-C(44)	2.3430(18)
Ti(1)-Cl(1)	2.2411(6)	Ti(2)-Cl(4)	2.2374(6)	Ti(3)-Cl(7)	2.2321(6)
Ti(1)-Cl(2)	2.2269(6)	Ti(2)-Cl(5)	2.2414(7)	Ti(3)-Cl(8)	2.2346(7)
Ti(1)-Cl(3)	2.2374(6)	Ti(2)-Cl(6)	2.2451(6)	Ti(3)-Cl(9)	2.2517(6)

Tabelle 3.2: Ausgewählte Bindungslängen in Å von Cp^mTiCl₃ (**20**).

3.2 Trichloridotri(*tert*-butyl)cyclopentadienylzirconium(IV) (21)

Der Zirconiumkomplex ist auf dem gleichen Weg wie der Titankomplex zugänglich. Zunächst wird Tri(*tert*-butyl)cyclopentadien in Toluol gelöst, mit n-Butyllithium versetzt und für zwei Stunden unter Rückfluss metalliert. Nach Abkühlen der Lösung wird Zirconiumtetrachlorid zugegeben und die Suspension wird weitere zwei Tage in der Siedehitze gerührt.

Schema 3.3: Darstellung von Cp^{///}ZrCl₃ (**21**).

Das abgekühlte Reaktionsgemisch wird von unlöslichem Rückstand befreit. Die rote Lösung wird eingeengt und bei -30°C auskristallisiert. Es konnten farblose Kristalle in einer Ausbeute von 50% erhalten werden, die für röntgendiffraktometrische Untersuchungen geeignet waren. Die Kristalle verfärben sich nach einiger Zeit lachsfarben, doch werden dabei die Analysenwerte nicht beeinträchtigt. Die Verbindung ist hydrolyseempfindlich und in Argonatmosphäre gelagerte Kristalle werden mit der Zeit trüb und verwittern.

Abbildung 3.2: ORTEP-Plot der Struktur von [Cp^{'''}ZrCl₃] (**21**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besseren Übersicht nicht angezeigt (Zr: orange; Cl: grün; C: grau).

Die Verbindung kristallisiert als farblose Prismen im monoklinen Kristallsystem, in der Raumgruppe P2_{1/c}. In der Elementarzelle findet man zwei unabhängige Moleküle von sehr ähnlicher Geometrie nebeneinander (Tabellen 3.3 und 3.4). Die Ringebenen stehen in einem Winkel von 2.50° zueinander. Die *tert*-Butylgruppen sind so angeordnet, dass die 4-*tert*-Butylgruppe in die Lücke zwischen den 1- und 2-*tert*-Butylgruppen des benachbarten Cp-Rings zeigt. Auch hier sind die Chloridoliganden gestaffelt zu den *tert*-Butylgruppen des jeweiligen Cyclopentadienylrings orientiert und bilden mit dem Schwerpunkt des Rings eine pseudotetraedrische Koordinationsumgebung.

Bindung	Zr(1)	Bindung	Zr(2)
Zr(1)-Cp _{zent}	2.180	Zr(2)-Cp _{zent}	2.179
Zr(1)-C(1)	2.5006(18)	Zr(2)-C(21)	2.4961(18)
Zr(1)-C(2)	2.4650(18)	Zr(2)-C(22)	2.4618(18)
Zr(1)-C(3)	2.5170(18)	Zr(2)-C(23)	2.5141(18)
Zr(1)-C(4)	2.5200(18)	Zr(2)-C(24)	2.5237(18)
Zr(1)-C(5)	2.4711(18)	Zr(2)-C(25)	2.4746(18)
Zr(1)-Cl(1)	2.3702(5)	Zr(2)-Cl(4)	2.3682(5)
Zr(1)-Cl(2)	2.3667(5)	Zr(2)-Cl(5)	2.3734(5)
Zr(1)-Cl(3)	2.3680(5)	Zr(2)-Cl(6)	2.3664(5)

Tabelle 3.3: Ausgewählte Bindungslängen in Å von $Cp'''ZrCl_3$ (21).

Die Bindungslängen zwischen Zirconium und den Ringkohlenstoffatomen liegen zwischen 2.4618(18) und 2.5237(18) Å. Damit ergeben sich Zr-Zentroid-Abstände von 2.179 und 2.180 Å. Die Atomabstände der Zr-Cl-Bindungen bewegen sich im Bereich von 2.3664(5) Å und 2.3734(5) Å. Tabelle 3.3 zeigt die Bindungslängen im Detail. Cp_{zent}-Zr-Cl-Winkel liegen zwischen 113.25° und 118.72°. Cl-Zr-Cl spannen Winkel von 99.56(2)° bis 104.33(2)° auf. Die genannten Winkel sind im Detail in Tabelle 3.4 aufgeführt.

		5	
Bindungen	Winkel / $^{\circ}$	Bindungen	Winkel / $^{\circ}$
Cl(1)-Zr(1)-Cp _{zent}	116.15	Cl(4)-Zr(2)-Cp _{zent}	116.21
Cl(2)-Zr(1)-Cp _{zent}	118.72	Cl(5)-Zr(2)-Cp _{zent}	118.40
Cl(3)-Zr(1)-Cp _{zent}	113.83	Cl(6)-Zr(2)-Cp _{zent}	113.25
Cl(1)-Zr(1)-Cl(2)	99.56(2)	Cl(4)-Zr(2)-Cl(5)	98.85(2)
Cl(2)-Zr(1)-Cl(3)	102.93(2)	Cl(5)-Zr(2)-Cl(6)	104.33(2)
Cl(3)-Zr(1)-Cl(1)	103.38(2)	Cl(6)-Zr(2)-Cl(4)	103.73(2)

Tabelle 3.4: Ausgewählte Bindungswinkel in $^{\circ}$ von Cp^{'''}ZrCl₃ (**21**).

3.3 Trichloridotri(*tert*-butyl)cyclopentadienylhafnium(IV) (22)

Schema 3.4: Darstellung von Cp^{///}HfCl₃ (**22**).

Die Synthese von Trichloridotri(*tert*-butyl)cyclopentadienylhafnium(IV) verläuft analog zu denen der Titan- und Zirconiumderivate. Zunächst wird Tri(*tert*-butyl)cyclopentadien in Toluol gelöst und über zwei Stunden bei Siedetemperatur mit n-Butyllithium metalliert. Zur abgekühlten Lösung wird dann Hafniumtetrachlorid gegeben und die Suspension wird für zwei Tage refluxiert. Anschließend wird unlöslicher Feststoff filtriert, die hellbraune Lösung eingeengt und bei -38 °C kristallisiert. Nach Abdekantieren der Mutterlauge wurden farblose Kristalle erhalten, die sich nach einiger Zeit violett färbten. Die Ausbeute betrug 22%. Die Verbindung ist ebenfalls hydrolyseempfindlich und zersetzt sich bei hohen Temperaturen. Der Komplex konnte röntgendiffraktometrisch untersucht werden.

Abbildung 3.3: ORTEP-Plot der Struktur von [Cp^{///}HfCl₃] (**22**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besseren Übersicht nicht angezeigt (Hf: violett; Cl: grün; C: grau).

Trichloridotri(*tert*-butyl)cyclopentadienylhafnium(IV) kristallisiert als farblose Prismen im monoklinen Kristallsystem und der Raumgruppe P2_{1/c}. Das Diffraktogramm zeigt zwei unabhängige Moleküle pro asymmetrischer Zelle. Die Cp-Ringebenen sind in einem Neigungswinkel von 2.38° nahezu parallel. Die Ringe orientieren sich dabei so, dass die 4-*tert*-Butylgruppe in Richtung der Lücke zwischen 1- und 2-*tert*-Butyl über dem Ringschwerpunkt des Nachbarkomplexes steht. Auch hier sind die Chloridoligenden gestaffelt zu den *tert*-Butylgruppen angeordnet und bilden mit dem Ringschwerpunkt die pseudotetraedrische Koordinationsumgebung.

Bindung	Hf(1)	Bindung	Hf(2)
Hf(1)-Cp _{zent}	2.159	Hf(2)-Cp _{zent}	2.158
Hf(1)-C(1)	2.486(2)	Hf(2)-C(21)	2.485(2)
Hf(1)-C(2)	2.463(2)	Hf(2)-C(22)	2.445(2)
Hf(1)-C(3)	2.499(2)	Hf(2)-C(23)	2.495(2)
Hf(1)-C(4)	2.492(2)	Hf(2)-C(24)	2.494(2)
Hf(1)-C(5)	2.445(2)	Hf(2)-C(25)	2.452(2)
Hf(1)-Cl(1)	2.3509(6)	Hf(2)-Cl(4)	2.3455(6)
Hf(1)-Cl(2)	2.3432(7)	Hf(2)-Cl(5)	2.3450(7)
Hf(1)-Cl(3)	2.3445(6)	Hf(2)-Cl(6)	2.3441(7)

Tabelle 3.5: Ausgewählte Bindungslängen in Å von $Cp'''HfCl_3$ (**22**).

Die Bindungslängen zwischen Hafnium und den Ringkohlenstoffatomen liegen zwischen 2.445(2) und 2.499(2) Å. Daraus resultieren Abstände zum Cyclopentadienylschwerpunkt von 2.158 und 2.159 Å. Die Atomabstände von Hafnium und Chlorid bewegen sich von 2.3432(7) bis 2.3509(6) Å.

Detailliertere Bindungslängen sind in Tabelle 3.5 angegeben. Die Cl-Hf-Cp_{zent}-Winkel liegen zwischen 114.02° und 119.05°, die Cl-Hf-Cl-Bindungen spannen Winkel von 98.69(2)° bis 103.36(3)° auf. Sämtliche relevanten Winkel sind in Tabelle 3.6 genauer angegeben.

Bindungen	Winkel / $^{\circ}$	Bindungen	Winkel / $^{\circ}$
Cl(1)-Hf(1)-Cp _{zent}	118.83	Cl(4)-Hf(2)-Cp _{zent}	116.71
Cl(2)-Hf(1)-Cp _{zent}	114.02	Cl(5)-Hf(2)-Cp _{zent}	114.57
Cl(3)-Hf(1)-Cp _{zent}	116.76	Cl(6)-Hf(2)-Cp _{zent}	119.05
Cl(1)-Hf(1)-Cl(2)	103.36(3)	Cl(4)-Hf(2)-Cl(5)	102.45(3)
Cl(2)-Hf(1)-Cl(3)	102.71(3)	Cl(5)-Hf(2)-Cl(6)	102.17(3)
Cl(3)-Hf(1)-Cl(1)	98.69(2)	Cl(6)-Hf(2)-Cl(4)	99.24(2)

Tabelle 3.6: Ausgewählte Bindungswinkel in $^{\circ}$ von Cp^{'''}HfCl₃ (**22**).

3.4 Vergleich der Tri(*tert*-butyl)cyclopentadienyltrichloride der vierten Gruppe mit ihren Di(*tert*-butyl)cyclopentadienylanaloga

Vergleicht man die Cp^{///}-Komplexe der vierten Gruppe miteinander und mit ihren Cp^{//}-Analoga so können einige Einsichten gewonnen werden.

· ·	5 .	5 .	•		
Verbindung	M–Cp _{zent} / Å	M–C/Å	M-Cl/Å	Cp _{zent} -M-Cl	Cl-M-Cl
Cp"TiCl ₃ ^[65]	2.021	2.352	2.241	116.3°	101.9°
Cp‴TiCl ₃	2.028	2.361	2.239	116.7 °	101.4°
Cp″ZrCl ₃ ^[65]	2.174	2.486	2.368	115.5°	102.8°
Cp ^{^{'''}ZrCl₃}	2.180	2.493	2.370	116.0°	102.0°
Cp"HfCl ₃ ^[66]	2.153	2.468	2.348	116.2°	102.0°
Cp‴HfCl ₃	2.158	2.472	2.347	116.5°	101.0°

Tabelle 3.7: Vergleich ausgewählter, gemittelter Strukturparameter von $Cp'''MCl_3$ mit $Cp'''MCl_3$ (M = Ti, Zr, Hf).

Die gemittelten Strukturparameter in Tabelle 3.7 lassen einige Trends erkennen. Der mittlere Metall-Kohlenstoffabstand ist bei Titan für beide Cp-Derivate mit 2.352 (Cp") und 2.361 Å (Cp"") am kürzesten. Man sollte annehmen, dass dieser Abstand mit steigender Ordnungszahl ebenfalls größer werden sollte. Jedoch ist die Bindungslänge der Hafniumverbindung mit 2.468 (Cp") und 2.472 Å (Cp"") kürzer als in der Zirconiumverbindung mit 2.486 (Cp") und 2.491 Å (Cp""). Dies lässt sich damit erklären, dass Hafnium eine volle 4f-Unterschale besitzt und damit Lanthanoidkontraktion aufweist. Die Kernladung wird durch die vollbesetzte 4f-Schale unvollständig abgeschirmt. Dadurch fallen Bindungslängen von Komplexen der frühen 5d-Metalle wie Hafnium kürzer aus als in analogen Verbindungen. Dieser Effekt relativiert sich bei den späteren 5d-Übergangsmetallen wieder. Daraus ergibt sich die Verringerung des Abstands der Hafniumzentren zu den Schwerpunkten der Cyclopentadienylliganden im Vergleich zu Zirconium. Weiterhin erkennt man, dass die Abstände der Cp"-Komplexe kleiner sind als die der Cp"''-Verbindungen. Dies ist auf die geringere Sperrigkeit des Di(*tert*butyl)cyclopentadienyl-Liganden zurückzuführen. Die Veränderung der Atomabstände zwischen Metallzentrum und Chloriden lässt sich ebenfalls über die f-Schalenkontraktion im Hafnium erklären. Auch hier sieht man beim Titan mit 2.241(6) (Cp") und 2.239(6) Å (Cp"') die kürzesten Metall-Chlorido-Abstände, gefolgt von Hafnium mit 2.348(7) (Cp") und 2.347(7) Å (Cp"'). Die Zirconium-verbindungen weisen mit 2.368(5) (Cp") und 2.370(5) Å (Cp"') die größten Bindungslängen auf. Die Abstände zwischen Metall und Cyclopentadienylzentroid verahlten sich genauso. Diese sind mit 2.021 (Cp") und 2.028 Å (Cp"') bei Titan am geringsten und bei Zirconium mit 2.174 (Cp") und 2.180 Å (Cp"') am größten. Die Winkel zwischen Zentroid, Metall und Chlorid, sowie die Cl-M-Cl-Winkel zeigen keine signifikanten Unterschiede.

Die Elementarzelle des Titankomplexes enthält drei unabhängige Moleküle. Die Zelle der Zirconium- und Hafniumverbindungen enthält nur zwei unabhängige Moleküle. Dies führt zu unterschiedlichen β -Winkeln der Einheitszelle mit einem Unterschied von 20°. Die Zellparameter von Zirconium und Hafnium unterscheiden sich nur marginal und werden in der Gegenüberstellung mit Titan gemeinsam diskutiert, für den Lesefluss wird allerdings nur auf Zirconium verwiesen.

Zwei der Zelldimensionen a = 16.3581(3); c = 14.6410(2) Å für Titan und a = 14.5938(2); c = 17.1918(3) Å für Zirconium sind sich sehr ähnlich. Die b-Achse der höheren homologen (b = 17.1934(2) Å) ist um etwa ein Drittel kürzer als die von Titan (b = 24.7368(4) Å).

Wie in Abbildung 3.4 zu sehen ist, sind die Moleküle im Kristallgitter in beiden Fällen als Schichten angeordnet. Für Titan wird entlang der a-Achse eine AB-Schichtenfolge beobachtet. Die Projektion auf die b/c-Ebene weist keine einfache Schichtenfolge auf. Zirconium zeigt eine AA-Schichtenfolge Richtung der a-Achse. Entlang der c-Achse ist eine AB-Schichtenfolge zu beobachten. Im Gegensatz zu Titan ist hier in c-Richtung keine einfache Schichtenfolge zu erkennen.

Abbildung 3.4: ORTEP-Plots zur Packung von [Cp^{'''}TiCl₃] (20) (links) und der Zr/Hf-Analoga (21) – (22) (rechts) im Kristallgitter. Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome und *tert*-Butylgruppen zur besseren Übersicht nicht angezeigt.

3.5 Substitution der Chloridoliganden

In der Arbeitsgruppe *Sitzmann* wurden die Chloride der vierten Gruppe auf ihre Reaktivität gegenüber Reduktionsmitteln untersucht. So konnten die trimeren Verbindungen [Cp''ZrCl₂]₃^[66] und [Cp'''ZrCl₂]₃^[67] erhalten werden. Diese ließen sich allerdings nicht weiter zur Oxidationsstufe II reduzieren. Daraus ging die Frage hervor, ob Zirconiumverbindungen mit potentiell besseren Abgangsgruppen den Zugang zur Oxidationsstufe II ermöglichen. Hierfür wurden zunächst die entsprechenden Iodide vom Typ [CpMI₃] und Bromide vom Typ [CpMBr₃] in Aussicht genommen.

Schema 3.5: Syntheseversuch von $[Cp''ZrBr_3]$ (26) über Salzmetathese (M = Na, Li).

Es wurden bereits frühere Versuche unternommen, Alkylcyclopentadienylzirconiumbromide zu erhalten. Hierbei wurde Zirconiumtetrabromid sowohl mit Lithium-, als auch mit Natriumdi(*tert*-butyl)cyclopentadienid umgesetzt. Jedoch wurden Produktgemische bestehend aus Tribromidodi(*tert*-butyl)cyclopentadienylzirconium(IV) und Tetra(*tert*-butyl)zirconocendibromid erhalten, welche nicht voneinander getrennt werden konnten^[67].

Schema 3.6: Syntheseversuch von [Cp"ZrBr₃] (26) mit trimethylsilyliertem HCp".

Eine weitere Idee war es analog zur [Cp"ZrCl₃]-Synthese eine Trimethylsilylgruppe über Salzmetathese in den HCp"-Liganden einzuführen. Das Silyl sollte bei der Umsetzung mit Zirconiumtetrabromid als Abgangsgruppe dienen. Jedoch ist die Si-Br-Bindung wesentlich schwächer als die Zr-Br-Bindung, so dass die gewünschte Reaktion ausblieb.

3.5.1 Triiodidodi(tert-butyl)cyclopentadienylzirconium(IV) (24)

Schema 3.7: Reaktion von [Cp"ZrCl₃] (**23**) mit Trimethyliodsilan.

Trichloridodi(*tert*-butyl)cyclopentadienylzirconium(IV) wurde in Toluol gelöst und mit Trimethyliodsilan versetzt. Die Lösung wurde für eine Nacht bei 100 °C gerührt. Da sich nach dieser Zeit die Edukte noch nicht vollständig umgesetzt hatten, wurde weiteres Silan zugegeben und nochmals über Nacht bei 80 °C gerührt. Anschließend wurde das Lösungsmittel langsam destillativ entfernt. Dabei wurden gelbe Kristalle erhalten, welche röntgendiffraktometrisch untersucht werden konnten. Die Ausbeute betrug 77%.

Abbildung 3.5: ORTEP-Plot der Struktur von [Cp"ZrI₃] (**24**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besseren Übersicht nicht angezeigt (Zr: orange; I: lila; C: grau).

Triiodidodi(*tert*-butyl)cyclopentadienylzirconium kristallisiert als gelbe Prismen in monoklinem Kristallsystem der Raumgruppe P2_{1/n}. Eine asymmetrische Zelle beinhaltet ein Molekül. Die Einheitszelle enthält vier Moleküle. Wird diese erweitert, um die Fernordnung zu betrachten, erkennt man Schichten im Kristallgitter. Anders als bei den Chloriden wird hier keine AB-Schichtfolge beobachtet. Die Schichten sind in AA-Schichtfolge angeordnet. Nur in der b/c-Ebene erkennt man keine Schichtenfolge.
Bindung	Å
Zr(1)-Cp _{zent}	2.173
Zr(1)-C(1)	2.5006(18)
Zr(1)-C(2)	2.4650(18)
Zr(1)-C(3)	2.5170(18)
Zr(1)-C(4)	2.5200(18)
Zr(1)-C(5)	2.4711(18)
Zr(1)-I(1)	2.3702(5)
Zr(1)-I(2)	2.3667(5)
Zr(1)-I(3)	2.3680(5)

Tabelle 3.8: Ausgewählte Bindungslängen in Å von $[Cp''ZrI_3]$ (24).

Die Zr-C-Abstände liegen zwischen 2.4650(18) Å und 2.5200(18) Å. Damit ergibt sich ein Zirconium–Zentroidabstand von 2.173 Å. Die Zr–I-Abstände liegen zwischen 2.3667(5) Å und 2.3702(5) Å. Die Zentroid–Zirconium–Iodid-Winkel sind mit 115.25° bis 115.97° sehr ähnlich. Die I–Zr–I-winkel weisen dagegen größere Differenzen untereinander auf, sie liegen zwischen 99.912(9)° und 104.802(9)°. Die ausgewählten Strukturparameter werden in Tabelle 3.8 und 3.9 detaillierter aufgeführt.

5 5	
Bindungen	Winkel/°
I(1)-Zr(1)-Cp _{zent}	115.69
I(2)-Zr(1)-Cp _{zent}	115.97
I(3)-Zr(1)-Cp _{zent}	115.25
l(1)-Zr(1)-l(2)	103.193(9)
l(2)-Zr(1)-l(3)	104.802(9)
l(3)-Zr(1)-l(1)	99.912(9)

Tabelle 3.9: Ausgewählte Bindungswinkel in $^{\circ}$ von [Cp"ZrI₃] (**24**).

Das ¹H-NMR-Spektrum zeigt wie erwartet einen diamagnetischen Komplex und die zu erwartenden Signale. Im aromatischen Bereich kann das Triplett bei 6.61 ppm dem alleinstehenden Ring-H-Atom zugeordnet werden, mit einer Kopplung von 2.56 Hz. Das Dublett bei 6.20 ppm kann mit einer Kopplung von 2.57 Hz den zwei anderen Ring-H-Atomen zugeordnet werden. Bei 1.11 ppm erkennt man das Singulett der aliphatischen *tert*-butyl-H-Atome mit einem Integral von 18.

Abbildung 3.6: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von [Cp"Zrl₃] (24).

3.5.2 Triiodidotri(tert-butyl)cyclopentadienylzirconium(IV) (25)

Schema 3.8: Reaktion von [Cp^{'''}ZrCl₃] (**21**) mit Trimethyliodsilan.

Die Synthese von Triiodidotri(*tert*-butyl)cyclopentadienylzirconium(IV) wurde analog zum Cp"-Derivat vorgenommen. Trichloridotri(*tert*-butyl)cyclopentadienylzirconium(IV) wurde in Toluol gelöst und mit drei Äquivalenten Trimethyliodsilan versetzt. Die Lösung wurde über Nacht bei 100 °C gerührt. Da die Reaktion zunächst noch nicht vollständig abgelaufen ist, wurde weiteres Trimethyliodsilan zur Reaktionsmischung gegeben und für weitere zwei Tage bei 105 °C gerührt. Da die entstehenden Nebenprodukte flüchtig sind, gestaltete sich die Aufarbeitung einfach, indem alle Nebenprodukte bei der destillativen Entfernung des Lösungsmittels mit verdampfen. Die gelbe Lösung wurde langsam bis zur Trockene eingeengt und es wurde ein gelber kristalliner Feststoff in einer Ausbeute von 41% erhalten. Diffraktometertaugliche Kristalle waren in der Probe jedoch nicht enthalten.

Tabelle 3.10: Elementaranalyse für Cp^{///}Zrl₃ (**25**); M = 705.35 $\frac{g}{mol}$.</sup>

$C_{17}H_{29}I_{3}Zr$	С	Н
Theoriewerte	28.95%	4.14%
Messwerte	28.93%	3.94%

Die Elementaranalyse des Produkts zeigt eine Verbindung mit der Zusammensetzung $C_{17}H_{29}I_3Zr$ (Tabelle 3.10). Die gemessenen Werte stimmen sehr gut mit den berechneten überein. Die Abweichungen betragen lediglich 0.02% für Kohlenstoff und 0.2% für den Wasserstoffgehalt.

