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SUMMARY
In 1979, J.M. Bernardo argued heuristically that in the case of regular product ex-
periments his information theoretic reference prior is equal to Jeffreys’ prior. In this
context, B.S. Clarke and A.R. Barron showed in 1994, that in the same class of ex-
periments Jeffreys’ prior is asymptotically optimal in the sense of Shannon, or, in
Bayesian terms, Jeffreys’ prior is asymptotically least favorable under Kullback Lei-
bler risk. In the present paper, we prove, based on Clarke and Barron’s results, that
every sequence of Shannon optimal priors on a sequence of regular i1id product experi-
ments converges weakly to Jeffreys’ prior. This means that for increasing sample size

Kullback Leibler least favorable priors tend to Jeffreys’ prior.
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1. INTRODUCTION

In 1956 D.V. Lindley adapted the concept of the information theoretic transmission or information
rate to the theory of statistical experiments, see Lindley (1956). An experiment is considered as a

Shannon information transmitting channel, the parameter being the unknown character sent, and



the data being the characters observed after some trials. A prior’s transmission or information rate

measures the expected information gain of the experiment given a prior.

Lindley’s concept fits nicely into the theory of Bayesian inference. There, the choice of appropriate
priors is of considerable importance, and since the fundamental paper of J.M. Bernardo (1979),
there has been much research on procedures how to select nonsubjectivistic priors, see e.g. Berger
and Bernardo (1992) and Ghosh and Mukerjee (1992). The objective is to find priors that con-
tain little information about the quantity of interest (the parameter) relative to the information
contained in the data. Among these so called noninformative or conventional priors, Bernardo’s
information theoretic reference priors play a major role. Based on Lindley’s ideas they are closely
connected with those priors achieving the maximum transmission rate, or, in Lindley’s context,
to (Shannon) optimal priors. These priors maximize the expected amount of information (about
the parameter) provided by the experiment. From a statistical point of view we can characterize
optimal priors in terms of a Bayes strategy: If we choose the Kullback Leibler distance as the
risk function, then optimal priors are those priors realizing both the maximin (Bayes) risk and the

minimax risk.

In the important case of regular, continuous parameter experiments with no nuisance parameter
present, Bernardo informally identified his asymptotically defined reference prior to be Jeffreys’
prior. This special prior, which has a Lebesgue density proportional to the square root of the
Fisher Information, was proposed by H. Jeffreys in 1946 (see Jeffreys (1961/1983)), and it turned
out to have many desired properties. Extending their earlier results, Clarke and Barron showed
in their 1994 paper that Jeffreys’ prior is the unique asymptotically optimal prior in the class of
positive priors with a Lebesgue density , cf. Clarke and Barron (1990 and 1994). The proof of
their result is based on a uniform asymptotic for the risk of the Kullback Leibler Bayes strategy.
As the corresponding Bayes risk given a prior is the transmission rate of the prior, the maximum
transmission rate (this is called the capacity of the experiment) is the maximin risk as well as

the minimax risk. This is shown in Krob (1992) (see Krob and Scholl (1997)) and asymptotic-



ally confirmed by Clarke and Barron. See also Haussler (1995) for a corresponding minimax result.

Further, Clarke and Barron give the asymptotic value and the rate of convergence for this quantity.

Clarke and Barron concentrate their analysis on fixed priors that are either absolutely continuous
(with respect to Lebesgue measure) or are discrete. In contrast, we investigate a sequence of op-
timal priors in this article, so that we have a different prior for each repetition of the experiment,
which is in accord to Bernardo’s reference prior method. Thus, we interpret his conjecture in the
following sense: Optimal priors asymptotically resemble Jeffreys’ prior. Examples show that in
many typical cases optimal priors are discrete for finite sample size. Especially if the sample space
is finite there is always a discrete optimal prior. See also Berger, Bernardo and Mendoza (1989) or
Zhang (1994) in this context. Therefore, we do not assume any additional properties of the priors

besides optimality.

This article is structured as follows: In the next section, we first restate some useful information
theoretic facts, including a minimax characterization of the channel capacity and optimal priors.
Then, in section 3, we demonstrate, in the simpler case of strict orthogonality, how the information
theoretic comparison of experiment and sub-experiment leads to a relation of the proportions of
optimal priors and the experiment’s capacity. In the fourth section, we will use Clarke and Barron’s
asymptotics to perform this comparison in the general situation, which leads to our main result.

Finally, in the last section, we will discuss the main practical implications of our result.

