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Abstract

Functional structures as well as materials provided by nature have always been
a great source of inspiration for new technologies. Adapting and improving the
discovered concepts, however, demands a detailed understanding of their working
principles, while employing natural materials for fabrication tasks requires suitable
functionalization and modification.
In this thesis, the white scales of the beetle Cyphochilus are examined in order to
reveal unknown aspects of their light transport properties. In addition, the monomer
of the material they are made of is utilized for 3D microfabrication.
White beetle scales have been fascinating scientists for more than a decade because
they display brilliant whiteness despite their small thickness and the low refractive
index contrast. Their optical properties arise from highly efficient light scattering
within the disordered intra-scale network structure.
To gain a better understanding of the scattering properties, several previous studies
have investigated the light transport and its connection to the structural anisotropy
with the aid of diffusion theory. While this framework allows to relate the light
scattering to macroscopic transport properties, an accurate determination of the
effective refractive index of the structure is required. Due to its simplicity, the
Maxwell–Garnett mixing rule is frequently used for this task, although its constraint
to particle and feature sizes much smaller than the wavelength is clearly violated for
the scales.
To provide a correct calculation of the effective refractive index, here, finite-difference
time-domain simulations are used to systematically examine the impact of size effects
on the effective refractive index. Deploying this simulation approach, the Maxwell–
Garnett mixing rule is shown to break down for large particles. In contrast, it is
found that a quadratic polynomial function describes the effective refractive index
in close approximation, while its coefficients can be obtained from an empirical
linear function. As a result, a simple mixing rule is reported that unambiguously
surpasses classical mixing rules when composite media containing large feature sizes
are considered. This is important not only for the accurate description of white
beetle scales, but also for other turbid media, such as biological tissues in opto-
biomedical diagnostics.
Describing light transport by means of diffusion theory moreover neglects any coher-
ent effects, such as interference. Hence, their impact on the generation of brilliant
whiteness is currently unknown. To shed a light on their role, spatial- and time-
resolved light scattering spectromicroscopy is applied to investigate the scales and
a model structure of them based on disordered Bragg stacks. For both structures
the occurrence of weakly localized photonic modes, i.e., closed scattering loops, is
observed, which is further verified in accompanying simulations. As shown in this
thesis, leakage from these random photonic modes contributes at least 20% to the
overall reflected light. This reveals the importance of coherent effects for a complete
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description of the underlying light transport properties; an aspect that is entirely
missing in the purely diffusive transport presumed so far. Identifying the importance
of weak localization for the generation of brilliant whiteness paves the way to further
enhance the design of efficient optical scattering media, an issue that recently drawn
great attention.
Unlike their plant-based counterparts, rigid carbohydrates, such as chitin, are cur-
rently unavailable for 3D microfabrication via direct laser writing, despite their great
significance in the animal kingdom for the construction of functional microstructures.
To overcome this gap, the monomeric unit of chitin, N-acetyl-D-glucosamine, is here
functionalized to serve as a photo-crosslinkable monomer in a non-hydrogel photore-
sist. Since all previous photoresists based on animal carbohydrates are in the form
of hydrogel formulations, a new group of photoresists is established for direct laser
writing.
Moreover, it is exhibited that the sensitization effect, previously used only in the con-
text of UV curing, can be successfully transferred to direct laser writing to increase
the maximum writing speed. This effect is based on the beneficial combination of
two photoinitiators. In this, one photoinitiator is an efficient crosslinking agent for
the monomer used, but a rather poor two-photon absorber. The other photoinitia-
tor (called sensitizer) possesses, conversely, a much higher two-photon absorption
coefficient at the applied wavelength but is not well suited as a crosslinking agent.
In combination, the energy absorbed by the sensitizer is passed to the photoinitia-
tor, resulting in the formation of radicals needed to start the polymerization. As
this greatly increases the rate at which the photoinitiator is radicalized, resists con-
taining a photoinitiator and a sensitizer are shown to outperform resists containing
only one of the components. Deploying the sensitization effect in direct laser writing
therefore offers a simple way to individually tune the crosslinking ability and the
two-photon absorption properties by combining existing compounds, compared to
the costly chemical synthesis of novel, customized photoinitiators.
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Kurzfassung

In der Natur vorhandene funktionelle Strukturen sowie Materialien sind seit je-
her eine Inspirationsquelle für die Entwicklung neuer Technologien gewesen. Die
Adaption und Modifikation der gefundenen Konzepte erfordert jedoch ein genaues
Verständnis der zugrundeliegenden Funktionsprinzipien, während natürliche Mate-
rialien oftmals funktionalisiert und modifiziert werden müssen, um sie für Ferti-
gungszwecke einsetzen zu können.
In der vorliegenden Dissertation werden die strahlend weißen Schuppen des Käfers
Cyphochilus hinsichtlich bisher unbekannter Aspekte ihrer Lichttransporteigen-
schaften untersucht. Darüber hinaus wird die Monomereinheit des Materials, aus
dem sie bestehen, funktionalisiert, um das Monomer für die 3D Mikrofabrikation
nutzbar zu machen.
Seit über einer Dekade faszinieren die weißen Käferschuppen Wissenschaftler, da sie
trotz ihrer geringen Dicke und des kleinen Brechungsindexkontrasts eine strahlend
weiße Färbung aufweisen. Diese optische Eigenschaft kommt durch die äußerst ef-
fiziente Streuung des Lichts in der ungeordneten Netzwerkstruktur im Inneren der
Schuppen zustande.
Um die Streueigenschaften besser zu verstehen, wurde in etlichen, bisherigen Veröf-
fentlichungen der Lichttransport und seine Verbindung zu der strukturellen Aniso-
tropie des Netzwerks mit Hilfe der Lichtdiffusionstheorie untersucht. Dieser Ansatz
erlaubt es zwar die Streueigenschaften anhand makroskopischer Transporteigen-
schaften zu beschreiben, dafür wird aber eine genau Bestimmung des effektiven
Brechungsindex der Schuppe benötigt. Für dessen Berechnung wird regelmäßig die
Mischregel nach Maxwell-Garnett aufgrund ihrer Einfachheit verwendet. Die Gültig-
keit dieser Regel ist allerdings beschränkt auf Partikel beziehungsweise Strukturde-
tails die viel kleiner als die Wellenlänge des Lichts sind, eine Bedingung, die von den
Schuppen nicht erfüllt wird.
Um eine korrekte Berechnung des effektiven Brechungsindex zu ermöglichen, werden
in dieser Arbeit Simulationen genutzt, die auf der Methode der Differenzenquotien-
ten im Zeitbereich beruhen und eine systematische Untersuchung des Einflusses von
Größeneffekten erlauben. Unter Zuhilfenahme dieser Methode wird gezeigt, dass
die Maxwell-Garnett Mischregel in der Tat im Fall großer Partikelgrößen versagt.
Im Gegenzug wird allerdings festgestellt, dass eine quadratische Funktion, deren
Koeffizienten durch eine empirisch gefundene, lineare Funktion festgelegt werden,
in der Lage ist in diesem Regime den effektiven Brechungsindex in guter Näherung
zu beschreiben. Demzufolge wird hier eine neue, einfache Mischregel präsentiert,
deren Genauigkeit die Genauigkeit etablierter Mischregeln im Fall von Materialien
mit großen Strukturdetails klar übertrifft. Neben einer korrekten Beschreibung der
Käferschuppen ist diese Formel auch für andere ungeordnete Medien interessant, z.B.
bei der Beschreibung von biologischem Gewebe im Zusammenhang mit optischen
Diagnostikverfahren.
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Eine weitere Schwäche der bisherigen Beschreibung des Lichttransport mittels Diffu-
sionstheorie besteht in der Vernachlässigung sämtlicher kohärenter Effekte, beispiels-
weise Interferenzeffekte, wodurch deren Einfluss auf die Erzeugung der Weißfärbung
unbekannt ist. Um die Rolle dieser Effekte zu beleuchten, wird das Streulicht einer
Käferschuppe sowie einer Modellstruktur der Käferschuppen, die sich aus unge-
ordneten Braggspiegeln zusammensetzt, mit Hilfe eines spektro-interferometrischen
Experiments orts- und zeitaufgelöst untersucht. Für beide Strukturen wird das
Auftreten von schwach lokalisierten, photonischen Moden, d.h. geschlossenen Streu-
pfaden, festgestellt, was durch entsprechende Simulationen zusätzlich bestätigt wird.
Ferner wird beobachtet, dass Streuverluste dieser Moden für mindestens 20% des
reflektierten Lichts verantwortlich sind. Kohärente Effekte, die im Bild des rein
diffusiven Lichttransports völlig vernachlässigt werden, sind folglich unerlässlich für
eine vollständige Beschreibung der Transporteigenschaften. Die Identifizierung des
Einflusses der schwachen Lokalisation auf das brillante Weiß ebnet damit den Weg
für weitere Optimierungen effizienter, optischer Streumedien, ein Forschungsfeld,
das in den letzten Jahren stark an Bedeutung gewonnen hat.
Im Gegensatz zu festen, pflanzenbasierten Polysacchariden, stehen feste Polysaccha-
ride tierischen Ursprungs, wie beispielsweise Chitin, bislang nicht für die 3D Mikro-
fabrikation mittels direktem Laserschreiben zur Verfügung, obwohl sie im Tierreich
eine große Rolle als Material zur Erzeugung funktioneller Strukturen einnehmen.
Um diese Lücke zu schließen, wird in der vorliegenden Arbeit die Monomereinheit
des Chitins, N-acetyl-D-glucosamin, so funktionalisiert, dass sie als vernetzbares
Monomer in Photolacken verwendet werden kann, die kein Hydrogel bilden. Da
bisherige tierische Polysaccharide immer in Form von Hydrogellacken verwendet
wurden, begründen die präsentierten Lacke damit eine neue Materialklasse für das
direkte Laserschreiben.
Darüber hinaus wird die erfolgreiche Adaption des sogenannten Sensibilisierungsef-
fekt gezeigt, der bisher nur aus dem Kontext der UV-Belichtung bekannt ist und
mit dessen Hilfe die maximale Schreibgeschwindigkeit beim direkte Laserschreiben
erhöht werden kann. Dieser Effekt basiert auf der vorteilhaften Kombination zweier
Photoinitiatoren, von denen einer das verwendete Monomer effizient vernetzen kann,
dabei aber einen relativ kleinen Zwei-Photonen-Absorptionsquerschnitt aufweist.
Der zweite auch Sensibilisator genannte Initiator besitzt dagegen einen großen Zwei-
Photonen-Absorptionsquerschnitt, ist dafür aber weniger gut geeignet die Poly-
merisierung zu initialisieren. In Kombination gibt der Sensibilisator die absorbierte
Energie an den Photoinitiator ab, der dann wiederum in Radikale zerfällt, die die
Polymerisierung starten. Da dadurch die Rate der erzeugten Photoinitiatorradikale
deutlich erhöht wird, übertreffen Lacke, die sowohl den Photoinitiator als auch den
Sensibilisator enthalten, die Lacke, die nur eine der beiden Komponenten enthalten.
Durch Kombination geeigneter Initiatoren ist es daher möglich die Vernetzungs-
fähigkeit und den Zwei-Photonen-Absorptionsquerschnitt unabhängig voneinander
zu optimieren, ohne dass dafür die aufwendige chemische Synthese neuer Photoini-
tiatoren mit maßgeschneiderten Eigenschaften nötig wird.
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1 Introduction

Throughout thousands of years of evolution, mankind has not only drawn inspi-
ration from nature to construct devices that perform increasingly complex tasks
but has also found appropriate building materials in nature. While in early times
macroscopic structures have been successfully copied and refined, current focus is on
investigating, decoding and replicating the functional principles of natural micro-
and nanostructures for advanced applications.1,2 An example of such biomimetic
structures are adhesive tapes that are based on dry adhesion via synthetic setae.3,4

These structures are inspired by natural setae, which are hair-like microstructures
found at the toes of geckos that enable geckos to climb even on molecularly flat
surfaces.5

As modeling natural structures has become more sophisticated over time, the use of
natural materials has also drastically changed. For centuries natural materials such
as wood have been mainly served as a cheap and potent building material. Nowa-
days, its fundamental building block, namely cellulose, is utilized for the creation of
composite media with superior properties, for example as films exhibiting radiative
cooling or as compostable bioplastics.6–8 Moreover, recent developments enable 3D
printing of natural materials such as cellulose on the nano- and microscale,9 paving
the way not only for realistic biomimicries but also for creating new functionalities
using natural materials.
While nature provides solutions for designing mechanical, acoustic, chemical, or
thermal properties,1,2 its strategies for tailoring optical properties are of particular
interest for a wide range of applications, including displays, coloration, sensors,
solar energy harvesting and many more.10–13 Prominent examples of natural optical
systems are structural colors, as those shown in Fig. 1.1 by a selection of various
arthropods. Structural coloration arises from light scattering, refraction, diffraction,
and interference in nanophotonic structures, in contrast to pigmentation, which is
based on selective absorption.14

The first correct presumptions about the fundamental principle underlying chro-
matic structural colors, for instance exhibited by different butterflies, beetles and
spiders (Fig. 1.1a–e), have been made almost 400 years ago.15 In contrast, unveiling
the physics behind the generation of brilliant whiteness (cf. Fig. 1.1f,g) started barely
more than a decade ago with studying the beetle Cyphochilus, shown in Fig. 1.1g.16

While structures exhibiting chromatic colors usually involve optimization only for
a small wavelength range, light of all wavelengths must lose its directional infor-
mation due to multiple scattering in order to create an angle-independent, bright
whiteness.17 This requires sufficiently long optical path lengths, which can be either
reached in thick samples or with high refractive index materials.18,19 With a total
thickness of only a few wavelengths, Cyphochilus scales, however, manage to achieve
a comparable whiteness by efficient light scattering in the disordered intra-scale
network structure made of chitin, i.e., a low refractive index material.16
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1 Introduction
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Figure 1.1: Photographs of arthropods exhibiting various structural coloration. a, Morpho butter-
fly (Morpho peleides) showing an angle-independent brilliant blue coloration. b, Longhorn beetle
(Tmesisternus isabellae) exhibiting a golden color in the dry state that changes upon wetting.
Adapted from Ref. 31 c, Rainbow stag beetle (Phalacrognathus muelleri) revealing a noticeably
iridescent appearance, which gives rise to its common name. Taken from Ref. 32 d,e Two different
peacock spiders displaying an iridescent coloration (Maratus robinsoni, d) or an angle-independent
blue coloration (Maratus nigromaculatus, e). Adapted from Ref. 33 f,g, Beside chromatic appear-
ance, brilliant whiteness can also originate from light scattering in nanostructures as revealed by
the Pacific cleaner shrimp (Lysmata amboinensis, f) and white scarab beetles (Cyphochilus insu-
lanus, g). (f) is adapted from Ref. 17 and (g) is adapted from Ref. 22

Since its first description, understanding the details of light scattering and transport
in this complex intra-scale network attracted the interest of several researchers,20–30

as scattering optimization is important in many of the applications mentioned above.
In addition, the fabrication of white, nonhazardous materials is crucial to replace
harmful whiting agents such as TiO2, especially since its use as a food additive has
been prohibited in the European Union.17

To uncover how the optical properties originate from structural characteristics such
as the anisotropy of the disordered network, many studies use the framework of light
diffusion.21,22,26,28–30 While this approach allows to determine useful quantities such
as macroscopic transport properties, it also possesses some weak points, which are
addressed in this thesis.
The description of light transport as a diffusive process assumes the underlying
heterogeneous medium to behave as an effective medium quantified by an effective
refractive index.34 While several mixing rules are presented in the literature that
enable the calculation of an effective refractive index, these formulas are in general
only valid if the features of the heterogeneous medium are much smaller than the
wavelength.35 In the case of beetle scales, however, the diameter of the network
struts can reach a few hundred microns and thus be in the same order of magnitude
as the wavelength of visible light.24
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In order to accurately compute the effective refractive index for such structures, a
new mixing rule is empirically derived in this thesis, which provides useful results for
particle diameters up to three-quarters of the wavelength. For this purpose, finite-
difference time-domain (FDTD) simulations are applied to systematically study the
influence of size effects on the effective refractive index. While the novel mixing
rule is deduced for random sphere packings, it is also shown to deliver reasonable
predictions for brilliant white structures. It thereby outperforms established mixing
rules, such as the Maxwell–Garnett mixing rule, which is used so far.21,22,28,29

Beside the difficulty to determine a suitable effective refractive index to obtain re-
liable results from diffusion theory, this approach also possesses a fundamental dis-
advantage, as it neglects coherent light propagation and hence does not include
interference effects at all. However, the appearance of coherent backscattering in
Cyphochilus scales clearly indicates the presence of interference effects,26 as this
effect arises from constructive interference of two counter-propagating waves.36,37

For this reason, coherent light transport mechanisms in the beetle scales as well as
in a model structure of the scales based on disordered Bragg stacks (DBS), are in-
vestigated using time-resolved spectromicroscopy experiments.38,39 The occurrence
of weakly localized photonic modes is thereby identified and leakage from these ran-
dom photonic modes is shown to considerably contribute to the brilliant whiteness
of both structures. To verify the experimental results, fully coherent FDTD simula-
tions are compared to incoherent Monte Carlo simulations, which offers additional
insights into intrinsic scattering behavior.
As stated in the beginning, studying natural media is not only worthwhile regard-
ing their functional structures, but also from a materials perspective. Since many
functional structures, such as brilliant white beetle scales, possess features on the
nano- and micrometer scale, 3D microfabrication of natural materials is of particular
interest.
One of the most flexible approaches for realizing three-dimensional structures is
the optical lithography technique of direct laser writing (DLW). In this approach,
polymerization of the photoresist is initialized by a non-linear process, usually two-
photon absorption, that only occurs in regions of high intensity, i.e., in the narrow
focus of a femtosecond laser beam. Since this strongly confines the polymerized
volume in all three dimensions, nearly arbitrary 3D structures from submicron to
centimeter scales can be realized.40,41 Due to its versatility, DLW finds application
in numerous fields where precise control over microscopic features is demanded, for
instance, in microfluidics,42–44 micro-optics,45–47 life science,48–50 or biomimetics.51–53