Das ¹H-NMR-Spektrum zeigt wie erwartet eine diamagnetische Verbindung. Im aliphatischen Bereich kann das Singulett bei 1.17 ppm mit einem Integral von 9 H-Atomen der 4-*tert*-Butylgruppe zugeordnet werden. Das Signal bei 1.33 ppm entspricht 18 Wasserstoffatomen und wird den 1- und 2-*tert*-Butylgruppen zugeordnet. Im aromatischen Bereich der Spektrums beobachtet man ein Singulett bei 6.96 ppm für die beiden Ringprotonen zeigt.

Abbildung 3.7: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von [Cp^{'''}Zrl₃] (**25**).

3.5.3 Tribromidotri(*tert*-butyl)cyclopentadienylzirconium(IV) (27)

Schema 3.9: Reaktion von [Cp^{'''}ZrCl₃] (**21**) mit Trimethylbromsilan.

[Cp"ZrCl₃] wurde in Toluol gelöst und mit drei Äquivalenten Trimethylbromsilan für vier Tage bei Raumtemperatur gerührt. Das Lösungsmittel wurde im Anschluss destillativ entfernt und der orangefarbene Rückstand mit Pentan extrahiert. Unlöslicher Feststoff wurde von der Lösung getrennt. Diese wurde eingeengt und zur Kristallisation bei -38 °C gelagert. Nach Abdekantieren der Mutterlauge konnte cremefarbener, kristalliner Feststoff in einer Ausbeute von 32% erhalten werden.

Tabelle 3.11: Elementaranalyse von $[Cp'''ZrBr_3]$ (27); M = 564.35 $\frac{G}{m}$	g nol·
---	-----------

$C_{17}H_{29}Br_3Zr$	С	Н
Theoriewerte	36.18%	5.18%
Messwerte	37.34%	5.00%
21	47.37%	6.78%

Die Elementaranalyse wurde für einen Feststoff mit der Summenformel $C_{17}H_{29}Br_3Zr$ gemessen (Tabelle 3.11). Der Wasserstoffgehalt liegt mit einer Abweichung von 0.18% in der Fehlertoleranz. Der Kohlenstoffwert dagegen ist um 1.16% zu hoch und liegt außerhalb der Toleranz.

Abbildung 3.8: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von [Cp^{'''}ZrBr₃] (**27**).

Das ¹H-NMR-Spektrum (Abbildung 3.8) zeigt eine reine, diamagnetische Substanz. Die beiden Singuletts im aliphatischen Bereich des Spektrums gehören zu den *tert*-Butylgruppen. Die 1-*tert*-Butylgruppe ist mit 9 H-Atomen bei 1.17 ppm lokalisiert. Bei 1.33 ppm erkennt man die 18 Wasserstoffe der 3- und 4-*tert*-Butylgruppen. Ein weiteres Singulett bei 6.79 ppm mit einem Integral von 2 kann den aromatischen Ringprotonen zugeordnet werden.

3.5.4 Tribromidodi(tert-butyl)cyclopentadienylzirconium(IV) (26)

Schema 3.10: Reaktion von [Cp["]ZrCl₃] (**23**) mit Trimethylbromsilan.

Zu einer Lösung von $[Cp''ZrCl_3]$ in Toluol wurde Trimethylbromsilan gegeben. Das Reaktionsgemisch wurde für 3 Tage bei Raumtemperatur gerührt. Die Lösung färbte sich in der Zeit rotbraun. Nachdem Nebenprodukt und Lösungsmittel destillativ entfernt wurden, konnte ein hellrosafarbener Feststoff in einer Ausbeute von 78% erhalten werden.

Tabelle 3.12: Elementaranalyse von	Cp″ZrBr ₃	(26); M =	508.24	$\frac{g}{mol}$.
------------------------------------	----------------------	--------------------	--------	-------------------

$C_{13}H_{21}Br_{3}Zr$	С	Н
Theoriewerte	30.72%	4.16%
Messwerte	32.40%	4.23%
23	41.65%	5.65%

Es wurde eine Elementaranalyse für eine Verbindung mit der Summenformel $C_{13}H_{21}Br_3Zr$ gemessen (Tabelle 3.12). Obwohl der gemessene Wasserstoffehalt nur um 0.07% vom theoretischen abweicht, liegt der Kohlenstoffgehalt mit 32.40% um 1.68% zu hoch und damit außerhalb der Fehlertoleranz.

Abbildung 3.9: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von [Cp"ZrBr₃] (26).

Das ¹H-NMR-Spektrum zeigt trotz der abweichenden Elementaranalyse nur einen Signalsatz für den Cp^{'''}-Liganden. Die Verbindung ist diamagnetisch. Das Singulett bei 1.11 ppm kann mit einem Integral von 18 den H-Atomen der beiden *tert*-Butylgruppen zugeordnet werden. Im aromatischen Bereich beobachtet man das Dublett für die Wasserstoffatome in 4- und 5-Position des Cyclopentadienylrings bei 6.05 ppm. Das Triplett bei 6.47 ppm kann dem Ringproton in 2-Position zugeordnet werden.

3.6 Reduktion von Tribromidodi-*tert*-butylcyclopentadienylzirconium (26)

Verbindung **26** wurde wie der analoge Trichloridotri-*tert*-butylcyclopentadienylzirconiumkomplex ebenfalls auf ihre Reduzierbarkeit untersucht. Hierfür wurde [Cp"ZrBr₃] in Toluol gelöst und mit Kalium versetzt.

Umsetzung mit 1.5 Äquivalenten Kalium

Schema 3.11: Reduktion von [Cp"ZrBr₃] (**26**) mit 1.5 Äquivalenten Kalium.

[Cp"ZrBr₃] wurde in Toluol gelöst und mit 1.5 äquivalenten Kalium versetzt. Das Gemisch wurde für 7 Tage bei Raumtemperatur gerührt. Dem Reaktionsgemisch wurden außerdem kleine Glassplitter zugefügt. Diese sollten das Kalium anrauen und zerkleinern um die Oberfläche des Kaliums zu erhöhen und somit die Reaktivität zu steigern. Die Mischung färbte sich zunächst dunkelgrau wechselte dann aber schnell die Farbe über dunkelgrün zu einem dunklen Rotbraun. Nach Beendigung der Reaktion wurde Toluol destillativ entfernt und der rotbraune Rückstand in Pentan aufgenommen. In eine Zentrifuge wurde der unlösliche Feststoff von der Lösung abgetrennt. Pentan wurde destillativ entfernt und es blieb ein dunkler schwarzbrauner öliger Rückstand zurück. Nach Umkristallisieren aus Pentan konnte dunkelbrauner Feststoff erhalten werden.

Abbildung 3.10: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) der Reduktion von [Cp"ZrBr₃] mit 1.5 äq Kalium.

Das ¹H-NMR-Spektrum zeigt, dass es sich bei dem Feststoff um ein Produktgemisch handelt. Im aromatischen Bereich von 5.8 ppm bis 6.75 ppm sieht man viele sich überlappende Signale. Im aliphatischen Bereich wurde ein Singulet des Edukts bei 1.11 ppm detektiert welches den Wasserstoffatomen der *tert*-butyl-Gruppen zugeordnet werden kann. Die dazugehörigen Signale der Ringprotonen werden von den anderen Signalen im aromatischen Bereich überdeckt. Von 1.30 ppm bis 1.32 ppm sieht man drei sich überlappende Singuletts welche nicht eindeutig zugeordnet werden können.

Umsetzung mit 2.5 Äquivalenten Kalium

Schema 3.12: Reduktion von [Cp"ZrBr₃] (**26**) mit 2.5 Äquivalenten Kalium.

Das Experiment verlief analog zur Umsetzung mit 1.5 äquivalenten Kalium. [Cp"ZrBr₃] wurde in Toluol gelöst und mit 2.5 Äquivalenten Kalium versetzt. Das Gemisch wurde für 7 Tage bei Raumtemperatur gerührt. Auch hier wurden dem Reaktionsgemisch kleine Glassplitter zugefügt. Die Farbe des Gemischs war zunächst dunkelgrau, wechselte dann aber schnell zu dunkelgrün und anschließend zu dunklem Rotbraun. Nach Beendigung der Reaktion wurde Toluol destillativ entfernt und der rotbraune Rückstand in Pentan aufgenommen. Über eine Zentrifuge wurde der unlösliche Feststoff von der Lösung abgetrennt. Pentan wurde entfernt und es blieb ein dunkler schwarzbrauner öliger Rückstand zurück. Nach Umkristallisieren aus Pentan konnte dunkelbrauner Feststoff erhalten werden.

Abbildung 3.11: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) der Reduktion von $[Cp''ZrBr_3]$ mit 2.5 äq Kalium.

Das gemessene ¹H-NMR-Spektrum ist ähnlich dem in Abbildung 3.10, allerdings mit noch mehr sich überlappenden Signalen im aromatischen Bereich von 5.81 ppm bis 6.66 ppm. Das Singulett bei 1.11 ppm kann den *tert*-butyl-Gruppen in [Cp"ZrBr₃] zugeordnet werden. Auch hier werden die zugehörigen Signale im aromatischen Bereich von anderen Signalen überdeckt. Die Resonanzen im Bereich von 1.29 ppm bis 1.45 ppm überlappen sich teilweise und können nicht weiter zugeordnet werden.

3.7 Diskussion zum Halogenidaustausch

Es konnte gezeigt werden, dass der Halogenidaustausch über die Trimethylsilylhalogenide möglich ist. Tabelle 3.13 zeigt eine Gegenüberstellung der Bromide und lodide mit bekannten Cyclopentadienylhalogeniden der vierten Gruppe. Man erkennt, dass sich die *tert*-Butylsignale im aliphatischen Bereich kaum unterscheiden. Dies ist auf die Entfernung vom Metallzentrum zurückzuführen. Bei den Ring-H-Signalen der Bromidumsetzung sind dagegen Unterschiede zu erkennen, was auf eine erfolgreiche Umsetzung schließen lässt. Die Signale für die lodidumsetzung sind denen des Edukts sehr ähnlich. Vor allem für Cp^{*m*}Zrl₃ sieht man keine Veränderung im ¹H-NMR-Spektrum. Jedoch weisen die eindeutige Farbänderung und die übereinstimmende Elementaranalyse auf eine erfolgreiche Umsetzung hin. Cp^{*m*}HfCl₃ wurde in der Literatur in CDCl₃ gemessen, so dass die Signle dementsprechend verschoben und daher nur bedingt zum Vergleich geeignet sind.

Tabelle 3.13: Gegenüberstellung der ¹H-NMR-Signale von ^tBu_nCpZrI₃ und ^tBu_nCpZrBr₃ (n = 2, 3) mit bekannten Trichloriden. In C₆D₆ gemessen, Cp"HfCl₃ in CDCl₃.

Verbindung	Ring-H / ppm	^t Bu-H / ppm	Verbindung	Ring-H / ppm	^t Bu-H / ppm
Cp"TiCl ₃ ^[65]	t: 6.65; d: 6.23	s: 1.11	Cp ^{'''} TiCl ₃ ^[64]	s: 6.96	s: 1.33; s: 1.18
Cp"ZrCl ₃ ^[65]	t: 6.44; d: 5.99	s: 1.12	Cp ^{^{'''}ZrCl₃^[64]}	s: 6.69	s: 1.33; s: 1.18
Cp"HfCl ₃ ^[66]	t: 6.64; d: 6.44	s: 1.36	Cp‴HfCl ₃ ^[64]	s: 6.58	s: 1.34; s: 1.19
Cp″ZrBr ₃	t: 6.46; d: 6.05	s: 1.11	Cp ^{///} ZrBr ₃	s: 6.79	s: 1.33; s: 1.17
Cp″ZrI ₃	t: 6.61; d: 6.20	s: 1.11	Cp ^{′′′′} Zrl ₃	s: 6.96	s: 1.33; s: 1.17

Die gemessenen Werte der Elementaranalyse für Cp^{///}Zrl₃ stimmen sehr gut mit den berechneten überein. Für die Tribromide gab es Abweichungen in den Elementaranalysen. Die Diskrepanzen bei den Wasserstoffwerten liegen im Toleranzbereich, jedoch weichen die Kohlenstoffwerte in Cp^{//}ZrBr₃ um 1.16 % ab und in Cp^{///}ZrBr₃ sogar um 1.68 %. Tabelle 3.14 zeigt die theoretischen Werte für die möglichen Substitutionskombinationen und den Vergleich mit den gemessenen Werten. Die Messwerte weichen bei Kohlenstoff zwar für die Zielverbindung ab, jedoch zeigt der Vergleich, dass gemischtsubstituierte Komplexe eher ausgeschlossen werden können. Auch Mischprodukte wie Beispielsweise ein Gemisch aus Cp^{//}ZrBr₂Cl und Cp^{//}ZrBr₃ (theoretische Elementaranalyse: C: 32.13%; H: 4.36%) können ausgeschlossen werden, da diese sich bei einem 1:1 Verhältnis im ¹H-NMR-Spektrum zeigen müssten.

C ₁₃ H ₂₁ Br ₃ Zr	С	Н	$C_{17}H_{29}Br_3Zr$	С	Н
Theoriewerte	30.72%	4.16%	Theoriewerte	36.18%	5.18%
Messwerte	32.40%	4.23%	Messwerte	37.34%	5.00%
Cp"ZrBr ₂ Cl	33.67%	4.56%	Cp ^{///} ZrBr ₂ Cl	39.27%	5.62%
Cp"ZrBrCl ₂	37.23%	5.05%	Cp ^m ZrBrCl ₂	42.95%	6.15%
$Cp''ZrCl_3$	41.65%	5.65%	Cp‴ZrCl₃	47.37%	6.78%

Tabelle 3.14: Vergleich der Elementaranalysen von $Cp''ZrBr_3$ und $Cp'''ZrBr_3$ mit $Cp'''ZrCl_3$ (**23**) und $Cp'''ZrCl_3$ (**21**).

Von Cp["]Zrl₃ konnte eine Röntgenstrukturanalyse erhalten werden. In Tabelle 3.15 sind ausgewählte Strukturparameter gegenübergestellt. Die Unterschiede Cp–M- und M– X-Abstände sind sich sehr ähnlich. Bei Cp["]ZrCl₃ sind die Werte praktisch identisch. Da Iodidoliganden die größten Ionenradien unter den Halogeniden besitzen, könnte man annehmen, dass auch die Bindungslängen der Triiodide merklich länger sind. Jedoch sind Iodidionen sehr weich und polarisierbar und können damit leicht verformt werden. Dadurch können sich vergleichbare Abstände wie in den Trichloriden ergeben. Nur im Vergleich mit den Titanverbindungen sind verhältnismäßig große Unterschiede zu erkennen. Der Ionenradius von Titan(IV) ist geringer als der von Zirconium(IV) und Hafnium(IV), woraus sich die geringeren Bindungslängen ergeben.

Tabelle 3.15: Gegenüberstellung ausgewählter, gemittelter Strukturparameter von ^{*t*}Bu₂CpZrI₃ mit den bekannten Trichloriden von Ti, Zr und Hf.

Verbindung	Raumgruppe	Cp-M/Å	M–X / Å	X-M-X / °	Ср-М-Х/°
Cp″Zrl ₃	P2 _{1/n}	2.173	2.3685	102.357	115.61
Cp"ZrCl ₃ ^[65]	P2 _{1/n}	2.174	2.3688	-	-
Cp"HfCl ₃ ^[66]	P2 _{1/n}	2.153	2.3474	_	-
Cp"TiCl ₃ ^[65]	P2 _{1/n}	2.021	2.243	101.95	116.17
Cp‴TiCl ₃	P2 _{1/c}	2.028	2.2393	101.35	116.66
Cp ^m ZrCl ₃	P2 _{1/c}	2.180	2.3699	101.59	115.99
Cp‴HfCl₃	P2 _{1/c}	2.159	2.3471	101.03	116.54

Die Folgereaktionen der Tribromidokomplexe zeigten eine hohe, schwer zu kontrollierende Reaktivität bei der Reduktion mit elementarem Kalium. Vermutlich bilden sich nach der Reduktion der Bromide diverse unterschiedlich große Zirconiumcluster, was die vielen sich überlappenden Signale in den ¹H-NMR-Spektren erklären würde.

4 Zirconiumhydridcluster

Übergangsmetallkomplexe mit direkter Metall-Metall-Bindung sind bereits seit langem bekannt. Einer der ersten Zirconiumkomplexe mit direkter Zr-Zr-Bindung wurde bereits 1978 von *Guthrie et al.* beschrieben^[68]. Es handelte sich um einen Zr_6I_{18} -Cluster in dem sich die Zr-Atome oktaedrisch anordnen. Der Cluster wird von 12 verbrückenden Iodidoliganden stabilisiert.

Abbildung 4.1: Zr_6I_{18} -Cluster (**27**)^[68].

Seitdem wurden weitere zweikernige sowie mehrere Zr_3 -, Zr_5 - und Zr_6 -Komplexe erhalten und strukturell aufgeklärt. Die Verbindungen zeigen lineare, trigonale und pyramidale Anordnungen der Zirconiumzentren, wie in den Abbildungen 4.2 und 4.3 beispielhaft dargestellt sind.

Abbildung 4.2: Trigonaler Zr₃-Cluster (28).

Abbildung 4.3: quadratisch pyramidaler Zr_5 -Cluster (**29**)^[69] und oktaedrischer Zr_6 -Cluster (**30**)^[70].

Im Gegensatz zu den oben gezeigten Polyhydridclustern sind Zr₄-Polyhydride seltener in der Literatur zu finden. Der erste vierkernige Zirconiumhydridcluster mit direkten Zr-Zr-Bindungen wurde 2006 von *Robinson et al.* veröffentlicht^[71]. Hierbei handelte es sich um ein Dimer von [(${}^{t}BuC_{5}H_{4}$)(${}^{t}BuC_{5}H_{3}$)Zr(µ-H)Na]₂·OEt₂. Dafür wurde (${}^{t}BuC_{5}H_{4}$)₂ZrCl₂ unter Inertgasatmosphäre mit elementarem Natrium reduziert.

Abbildung 4.4: $[{({}^{t}BuC_{5}H_{4})({}^{t}BuC_{5}H_{3})Zr(\mu-H)Na}_{2} \cdot OEt_{2}]_{2}$ (**31**)^[71].

Peng et al. setzten Cp*ZrCl(BH₄)₂ mit Triethylamin um und erhielten unter anderem einen vierkernigen Butterfly-Zirconiumkomplex. Die Metallzentren sind über μ_2 -H und μ_3 -H verbrückt und bilden einen Zirconiumkomplex mit "Butterfly"-Geometrie (siehe Abbildung 4.5)^[72].

Abbildung 4.5: $[(\mu_2-H)(\mu_3-H)(Cp^*ZrCl)]_4 \cdot (C_7H_8)$ (**32**)^[72].

Durch die erneute Reduktion von Verbindung **32** mit Natriumamalgam wurden weitere tetramere, hydridoverbrückte Zirconiumcluster von *Peng et al.* erhalten (siehe Abbildung 4.6)^[73].

Abbildung 4.6: $[(Cp^*Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (33) und $[(Cp^*Zr)_4(\mu-H)_6]$ (34)^[73].

4.1 Tetrakis(1,3-di(*tert*-butyl)cyclopentadienyl)-di-μ-chlorido-octa-μhydrido-tetrazirconium(III/IV) (37)

Im Laufe der Substitutionsversuche an $[Cp''ZrCl_3]$ (23) und $[Cp''ZrCl_2]_3$ (35) wurde auch mit Hydriden gearbeitet. Zunächst sollte mit Natriumhydrid umgesetzt werden um $[Cp''ZrH_3]$ zu erhalten. Dazu wurde 23 in Toluol gelöst und mit NaH versetzt (Schema 4.1). Nach der Aufarbeitung konnten allerdings nur die Edukte wiedergewonnen werden.

Schema 4.1: Umsetzung von [Cp"ZrCl₃] **23** mit NaH.

Da die Umsetzung mit Natriumhydrid nicht zu dem gewünschten Ergebnis führte, wurde das Trichlorid **23** im Rahmen der Bachelorarbeit von *Keck* mit Lithiumaluminiumhydrid umgesetzt. Dazu wurde **23** in Toluol gelöst, mit Lithiumaluminiumhydrid versetzt und für 16 Stunden bei Siedehitze gerührt. Während der Reaktion färbte sich die Suspension von anfänglich rosa über rot nach dunkelgrün. Das Lösungsmittel wurde entfernt und der Rückstand wurde mit Pentan extrahiert. Der unlösliche Feststoff wurde über eine Zentrifuge abgetrennt und die erhaltene Lösung wurde destillativ vom Lösungsmittel befreit (Schema 4.2).

Schema 4.2: Darstellung von $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (37).

Der so erhaltene grüne Feststoff färbte sich nach längerem Stehen bei Raumtemperatur orangerot. Es wurde eine Elementaranalyse gemessen (Tab. 4.1), welche weder zum gewünschten Produkt noch zum Edukt passende Werte lieferte.

	E 1	21 (
$C_{13}H_{24}Zr$	С	Н
Cp″ZrCl ₃	41.65%	5.65%
Messwerte	54.05%	8.21%
$Cp''ZrH_3$	57.50%	8.91%

Tabelle 4.1: Elementaranalyse von $[Cp''ZrH_3]$ (**37**) M = 271.55 $\frac{g}{mol}$.

Der Feststoff wurde zur Kristallisation in Pentan gelöst und bei -35 °C gelagert. Nach einigen Tagen konnten orangerote Kristalle in einer Ausbeute von 28% erhalten werden. Diese wurden röntgendiffraktometrisch untersucht. Es stellte sich heraus, dass die Verbindung vier Cp"Zr-Fragmente enthält, die über acht Hydrido und zwei Chloridoliganden verbrückt sind (Abbildung 4.7).

Abbildung 4.7: ORTEP-Plot der Struktur von [(Cp"Zr)₄(μ-H)₈(μ-Cl)₂] (**37**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome der Cp-Liganden zur besseren Übersicht nicht angezeigt (Zr: gelb; Cl: grün; C: grau; Hydride: weiß).

Die Verbindung kristallisiert als rote Prismen mit der Summenformel $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ als vierkerniger Komplex in der trigonalen Raumgruppe R-3c. Die vier Zirconiumzentren orientieren sich als verzerrt tetraedrisches Polyeder. Vier der Zr–Zr Abstände sind kürzer und sind über je zwei Hydridoliganden verbrückt. Die längeren Zr-Abstände werden von je einem Chloridoliganden verbrückt. An jedem Zirconiumatom ist weiterhin je ein Cyclopentadienylligand koordiniert. Pro Zr₄-Komplex ist ein Molekül Pentan im Kristallgitter eingebaut.

Bindung	Å	Bindung	Å
Zr(1)-C(1)	2.560(3)	Zr(1)-Cp _{zent}	2.218
Zr(1)-C(2)	2.539(3)	Zr(2)-Cp _{zent}	2.221
Zr(1)-C(3)	2.541(3)	Zr(1)-Zr(2)	3.0426(3)
Zr(1)-C(4)	2.492(2)	Zr(1)-Zr(2)#1	3.0618(3)
Zr(1)-C(5)	2.494(2)	Zr(1)-Zr(1)#1	3.5530(5)
Zr(2)-C(21)	2.550(3)	Zr(2)-Zr(1)#1	3.0621(3)
Zr(2)-C(22)	2.533(3)	Zr(2)-Zr(2)#1	3.5901(5)
Zr(2)-C(23)	2.553(3)	Zr(1)-H(51)	1.96(4)
Zr(2)-C(24)	2.500(3)	Zr(1)-H(52)	2.05(4)
Zr(2)-C(25)	2.502(2)	Zr(2)-H(51)	1.94(4)
Zr(1)-Cl(1)	2.6173(7)	Zr(2)-H(52)	1.92(4)
Zr(1)#1-Cl(1)	2.6172(7)	Zr(2)-H(53)	1.94(4)
Zr(1)-Cl(2)	2.6145(6)	Zr(2)-H(54)	1.88(4)
Zr(1)#1-Cl(2)	2.6147(6)		

Tabelle 4.2: Ausgewählte Bindungslängen in Å von $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (**37**).