2. INFORMATION THEORETIC PRELIMINARIES

To begin with, let us first introduce some notation. With ProbX or Prob® we will respectively

denote the space of all probability measures over the (measurable) spaces X, and ©.

Definition 1: A statistical experiment is a triple (X, X),P,0) consisting of a measurable
space (X, X) which we will additionally assume to be Polish, and a family P := (Pg)eco of prob-
ability distributions over (X, X) with parameter space © C R, d € N.

If additionally P 1s compact in the topology of the variational distance, and © s compact in the



usual topology on R?, then the experiment is called compact.
If all Py, 8 € O, are dominated by a o—finite measure u € ProbX then there exist p—densities fp
for all § € ©. In this situation the experiment is called dominated. Let f, := f@ Jop(df) denote

the density of the muizture distribution with respect to the prior ¢. If the family

(frlog fa)reprobe

is uniformly p—integrable then we will say that the experiment is uniformly integrable.

In most cases, we will identify P with the experiment, when the parameter set and the observation
space (X, X) are fixed. The following example includes some relevant probability families fitting

into our definition.

Example 1:  Let P be any d—dimensional standard exponential family, like the Normal famaly,
the Gamma famuily, the Binomual family or the Poisson famuly for suitable d € N. If © is a compact
subset of the natural parameter space, then P is a dominated, compact and uniformly integrable

experiment in the sense of definition 1.

The quantity

I(p) = - /X po () log o (2)(dz) + / /X fo() Tog fo(x)u(dz)p(do)

gives us the information rate of the prior distribution ¢ € Prob®. The assumption of uniform
integrability guarantees the existence of all integrals involved. Further, we are then allowed to

interchange limits and integrals which makes sure that Z is a continuous function.

There are some rather straight forward criteria to check whether a given experiment is uniformly
integrable: E.g. if p is a finite measure and there is a constant K < oo, such that we have for
p—almost all z € X that

fo(z) < K forall 6,

then P is a uniformly integrable family in our sense, i.e. (filog fi)reprobe is uniformly integ-

rable. This holds especially for experiments with a finite sample space. Further, experiments with



(folog fo)eco uniformly integrable are also uniformly integrable in the sense of definition 1. This
can be seen, for instance, with the help of the Theorem of de la Vallée Poussin (see e.g. Meyer

(1966)).

If our uniformly integrable experiment is also compact, then the continuous mapping Z has max-
imum points. Thus we can find priors maximizing the average information gain by the experiment.
These priors achieving maximal information rate are called (Shannon) optimal, and their inform-

ation rate is defined to be the capacity of the experiment:

= T .
€= max I(¢)

Similar to Bernardo (1979) and Clarke and Barron (1994) we need the compactness of P and,
corresponding, of ©, to guarantee the existence of this maximum. As we will assume a continuous
one—to—one parametrization, the compactness of P and © is essentially the same. Compactness
seems to be crucial here, but as we can choose any (large) compact subset of the natural parameter

space, the assumption may not be too narrow for practical examples.

Information rate and Kullback Leibler distance are related by the following statements that are

well known in their classical version.

Theorem 1: Let P be a compact, dominated and uniformly integrable experiment. Then the

following holds for any ¢ € ProbO:

1. I(g@) = f® I((Pg, P(p)go(dé’)
2. I(p) = [o K(Py, Pr)p(df) — K(P,, Py) for any X € ProbO.

3. Let o), ... o) € Prob® with N € N and let s :== (s1,...,sn) € Sy_1 be a probability
vector in the N — 1-dimensional unit simplex. Let (9 := Ei\;l spe™). Then for every

A € ProbO:

N N
S sk Z(") 4 sk K(Pyo, Pa) = Z(9)) + K(Pyw), Py).
k=1 k=1



Proof: See Krob and Scholl (1997). [ |

Because the Kullback Leibler distance is a non—negative function vanishing if both arguments

coincide, we see by point (2), that

I(p) = Aeggm/@mPﬁ,PA)a@(dﬂ),

which means that

= B clo [, (P POLa0)

Thus, an experiment’s capacity is the maximin risk for the Kullback Leibler distance, achievable

by optimal priors.

The next theorem is often called the Main Theorem for Computing the Channel Capacity. It goes
back in parts to Shannon (1948), and to Eisenberg and Gallager, see Gallager (1968). The theorem

gives a sufficient and necessary condition for a prior to be optimal.