Among numerous materials that can be patterned via DLW, there is a wide range
of biomaterials, both animal and plant sourced. Animal-based materials, including
various proteins54 and a few carbohydrates such as hyaluronan and chitosan,55–58

are predominantly applied in hydrogel formulations, yielding soft materials. While
soft materials often find application in biomedical tasks, rigid materials play also an
important role as building material in the animal kingdom, e.g., chitin. In contrast to
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rigid plant-based carbohydrates such as cellulose,9 rigid animal-based carbohydrates
are not yet available for DLW.
Using functionalized N-acetyl-D-glucosamine (NAG), which is the monomeric unit of
chitin, a novel photoresist is developed in this thesis. As this resist is a non-hydrogel
formulation, a new category of rigid animal-based resists is set up.
While NAG-based resists are shown to be suitable for 3D printing, the attainable
printing speeds are rather low. To overcome this problem, it is demonstrated that the
sensitization effect known from pigmented UV curing can be successfully transferred
to DLW, resulting in a remarkable writing speed enhancement.
In pigmented UV curing, the absorption by the pigments in the lacquer can largely
exceed the absorption by the used photoinitiator, leading to an overall slow curing
speed. However, adding a second photoinitiator (called sensitizer) that absorbs at
a longer wavelength, this shielding effect can be circumvented. Under the condition
that the sensitizer is capable to transfer the absorbed energy to the photoinitiator,
the photoinitiator can be cleaved in highly reactive radicals without absorbing light
by itself.59

While no such shielding effect occurs in DLW, since the photoresists used are trans-
parent at the applied wavelength, a mismatch between this wavelength and the
two-photon absorption maximum of the desired photoinitiator can result in a simi-
lar effect. As shown here, adding a suitable sensitizer that possesses a two-photon
absorption maximum close to the wavelength used indeed surpasses (in terms of
printing speed) resists containing only a sensitizer or a photoinitiator.
The presented thesis is structured as follows. In Ch. 2, a brief review of light
propagation in ordered and disordered structures is given and the previous findings
regarding the physics behind white beetle scales are highlighted. In addition, an
overview of different classical mixing rules is given.
In Ch. 3, the simulation approaches used in the context of this thesis are reviewed
first. Subsequently, the different experimental setups are shown and briefly dis-
cussed.
The derivation of a mixing rule for large particles is presented in Ch. 4. The chapter
is completed by comparing the new and established mixing rules.
In Ch. 5 different transport regimes occurring in white beetle scales are identified
and dissected using spectromicroscopy measurements. In addition, the experimental
results are verified using accompanying simulations.
The development of a new photoresist based on the monomeric unit of chitin is
shown in Ch. 6. Moreover, the successful utilization of the sensitization effect for
DLW is reported.
In Ch. 7, an outlook on potential further research is given. In particular, a route
of synthesizing photoinitiator-free bio-based resists is presented and first printing
results are displayed. The thesis is closed with concluding the main results in Ch. 8.
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2 Theoretical background

This chapter is intended to provide the reader with an overview of theoretical con-
cepts needed in the context of this thesis. Besides discussing the fundamentals of
ordered and disordered photonic structures, different light scattering and propaga-
tion mechanisms in disordered media are highlighted. These are crucial for a detailed
analysis of light transport in brilliant white media, such as the Cyphochilus scales.
In addition, techniques to express the permittivity of a disordered medium as an
effective one are reviewed, since the effective permittivity is a basic quantity in the
description of diffusive light transport in random media.

2.1 Photonic crystals

To understand light propagation and accompanying optical effects in disordered me-
dia, it is crucial to discuss the concept of periodic, i.e., ordered, photonic structures
at first. A periodic photonic structure also called a photonic crystal is the photonic
counterpart of a crystalline solid.60 In a crystal, electrons are moving in a periodic,
electronic potential produced by a lattice of atomic cores.
Solving the Schrödinger equation for an electron in such a periodic potential yields
as eigenfunctions the so-called Bloch functions. Thereby, a Bloch function describes
a plane wave with a periodically modulated amplitude which possesses the same pe-
riodicity as the underlying lattice.61 The spacing between the corresponding eigen-
states is so small that they form continuous bands leading to the well-known elec-
tronic band structure. The eigenvalues appear to be periodic in the reciprocal space
since the crystal lattice exhibits a translational invariance. Therefore, the descrip-
tion of the band structure can be reduced to the first Brillouin zone without loss of
generality.61

In analogy to a ‘real’ crystal, a photonic crystal can be created by a periodic arrange-
ment of materials with different permittivity.60,62,63 As shown below, light waves
capable to propagate in such a structure are described by Bloch functions as well.
Hence, the corresponding eigenvalues also form bands resulting in a photonic band
structure. Tailoring the design of the photonic crystal, and thus of the resulting
photonic band structure, provides a mighty tool for manipulating the flow of light
in such a structure. It is for example possible to create a complete photonic band
gap, so that any light within the frequency range of the band gap is unable to
propagate inside the photonic crystal independent of the direction of incidence and
polarization.64,65 Below, the generation of a photonic band structure is discussed for
the case of a 1D photonic crystal.

5



2 Theoretical background

2.1.1 Generation of the photonic band structure in 1D

The case of a 1D photonic crystal is considered for two reasons. First, the 1D case
is the most intuitive in respect of understanding the formation of bands and band
gaps. Second, a 1D photonic crystal, also known as Bragg mirror or Bragg reflector,
is the base for a model of brilliant white beetle scales, which is used in Ch. 5 to help
investigating different light transport phenomena in such media. The discussion
shown below is based on the explanation in Ref. 60.
A 1D photonic crystal consists in one direction (here: z-direction) of two alternating
layers with different permittivities (cf. Fig. 2.1). The spatial period in z-direction
is presumed to have a value of a while every layer is infinitely expanded in the x-
and y-directions. It is assumed that light impinges in the z-direction, thus only the
z-component of the wave vector k is unequal to zero. To simplify the notation k = kz

can be written without introducing confusion. Since the description can be reduced
to the first Brillouin zone, only wave numbers in the range of −π/a < k ≤ π/a have
to be considered.
Fig. 2.2 displays the resulting band structure for three different index contrasts and
an equal layer thickness of a/2. In the trivial case both layers are composed of the
same material. This is equal to an isotropic medium with an imagined periodicity
in the z direction. The allowed modes in an isotropic medium with permittivity ϵ
lie along the light line, which is given by

ω(k) = c0k√
ϵ
, (2.1)

for all wave vectors k. However, due to the imagined periodicity the description can
still be restricted to the first Brillouin zone. In consequence, the light line has to be
folded back at the edge of the Brillouin zone as shown in Fig. 2.2, left panel for a

a

x

y

z
ε2
ε1

Figure 2.1: Sketch of a 1D photonic crystal consisting of two alternating layers with permittivities
ϵ1 and ϵ2, respectively. The uniform layers are infinitely expanded in x- and y-direction and
infinitely stacked in z-direction with a spatial period of a.
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2.1 Photonic crystals
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Figure 2.2: Photonic band structures computed for different 1D photonic crystals. The left panel
shows a solid block of GaAs (ϵ = 13). The center panel displays a multilayer structure composed
of GaAs and GaAlAs layers (ϵ = 12) and the right panel one consisting of GaAs and air layers
(ϵ = 1). The layer thickness is a/2 for every layer. Taken from Ref. 60 The figure is excluded from
the CC BY license of this thesis.

material with ϵ = 13. Thereby, physics is not altered by the introduced periodicity,
since the band structure supports the forward and backward propagation of light of
any frequency with a group velocity given by the slope of the light line.
While the chosen description seems to be unnecessarily complicated for an isotropic
structure, things are different when permittivity contrast starts to increase. For a
nearly homogeneous medium with a small permittivity contrast, for example ϵ2/ϵ1 =
13/12, as assumed in Fig. 2.2, center panel, the band structure barely deviates from
the isotropic case with one exception. Around the cross points of the light lines,
frequency regions open up where no allowed modes can be found, independent of
the wave vector. Since these regions appear as gaps in the band structure, they are
called photonic band gaps.
The generation of band gaps can be understood when the electric field mode profiles
of the modes directly below and above the band gap are regarded. For the first
photonic band gap displayed in Fig. 2.2, center panel, these modes are at the edge
of the Brillouin zone, i.e., k = ±π/a. For the corresponding wavelength of λ = 2a
two different standing waves can be found which are compatible with the symmetry
of the photonic crystal’s unit cell. The anti-nodes of the standing wave can either
be centered in the region of higher permittivity (Fig. 2.3a) or centered in the region
of lower permittivity (Fig. 2.3b). Accordingly, the energy density of the electric field
is stronger concentrated in the region of higher or lower permittivity, as revealed
in Fig. 2.3c and d, respectively. Thus, both modes observe a different effective
permittivity which leads to a splitting of the corresponding frequencies and hence
to the photonic band gap.
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2 Theoretical background

E-field for mode at bottom of band 2
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Local energy density in E-field, bottom of band 2

E-field for mode at top of band 1

ε=13
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Figure 2.3: Field distribution of different modes in a 1D photonic crystal. a,b, Electric field of
the Bloch wave obtained for k = π/a at the lower (a) and upper edge (b) of the first bandgap
displayed in Fig. 2.2, center panel. c,d, Corresponding local energy density of the electric field at
the lower (c) and upper edge (d) of the first bandgap. Taken from Ref. 60 The figure is excluded
from the CC BY license of this thesis.

Since many photonic crystals use a dielectric medium as high and air as low per-
mittivity material, the mode exhibiting a concentration of electric field in the layers
with higher permittivity is generally called dielectric mode. This mode is found at
the low frequency edge of the band gap, hence the band below the band gap is also
referred as dielectric band. At the upper edge of the band gap the air mode (which
is also called air mode even if the low permittivity medium is not air) is found.
Consequently, the band above the band gap is denoted as air band.
Increasing the permittivity contrast further results in a broader band gap since
the bigger difference in the effective permittivities leads to an enlarged frequency
splitting. Fig. 2.2, right panel shows this behavior for the case of ϵ1 = 1 and ϵ2 = 13.
Beside the permittivity contrast, the thickness of the layers also influences the size of
the band gap. For a fixed permittivity contrast, the size of the band gap is maximized
when all layers possess an optical thickness of λ/4. In this case the waves which are
partially reflected at each layer are all in phase and the ratio between the size ∆ω
and the mid-frequency ωm of the first band gap is given by

∆ω

ωm
= 4

π
sin−1

(
|√ϵ1 −

√
ϵ2|√

ϵ1 +√ϵ2

)
. (2.2)
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2.2 Disordered photonic structures

Analyzing the entire band structure of a 1D photonic crystal reveals that in general
all consecutive bands are divided by a band gap. The band gaps appear either at
the edge of the Brillouin zone, as it can be discerned in Fig. 2.2, center panel for
the first band gap or in the middle of the Brillouin zone as it can be seen for the
second band gap. In the special case of a λ/4-stack, however, bands are degenerate
at k = 0, so that band gaps only open up at the edge of the Brillouin zone. The
mid-frequency of the jth band gap

ωm,j = 2πc0

λj

, (2.3)

can then be easily found applying the Bragg condition for a λ/4-stack:

λj = 4n1d1/(2j − 1) = 4n2d2/(2j − 1), j ∈ N , (2.4)

where d1 and d2 are the thicknesses of the two different layers. It should be further
noted that the group velocity, which is given by the slope of the respective band,
goes to zero at the edge of a band gap, as it can be also observed in Fig. 2.2. This
is in perfect accordance with the expectations because standing waves which are
obtained at the edge of the Brillouin zone do not transport any energy.
While in a 1D photonic crystal complete photonic band gaps open up at every
permittivity contrast unequal to one, in 2D and 3D photonic crystals complete
band gaps (i.e., for all propagation and polarization directions) are only obtained
for certain geometries and sufficient permittivity contrasts.64,65

2.2 Disordered photonic structures

As described in the previous section, a perfectly ordered structure made up of two
different dielectric media is a useful tool to form light transport due to the generated
photonic band structure. However, to fully unlock the potential of such structures
for manipulating the flow of light and hence for various applications, functional
defects might be introduced.
For example, altering the optical thickness of one layer in a 1D photonic crystal
creates a cavity, which features a defect state within the photonic band gap.60 Since
this defect mode cannot propagate inside the periodic part of the photonic crystal, it
is spatially confined around the defect layer leading to a field intensity enhancement,
which can be several orders of magnitude. These high fields are deployed, e.g., to
build miniaturized optical gas sensors with high sensitivity.66,67 Introducing a line
of defects in a 2D photonic crystal generates a photonic band due to the coupling of
many defect states. This band lies within the band gap of the surrounding photonic
crystal. Therefore, a so-called coupled resonator optical waveguide (CROW) can be
created, which allows to guide light around sharp bends with low losses.68,69
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2 Theoretical background

While inserting tailored defects in photonic crystals enables new functionalities as
exemplified above, the largest part of the structure remains perfectly ordered. In
consequence, it is still possible to calculate a photonic band structure which de-
termines the light propagation inside the structure.60 In contrast, many photonic
structures, especially those found in natural systems, deviate from a perfectly or-
dered system not only at specific sites but possess disorder throughout the entire
structure. In such media, the lack of order prevents the definition of a band struc-
ture to describe light transport. Therefore, other approaches have to be established,
which take multiple scattering processes into account (see Sec. 2.3).
Disordered photonic structures, on the one hand, deliver a potent platform to inves-
tigate fundamental physics, especially transport phenomena in the context of dif-
ferent types of disorder, while on the other hand various practical applications are
found.70 Understanding the light propagation inside random media is, for example,
crucial to develop imaging and sensing approaches which involve turbid media, such
as biological tissue,71 and hence yielding new opto-biomedical devices.72–74 Similar
applications can be found in other research areas dealing with remote sensing of ran-
dom and turbid media, e.g., in geoscience, atmospheric science or astrophysics.75–78

Beyond sensing application, disorder is also applied as a powerful design tool to
create sophisticated optical materials for example for random lasing,79,80 radiative
cooling81,82 or structural coloration.83–85

Within the group of structural colors brilliant whiteness takes a special position,
because all wavelengths of the visible spectrum have to be randomly scattered at an
equal amount. Hence, optically thick structures are required to obtain opacity.18,19

In white paint formulations, this is commonly achieved by multiple scattering in
a random dispersion of particles with high refractive index, e.g., TiO2 particles.27

In contrast, nature provides concepts to obtain a similar whiteness in ultrathin
structures using solely low refractive index materials. Thereby, highly optimized
structures are involved belonging to the strongest scattering structures known, which
rely on low refractive index materials.21

The most prominent representative, brilliant white scales of the beetle Cyphochilus,
is reviewed in the next section, since studying the light transport properties of these
scales is at the heart of this thesis. The short review is intended to portray the key
steps in this research field and to highlight important findings. In addition, a simple
model of the white beetle scales is presented, which is deployed in simulations to
support the evaluation of different light propagation mechanisms within the scales.

2.2.1 White beetle scales as a role model for efficient scattering

In 2007, the beetle Cyphochilus was firstly described by Vukusic et al. regarding the
exceptional brilliance and whiteness of its ultrathin scales.16 A photograph revealing
the whiteness of a Cyphochilus beetle is shown in Fig. 2.4a. Using scanning electron
microscopy (SEM) of sectioned scales, they found inside the scales a complex net-
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2.2 Disordered photonic structures

a b

5 µm

Figure 2.4: a, Photograph of a Cyphochilus beetle. The about 250 µm long scales, which cover
the beetle’s body almost entirely, exhibit the brilliant white coloration. b, SEM micrograph of
a sectioned single scale, showing the complex intra-scaled network structure composed of chitin
fibrils. Adapted from Ref. 22

work structure composed of chitin fibrils with typical diameters between 200 nm and
250 nm, as displayed in Fig. 2.4b. Comparing the Fourier transform of this network
structure with diffraction patterns obtained from the scales, the network structure
has been identified to be responsible for the generation of whiteness.
To answer the question of whether single or multiple scattering processes are pre-
dominant in the scales, Burresi et al. performed time-of-flight measurements.21 They
recorded the time profile of femtosecond laser pulses after propagation through a
scale, revealing a significant temporal broadening of the impinging pulses due to mul-
tiple scattering inside the network structure. Thereby, the last part of the pulse tail
was found to exponentially decaying with a remarkably long lifetime of τ ≈ 140 fs.
In addition, they provided the first estimation of the transport mean free path inside
the scales of lt = 1.47 µm, which was calculated applying isotropic diffusion theory.21

Since the intra-scale network structure possesses structural anisotropy—the fibrils
are predominately oriented in-plane, i.e., perpendicular to the incident direction
of light—the same group investigated its influence on the optical properties in a
following publication.22 Using anisotropic diffusion theory, they could indeed show
that the network is optimized for scattering in the direction normal to the scale’s
surface at the cost of a weaker scattering perpendicular to this direction. In this
study the respective transport mean free path was calculated to lie between 0.9
and 1.6 µm, showing that the network belongs to the strongest scattering structures
made from low refractive index materials.21,22

From a today’s point of view, however, the provided values are questionable since
the first papers assumed filling fractions of the chitin network in the range between
60% and 70% as well as scale thicknesses between 5 to 7 µm.16,21,22 These are in
clear contrast to more recent estimations of around 30% filling fraction and roughly
12 µm thickness.27,28 Most likely these discrepancies arise from different preparation
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2 Theoretical background

methods. Various drying procedures of the scales prior to measurement might lead
to substantial shrinkage effects and hence to a densification of the network structure
with accordingly higher filling fractions and smaller scale thicknesses. However, the
main influence may be caused by sectioning of the scales. Sectioning procedures
such as focused ion beam milling can lead to severe deformation of the scales and
their inner network due to the release of mechanical stress when the outer shell of
the scale is cut open, as demonstrated by Burg et al.27 Thus, a 3D X-ray computed
tomography scan of an intact scale27 delivers more reliable results than estimations
based on 2D SEM images of sectioned scales.16,21,22 In consequence, using the exact
filling fraction beside a more accurate anisotropic light diffusion theory, Lee et al.
recently reported an effective transport mean free path of lt = 1.85 µm.28 This value
is larger than previous calculations but still exceptionally small for low refractive
index scattering structures.
To achieve these outstanding scattering properties, the network structure has been
evolutionarily optimized, as concluded by Wilts et al.24 Using ptychographic X-ray
computed tomography of a sectioned scale, they provided the first 3D computer
model of the inner network structure, which was used to study the influence of the
network’s morphology on the optical properties. The conducted FDTD simulations
have confirmed the anisotropy of light transport inside the network, yielding a peak
reflectance of around 65% for normal incidence in contrast to roughly 50% peak
reflectance perpendicular to the normal direction. In addition, they investigated
various stretching and scaling of the entire network as well as changing the filling
fraction by adjusting the thickness of the fibrils. This resulted in only minor im-
provements of the reflectance at the expense of increasing size or weight of the scales.
This is detrimental to flying insects and thus reveals the high degree of optimization
of the scales.
While structural properties of the intra-scale network and their impact on optical
properties were intensively studied, a basic model structure gaining insight into the
underlying functional principle was still missing. Using the 3D data provided by
Wilts et al.,24 we developed such a model, which is based on Bragg stacks with
tailored disorder in respect of the layer thickness and distribution (see Sec. 2.2.2).25