Die Atomabstände von Zirconium und Kohlenstoff befinden sich im Bereich von 2.492(2) und 2.560(3) Å und ergeben damit einen mittleren Zirconium-Zentroid-Abstand von 2.2195 Å. Die Abstände von Zr und Cl liegen zwischen 2.6145(7) und 2.6173(7) Å. Die Bindungslängen der Zirconium-Hydridobrücken liegen zwischen 1.88(4) und 2.05(4) Å. Die kürzesten Zr–Zr-Abstände liegen im Bereich von 3.0426(3) und 3.0621(3) Å, die längsten Abstände zwischen zwei Zirconiumzentren bei 3.5530(5) und 3.5901(5) Å. In Tabelle 4.2 sind ausgewählte Bindungslängen detaillierter aufgeführt.

Abbildung 4.8: Verzerrtes Zirconiumtetraeder von 37 mit berechnetem Mittelpunkt.

Die Zirconiumatome spannen ein verzerrtes Tetraeder auf, das einem stark gefalteten Vierring mit Faltungswinkeln von 92.63° zwischen Zr1–Zr3 und 92.04° zwischen Zr2–Zr4 entspricht. Die Verzerrung des Tetraeders zeigt sich bei den Tetraederwinkeln. Diese bewegen sich im Bereich von 100.36° bis 128.95°. Der Tetraederwinkel des regelmäßigen Tetraeders beträgt 109.5°. Zur Bestimmung der Tetraederwinkel wurde der Schwerpunkt des Zirconiumclusters in "*Mercury*" berechnet und die entsprechenden Winkel gemessen (Abbildung 4.8). Die Zr–H–Zr-Winkel an den Hydridobrücken wurden zwischen 99.70° und 105.70° gemessen, die Zr–Cl–Zr-Winkel an den Chloridobrücken liegen bei 85.50(3)° und 86.72(3)°. In Tabelle 4.3 sind ausgewählte Bindungswinkel detaillierter aufgeführt.

Abstände und Winkel der Hydridobrücken müssen vorsichtig betrachtet werden, da durch systematische Fehler Hydridabstände in der Regel kürzer und die Winkel dementsprechend stumpfer gefunden werden als sie eigentlich sind. Dies liegt an der Verschiebung der Elektronenwolke von Hydriden durch Wechselwirkungen mit den Metallzentren.

Bindungen	Winkel/°	Bindungen	Winkel/°
H(51)-Zr(1)-Cp _{zent}	106.37	H(51)-Zr(2)-Cp _{zent}	109.99
H(52)-Zr(1)-Cp _{zent}	110.08	H(52)-Zr(2)-Cp _{zent}	103.63
H(53)-Zr(1)-Cp _{zent}	114.14	H(53)-Zr(2)-Cp _{zent}	110.03
H(54)-Zr(1)-Cp _{zent}	108.95	H(54)-Zr(2)-Cp _{zent}	111.60
Cl(1)-Zr(1)-Cp _{zent}	111.33	Cl(2)-Zr(2)-Cp _{zent}	112.62
Zr(1)-H(51)-Zr(2)	102.74	Zr(1)-H(52)-Zr(2)	99.70
Zr(1)-H(53)-Zr(2)	105.70	Zr(1)-H(54)-Zr(2)	105.26
Zr(1)#1-Cl(1)-Zr(1)	85.50(3)	Zr(2)-Cl(2)-Zr(2)#1	86.72(3)
Zr(2)-Zr(1)-Zr(2)#1	72.046(9)	Zr(2)-Zr(1)-Zr(1)#1	54.663(7)
Zr(2)#1-Zr(1)-Zr(1)#1	54.157(7)	Zr(1)-Zr(2)-Zr(1)#1	71.184(9)
Zr(1)-Zr(2)-Zr(2)#1	54.225(7)	Zr(1)#1-Zr(2)-Zr(2)#1	53.730(7)
Cl(1)-Zr(1)-H(51)	128.8(11)	Cl(1)-Zr(1)-H(52)	77.0(10)
Cl(2)-Zr(2)-H(51)	77.1(11)	Cl(2)-Zr(2)-H(52)	131.6(11)
Cl(2)-Zr(2)-H(53)	126.6(12)	Cl(2)-Zr(2)-H(54)	78.0(13)
Zr(1)–Schwerpunkt–Zr(1)#1	128.48	Zr(1)–Schwerpunkt–Zr(2)	101.23
Zr(1)–Schwerpunkt–Zr(2)#1	100.36	Zr(2)–Schwerpunkt–Zr(2)#1	128.95

Tabelle 4.3: Ausgewählte Bindungswinkel in ° von $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (**37**).

Wendet man das Ergebnis der Röntgenstrukturanalyse auf die Elementaranalyse an und berechnet die Theoriewerte dementsprechend neu, so erkennt man dass die Werte sehr gut übereinstimmen (Tabelle 4.4).

$C_{52}H_{92}Cl_2Zr_4$	С	Н
Theoriewerte	54.16%	8.04%
Messwerte	54.05%	8.21%

Tabelle 4.4: Elementaranalyse von [(Cp''Zr)₄(μ -H)₈(μ -Cl)₂] (1153.09 $\frac{g}{mol}$).

Es wurden auch ¹H-MNR-Spektren von **37** aufgenommen (siehe Abb. 4.9). Das Spektrum zeigt eine diamagnetische Verbindung. Man erkennt bei 6.14 ppm und 6.03 ppm das Triplett und Dublett der Cyclopentadienylringprotonen. Im aliphatischen Bereich kann das Singulett bei 1.43 ppm den *tert*-Butylgruppen der Cyclopentadienylliganden zugeordnet werden. Das Singulett bei 3.71 ppm kann den verbrückenden Hydridoliganden zugeordnet werden. Normalerweise würde man Hydridosignale stark hochfeldverschoben erwarten. Des weiteren kann man ein kleines Singulett bei 4.47 ppm erkennen, welches freiem Wasserstoff zugeordnet werden kann.

Abbildung 4.9: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (**37**).

Um die Zuordnung der Hydridbrücken zu bestätigen, wurden von **38** ¹H-NMR-Spektren in Bereich 300 bis -300 ppm gemessen. Darin konnten keine weiteren Signale gefunden werden.

Betrachtet man die Oxidationszahlen der Zirconiumzentren, stellt man fest, dass sich eine formale Oxidationsstufe von 3.5 errechnet. Diese Oxidationszahl ergibt sich aus der Summe von 14 negativen Ladungen der vier Cyclopentadienyl-, der acht Hydridound der beiden Chloridoliganden, die zu gleichen Teilen durch die vier Zirconiumionen ausgeglichen werden. Nun stellte sich die Frage, wie es sein kann, dass bei einem Oxidationszahlenverhältnis von zwei Zr(III) zu zwei Zr(IV) eine diamagnetische Verbindung beobachtet wird. Um die elektronischen Verhältnisse in **37** zu klären, wurden von *Prof. Dr. van Wüllen* Rechnungen angestellt. Es zeigte sich, dass die vier Zirconiumatome im Inneren des Zr₄-Tetraeders ein gemeinsames, sphärisches Molekülorbital bilden, in dem sich die zwei Valenzelektronen der Metallzentren aufhalten und so keinem Metallzentrum zugeordnet werden können. Dies führt zu einer 4-Zentren-2-Elektronenbindung wie man sie auch in Borclustern findet und führt dazu, dass die Verbindung diamagnetisch ist. Abb. 4.10 zeigt die graphische Darstellung der DFT-Rechnung.

Abbildung 4.10: Links: ORTEP-Plot der Struktur von [(Cp"Zr)₄(μ-H)₈(μ-Cl)₂] (**37**). Cyclopentadienylliganden zur besseren Übersicht nicht angezeigt (Zr: orange; Cl: grün; C: grau; Hydride: pink).
Rechts: Plot zur DFT-Rechnung von **37** (grün: Bindendes 2-Elektronen-4-Zentren MO; rot: antibinde MO's)

Da Hydridresonanzen meistens im starken Hochfeld auftreten, ist die starke Tieffeldverschiebung für Verbindung **37** ungewöhnlich. Die Verschiebung kann mit der erniedrigten Elektronendichte zusammenhängen, da die zwei Valenzelektronen der vier Zirconiumatome als Elektronenpaar im Clusterhohlraum residieren und so der Nachbarelektroneneffekt gering ausfällt. In der Literatur ist das gleiche Verhalten der Hydride im NMR auch am Beispiel von Ta₂Cl₄(PMe₃)₄(μ -H)₄ zu sehen. Hier treten die vier verbrückenden Hydridoliganden bei 8.79 ppm auf.

Eine weitere Erklärung für diesen Umstand ist die Fähigkeit von Hydridoliganden in die Valenzelektronenwolke der Metallzentren einzutauchen, wodurch sie vom NMR-Magnetfeld abgeschirmt und stark hochfeldverschoben detektiert werden. Dies ist den H-Atomen in Verbindung **37** nicht möglich, da sich die Valenzelektronenwolke der Zirconiumatome im Clusterzentrum befindet und somit keine Wechselwirkungen mit ihnen eingehen kann.

4.2 Untersuchungen zum Reaktionshergang

Die Reproduktion von **37** erwies sich als schwierig, da ihre Bildung empfindlich auf kleine Unterschiede in den Reaktionsbedingungen reagiert. Als Resultat bilden sich andere Produkte oder Gemische aus diesen Verbindungen in unterschiedlichen Verhältnissen. Diese Probleme traten ebenfalls auf, wenn versucht wurde, die Ansatzgröße zu erhöhen, um mehr Substanz zu erhalten. Dementsprechend konnte immer nur wenig von **37** auf einmal synthetisiert werden und dies erschwerte die Untersuchung von möglichen Folgereaktionen.

Äquiv.	Hydriermittel	ϑ / °C	t/h	System	Ergebnis
3	NaH	RT	96	geschl.	keine Umsetzung
3	NaH	110	18	geschl.	keine Umsetzung
3	NaBH ₄	110	18	geschl.	Produktgemisch
3	Li(Et) ₃ BH	110	18	geschl.	keine Umsetzung
3	(i-Bu) ₂ AlH ₂	110	18	geschl.	unident. Isobutylverbindung
0.8	LiAlH ₄	110	18	geschl.	unident. Cp"Zr-Verbindung (38)
1	LiAlH ₄	110	18	geschl.	Produktgemisch
1.5	LiAlH ₄	110	18	geschl.	Produktgemisch
2	LiAlH ₄	110	18	geschl.	Produktgemisch
3	LiAlH ₄	110	18	offen	(Cp''ZrCl ₂) ₃ (37)
3	LiAlH ₄	80	18	offen	(Cp''ZrCl ₂) ₃ (37)
3	LiAlH ₄	80	4	offen	(Cp''ZrCl ₂) ₃ (37)
3	LiAlH ₄	80	4	geschl.	[(Cp″Zr)₄(μ-H) ₈ (μ-Cl) ₂]
3	LiAlH ₄	80	18	geschl.	[(Cp''Zr-(μ-Η) ₂) ₃ (μ-Η) ₃ AlCl]

Tabelle 4.5: Auflistung zur Reaktionsaufklärung der Hydrierung von [Cp"ZrCl₃] (**23**) in 10 ml Lösungsmittel.

Es wurden viele Versuche unternommen, in denen die Reaktionsführung immer wieder verändert wurde. Das Verhältnis der Edukte zueinander, die Menge des Lösungsmittels und damit die Konzentration, Temperatur und Reaktionsdauer und letztendlich wurden auch andere Hydriermittel ausprobiert: Natriumborhydrid, Diisobutylaluminiumhydrid, Lithiumtriethylborhydrid. Tabelle 4.5 listet eine Auswahl von Reaktionsbedingungen auf, mit denen versucht wurde, den Reaktionshergang zu klären und zu optimieren. Im Folgenden wird auf diese Versuche eingegangen.

4.2.1 Umsetzung mit Natriumhydrid

Wie bereits erwähnt, konnte bei der Umsetzung von [Cp"ZrCl₃] mit Natriumhydrid keine Reaktion festgestellt werden. Ein Reaktionsgemisch wurde für vier Tage bei Raumtemperatur gerührt. In einem anderen Experiment wurde das Gemisch über Nacht in siedendem Toluol gerührt. In beiden Fällen konnte nach der Aufarbeitung nur die Zirconiumausgangsverbindung zurückgewonnen werden.

4.2.2 Umsetzung mit Natriumborhydrid

Die Umsetzung mit Natriumborhydrid wurde mit [Cp"ZrCl₃] und [Cp"ZrBr₃] durchgeführt. Mit [Cp"ZrBr₃] zeigte sich unabhängig von der Stöchiometrie keine Reaktion. Das Produktgemisch wurde ein weiteres Mal in Toluol gelöst und mit weiterem NaBH₄ umgesetzt. Nach Erhitzen auf 120 °C über Nacht und anschließender Aufarbeitung konnte keine weitere Umsetzung festgestellt werden.

Bei [Cp"ZrCl₃] konnte eine geringe, unvollständige Reaktion im NMR beobachtet werden. Hierzu wurde **23** in Toluol gelöst und mit drei Äquivalenten Natriumborhydrid versetzt. Die Suspension wurde über Nacht bei 100 °C gerührt. Nach der Aufarbeitung wurde ein farbloser Feststoff erhalten der zum größten Teil aus Edukt und zu einem kleinen Teil aus vermutlich einfach hydriertem Komplex bestand.

Abbildung 4.11: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) der Umsetzung von **23** mit Natriumborhydrid.

Im NMR erkennt man Signale für eine teilhydrierte, diamagnetische Verbindung bei 6.39 (t, 1H) und 5.98 ppm (d, 2H) die Wasserstoffatome am Cp-Ring und bei 1.11 ppm (s, 18H) die Verschiebung der *tert*-Butylgruppen. Für den Hydridoliganden wurde kein Signal detektiert. Bei 6.36 ppm (t, 0.4H), 5.93 ppm (d, 0.74H) und 1.11 ppm (s, 10.79H) treten die Signale in Resonanz, die Verbindung **23** zugeordnet werden. Demnach enthält das Produktgemisch das Produkt und nicht umgesetztes Edukt im Verhältnis von ca. 5:2.

Für das Produktgemisch wurde ebenfalls eine Elementaranalyse gemessen. Berücksichtigt man die im NMR gefundenen Stoffmengenverhältnisse von 1:0.37 (bezogen auf des Integralverhältnis der beiden Dubletts bei 5.9 ppm und 6 ppm) und berechnet danach die theoretischen Werte des Produktgemisches, erhält man eine gute Übereinstimmung mit der gemessenen Zusammensetzung.

Tabelle 4.6: Elementaranalyse des Produktgemisches von [Cp"ZrCl₂H] und [Cp"ZrCl₃] (**23**) im Verhältnis 1:0.37.

	С	Н
Theoriewerte	44.64%	6.26%
Messwerte	42.31%	6.33%
Cp"ZrCl ₂ H	45.86%	6.51%
$Cp''ZrCl_3$	41.65%	5.65%

4.2.3 Umsetzung mit Diisobutylaluminiumhydrid (Dibal)

Die Umsetzung mit Dibal führte ebenfalls nicht zu Verbindung **37**. [Cp"ZrCl₃] (**23**) wurde in Toluol vorgelegt und mit drei Äquivalenten Dibal versetzt. Die Synthese wurde bei Raumtemperatur und bei Siedetemperatur durchgeführt. In beiden Fällen konnten im NMR keine eindeutigen Signale für einen Cyclopentadienylzirconiumkomplex gefunden werden. In beiden Fällen wurden nach der Aufarbeitung intensive Signale von Dibal im NMR gemessen. Die Signale treten bei 0.48 ppm (d, 2H, Isobutyl-CH₂), 1.04 (d, 6H, Isobutyl-CH₃) ppm und 2.02 ppm (sep, 1H, Isobutyl-CH) in Resonanz.

Abbildung 4.12: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) der Umsetzung von **23** mit Dibal.

4.2.4 Umsetzung mit Lithiumtriethylborhydrid (Superhydrid)

Als letztes wurde Lithiumtriethylborhydrid genutzt. um eventuell einen kontrollierteren Ligandenaustausch mit Hydriden zu bekommen. Dazu wurden jeweils [Cp"ZrCl₃] (**23**), [Cp"ZrCl₂]₃ (**35**) und [Cp""ZrCl₃] (**21**) in Toluol gelöst und mit Superhydrid in THF versetzt. Die Reaktion mit **23** wurde noch bei Siedetemperatur gerührt, **35** und **21** wurden bei Raumtemperatur umgesetzt. Alle Ansätze wurden über Nacht gerührt, anschließend destillativ von Toluol befreit, mit Pentan extrahiert und unlöslicher Feststoff wurde entfernt. Bei allen Reaktionen blieb nach der Entfernung von Pentan ein schwer handhabbares Gemisch aus Feststoff und Öl zurück. Die ¹H-NMR-Spektren zeigen diamagnetische Produktgemische, deren Signale sich nicht zuordnen lassen. In jedem Spektrum tauchen Signale von freiem THF auf. Desweiteren ist in jedem der Spektren bei 4.47 ppm ein Singulett für Wasserstoff zu sehen.

Tabelle 4.7: ¹ H-NMR-Signale der Hauptprodukte der Umsetzungen von Li(Et)₃BH mit
[Cp"ZrCl ₃] (23), [Cp"ZrCl ₂] ₃ (35) und [Cp""ZrCl ₃] (21).

-					
23		35		21	
δ / ppm	Multiplizität	δ / ppm	Multiplizität	δ / ppm	Multiplizität
0.80	S	0.54	t	0.88 (Pentan)	t
1.13	S	1.31	q	1.31	S
1.22	S	3.44 (THF)	m	1.42	S
1.36	m	4.47 (H ₂)	S	1.51	S
2.11	S	6.48	d	3.53 (THF)	m
3.54 (THF)	m			4.47 (H ₂)	S
4.47 (H ₂)	S			6.35	d

4.2.5 Variation des stöchiometrischen Verhältnisses

Oft geben Hydrierungen mit LiAlH₄ keinen Aufschluss, wie viele Hydride pro Molekül übertragen werden. Basierend auf den bis dahin erhaltenen Ergebnissen muss davon ausgegangen werden, dass nur die Umsetzung mit Lithiumaluminiumhydrid zum gewünschten Produkt **37** führt. Daher wurde die Umsetzung hinsichtlich des stöchiometrischen Verhältnisses untersucht.

Umsetzung mit einem Äquivalent LiAlH₄

Aufgereinigtes Lithiumaluminiumhydrid wurde mit [Cp"ZrCl₃] in 10 ml Toluol in einem Druckschlenkrohr bei 110°C über Nacht gerührt. Das abgekühlte Gemisch wurde von Toluol befreit. Der Rückstand wurde in Pentan aufgenommen und unlöslicher Feststoff über eine Zentrifuge abgetrennt. Pentan wurde destillativ entfernt und ein gelb-brauner Feststoff wurde erhalten.

Das ¹H-NMR-Spektrum deute auf eine unvollständige Reaktion hin. Es zeigte Signale des Edukts und eines Produktgemisches. Zwei Produkte wurden hier bevorzugt gebildet und deren Signale sind in Tabelle 4.8 aufgeführt.

Das Hauptprodukt zeigte ein Singulett bei 1.11 ppm, welches *tert*-Butylgruppen zugeordnet werden kann. Das Dublett und Triplett im aromatischen Bereich bei 5.99 ppm und 6.40 ppm können den H-Atomen des Cp-Rings zugeordnet werden. Das Hauptprodukt konnte im Rahmen dieser Arbeit nicht identifiziert werden.

Hauptprodukt 38 ^{a)}		[Cp"ZrCl ₂] ₃			
δ / ppm	Integral	δ / ppm	Integral	Multiplizität	Zuordnung
1.11	18.82	1.30	3.16	S	^t Bu
5.99	1.85	6.29	0.41	d	Cp"-Ring
6.40	1.00	6.58	0.25	t	Cp"-Ring

Tabelle 4.8: ¹H-NMR-Signale der Hauptprodukte der Umsetzungen mit einem Äquivalent LiAlH₄.

^{a)} nicht identifiziertes Hauptprodukt

Der nächste Signalsatz kann [Cp"ZrCl₂]₃ (**35**) zugeordnet werden. Hierbei handelt es sich um einen bereits bekannten trimeren, reduzierten Zr-Komplex. Die Resonanzen bei 1.30 ppm werden den *tert*-Butylprotonen zugeordnet, im aromatischen Bereich finden sich die Signale der Ringprotonen bei 6.29 ppm und 6.58 ppm. Obwohl das Trimer mindestens ein ungepaartes Elektron besitzt, ist im ¹H-NMR-Spektrum eine diamagnetische Verbindung zu sehen. Eine Hypothese die dieses Verhalten erklären könnte, ist dass Verbindung **35** in Lösung als Dimer oder Tetramer vorliegt und damit keine Ungepaarten Elektronen besitzt.

Neben den Signalen des Produktgemisches ist auch ein kleines Signal bei 4.47 ppm zu beobachten. Der Verdacht lag nahe, dass es sich um ein weiteres Hydridosignal handeln könnte, welches zu Verbindung **39** gehören könnte. Jedoch ist dieses Signal wohl im Lösungsmittel gelöstem H₂ zuzuordnen^[74]. Dieses Signal wurde auch in anderen ¹H-MNR-Spektren von Hydridoverbindungen beobachtet, hier trat es aber zum ersten Mal sehr auffällig auf.

Umsetzung mit 0.8 Äquivalenten LiAlH₄x

Das Experiment wurde mit 0.8 Äquivalenten Lithiumaluminiumhydrid wiederholt. Nach der Aufarbeitung wurde ein gelber Feststoff erhalten. Das ¹H-NMR-Spektrum zeigt bei 5.99 ppm (d) und 6.40 ppm (t) Signale für Ring-H-Atome und bei 1.12 ppm ein Singulett für *tert*-Butylgruppen. Die Integrale stehen im Verhältnis 2:1:18, was ebenfalls auf koordiniertes Cp" hinweist. Das Spektrum zeigt noch geringe Verunreinigungen im aliphatischen Bereich. Im aromatischen Bereich sieht man auch Spuren weiterer Cp"-Komplexe. Außerdem kann man auch hier bei 4.47 ppm ein kleines Signal für H₂ erkennen.

Abbildung 4.13: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) der unidentifizierten Verbindung **38**.

Da die ¹H-NMR-Spektren anderer Hydridoverbindungen nicht mit dem aus Abbildung 4.13 übereinstimmen wird davon ausgegangen, dass es sich um eine unbekannte Cp"Zr-Verbindung handelt. Tabelle 4.9 führt das Ergebnis der Elementaranalyse auf und vergleicht mögliche entstandene Zr-Komplexe. Für eine endgültige strukturelle Aufklärung sind allerdings weitere Untersuchungen wie Röntgendiffraktometrie oder Massenspektrometrie nötig. Leider konnten keine diffraktometertauglichen Kristalle erhalten werden.

mögl. Lewis-Formeln	С	Н
Messwerte	43.36%	6.46%
Edukt	41.65%	5.65%
Cp″ZrCl ₂ H	45.86%	6.51%
(Cp''ZrCl ₂) ₂ (µ-Cl)(µ-H)	43.65%	6.06%
$(Cp''ZrCl_2)_4(\mu-Cl)_2$	43.72%	5.93%

Tabelle 4.9: Elementaranalyse von Verbindung **38** und Vorschläge für mögliche Lewisformeln.

Umsetzung mit 1.5 Äquivalenten LiAlH₄

Nach der Reaktion mit 1.5 Äquivalenten Lithiumaluminiumhydrid bei gleichen Synthesebedingungen wurde ein grüner Feststoff erhalten. Das ¹H-NMR-Spektrum des Produkts zeigt ein Gemisch aus drei Verbindungen. Es beinhaltet die Signale für Verbindung **38**, [Cp"ZrCl₂]₃ und [(Cp"Zr)₄(μ -H)₈(μ -Cl)₂]. Der Dreikernkomplex [Cp"ZrCl₂]₃ weist hierbei die geringste Konzentration auf.

Tabelle 4.10: ¹H-NMR-Signale der Hauptprodukte der Umsetzungen mit 1.5 Äquivalent LiAlH₄.