Theorem 2: Let P be a compact, dominated and uniformly integrable experiment with capacity
C. Then the following holds:

If ¢ € ProbO is a prior with corresponding mizture distribution P, € ProbX then the following
condition is sufficient and necessary for ¢ being optimal:

There 1s a constant C < oo so that

1. K(Py,P,)=C for p—almost all § € O,

2. K(Py,P,) < C forallf € 0O.

If the condition holds then C' = Z(¢) = C.

Proof: See Krob and Scholl (1997). [ |

The theorem tells us, that C is the largest occuring Kullback Leibler distance of a Py to P,.
Combined with Theorem 1 it leads to the following minimax equals maximin result, which is due

to J. Krob (1992).



Theorem 3: Let P be a compact, dominated and uniformly integrable experiment.

1. Each Shannon optimal prior ¢ € Prob® mazimizes the minimal Bayes risk. The set of all

optimal ¢ € Prob® is a non empty convex subset of Prob®.

2. There is a unique distribution Q € convexhull(P) C ProbX, which minimizes the mazimal

value of the Bayes risk function. If ¢ is any optimal prior, then @ = P,.
3. If C 1s the capacity of the experiment, then

C = min maxK(Ps, Pp)
p€EProb® €O

i K(P,, P) o(df).
lnax | dmin / C(Py, P2) ¢ (d0)

Proof: See Krob and Scholl (1997). [ |

This means that C is both minimax— and maximin-risk value for a Bayes strategy with K as risk
function, optimal priors thus being least favorable under Kullback Leibler risk. For a related min-

imax result, see also Haussler (1995).

3. OPTIMAL PRIORS ON ORTHOGONAL EXPERIMENTS

In order to demonstrate our argumentation for the main result, let us see, how an orthogonal

structure of the experiment reflects in the structure of optimal priors.

Theorem 4:  Consider a compact, dominated and uniformly integrable experiment ((X, X), P, ©)

of the following structure:

Py 01

P .= ,

) P
where P1, P2 are compact, dominated and also uniformly integrable experiments on the disjoint
spaces (X1, X1), respectively (Xa, Xz), with disjoini parameter spaces ©1 and ©y. Oy and O,
expand Py and Py to (X, X) by zeros, so that (P;,O;) resp. (O;,P;) are (sub-)erperiments on
(X, X) with parameter set ©;. Assume the capacities of the involved experiments to be C,Cy and

Co. Then the following holds:



1. Let p1,p2 be priors optimal for the sub-experiments P1 resp. Py. Then the prior
ec1 _ ec2 _
Y= Cr 1 oCa b+ C1 1 Ca P2,

15 optimal for P, with p; € ProbO®,i = 1,2, being the respective expansion of ¢; € Prob®; to

the full parameter set © by zero.

2. If ¢ 1s an optimal prior for P then the priors

i = S | — y 4y
©(0:)

are optimal for P;, i =1,2.

3. The capacity of the experiment s given by C = log(ec1 + eCQ).

Proof: First, let and be optimal for the sub-experiments. By setting o := we have
¥1 P2 p p y g Cr1eCa
¢ = aB, + (1 —a)B,. We write f, for the densities of the whole experiment and f; for the densities

on the sub-experiments. Thus

Po(2) apg, () + (1 — a)pg, (z)
apg, (z) if ze€eX;
(1 -a)pg,(x) if z€X

Therefore we can split K for # € ©7 into

KPor) = [ Twos )
fo(z)
= z)log ——=u(dzx
[ ey ion 245 ar)
as Tg(a:) =0forallz e X5if 0 € O,
Jfo(x)

= ). fo(x)log mﬂ(dﬂf)

p(dz)

= s [ fo@utdn+ [ e ios 2

Pe: (2)
- 1og(§)+1((Pg,Pwl)

IN

1
log(—) 4+ Cq,
og(—) +C1
with equality ¢—almost surely. For § € O, a similar calculation shows that

= 1
I\/(PQ,PL/;) S log(m) +CQ,



also with equality ¢—almost surely. But as

1 1
log(;——) + € = log(e®" + %) = log(~) + €1

l—a
Theorem 2 implies that ¢ is optimal for P. Tt also implies (3). Now, we want to show that those
priors defined in (2) fulfil the condition of Theorem 2 on the level of the sub-experiments. For

f € ©1 we have by the same calculation as above that

1
K(Py, P,) =log(—) + K(Ps, P,,).

@
But because K(Py, P,) < C and K (P, P,) = C ¢-almost surely, we have that

1
I((Pg, PL/’l) < C— log(_)
o
with equality ¢— and therefore also ¢1—almost surely. A similar argumentation holds for the second