This disordered Bragg stacks (DBS) model is capable to fully reproduce the optical
properties of the complex network structure in the visible spectral range, while it
retains a simple structure defined by a small set of parameters. With the help of
this model, it was proven that structures exhibiting brilliant chromatic coloration,
e.g., those found in various Morpho butterflies, are divided from strongly scattering,
white structures just by the amount of disorder, as originally speculated by Vukusic
et al. in the first publication.16

Subsequently, different other model structures were presented which were intended
to not merely model the Cyphochilus scales, but to investigate strongly scattering,
low refractive index structures in general. In 2D simulations, Jacucci et al. used
spherical and elliptical particles with different aspect ratios to study the influence of

12



2.2 Disordered photonic structures

form and structural anisotropy independently.86 They found that elongated particles,
which are preferentially oriented in-plane, show a significant better performance than
systems based on isotropic particles.
Studying 3D structures composed of cylindrical rods that are placed along the steps
of a random walk, Utel et al. revealed as well that in-plane orientation of the rods
maximizes the reflectance.19 Moreover, both studies showed that a filling fraction in
the range of 30–40% yields the highest integrated reflectance, which is in agreement
with the filling fraction featured by the scales’ network structure. In both cases,
however, it was shown that the proposed structures can be designed to even ex-
ceed the reflectance of the white beetle scale. They thus unveiled further potential
for whiteness and scattering optimization, once the limitations imposed in natural
systems, such as available generation routes, are dropped.
In another publication Jacucci et al. reported the first observation of coherent effects
in white beetle scales.26 They measured the scattering of laser light in the backward
direction, observing a coherent backscattering cone, which is a typical feature of
weak localization (cf. Sec. 2.3.2).
Burg et al. addressed the question how Cyphochilus scales’ structure evolves in vivo
by comparing them to spinodal structures.27 Due to the similarity between both
structure types, they concluded that liquid–liquid phase separation via spinodal
decomposition is most likely the underlying generation process. However, Lee et al.
found that the surface free energy is not minimized in the case of the intra-scale
structure as it would be expected for a late-stage spinodal decomposition.29 Instead,
a similar process is assumed, which results in smooth fibrils at a tenable surface
free energy, since the absence of surface irregularities was shown to be favorable for
brilliant whiteness in anisotropic structures.
Determination of the exact generation route is indeed a difficult task. Haataja et
al. have recently shown that brilliant whiteness can be achieved in any disordered
system if second order statistical features, such as the correlation length and the
filling fraction, as well as anisotropy are properly adjusted.30 In consequence, many
different topologies and thus generation paths could be underlying.
That brilliant whiteness is not limited to a certain topology can also be seen from
various artificial structures, which were fabricated through the years. Among others,
supercritical CO2 foaming,87,88 electrospinning,89–91 and various phase separation
approaches27,92–94 have been applied, yielding a great variety of different structures,
which mimic or even surpass the whiteness of the scales.

2.2.2 Disordered Bragg stacks model of white beetle scales

While there are exact digital replicas of Cyphochilus scales’ inner structure obtained
by computed tomography,24,27 in many situations a simple model is required that
enables large scale simulations at low computational cost as well as easy variation of

13
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a b

1 µm 1 µm

Figure 2.5: Sketch of the basic idea behind the development of the DBS model. a, 2D cross section
through the 3D tomography scan of a Cyphochilus scale provided by Wilts et al.24 The purple
regions represent the chitin fibrils, while black regions refer to air. The sections considered in (b)
are marked by white lines. b, Replacing the chitin fibrils with rectangular blocks (white) of the
same thickness reveals the layered structure of the intra-scale network. Adapted from Ref. 95

structural properties. Below, the development of such a model structure is described
following the explanations given in Refs. 25,95

As described in the previous section, it is well known that the intra-scale network
features structural anisotropy.21,22,24,28 The chitin fibrils are preferably directed in-
plane, i.e., perpendicular to the normal incidence direction of light, which gives rise
to a layer-like structure. Regarding the 2D cross section through the 3D replica of
the network in Fig. 2.5a, the layered arrangement of fibrils can be discerned, e.g.,
in the regions highlighted by the white lines. This becomes even clearer when the
fibrils are replaced by simple, rectangular blocks of fitting thickness, as displayed in
Fig. 2.5b.
However, the replacement with blocks reveals not only the layered arrangement,
but resembles a renowned photonic structure, that is a Bragg stack or 1D photonic
crystal, respectively (cf. Sec. 2.1.1). In contrast to a regular Bragg stack two dif-
ferences can be observed. First, the dielectric layers (i.e., the white blocks) possess
different thicknesses instead of a constant one. Second, the distance between con-
secutive blocks is not constant, as exhibited by the occurrence of partially big gaps
in Fig. 2.5b.
Using these findings, the model structure is derived in the following way.25,95 As a
starting point, a Bragg stack is chosen that is composed of chitin and air layers (see
Fig. 2.6a, right-hand side). The thickness of the chitin layer is selected to match the
mean value of the fibril diameter distribution, which is 230 nm as given by Wilts et
al.24 The refractive index of chitin is nchitin = 1.55.96 Accordingly, to construct a λ/4-
stack, the thickness of the air layer is set to 357 nm (cf. Eq. (2.4)). As expected for
a Bragg stack with these dimensions, the reflectance spectrum reveals a pronounced
second order stop band around 475 nm, as shown in Fig. 2.6a. Note that this stop
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Figure 2.6: Evolution of the DBS model. a–d, Each panel displays a 2D sketch of the structure
(right) and its corresponding reflectance calculated by FDTD simulation (left), showing a peri-
odic Bragg stack (a), a periodic Bragg stack with varying layer thickness (b), a periodic Bragg
stack with varying layer thickness and randomly omitted layers (c), and the final DBS model com-
posed of many different stacks (d), which are constructed as presented in (c). For comparison,
the reflectance obtained for the replica of the intra-scale structure provided by Wilts et al.24 is
additionally displayed in (d) (blue curve). e, 3D sketch of the DBS model structure. Adapted
from Ref. 25

band is referred to as second order because in the case of λ/4-stacks stop bands only
open up at the edge of the Brillouin zone, as explained in Sec. 2.1.1.
While the Bragg stack reaches a high reflectance, its range is limited to certain
wavelengths resulting in a chromatic rather than a white appearance. Therefore,
in the next step disorder is introduced by varying the thickness of the chitin layers
according to the diameter distribution measured by Wilts et al.24 The resulting
structure and reflectance spectrum are shown in Fig. 2.6b. Here, a relatively high
reflectance can be observed for many different wavelengths inside and outside of the
original stop band. The introduced disorder thus leads to a broadening of the stop
band at the expense of a lower peak reflectance.
Next, one third of the layers are randomly omitted as displayed in Fig. 2.6c. This is
done to account for the partially bigger gaps observed in Fig. 2.5b and to reduce the
optical crowding effect. Optical crowding occurs if scattering centers are placed in
proximity, leading to an overlap of their radiation fields.16,18,97 Because of this over-
lap, a cluster of nearby scattering centers effectively acts as a large, single scattering
center with the adverse effect of reduced lateral and backward scattering.98

Composing many of such disordered stacks, the final model is obtained (Fig. 2.6d).
A 2D sketch is here used for clearness, however, the actual model is a real 3D
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Figure 2.7: Reflectance of different brilliant white scattering media. a, Comparison between the
initial DBS model (blue curve), the refined DBS model (green curve), and the exact replica of the
intra-scale structure (black curve) with respect to their reflectance in the visible and near infrared
spectral range. b, Close-up view of the visible spectral range shown in a. According to Ref. 95

structure, as presented in Fig. 2.6e. The footprint of each individual stack is chosen
to be 300 × 300 nm2. A subwavelength footprint of individual stacks is needed to
achieve sufficient lateral scattering, which is crucial for whiteness. Indeed, disordered
Bragg stacks with large footprints are found in nature, which exhibit a reflectance
comparable to that of the beetle scales but appear gold or silver in color.15,99–101

Conversely, the footprint must not to be chosen too small, otherwise the onset of
optical crowding drastically reduces the reflectance, as shown in Ref. 95

Using a proper footprint of the stacks, the reflectance of the DBS model in the
visible spectral range is in perfect agreement with the reflectance obtained from the
exact replica of the intra-scale structure, as shown in Fig. 2.6d. In addition, great
conformance is also found for other optical properties like the intensity distribution
in the far field or the time-of-flight, demonstrating that the proposed DBS structure
can fully model the optical properties of the beetle scales in the visible spectral
range.25

Nevertheless, some differences are found in the near infrared range as revealed in
Fig. 2.7a. As stated above, the Bragg stack underlying the DBS model possesses a
second order stop band in the visible spectral range, which broadens when disorder is
introduced. In contrast, the first order stop band which lies around 1400 nm is more
robust in respect of disorder, largely preserving a stop band in the near infrared. In
this wavelength range, however, the reflectance of the intra-scale network structure
exhibits a broader feature rather than a distinct stop band.
To account for this, the DBS model can be refined by adopting further disorder. So
far, the center-to-center distance between consecutive chitin layers is kept constant,
so that only the omission of layers leads to positional disorder. Therefore, additional
positional disorder is implemented using a normal distributed center-to-center dis-
tances instead of a constant one, yielding the refined model (for model parameter see
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2.3 Light transport and scattering in disordered media

Ref. 25). As displayed in Fig. 2.7a (green line), the stop band in the near infrared is
mostly diminished in comparison to the initial DBS model (blue line), being closer to
the behavior shown by the intra-scale network structure (black line). Nevertheless,
there is still a discrepancy especially in the range around 1000 nm. The deviations
might arise from the fact, that the DBS model is a strictly layered structure without
any interconnection between the layers, while the network structure also possesses
struts which are oriented out-of-plane. With a mean length around 1 µm,24 these
struts may lead to optical features in the near infrared, which cannot be captured
by the DBS model.
However, in the visible spectral range, which is of main interest, the refined model
mimics the reflectance of the beetle scales with barely any difference at all, even
slightly outperforming the initial model (cf. Fig. 2.7b). It hence can be used to
support the investigation and dissection of different light transport mechanisms in
white beetle scales. An overview of various light propagation mechanisms in strongly
scattering media is provided in the next section.

2.3 Light transport and scattering in disordered media

To describe light transport in disordered photonic media, the concept of photonic
band structure cannot be used because of the absence of a strict periodicity. In-
stead, to obtain an exact solution, Maxwell’s equations have to be solved while
considering the microscopic nature of the disordered medium.102–106 Since Maxwell’s
equations fully include the wave character of electromagnetic radiation, this is the
most rigorous approach because all kinds of interference effects are preserved. An-
alytic solutions, however, can be given only in a very limited number of scenarios
due to the high complexity of the problem for an arbitrary random medium.106

Thus, in most cases numerical approaches such as the FDTD (see Sec. 3.1.1), the
pseudospectral time-domain107,108 or the superposition T -matrix method109,110 are
applied to solve Maxwell’s equations and calculate light propagation in random
media. A drawback of all methods is the strong increase of required memory and
computational time with growing sample volume or number of scattering particles,
respectively.110,111 This generally inhibits their application to problems where the
feature or sample size is orders of magnitudes larger than the wavelength of the
incident light.112

To deal with large, disordered media too, a common strategy is to discard the
wave character of electromagnetic radiation and to consider the transport of power
through the random medium instead.105,106 In the corresponding transport theory,
the (scalar) radiative transfer or radiative transport equation is used to describes
the light propagation in the medium. While the radiative transport equation can
be analytically solved in some cases, it is often more convenient to use diffusion
theory, which is an approximation of the radiative transport equation, or numerical
methods such as Monte Carlo simulations (see Sec. 3.1.2).112
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Although interference effects are not natively included in the radiative transport
equation and diffusion theory, their predictions suffice to describe light transport
in disordered media in many practical cases.102,113–115 Using diffusion theory with
gain, it is even possible to model certain aspects of random lasing in agreement with
experimental observations. The validity of such a description, however, strongly
depends on whether interference effects are sufficiently averaged out and thus on the
experimental setup, e.g., usage of long excitation pulses or averaging over multiple
laser shots.80

In contrast, if interference effects cannot be neglected, the scalar radiative transport
equation and diffusion theory fail to calculate light transport correctly. In this case
the basic concept has to be extended to take wave properties such as polarization into
account, resulting in the vector radiative transport equation.106 Applying techniques
like electric field Monte Carlo simulations, the propagation of polarized light in
disordered media can be calculated.116 Since the electric field and phase is traced
in this approach, coherent properties are preserved and interference effects such as
speckle pattern or coherent backscattering are directly obtained.112,116,117 However,
recording the photon pathway and the entry and exit point on the entrance facet
of the sample, the coherent backscattering cone can be also reconstructed from the
results of scalar theories and simulations, respectively.26,118

Since the radiative transport equation is an important and frequently used tool
for describing light transport in disordered media, its concept and in particular
its approximation, namely diffusion theory, will be elucidated in the next section.
Subsequently, different mechanisms of light localization are discussed, which can
become crucial for light scattering and transport in random media while not being
captured by original radiative transport equation and diffusion theory.

2.3.1 Radiative transport equation and diffusion theory

The transport theory of light is a heuristic theory which relies on the transport of
power through a random medium.102,105,106 In transport theory, the radiance I(r, ŝ)
is considered as the base quantity. Assuming an excitation source with a narrow
bandwidth, such as a laser, and a detector with a sufficient bandwidth, the radiance
is the average flux density at the point r within a unit solid angle around the
direction ŝ (with unit Wm−2 sr−1).106

The radiance in the random medium must satisfy the transport equation. The
radiative transport equation states that the change of radiance in direction ŝ is given
by the decrease of radiance because of absorption and scattering out of direction ŝ
and the increase of radiance due to light which is scattered from other directions ŝ′

into direction ŝ. Mathematically this is described by119

ŝ · ∇I(r, ŝ) = −γextI(r, ŝ) + γs

4π

∫
p(ŝ, ŝ′)I(r, ŝ′) dω′ . (2.5)
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2.3 Light transport and scattering in disordered media

Here, γext = γs + γa is the extinction coefficient with γs and γa being the scattering
and absorption coefficients, respectively, p(ŝ, ŝ′) is the phase function and dω′ is
the differential solid angle around the direction ŝ′. Instead of the coefficients, the
corresponding mean free paths are often given such as the scattering mean free path
ls = γ−1

s and so forth.
If the phase function is normalized

∫
4π
p(ŝ, ŝ′) dω′ = 1 , (2.6)

it represents the probability density function for scattering from direction ŝ′ to
direction ŝ,119 i.e., the scattering characteristic of the medium is embodied in the
phase function.102,106 In case of symmetric scattering about the incident direction,
the phase function only depends on the angle θ between ŝ and ŝ′. In many practical
cases the Henyey–Greenstein formula, which was originally developed to describe
diffusive interstellar radiation,120 is a suitable approximation for the phase function:

p(θ) = W0(1− g2)
(1 + g2 − 2g cos θ)3/2 , (2.7)

with the albedo W0 = γs/γext and the anisotropy factor g = ⟨cos θ⟩.106 In general, the
anisotropy factor lies between -1 and 1, where the three special cases g = 0, g = −1,
and g = 1 represent isotropic scattering, pure backward scattering, and pure forward
scattering, respectively.113,119,120 For most scatterers, however, the anisotropy factor
is greater than 0,113 hence the scattering is more pronounced in the forward direction
(see for example Table III in Ref. 119 for an overview of various biological tissues).
The albedo can take values between 0 and 1, ranging from an entirely absorbing to
a purely scattering medium.
In the common scenario of using a laser as light source, the radiance I = Ic+Id within
the random medium can be divided into the coherent radiance Ic and the diffusive
radiance Id.106 In that, the coherent radiance is the undeflected incident radiance
attenuated by scattering and absorption losses, i.e., it satisfies Beer’s law.119 It is
important to note that the term coherent here refers to the propagation of a beam
from a coherent light source but does not imply that coherent effects are captured
(since they are not included at all in the radiative transport equation). The diffusive
radiance contains the light which is scattered out of the original beam direction. It
can be exactly described with an infinite sum of Legendre polynomials.119

Depending on the albedo two different approximations can be made. For a small
albedo (W0 < 0.5 for a plane wave, W0 < 0.9 for a narrow beam) the absorption
predominates over scattering, thus the coherent radiance is much larger than the
diffusive radiance.106 In consequence, the total radiance can be approximated by
the coherent radiance and the first-order scattering solution can be used (see e.g.
Ref. 102 for details). In contrast, for an albedo close to 1, i.e., a weakly absorbing
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2 Theoretical background

medium such as countless biological tissues, the diffusive radiance dominates the
total radiance, and the diffusion approximation holds true.
In diffusion theory only the first (isotropic) and second (slight forward directed) term
of the sum of Legendre polynomials are considered.119 Using this approximation, the
transport equation (2.5) reduces to the following diffusion equation:

(∇2 − κ2)ψd(r) = −Q(r) , (2.8)

with the diffusive radiant fluence rate ψd(r).106,119 In general, the radiant fluence
rate is the integration of the radiance over all angles:106

ψ(r) =
∫

4π
I(r, ŝ) dω . (2.9)

In the diffusive regime, where scattering dominates absorption, the actual effective
attenuation coefficient is approximated by the constant κ with

κ2 = 3γa(γs(1− g) + γa) , (2.10)

while the source term in Eq. (2.8) is given by

Q(r) = 3γs(γext + gγa)F0(r) exp(−τ) , (2.11)

with the incident irradiance or radiant flux density F0(r).106,119 The irradiance is
generally calculated via

F (r) =
∫

4π
I(r, ŝ)ŝ dω . (2.12)