Verbind	Verbindung 38		[Cp"ZrCl ₂] ₃		[(Cp''Zr) ₄ (µ-H) ₈ (µ-Cl) ₂]		
δ / ppm	Integral	δ / ppm	Integral	δ / ppm	Integral	Mult.	Zuordnung
1.11	17.46	1.30	4.55	1.43	17.04	S	^t Bu
				3.71	1.82	S	µ-H
5.99	1.76	6.29	0.80	6.03	1.82	d	Cp"-Ring
6.39	1.00	6.59	0.39	6.14	1.11	t	Cp"-Ring

Umsetzung mit 2.5 Äquivalenten LiAlH₄

Als nächstes wurde die Reaktion mit 2.5 Äquivalenten LiAlH₄ bei gleichen Reaktionsbedingungen durchgeführt. Das rote Produkt wurde aus Pentan umkristallisiert. Das ¹H-NMR-Spektrum zeigte ausschließlich Signale für die gewünschte Verbindung **37**.

Tabelle 4.11: ¹H-NMR-Signale der Hauptprodukte aus der Umsetzung mit 2.5 Äquivalent LiAlH₄.

δ / ppm	Integral	Multiplizität	Zuordnung
1.43	18.00	S	^t Bu
3.71	1.89	S	μ-H
6.03	1.88	d	Cp"-Ring
6.14	1.11	t	Cp"-Ring

Die gemessenen Werte der Elementaranalyse stimmen ebenfalls mit den berechneten Werten der Verbindung überein.

Tabelle 4.12: Elementaranalyse von $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (1153.09 $\frac{C}{m}$	<u>g</u> 10l).
---	---------------------------

$C_{52}H_{92}Cl_2Zr_4$	С	Н
Theoriewerte	54.16%	8.04%
Messwerte	54.05%	8.21%

Daraus lässt sich schließen, dass für eine vollständige Umsetzung 2.5 Äquivalente nötig sind. Es werden also pro LiAlH₄ 3.2 Hydride übertragen. Damit steht nun ein Syntheseweg zur Verfügung, der den Zugang zu **37** zuverlässig ermöglicht.
4.2.6 weitere Optimierungen der Reaktionsführung

Um den Reaktionshergang weiter zu ergründen, wurden die Reaktionsbedingungen verändert. Zunächst wurde die Reaktionstemperatur geändert, da Lithiumaluminiumhydrid bei hohen Temperaturen zerfällt und somit die Ausbeute leiden kann. Die Temperatur konnte von 110°C auf 80°C reduziert werden, ohne die Ausbeute zu vermindern. Unterhalb dieser Temperatur bildeten sich vermutlich vermehrt Nebenprodukte. Wahrscheinlicher ist es aber, dass geringere Temperaturen zu niedrig sind und dadurch die Reaktion auf der Stufe von Zwischenprodukten anhält. Bei Raumtemperatur blieb die Reaktion aus.

Spätere Variation der Reaktionszeiten zeigte, dass die Reaktion bereits nach vier Stunden abgeschlossen ist.

Des weiteren spielt auch der Wasserstoffdruck eine wichtige Rolle im Reaktionshergang. Reaktionen in offenen Apparaturen zeigten unkontrollierte Umsetzung und Reduktion am $[Cp''ZrCl_3]$ zu $[Cp''ZrCl_2]_3$. Dies kann auf reduktive Eliminierung durch Wasserstoffentwicklung zurückgeführt werden. Die Synthese wurde in Druckschlenkrohren durchgeführt, da das geschlossene System zu einem erhöhten H₂-Partialdruck führt. Dieser H₂-Druck scheint Zirconiumhydridintermediate zu stabilisieren, so dass die reduktive Eliminierung am Zirconiumkomplex ausbleibt und sich handhabbare Hydridcluster bilden können. Die Wasserstoffentwicklung, welche sich durch Sprudeln der abgekühlten Reaktionsmischung beim Öffnen der Reaktionsgefäße zeigt, stützt diese These. Im ¹H-NMR der Verbindungen konnten Signale von freiem Wasserstoff bei 4.47 ppm detektiert werden.

Leider ließ sich Verbindung **37** nicht in größeren Maßstäben synthetisieren. Versuche die Synthese für größere Maßstäbe zu skalieren führten nicht zu Verbindung **37**, sondern zu einem neuen Produkt. ¹H-NMR-Spektroskopie konnte keinen Aufschluss auf die Struktur geben. Es konnten jedoch Einkristalle erhalten werden, welche röntgendiffraktometrisch untersucht werden konnten. Die Verbindung wird im folgenden Kapitel 4.3 beschrieben.

4.3 Tris{di(*tert*-butyl)cyclopentadienyldi(μ-hydrido)zirconium} {chloridotri(μ-hydrido)aluminat} (39)

Bei Versuchen zur Reproduktion von **37** wurde des öfteren statt dem üblichen rotbraunen ein dunkelgrüner Feststoff erhalten, der in reiner Form isoliert und vollständig charakterisiert werden konnte. Durch eine breit angelegte Variation der Reaktionsbedingungen konnte eine reproduzierbare Synthesevorschrift erarbeitet werden.

Schema 4.3: Darstellung von $(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl$ (**39**).

Di(*tert*-butyl)cyclopentadienyltrichloridozirconium(IV) und Lithiumaluminiumhydrid werden in Toluol suspendiert und für 4 Stunden bei 80 °C gerührt. Die Reaktion wurde in einem Druckschlenkrohr durchgeführt, welches bis zum Gaseinlasshahn mit dem Reaktionsgemisch gefüllt war. Nach Abkühlen des Gemischs wurde Toluol bei Raumtemperatur im Vakuum abgezogen. Der Rückstand wurde mit Pentan extrahiert und zentrifugiert. Die dunkelrote Lösung wurde eingeengt und bei -30 °C gelagert. Nach Dekantieren der Mutterlauge wurde ein roter, kristalliner Feststoff in einer Ausbeute von 39% erhalten. Im Gegensatz zur Synthese von **37** konnten hier auch größere Ansätze erfolgreich durchgeführt werden. Wichtig war hierbei, dass die Druckschlenkrohre dicht verschlossen waren und nur ein kleiner Gasraum vorhanden war, damit sich über der Flüssigkeit ein gewisser Wasserstoffdruck aufbauen konnte.

Abbildung 4.14: ORTEP-Plot der Struktur von (Cp"(μ-H)₂Zr)₃(μ-H)₃AlCl (**39**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoff-Atome der Cp"-Liganden zur besseren Übersicht nicht angezeigt (Zr: gelb; Cl: grün; Hydride: pink; Al: blau C: grau).

Verbindung **39** kristallisiert als grüne Prismen in monokliner Raumgruppe I 2/a. Drei Zirconiumatome spannen ein Dreieck auf, welches über je zwei Hydride pro Dreieckskanten verbrückt ist. Drei Hydridobrücken verbinden je ein Zirconium mit dem Aluminiumatom über dem Zirconiumdreieck, welches wiederum ein Chlorid trägt. Jedes Zirconiumzentrum ist außerdem mit je einem Di(*tert*-butyl)cyclopentadienyl verbunden.

Abbildung 4.15: ORTEP-Plot der Struktur von (Cp"(μ-H)₂Zr)₃(μ-H)₃AlCl (**39**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit (Zr: gelb; Cl: grün; Hydride: pink; Al: blau C: grau).

Abbildung 4.15 zeigt einen Blick auf den Cluster ohne die Cp"-Liganden. Es ist gut zu erkennen, dass die Zr-H-Al-Hydridobrücken fast senkrecht vom Zr₃-Dreieck aufragen. Die Zr–C-Abstände bewegen sich zwischen 2.474(2) und 2.533(2) Å, damit ergeben sich Zr–Zentroid-Abstände von 2.195, 2.200 und 2.203 Å. Die Zr-Al-Abstände liegen zwischen 2.8257(7) und 2.8337(7) Å. Die entsprechenden Zr–H-Bindungen haben im Mittel eine Länge von 1.97 Å, die kürzesten gemittelten Bindungslängen weisen die Al–H-Bindungen mit 1.68 Å auf. Die längsten Atomabstände sind mit 3.0287(3), 3.0313(3) und 3.0381(3) Å die Zr–Zr-Abstände. Die Bindungslängen der zugehörigen Hydridobrücken betragen zwischen 1.88(5) und 2.07(3) Å. Als Letztes ist noch die Al–Cl-Bindung mit einer Länge von 2.1400(9) Å zu erwähnen.

Bindung	Å	Bindung	Å	Bindung	Å
Zr(1)-C(1)	2.528(2)	Zr(1)-Cp _{zent}	2.203	Zr(1)-Zr(2)	3.0381(3)
Zr(1)-C(2)	2.522(2)	Zr(2)-Cp _{zent}	2.195	Zr(2)-Zr(3)	3.0313(3)
Zr(1)-C(3)	2.533(2)	Zr(3)-Cp _{zent}	2.200	Zr(3)-Zr(1)	3.0287(3)
Zr(1)-C(4)	2.488(2)	Zr(1)-H(4M)	1.99(3)	Zr(1)-H(1M)	1.96(3)
Zr(1)-C(5)	2.482(2)	Zr(1)-H(5M)	2.01(4)	Zr(2)-H(3M)	1.91(3)
Zr(2)-C(14)	2.525(2)	Zr(1)-H(7M)	1.95(4)	Zr(3)-H(2M)	2.03(4)
Zr(2)-C(15)	2.514(2)	Zr(1)-H(8M)	1.98(4)	Zr(1)-Al(1)	2.8284(7)
Zr(2)-C(16)	2.527(2)	Zr(2)-H(4M)	1.91(3)	Zr(2)-Al(1)	2.8257(7)
Zr(2)-C(17)	2.479(2)	Zr(2)-H(6M)	1.92(4)	Zr(3)-Al(1)	2.8337(7)
Zr(2)-C(18)	2.474(2)	Zr(2)-H(7M)	1.97(3)	Al(1)-H(1M)	1.66(3)
Zr(3)-C(27)	2.519(2)	Zr(2)-H(9M)	1.88(5)	Al(1)-H(2M)	1.70(4)
Zr(3)-C(28)	2.515(2)	Zr(3)-H(5M)	1.96(4)	Al(1)-H(3M)	1.69(3)
Zr(3)-C(29)	2.530(3)	Zr(3)-H(6M)	2.07(3)	Al(1)-Cl(1)	2.1400(9)
Zr(3)-C(30)	2.492(3)	Zr(3)-H(8M)	1.93(4)		
Zr(3)-C(31)	2.489(2)	Zr(3)-H(9M)	2.06(5)		

Tabelle 4.13: Ausgewählte Bindungslängen in Å von $(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl$ (**39**).

Die Zirconiumatome bilden ein beinahe gleichseitiges Dreieck mit Winkeln um jeweils 60°. Die Zr-H-Zr-Winkel der Hydridobrücken betragen zwischen 96.61° und 102.37°. Die Winkel der Al-H-Zr-Hydridobrücken befinden sich mit 96.77°, 102.27° und 103.29° in der gleichen Größenordnung. Am Aluminium spannen die Hydridoliganden Winkel zwischen 96.9(13)° und 100.4(11)° mit dem Chlorid auf. Die Bindungsabstände und -winkel sind für Verbindung **39** in den Tabellen 4.13 und 4.14 detaillierter aufgeführt.

Die Wasserstoffabstände und -winkel sind auch hier unter Vorbehalt genannt, da die Abstände wegen der Diskrepanz zwischen dem Elektronendichtemaximum am Wasserstoffatom und dem Ort des Wasserstoff-Atomkerns größer und die Winkel damit kleiner sein können.

Bindungen	Winkel/°	Bindungen	Winkel/°
H(1M)-Zr(1)-Cp _{zent}	108.49	H(3M)-Zr(2)-Cp _{zent}	107.03
H(4M)-Zr(1)-Cp _{zent}	121.99	H4M(5)-Zr(2)-Cp _{zent}	122.15
H(5M)-Zr(1)-Cp _{zent}	117.44	H6M(6)-Zr(2)-Cp _{zent}	111.16
H(7M)-Zr(1)-Cp _{zent}	112.84	H7M(6)-Zr(2)-Cp _{zent}	115.18
H(8M)-Zr(1)-Cp _{zent}	112.83	H9M(6)-Zr(2)-Cp _{zent}	109.61
H(2M)-Zr(3)-Cp _{zent}	107.15	Zr(3)-Zr(1)-Zr(2)	59.954(6)
H(5M)-Zr(3)-Cp _{zent}	116.68	Zr(3)-Zr(2)-Zr(1)	59.868(6)
H(6M)-Zr(3)-Cp _{zent}	117.89	Zr(1)-Zr(3)-Zr(2)	60.178(6)
H(8M)-Zr(3)-Cp _{zent}	112.33	Al(1)-H(1M)-Zr(1)	102.27
H(9M)-Zr(3)-Cp _{zent}	115.39	Al(1)-H(2M)-Zr(3)	96.77
Zr(1)-H(4M)-Zr(2)	102.37	Al(1)-H(3M)-Zr(2)	103.29
Zr(1)-H(5M)-Zr(3)	99.40	Cl(1)-Al(1)-H(1M)	99.3(11)
Zr(2)-H(6M)-Zr(3)	96.61	Cl(1)-Al(1)-H(2M)	96.9(13)
Zr(1)-H(7M)-Zr(2)	101.45	Cl(1)-Al(1)-H(3M)	100.4(11)
Zr(1)-H(8M)-Zr(3)	101.50		
Zr(2)-H(9M)-Zr(3)	100.74		

Tabelle 4.14: Ausgewählte Bindungswinkel in ° von $[(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl]$ (**39**).

Es wurde eine Elementaranalyse für eine Verbindung mit der Summenformel AlC₃₉ClH₇₂Zr₃ gemessen. In der Röntgenstruktur ist zu erkennen, dass pro Clustermolekül ein Molekül Pentan im Kristallgitter eingebaut ist. Rechnet man pro Komplex ein Molekül Pentan hinzu, stimmen die gefundenen Werte sehr gut mit den errechneten überein.

		-
$C_{39}H_{72}Zr_{3}AlCl+C_{5}H_{12}$	C	Н
Theoriewerte	55.67%	8.92%
Messwerte	55.40%	9.00%

Tabelle 4.15: Elementaranalyse von [(Cp^{''}(μ -H)₂Zr)₃(μ -H)₃AlCl] + Pentan (877.10 $\frac{g}{mol}$).

Die ¹H-NMR-spektroskopische Untersuchung von **39** zeigt eine diamagnetische Verbindung. Im aromatischen Bereich sind die Signale für die Ringprotonen zu erkennen. Das Triplett bei 6.07 ppm kann den H-Atomen in 2-Position zugeordnet werden. Das Dublett bei 5.83 ppm gehört zu den 4- und 5-ständigen Ringwasserstoffatomen. Im aliphatischen Bereich erkennt man die Resonanz der *tert*-Butylgruppen als Singulett bei 1.36 ppm. Leider wurden auch bei Messungen im größeren Messbereich keine Signale gefunden, die den Hydridobrücken zugeordnet werden können.

Abbildung 4.16: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von $[(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl]$ (**39**).

4.4 Diskussion der hydridoverbrückten Zirconiumcluster

Die Untersuchung von Verbindung **37** gestaltete sich schwierig. Dennoch konnte der Cluster mehrmals, wenn auch nur in niedrigen Ausbeuten, reproduziert werden. Die Ansatzgröße zu erhöhen war keine Alternative, um die Ausbeute auszugleichen, da in diesen Fällen entweder Verbindung **39** oder Produktgemische erhalten wurden. Wie in Kapitel 4 bereits beschrieben gibt es in der Literatur viele Beispiele für Zirconiumcluster. Darunter weisen nur wenige Zr–Zr-Wechselwirkungen und noch weniger direkte Metall-Metall-Bindungen auf. Nach derzeitigem Kenntnisstand sind die Zr–Zr-Abstände in den Verbindungen **37** und **39** die kürzesten bisher beobachteten Zr–Zr-Abstände.

Laut *Peng et al.* sind die von ihnen gefundenen hydridoverbrückten Zr–Zr-Abstände ihres Wissens die kürzesten je gemessenen Zr–Zr-Bindungslängen^[73]. Zuvor waren Zirconiumabstände von 3.099(2) Å bis 3.450(1) Å in der Literatur bekannt. *Peng et al.* unterboten diese Abstände mit 3.0525(13) Å bis 3.0864(13) Å in $[(\mu_2-H)_6(Cp^*Zr)_4]$ und 3.0516(6) Å bis 3.5643(6) Å in $[(Cp^*Zr)_4(\mu-H)_8(\mu-Cl)_2]$. Die oben beschriebenen Verbindungen **37** und **39** weisen in der Röntgenstruktur wiederum kürzere Zr–Zr-Abstände auf (Vgl. Tabelle 4.16).

Verbindung	Zr–Zr-Abstände / Å
(Cp''Zr) ₄ (µ-H) ₈ (µ-Cl) ₂ (37)	3.0426(3) - 3.5901(5)
(Cp''Zr-(µ-H) ₂) ₃ (µ-H) ₃ AlCl (39)	3.0287(3) - 3.0381(3)
(Cp*Zr) ₄ (µ-H) ₈ (µ-Cl) ₂ ^[73]	3.0516(6) - 3.5643(6)
(µ-H) ₆ (Cp*Zr) ₄ ^[73]	3.0525(13) - 3.0864(13)
$Zr_2Cl_6(dppe)_2 \cdot 2C_2H_4Cl_2 \cdot 1.5C_6H_5CH_3^{[75]}$	3.099(2) - 3.109(2)
$Zr_{2}I_{6}(PMe_{3})_{4}^{[76]}$	3.393(2)
Zrl ₃ ^[77]	3.172(2) - 3.507(2)
(Zr ₆ Cl ₁₈ H ₄) ^{4-[70]}	3.3589(9) - 3.3746(9)
$[\{({}^{t}BuC_{5}H_{4})({}^{t}BuC_{5}H_{3})Zr(\mu-H)Na\}_{2}\cdotOEt_{2}]_{2}^{[71]}$	3.2930(16)
(Cp''Zr) ₃ (µ-Cl) ₆ ^[67]	3.3161(5) - 3.3776(4)
(Cp ^{///} Zr) ₃ (µ-Cl) ₆ ^[66]	3.3749(3) - 3.4031(3)

Tabelle 4.16: Vergleich der Zr–Zr-Abstände in **37** und **39** mit denen in ausgewählten Verbindungen aus der Literatur.

Metall-Metall-Wechselwirkungen wurden bei Abständen zwischen 3.099(2) Å und 3.450(1) Å diskutiert. Für den Zr₃Al-Cluster Zirconiumcluster (**39**) konnte im ¹H-NMR-Spektrum kein Signal für die Hydride detektiert werden, auch nicht durch temperaturabhängige Messungen von RT bis -80 °C. Dies kann an einer hohen Dynamik der Wasserstoffe liegen, so dass kein scharfes Signal detektiert werden kann. Der vierkernige Zirconiumcluster 37 zeigte die verbrückenden Hydridoligenden bei 3.71 ppm. Im von Peng beschriebenen analogen Pentamethylcyclopentadienyl-Zirconium-Cluster wurde ein Signal bei 4.47 ppm den verbrückenden Hydridoliganden zugeordnet^[73]. Spektren von 37 zeigten ebenfalls bei dieser Resonanz ein Singulett. Allerdings wiesen Messungen unterschiedlicher Reaktionen verschieden Integralverhältnisse auf. Des weiteren wurde das Singulett bei 4.47 ppm auch in Produktgemischen in denen sich keine weiteren Signale von **37** zeigten und in ¹H-NMR-Spektren von Verbindung 39 beobachtet. Fulmer und Goldberg untersuchten das Auftreten diverser Lösungsmittel und üblicher Nebenprodukte in ¹H-NMR-Messungen in unterschiedlichen deuterierten Lösungsmitteln^[74]. Sie ordnen einem Signal bei 4.47 ppm in deuteriertem Benzol freiem elementarem Wasserstoff zu. Dies deckt sich damit, dass während diverser Reaktionen mit Lithiumaluminiumhydrid Gasentwicklung beobachtet wurde. Offen bleibt allerdings, ob es sich um Wasserstoff handelt, der aus den Clustern selbst freigesetzt wird oder ob er als Nebenprodukt durch die Reaktion mit LiAlH₄ entsteht. Die Vermutung liegt allerdings nahe, dass **37** und **39** mit der Zeit Wasserstoff freisetzen, da Aufarbeitung und Probenvorbereitung den Übertrag von H₂ unwahrscheinlich machen.

Schema 4.4: Vergleich der H-H-Abstände zwischen $(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2$ und dem möglichen H₂-Verbrückten $(Cp''Zr)_4(\mu-H_2)_4(\mu-Cl)_2$.

Der freigesetzte Wasserstoff warf die Frage auf, ob es sich bei den verbrückenden Liganden tatsächlich um Hydridoliganden handelt oder um H₂-Brücken. Dies kann man durch die Wasserstoffabstände in der Kristallstruktur überprüfen. Der Atomabstand in freiem elementarem Wasserstoff beträgt 0.74 Å. Allerdings können sich die H–H-Abstände in komplexiertem H₂ nahezu verdoppeln. *Heinekey, Lledos* und *Lluch* beschrieben in einem Reviewartikel unterschiedliche Wasserstoffabstände Übergangsmetallkomplexe mit H₂-Liganden mit besonnders langen H–H-Bindungen (ëlongated dihydrogen complexes"). Ein Beispiel ist die H–H-Bindungslängen 1.49 Å in [Cp*Ir(dmpm)H₂]²⁺ die immernoch als H₂-Ligand betrachtet wird^[78]. Die Abstände der Wasserstoffatome in **37** liegen zwischen 1.821 Å und 1.947 Å. In Verbindung **39** sind sie zwischen 1.952 Å und 1.994 Å voneinander entfernt. Dies übertrifft die in der Literatur beschriebenen Atomabstände. In der Realität sind die Abstände wahrscheinlich sogar größer, da die Röntgenstruktur durch systematische Fehler die Position der H-Atome falsch erfasst. Somit kann davon ausgegangen werden,dass Verbindungen **37** und **39** verbrückende Hydridoliganden besitzen.

Eine weitere Besonderheit der Hydride sind ihre elektronischen Eigenschaften. Für Verbindung **37** errechnet sich für jedes Zirconium eine formale Oxidationsstufe von 3.5. Dementsprechend enthält der Zr₄-Cluster ein freies Elektronenpaar. Die von *Prof. van Wüllen* durchgeführte DFT-Rechnung zeigt, dass im Zentrum des Zr-Tetraders ein Molekülorbital entsteht, in welchem sich die zwei Valenzelektronen bewegen und somit eine 4-Zentren-2-Elektronenbindung vorliegt.

Die elektronischen Eigenschaften von Verbindung **39** sind dagegen weniger geklärt. Geht man davon aus, dass Aluminium in der Oxidationsstufe +III vorliegt, so bleiben zehn Valenzelektronen übrig. Daraus ergibt sich für jedes Zirconiumatom eine formale Oxidationsstufe von 3.33. Somit hat der Zirconiumcluster ebenfalls zwei freie Elektronen deren Position nicht eindeutig ist. Ausgehend von der Rechnung für **37** liegt die Vermutung nahe, dass sich auch bei **39** die Zirconiumzentren ein gemeinsames Molekülorbital im Zentrum des Zr-Dreiecks teilen. Dieses MO könnte ebenfalls zur Dynamik der Hydridobrücken beitragen und somit die detektion im ¹H-NMR erschweren.

Das vorliegen einer 3-Zentren-2-Elektronen-Bindung könnte auch durch die Zr–Zr-Abstände bekräftigt werden. Eine 3Z2e-Bindung besitzt eine höhere Elektronendichte als eine 4Z2e-Bindung und sorgt daher für geringere Zr–Zr-Bindungslängen.

5 Zirconocene

Die erste Synthese eines homoleptischen zweiwertigen Titanocens gelang erst über 40 Jahre nach der Entdeckung der ersten Metallocene. Für Zirconium und Hafnium dagegen konnte bis heute noch kein homoleptisches Zirconocen synthetisiert werden. Versuche führten immer zu heteroleptischen Zirconocenhalogeniden oder -oligomeren. Beispiele dafür wurden in den Kapiteln 2.2 und 4 beschrieben.