sub-experiment, which concludes the proof. [ |

We can summarize the theorem by saying that in an experiment with orthogonal sub-experiments,
a prior is globally optimal if and only if it is locally optimal on these sub-experiments. It gives us

also a link of the probability of such a sub-experiment with its capacity:

oCi oCi

0(0;) = o - ° in other words logp(0;) =C; — C.
ev1l +e e

These considerations lead to a heuristic argument for our main result of the next section: It is well
known that under some regularity assumptions the probability measures in a product sequence of
experiments become more and more mutually singular. So we have by any splitting of the experi-
ment into sub-experiments asymptotically an orthogonal structure as in the above theorem. Thus
we should have a tendency of optimal priors to reveal the described structure. Clarke and Barron
showed in in their 1994 paper that the asymptotic capacity of any suitable experiment is given

by its weight under Jeffreys’ prior, and consequently, we have asymptotically that any sequence of

optimal priors must assign the same weights to sub-experiments as Jeffreys’ prior does.

4. CONVERGENCE TO JEFFREYS’ PRIOR

Before we state and prove our result rigorously, let us fix some notation. We will denote the

product experiment by P" := (P}')gee with P;* € Prob(X"”, X'"). It is generated by independent



and identical repetition of P. Each prior ¢ € Prob® induces a mixture P} := [y P¢(df). As P"
is dominated by p" we have densities fg' and pg, respectively. Z,, and C,, denote the information
rate over and the capacity of P™. Further the notation d, := —log 57 will be used for the rate
term of Clarke and Barron’s asymptotic results. We will use the same symbol (e.g. A) for a prior

with a Lebesgue density and for its density to reduce the inflation of symbols.

In order to use the results of Clarke and Barron assume that our compact, dominated and uniformly
integrable experiment P fulfils the following additional conditions:

Conditions 1:

1. The compact parameter space © has non-void interior: int® # .

2. The density fo : X — R 1s twice continuously differentiable in 0 for Py—almost all z € X, and

there is a & = 8(0) so that for each j bk =1,...,d the expectation

/ sup
X {07:]|0"—0]|< 6}

1s finite and continuous as a function of 8, and for each j = 1,...,d the expectation

J

1s finite and a continuous function of 6 € © for a & > 0.

2

62

0 tog fo(x)| Pa(da)
26700,

2+¢

a Pg(dl‘)

T%logfe(f)

3. The Fisher Information matriz I 1s positive definite and coincides with the second deriwvative

matriz J of the K —distance, i.e.

</ a0; log fo(x logf-‘)( )Pe(daz))

(89’89’ K(Py, Py)|or= 9)

jk=1,..d

jk=1,..d

4. The parametrization Il : © — P 0 — Py is one—to—one.



These conditions in particular imply that I : @ — R¥*? is positive definite and continuous and
thus bounded on O, so that the integral over the square root of the Fisher information always
exists. Thus Jeffreys’ prior is well defined in our situation. Further, Condition 3 guarantees that
differentiation and integration may be interchanged in this special case. It also implies that the
parametrization I is continuous, which, together with the bijectivity, means that II is a homeo-
morphism, due to the compactness. Condition 3 together with the characteristics of II imply the
consistency of the posterior distribution ¢(:|X™). This means that ¢(-|X™) concentrates at the

true parameter at a fast enough rate. For more details see Clarke and Barron (1990 and 1994).

Finally, denote Jeffreys’ prior by w*. It is defined by

[ /det I(B) do
" fo \/det 1(8) dd

for all Lebesgue measurable A C ©. Referring to Clarke and Barron (1994), Theorem 1, Jeffreys’

w(A)

prior has the following asymptotics for its transmission rate:

lim
n— 00

Tp(w*) —dy — log/ \/det I(6) dﬁ‘ =0, (1)
®
which implies its asymptotic optimality, because for the capacity C, we have

lim
n—o0

C, —d, — log/ \/det I(6) dQ‘:O. (2)
e
We can now formalize the intuitive idea given in the previous section and state our main result.

Theorem 5:  Let P be a compact, p—dominated and uniformly integrable experiment which fulfils
conditions 1. Let P" denote the nth—fold product experiment generated by identical and independent
repetition of P. Then if (¢n)nen C Prob© is a sequence of priors with ¢, being optimal for P™,

i.e. In(pn) = Cp, then (on)nen converges weakly to Jeffreys’ prior w* € Prob©:
n—00 4

©n w”.