The optical depth τ is given by

τ =
∫ l

0
γext dl , (2.13)

where l is the distance along the propagation direction of the incident beam from
the input facet to the point r within the random medium.
So far only time-independent (steady-state) transport of light was considered. Re-
garding the propagation of a light pulse ψ(r, t) through the random medium, the
pulse can be split into a coherent and diffusive portion too. During propagation of
the coherent pulse, light is scattered which creates the diffusive pulse ψd(r, t). The
diffusive pulse satisfies the equation:(

∇2 − 3
v2

e

∂2

∂t2
− 1
D

∂

∂t
+ κ2

)
ψd(r, t) = 0 , (2.14)

with the diffusion coefficient or diffusivity D.106
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2.3 Light transport and scattering in disordered media

To classify light transport in random media, it is convenient to introduce the trans-
port mean free path lt which is defined as113

lt = ls
1− g . (2.15)

The transport mean free path is the distance which must be traveled by light until
all information about its incident direction is lost. For isotropic scattering (g = 0)
this is the case after the first scattering event, hence the transport mean free path
equals the scattering mean free path as it can be directly seen from Eq. (2.15). For
forward scattering (g > 0), however, several scattering events are needed resulting
in a transport mean free path which is larger than the scattering mean free path
(with the limit lt →∞ for g = 1).
Moreover, the transport mean free path is directly related to the diffusivity, linking
the properties of steady-state and dynamic transport of light via

D = 1
3velt , (2.16)

where ve is the (energy) transport velocity.121 In absence of resonance scattering,
the transport velocity is approximately obtained as phase velocity ve = c0/neff, with
the effective refractive index of the medium neff (see Sec. 2.4).21,121,122 Nevertheless,
for frequencies in vicinity of scatterers’ Mie resonances, the transport velocity can
be significantly lower than the phase velocity.121–123

Applying appropriate boundary condition (see e.g., Refs. 102,106) to account for semi-
finite or finite samples which possess at least one interface with the ambient medium,
the framework presented above can be used to calculate the light diffusion in random
media. However, in experiments light propagation inside the random medium is
hardly accessible, hence quantities such as the total transmission are more expedient.
The total transmission through a slab of random medium with thickness L is given
by

Ttot = exp(−L/ls) + (lt + ze)− (lt + ze + L) exp(−L/ls)
L+ 2ze

, (2.17)

with the extrapolation length ze.124. The extrapolation length is calculated according
to:

ze = 2lt
3

1 + R̄

1− R̄
, (2.18)

where R̄ is the reflectance of the interface between random and ambient medium
averaged over all possible incident angles.124 If the ambient medium is air, the re-
flectance can be calculated using Fresnel’s law in combination with the effective
refractive index of the random medium,125 while ambient media with higher refrac-
tive index require a more advanced modeling of the boundary reflection.126
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2 Theoretical background

The term exp(−L/ls) in Eq. (2.17) belongs to the unscattered, ballistic photons
passing through the slab. Except for very thin slabs (i.e., L≪ lt), their portion can
be neglected yielding the simple expression:21,22,124

Ttot = lt + ze

L+ 2ze
. (2.19)

In general Eq. (2.17) and Eq. (2.19) are obtained for isotropic scattering. Neverthe-
less, it is shown that these equations also pertain for anisotropic scattering with a
comparable accuracy than in the isotropic case.124

So far only isotropic light transport is considered, which is expected to occur for
scattering media without structural anisotropy. Note that isotropic light transport
does not exclude scattering anisotropy, but it is characterized by scalar (direction-
independent) quantities such as transport mean free path, scattering mean free
path, diffusivity and so forth. Hence, to describe anisotropic light transport the
scalar quantities are replaced by corresponding tensors and the anisotropic diffu-
sion equation must be solved, as explained in more detail in the literature.113,127,128

However, replacing the scalar transport mean free path with the appropriate entry
of the transport mean free path tensor, the expressions for the total transmittance
given above are also valid for anisotropic light transport.22

2.3.2 Weak localization and coherent backscattering

The phenomenon of weak localization was originally described for electrons multiply
scattered by impurities in a semiconductor or metal.129,130 Since this effect relies on
the fundamental concept of reciprocity,131 it is not limited to electrons but can occur
for all kinds of wave in disordered media, for instance electromagnetic waves.36,37,132

Thereby, weak localization is the most robust interference effect obtained in random
media and is usually considered a precursor to Anderson localization, which is briefly
discussed in the next section.131

Weak localization can be understood in real space regarding the transport from
point A to point B through wave packets traveling along different paths.37,130 The
total probability of approaching B from A is given by the square of the sum over
the probabilities of all possible paths, i.e., the coherent sum. In that, different paths
generally differ in length and thus in phase. This results in averaging out all interfer-
ence terms and the coherent sum becomes equal to the incoherent sum.37 However,
there is one exception. When A and B coincide, i.e., in the case of closed loops,
two contributions are obtained from each path because of two opposite propagation
directions. These counter-propagating waves are in phase, hence they interfere con-
structively. This results in a twice as high probability than in the incoherent case
leading to localization.130

Usually, weak localization is observed as coherent backscattering, giving rise to
a characteristic peak of enhanced intensity around the backscattering direction.36
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Figure 2.8: Illustration of two counter-propagating waves undergoing m = 4 scattering events in a
disordered medium as indicated by their respective wave vectors (blue and green). Due to phase
matching between both waves, constructive interference occurs leading to an enhanced intensity in
the backscattering direction.

coherent backscattering does not necessarily involve closed loops inside the medium,
however, the underlying principle remains the same as explained in the following.
Illuminating the sample with a plane wave with wave vector k0, the wave under-
goes m elastic scattering events represented by the series k0,k1,k2, ...,km, with
ki being the wave vector after the ith scattering event as displayed in Fig. 2.8.
For km = −k0, i.e., in the backscattering direction, the wave propagating along
the counter-direction k0,−km−1, ...,−k1,km is in phase and constructive interfer-
ence leads to a backscattering intensity which is theoretically twice the incoherent
background.36 In reality, stray light as well as single scattering can reduce the en-
hancement to a value less than 2.131

For angular deviations from the backscattering direction, a phase shift between
both waves is introduced. If these deviations are sufficiently small, a minor phase
shift is obtained such that interference effects are preserved. Hence, the coherent
backscattering cone possesses a finite angular width, which is found to be on the
order of λ/lt, revealing the connection between the transport properties of random
media and localization effects.36,37

2.3.3 Anderson localization

As stated in the previous section, weak localization can be seen as a precursor of
Anderson localization which is also renowned as strong localization. This connec-
tion is based on the fact that Anderson localization also arises from localization in a
random medium due to the formation of closed loops.133 In contrast to weak local-
ization which occurs beside diffusive transport, Anderson localization requires the
interference of all scattered waves. Therefore, diffusion is completely absent.37,133
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In consequence, transport comes to an entire halt and a metal-insulator transition
is obtained at the onset of Anderson localization in electronic systems.134

As in the case of weak localization, the concept of Anderson localization is not limited
to electrons but can be transferred to all type of waves.134 However, a necessary
condition to obtain Anderson localization in a random medium is the satisfaction of
the (modified) Ioffe-Regel criterion klt ≤ 1,135 i.e., the transport mean free path must
be smaller than the wavelength. For light, this condition is very tough to achieve
in 3D systems since absorption-free, strongly scattering media composed of high
refractive index materials are required.134 Indeed, several potential measurements of
3D Anderson localization of light are reported,135–137 which later turned out not to
be loophole-free,138,139 remaining the challenge up to this day. In lower dimensional
systems, however, Anderson localization of light could be already shown.140–142

2.4 Effective medium theory

The treatment of light propagation in disordered media completely on a microscopic
scale becomes a virtually impossible task as soon as the sample size significantly
exceeds the wavelength as discussed in Sec. 2.3. Instead, at a sufficient sample
size the light ‘sees’ many different microscopic arrangements, so that its transport is
rather affected by averaged quantities than specific local configurations. This enables
to describe light transport using macroscopic quantities, e.g., by means of diffusion
theory.113 In that, the transport between two consecutive scattering events—note
that the average distance is given by the macroscopic scattering mean free path—is
characterized by the propagation in a homogeneous medium possessing an average
or effective refractive index.34,121,122

While diffusion theory is a simple, yet elegant and efficient way to describe light
transport in many random scattering media, the evaluation of appropriate macro-
scopic material properties can be complicated. In fact, a homogenization approach is
needed which allows to describe the actual heterogeneous medium with its spatially
varying permittivity as a homogeneous one owing an effective permittivity.143 Such
an approach must take at least the permittivities as well as the volume fractions of
all constituents into account. However, for arbitrarily complex composite media, for
example metamaterials, microscopic details such as the shape and size of individual
scatterers might be considered too.
Because composite media with feature sizes on the scale of the wavelength are
abundant, e.g., in nature,2,123 evaluating an appropriate effective permittivity has
attracted researchers’ interest for more than a century.144 Thereby, numerous meth-
ods have been proposed over the years. The most approaches, however, rely on one
of two fundamental concepts of homogenization, which are also deployed in the de-
scription of the electronic structure of alloys.145 Hence, it is convenient to categorize
different methods by their relation to the counterpart in alloy theory.144,146
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2.4 Effective medium theory

The first class contains methods which are related to the average-T -matrix approx-
imation (ATA).147,148 These approaches assume small inclusions being dispersed in
a host matrix, i.e., in a homogeneous background. In that, the permittivity is taken
as the sum of the permittivity of the background as homogeneous part ϵh and a per-
turbation δϵ representing the inhomogeneous part.146,149 From this starting point,
the respective T matrices are obtained by solving Maxwell’s equations using Green’s
function. Calculating ensemble averages of T matrices, a formula for the effective
permittivity can be derived (for details see e.g., Refs. 146,149). The most famous rep-
resentative of this group is the Maxwell–Garnett mixing rule, which was presented
in 1904 by J. C. Maxwell Garnett.150

The second class comprises approaches being akin to the coherent potential approxi-
mation (CPA).151 At first glance, this concept appears to be quite similar to the ATA,
since the permittivity is also treated as a homogeneous part with a perturbation,
while Maxwell’s equations are solved.146 However, there is a fundamental difference
between both approximations. In the CPA, the homogeneous part is assumed to
be the effective medium itself (i.e., ϵh = ϵeff), instead of the background medium.
Thus, in the case of the CPA a self-consistent mean-field approach is obtained, while
methods related to the ATA are non-self-consistent.144,146 A formula for the effective
permittivity can be deduced by demanding the self-consistency (further details can
be found e.g., in Refs. 146,152). The Bruggeman mixing rule, published in 1935 by D.
A. G. Bruggeman,153 established this class of methods and is still one of the most
frequently used mixing rules.144,154

Before the Maxwell–Garnett and Bruggeman mixing rule are covered in more depth
in Secs. 2.4.1 and 2.4.2, respectively, some fundamental notes should be taken. First,
in most literature, methods belonging to the class of ATA as well as CPA are denoted
as effective medium theory, since they allow for calculating the effective permittivity
of a heterogeneous medium. However, only techniques relying on the CPA are effec-
tive medium theories in the actual sense because the term effective medium theory
refers to the assumption that every inclusion is surrounded by the same effective
medium.144,146 Nevertheless, due to their similar outcome, both concepts can be
considered in the same context, as it is done here.
Second, because of distinct presumptions, various methods possess different limita-
tions. For example, ATA-like concepts are in principle only valid for small volume
fractions, since the overall perturbation of the homogeneous background induced
by inclusions must be small.146 Contrarily, techniques relying on the CPA can con-
ceptually handle higher filling fractions as further discussed in Sec. 2.4.2.146 How-
ever, depending on the microscopic details of the composite medium, also ATA-like
methods can provide reasonable results at higher filling fractions.155–157 In general,
it should be borne in mind that all homogenization techniques are approximations
and that it is not possible to represent all properties of heterogeneous media by ef-
fective quantities in any situation.35,144,158 Therefore, these methods should be used
cautiously and their validity might by tested case by case.
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Third, the concept of homogenizing material properties is not exclusive for permit-
tivity but a rather general concept, which can be applied for heat and thermal con-
ductivity, elasticity, permeability and many more.143,144,159 Indeed, methods initially
developed to compute the effective permittivity are often transferred to calculate the
effective conductivity and vice versa.152

2.4.1 Maxwell–Garnett mixing rule

There are several ways to derive the Maxwell–Garnett mixing rule.35 Since it belongs
to the class of ATA-like methods as mentioned above, it can be indeed obtained
from the ATA in the limit of small filling fractions.149 Here, a different approach
is presented, which provides additional insights in the underlying idea and reveals
potential strategies to extend the original version.35

For the derivation of the Maxwell–Garnett mixing rule, a separated grain structure
is supposed. This structure type is also known as cermet structure (a portmanteau of
the words ceramic and metal) due to the similar geometry of this kind of composite
medium.155 Fig. 2.9a shows a sketch of a separated grain structure, consisting of a
background medium with permittivity ϵ1, which encloses grains with the permittivity
ϵ2. Thereby, grains are not in contact with each other, and their typical diameter
d is assumed to be much smaller than the wavelength of light, that means d ≪ λ.
Since this structure type enables an unambiguous assignment of the host medium
and the inclusions (in contrast to the Bruggeman case regarded in the next section),
it is convenient to rename the permittivities here according to ϵh = ϵ1 and ϵi = ϵ2.
In general, the effective permittivity ϵeff can be obtained as the proportional con-
stant between the average displacement field D̄ (note that the bar indicates average
quantities) and the average electric field Ē within the composite medium:160

D̄ = ϵeffĒ . (2.20)

In addition, the displacement field is also related to the average polarization P̄ via

D̄ = ϵhĒ + P̄ . (2.21)

Regarding the dipole moment p̄ of each scatterer, the polarization is given by

P̄ = np̄ , (2.22)

with the density of dipole moments n.160 In this, it is assumed that all dipole mo-
ments are identical. For various dipole moments, Eq. (2.22) can be easily extended
by summarizing the product of dipole moment and respective volume density for all
different types of dipoles. The dipole moment can be calculated using the polariz-
ability α and the local electric field Ēlocal:

p̄ = αĒlocal . (2.23)
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Figure 2.9: a, Illustration of a composite medium as assumed by the Maxwell–Garnett mixing rule.
The background medium (white, permittivity ϵ1) contains inclusions (blue, permittivity ϵ2), which
are small against the wavelength, i.e., d≪ λ. b, Sketch of a composite medium consisting of two
constituents as presumed by the Bruggeman mixing rule. The entire medium is made up of grains
of two different constituents (white and blue) with permittivity ϵ1 and ϵ2, respectively. Every grain
is small against the wavelength. The figure is redrawn from Ref. 161 with slight adaption of the
color scheme. ©American Meteorological Society. Used with permission. The figure is excluded
from the CC BY license of this thesis.

The local field is composed of the average field in the medium and an internal field
induced by distant, surrounding scattering particles. Note that the collective con-
tribution of all nearby scattering particles is zero in almost all random media.162

To determine the internal field, an imaginary sphere is assumed around the scat-
tering particle, which has a charge density on its surface induced by the external,
neighboring particles. The internal field is then received as the resulting field at the
center of this sphere.162 The corresponding local field is given by160,162

Ēlocal = Ē + P̄

3ϵh
. (2.24)

Inserting Eq. (2.24) in Eq. (2.23) and subsequently in Eq. (2.22) yields:

P̄ = nα(Ē + P̄

3ϵh
) . (2.25)

Using Eq. (2.21) and Eq. (2.20), the polarization can be also given by

P̄ = D̄ − ϵhĒ = (ϵeff − ϵh)Ē . (2.26)

Inserting Eq. (2.26) in Eq. (2.25) finally delivers an expression for the effective
permittivity:160

ϵeff − ϵh

ϵeff + 2ϵh
= nα

3ϵh
, (2.27)
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which is in this implicit form renowned as Clausius–Mossotti relation.35,160,162,163

Starting with the Clausius–Mossotti relation, the challenge of calculating the effec-
tive permittivity reduces to the problem of determining an appropriate polarizability
α for the scattering particles. In the simplest case, the inclusions are assumed to be
spheres with a radius a much smaller than the wavelength. Thus, the electrostatic
value for the polarizability of a sphere embedded in a background medium can be
used, which is given by160

α = 4πϵha
3 ϵi − ϵh

ϵi + 2ϵh
. (2.28)

Inserting this polarizability in the Clausius–Mossotti relation yields:

ϵeff − ϵh

ϵeff + 2ϵh
= f

ϵi − ϵh

ϵi + 2ϵh
, (2.29)

where f = (4/3)πa3n is the filling fraction of inclusions. Writing Eq. (2.29) in its
explicit form gives the Maxwell–Garnett (MG) mixing rule:35,150,163

ϵeff = ϵMG = ϵh
ϵi(1 + 2f) + 2ϵh(1− f)
ϵi(1− f) + ϵh(2 + f) . (2.30)

As it can be discerned from Eq. (2.30), the Maxwell–Garnett mixing rule only de-
pends on the permittivity of host medium and inclusions, as well as the filling frac-
tion of the inclusions. Thus, only little information about the composite medium
is required to calculate the effective permittivity according to the Maxwell–Garnett
mixing rule. On the downside, the Maxwell–Garnett mixing rule is only valid in
the long-wavelength limit where the inclusions can be represented by (electrostatic)
dipoles, i.e., effects which arise from the finite size of the inclusions are not captured.
However, considering the presented framework, several strategies to include size
effects have been proposed.35,164–166 The essence of these approaches is to replace the
electrostatic polarizability by more realistic polarizabilities incorporating size effects,
for instance taking magnetic or higher-order multipole terms into account.35,163

2.4.2 Bruggeman mixing rule

As in the case of the Maxwell–Garnett mixing rule, the Bruggeman mixing rule
can be deduced in different ways. While there are various mathematically rigorous
derivations,153,167–169 in the following a rather argumentative approach is used, which
highlights the differences in the fundamental concept of the Maxwell–Garnett and
Bruggeman mixing rule. The given argumentation is oriented at the one provided
in Ref. 163

First, the assumption that all inclusions are made up of the same material is omitted.
Instead, inclusions with different permittivities ϵj, j = 1, 2, ..., N are supposed.
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Applying the procedure exhibited in Sec. 2.4.1 for every sort of inclusion individually,
Eq. (2.29) can be extended in the following way:

ϵeff − ϵh

ϵeff + 2ϵh
=

N∑
j=1

fj
ϵj − ϵh

ϵj + 2ϵh
, (2.31)

with fh = 1 − ∑N
j=1 fj. From Eq. (2.31) it can be seen that the role of different

inclusions can be interchanged (ϵj ←→ ϵk and fj ←→ fk, with j, k ∈ 1, ..., N) with-
out changing the equation. Thus, the inclusions enter the equation symmetrically,
as expected, since there is nothing that distinguishes one inclusion from the others.
The host medium, in contrast, does not enter the equation symmetrically, as it can
be seen if the permutation ϵh ←→ ϵj and fh ←→ fj with j ∈ 1, ..., N is applied.161,163

For the case of similar materials, e.g., pure dielectric materials, the only reason to
discriminate between the host medium and the inclusions is the volume fraction,
which is so far assumed to be much larger for the host than for the inclusions. How-
ever, for composite media where the filling fraction of the inclusions is comparable
to that of the host, the assignment as ‘host’ and ‘inclusions’ becomes arbitrary, and
the applicability of the Maxwell–Garnett mixing rule is highly questionable.163

The Bruggeman mixing rule circumvents this problem since all constituents enter the
mixing rule symmetrically. This enables, at least theoretically, the computation of
the effective permittivity at all volume fractions.163 For the Bruggeman mixing rule
a slightly different geometry of the composite medium is presumed, as illustrated
in Fig. 2.9b. In contrast to the separated grain structure (see Fig. 2.9a), the whole
composite medium is composed of grains belonging to different constituents, hence
a host medium is absent.161,168

However, regarding the medium as an effective medium, every grain is considered to
be embedded in a homogeneous (host) medium possessing the effective permittivity
(see Sec. 2.4). Hence, the permittivity of the effective medium must occur in the
Bruggeman mixing rule as the permittivity of the host (i.e., ϵh = ϵeff). For the
corresponding filling fraction fh = 0 is obtained, since the effective (host) medium
is generated by all other grains, which are already considered with their respective
filling fractions. Applying these arguments to Eq. (2.31) yields the Bruggeman (BG)
mixing rule:

N∑
j=1

fj
ϵj − ϵBG

ϵj + 2ϵBG
= 0 , (2.32)

with ∑N
j=1 fj = 1.163 For the case N = 2, the Bruggeman mixing rule can be given

in an explicit form as163

ϵBG = b+
√

8ϵ1ϵ2 + b2

4 , (2.33)

where
b = (2f1 − f2)ϵ1 + (2f2 − f1)ϵ2 . (2.34)
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While claiming a symmetric mixing formula is reasonable for many composite media,
this is not the case in general, as shown in the following example according to
Ref. 163 A sample structure shall be considered which contains spheres embedded in
a homogeneous background such that the filling fraction of the spheres is 50%, while
none of the spheres are in touch. When the spheres are composed of a conducting
material while the background is dielectric, the entire composite medium will be an
insulator. Conversely, a conducting composite medium is obtained when materials
are swapped in the same geometry. While both media are obviously quite different,
a symmetric mixing rule provides in both cases the same effective permittivity.163

Therefore, there is no general rule that a symmetric or non-symmetric mixing rule
delivers better results. It rather depends on the microscopic details of the com-
posite medium as well as the involved materials which kind of mixing rule is most
appropriate to calculate the effective permittivity.
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3 Methods

The numerical and experimental methods used in the course of this thesis are pre-
sented in this chapter. In that, the basic concepts underlying the numerical methods
are exhibited and common simulation parameters are summarized. In addition, the
different experimental setups used for sample fabrication as well as measuring and
analyzing are displayed and briefly reviewed.

3.1 Numerical methods

The FDTD simulation method, the Monte Carlo simulation method, and the force-
biased algorithm are outlined in the following. FDTD simulations are used to cal-
culate the effective permittivity of random media as well as to simulate coherent
aspects of light transport. Incoherent, diffusive light transport is conversely calcu-
lated with the aid of Monte Carlo simulations. The force-biased algorithm enables
the generation of various random sphere packings, which are needed for a systematic
investigation of size effects in the effective refractive index computation.

3.1.1 Finite-difference time-domain simulations

The FDTD method is a numerical time-domain technique which enables to compute
the propagation of electromagnetic waves through regions filled with an arbitrary
arrangement of different materials. It was first presented in 1966 by K. S. Yee,170

thus it is sometimes also referred to as Yee algorithm or Yee method.
The essence of the method is the discretization of time and space which allows
to rewrite Maxwell’s equations as finite difference equations.170 By taking finite
differences of the electric field components at one point in time, the magnetic field
components at the next point in time can be calculated at each mesh point and vice
versa. This leads to a leapfrog scheme, i.e., alternately determining the electric and
magnetic field components, which enables to compute the fields at all later times
from the initial values provided in the first time step.111,170,171

One advantage of this method is its applicability to arbitrary scattering geometries
without modifying the algorithm.171 Frequency-domain methods,172–174 in contrast,
require for every scatterer the derivation of a set of equations, which holds true just
for the specific geometry.171 Another advantage arises from the fact that the FDTD
method is a time-domain technique. Using a sufficiently short excitation pulse, the
response of the considered medium for a large range of frequencies can be calculated
in a single simulation.175

The FDTD method, nevertheless, also possesses some drawbacks. To obtain a suit-
able accuracy the step size of the mesh must be much smaller than the shortest
wavelength or smallest feature size, respectively. Hence, for large sample volumes
(compared to the wavelength), the calculation can require high amount of memory
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and computation time.171 Moreover, the numerical dispersion of the algorithm leads
to errors and thus lowers the accuracy of the results.111

Below, the deduction of the Yee algorithm is sketched, which can be found in
more detail in the literature.170,171,175 Since the FDTD method is intended to solve
Maxwell’s equations, the component-wise formulation of these equations is the start-
ing point of the derivation:

−∂Bx

∂t
= ∂Ez

∂y
− ∂Ey

∂z
, (3.1a)

∂Dx

∂t
= ∂Hz

∂y
− ∂Hy

∂z
− Jx , (3.1b)

where the other components are obtained by cyclic permutation (x y z) of Eq. (3.1a)
and Eq. (3.1b), respectively.
To obtain finite difference equations instead of derivations, the continuous simulation
volume is replaced by a discrete mesh with spatial steps ∆x, ∆y, and ∆z, while the
time is incremented in time steps of ∆t. For simplicity mesh points are denoted
as170

(p∆x, q∆y, r∆z) = (p, q, r) , (3.2)

while functions of space and time are given by

F (p∆x, q∆y, r∆z, s∆t) = F s (p, q, r) . (3.3)

Using the introduced notation, the derivations are approximated by finite difference
expressions in the following way:171

∂F s(p, q, r)
∂x

=
F s(p+ 1

2 , q, r)− F
s(p− 1

2 , q, r)
∆x

+O((∆x)2) , (3.4a)

∂F s(p, q, r)
∂t

= F s+ 1
2 (p, q, r)− F s− 1

2 (p, q, r)
∆t

+O((∆t)2) , (3.4b)

while similar equations are applied for the derivative to y and z. To receive expres-
sions that are second-order accurate in ∆x and ∆t (as the ones above), the electric
and magnetic field components have to be calculated alternately in half time steps
as well as at different positions in the unit cell. Computing the fields at the same
position would result in expressions which are just first-order accurate in ∆x and
∆t.171 Fig. 3.1 shows a unit cell of the so-called Yee lattice exhibiting the different
positions at which the electric and magnetic field components are computed.
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Figure 3.1: Position of different field components in the unit cell of the Yee lattice. The blue
dots indicate the electric field component in the middle of the edges, while the red dots show the
magnetic field components in the middle of the surfaces. Adapted from Ref. 95

Using the finite difference expressions (3.4a) and (3.4b) as well as the material
equations B = µ0µH and D = ϵ0ϵE for under the assumption of time-independent,
linear and isotropic material properties, Eq. (3.1a) yields:170,171

H
s+ 1

2
x (p, q + 1

2 , r + 1
2) = H

s− 1
2

x (p, q + 1
2 , r + 1

2)

+ ∆t

µ0µ(p, q + 1
2 , r + 1

2)∆z
(
Es

y(p, q + 1
2 , r + 1)− Es

y(p, q + 1
2 , r)

)

− ∆t

µ0µ(p, q + 1
2 , r + 1

2)∆y
(
Es

z(p, q + 1, r + 1
2)− Es

z(p, q, r + 1
2)
)
, (3.5)

while Eq. (3.1b) delivers:

Es
x(p+ 1

2 , q, r) = Es−1
x (p+ 1

2 , q, r) + ∆tJ
s− 1

2x (p+ 1
2 , q, r)

+ ∆t

ϵ0ϵ(p+ 1
2 , q, r)∆y

(
H

s− 1
2

z (p+ 1
2 , q + 1

2 , r)−H
s− 1

2
z (p+ 1

2 , q −
1
2 , r)

)

− ∆t

ϵ0ϵ(p+ 1
2 , q, r)∆z

(
H

s− 1
2

y (p+ 1
2 , q, r + 1

2)−Hs− 1
2

y (p+ 1
2 , q, r −

1
2)
)
. (3.6)

Equivalent expressions can be obtained for Hy, Hz, Ey, and Ez (see e.g., Refs. 171,175).
Considering Eq. (3.5) and Eq. (3.6), the Yee algorithm can be understood. In (3.5)
the x-component of the magnetic field at the time step s + 1

2 can be calculated
from the y- and z-component of the electric field at the previous (half) time step s.
Conversely, the respective component of the electric field solely depends on the
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magnetic field components of the previous (half) time step (cf. Eq. (3.6)). Thus,
every component can be computed successively.
In that, the geometry of the medium enters the algorithm through the permeability
and permittivity in Eq. (3.5) and Eq. (3.6), respectively. Since both values can be
individually defined for each mesh point, the formalism allows to treat scatterers
with arbitrary shape and composition. To resolve fine features, however, the size of
the spatial steps must be sufficiently small. Alternatively, advanced techniques like
conformal meshing can be used which allow to take permittivity changes within a
unit cell into account, for instance at a curved surface.176

Another issue that must treated are the boundaries of the simulation volume. In
realistic experimental setups, samples are usually placed in free space or at least in
a homogeneous environment, i.e., light that is emitted or reflected from the sample
will mostly not return. In FDTD simulations, however, the simulation volume usu-
ally cannot be chosen much larger than the sample volume, otherwise impractical
computation times will result. To simulate light that is emitted in free space, it must
be ensured that light is not reflected at the boundaries of the simulation volume for
this reason.
While there are several techniques to define such boundaries,177–179 the most efficient
way is the use of so-called perfectly matched layer (PML) boundaries.180,181 The
idea behind the PML is to apply an absorbing medium at the boundary which is
impedance matched to the adjacent media, hence the reflection at the interface is
suppressed.180

Beside PML boundaries, another type of boundaries is frequently used, namely
periodic boundaries. Light that leaves these boundaries at one side of the simulation
volume is re-emitted at the opposite side of the simulation volume. These boundaries
are either used to simulate periodic structures, since only one unit cell must be
considered, or they are applied to realize infinitely extended, uniform objects.
As part of this thesis, the commercial software Lumerical FDTD solutions (ANSYS
Inc., USA) is used to conduct various FDTD simulations. The software provides by
default numerous sources, monitors, boundary conditions, and analysis tools.
For the evaluation of the effective refractive index (see Ch. 4), a total-field scattered-
field source is used in conjunction with the far-field from closed box analysis group
and PML boundaries in all directions. The total-field scattered-field source occupies
a 3D box, in contrast to conventional sources, which are defined by a 2D plane. Inside
the box, the total field of the impinging plane wave is computed, which comprises
the incident and the scattered field. However, at the edge of the box the incident
field is subtracted, thus outside of the box only the scattered field is obtained.
The far-field from closed box analysis group contains a 3D box of field monitors. It
enables the calculation of the far field projection for every direction by computing
this quantity for every monitor separately and summing up the results. By default
the far field projection is calculated on a hemisphere with a radius of 1 m where the
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sample is in the center and the electric field of the incident plane wave possesses an
amplitude of 1 V/m. With this setup it is therefore possible to evaluate the far field
projection of solely the scattered light in all directions, while the forward scattering
direction is of particular interest.
To identify the role of coherent effects in light propagation through strongly scat-
tering white media, as it is done in Ch. 5, a different simulation setup is used. Here,
the source injects a plane wave light pulse impinging on the sample in z-direction.
In this direction PML boundaries are used while periodic boundary conditions are
applied in the x- and y-direction. The medium is thus infinitely extended in the
lateral direction to avoid unintended effects from the finite size of the simulation
volume. This setup is a reasonable way to approximate experimental conditions,
where the typical spot size of the laser is at least two orders of magnitude smaller
than the lateral extent of the scales (see Sec. 3.2.2 or Ref. 21), i.e., the incident light
generally does not reach the lateral edge of the scales.
To obtain the distribution of photon lifetimes within different strongly scattering
media, 3900 dot-shaped frequency monitors are placed in a roughly 7 × 7 × 7µm3

cube of the respective medium. In addition, the time-dependent power distribution
inside the DBS model structure is evaluated. For this purpose, a time-domain
monitor cross sectioning the structure in the x-z-plane is used to record the Poynting
vector every 1.14 fs at every grid point in the monitor plane. In contrast to the other
simulations, a lateral footprint of about 20 × 20µm2 is used here, while the height
of the structure remains the same.

3.1.2 Monte Carlo simulations

Monte Carlo simulations are a popular numerical technique for modeling complex
systems, e.g., in particle physics, bio-optics, and financial engineering.182–187 As a
statistical approach, Monte Carlo simulations do not require an analytic model of the
underlying system.186 Instead, a large amount of independent random experiments
are performed to obtain the quantity of interest as the expected value of one or
more random variables.184 This technique is therefore suited for cases where either
no analytical model exists or solving an available model is non-trivial or too costly.186

The latter is the fact for light propagation in extended disordered media,188 which
could be in principle exactly computed conducting FDTD simulations or approxi-
mately described by means of the radiative transport equation or diffusion theory.
However, because of excellent agreement between Monte Carlo simulation results
and the predictions of analytic theories in many cases, Monte Carlo simulations are
used to evaluate light transport in disordered media, especially biological tissues,
for about 40 years.185,186,189–191

As part of this thesis a Monte Carlo simulation tool is implemented, which can be
adjusted to approach the setup of the corresponding FDTD simulations. Hereinafter,
the general Monte Carlo method for calculating photon transport is explained first,
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Figure 3.2: Illustration of a random walk of three separate photons in a purely scattering medium.

while the specific details of the Monte Carlo tool used are presented at the end of
this section.
The basic idea of the algorithm is to treat photons as particles and perform a random
walk for each photon to obtain its trajectory in the medium. In this process, the
photon undergoes steps with various length, with a scattering and absorption event
occurring at the end of each step. The scattering event deflects the photon from its
previous direction, while absorption diminishes the weight which is assigned to the
photon. An example of such a random walk is shown in Fig. 3.2 for three distinct
photons.
During the random walk, the current position of the photon is stored in the triple
(x, y, z). Note that the position can take continous values, unlike the discrete grid
points in case of the FDTD method. In addition, the direction of travel is given
by the triple (µx, µy, µz), where µx is the cosine of the angle between this direction
and the x-axis and so forth.185,190 A movement of the photon by a distance ∆s thus
results in the updated position:

x := x+ µx∆s , (3.7a)
y := y + µy∆s , (3.7b)
z := z + µz∆s . (3.7c)

The step size ∆s is determined by the probability density function:

p(∆s) = γext exp (−γext∆s) , (3.8)

with the extinction coefficient γext, as given in Sec. 2.3.1.185 Considering the def-
inition of the extinction coefficient, it can be directly shown that the probability
density function must follow Beer’s law (see e.g., Ref. 185). Mapping a uniformly
distributed density function over the interval (0, 1) to the non-uniformly distributed
density function p(∆s), the step size ∆s can be obtained from the random variable
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ξ ∈ (0, 1) via190

∆s = − ln (ξ)
γext

, (3.9)

Further details regarding the mapping can be found in the literature. 184,185

After a move has been made, the corresponding absorption must be computed. To
account for absorption effects, a weight of w = 1 is initially assigned to every photon
which is stepwise decreased according to

w := w − γa

γext
w = w − (1− γs

γext
)w = W0w , (3.10)

with the albedo W0 as declared in Sec. 2.3.1.185,190 Conversely, the portion (1−W0)w
is absorbed by the medium at the current site, which is recorded in an absorption
matrix to evaluate quantities such as the fluence rate in the medium and so on.190

Beside absorption, the change of the photon direction due to scattering must be
considered after a step has been taken. This is done by statistically sampling a
polar angle ϕ and an azimuthal angle θ. Since scattering is usually isotropic around
the incident direction (cf. Sec. 2.3.1), the polar angle can be obtained by

ϕ = 2πξ , (3.11)

where ξ is again a random number which is uniformly distributed over the interval
from zero to one. For isotropic scattering the cosine of the azimuthal angle can be
evaluated using the expression:

cos (θ) = 2ξ − 1 , (3.12)

while anisotropic scattering is determined by mapping the uniformly distributed
density function to the normalized Henyey–Greenstein phase function:185,190

cos (θ) = 1
2g

1 + g2 −
(

1− g2

1− g + 2gξ

)2
 . (3.13)

Note that a separate random number ξ ∈ [0, 1] is computed for each angle. Once
the angles are received, the current photon direction is updated:190

µx := sin (θ)√
1− µ2

z

(µxµz cos (ϕ)− µy sin (ϕ)) + µx cos (θ) , (3.14a)

µy := sin (θ)√
1− µ2

z

(µyµz cos (ϕ) + µx sin (ϕ)) + µy cos (θ) , (3.14b)

µz := − sin (θ) cos (ϕ)
√

1− µ2
z + µz cos (θ) . (3.14c)

37



3 Methods

If the previous direction is very close to the z-direction (typically at µz > 0.99999),
the new photon direction is calculated by185

µx = sin (θ) cos (ϕ) , (3.15a)
µy = sin (θ) sin (ϕ) , (3.15b)
µz = sgn(µz) cos (θ) . (3.15c)

While a photon is scattered and absorbed during a random walk, its weight is
successively decreased but never drops to zero. Hence, a termination condition
must be defined to avoid the (costly) propagation of photons which bear a negligible
amount of information due to their vanishing small weight. To account for energy
conservation, however, photons with a weight below a certain threshold cannot just
be discarded.190

Instead, a technique renowned as Russian roulette is applied.185 Once the weight falls
below a designated threshold, a uniformly distributed random number ξ ∈ [0, 1] is
computed. If this number is greater than a predefined probability of one chance in
m (i.e., ξ > 1/m), the remaining weight of the photon is set to zero and the photon
is deleted. Otherwise, the photon is allowed to continue propagation with a new
weight of mw. In this, energy conservation is fulfilled while the correct absorption
coefficient γa is retained.185