Die häufigste Herangehensweise zur Zirconocensynthese ist die Reduktion von Zirconocendichloriden mit starken Reduktionsmitteln wie beispielsweise Alkalimetallen. Dabei stellte sich die Reduktion zur nötigen Oxidationsstufe II als größte Hürde heraus. Im Arbeitskreis *Sitzmann* berichtete *Zhou* bereits 1993 von Cp^{///4}CpZrCl₂ (**40**), Cp^{///}Cp^{//}ZrCl₂ (**41**) und Cp^{///}Cp^{*}ZrCl₂ (**42**)^[64]. Diese enthielten sehr sperrige Cyclopentadienylliganden, in denen das Potential gesehen wurde, ein zweiwertiges Zirconocen stabilisieren zu können.

Schema 5.1: Cp^{///4}CpZrCl₂ (**40**), Cp^{///}Cp^{//}ZrCl₂ (**41**) und Cp^{///}Cp^{*}ZrCl₂ (**42**)^[64].

Allerdings führten Reduktionsversuche nicht zu den erhofften Zirconocenen. So haben *Urazowski* et al. durch die Reduktion von $Cp_2''ZrCl_2$ durch Reduktion mit elementarem Kalium nur $Cp_2''ZrCl$ (**43**) erhalten können^[79].

Schema 5.2: Darstellung von Cp["]₂ZrCl (**43**)^[79].

Im Folgenden wird eine andere Herangehensweise beschrieben, bei der zuerst ZrCl₄ reduziert und danach das Zwischenprodukt mit dem jeweiligen Cyclopentadienylsalz zur Reaktion gebracht wird.

5.1 Oktaisopropylzirconocen (47)

Um eine mögliche Oligomerisierung des THF zu verhindern, wurde Zirconiumtetrachlorid bei -40 °C in THF gelöst. Die Lösung färbte sich blassgelb und wurde bei gleicher Temperatur mit n-Butyllithium versetzt. Das Reaktionsgemisch wurde bei Raumtemperatur für 18 Stunden gerührt und färbte sich dunkelbraun. Anschließend wurde das Gemisch kurz zum Sieden gebracht wodurch sich die Farbe zu schwarzbraun intensivierte. Zur abgekühlten Lösung wurde Natriumtetra(*iso*-propyl)cyclopentadienid in THF gegeben und für weitere 18 Stunden bei Siedetemperatur gerührt.

Schema 5.3: Darstellung von $({}^{4}Cp)_{2}Zr \cdot 2$ THF (47).

Das Gemisch wurde destillativ von THF befreit, mit Pentan extrahiert und unlöslicher Feststoff wurde über eine Zentrifuge abgetrennt. Die braune Pentanlösung wurde eingeengt und es konnte hellbrauner, kristalliner Feststoff in einer Ausbeute von 67% erhalten werden.

Abbildung 5.1: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von $[({}^{4}Cp)_{2}Zr \cdot 2 THF]$ (**47**).

Verbindung **5** wurde ¹H-NMR-spektroskopisch untersucht. Im aromatischen Bereich erkennt man ein Singulett bei 5.82 ppm, welches den Cp-Ringprotonen zugeordnet werden kann. Die Methin-H-Atome sind als Septetts bei 3.40 ppm und 3.25 ppm lokalisiert. Für die Methylprotonen der Isopropylgruppen erkennt man einen Bereich von 1.56 ppm bis 1.50 ppm, in dem drei Dubletts auftreten. Die beiden Signale bei 1.52 ppm und 1.51 ppm überlappen und könnten auch für ein Triplett mit Dacheffekt gehalten werden, allerdings fehlt dafür ein korrespondierendes Signal. Weiterhin sind die Kopplungkonstanten des Tripletts mit 6.3 Hz und 6.7 Hz unterschiedlich, was ebenfalls auf zwei überlappende Dubletts hindeutet. Ein weiteres Dublett erscheint etwas weiter hochfeldverschoben bei 1.33 ppm. Des Weiteren erkennt man bei 3.02 ppm und 0.99 ppm zwei Multipletts, deren Erscheinung charakteristisch für THF sind. Die Signale deuten auf koordiniertes THF hin, da freies THF zwei Multipletts bei 3.57 ppm und 1.40 ppm zeigen sollte. Da die Verbindung eine sehr gute Löslichkeit aufwies, war die Kristallisation sehr schwierig. Entweder konnten keine kristalle erhalten werden oder es entstanden nur verwachsene Kristalle, die nicht zur röntgendiffraktometrischen Untersuchung geeignet waren. Durch Sublimation konnten ebenfalls keine Einkristalle von **47** erhalten werden. Es zeigte sich dabei, dass die Verbindung thermisch instabil ist. Statt des aufgereinigten Produkts wurden gelbe Kristalle erhalten die im ¹H-NMR-Spektrum als H⁴Cp identifiziert werden konnten.

5.2 Hexa(tert-butyl)zirconocen (48)

Schema 5.4: Darstellung von (Cp^{'''})₂Zr · 2 THF (**48**).

Zirconiumtetrachlorid wurde bei -40 °C in THF gelöst und anschließend mit Butyllithium versetzt. Das Gemisch wurde über Nacht bei Raumtemperatur gerührt und anschließend zum Austreiben der entstandenen flüchtigen Nebenprodukte (Butan, Buten, ect.) kurz zum Sieden erhitzt. Zur abgekühlten schwarzen Lösung wurde Natriumtri(*tert*-butyl)cyclopentadienid in THF gegeben und für eine weitere Nacht unter Rückfluss gerührt. THF wurde daraufhin destillativ entfernt und der schwarzbraune Rückstand mit Pentan extrahiert. Unlöslicher Feststoff wurde durch Zentrifugieren der Suspension entfernt. Aus der erhaltenen hellbraunen Lösung wurde nach Entfernen von Pentan ein hellbrauner Feststoff in einer Ausbeute von 61% erhalten.

Das ¹H-NMR-Spektrum zeigt eine diamagnetische Verbindung. Im aromatischen Bereich sieht man ein Signal bei 6.13 ppm, das den Cp-Ringprotonen zugeordnet wird. Die Wasserstoffatome der *tert*-Butylgruppen sind den Signalen bei 1.66 ppm und 1.49 ppm zuzuordnen. Des weiteren sind auch hier die markanten Tetrahydrofuransignale zu sehen. Sie werden bei 3.03 ppm und 1.01 ppm detektiert. Den Integralen ist zu entnehmen, dass pro Cp-Ligand ein koordiniertes THF in der Verbindung gebunden sein muss.

Abbildung 5.2: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von $[(Cp''')_2Zr \cdot 2 THF]$ (**48**).

Weiterhin erkennt man drei Signale im aliphatischen Bereich gleicher Intensität bei 1.27 ppm, 1.19 ppm und 1.09 ppm. Hierbei handelt es sich um die Signale des hydrolysierten Tri(*tert*-Butyl)cyclopentadienylliganden, H^{III}Cp.

Die Verbindung ist sehr gut den gängigen Lösungsmittel löslich. So gut, dass sich eine Aufreinigung durch Kältekristallisiation sehr schwierig gestaltet. In Sublimationsversuchen bei 50 °C in einer evakuierten, versiegelten Glasampulle hat sich die Verbindung zersetzt, was auf eine Temperaturempfindlichkeit schließen lässt. Die Verbindung ist luft- und hydrolyseempfindlich.

5.2.1 Strukturelle Aufklärung von Cp^{///}Li · THF (50)

Bei einer Umkristallisation von Verbindung **48** wurden diffraktometertaugliche Kristalle erhalten. Bei den untersuchten Kristallen handelte es sich jedoch nicht um das gewünschte Produkt, sondern um Cp‴Li · THF. Schema 5.5 zeigt den vermutlichen Reaktionshergang

Schema 5.5: Darstellung von [Cp^{'''}Li] · THF (50).

Bei der Reduktion von Zirconiumtertrachlorid zum Dichlorid scheint die Reaktion wie geplant zu verlaufen. Lithiumchlorid ist in THF löslich und bildet ein LiCl · THF-Addukt. Dieses Addukt reagiert nun im zweiten Reaktionsschritt mit dem zugegebenen Tri(*tert*-Butyl)cyclopentadienylnatrium in einer Salzmetathese zu [Cp^{'''}Li] · THF, wobei das in THF schwerlösliche Natriumchlorid ausfällt.

Abbildung 5.3: ORTEP-Plot der Struktur von 2 [Cp‴Li] · THF (**50**). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besseren Übersicht nicht angezeigt (Li: magenta; O: rot; C: grau).

Die Verbindung kristallisiert als farblose Blöcke in der monoklinen Raumgruppe P2_{1/c}. Die Elementarzelle enthält vier voneinander unabhängige Moleküle. Sowohl bei den THF-Liganden als auch bei einigen vierständigen *tert*-Butylgruppen der Cp-Liganden treten Fehlordnungen auf (siehe Abbildung 5.3).

Bindung	Å	Bindung	Å
Li(1)-Cp _{zent}	1.795	Li(2)-Cp _{zent}	1.803
Li(1)-C(1)	2.159(3)	Li(2)-C(18)	2.176(3)
Li(1)-C(2)	2.147(3)	Li(2)-C(19)	2.150(3)
Li(1)-C(3)	2.184(3)	Li(2)-C(20)	2.171(3)
Li(1)-C(4)	2.176(4)	Li(2)-C(21)	2.188(3)
Li(1)-C(5)	2.151(3)	Li(2)-C(22)	2.166(3)
Li(1)-O(1)	1.865(3)	Li(2)-O(2)	1.882(3)
Li(3)-Cp _{zent}	1.801	Li(4)-Cp _{zent}	1.801
Li(3)-C(35)	2.181(3)	Li(4)-C(52)	2.173(3)
Li(3)-C(36)	2.163(3)	Li(4)-C(53)	2.155(3)
Li(3)-C(37)	2.179(3)	Li(4)-C(54)	2.184(3)
Li(3)-C(38)	2.165(3)	Li(4)-C(55)	2.181(3)
Li(3)-C(39)	2.153(3)	Li(4)-C(56)	2.156(3)
Li(3)-O(3)	1.874(3)	Li(4)-O(4)	1.870(3)

Tabelle 5.1: Ausgewählte Bindungslängen in Å von [Cp^{'''}Li] · THF (**50**).

Die Li-Cp_{zent}-Abstände zwischen 1.795 Å und 1.803 Å. Dementsprechend bewegen sich die Li-C-Abstände im Bereich von 2.147(3) bis 2.188(3) Å. Die Li-O-Abstände liegen zwischen 1.865(3) Å und 1.882(3) Å.

Die Cp_{zent}-Li-O-Winkel betragen zwischen 163.53° und 166.64° und weichen damit nur wenig von der Linearität ab.

Bindungen	Winkel/°	Bindungen	Winkel/°
Cp _{zent} -Li(1)-O(1)	166.64	Cp _{zent} -Li(2)-O(2)	164.54
Cp _{zent} -Li(3)-O(3)	163.53	Cp _{zent} -Li(4)-O(4)	165.86

Tabelle 5.2: Ausgewählte Bindungswinkel in ° von [Cp^{'''}Li] · THF (50).

Die Elementaranalyse wurde zunächst mit der Annahme aufgenommen, dass Hexa(*tert*-butyl)zirconocen entstanden ist. Tabelle 5.3 zeigt dass die Messwerte hierfür jedoch zu hoch sind. Aufgrund des Ergebnisses der Kristallstrukturanalyse wurden die theoretischen Werte für die Lithiumverbindung errechnet und verglichen. Man erkennt bei den Wasserstoffwerten eine gute Übereinstimmung. Der gemessene Kohlenstoffwert ist 2% zu niedrig, allerdings spricht die Tendenz im Vergleich zum Zirconocen für das Lithiumsalz.

Tabelle 5.3: Elementaranalyse von Cp^mLi · THF ((**50**)) (312.46 $\frac{g}{mol}$).

$C_{27}H_{31}LiO_2$	С	Н
$(Cp''')_2Zr \cdot 2 THF$	71.83%	10.62%
Messwerte	78.69%	11.78%
Cp‴Li · THF	80.72%	11.94%

5.3 Decaisopropylzirconocen (51)

Schema 5.6: Darstellung von $({}^{5}Cp)_{2}Zr \cdot 2$ THF (**51**).

In -40 °C kaltem Tetrahydrofuran wurde Zirconiumtetrachlorid gelöst und bei gleicher Temperatur n-Butyllithium zugegeben. Das Gemisch wurde auf Raumtemperatur erwärmt und über Nacht gerührt. Um die entstandenen flüchtigen Nebenprodukte (Butan, Buten, etc.) auszutreiben, wurde kurz zum Sieden erhitzt. Bei Raumtemperatur wurde in THF gelöstes Lithiumpenta(*iso*-propyl)cyclopentadienid gegeben und anschließend für eine Nacht in der Siedehitze erneut gerührt. Im Reduktionsschritt mit n-BuLi färbte sich die Mischung schwarz-braun, nach Zugabe des Li⁵Cp's hellte sich das Reaktionsgemisch zu braun auf. Nach Reaktionsende wurde THF destillativ entfernt und der erhaltene Feststoff mit Pentan extrahiert. Unlöslicher Rückstand wurde über eine Zentrifuge von der Pentanlösung abgetrennt und Pentan anschließend entfernt. Es wurde ein hellbrauner Feststoff erhalten. Die Ausbeute beträgt 55%.

Tabelle 5.4: Elementaranalyse von $({}^{5}Cp)_{2}Zr \cdot 2$ THF (**51**) (786.42 $\frac{g}{mol}$).

$C_{48}H_{86}ZrO_2$	С	Н
Theoriewerte	73.31%	11.02%
Messwerte	74.13%	11.56%
$({}^{5}Cp)_{2}Zr \cdot THF$	73.98%	11.01%
(⁵Cp)Li · THF	81.30%	12.22%

Die gemessenen Werte in der Elementaranalyse stimmten beim Kohlenstoffwert gut mit den Theoriewerten für (${}^{5}Cp$)₂Zr · THF überein. Die Wasserstoffwerte befinden sich knapp außerhalb des Toleranzbereichs. Die Analyse spricht gegen den Erhalt eines weiteren Lithiumderivats, da die Werte mit einem Unterschied von 7.17% für Kohlenstoff hierfür zu weit abweichen.

Abbildung 5.4: ¹H-NMR-Spektrum (Benzol-d₆, 400 Hz, 300.0 K) von $[({}^{5}Cp)_{2}Zr \cdot 2 THF]$ (**51**).

Das ¹NMR-Spektrum 5.4 zeigt eine diamagnetische Verbindung. Das Septett bei 3.51 ppm ist ein typisches Signal für das Methinwasserstoffatom einer iso-Propylgruppe. Bei 1.63 ppm und 1.41 ppm sieht man zwei Dubletts, welche den Methyl-H-Atomen der iso-Propylgruppen zugeordnet werden können. Dass diese Methylsignale zu zwei Dubletts aufspalten, liegt an der sterischen Hinderung der Isopropylgruppen an den beiden Fünfringen. Die aus der Ringebene nach innen zum Zirconium-Zentralatom ausgelenkten Methylgruppen zeigen ein Dublett, die nach außen orientierten Methylgruppen befinden sich in einer anderen chemischen Umgebung und ergeben im NMR-Spektrum ein zweites Dublett von gleicher Intensität.

Auch in dieser ¹H-NMR-Messung sind die zwei charakteristischen THF-Signale bei 3.12 ppm und 1.01 ppm zu sehen. Auch hier sind die Signale zu höherem Feld verschoben. Unkoordiniertes THF zeigt in deuteriertem Benzol seine Multipletts bei 3.57 ppm und 1.40 ppm.

Wie Verbindungen **47** und **48** weist Verbindung **51** ebenfalls eine sehr gute Löslichkeit in polaren und unpolaren organischen Lösungsmitteln auf. Dementsprechend schwierig ist auch hier die Umkristallisation. Es konnten keine röntgendiffraktometertauglichen Einkristalle von **51** über Kältekristallisation erhalten werden. Allerdings wurden messbare Kristalle durch Sublimation erhalten. Dazu wurde die Substanz in einer versiegelten Glasampulle unter Vakuum in einem Sandbad bei 50 °C erwärmt. Nach der Messung stellte sich jedoch heraus, dass sich die Verbindung thermisch zersetzte und Pentaisopropylcyclopentadien kristallisiert wurde.

5.4 Diskussion der Zirconocene

Der Erhalt von Zirconocenen konnte nicht bewiesen werden. Die Synthese von Octaisopropylzirconocen wurde einige Male wiederholt. Da die erhaltenen Produkte sehr gute Löslichkeit sowohl in polaren wie unpolaren Lösungsmitteln aufweisen, gestaltete sich die Aufreinigung sehr schwierig. Entweder blieb die Kristallisation bei -32 °C aus, oder die Verbindung kristallisierte als Ganzes aus und konnte nicht ausreichend vom Lösungsmittel getrennt werden, so dass keine Aufreinigung erzielt wurde. Die Produkte zeigten bei den jeweiligen ¹H-NMR-Messungen keine abweichenden Signale. Jedoch wurden Elementaranlysen erhalten, die jeweils einer von drei möglichen Summenformeln zugeordnet werden können. Die Vermutungen stützen sich hierbei unter anderem auf Ergebnisse, die beim Syntheseversuch von $(Cp''')_2 Zr \cdot 2 THF$ erhalten wurden.

Schema 5.7: Darstellung von $({}^{4}Cp)_{2}Zr \cdot 2 \text{ THF } (47)$.

Die drei Elementaranalysen wurden von unterschiedlichen Reproduktionsversuchen aufgenommen. Durch die schlechte Kristallisierbarkeit des Produkts konnte keine zufriedenstellende Reinheit für zwei der Elementaranalysen erhalten werden. Allerdings sind die theoretischen Werte der einzelnen möglichen Verbindungen so unterschiedlich, dass Tendenzen sehr gut zu sehen sind.

Es wurde ebenfalls versucht, Verbindung **47** in einer evakuierten Glasampulle in einem Sandbad zu sublimieren. Es wurden gelbe Kristalle erhalten. Eine NMR-Messung zeigte jedoch, dass es sich bei den Kristallen um H⁴Cp handelte. Die Sublimation wurde wiederholt und führte zu dem gleichen Ergebnis. Dies lässt darauf schließen, dass die Verbindung thermisch instabil ist und sich bereits bei Temperaturen zwischen 60 und 70 °C zersetzt.

		mol	
	Verbindung	С	Н
	(⁴ Cp) ₂ Zr · 2 THF (47A) _{Theo.}	71.83%	10.62%
	(⁴ Cp) ₂ Zr · 2 THF (47A) _{Messw.}	72.76%	10.85%
	⁴ CpZr · THF (47B) _{Theo.}	63.57%	9.40%
	⁴ CpZr · THF (47B) _{Messw.}	63.69%	9.25%
	⁴ CpLi · THF (47C) _{Theo.}	80.72%	11.94%
	⁴ CpLi · THF (47C) _{Messw.}	78.69%	11.78%

Tabelle 5.5: Elementaranalysen von $C_{42}H_{74}O_2Zr$ (**47A**, 702.26 $\frac{g}{mol}$), $C_{21}H_{37}OZr$ (**47B**, 396.74 $\frac{g}{mol}$) und $C_{21}H_{37}LiO$ (**47C**, 312.46 $\frac{g}{mol}$).

Hexa(*tert*-butyl)Zirconocen besitzt ähnliche Eigenschaften wie Verbindung **47**. Die Löslichkeit macht die Aufreinigung ebenfalls sehr schwierig, da das Kristallisationsverhalten dem des ⁴Cp-Derivats gleicht. Durch Sublimation 50 °C wurde ein gelbes Öl erhalten, was auch hier auf eine thermische Zersetzung schließen lässt. Trotz der schlechten Bedingungen konnten durch eine Kristallisation bei -32 °C röntgendiffraktometertaugliche Einkristalle erhalten werden. Die erhaltene Struktur zeigte ein (Cp^{III})Li-Salz mit koordiniertem THF.

Auch die Synthese von Decaisopropylzirconocen ist nicht vollständig geklärt. Der erste Verdacht kam beim Erhalt des farblosen Feststoffs auf. Die Zirconium sollten sich in der Oxidationsstufe +II befinden und wie das schwarze Zirconium(II)chlorid eine Farbe aufweisen. Des weiteren wurde zwar eine Elementaranalyse erhalten, welche gut auf Verbindung **51** passt, jedoch sieht das ¹H-NMR-Spektrum untypisch für ⁵Cp-Metallocene aus. Die Verbindungen besitzen üblicherweiße eine meso-/rac-konfiguration welche im NMR unterscheidbar sind. Diese Signale fehlen im Spektrum von Verbindung **51**. Würde es sich bei der Verbindung um ein Zirconocen handeln müsste sich das Signal bei 1.63 ppm zu zwei Dubletts aufspalten, welche sich zu einem pseudotriplett überlagern können. Als Beispiel soll hier Decaisopropylstanno-cen dienen. *Sitzmann* hat ⁵Cp-Stannocen bei Temperaturen zwischen 378 K und 313 K gemessen und die Spektren grafisch gegenüber gestellt (Abbildung 5.5)^[80].

Abbildung 5.5: ¹H-NMR-Spektren (Benzol-d₆, 400 Hz) von Decaisopropylstannocen bei verschiedenen Temperaturen^[80].

Bei 378 K erkennt man im aliphatischen Bereich zunächst nur ein breites Singulett für die Methlygruppen der Isopropylsubstituenten. Mit sinkender Temperatur wird die Rotation der Isopropylreste eingeschränkt und man sieht bei 353 K die Aufspalltung des Signals. Zunächst in zwei Singuletts, von denen sich das hochfeldverschobene Signal bei 333 K weiter in ein Dublett aufspalltet. Das tieffeldverschobene Singulett spaltet sich bei 323 K in ein pseudotriplett auf, welches durch die Überlappung zweier Dubletts entsteht.

Schema 5.8: Schemas der drei Decaisopropylstannocenkonfigurationen entlang der Cp_{zent}-Sn-Achse (von links nach rechts: *meso*-Isomer, SS- und RR-Enantiomer)^[80]

Die erhaltene Verbindung ist ebenfalls thermisch Instabil. Bei Sublimationsversuchen zwischen 40 und 50 °C wurden gelbe Kristalle erhalten, welche sich als H⁵Cp herausstellten.

Die Beobachtungen aus den Zirconocenexperimenten sind mit Bedacht einzuordnen. Es liegen keine eindeutigen Ergebnisse vor und es sind weitere Untersuchungen zur vollständigen Aufklärung erforderlich.

6 Schlussfolgerung und Ausblick

6.1 Cyclopentadienylzirconiumhalogenide

Im Rahmen dieser Arbeit konnten Cp^{*m*}TiCl₃, Cp^{*m*}ZrCl₃ und Cp^{*m*}HfCl₃ röntgendiffraktometrisch untersucht werden. Außerdem konnten durch Ligandenaustausch neue Cyclopentadienylzirconiumhalogenide erhalten werden. Hierbei handelte es sich um RZrBr₃ und um RZrl₃ (R = Cp^{*m*}, Cp^{*m*}). Von Cp^{*m*}Zrl₃ konnten geeignete Kristalle erhalten werden um die Verbindung strukturell aufzuklären. Es bietet sich an, die Reaktivität der neuen Halogenidokomplexe zu untersuchen. Sollten sich die Bromide oder lodide als bessere Abgangsgruppe erweisen, so könnten sie den Zugang zu beispielsweise Cyanido- oder Azidokomplexen ermöglichen. Dies war bis jetzt durch den Einsatz der Chloridoverbindungen nicht erfolgreich.

Auch die Reduktion der neuen Halogenide könnte zu interessanten Ergebnissen führen. Die Umsetzungen von $RZrCl_3$ (R = Cp", Cp"") mit Kalium ergaben bereits dreikernige, halogenidoverbrückte Zirconiumcluster. Allerdings konnte bisher noch nicht über die Oxidationsstufe 3 hinaus reduziert werden. Durch die Unterschiedlichen sterischen und elektronischen Eigenschaften von Iodid und Bromid könnte dies eventuell gelingen.