All experiments included in Example 1 fulfil the assumptions and can also serve as (theoretic)

examples here. But as the exact analytical derivation of Shannon optimal priors is very difficult,



even 1n the case of exponential family experiments, we can only give some numerical examples.

They are presented below, in the last section.

Before we begin the proof of this theorem we make some preparatory remarks. Prohorov’s Theorem
(e.g. see Dudley (1989), Theorem 11.5.4]) guarantees the existence of a weakly convergent sub-
sequence (¢n, Jren as Prob® is compact. Tt is enough to show that w* and an arbitrary limit point
¢* coincide on a 7-system! which generates the Borel o-algebra, c.f. Williams (1991), Lemma 1.6.
Suitable to the problem of weak convergence is the m7—system of closed ¢*—continuity sets. These

sets B have a topological boundary with ¢*(9B) = 0.

Proof of the Theorem: Let (¢, )nen be asequence of n—optimal priors, and let ¢* 1= limg— oo ¢n,
be any weak limit point of it. Let ©®1 C © be a closed ¢*—continuity set and write © := O\0; for

the complement, which is also a ¢*—continuity set.

Let C :=log [, \/I(6) df denote the asymptotic capacity of Equation (2). Analogously, we write
Cq :=log f®1 VI(0)do > 0 and Cq := log f®2 \V1(6)d0 > 0. Further, we write C,, for the capacity
of the ny-fold product experiment, and C7*, respectively C5* for the capacity of the sub-experiments

with parameter space ©; and .

We can rewrite the priors by

Pni = S‘an(Gl)ESle) + ©n, (62)6222’

with
Prg |®2
Pr (62)
(1)

Again, we write &y, and 6512,3 for the priors extended by zero to the full parameter set ©.

1) ._ Pnilos

= d (2) .—
Sonk (@1) an sonk

If z,, € X"* then

p;ik (Ink) = Prr (61)p;l(c1) (Iﬂk) + Py (@2)19;1(:2) ("E”k)
nk nk

>0

> (O (#n,).

Tk

1i.e. a system of sets stable under finite intersection.



Therefore we have

3" (Tny)
K(Pj* P} ) < fr*(zn,)log b "k u'*(dzy
( Lﬂnk) X %) ( k) San((_)l)pa?l)(‘xnk) ( k)
nk
= [ o st ) + [ G tor g
X ¢n,(O1) Xk p—(l)(m”k)
1
= log ———+ K(P;*, P"}
Qonk((al) ( ( ))
This inequality leads to the following;:
| K P2 na(d9) = o (@),
< /(; K (Pnk P:L(‘;))S‘an(dg) - Sonk(gl) log Qpnk(gl) - Sonk((—)l)dnk' (3)

We have P‘P(l)(A) = Py (A) for any measurable set A C X"*, and therefore Theorem 1 implies
b o

that
/@ (PP P2)ns(d)) = n, (1) / K(P}, P2ty )l ()

= 9n(©1) Ink(ﬂp(l))

< en(O1) CF. (4)
So we have combining both steps (3) and (4)

Pnk Pnk )Sonk(dg) Wnk(el)dnk

\

sonk(el)(c’fk —dn,) — ¢ (01)10g 9n, (1) =F ©*(01)(C1 — log*(©1)), ()

IN

by Equation (2). Together with Theorem 2 this equation also implies that

k—o0

R P2 o) = 0, (O, = o (@1)C.
These calculations lead to the following estimation
" (01)C < ¢"(01)(C1 — log ™ (O1)). (6)

We now see that ¢* cannot be a Dirac measure: If we have ¢* = 8y, for a fy € O, and if we take a
closed w*—continuous ©; such that 0 < w*(©1) < 1 and fy € intOy, then Inequality (6) will reduce

to

C <.



This implies C = €; and C; = C(O2) = C(O3 U 903) = 0, taking into account that 005 does
not contribute to the asymptotic capacity. This is, of course, a contradiction, as we assumed
w*(©3) > 0, so that by Clarke and Barron (1994), Theorem 1, (Equations (1) and (2)) we must

have C2 = C(03 U §03) > 0.

Therefore, we may assume O3 to be a closed ¢*—continuity set with 0 < ¢*(01) < 1 and with

0 < w*(©1) < 1in the sequel. That is why we have from Equation (6)

det 1(8) df
log™(01) < C1 = C=1 gf®1 0

/At 1(0) do

for all closed ¢*—continuity sets ©; C © with 0 < ¢*(©1), w*(01) < 1. This exactly means

= logw™(01) (7)

¢*(01) < E=C = wr () (8)

for all closed ¢*—continuity sets @1 C © with 0 < ¢*(01), w*(©1) < 1. For the complementary set
©, we have

©"(02) > w*(O2).