The framework presented above can be used for Monte Carlo simulations of photon
migration in infinitely extended random media. However, media that are finite
at least in one spatial direction (here the z-direction) are frequently of interest.
Therefore, reflection at the boundaries between different media must be considered.
When photons are launched in the ambient medium with refractive index n0, only
a fraction of light will enter the random medium because of specular reflection at
the interface. In the case where the direction of incidence is equal to the normal
direction (i.e., z-direction), the specular reflectance is given by

Rsp = (neff − n0)2

(neff + n0)2 , (3.16)

with the effective refractive index of the the random medium neff.185 To account for
the specular reflection, the initial weight of the photon must be accordingly reduced
by the specular reflectance:185

w = 1−Rsp . (3.17)

Inside the medium, the photon can take a step which is long enough to cross a
boundary, so that the photon is either internally reflected or transmitted through
the boundary. The probability of an internal reflection can be calculated using the
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Fresnel reflectance:

R(θi) = 1
2

sin2(θi − θr)
sin2(θi + θr)

+ tan2(θi − θr)
tan2(θi + θr)

 , (3.18)

with the incident angle θi = cos−1(µz) and the angle of refraction θr.185,190 Since
the Monte Carlo method treats the photons as particles, the polarization of light is
not traced. Thus, in Eq. (3.18) the Fresnel reflectance is given as the average over
the reflectance for parallel and perpendicular polarization direction. The angle of
refraction is determined by Snell’s law:

neff sin (θi) = n0 sin (θr) . (3.19)

To decide if the photon is reflected or transmitted at the boundary, a uniformly
distributed random number ξ ∈ [0, 1] is computed. In the case of ξ < R(θi) the
photon is internally reflected, else it leaves the sample and contributes either to the
total reflectance or transmittance of the medium.185,190 Since the position of the
photon after the step lies outside of the medium, it must be corrected in the case of
internal reflection. For a slab which is infinitely extended in the x- and y-direction
and possesses boundaries at z = 0 and z = t, the correction for the z-component is
obtained by190

z :=
−z, if z < 0 ,

2t− z, if z > t .
(3.20)

In addition, the photon direction also has to be changed according to µz := −µz. For
media that are also finite in x- or y-direction, analogous adjustments are obtained.
To simulate purely diffusive light transport in strongly scattering media (see Ch. 5), a
Monte Carlo simulation tool is coded in Matlab (The Mathwork Inc., USA) following
the framework shown above. However, since all media considered in this thesis have
a negligible absorption, the concept of assigning a weight to each photon is omitted.
Since the conducted Monte Carlo simulations are intended to approach the FDTD
setup as close as possible, periodic boundary conditions in the x- and y-direction
are implemented, i.e., a photon that leaves the slab at one side is re-emitted at
the opposite side. The slab has a lateral footprint of 12 × 12µm2, while its height
corresponds to the height of the structure used in FDTD simulations. The effective
refractive index is calculated by means of the formula developed in Ch. 4.
As light source, a plane wave is used which emits in total ≈ 6.8 billion photons
distributed uniformly over the entrance facet of the medium. The time profile of the
plane wave is chosen to match the temporal power profile of the light pulse deployed
in corresponding FDTD simulations. A monitor cross sectioning the slab records
the position and time, whenever a photon passes through the monitor plane. Hence,
the time-dependent distribution of photons within the slab can be tracked.
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3.1.3 Force-biased algorithm for random sphere packing generation

To systematically investigate the influence of size effects on the effective refractive
index calculation, random sphere packings with various filling fractions and sphere
radii have to be generated. For this purpose, the so-called force-biased algorithm is
applied.192,193 This method is easy to implement and enables to generate packings of
non-intersecting spheres with filling fractions close to the bound at which a packing
can be still regarded random, that is around 65%.192,194

The force-biased algorithm starts with placing N seeds randomly in a 3D box with
predefined size and periodic boundaries.192,193 Next, for all seeds two diameters are
defined, an inner diameter din and an outer diameter dout. The inner diameter is
initially given by the condition, that the spheres just do not intersect, i.e., at least
two spheres are in touch. The outer diameter is defined by the requirement that
the sum over all sphere volumes equals a predefined volume Vini, which is an input
variable of the algorithm.192,193 Hence, considering the outer diameter, spheres are
allowed to intersect, as shown in Fig. 3.3 (left panel) illustrating the initial state of
the algorithm.
Starting with this setting, the following sequence is executed at each iteration.192,193

First, every sphere center is moved by a ‘repulsion force’ based on the overlap of ad-
jacent spheres corresponding to their outer diameter. The ‘repulsion force’ between
two overlapping spheres j and k is computed via

Fjk = ρIjkpjk
rj − rk

∥rj − rk∥
, (3.21)

where rj is the position of the jth sphere, pjk is the potential function, Ijk is 1 if
the spheres are overlapping and 0 if not, and ρ is a scaling factor given as an input
parameter.193 In the case of equal spheres, it is found that a potential function
proportional to the intersection volume is appropriate:193

pjk = ∥rj − rk∥2 − d2
out . (3.22)

The new position of the jth sphere is determined by

rj := rj + 1
2
∑
j ̸=k

Fjk . (3.23)

After moving all spheres, the inner diameter is re-calculated in the second step
to fulfill the non-intersection condition again. Finally, in the third step the outer
diameter is diminished by

dout := dout −
(1

2

)δ

dout,ini/(2τ) , (3.24)
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Figure 3.3: Sketch of random sphere packings obtained in the course of the force-biased algorithm.
Initially an inner (blue sphere) and outer (gray sphere) radius is defined for every seed point, such
that the inner spheres are just non-intersecting (left panel). Moving the centers according to the
overlap of the corresponding outer spheres, decreasing the outer radius stepwise and re-calculating
the inner radius to satisfy the non-intersection condition leads to a convergence of both radii and
a gradual reduction of the overlaps (middle and right panel).

with δ = ⌊− log10(Vout−Vin)⌋ and the contraction rate τ set as an input parameter.192

The volumes Vin and Vout represent the sum over all sphere volumes regarding the
current inner and outer diameter, respectively. The diameter dout,ini denotes the
initial outer diameter.
In that, pushing apart of overlapping spheres tends to increase the inner radius,
while the outer radius decreases successively. Both radii hence converge as the
iterations progress,193 as illustrated in the middle and right panel of Fig. 3.3, which
respectively represent the resulting sphere packing at the end of an iteration.
The algorithm terminates if (i) both radii become equal or (ii) the inner radius
reaches the desired value. However, to obtain packings with a well-defined sphere
radius the algorithm is required to terminate by the second condition. This can be
ensured by a reasonable choice of input parameters, especially using a sufficiently
small contraction rate τ . In addition, changing the number N of initially placed
seeds, the filling fraction can be tuned.
As part of this thesis, the algorithm shown above is implemented in Matlab to
generate sphere packings of non-overlapping, equal spheres with adjustable radius
and filling fraction. Thereby, packings with sphere radii between 100 nm and 240 nm
are realized while the filling fraction is varied between 10% and 60%. Around 500
to 3000 seeds are typically used for calculation depending on the resulting filling
fraction. The contraction rate is chosen to usually lie between 800 and 20000, where
higher filling fractions generally require larger contraction rates to avoid reaching
the first termination condition. The initial volume Vini is commonly set to be equal
to the box volume or slightly lower than the box volume.
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3.2 Experimental methods

In the sections below, the DLW setup, the time-resolved spectromicroscopy, and the
z-scan technique are presented. With the help of DLW, microstructures are fabri-
cated according to the DBS model. Beside Cyphochilus scales, these structures are
investigated by time-resolved spectromicroscopy to unveil the influence of different
transport mechanisms in strongly scattering media. In addition, the DLW device is
deployed to test bio-sourced photoresists developed in the context of this thesis with
respect to their suitability for fabricating 2D and 3D architectures via two-photon
polymerization. The z-scan measurements are applied to evaluate the two-photon
absorption cross section of different photoinitiators to find appropriate candidates
for utilizing the sensitization effect for DLW.

3.2.1 Direct laser writing

Direct laser writing (DLW), sometimes also referred to as two-photon polymerization
or laser nanoprinting, is an optical lithography technique that enables the fabrication
of nearly any three-dimensional structure from submicron to centimeter scales.40,41

Unlike other optical lithography methods, DLW is based on two-photon absorption
which yields a quadratic optical non-linearity. The absorption thus exceeds the
polymerization threshold just in the narrow focal spot of a femtosecond laser beam,
which restricts the polymerized volume in all three dimensions, as shown in Fig. 3.4.
This volume is also called a voxel, a portmanteau of the terms volume and pixel.
In contrast, optical lithography methods relying on linear absorption characteristics,
such as UV photolithography, are lacking a sharp confinement in the axial direction

Substrate

Photoresist

Absorption

Threshold

Figure 3.4: Sketch of the DLW process. The polymerized volume is restricted to the focal spot
where the absorption exceeds the polymerization threshold. This confinement allows for printing
structures along virtually any three-dimensional trajectory. The figure is redrawn from Ref. 195

with slight adaption of the color scheme. ©Wiley-VCH GmbH. Reproduced with permission. The
figure is excluded from the CC BY license of this thesis.
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Figure 3.5: Photochemical reaction pathway of two-photon polymerization. Taken from Ref. 198

The figure is excluded from the CC BY license of this thesis.

which inhibits printing of true 3D architectures.196,197 With DLW, however, feature
sizes below 100 nm (lateral) and 300 nm (axial) as well as resolution below 500 nm
(lateral and axial) can be reached, depending on the setup.40 Resolution is thereby
defined as the minimal distance between separated features.197

While there are numerous photoresists suitable for DLW,41 most are negative-tone
photoresists, usually containing a crosslinkable liquid monomer or oligomer and
a photoinitiator. If the monomer is not liquid, an appropriate solvent must be
added. Fig. 3.5 depicts the basic scheme of the radical chain polymerization process
occurring in many photoresists. In this scheme monomers are assumed as basic unit,
however, a similar reaction pathway is obtained starting with oligomers.
Upon simultaneous absorption of two photons, the photoinitiator is first split into
free radicals, which then react with the monomer to form new radical sites at its end
(initiation step). These radicalized compounds initialize the polymerization by suc-
cessively merging with other monomers to form monomer chains, i.e., polymers, with
one radical site remaining (propagation step). The chain reaction can be terminated
when two radicalized chains meet, which limits the overall chain length (termination
step).198 Alternatively, the chain reaction is stopped by an inhibitor, usually oxygen,
which is the dominant termination process in most photoresists.199,200

The inhibitor also serves as a quencher for the excited photoinitiator, which, along
with the required crosslinking density to survive the development process, results in
a polymerization threshold.200 The existence of a polymerization threshold (which
can be seen as the analogue of the Schwarzschild effect in photography) is crucial to
achieve at least in principle arbitrarily small feature sizes.197 In reality, experimental
conditions such as pulse-to-pulse fluctuations place a lower limit on the feasible
feature size.197,201

A commercial DLW system is used in this thesis, namely the Photonic Professional
GT (Nanoscribe GmbH, Germany), which is sketched in Fig. 3.6. The device is
equipped with a femtosecond laser operating at a wavelength of 780 nm. The laser
beam first passes an acousto-optic modulator (AOM) to vary the laser power dur-
ing the writing process. Behind the acousto-optic modulator, a telescope setup
enlarges the beam diameter to ensure that the entrance pupil of the objective is
completely illuminated. In front of the inverted microscope, two galvanometrically
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Figure 3.6: Scheme of the commercial DLW system Photonic Professional GT. Based on Ref. 202

driven mirrors (short: galvo unit) are used to deflect the focus in-plane to allow for
patterning. Within the inverted microscope, an objective with high numerical aper-
ture (NA) and magnification is deployed for tightly focusing the laser beam into the
photoresist. For mesoscale writing, however, objectives with low magnification and
numerical aperture are used. A substrate carrying the photoresist is attached to the
stage, which is endowed with a set of piezo actuators to move the resist relative to
the laser focus. Hence, any three-dimensional trajectory can be traced along which
the photoresist is polymerized. The setup is completed with a charge-coupled de-
vice (CCD) camera to observe the printing process. All components are controlled
by the software NanoWrite (Nanoscribe GmbH).
The system allows for different operation modes. Primarily, two fundamental writing
configurations can be chosen depending on the photoresist. It is possible to either
apply the photoresist on the opposite side or the same side of the substrate than
the objective.
The former requires the use of immersion oil between the objective and the substrate
and is known as standard configuration. The laser beam must be focused through
the substrate, limiting the maximum structure height to the working distance of the
objective minus the thickness of the substrate, which is on the order of a few hundred
microns in total. Moreover, this configuration can be only applied for transparent
substrates. Conversely, the objective is not directly exposed to the photoresist and

44



3.2 Experimental methods

a refractive index match between the photoresist and the lens of the objective is not
necessary.
The second configuration is denoted as dip-in configuration since the objective is
dipped into the resist. This enables printing of tall structures up to millimeter and
centimeter heights. However, the resist has to satisfy the refractive index matching
and must not contain any compound potentially hazardous for the objective.
Beside different writing configurations, there are also two distinct writing modes.
On the one hand, the galvo unit can be used to move the focus relative to the resist
in the lateral plane (galvo mode), while the axial movement is done by the respective
piezo actuator or the mechanical drive of the objective. In that, high writing speeds
of several mm/s can be reached. On the downside, this mode demands patterning
the structure layer-by-layer, which restricts the printable structures to layouts that
can be sliced in the axial direction. On the other hand, using piezo actuators in all
dimensions (piezo mode) does not set this restriction on the layout at the cost of
three orders of magnitude lower writing speeds.
Throughout the thesis, a 63× objective with NA = 1.4 is used in the standard
configuration. For fabricating DBS structures (see Ch. 5), a drop of the commer-
cial photoresist IP-L780 (Nanoscribe GmbH) is applied on a 170 µm thick coverslip
(Gerhard Menzel GmbH, Germany), which is coated with a thin layer of aluminum
oxide. The aluminum oxide enhances the refractive index contrast between the cov-
erslip and the substrate enabling an easier detection of the corresponding interface.
The coating is done with the aid of atomic layer deposition (R-200 Standard, Pico
Sun Oy., Finland). After the printing process is finished, the sample is developed for
about 45 min in propylene glycol methyl ether acetate and subsequently for 10 min
in isopropyl alcohol. Eventually, the sample is cautiously blown dry using a nitrogen
pistol.
For testing the capability of various self-developed bio-sourced photoresists, as pre-
sented in Ch. 6 and Ch. 7, a drop of the respective resist is sited on a coated coverslip
using a syringe. Here, a specially prepared sample holder is used which allows for
placing a second uncoated coverslip slightly above the first one, sandwiching the
resist in-between. This is done to reduce the exposure of the resist to atmosphere,
since moisture can trigger precipitation resulting in a turbid and hence unusable
photoresist. To examine the printing quality, various structures at different writing
speeds and laser powers are fabricated. In that, the laser power is given relative to
the nominal value of 57.8 mW (= 100%), measured at the entrance aperture of the
objective.
The NAG-based resists are developed in dimethyl sulfoxide (DMSO) for 90 min
followed by acetone for 10 min. For the cellulose diacetate (CDA) derivatives the
development routine is composed of 30 min acetone and 10 min isopropyl alcohol for
CDA-SH 4-pentenoate resists as well as 10 min dimethyl formamide (DMF), 75 min
acetone, and 5 min isopropyl alcohol for CDA-SH methacrylate resists. Finally, the
samples are carefully blown dry with a nitrogen pistol, except for the bulky 3D
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structures shown in Ch. 6 which are dried using a critical point dryer (EM CPD300,
Leica Microsystems GmbH, Germany).
The chemicals used to prepare the photoresists were obtained from the suppliers
listed below without any further purification. NAG was acquired from Alfa Ae-
sar (USA). DMSO, isopropyl thioxanthone (ITX) and CDA (average Mn ~30,000,
39.8 wt% acetyl) were bought from Sigma-Aldrich (USA). Irgacure 369 and 819
as well as benzophenone were purchased from TCI Chemicals (Japan). DMF was
obtained from VWR International (USA) and 7-diethylamino 3-thenoylcoumarin
(DETC) was acquired from Acros Organics (Belgium).