6.2 Hydridozirconiumcluster

Im Zuge der Substitutionsversuche an Cp["]ZrCl₃ wurde bei der Umsetzung mit Lithiumaluminiumhydrid ein vierkerniger, chloridohydridoverbrückter Zirconiumcluster erhalten. [(Cp["]Zr)₄(μ -H)₈(μ -Cl)₂] konnte strukturell untersucht werden. Die Rektionsführung wurde umfänglich untersucht. Hierbei wurden zwei weitere Komplexe gefunden, von denen einer charakterisiert werden konnte. Es handelte sich um einen dreikernigen, hydridoverbrückten Zirconiumcluster, welcher über weitere Hydridobrücken mit einem Aluminiumchloridfragment verbunden ist. Die andere Verbindung **38** konnte bisher nur im ¹H-NMR-Spektrum identifiziert werden. Für eine eindeutige Charakterisierung wären röntgendiffraktometertaugliche Kristalle ideal. Jedoch ist Bildung des Komplexes noch nicht ganz ergründet, so dass erst die Reproduktion mit anschließender Kristallisation erfolgen müsste. Die Charakterisierung dieser Verbindung könnte weiterhin Aufschluss darüber geben ob die drei Hydridocluster als Zwischenprodukte ineinander überführbar sein könnten. Die Reaktion mit Lithiumaluminiumhydrid ist leider schlecht zu kontrollieren. Das Hydriermittel ist als feines Pulver erhältlich, welches in der Glovebox wegen statischer Aufladung schwer zu portionieren ist. Auch die Hydrolyseanfälligkeit sowie relative termische Intabilität der Verbindung erschweren eine reproduzierbare Reaktionsführung. Daher wäre es von Vorteil auf ein besser zu dosierendes Hydriermittel auszuweichen. Im Zuge dieser Arbeit wurden bereits Anstrengungen hierfür unternommen, jedoch führte keines der Mittel zum gewünschten Ergebnis. Eine Idee wäre es, NaAlH₄ oder LiBH₄ als Alternativen zu testen, da LiAlH₄ zu reaktiv erscheint, jedoch mit NaBH₄ keine Umsetzung beobachtet werden kann.

Ungeklärt ist weiterhin die elektronische Konfiguration von $(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl.$ Die postulierten Oxidationsstufen für die Metallzentren sind entweder 3Zr(IV)/Al(I) oder Zr(IV)/2Zr(III)/Al(III). DFT-Rechnungen könnten, wie schon bei Verbindung **37**, bei der Aufklärung helfen. Hier zeigte sich, dass die Valenzelektronen in einem zentralen Molekülorbital delokalisiert sind und somit keine formalen Oxidationszahlen an den Zirconiumzentren bestimmt werden kann.

Auch bei den erhaltenen Hydridoclustern sind Reaktivitätsuntersuchungen interessant. So zeigten *Peng et al.*, dass die Reduktion des Cp*-Derivats von Verbindung **37** zu einem höher oxidierten Cluster führte^[73]

Ähnliches könnte auch für Verbindung **39** gelten. Auch das Chlorid der Al–Cl-Gruppe könnte als Abgangsgruppe fungieren. So wäre eine Kopplung zweier Cluster über eine Al–Cl–Al-Brücke denkbar. Dies könnte durch ein mildes Reduktionsmittel erfolgen. Auch möglicher Ligandenaustausch am Aluminium durch Cyanid, Azid oder andere Halogenide ist denkbar.

6.3 Zirconocene

Es wurde ein neuer Ansatz getestet um Zirconocene zu erhalten. Der Erhalt von Oktaisopropylzirconocen (**47**) und Decaisopropylzirconocen (**51**) ist jedoch nicht endgültig geklärt. Die Verbindungen (**47**) und (**51**) zeigten sehr hohe Löslichkeit in den gängigen Lösungsmitteln Pentan, Toluol und THF, wodurch sich die Aufreinigung durch Kältekristallisation sehr schwierig gestaltete. Dementsprchend konnten auch keine messbaren Einkristalle erhalten werden. Dem könnte durch die Einführung von sterisch anspruchsvollen Gruppen wie beispielsweise Neopenmtyl- in den ⁴Cp-Liganden entgegengewirkt werden. Bei Sublimationsversuchen zerfielen die Verbindungen und es konnten nur die Analysen erhalten werden welche die H⁴Cp bwz. H⁵Cp Liganden zeigten.

Bei der Synthese von Hexa(*tert*-butyl)zirconocen (**48**) wurden nach der Aufreinigung durch Sublimation röntgendiffraktometertaugliche Kristalle erhalten. Die Analyse zeigte einen Lithiumkomplex mit koordiniertem Cp^{'''} und THF. Demnach muss davon ausgegagen werden, dass **48** nicht erhalten wurde.

Auch hier stellt sich für zukünftige Experimente die Frage ob andere Abgangsgruppen als Chloridoliganden einen besseren Zugang zu Zr(II)-Verbindungen bieten. Hier würden sich allem voran Bromido- oder Iodidoverbindungen anbieten, da die höheren Halogenidhomologen als bessere Abgangsgruppen gelten. Des weiteren können die Experimente ebenfalls mit Hafnium durchgeführt werden, da sich Zirconium und Hafnium in ihren Eigenschaften sehr ähneln.

7 Experimenteller Teil

7.1 Arbeitstechniken und Geräte

7.1.1 Allgemeine Arbeitstechnik

Die Synthesen der Metallkomplexe wurden, soweit nicht anders vermerkt, in einer Stickstoff- oder Argonschutzatmosphäre unter Luft- und Feuchtigkeitsausschluss durchgeführt. Hierzu wurde die Standardschlenktechnik oder sowohl eine Glovebox der Firma *MBraun, Garching*, als auch der Firma *Glovebox Systemtechnik* benutzt. Auch die Ligandsynthesen wurden beim Einsatz hydrolyseempfindlicher Edukte wie Butylithium, oder verschiedener Grignardverbindungen in ausgeheizten Apparaturen unter Stickstoffatmosphäre durchgeführt. Oxidations- und hydrolyseempfindliche Substanzen wurden in der Glovebox gelagert.

Die für die Komplexierungen benutzten Lösungsmittel wurden durch mehrtägiges Sieden über Natrium-Kalium-Legierung (Pentan), Natrium (Toluol), Phosphorpentoxid (Dichlormethan) oder Kalium (THF) getrocknet, entgast und in Standflaschen unter Schutzgasatmosphäre gelagert. Benzol-d₆ wurde über Natrium-Kalium aufbewahrt und vor dem Gebrauch kondensiert.

7.1.2 Kernresonanzspektroskopie

Die ¹H-Kernresonanzspektren der Verbindungen in den jeweils angegebenen Lösungsmitteln wurden an dem Kernresonanzspektrometer AVANCE 400 der Firma Bruker aufgenommen. Die Angabe der chemischen Verschiebung erfolgt nach der δ -Skala in ppm. Als interner Standard wurden die Signale der Restprotonen der deuterierten Lösungsmittel verwendet. Die Auswertung der Spektren erfolgte mit dem Programm "Topspin 1.3," der Firma Bruker.

7.1.3 Elementaranalyse

Die CHN-Elementaranalysen wurden von der Abteilung für Organische Chemie der Technischen Universität Kaiserslautern mit einem vario Micro cube der Firma Elementar Analysentechnik/Hanau durchgeführt.

7.1.4 Schmelzpunktbestimmung

Die Schmelzpunkte wurden mit einer *Büchi*-510-Schmelzpunktbestimmungsapparatur bestimmt. Dazu wurden die Substanzen in einem evakuierten abgeschmolzenen Röhrchen vermessen. Da das Aufheizen der Proben mit Silikonöl geschieht, ist die Schmelzpunktbestimmung auf bis zu 200 °C begrenzt.

7.1.5 Kristallstrukturanalyse

Die Datensammlungen für die Röntgenstrukturanalysen wurden von Herrn Dr. Yu Sun und von Herrn Dr. Benjamin Oelkers der Fachrichtung Anorganische Chemie der Technischen Universität Kaiserslautern an einem Oxford Diffraction Gemini S Ultra durchgeführt. Zur Lösung des Datensatzes und zur Verfeinerung wurde das Programm SIR97 (Giacovazzo et al., 1997) verwendet.

7.2 Ausgangsverbindungen

Folgende Verbindungen wurden nach den angegebenen Literaturstellen synthetisiert und werden daher nicht in den Synthesevorschriften beschrieben:

- 1,3-Di(*tert*-butyl)cyclopentadien^[81]
- 1,3,5-Tri(*tert*-butyl)-1,3-cyclopentadien^[64]
- Trichlorido(1,3-di(*tert*-butyl)cyclopentadienyl)zirconium^[65]
- Trichlorido(1,2,4-tri(*tert*-butyl)cyclopentadienyl)zirconium^[64]
- Natrium-1,2,3,4-tetra(isopropyl)cyclopentadienid^[82]
- Lithium-1,2,3,4,5-penta(isopropyl)cyclopentadienid^[83]

Natrium-1,3-di(*tert*-butyl)cyclopentadienid wurde ausgehend von 1,3-Di(*tert*-butyl)cyclopentadien über Natriumamid in siedendem THF metalliert. Sonstige Edukte wurden aus dem Fachhandel bezogen, oder waren bereits im Arbeitskreis vorrätig.

7.3 Versuchsbeschreibungen

7.3.1 Trichlorido(1,2,4-tri(tert-butyl)cyclopentadienyl)titan(IV) (20)

1,2,4-Tri(*tert*-butyl)cyclopentadien (2g, 8.5 mmol) wurde durch kurzes rühren unter dynamischen Vakuum von gelösten Gasen befreit, in Toluol (30 ml) gelöst und Butyllithium (3.4 ml, 2.5 M, 8.5 mmol) zugegeben. Das Gemisch wurde für 2 Stunden unter Rückfluss geführt. Anschließend wurde Titantetrachlorid (0.9 ml, 8,2 mmol) zugegeben. Die Suspension wurde für zwei Tage unter Rückflussgerührt. Nach Beendigung der Reaktion wurde das Gemisch abgekühlt und nachdem der unlösliche Feststoff entfernt wurde zur Trockene eingeengt. Der zähflüssige rote Feststoff wurde nochmals in Toluol gelöst und zur Kristallisation bei -38 °C gelagert. Es wurde ein roter kristalliner Feststoff erhalten. Nach abdekantieren der Mutterlauge wurden die Kristalle vorsichtig mit wenig kaltem Pentan gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute: 985 mg (2.54 mmol, 31%) rote Kristalle

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.96 (s, 2 H, Cp"-**H**), 1.34 (s, 18 H, ^{*t*}Bu-**H**), 1.18 (s, 9 H, ^{*t*}Bu-**H**) ppm.

Elementaranalyse berechnet für $C_{17}H_{29}Cl_{3}Ti$ (387.64 $\frac{g}{mol}$):

Theoriewerte	C: 52.67%	H: 7.54%	
Messwerte	C: 55.27%	H: 7.83%	

7.3.2 Trichlorido(1,2,4-tri(*tert*-butyl)cyclopentadienyl)zirconium(IV) (21)

Zu einer Lösung von entgastem 1,2,4-Tri(*tert*-butyl)cyclopentadien (2.72 g, 11.6 mmol) in Toluol wurde Buthyllithium (5.5 ml, 2 M, 11 mmol) gegeben und für zwei Stunden unter Rückfluss metalliert. Anschließend wurde Zirconiumtetrachlorid (2.65 g, 11.3 mmol) zur abgekühlten Lösung zugegeben und die Suspension wurde für weitere zwei Tage unter Rückfluss gerührt. Nach Reaktionsende wurde das Lösungsmittel entfernt und es wurde ein brauner Rückstand erhalten. Dieser wurde wieder in Toluol aufgenommen und der unlösliche Feststoff entfernt. Die rot-braune Lösung wurde eingeengt und bei -38 °C gelagert. Es wurden hellrote Kristalle erhalten die mit -80 °C kaltem Pentan gewaschen wurden.

Ausbeute: 2.37 g (5.5 mmol, 50%) lachsfarbene Kristalle

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.96 (s, 2 H, Cp"-**H**), 1.34 (s, 18 H, ^{*t*}Bu-**H**), 1.18 (s, 9 H, ^{*t*}Bu-**H**) ppm.

Elementaranalyse berechnet für $C_{17}H_{29}Cl_3Zr$ (431.00 $\frac{g}{mol}$):

Theoriewerte C: 47.37% H: 6.78% Messwerte C: 47.60% H: 6.70% 7.3.3 Trichlorido(1,2,4-tri(tert-butyl)cyclopentadienyl)hafnium(IV) (22)

1,2,4-Tri(*tert*-butyl)cyclopentadien (3 g, 12.8 mmol) wurde entgast und in Toluol (30 ml) gelöst. Zu der Lösung wurde Butyllithium (5.2 ml, 2.5 M, 13 mmol) hinzugegeben und für zwei Stunden unter Rückfluss gerührt. Anschließend wurde zur abgekühlten Lösung Hafniumtetrachlorid (4.16 g, 12.9 mmol) gegeben und für weitere zwei Tage unter Rückfluss gerührt. Nach Reaktionsende wurde das Lösungsmittel entfernt und der rot-braune Rückstand wurde nochmals in Toluol aufgenommen. Unlöslicher Feststoff wurde über eine Zentrifuge entfernt, die hellbraune Lösung wurde eingeengt und bei -38 °C gelagert. Nach abdekantieren der Mutterlauge wurden farblose Kristalle erhalten. Die Kristalle wurden mit -80 °C kaltem Pentan vorsichtig gewaschen. Über einen längeren Lagerzeitraum färbten sich die Kristalle langsam violett.

Ausbeute: 1.44 g (2.78 mmol, 22%) rosa Kristalle.

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.58 (s, 2 H, Cp^{''}-H), 1.34 (s, 18 H, ^{*t*}Bu-H), 1.19 (s, 9 H, ^{*t*}Bu-H) ppm.

Elementaranalyse berechnet für $C_{17}H_{29}Cl_3Hf$ (518.26 $\frac{g}{mol}$):

Theoriewerte	C: 39.40%	H: 5.64%	
Messwerte	C: 43.25%	H: 6.06%	
7.3.4 Triiodido(1,3-di(tert-butyl)cyclopentadienyl)zirconium(IV) (24)

Zu einer Lösung von Trichlorido(1,3-di(*tert*-butyl)cyclopentadienyl)zirconium (200 mg, 0.53 mmol) in Toluol (10 mL) wurde Trimethyliodsilan (0.25 mL, 1.84 mmol) gegeben. Das Reaktionsgemisch wurde über Nacht bei 100 °C gerührt. Dabei färbte sich die Lösung intensiv gelb. Da die Reaktion unvollständig verlief wurde nachträglich weiteres Trimethyliodsilan (0.2 mL, 1.47 mmol) zugegeben und weitere 16 Stunden bei 80 °C gerührt. Die orangegelbe Lösung wurde langsam destillativ vom Lösungsmittel befreit und es konnten gelbe Kristalle erhalten werden.

Ausbeute: 269 mg (0.41 mmol, 77%) orangerote Kristalle.

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.61 (t, ³J_{HH} = 2.6 Hz, 1 H, Cp["]-**H**), 6.20 (d, ³J_{HH} = 2.6 Hz, 2 H, Cp["]-**H**), 1.11 (s, 9 H, ^{*t*}Bu-**H**) ppm.

7.3.5 Triiodido(1,2,4-tri(tert-butyl)cyclopentadienyl)zirconium(IV) (25)

Zu einer Lösung von Trichlorido(1,2,4-tri(*tert*-butyl)cyclopentadienyl)zirconium (200 mg, 0.46 mmol) in Toluol (10 ml) wurde Trimethyliodsilan (0.25 mL, 1.84 mmol) gegeben und bei 100 °C über Nacht gerührt. Da die Reaktion unvollständig war wurden weiteres Trimethyliodsilan (0.07 mL, 0.51 mmol) zugegeben. Nach zwei Tagen erhitzen bei 105 °C wurde eine orange/gelbe Lösung erhalten. Das Lösungsmittel wurde langsam destillativ entfernt und es wurde gelber Kristalliner Feststoff erhalten. Die Kristalle wurden erneut in Toluol gelöst und bei -30 °C umkristallisiert.

Ausbeute: 135 mg (0.19 mmol, 41%) gelbe Kristalle

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.96 (s, 2 H, Cp^{'''}-**H**), 1.33 (s, 18 H, ^{*t*}Bu-**H**), 1.17 (s, 9 H, ^{*t*}Bu-**H**) ppm.

Elementaranalyse berechnet für $C_{17}H_{29}I_3Zr$:

Theoriewerte	C: 28.95%	H: 4.14%
Messwerte	C: 28.93%	H: 3.94%

7.3.6 Tribromido(1,3-di(tert-butyl)cyclopentadienyl)zirconium(IV)(26)

Zu einer Lösung von Trichlorido(1,3-di(*tert*-butyl)cyclopentadienyl)zirconium (2.04 g, 5,44 mmol) in Toluol (35 ml) wurde Bromtrimethylsilan (2.20 ml, 16.7 mmol) gegeben. Das Reaktionsgemisch wurde für 3 Tage bei Raumtemperatur gerührt, wobei es sich rotbraun verfärbte. Anschließend wurde das Lösungsmittel destillativ entfernt und es wurde hellrosafarbener Feststoff erhalten.

Ausbeute: 2.17 g (4.27 mmol, 78%) hellrosafarbener Feststoff.

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.47 (t, ³J_{HH} = 2.57 Hz, 1 H, Cp"-**H**), 6.05 (d, ³J_{HH} = 2.51 Hz, 2 H, Cp"-**H**), 1.11 (s, 18 H, ^{*t*}Bu-**H**) ppm.

Elementaranalyse berechnet für $C_{13}H_{21}Br_3Zr$ (508.24 $\frac{g}{mol}$):

Theoriewerte	C: 30.72%	H: 4.16%
Messwerte	C: 32.40%	H: 4.23%

7.3.7 Tribromido(1,2,4-tri(*tert*-butyl)cyclopentadienyl)zirconium(IV) (27)

Trichlorido(1,3-di(*tert*-butyl)cyclopentadienyl)zirconium (202 mg, 0.47 mmol) wurde in Toluol (15 ml) gelöst und Bromtrimethylsilan (0.19 ml, 1.44 mmol) zugegeben. Das Reaktionsgemisch wurde für 4 Tage bei Raumtemperatur gerührt. Nach Entfernen des Lösungsmittels wurde der orangefarbene Rückstand mit Pentan extrahiert und von unlöslichem Feststoff befreit. Pentan wurde destillativ entfernt und der erhaltene Feststoff aus Pentan bei -38 °C umkristallisiert. Es wurde ein cremefarbener kristalliner Feststoff erhalten.

Ausbeute: 85.1 mg (0.15 mmol, 32%) cremefarbener kristalliner Feststoff

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.79 (s, 2 H, Cp^{'''}-H), 1.33 (s, 18 H, ^tBu-H), 1.17 (s, 9 H, ^tBu-H) ppm.

Elementaranalyse berechnet für $C_{17}H_{29}Br_3Zr$ (564.35 $\frac{g}{mol}$):

Theoriewerte	C: 36.18%	H: 5.18%
Messwerte	C: 37.34%	H: 5.00%

Zu einer Lösung von Trichlorido(1,3-di(*tert*-butyl)cyclopentadienyl)zirconium(IV) (200 mg, 0.53 mmol) wurde in Toluol (5 ml) gelöst, mit Lithiumaluminiumhydrid (62 mg, 1.63 mmol) versetzt und die Suspension wurde für 4 h bei 80 °C gerührt. Das grüne Reaktionsgemisch färbte sich über die Reaktionszeit dunkelbraun. Das Lösungsmittel wurde destillativ entfernt. Der Rückstand wurde mit Pentan extrahiert und von unlöslichen Feststoffen befreit. Die braune Lösung wurde eingeengt und bei -30 °C zur kältekristallisation gestellt. Nach abdenkantieren der Mutterlauge konnten orangerote Kristalle erhalten werden.

Ausbeute: 43 mg (0.15 mmol, 28%) orangerote Kristalle.

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.14 (t, ³J_{HH} = 2.5 Hz, 4 H, C**H** Cp"), 6.03 (d, ³J_{HH} = 2.5 Hz, 8 H, C**H** Cp"), 3.71 (s, 8 H, µ**H**), 1.44 (s, 72 H, ^tBu-C**H**₃) ppm.

Elementaranalyse berechnet für $C_{52}H_{92}Cl_2Zr_4$ (1153.09 $\frac{g}{mol}$):

Theoriewerte C: 54.16% H: 8.04% Messwerte C: 54.05% H: 8.21%

Trichlorido(1,3-di(*tert*-butyl)cyclopentadienyl)zirconium(IV) (2 g, 5.33 mmol) wurde in Toluol (100 ml) gelöst und mit Lithiumaluminiumhydrid (709 mg, 18.7 mmol) versetzt. Die Suspension wurde über Nacht bei 80 °C gerührt wobei sich eine grüne Lösung bildete. Toluol wurde destillativ entfernt und der Rückstand in Pentan aufgenommen. Unlöslicher Feststoff wurde entfernt, die dunkelrote Lösung wurde eingeengt und zur Kristallisation bei -30 °C kalt gestellt. Nachdem ein roter kristalliner Feststoff ausfiel, wurde die Mutterlauge abdekantiert und der Feststoff im Ölpumpenvakuum getrocknet. Durch weiteres Einengen und lagern der Mutterlauge bei -30 °C konnte weiteres Produkt erhalten werden.

Ausbeute: 656 mg (0.70 mmol, 39%) roter kristalliner Feststoff.

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.07 (t, ³J_{HH} = 2.6 Hz, 3 H, C**H** Cp''), 5.83 (d, ³J_{HH} = 2.6 Hz, 6 H, C**H** Cp''), 1.36 (s, 54 H, ^tBu-C**H**₃) ppm.

Elementaranalyse berechnet für $C_{39}H_{72}Zr_3AlCl + C_5H_{12}$ (949.25 $\frac{g}{mol}$):

Theoriewerte C: 55.67% H: 8.92% Messwerte C: 55.40% H: 9.00%

7.3.10 Octa(*iso*-propyl)di(tetrahydrofuran)zirconocen (47)

Zirconiumtetrachlorid (2 g, 8.58 mmol) wurde bei -40 °C in THF (50 ml) gelöst. Die kalte Lösung wurde anschließend mit n-Butyllithium (10.8 ml, 1.6 M in Hexan, 17.28 mmol) versetzt und für 18 Stunden bei Raumtemperatur gerührt, wobei sich die Lösung langsam von farblos zu braun färbt. Anschließend wurde das Gemisch kurz zum Sieden erhitzt und Natriumtetra(*iso*-propyl)cyclopentadienid (4.62 g, 18.02 mmol) in THF wurde zugegeben. Das Reaktionsgemisch wurde weitere 18 Stunden in der Siedehitze gerührt. Die abgekühlte dunkelbraune Suspension wurde destillativ vom Lösungsmittel befreit und der Rückstand mit Pentan aufgenommen. Unlöslicher Feststoff wurde über eine Zentrifuge filtriert und Pentan destillativ entfernt. Es wurde ein brauner kristalliner Feststoff erhalten.

Ausbeute: 3.6 g (0.58 mmol, 67%) brauner kristalliner Feststoff

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 5.82 (s, 1 H, ⁴Cp-H), 3.4 (sep., ³J_{HH} = 7.2 Hz, 2 H, ⁱPr-C-H-Me₂), 3.25 (sep., ³J_{HH} = 6.7 Hz, 2 H, ⁱPr-C-H-Me₂), 3.02 (mult., 4 H, THF-H), 1.55 (d, ³J_{HH} = 7.2 Hz, 6 H, ⁱPr-Methyl-H), 1.52 (d, ³J_{HH} = 6.3 Hz, 6 H, ⁱPr-Methyl-H), 1.51 (d, ³J_{HH} = 6.7 Hz, 6 H, ⁱPr-Methyl-H), 1.33 (d, ³J_{HH} = 6.8 Hz, 6 H, ⁱPr-Methyl-H), 0.99 (mult., 4 H, THF-H) ppm.