Let (A;)ien be a sequence of closed ¢*—continuity sets with A; C Aj41 C O for all i € NV and

Uien Ai = ©2. Then we have for each i € N, as ¢ — oo, that

e (O\A;) > w(O\4)

This proves ¢*(01) = w*(01) for all closed p*—continuity sets ©1 C O with 0 < ¢*(01),w*(01) <
1. The equality of ¢* and w* in the remaining cases of zero— respectively one—sets follows ana-
logously by the continuity properties of measures. This completes the proof, because ¢* and w*
coincide on the m—system of all closed ¢*—continuity sets. As ¢* is an arbitrary limit point of the

sequence (¢ )nen, the assertion of the theorem follows:

lim ¢, = lim ¢,, = w".
n— 00 k—oo

5. CONCLUSION



The figure below approximately shows the effect of Theorem 5 for the Binomial family. With n
being the possible outcomes of the experiment, the first three diagrams display (approximative)
optimal priors (discrete points joined by lines) calculated by the algorithm of Arimoto and Blahut
for a fixed discretization (33 points) of the parameter interval. The last diagram shows the density
of Jeffreys’ prior (for the complete parameter interval) for the Bernoulli experiment. Tt should be

kept in mind that the convergence is in distribution and not pointwise.

Approx. optimal prior, n = 2 Approx. optimal prior, n = 10

Approx. optimal prior for B(2,p) Approx. optimal prior for B(10,p)

Approx. optimal prior, n = 20 Jeffreys’ prior for the Bernoulli experiment

Approx. optimal prior for B(20,p) Jeffreys' prior

Figure 1: Approximative weak convergence of optimal priors to Jeffreys’ prior for the Binomial
family

Least favourable priors are often of discrete support, as they are in the present example. In general,
for a finite sample space X, those optimal priors ¢ with |supp ¢| = | X| are the extreme points of
the convex set of all optimal priors. So, all least favourable priors are mixtures of discrete optimal

priors in this situation. This property is very unappealing to the Bayesian statistician, see e.g.



Bernardo (1994), and it is a major advantage of Bernardo’s reference priors that they overcome
these difficulties. Theorem 5 links both pieces of theory together: For large sample sizes the pos-
sibly discrete optimal priors reveal more and more of the reference prior’s structure, giving both

parts an additional theoretic justification.

In combination with Clarke and Barron’s result (1994), Theorem 5 substantiates Bernardo’s prac-
tically well approved reference prior approach to the problem of objectivistic least favourable priors
in the given context. But it has more than this theoretic implication. Finding exact least inform-
ative priors for a given statistical experiment is an in general intractable problem in finite samples,
since 1t involves optimization over infinite-dimensional spaces. The often discrete structure might
be somtimes of some help, but normally only numerical solutions will be available in praxis. See
e.g. Spall and Hill (1990), or, Arimoto (1972) and Blahut (1972) for numerical approaches. Unfor-
tunately, even in the case of an exponential family experiment these numerics are very expensive,
especially for large sample sizes. Theorem 5 leads to an approximative bypass of these problems.
For sample sizes that are large enough, the ready at hand Jeffreys’ prior is a good approximation,

avoiding costly calculations.

The following problem with the numerical calculation of optimal priors must be noted: All reason-
able numerical algorithms (known to the author) can only deal with a discretized parameter space
(i.e. a finite subexperiment). But for large sample sizes optimal priors on finite parameter sets
reveal a different asymptotic behavior than priors on a ‘continuous’ parameter set. This can be
proved, for instance, with the methods used for Theorem 5. Keeping in mind that the ‘asymptotic
capacity’ of an experiment with parameter space © = {6,...,60;}, with £ € IV, is logk, it follows
that any sequence of optimal priors converges to the uniform distribution on ©. The following
two diagrams together with the previous figure suggest that for a finite subfamily optimal priors
tend to Jeffreys’ prior (in the sense of mass distribution) as long as k > n, then showing their real

asymptotic behavior in the long run, for n > k.



Approx. optimal prior, n = 100 and k£ = 33 Approx. optimal prior, n = 200 and k£ = 33

Approx. optimal prior for B(100,p) Approx. optimal prior for B(200, p)

Figure 2: Convergence of optimal priors on a finite parameter set to the uniform distribution
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