3.2.2 Time-resolved light scattering spectromicroscopy

While the time-resolved electric field often bears important information, it is usually
not accessible since detectors can only measure light intensity at optical frequencies.
With the aid of Fourier transform spectral interferometry,203 however, the phase in-
formation can be reconstructed from intensity measurements which allows for tracing
the time-resolved electric field of light scattered from the studied sample.38,39 Such
a time-resolved light scattering spectromicroscopy experiment is therefore used in
Ch. 5 to investigate different transport regimes in white beetle scales as well as
fabricated DBS structures.
The corresponding experiment was set up in Walter Pfeiffer’s group at Bielefeld
University.38,39 It is operated by Ruben C. R. Pompe, who has carried out the
corresponding measurements as well as acquired and evaluated the experimental
data.
As displayed in Fig. 3.7, the setup is in principle an interferometric experiment,
which enables to modulate the time delay of the reference pulse relative to the
pulse scattered from the sample. As a light source, a femtosecond Ti:sapphire laser
(Femtosource Scientific, Femtolasers Produktions GmbH, Austria) is applied, which
operates at a center wavelength of 780 nm with a spectral full width at half maximum
of 47 nm (cf. Fig. 3.8a) and a repetition rate of 78 MHz. The emitted pulses first pass
through a thin film polarizer to set a predefined polarization before being guided
into a sample arm and a reference arm using a beam splitter.
In the sample arm a parabolic mirror (custom made, Jenoptik AG, Germany) is de-
ployed to focus the laser beam onto the sample, which is mounted on a piezo stage
(M-664.164, Physik Instrumente GmbH & Co. KG, Germany) to enable linear scan-
ning of the excitation position across the sample. Additionally, the parabolic mirror
collects and collimates the light scattered from the sample. Different scattering
angles are thereby converted into lateral displacement, which allows the measured
scattering angle to be selected with a beam block aperture (3 mm in diameter).
Using a second beam splitter, the scattered light pulse is overlapped with the refer-
ence pulse, while the relative time delay between both pulses can be adjusted with
the delay line in the reference arm. In addition, the polarization of the reference
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Figure 3.7: Scheme of the time-resolved light scattering spectromicroscopy experiment. The setup
is basically an interferometric experiment recording the interference spectrum between the reference
pulse and the pulse scattered from the sample in dependence of the time delay. From these data
the time-resolved electric field of the scattered light can be reconstructed. Adapted from Ref. 204

beam is rotated by 90° using a half-wave plate. When passing through a second
thin film polarizer aligned perpendicular to the first polarizer, pure surface scatter-
ing is filtered out of the scattered pulse, i.e., scattering which preserves the initial
polarization direction. In consequence, light scattering inside the sample becomes
accessible for the analysis. Eventually, the interference spectrum arising from the
superposition of both pulses is gathered with a spectrometer (USB 2000, Ocean
Optics Inc., USA).
The spot size on the sample can be estimated by the diffraction limit, which is
given as ddiff = 4λlowf/πdin = 2.4 µm with the lower bound of the full width at
half maximum λlow = 735 nm, the focal length of the parabolic mirror f = 15 mm,
and diameter of the incident beam din = 6 mm. Performing a line scan across
the sample, the minimum spot size can be alternatively obtained from the spatial
width distribution of peaks in the measured interference spectra. As revealed in
Fig. 3.8b, the diffraction limit is indeed in line with the drop in the spatial peak
width distribution. Values below the diffraction limit are attributed to erroneous
peak identification and fitting.
From the recorded interference spectra, the phase can be reconstructed as described
below. Superposing the scattered pulse field |Es| and the reference pulse field |Er|
yields the interference spectrum:

|Es(ω) + Er(ω)|2 = |Es(ω)|2 + |Er(ω)|2 + Es(ω)E∗
r (ω) cos(∆φ(ω)) , (3.25)

where the phase difference ∆φ(ω) = δφ+ωτ is composed of the phase ωτ introduced
by the time delay between both interferometer arms and the phase difference δφ
containing the relevant phase information.
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Figure 3.8: Characterization of the spectromicroscopy setup. a, Normalized excitation spectrum
of the used laser source. b, Spatial peak width distribution obtained from line scans across a
Cyphochilus scale and across the direct laser written DBS structure. In addition, the calculated
diffraction limit of the spot size ddiff is shown as indicated by the red line. Adapted from Ref. 204

Due to the linearity of the Fourier transform, the resulting spectrum is decomposed
in parts related to |Es(ω)|2 + |Er(ω)|2 and side bands Es(ω)E∗

r (ω) cos(±(δφ+ ωτ)),
centered around ±τ . By choosing an adequately large delay time τ , one side band
can be isolated in the Fourier spectrum. Thus, δφ = φr − (φs + φsample) can be
retrieved from the argument of the inverse transformed isolated side band, where φr
and φs are the phases introduced by the respective interferometer arm. Performing
a reference measurement without any sample, the phase difference introduced by
the interferometer arms can be determined. This eventually allows to extract the
phase introduced by the sample φsample and therefore the reconstruction of the time-
resolved electric field.
To investigate the samples, i.e., a scale of beetle Cyphochilus and a direct laser
written DBS structure, they are prepared on a microscope slide and mounted on
the stage. As mentioned in Sec. 3.2.1, the DBS are printed on a dcs = 170 µm thick
coverslip, which possesses an index mismatch to the underlying microscope slide.
In consequence, the reconstructed time signal of the scattered light shows a second
pulse roughly 1.8 ps after the initial pulse, which results from the reflection at this
interface. Indeed, the second pulse arises well behind the tail of the first pulse and
coincides with the estimated time needed to travel back and forth in the coverslip
(ncs ≈ 1.51 for borosilicate glass at 780 nm)205 given by t = 2dcsncs/c0 ≈ 1.7 ps.
Hence, the time signal is filtered using a window function to suppress parasitic
scattering from the mounting.

3.2.3 Non-linear absorption measurements

The principle of DLW is fundamentally based on (optical) non-linearity. Thus,
to find appropriate photoinitiators the measurement of the respective two-photon
absorption cross section is crucial. There are many different techniques to deter-
mine the two-photon absorption cross section which either rely on transmission
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Figure 3.9: Scheme of the used z-scan setup to measure the two-photon absorption cross section.
The sample is moved through the focal spot of a femtosecond laser beam (along the z-axis) while
the position-dependent transmission through the sample is recorded with the detector.

measurements or on the evaluation of two-photon excited fluorescence.206–208 While
the latter requires considerably lower intensities compared to transmission measure-
ments, its use is limited to fluorescent compounds and only relative cross sections
are obtained.207,208 Measuring absolute values demands time-consuming comparison
with calibration samples to evaluate the respective fluorescence quantum yield.208 In
contrast, transmission measurements allow for determining the absolute two-photon
absorption cross section directly.209

Therefore, the (open aperture) z-scan technique is applied here, which is based on
recording the transmission through the sample as a function of the intensity. The
intensity within the sample is varied by moving the sample along the axial direction
(typically denoted as z-direction) through the focal spot of a femtosecond laser
beam.208,210 Since two-photon absorption depends on the intensity, a characteristic
dip in transmittance is obtained for scan positions around the focal spot from which
the two-photon absorption cross section can be retrieved.
The used experimental setup is shown in Fig. 3.9. As light source a tunable
Ti:sapphire laser (Chameleon, Coherent Inc., USA) operating at a wavelength of
780 nm is deployed which delivers light pulses with a length of 314 fsa providing an
output power of around 3.5 W at 80 MHz repetition rate. Hence, intensities sufficient
to observe non-linear effects can be easily reached by focusing the beam.
For compounds showing a strong non-linearity, however, lower intensity might be
used to avoid the occurrence of non-linear effects beyond two-photon absorption.
For that reason, a rotatable Glan-Thompson polarizer (GTH10M, Thorlabs Inc.,
USA) is placed behind the laser which splits the incident beam into two beams, one
being transmitted, and one being blocked. The intensity ratio between both beams
can be smoothly adjusted via the angle between the optical axis of the polarizing
prism and the polarization direction of the incident light.

ameasured by E. Waller
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The polarizer is followed by an optical chopper system with 50% duty cycle (MC2000,
Thorlabs) which modulates the incident beam with a frequency of 400 Hz. Synchro-
nizing the measured signal to that trigger frequency using a lock-in amplifier (SR830
DSP, Stanford Research Systems, USA) thus allows for suppressing parasitic back-
ground illumination in the received signal.
After passing the chopper, the beam is focused to the center of the travel range of
a motorized stage (Soloist, Aerotech GmbH, Germany) using a 20 cm focal lens
(LA1708-B, Thorlabs). On top of the stage, a cuvette with 1 mm path length
(Hellma GmbH & Co. KG, Germany) is mounted which contains a solution of
the sample under investigation. The light transmitted through the sample is col-
lected by a second lens. To avoid overexposure, the collimated light is attenuated
by neutral density filters before reaching the detector (DET36A2, Thorlabs).
In dependence of the scan position z, the power transmitted through the sample Pt
is obtained via

Pt(z, t) = 1
2πω

2
0I0(t)e−αL ln

(
1 + q0(z, t)
q0(z, t)

)
(3.26)

with the beam waist radius w0, the intensity I0(t) at the focus, obtained over the
course of a light pulse, the linear absorption coefficient α, and the sample thickness
L.208,210 In addition, the quantity q0 is given by

q0(z, t) = βI0(t)Leff

1 + (z2/z2
0) (3.27)

with the two-photon absorption coefficient β, the Rayleigh length z0 = πω2
0/λ, and

the effective sample length Leff = L(1− e−αL/α).
In the case of temporally Gaussian pulses, the normalized energy transmittance is
obtained by time integration:208,210

T (z) = 1√
πq0(z, 0)

∫ ∞

−∞
ln(1 + q0(z, 0)e−τ2)dτ . (3.28)

For |q0| < 1, Eq. (3.28) can be conveniently expressed in terms of a summation:

T (z) =
∞∑

m=0

(−q0(z, 0))m

(m+ 1)3/2 , (3.29)

while only the first two terms are of interest.210 If in addition α≪ 1 is true, the effec-
tive sample length is given by the actual sample length, resulting in the expression:208

T (z) = 1− βI0L

23/2(1 + (z2/z2
0)) . (3.30)
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Figure 3.10: Determination of the axial beam profile around the focal spot. The profile is fitted
with the hyperbolic relation describing a Gaussian beam (red line).

It should be noted that the transmittance is correctly described by Eq. (3.30) only
if |q0| < 1 and L < z0 are satisfied. Hence, the experimental conditions must be
chosen to fulfill these requirements, in particular the intensity might be lowered for
compounds possessing a large two-photon absorption coefficient β.
The two-photon absorption cross section σ2 (in units of Goeppert Mayer with
1 GM = 10−50 cm4 s per photon) is directly related to β via

σ2 = βhν × 103

NAc
, (3.31)

where ν is the frequency of the laser used, NA is the Avogadro constant, and c is
the concentration of the investigated compound in the solvent.208

To obtain β and therefore σ2 the measured transmittance is fitted with Eq. (3.30),
where β is the fit parameter. The other quantities, namely I0 and z0 are fixed by
the experimental setup and thus must be characterized first.
While the total power of the incident laser beam can be measured deploying a power
meter, the calculation of the intensity at the focus requires the beam waist radius
ω0 as well as the pulse length and the repetition rate of the laser. Since the latter
quantities are known, only the beam waist radius must be evaluated. From this, the
Rayleigh length z0 can be directly retrieved too, as mentioned above.
Since the laser used emits a Gaussian beam, the waist radius can be obtained by de-
termining the axial beam profile and fitting with the known hyperbolic relation:211,212

ω(z) = ω0

√
1 + (z2/z2

0) . (3.32)

The beam profile is recorded by replacing the sample in the experimental setup
(cf. Fig. 3.9) with a CCD camera and taking pictures of the beam cross section
for different scan positions. Subsequently, the beam radius at every scan position
is obtained by fitting the lateral profile with a Gaussian function. It should be
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noted that the z-scan technique can also be expanded to use non-Gaussian beam
shapes.213,214 In the case of an arbitrary beam shape, however, the beam radius must
be determined by the D4σ method.214

As exhibited in Fig. 3.10, the measured beam shape indeed follows that of a Gaus-
sian beam given by Eq. (3.32) and a waist radius of ω0 = 17.2 µm is obtained.
Accordingly, a Rayleigh length of z0 = 1.18 mm is received. Hence, using a cuvette
with a path length of L = 1 mm satisfies the necessary condition L < z0.
Since z-scan measurements are deployed to study the compounds which are used
to mix bio-sourced photoresists, the respective suppliers can be found in Sec. 3.2.1.
Additionally, Rhodamine 6G dissolved in methanol is taken as standard to validate
the experimental setup. Rhodamine 6G was purchased from Acros Organics, while
methanol (spectroscopy grade) was acquired from VWR International.
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4 Effective refractive index calculation for com-
posite media with large particles

In many cases, it is feasible to model the light transport in random media by treating
the respective medium as an effective one. While this approach gives access to
macroscopic transport properties, it demands the calculation of suitable averaged,
i.e., effective, quantities such as an effective permittivity or permeability. In the case
of small, non-magnetic particles the latter is almost unity, and the effective refractive
index is straightforwardly received from the effective permittivity. However, for large
particles, the magnetic multipole moments cannot necessarily be neglected, so both
quantities must be taken into account.35,215

As mentioned before, there are several approaches to determine the effective per-
mittivity, with the Maxwell–Garnett and Bruggeman mixing rules being among the
best known and most frequently used. Their popularity might arise from their rel-
atively simple form and the small number of required input parameters, which are
the permittivities of the constituents and their respective volume fractions. On
the downside, these mixing rules are restricted to grains much smaller than the
wavelength of the incident light because of their inherent quasi-static character, as
elucidated in Sec. 2.4.1 and 2.4.2, respectively. That means, the sphere size param-
eter x = ka (with the wavenumber k in the host medium and the particle radius
a) must be much smaller than one, as depicted in Fig. 4.1, left hand side. In ad-
dition, the Maxwell–Garnett mixing rule is derived for cermet topologies,155 which
further limits its applicability to certain structure types and small filling fractions
in general.163

The Maxwell–Garnett theory is nevertheless regularly used to determine the effective
permittivity for miscellaneous types of composite media including cermet patterns
with large spheres216,217 and even interconnected structures such as microporous
media, foams or biological tissues.21,22,82,218,219 Although viable values are obtained
for some structures, the limitations of the method, in particular its restriction to
small particles, are rarely met. Therefore, the accuracy of the predicted values often
remains doubtful.
Since many composite media suffice the description as an effective medium but do
not satisfy the condition x≪ 1, various extensions and generalized effective medium
theories that allow for incorporating size effects are reported.155,164–166,220,221 How-
ever, due to their limitation to a maximum sphere size parameter (or its equivalent
in the case of non-cermet structures) between 0.5 and 1,35,221 even with these ex-
tended theories only comparatively small particles can be treated, as illustrated in
Fig. 4.1, center. In addition, most theories provide useful values only under certain
conditions limiting their general applicability.35,158,222

In this chapter, 3D FDTD simulations are conducted to numerically study the ef-
fective refractive index of cermet patterns with large sphere sizes up to x ≈ 2.5
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x = 0.2 x = 1.0 x = 2.5

Figure 4.1: Sketch of different sphere size parameters. The size relation between the sphere (blue)
and the wavelength is shown for a representative sphere size parameter in the Maxwell–Garnett
domain (x = 0.2), the upper bound of generalized theories (x = 1.0) and the maximum sphere
size studied in this thesis (x = 2.5). Taken from Ref. 225 The figure is excluded from the CC BY
license of this thesis.

(cf. Fig. 4.1, right hand side). Unlike other FDTD methods,221,223,224 the proposed
approach relies on the condition that the forward scattering amplitude of a spherical
region of the composite medium vanishes if the refractive index of the background
equals the effective refractive index of the composite.168,220

Below, after validating the simulation setup, it is used to show that the Maxwell–
Garnett mixing rule is not suitable to predict the effective refractive index of com-
posite media containing large particles correctly. Based on systematic investigation
of size effects, a simple mixing rule is instead derived and tested, which is capable
to calculate the effective refractive index in the so far inaccessible domain between
x ≈ 1 and x ≈ 2. At the current stage, the study is restricted to non-absorbing
dielectric materials, which are found in many practical situations. However, the
proposed simulation setup is not fundamentally limited to such materials but can
be expanded to consider absorbing or metallic particles in a next step. The main
results presented in this chapter are also published in Ref. 225

4.1 Simulation setup and its validation

As mentioned above, the performed FDTD simulations are based on the circum-
stance that the forward scattering amplitude disappears in the case of a refractive
index match between the homogeneous background and the effective medium. Since
this condition directly follows from the generalized optical theorem,168,226 it holds
true, independent of the inner structure of the composite medium as long as the
medium behaves as an effective one. In consequence, there is no fundamental re-
striction on the sphere size parameter, as it is also evident in the general derivation
of this condition.168,220

Previous mixing rules deduced from this requirement are nevertheless limited to
rather small sphere size parameters.168,220,227 This constraint, however, arises from
the issue to determine the forward scattering amplitude, which demands in ana-
lytic solutions some simplifications, e.g., considering only leading terms from Mie
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theory.168,220 In contrast, the approach presented here uses FDTD simulations, i.e.,
a full Maxwell solver, which take all relevant electric and magnetic multipole terms
into account and thus treat arbitrary sphere sizes correctly.
To decrease the overall number of simulations, a further modification has been made.
Since the average forward scattering amplitude is demanded to disappear, many (dis-
tinct) single particles are considered in the original approach to allow for averaging
their individual forward scattering amplitudes. Straightforwardly transferring this
concept to a simulation approach would thus result in a vast number of required
simulations. This issue can be circumvented by embedding a spherical region of the
composite medium containing both components at their exact volume fractions in
the homogeneous background. Hence, the average forward scattering amplitude can
be immediately received from a single simulation. This modification is valid since
a spherical region of the composite medium exhibits the same forward scattering
amplitude as a homogeneous sphere of same size consisting of the effective medium.
This is verified for small sphere size parameters by Mallet et al.155 and for large ones
of x ≈ 1.66 by Yazhgur et al.216

In addition, this approach can also be used to determine the imaginary part of
the effective refractive index. Since the imaginary part generally accounts for the
attenuation of an impinging wavefront, it can be non-zero even for non-absorbing
materials, due to scattering in the lateral direction. According to Mallet et al.,
this attenuation can be considered by attributing absorption to the homogeneous
effective sphere such that its extinction cross section equals the total scattering cross
section of the composite.155

In Fig. 4.2a a cross section through the simulation setup is displayed. A spherical
region of the composite medium which is composed of a host medium (pale blue) and
inclusions (blue) is encased by a homogeneous background (pale red) of adjustable
refractive index. In addition, the composite is surrounded by a total-field scattered-
field light source (black), which allows only the scattered field outside the source,
as explained in Sec. 3.1.1 and shown by the electric field distribution in Fig. 4.2b.
While the light is predominantly scattered in forward direction, scattering in other
directions also occurs as it can be seen in the corresponding logarithmic plot (see
Fig. 4.2c). To obtain the far field projection of the scattered light in all directions,
a box of monitors (red) is placed around the total-field scattered-field source.
The forward direction is thereby of particular interest. Since the polarization of
the linear polarized incident field (vertical to the propagation direction) is preserved
in the forward scattering direction, only one component of the electric field vector
is unequal to zero. This component Efor is proportional to the forward scattering
amplitude S(0°):228