Elementaranalyse berechnet für $C_{42}H_{74}O_2Zr$ (702.26 $\frac{g}{mol}$):

Theoriewerte	C: 71.83%	H: 10.62%
Messwerte	C: 72.76%	H: 10.85%

7.3.11 Deca(iso-propyl)di(tetrahydrofuran)zirconocen ((51))

Zirconiumtetrachlorid (130 mg, 0.56 mmol) wurde bei -40 °C in THF (30 ml) gelöst. Die kalte Lösung wurde anschließend mit n-Butyllithium (0.45 ml, 2.5 M in Hexan, 1.13 mmol) versetzt und für 18 Stunden bei Raumtemperatur gerührt, wobei sich die Lösung langsam von farblos zu braun färbt. Anschließend wurde das Gemisch kurz zum Sieden erhitzt und Lithiumpenta(*iso*-propyl)cyclopentadienid (400 mg, 1.12 mmol) in THF wurde zugegeben. Das Reaktionsgemisch wurde weitere 18 Stunden in der Siedehitze gerührt. Die abgekühlte dunkelbraune Suspension wurde destillativ vom Lösungsmittel befreit und der Rückstand mit Pentan aufgenommen. Unlöslicher Feststoff wurde herausgefiltert und Pentan entfernt. Es wurde ein farbloser kristalliner Feststoff erhalten.

Ausbeute: 281 mg (0.36 mmol, 55%) farbloser kristalliner Feststoff

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 3.51 (sep., ³J_{HH} = 7.3 Hz, 5 H, ⁱPr-C-**H**-Me₂), 3.12 (mult., 4 H, THF-**H**), 1.63 (d, ³J_{HH} = 7.2 Hz, 14 H, ⁱPr-Methyl-**H**), 1.41 (d, ³J_{HH} = 7.3 Hz, 14 H, ⁱPr-Methyl-**H**), 1.01 (mult., 4 H, THF-**H**) ppm.

Elementaranalyse berechnet für $C_{48}H_{86}O_2Zr$ (786.42 $\frac{g}{mol}$):

Theoriewerte C: 73.31% H: 11.02% Messwerte C: 74.13% H: 11.56%

7.3.12 Tri(tert-butyl)(tetrahydrofuran)Lithium (50)

Zirconiumtetrachlorid (1 g, 4.29 mmol) wurde bei -40 °C in THF (50 ml) gelöst. Die kalte Lösung wurde anschließend mit n-Butyllithium (5.38 ml, 1.6 M in Hexan, 8.6 mmol) versetzt und für 18 Stunden bei Raumtemperatur gerührt, wobei sich die Lösung langsam von farblos zu braun färbt. Anschließend wurde das Gemisch kurz zum Sieden erhitzt und Natriumtri(*tert*-butyl)cyclopentadienid (2.21 g, 8.6 mmol) in THF wurde zugegeben. Das Reaktionsgemisch wurde weitere 18 Stunden in der Siedehitze gerührt. Die abgekühlte dunkelbraune Suspension wurde destillativ vom Lösungsmittel befreit und der Rückstand mit Pentan aufgenommen. Unlöslicher Feststoff wurde herausgefiltert und Pentan entfernt. Es wurde ein brauner kristalliner Feststoff erhalten.

Ausbeute: 820 mg (2.62 mmol, 61%) brauner kristalliner Feststoff

¹H-NMR (400 MHz, 295 K, Benzol-d₆): δ = 6.13 (s, 2 H, Cp^{'''}-H), 3.03 (mult., 4 H, THF-H), 1.66 (s, 18 H, ^{*t*}Bu-H), 1.49 (s, 9 H, ^{*t*}Bu-H), 1.01 (mult., 4 H, THF-H) ppm.

Elementaranalyse berechnet für C₁₈H₃₁OLi (312.46 $\frac{g}{mol}$):

Theoriewerte C: 80.72% H: 11.94% Messwerte C: 78.69% H: 11.78%

8 Literaturverzeichnis

- [1] Miller, S. A.; Tebboth, J. A.; Tremaine, J. F.: In: *Journal of the Chemical Society* (1952), S. 632–635
- [2] Kealy, T. J.; Pauson, P. L.: In: Nature (1951), S. 1039
- [3] Wilkinson, G.; Birmingham, J. M.: In: *Journal of the American Chemical Society* 76 (1954), S. 4281–4284
- [4] Wilkinson, G.; Birmingham, J. M.: In: *Journal of the American Chemical Society* 77 (1955), S. 3421–3422
- [5] Friedman, L.; Irsa, A. P.; Wilkinson, G.: In: *Journal of the American Chemical Society* 77 (**1955**), S. 3689–3692
- [6] Wilkinson, G.: In: Journal of the American Chemical Society 76 (1954), S. 209-211
- [7] Wilkinson, G.: In: Journal of the American Chemical Society 74 (1952), S. 6146– 6147
- [8] Fischer, E.O.; Hafner, W.: In: Z. Naturforsch. 8b (1953), S. 444-445
- [9] Pfab, W.; Fischer, E. O.: In: *Zeitschrift für anorganische und allgemeine Chemie* 274 (**1953**), S. 316–322
- Birmingham, J.M.; Fischer, A.K.; Wilkinson, G.: In: *Naturwissenschaften* 42 (**1955**),
 S. 96–96
- [11] Röhl, H. ; Lange, E. ; Gößl, Th. ; Roth, G.: In: Angew. Chem. 4 (1962), S. 155
- [12] In: Hafner, Andreas ; Duthaler, R. O.: *Trichloro(cyclopentadienyl)titanium*. John Wiley and Sons, Ltd, 2001
- [13] Wilkinson, G. ; Fischer, A. K.: In: 1. Inorg. Nucl. Chem. 2 (1956), S. 149-152
- [14] Watt, G. W.; Baye, L. J.; Drummond, F. O. J.: In: J. Am. Chem. Soc. 88 (1966), S. 1138-1140
- [15] Salzmann, J.-J.; Mosimann, P.: In: Helv. Chim. Acta 7 (1967), S. 1830–1836
- [16] Tamelen, E. E.; Cretney, W.; Klaentsch, N.; Miller, J. S.: In: J. Chem. Soc., Chem. Commun. 48 (1972), S. 1–482

- [17] Brintzinger, H. H.; Bercaw, J. E.: In: J. Am. Chem. Soc. 92 (1970), S. 6182–6185
- [18] Guggenberger, L. J.; Tebbe, F. N.: In: J. Am. Chem. Soc. 95 (1973), S. 7870–7872
- [19] Guggenberger, L. J.; Tebbe, E. N.: In: J. Am. Chem. Soc. 98 (1976), S. 4137-4243
- [20] Davison, A.; Wreford, S. S.: In: J. Am. Chem. Soc. 96 (1974), S. 3017-3018
- [21] Troyanov, S. I...; Antropiusova, H.; Mach, K.: In: J. Organornet. Chem. 427 (1992),
 S. 49–55
- [22] Bercaw, J. E.: In: Journal of the American Chemical Society 96 (1974), S. 5087–5095
- [23] Hitchcock, P. B.; Lappert, M. F.; Lawless, G. A.; Olivier, H.; Ryan, E. J.: In: J. Chem. Soc., Chem. Commun. (1992), S. 474–476
- [24] Bradley, C. A.; Veiros, L. F.; Pun, D.; Lobkovsky, E.; Keresztes, I.; Chirik, P. J.: In: Journal of the American Chemical Society 128 (2006), S. 16600–16612
- [25] In: Kaminsky, W.; Noll, A.: Polymerization of Phenyl Substituted Cyclic Olefins with Metallocene/Aluminoxane Catalysts. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. – ISBN 978-3-642-79136-9, S. 149-158
- [26] Rosenthal, U. ; Pellny, P.-M. ; Kirchbauer, F. G. ; Burlakov, V. V.: In: Acc. Chem. Res.
 33 (2000), S. 119–129
- [27] Elschenbroich, C.: Organometallchemie. 5. Auflage. B. G. Teubner Verlag / GWV Fachverlage GmbH, 2005
- [28] Kim, Y. ; Seff, K.: In: Journal of the American Chemical Society 99:21 (**1977**), S. 7055–7057
- [29] Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calk, G. H. M.;
 Velden, J. W. A. d.: In: *Chem. Ber.* 114 (**1981**), S. 3634–3642
- [30] Koknat, F. W. ; McCarley, F.W.: In: Inorganic Chemistry 13 (1974), S. 295-300
- [31] Olson, W. L.; Stacy, A. M.; Dahl, L. F.: In: J. Am. Chem. Soc. 108 (1986), S. 7646– 7656
- [32] Manriquez, J. M.; Bercaw, J. E.: In: *Journal of the American Chemical Society* 96 (1974), S. 6229–6230

- [33] Gambarotta, S.; Chiang, M. Y.: In: Organometallics 6 (1987), S. 897–899
- [34] Lausarot, P. M.; Vaglio, G. A.; Valle, M.: In: J. Organomet. Chem. 240 (1982), S. 441-445
- [35] Lausarot, P. M.; Vaglio, G. A.; Valle, M.: In: J. Organomet. Chem. 275 (1984), S. 233-237
- [36] Moura, F. C. C. ; Lago, R. M. ; Santos, E. N. ; Helena Araujo, M.: In: *Catal. Commun.* 3 (2002), S. 541–545
- [37] Joh, T.; Doyama, K.; Onitsuka, K.; Shiohara, T.; Takahashi, S.: In: Organometallics 10 (1991), S. 2493–2498
- [38] Alvila, L. ; Pakkanen, T. A. ; Pakkanen, T. T. ; Krause, O.: In: J. Mol. Catal. 73 (1992),
 S. 325–334
- [39] Chatani, N. ; Kamitani, A. ; Oshita, M. ; Fukumoto, Y. ; Murai, S.: In: J. Am. Chem. Soc. 123 (2001), S. 12686–12687
- [40] Inoue, S. ; Yokota, K. ; Tatamidani, H. ; Fukumoto, Y. ; Chatani, N.: In: Org. Lett. 8 (2006), S. 2519–2522
- [41] Driller, K. M.; Klein, H.; Jackstell, R.; Beller, M.: In: Angew. Chem. Int. Ed. 48 (2009), S. 6041–6044
- [42] Morimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S.: In: J. Org. Chem. 62 (1997),
 S. 3762–3765
- [43] Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T.: In: J. Am. Chem. Soc. 119 (1997), S.
 6187–6188
- [44] Kondo, T.; Nakamura, A.; Okada, T.; Suzuki, N.; Wada, K.; Mitsudo, T.: In: J. Am. Chem. Soc. 122 (2000), S. 6319–6320
- [45] H., Yamazaki ; Hong, P.: In: J. Mol. Catal. 21 (1983), S. 133–150
- [46] Chatani, N.; Le, Y.; Kakiuchi, F.; Murai, S.: In: J. Org. Chem. 62 (1997), S. 2604–261
- [47] Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S.: In: Organometallics 16 (1997), S.3615–3622

- [48] Chatani, N. ; Asaumi, T. ; Yorimitsu, S. ; Ikeda, T. ; Kakiuchi, F. ; Murai, S.: In: J. Am. Chem. Soc. 123 (2001), S. 10935–10941
- [49] Koelliker, R.; Bor, G.: In: J. Organomet. Chem. 417 (1991), S. 439-451
- [50] Ragaini, F.; Ghitti, A.; Cenini, S.: In: Organometallics 18 (1999), S. 4925-4933
- [51] Han, S. H.; Geoffroy, G. L.; Dombek, B. D.; Rheingold, A. L.: In: *Inorg. Chem.* 27 (1988), S. 4355-4361
- [52] Sanchez-Delgado, R. A.; Bradley, J. S.; Wilkinson, G.: In: J. Chem. Soc., Dalton Trans. 5 (1976), S. 399–404
- [53] Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N.: In: J. Am. Chem. Soc. 133 (2011), S. 8070–8073
- [54] Shibata, K.; Hasegawa, N.; Fukumoto, Y.; Chatani, N.: In: *ChemCatChem* 4 (2012),
 S. 1733–1736
- [55] Hasegawa, N.; Shibata, K.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N.: In: *Tetrahedron* 69 (**2013**), S. 4466–4472
- [56] Fleischer, I.; Wu, L.; Profir, I.; Jackstell, R.; Franke, R.; Beller, M.: In: Chem. Eur.
 J. 19 (2013), S. 10589–10594
- [57] Fleischer, I.; Dyballa, K. M.; Jennerjahn, R.; Jackstell, R.; Franke, R.; Spannenberg, A.; Beller, M.: In: Angew. Chem. Int. Ed. 52 (2013), S. 2949–2953
- [58] Liu, J.; Kubis, C.; Franke, R.; Jackstell, R.; Beller, M.: In: ACS Catal. 6 (2016), S. 907–912
- [59] Rameshkumar, C. ; Periasamy, M.: In: *Tetrahedron Lett.* 41 (**2000**), S. 2719–2722
- [60] Periasamy, M.; Mukkanti, A.; Raj, D. S.: In: Organometallics 23 (2004), S. 619–621
- [61] Periasamy, M. ; Mukkanti, A. ; Raj, D. S.: In: *Organometallics* 23 (**2004**), S. 6323–6326
- [62] Chini, P.; Martinengo, S.: In: Inorg. Chim. Acta 3 (1969), S. 315-318
- [63] Martinengo, S.; Fumagalli, A.; Chini, P.; Albano, V. G.; Clani, G.: In: J. Organomet. Chem. 116 (1976), S. 333–342

- [64] Zhou, P. ; Wolmershäuser, G. ; Sitzmann, H.: In: Chem. Ber. 127 (1994), S. 3–9
- [65] Amor, J.; Cuenca, T.; Galakhov, M.; Royo, P.: In: *Journal of Organometalic Chemistry* 497 (**1995**), S. 127–131
- [66] Schäfer, S., Technische Universität Kaiserslautern, Diplomarbeit, 2012
- [67] Scheibe, D.: *Cyclopentadienylzirconium(IV)halogenide Carboxylatsubstitution und Reduktion*, Technische Universität Kaiserslautern, Diplomarbeit, **2015**
- [68] Corbett, J. D. ; Daake, R.L. ; Poeppelmeier, K. R. ; Guthrie, D. H.: In: Journal of the American Chemical Society 100:2 (1978), S. 652–654
- [69] Cotton, F. A.; Shang, M.; Lu, J.; Wojtczak, W. A.: In: Journal of the American Chemical Society 116 (1994), S. 4364–4369
- [70] Chen, L.; Cotton, F. A.: In: Inorganica Chimica Acta 257 (1997), S. 105–120
- [71] Wang, Y.; Quillian, B.; Wei, Pingrong; Wannere, C. S.; Schleyer, P. v. R.; H., Robinson G.: In: *Organometallics* 25 (2006), S. 3286–3288
- [72] Liu, Fu-Chen ; Chu, Yong-Jui ; Yang, Chien-Chan ; Lee, Gene-Hsian ; Peng, Shie-Ming: In: Organometallics 29 (2010), S. 2685–2692
- [73] Yang, Hsueh-Hui ; Chien, Chung-Hsien ; Yang, Chien-Chan ; Liu, Fu-Chen ; Chang, Agnes H. H. ; Lee, Gene-Hsian ; Peng, Shie-Ming: In: *Dalton Transactions* 42 (**2013**), S. 1168–1173
- [74] Fulmer, G. R. ; Miller, A. J. M. ; Sherden, N. H. ; Gottlieb, H. E. ; Nudelman, A. ; Stoltz, B. M. ; Bercaw, J. E. ; Goldberg, K. I.: In: *Organometallics* 29 (**2010**), S. 2176–2179
- [75] Cotton, F. A.; Diebold, M. P.; A., Kibala P.: In: Inorg. Chem. 27 (1988), S. 799-804
- [76] Cotton, F. A.; Shang, M.; Wojtczak, W. A.: In: *Inorganic Chemistry* 30 (1991), S. 3670–3675
- [77] Lachgar, A. ; Dudis, D. S. ; Corbett, J. D.: In: *Inorganic Chemistry* 29 (**1990**), S. 2242–2246
- [78] Heinekey, D. M.; Lledòs, A.; Lluch, J. M.: In: Chem. Soc. Rev. 33 (2004), S. 175-182

- [79] Urazowski, I.F.; Ponomaryev, V.I.; Nifant'ev, I.E.; Lemenovskii, D.A.: In: *Journal of Organometallic Chemistry*, (**1989**), S. 287–294
- [80] Sitzmann, H.; Boese, R.; Stellberg, P.: In: Z. anorg. allg. Chem. 622 (1996), S. 751-755
- [81] Rudolphi, F. / Technische Universität Kaiserslautern. 2005. Forschungsbericht
- [82] Sitzmann, H.: In: *Journal of Organometallic Chemistry* 354 (**1988**), Nr. 2, S. 203–214
- [83] Dezember, T.; Sitzmann, H.: In: Z. Naturforsch. 52 (1997), S. 911-918

Abbildungsverzeichnis

3.1	ORTEP-Plot der asymmetrischen Einheit von [Cp TiCl ₃] (20). Thermi- sche Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoff- atome zur besseren Übersicht nicht angezeigt (Ti: türkis: Cl: grün: C:	
	grau)	15
3.2	ORTEP-Plot der Struktur von [Cp ^{///} ZrCl ₃] (21). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besse- ren Übersicht nicht angezeigt (Zr: orange: Cl: grün: C: grau)	17
3.3	ORTEP-Plot der Struktur von $[Cp'''HfCl_3]$ (22). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besse-	±/
3.4	ren Übersicht nicht angezeigt (Hf: violett; Cl: grün; C: grau) ORTEP-Plots zur Packung von $[Cp'''TiCl_3]$ (20) (links) und der Zr/Hf- Analoga (21) – (22) (rechts) im Kristallgitter. Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome und <i>tert</i> -	21
	Butylgruppen zur besseren Übersicht nicht angezeigt	25
3.5	ORTEP-Plot der Struktur von [Cp"ZrI ₃] (24). Thermische Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur besseren	
	Übersicht nicht angezeigt (Zr: orange; I: lila; C: grau)	28
3.6	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von [Cp"Zrl ₃] (24)	30
3.7	$^{1}\text{H-NMR-Spektrum}$ (Benzol-d ₆ , 400 Hz, 300.0 K) von [Cp ^{'''} Zrl ₃] (25)	32
3.8	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von [Cp ^{'''} ZrBr ₃] (27)	34
3.9	$^{1}\text{H-NMR-Spektrum}$ (Benzol-d ₆ , 400 Hz, 300.0 K) von [Cp"ZrBr ₃] (26)	36
3.10	$^{1}\text{H-NMR-Spektrum}$ (Benzol-d_6, 400 Hz, 300.0 K) der Reduktion von	
	$[Cp''ZrBr_3]$ mit 1.5 äq Kalium	38
3.11	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) der Reduktion von	
	$[Cp''ZrBr_3]$ mit 2.5 äq Kalium	40
4.1	$Zr_6 _{18}$ -Cluster (27) ^[68]	43
4.2	Trigonaler Zr_3 -Cluster (28)	43
4.3	quadratisch pyramidaler Zr_5 -Cluster (29) ^[69] und oktaedrischer Zr_6 - Cluster (30) ^[70] .	44
4.4	$[\{({}^{t}BuC_{5}H_{4})({}^{t}BuC_{5}H_{3})Zr(\mu-H)Na\}_{2}\cdotOEt_{2}]_{2} (31)^{[71]} \ldots \ldots$	44
4.5	$[(\mu_2-H)(\mu_3-H)(Cp^*ZrCl)]_4 \cdot (C_7H_8) (32)^{[72]} \dots \dots$	45
4.6	[(Cp*Zr) ₄ (μ-H) ₈ (μ-Cl) ₂] (33) und [(Cp*Zr) ₄ (μ-H) ₆] (34) ^[73]	45

4.7	ORTEP-Plot der Struktur von $[(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2]$ (37). Thermische	
	Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome	
	der Cp-Liganden zur besseren Übersicht nicht angezeigt (Zr: gelb; Cl:	
	grün; C: grau; Hydride: weiß)	48
4.8	Verzerrtes Zirconiumtetraeder von 37 mit berechnetem Mittelpunkt	50
4.9	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von	
	[(Cp ["] Zr) ₄ (µ-H) ₈ (µ-Cl) ₂] (37)	52
4.10	Links: ORTEP-Plot der Struktur von [(Cp''Zr) ₄ (µ-H) ₈ (µ-Cl) ₂] (37). Cyclo-	
	pentadienylliganden zur besseren Übersicht nicht angezeigt (Zr: oran-	
	ge; Cl: grün; C: grau; Hydride: pink). Rechts: Plot zur DFT-Rechnung von	
	37 (grün: Bindendes 2-Elektronen-4-Zentren MO; rot: antibinde MO's) .	53
4.11	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) der Umsetzung von 23	
	mit Natriumborhydrid	57
4.12	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) der Umsetzung von 23	
	mit Dibal	59
4.13	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) der unidentifizierten	
	Verbindung 38	62
4.14	ORTEP-Plot der Struktur von $(Cp''(\mu-H)_2Zr)_3(\mu-H)_3$ AlCl (39). Thermische	
	Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoff-Atome	
	der Cp"-Liganden zur besseren Übersicht nicht angezeigt (Zr: gelb; Cl:	
	grün; Hydride: pink; Al: blau C: grau).	67
4.15	ORTEP-Plot der Struktur von (Cp''(μ -H) ₂ Zr) ₃ (μ -H) ₃ AlCl (39). Thermische	
	Ellipsoide mit 50% Aufenthaltswahrscheinlichkeit (Zr: gelb; Cl: grün;	
	Hydride: pink; Al: blau C: grau)	68
4.16	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von	
	$[(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl]$ (39)	71
5.1	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von	
	$[({}^{4}Cp)_{2}Zr \cdot 2 THF]$ (47)	78
5.2	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von	
	$[(Cp''')_2Zr \cdot 2 THF]$ (48)	81
5.3	ORTEP-Plot der Struktur von 2 [Cp ^{'''} Li] · THF (50). Thermische Ellip-	
	soide mit 50% Aufenthaltswahrscheinlichkeit. Wasserstoffatome zur	
	besseren Übersicht nicht angezeigt (Li: magenta; O: rot; C: grau)	83
5.4	¹ H-NMR-Spektrum (Benzol-d ₆ , 400 Hz, 300.0 K) von	
	$[({}^{5}Cp)_{2}Zr \cdot 2 THF]$ (51)	87

5.5	¹ H-NMR-Spektren (Benzol-d ₆ , 400 Hz) von Decaisopropylstannocen	
	bei verschiedenen Temperaturen ^[80]	91

Schemataverzeichnis

1.1	Syntheseschema der Trichloridotri(<i>tert</i> -butyl)cyclopentadienylkomplexe	
	von M = Ti, Zr und Hf	1
1.2	Syntheseschema der Trihalogenidotri(<i>tert</i> -butyl)cyclopentadienylzirco-	
	niumkomplexe (R = H, t Bu; X = Br, I)	1
1.3	Syntheseschema der Hydridokomplexe (Al: blau, C: grau, Cl: grün, Hy-	
	dride: rosa, Zr: gelb)	2
1.4	Syntheseschema der Isopropylzirconocene	3
1.5	Syntheseschema zum Hexa(<i>tert</i> -butyl)zirconocenexperiment	3
2.1	Erste Darstellung von Cp*TiCl ₃ (1)	5
2.2	Herstellung von μ -(η^5 : η^5) Fulvalendiyl-bis (μ -hydrido- η^5 -cyclopendienyl- titan) (2) ^[13,14,16]	5
רכ	Tautomeraleichaewicht von Decamethyltitanocen $(\mathbf{Z})^{[22]}$	6
2.J 7 4	Synthese des ersten homolentischen Titanocens (6) ^[23]	7
2. 1 2.5	All acmaines Syntheseschema für Bis/indenyl/Zirconium/omploya (P =	/
2.5	SiMe SiPhMe SiMe t Bu CHMe CMe 24	7
26	Vereinfachtes Schema zu $C_{-}C_{-}$ Spaltungs- und Kupplungsreaktionen	/
2.0	von Cn M (M = Ti $7r$) ^[26]	8
27	Beisniele für Kaminsky-Katalysatoren $[25]$	9
2.7	Beispiele für Clusterarten: nackter Cluster ($\Delta \alpha_{s}$) (7) ^[28] bedeckter Clus-	,
2.0	ter $(Au_{r_2}[P(C_1H_r)_2]_{1,2}CL_r)$ (8) ^[29] , anorganischer Cluster ([Nb ₂ CL _{1,2}])(9) ^[30] .	
	Organometallcluster ([Cp*Co ₇ (CO ₂)]) (10) ^[31] .	10
2.9	Reduktion von $(Cp^*)_2$ ZrCl ₂ (11) durch Na/Ha in N ₂ -Atmosphäre ^[32] .	11
2.10	Komproportionierung von Cp ₂ ZrCl ₂ (13) und Cp ₂ Zr[P(CH _z) _z] ₂ (14) ^[33]	11
2.11	Reduktion von $[(\eta - C_{t}H_{z}(SiMe_{z})_{2} - 1,3)ZrCl_{2}]$ (16).	12
3.1	Darstellung von Cp ^{m} MCl _z (20 - 22)	14
3.2	Darstellung von Cp ^{$'''$} TiCl _z (20)	14
3.3	Darstellung von Cp ^{m} ZrCl _z (21)	17
3.4	Darstellung von Cp ^{$'''$} HfCl _z (22)	20
3.5	Syntheseversuch von $[Cp''ZrBr_z]$ (26) über Salzmetathese (M = Na, Li).	26
3.6	Syntheseversuch von $[Cp''ZrBr_z]$ (26) mit trimethylsilyliertem HCp''	26
3.7	Reaktion von $[Cp''ZrCl_z]$ (23) mit Trimethyliodsilan.	27
3.8	Reaktion von $[Cp'''ZrCl_{z}]$ (21) mit Trimethyliodsilan	31
3.9	Reaktion von $[Cp'''ZrCl_3]$ (21) mit Trimethylbromsilan.	33

3.10	Reaktion von $[Cp''ZrCl_3]$ (23) mit Trimethylbromsilan	35
3.11	Reduktion von [Cp"ZrBr ₃] (26) mit 1.5 Äquivalenten Kalium	37
3.12	Reduktion von [Cp"ZrBr ₃] (26) mit 2.5 Äquivalenten Kalium	39
4.1	Umsetzung von [Cp"ZrCl ₃] 23 mit NaH	46
4.2	Darstellung von [(Cp ["] Zr) ₄ (μ -H) ₈ (μ -Cl) ₂] (37)	47
4.3	Darstellung von $(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl (39)$.	66
4.4	Vergleich der H-H-Abstände zwischen $(Cp''Zr)_4(\mu-H)_8(\mu-Cl)_2$ und dem	
	möglichen H_2 -Verbrückten (Cp''Zr) ₄ (µ- H_2) ₄ (µ-Cl) ₂	73
5.1	Cp ^{///4} CpZrCl ₂ (40), Cp ^{///} Cp ^{//} ZrCl ₂ (41) und Cp ^{///} Cp [*] ZrCl ₂ (42) ^[64]	75
5.2	Darstellung von $Cp_2''ZrCl$ (43) ^[79]	76
5.3	Darstellung von (⁴ Cp) ₂ Zr · 2 THF (47)	77
5.4	Darstellung von $(Cp'')_2$ Zr · 2 THF (48)	80
5.5	Darstellung von [Cp ^{'''} Li] · THF (50)	82
5.6	Darstellung von (⁵ Cp) ₂ Zr · 2 THF (51)	86
5.7	Darstellung von (⁴ Cp) ₂ Zr · 2 THF (47)	89
5.8	Schemas der drei Decaisopropylstannocenkonfigurationen entlang	
	der Cp _{zent} -Sn-Achse (von links nach rechts: <i>meso</i> -Isomer, SS- und RR-	
	Enantiomer) ^[80]	92

Tabellenverzeichnis

3.1	Ausgewählte Bindungswinkel in $^{\circ}$ von Cp ^{m} TiCl ₃ (20)	15
3.2	Ausgewählte Bindungslängen in Å von $Cp'''TiCl_3$ (20)	16
3.3	Ausgewählte Bindungslängen in Å von $Cp'''ZrCl_3$ (21)	18
3.4	Ausgewählte Bindungswinkel in ° von $Cp'''ZrCl_3$ (21)	19
3.5	Ausgewählte Bindungslängen in Å von $Cp'''HfCl_3$ (22)	22
3.6	Ausgewählte Bindungswinkel in ° von Cp ^{$\prime\prime\prime$} HfCl ₃ (22)	22
3.7	Vergleich ausgewählter, gemittelter Strukturparameter von $Cp'''MCl_3$	
	mit Cp"MCl ₃ (M = Ti, Zr, Hf)	23
3.8	Ausgewählte Bindungslängen in Å von [Cp"Zrl ₃] (24)	29
3.9	Ausgewählte Bindungswinkel in ° von $[Cp''ZrI_3]$ (24)	29
3.10	Elementaranalyse für Cp ^{'''} Zrl ₃ (25); M = 705.35 $\frac{g}{mol}$	31
3.11	Elementaranalyse von $[Cp'''ZrBr_3]$ (27); M = 564.35 $\frac{g}{mol}$	33
3.12	Elementaranalyse von Cp ["] ZrBr ₃ (26); M = 508.24 $\frac{g}{mol}$	35
3.13	Gegenüberstellung der ¹ H-NMR-Signale von ${}^{t}Bu_{n}CpZrI_{3}$ und ${}^{t}Bu_{n}CpZrBr_{3}$	
	(n = 2, 3) mit bekannten Trichloriden. In C_6D_6 gemessen, $Cp''HfCl_3$ in	
	$CDCl_3$	41
3.14	Vergleich der Elementaranalysen von $Cp''ZrBr_3$ und $Cp'''ZrBr_3$ mit	
	$Cp''ZrCl_3$ (23) und $Cp'''ZrCl_3$ (21)	42
3.15	Gegenüberstellung ausgewählter, gemittelter Strukturparameter von	
	${}^{t}Bu_{2}CpZrl_{3}$ mit den bekannten Trichloriden von Ti, Zr und Hf	42
4.1	Elementaranalyse von [Cp"ZrH ₃] (37) M = 271.55 $\frac{g}{mol}$	47
4.2	Ausgewählte Bindungslängen in Å von [(Cp"Zr) ₄ (μ-H) ₈ (μ-Cl) ₂] (37)	49
4.3	Ausgewählte Bindungswinkel in $^{\circ}$ von [(Cp''Zr) ₄ (µ-H) ₈ (µ-Cl) ₂] (37)	51
4.4	Elementaranalyse von [(Cp ^{''} Zr) ₄ (μ -H) ₈ (μ -Cl) ₂] (1153.09 $\frac{g}{mol}$)	52
4.5	Auflistung zur Reaktionsaufklärung der Hydrierung von [Cp"ZrCl ₃] (23)	
	in 10 ml Lösungsmittel.	55
4.6	Elementaranalyse des Produktgemisches von [Cp"ZrCl ₂ H] und [Cp"ZrCl ₃]	
	(23) im Verhältnis 1:0.37	58
4.7	¹ H-NMR-Signale der Hauptprodukte der Umsetzungen von Li(Et)₃BH	
	mit $[Cp''ZrCl_3]$ (23), $[Cp''ZrCl_2]_3$ (35) und $[Cp'''ZrCl_3]$ (21)	60
4.8	¹ H-NMR-Signale der Hauptprodukte der Umsetzungen mit einem 	
	Aquivalent LiAlH ₄	61

4.9	Elementaranalyse von Verbindung 38 und Vorschläge für mögliche Le-	
	wisformeln	63
4.10	¹ H-NMR-Signale der Hauptprodukte der Umsetzungen mit 1.5 Äquiva-	
	lent LiAlH ₄	63
4.11	¹ H-NMR-Signale der Hauptprodukte aus der Umsetzung mit 2.5 Äqui-	
	valent LiAlH ₄	64
4.12	Elementaranalyse von [(Cp ["] Zr) ₄ (μ -H) ₈ (μ -Cl) ₂] (1153.09 $\frac{g}{mol}$)	64
4.13	Ausgewählte Bindungslängen in Å von $(Cp''(\mu-H)_2Zr)_3(\mu-H)_3$ AlCl (39).	69
4.14	Ausgewählte Bindungswinkel in $^\circ$ von [(Cp''(\mu-H)_2Zr)_3(\mu-H)_3AlCl] (39).	70
4.15	Elementaranalyse von [(Cp''(μ -H) ₂ Zr) ₃ (μ -H) ₃ AlCl] + Pentan (877.10 $\frac{g}{mol}$).	71
4.16	Vergleich der Zr–Zr-Abstände in 37 und 39 mit denen in ausgewählten	
	Verbindungen aus der Literatur.	72
5.1	Ausgewählte Bindungslängen in Å von [Cp'''Li] · THF (50)	84
5.2	Ausgewählte Bindungswinkel in $^{\circ}$ von [Cp ^{'''} Li] \cdot THF (50)	85
5.3	Elementaranalyse von Cp ^{'''} Li · THF ((50)) (312.46 $\frac{g}{mol}$)	85
5.4	Elementaranalyse von (⁵ Cp) ₂ Zr · 2 THF (51) (786.42 $\frac{g}{mol}$)	86
5.5	Elementaranalysen von $C_{42}H_{74}O_2Zr$ (47A , 702.26 $\frac{g}{mol}$), $C_{21}H_{37}OZr$ (47B ,	
	396.74 $\frac{g}{mol}$) und C ₂₁ H ₃₇ LiO (47C , 312.46 $\frac{g}{mol}$)	90

9 Anhang

9.1 Datensatz von Cp^{///}TiCl₃ (20) (151430)

Table 1. Crystal data and structure refinement for 15143o.

Identification code	151430	
Empirical formula	C ₁₇ H ₂₉ Cl ₃ Ti	
Formula weight	387.65	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 16.3581(3) Å	α= 90°.
	b = 24.7368(4) Å	β= 91.610(2)°.
	c = 14.6410(2) Å	$\gamma = 90^{\circ}$.
Volume	5922.10(17) Å ³	
Z	12	
Density (calculated)	1.304 Mg/m ³	
Absorption coefficient	0.832 mm ⁻¹	
F(000)	2448	
Crystal colour and habit	Red prism	
Crystal size	0.280 x 0.244 x 0.190 mm	1 ³
Theta range for data collection	2.784 to 32.468°.	
Index ranges	-23<=h<=24, -33<=k<=3	7,-20<=l<=21
Reflections collected	70320	
Independent reflections	19756 [R(int) = 0.0600]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	1.00000 and 0.97536	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	19756 / 0 / 595	
Goodness-of-fit on F ²	1.080	
Final R indices [I>2sigma(I)]	R1 = 0.0531, wR2 = 0.08	94
R indices (all data)	R1 = 0.0839, wR2 = 0.099	93
Extinction coefficient	n/a	
Largest diff. peak and hole	0.449 and -0.418 e.Å ⁻³	

Definitions:

$$\begin{split} R_1 &= \frac{\sum \left\|F_o\right| - \left|F_c\right|}{\sum \left|F_o\right|}\\ GooF &= \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}} \end{split}$$

Notes on the refinement of 151430.

All hydrogen atoms were placed in calculated positions and refined by using a riding model.

 $wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$

n = number of reflections; p = number of parameters

9.2 Datensatz von Cp^{///}ZrCl₃ (21) (14100o)

Table 1. Crystal data and structure refinement for 14100o.

Identification code	141000		
Empirical formula	C17H29Cl3Zr		
Formula weight	430.97		
Temperature	150(2) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 14.5938(2) Å	α= 90°.	
	b = 17.1934(2) Å	$\beta = 110.085(2)^{\circ}$	
	c = 17.1918(3) Å	γ = 90°.	
Volume	4051.37(10) Å ³		
Z	8		
Density (calculated)	1.413 Mg/m ³		
Absorption coefficient	8.011 mm ⁻¹		
F(000)	1776		
Crystal colour and habit	Colorless prism		
Crystal size	0.37 x 0.27 x 0.11 mm ³		
Theta range for data collection	3.22 to 62.78°.		
Index ranges	-15<=h<=16, -15<=k<=1	-15<=h<=16, -15<=k<=19, -19<=l<=17	
Reflections collected	28150	28150	
Independent reflections	6463 [R(int) = 0.0300]	6463 [R(int) = 0.0300]	
Completeness to theta = 62.78°	99.5 %	99.5 %	
Absorption correction	Semi-empirical from equi	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.28674		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6463 / 0 / 397	6463 / 0 / 397	
Goodness-of-fit on F2	1.052	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0251, wR2 = 0.06	R1 = 0.0251, wR2 = 0.0640	
R indices (all data)	R1 = 0.0263, wR2 = 0.0651		
Largest diff. peak and hole	0.443 and -0.754 e.Å ⁻³		

Definitions:

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$
$$GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}}$$

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$$

n = number of reflections; p = number of parameters

Notes on the refinement of 14100o.

All hydrogen atoms were placed in calculated positions and refined by using a riding model.

9.3 Datensatz von Cp^{///}HfCl₃ (22) (15166o)

Table 1. Crystal data and structure refinement for 151660.

Identification code	151660	
Empirical formula	C17H29Cl3Hf	
Formula weight	518.24	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 14.5758(2) Å	α= 90°.
	b = 17.1827(2) Å	β= 109.937(2)°.
	c = 17.1810(3) Å	$\gamma = 90^{\circ}$.
Volume	4045.12(11) Å ³	
Z	8	
Density (calculated)	1.702 Mg/m ³	
Absorption coefficient	5.547 mm ⁻¹	
F(000)	2032	
Crystal colour and habit	Colorless prism	
Crystal size	0.400 x 0.264 x 0.155 mm ³	
Theta range for data collection	2.724 to 32.488°.	
Index ranges	-21<=h<=14, -24<=k<=24, -24<=l<=25	
Reflections collected	32466	
Independent reflections	13317 [R(int) = 0.0270]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Analytical	
Max. and min. transmission	0.554 and 0.299	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	13317 / 0 / 397	
Goodness-of-fit on F ²	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0246, wR2 = 0.0467	
R indices (all data)	R1 = 0.0352, wR2 = 0.0493	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.971 and -0.968 e.Å ⁻³	

Definitions:

$$R_{1} = \frac{\sum \left\| |F_{o}| - |F_{c}| \right\|}{\sum |F_{o}|}$$

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$$

n = number of reflections; p = number of parameters

Notes on the refinement of 15166o.

All hydrogen atoms were placed in calculated positions and refined by using a riding model.

9.4 Datensatz von Cp^{//}Zrl₃ (24) (hasj171020b_1)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) hasj171020b_1

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: hasj171020b_1

Bond precision:	C-C = 0.0036 A	T	Wavelength=	0.71073
Cell:	a=13.8532(3) alpha=90	b=9.4029() beta=109.	2) 395(3)	c=15.0885(4) gamma=90
Temperature:	100 K			
	Calculated		Reported	
Volume	1853.90(8)		1853.90(8)	
Space group	P 21/n		P 1 21/n 1	
Hall group	-P 2yn		-P 2yn	
Moiety formula	C13 H21 I3 Zr		C13 H21 I3	Zr
Sum formula	C13 H21 I3 Zr		C13 H21 I3	Zr
Mr	649.22		649.22	
Dx,g cm-3	2.326		2.326	
Z	4		4	
Mu (mm-1)	5.572		5.572	
F000	1192.0		1192.0	
F000'	1174.69			
h,k,lmax	19,13,21		19,13,20	
Nref	5326		4770	
Tmin,Tmax	0.389,0.515		0.795,1.00	0
Tmin'	0.345			
Correction metho AbsCorr = MULTI-	od= # Reported T -SCAN	Limits: Tr	nin=0.795 T	max=1.000
Data completenes	ss= 0.896	Theta(m	ax)= 29.827	,
R(reflections) =	0.0202(4266)	wR2(ref	lections)=	0.0347(4770)
S = 1.055	Npar=	160		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

9.5 Datensatz von (Cp^{//}Zr)₄(μ-H)₈(μ-Cl)₂ (37) (15188o)

Table 1. Crystal data and structure refinement for 151880.

Identification code	151880	
Empirical formula	C53 25H95Cl2Zr4	
Formula weight	1171.07	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
Space group	R-3c	
Unit cell dimensions	a = 29.4940(2) Å	α= 90°.
	b = 29.4940(2) Å	β= 90°.
	c = 36.5614(5) Å	$\gamma = 120^{\circ}$.
Volume	27543.6(5) Å ³	
Z	18	
Density (calculated)	1.271 Mg/m ³	
Absorption coefficient	0.778 mm ⁻¹	
F(000)	10953	
Crystal colour and habit	Red prism	
Crystal size	0.343 x 0.186 x 0.150 mm ³	
Theta range for data collection	2.740 to 32.472°.	
Index ranges	-43<=h<=42, -44<=k<=44, -52	<=l<=53
Reflections collected	120370	
Independent reflections	10638 [R(int) = 0.0555]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	1.00000 and 0.96566	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	10638 / 15 / 315	
Goodness-of-fit on F2	1.178	
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.1122	
R indices (all data)	R1 = 0.0562, wR2 = 0.1179	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.324 and -0.642 e.Å ⁻³	

Definitions:

$$R_{1} = \frac{\sum \left\| F_{o} \right| - \left| F_{c} \right\|}{\sum \left| F_{o} \right|}$$

$$GooF = \sqrt{\frac{\sum \left[w \left(F_{o}^{2} - F_{c}^{2} \right) \right]}{(n-p)}}$$

$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$

n = number of reflections; p = number of parameters

Notes on the refinement of 15188o.

The hydrogen atoms H51-H54 were located in the difference Fourier synthesis, and were then refined freely. All the other hydrogen atoms were placed in calculated positions and refined by using a riding model.

9.6 Datensatz von (Cp^{$\prime\prime$}(µ-H)₂Zr)₃(µ-H)₃AlCl (39) (17114o)

Table 1. Crystal data and structure refinement for 17114o.

Identification code	shelx	
Empirical formula	C83 H156 Al2 Cl2 Zr6	
Formula weight	1826.24	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	I 2/a	
Unit cell dimensions	a = 21.3650(4) Å	α= 90°.
	b = 10.9763(2) Å	β= 96.493(2)°.
	c = 40.2458(8) Å	$\gamma = 90^{\circ}$.
Volume	9377.4(3) Å ³	
Z	4	
Density (calculated)	1.294 Mg/m3	
Absorption coefficient	6.240 mm ⁻¹	
F(000)	3816	
Crystal size	0.44 x 0.32 x 0.17 mm ³	
Theta range for data collection	4.165 to 62.889°.	
Index ranges	-24<=h<=20, -12<=k<=12, -46<=l<=46	
Reflections collected	39346	
Independent reflections	7519 [R(int) = 0.0467]	
Completeness to theta = 62.950°	99.2 %	
Absorption correction	Analytical	
Max. and min. transmission	0.432 and 0.138	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7519 / 29 / 498	
Goodness-of-fit on F ²	1.049	
Final R indices [I>2sigma(I)]	R1 = 0.0271, $wR2 = 0.0635$	
R indices (all data)	R1 = 0.0304, $wR2 = 0.0655$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.768 and -0.581 e.Å ⁻³	

9.7 Datensatz von [Cp^{///}Li] · THF (50) (19164o)

Table 1. Crystal data and structure refinement for 19164o.

Identification code 191640 Empirical formula C21H37LiO 312.44 Formula weight 150(2) K Temperature Wavelength 1.54184 Å Crystal system Monoclinic Space group $P2_1/c$ Unit cell dimensions a = 18.7757(4) Å b = 13.6811(3) Å c = 32.7347(7) Å 8359.6(3) Å3 Volume Ζ 16 Density (calculated) 0.993 Mg/m3 Absorption coefficient 0.425 mm⁻¹ F(000) 2784 Crystal colour and habit Colorless block Crystal size 0.259 x 0.210 x 0.167 mm3 Theta range for data collection 3.405 to 62.785°. Index ranges -21<=h<=20, -15<=k<=9, -36<=l<=37 Reflections collected 36934 Independent reflections 13349 [R(int) = 0.0265] Completeness to theta = 62.785° 99.3 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.00000 and 0.93086 Refinement method Full-matrix least-squares on F2 13349 / 744 / 990 Data / restraints / parameters Goodness-of-fit on F2 1.028 Final R indices [I>2sigma(I)] R1 = 0.0543, wR2 = 0.1434 R indices (all data) R1 = 0.0649, wR2 = 0.1538 Extinction coefficient n/a 0.403 and -0.234 e.Å-3 Largest diff. peak and hole

Definitions:

$$R_{1} = \frac{\sum \left\| F_{o} \right\| - \left| F_{c} \right\|}{\sum \left| F_{o} \right|}$$

$$GooF = \sqrt{\frac{\sum \left[w \left(F_{o}^{2} - F_{c}^{2} \right) \right]}{(n-p)}}$$

$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$

 $\alpha = 90^{\circ}$.

 $\gamma = 90^{\circ}$.

 $\beta = 96.191(2)^{\circ}$.

n = number of reflections; p = number of parameters

Notes on the refinement of 191640.

All hydrogen atoms were placed in calculated positions and refined by using a riding model.

Danksagung

Mein Dank gilt Herrn apl. Prof. Dr. Helmut Sitzmann für die Möglichkeit diese Arbeit anfertigen zu dürfen, die stete Diskussionsbereitschaft bei chemischen Problemstellungen und die Ermöglichung zur freien Gestaltung des Themas.

Herrn Prof. Dr. Werner R. Thiel danke ich für die Übernahme des Zweitgutachtens. Ich danke Herrn Prof. Dr. Niedner-Schatteburg für die Übernahme des Prüfungsvorsitzes.

Herrn Dr. Y. Sun, Herrn Dr. B. Oelkers und Herrn Dr. J. Langer (FAU Erlangen-Nürnberg) danke ich für die Anfertigung der Kristallstrukturen.

Frau B. Dusch und Frau J. Ellmer möchte ich für die Elementaranalysen danken. Für die Messung der NMR-Spektren möchte ich mich bei Herrn Dr. H. Kelm und Frau C. Müller bedanken.

Herrn L. Napast, Herrn J. Rahm und Herrn F. Schröer möchte ich für die Zuverlässigkeit und viele unterhaltsame Momente in und vor der Chemikalienausgabe danken.

Den Mitarbeitern der Arbeitsgruppen Thiel, Becker und Krüger danke ich für die gute Arbeitsatmosphäre im sechsten Stock und die interessanten und/oder lustigen Gespräche zwischen Tür und Angel.

Ich danke den aktuellen und ehemaligen Mitarbeitern des Arbeitskreises Sitzmann für die gute Zusammenarbeit, den Zusammenhalt und das witzige und vertraute Miteinander.

Meinen Forschungspraktikanten B. Andrae, P. Förster, J. Keck, J. Kowollik, K. Krämer, L. Krämer, J. Olejnik, L. Potapova und T.Schick danke ich für die produktive Zusammenarbeit.

Herrn Dr. S. Schäfer danke ich für das Korrekturlesen und sein allzeit offenes Ohr. Ganz besonders danke ich meinen Eltern für Ihre Unterstützung und unendliche Geduld.

Lebenslauf

Lebenslauf Dan Scheibe

03/15 - 09/23	Technische Universität Kaiserslautern,
	Fachrichtung Anorganische Chemie,
	Promotion Arbeitsgruppe Apl. Prof. Dr. H. Sitzmann,
	Thema: "Cyclopentadienylzirconium(IV)halogenide und
	-hydridozirconiumcluster "
08/06 - 03/15	Technische Universität Kaiserslautern,
	Diplomstudiengang Chemie,
	Vertiefungsrichtung Anorganische Chemie,
	Diplomarbeit Arbeitsgruppe Apl. Prof. Dr. H. Sitzmann,
	Thema: "Cyclopentadienylzirconium(IV)halogenide
	Carboxylatsubstitution und Reduktion"
09/03 - 06/06	Technisches Gymnasium, Berufsbildende Schule Pirmasens
09/97 - 07/03	Realschule Pirmasens
	Cuundachula Wittelahach, Diumasana
09/93 - 0//9/	Grundschule Wittelsbach, Pirmasens

Eidesstattliche Erklärung

Hiermit versichere ich, Dan Scheibe, dass ich die vorliegende Dissertation mit dem Titel

> "Cyclopentadienylzirconium(IV)halogenide und -hydridozirconiumcluster"

gemäß der Promotionsordnung des Fachbereiches Chemie der Technischen Universität Kaiserslautern selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe. Alle aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche gekennzeichnet. Die Arbeit wurde noch keiner Prüfungsbehörde in gleicher oder ähnlicher Form vorgelegt

Kaiserslautern, den

Dan Scheibe