Efor ∼ E0
eikr

−ikrS(0°) , (4.1)
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with the wavenumber k, the electric field E0 of the incident wave and the distance
r between the scattering particle and the projected monitor plane (for details see
Sec. 3.1.1). Although FDTD is actually a time-domain method, most software tools
provide frequency-domain results by default, using monitors that directly Fourier
transform the acquired time signal. In the frequency domain, however, the real field
is given by the absolute value of the electric field. For this reason, the intensity
Ifor(λ) ∼ |Efor(λ)|2 is used here for convenience.
According to the condition mentioned at the beginning, the effective refractive index
can be retrieved from the simulation results by varying the background index in order
to minimize Eq. (4.1). Indeed, as depicted in Fig. 4.2b,c the background index can
be chosen such that forward scattering is surpressed. In this, it is found that around
the point of index matching, the forward scattered intensity reveals a quadratic
dependence as exemplarily shown for two different composite media in Fig. 4.2d,e.
Thus, the effective refractive index is obtained from the minimum of the parabola
fitted to the simulation data. While the intensity at the minimum is expected to be
zero, a small offset is observed instead, due to unavoidable numerical errors.
As a primary test, a single sphere is placed in the simulation layout while the
background index is set to one. For this configuration the forward scattered intensity
can be also analytically computed using Mie theory (see e.g., Ref. 228) and thus
compared to the FDTD results. For a sphere with a radius of 100 nm and a refractive
index of ni = 1.5, the numerical results (black, dashed curve) are displayed beside
the analytic results (green curve) in Fig. 4.3a, revealing a perfect agreement over
the entire range of investigated wavelengths.
Additionally, the ability of the setup to accurately predict the effective refractive
index must be verified. This is done by generating random sphere packings of
small spheres, i.e., with a sphere size parameter in the Maxwell–Garnett regime, for
different filling fractions f between 10% and 60% applying the force-biased sphere
packing algorithm as presented in Sec. 3.1.3. From each generated packing at least
five distinct spherical regions are excised, which exhibit a filling fraction equal to
that of the whole sphere packing. The same size of the extracted region is thereby
applied for all filling fractions, ensuring that for the lowest filling fraction five spheres
are part of the extraction. Eventually, the effective refractive index is received by
averaging the values obtained from different extracted regions.
In Fig. 4.3b, the FDTD outcomes (black crosses) are shown for a sphere packing with
x = 0.314 and a refractive index of the inclusions of ni = 1.3, using a wavelength
of 1000 nm. The host medium is here and below (unless otherwise noted) assumed
to be vacuum, i.e., the refractive index of the host is nh = 1.0. In addition, the
prediction of the Maxwell–Garnett (MG) mixing rule calculated with Eq. (2.30) is
displayed (blue line). As presumed for a cermet topology in the Maxwell–Garnett
regime, the simulation results are in excellent accordance with the Maxwell–Garnett
theory, verifying the proposed simulation layout.
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Figure 4.2: Simulation layout to compute the effective refractive index. a, 2D cross section of
the 3D simulation setup. The layout comprises a homogeneous background medium (pale red)
limited by PML boundaries, which encloses the composite medium (host medium, pale blue and
inclusions, blue). The composite is furthermore surrounded by a total-field scattered-field source
(TFSF, black) that injects a plane wave at its lower edge. The far field projection of the scattered
field is obtained from a box of monitors (red). b, Absolute electric field within the cross section,
exhibited for three distinct background indices. In the case of an index mismatch, pronounced
forward scattering is observed, as indicated by the black, dashed box. c, same as (b) but plotted
on a logarithmic scale revealing contributions to scattered light apart from the forward direction.
d,e, Forward scattered intensity in dependence of the background index for a sphere packing with
x = 1.62, a refractive index of ni = 1.3, and a filling fraction of f = 30% (d) as well as x = 1.26,
ni = 1.5, and f = 40% (e). In both cases, the results can be fitted with a parabolic curve (red) in
perfect agreement. Adapted from Ref. 225

To test the capability of the simulation geometry to yield the imaginary part of the
effective refractive index too, a spherical region of the composite medium is placed
in vacuum to determine its scattering cross section. Then, this value is compared
to the extinction cross section obtained for a homogeneous effective sphere of same
size. For small spherical regions no considerable difference is found, since only a
single scattering event occurs on average, i.e., the dimension of the region is smaller
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Figure 4.3: Validation of the simulation setup. a, Comparison between the forward scattered
intensity of a single sphere (a = 100 nm, ni = 1.5) computed using FDTD simulations (black,
dashed line) and Mie theory (green line). b, Effective refractive index of sphere packings at
various filling fractions (black crosses), obtained with the simulation setup shown in Fig. 4.2a.
The outcomes are in excellent accordance with the Maxwell–Garnett theory (blue line). For the
calculations, a wavelength of 1000 nm and ni = 1.3 are used. c, Corresponding determination of
the imaginary part of the effective refractive for sphere packings with ni = 1.5. For filling fractions
below 10% the FDTD results are consistent with the prediction of the complex Maxwell–Garnett
theory. Adapted from Ref. 225

than the scattering mean free path, such that lateral scattering hardly emerges. In
contrast, for spherical regions that are large compared to the wavelength (here 4 µm
in diameter), the extinction cross section of the effective sphere is indeed smaller
than the scattering cross section. This mismatch can be eliminated by assigning
absorption to the effective sphere resulting in a complex effective refractive index.
Applying this approach, the corresponding imaginary part for sphere packings with
x = 0.314 and ni = 1.5 is shown in Fig. 4.3c. These calculations can be com-
pared to the complex version of the Maxwell–Garnett mixing rule, which is received
by inserting the electrostatic polarizability of a sphere complemented by radiative
corrections

α̃ = α0

(
1 + 2i

3
ϵi − 1
ϵi + 2x

3
)

=: α0

(
1 + 2i

3 βix
3
)
, (4.2)

in the Clausius–Mossotti formula (2.27), where α0 is given by Eq. (2.28). The
resulting complex Maxwell–Garnett formula reads

ϵMG = 1 + 3f βi

1− βif

(
1 + 2i

3 x
3 βi

1− βif

)
, (4.3)

which reduces for x = 0 to the common Maxwell–Garnett mixing rule, given by
Eq. (2.30).155

For small filling fractions the prediction of the complex Maxwell–Garnett theory
(Fig. 4.3c, blue line) agrees with the values gained by FDTD simulations. However,
Eq. (4.3) is only valid for small filling fractions,155 thus for larger values significant
deviations are presumed as also observed here above 10% filling fraction.
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4.2 Derivation of a mixing rule applicable to large particles

The deduction of a mixing rule for large particles demands a systematic investigation
of size effects on the effective refractive index. Since the size parameter x = 2πnha/λ
depends on the particle radius a and the wavelength λ, both quantities can be tuned
to vary x. Here, sphere size parameters between x = 0.90 and x = 2.51 are imple-
mented by generating random sphere packings with various radii, as described in
Sec. 3.1.3. Thereby, a wavelength of 700 nm is applied in the majority of simulations,
which is partly diminished to reach the largest sphere size parameters.
Deploying the introduced simulation setup, the resulting effective refractive index
for a sphere packing with x = 1.80 and ni = 1.7 (Fig. 4.4a, black crosses) exhibits
notable deviations from the Maxwell–Garnett mixing rule (blue line). This demon-
strates that the latter is unable to accurately compute the effective refractive index
for large particles. In contrast, as shown by the green dashed curve in Fig. 4.4a, the
results can be well fitted with a quadratic polynomial function.
As it can be seen in Fig. 4.4b-d, the discrepancy between the effective refractive
index and the Maxwell–Garnett mixing rule grows with increasing sphere size pa-
rameter and refractive index contrast. In all cases, however, the received trend can
be fitted to a good approximation with a quadratic polynomial. In this, two reason-
able assumptions are made regarding the bounds of the filling fraction. Since the
composite reduces to the host medium in the case of f = 0, the effective refractive
index should equal the index nh of the host. Accordingly, in the limit of f = 1, the
effective refractive index is given by that of the inclusion medium, i.e., ni.
On the basis of these insights, a quadratic polynomial given by

neff,large(f) = p1f
2 + p2f + p3 , (4.4)

is the starting point of the derivation of a novel mixing rule, with the yet undeter-
mined coefficients p1, p2, and p3. However, with aid of the boundary conditions for
f = 0 and f = 1:

neff,large(0) = p3 = nh , (4.5a)
neff,large(1) = p1 + p2 + p3 = ni , (4.5b)

two coefficients, namely p2 and p3, can be fixed.
Therefore, retrieving a mixing rule for large particles reduces to the issue of finding
a proper expression for p1, which is done by comparison with the Maxwell–Garnett
mixing rule. As it can be seen in Fig. 4.4a, the shape of the Maxwell–Garnett curve
is also similar to a parabola. Indeed, the second order Taylor expansion calculated
around f = 0.5 (Fig. 4.5a, black dashed line) agrees well with the Maxwell–Garnett
curve (blue line). However, close to the bounds of the filling fraction range some
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Figure 4.4: Effective refractive index behavior in dependence of the particle size. a, Effective
refractive index (black crosses) obtained by FDTD simulations for a sphere packing with x = 1.80
and ni = 1.7 in relation to the Maxwell–Garnett mixing rule (blue line). In addition, a parabola
(green, dashed line) is fitted to the simulation results. b–d, Deviation of the simulation outcomes
and the respective parabolic fits from the prediction of the Maxwell–Garnett mixing rule for various
sphere size parameters and refractive index contrasts of 1.3 (b), 1.5 (c), and 1.7 (d). All quantities
are scaled according to the normalized Maxwell–Garnett mixing rule, so the relative deviation δ
form the Maxwell–Garnett mixing rule is revealed. Taken from Ref. 225 The figure is excluded from
the CC BY license of this thesis.

deviations are observed (cf. Fig. 4.5a, inset), i.e., the boundary conditions stated
above are not satisfied. While these boundary conditions are a fundamental pre-
requisite of the novel mixing rule, an approximation of the Maxwell-Garnett mixing
rule must fulfill them to allow for comparison. Moreover, it is useful to set the value
of the approximation at f = 0.5 to the value of the Maxwell–Garnett mixing rule,
as it is the case with the Taylor expansion. The approximation therefore is given by

nMG,approx(f) = p1,MGf
2 + p2,MGf + p3,MG , (4.6)

with

nMG,approx(0) = p3,MG = nh , (4.7a)

nMG,approx(0.5) = 1
4p1,MG + 1

2p2,MG + p3,MG = nMG(0.5) , (4.7b)

nMG,approx(1) = p1,MG + p2,MG + p3,MG = ni , (4.7c)
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Figure 4.5: Parameter determination for the mixing rule applicable to large particles. a, Maxwell–
Garnett mixing rule for a refractive index of ni = 1.7 (blue curve) in relation to its second order
Taylor expansion around f = 0.5 (black, dashed curve). The inset displays an enlarged view of the
region around the lower bound (marked by the dotted box). b, Respective comparison between the
Maxwell–Garnett mixing rule and the quadratic approximation (black, dashed line). A close-up of
the indicated area is shown as inset. c, Ratio p1/p1,MG in dependence of the sphere size parameter
x for sphere packings with nh = 1 and ni = 1.3, ni = 1.5, ni = 1.7, and ni = 1.9, respectively.
The error bars represent the 95% confidence interval of the fits. The empirically obtained linear
function (red line) is displayed in addition, revealing that the ratio shows the same tendency within
the scope independent of the refractive indices ni. Taken from Ref. 225 The figure is excluded from
the CC BY license of this thesis.

which straightforwardly results in the coefficients p1,MG, p2,MG, and p3,MG. Applying
these coefficients in Eq. (4.6), indeed yields an approximation in excellent accordance
with the Maxwell-Garnett mixing rule while satisfying the boundary conditions (see
Fig. 4.5b).
As it can be discerned in Fig. 4.4 the coefficient p1 relates to ni and x. However,
considering the ratio p1/p1,MG instead of p1, the explicit dependence on ni can be
circumvented, at least between x ≈ 1 and x ≈ 2 defining the scope of the novel
mixing rule. Indeed, the ratio p1/p1,MG follows the same trend for distinct ni as
shown by the red line in Fig. 4.5c. That means, the mixing rule for large spheres
possesses the same dependence on ni than the Maxwell–Garnett mixing rule does.
In the validity range, an empirical linear function is found that determines the
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Figure 4.6: Effect of the refractive index contrast and the applied wavelength. a,b, Ratio p1/p1,MG
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relationship between p1/p1,MG and the sphere size parameter:

p1

p1,MG
= 1− π

4x , (4.8)

as exhibited by the red line in Fig. 4.5c. Inserting p1,MG = 2ni + 2nh− 4nMG(0.5) in
Eq. (4.8), the previously unknown parameter p1 is obtained. Therefore, within the
scope x ≈ 1 to x ≈ 2, the mixing rule applicable to large particles reads

neff,large(f) = (1− π

4x) · (2ni + 2nh − 4nMG(0.5))f 2

+ (ni − nh − (1− π

4x) · (2ni + 2nh − 4nMG(0.5)))f + nh . (4.9)

Up to this point, the host medium is assumed to be vacuum, however, the validity of
the empirical formula (4.8) is not compromised by nh ̸= 1 or the choice of wavelength,
as exemplarily shown in Fig. 4.6. This verifies the mixing rule for large particles in
its general form as stated above.

4.3 Limitations of the mixing rule

Hereinafter, the limitations of the mixing rule applicable to large particles are ex-
amined. Constraints can be either caused by the size of the contained particles or
by the general structure of the composite medium.
Effective medium formulations are predominantly found for two different structure
types. On the one hand, there are random materials where multiple scattering
enables to describe light transport by means of diffusion theory. For such media,
e.g., random sphere packings, the here presented mixing rule is developed and for
further representatives of this group tested in the following section.
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Figure 4.7: Limits of the mixing rule for large particles. a, Ratio p1/p1,MG for a large refractive
index contrast of 2.8. b,c, Effective refractive index calculated for five distinct spherical regions
extracted from the same sphere packing with x = 0.90 (b) and x = 2.15 (c). In both cases, the
refractive index contrast is 1.9. Taken from Ref. 225 The figure is excluded from the CC BY license
of this thesis.

On the other hand, effective medium descriptions can be partly used for ordered
media with unit cells in the order of the wavelength, for instance, photonic crystals
and metamaterials.229 However, for such structures the assumption of an effective
medium is usually valid only under strict conditions, for example, for a certain inci-
dent angle or frequencies below the first stop band.229,230 Accordingly, the effective
quantities of metamaterials are typically obtained from the complex reflection and
transmission coefficients received for the entire structure under a particular incident
angle.231,232 The here presented approach contrarily relies on information retrieved
from a spherical region extracted from the entire structure. Therefore, the mixing
rule for large spheres might provide useful results for some metamaterials but could
also show severe errors for others. So, it must be carefully tested for every ordered
structure it is applied to.
Nevertheless, as revealed in Sec. 4.4, the novel mixing rule is believed to deliver
suitable predictions for a great variety of disordered materials. For these structure
types, restrictions primarily relate to the particle size since the empirical formula
reflects the trend of the ratio p1/p1,MG only between x ≈ 1 and x ≈ 2. As it can be
discerned in Fig. 4.6a,b the course of the ratio p1/p1,MG depends on the refractive
index contrast ni/nh rather than the actual values of ni and nh. Thus, only the
index contrast must be taken into account in the following discussion.
In the limit of vanishing particle size x → 0, the mixing rule for large particles
is equal to the quadratic approximation of the Maxwell-Garnett mixing rule, as
expected. The Maxwell–Garnett theory, however, is valid as long as the electro-
static dipole polarizability suffices to describe the polarizability of the particle (cf.
Sec. 2.4.1). For that reason, it is suitable even for non-vanishing sphere sizes, as
exemplarily shown for x ≈ 0.3 in Fig. 4.3b. In consequence, the ratio p1/p1,MG
remains one in the electrostatic regime and starts to decrease afterwards. The em-
pirical formula, in contrast, predicts a constant decay for x > 0, which leads to an
underestimation of the ratio in vicinity of the electrostatic regime and thus provides
a lower bound on the scope. In the case of small index contrasts, the electrostatic
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description stays valid for larger particles, so this behavior is more distinct for low
index contrasts, as it can be observed in Fig. 4.5c.
On the other side of the scope, it is found that the ratio only decreases to a particular
point from where it remains constant or even grows and thus deviates from the
empirical formula. For increasing index contrast this point moves to lower sphere
size parameters, which restricts the scope to x ≲ 2 for index contrasts up to
ni/nh = 2. As shown in Fig. 4.7a for ni/nh = 2.8, the scope is further reduced by
enlarging the index contrast beyond this limit.
To explain the occurrence of the upper limit, different regions extracted from the
same sphere packing must be considered. As expected for a small sphere size pa-
rameter within the scope (Fig. 4.7b), the received effective refractive indices hardly
differ for various extracted regions. In contrast, performing a similar analysis in
the case of sphere size parameters beyond the scope, a significant variance can be
noticed, as exhibited in Fig. 4.7c. Thus, it can be concluded that the specific ar-
rangement of spheres defines the scattering behavior, revealing that the assumption
of an effective medium becomes generally invalid in that case.

4.4 Comparison to other mixing rules and potential appli-
cations

To assess the capability of the here derived mixing rule, its prediction is tested
for different structures falling within its validity range as well as compared to the
outcomes of renowned mixing rules. Initially, a sphere packing with large sphere
size parameter of x = 1.71 and refractive index contrast of 1.9 is considered. As
expected for this geometry, the novel mixing rule (computed with Eq. (4.9)) describes
the effective refractive index in good approximation over a wide range of filling
fractions (Fig. 4.8, green line). The Maxwell–Garnett and Bruggeman mixing rules,
in contrast, underestimate the effective refractive index considerably, as shown in
Fig. 4.8 by the blue dashed and the black dotted line, respectively. For the Maxwell–
Garnett theory deviations as large as ∆n = 0.1 are found for filling fractions between
30% and 60%. In this range, the prediction of the Bruggeman mixing rule is better,
nevertheless, there is still a discrepancy of around ∆n = 0.05 to the actual values.
Unlike the Maxwell–Garnett theory, the Bruggeman theory is symmetric, as ex-
plained in Sec. 2.4.2. It is therefore able to treat arbitrary filling fractions correctly,
at least in principle, which leads to better results for large filling fractions, in agree-
ment with observations. However, none of the classical mixing rules can accurately
estimate the effective refractive index, which is only done by the here derived mixing
rule for large particles.
So far the investigated structures are limited to random sphere packings. While
these structures are a great test bed for systematically studying size effects, the
assumption of non-interconnected spheres of equal size holds only for a minority of
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Figure 4.8: Comparison of various mixing rules. a, The effective refractive index received for a
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The figure is excluded from the CC BY license of this thesis.

composite media. In reality, such media often contain a disordered, interconnected
structure with various feature sizes, as found for example in countless biological
tissues.71 Hence, the results of different mixing rules should be also compared for
more realistic, interconnected patterns.
Such a complex, interconnected structure is found, e.g., in the brilliant white scales
of beetle Cyphochilus (cf. Sec. 2.2.1). However, for testing different mixing rules, the
DBS structure is used instead, since this model can be easily modified to investigate
various configurations. As presented in Sec. 2.2.2, the model relies on a small set of
parameters, defining the underlying normal distribution of the layer thickness and
in consequence the filling fraction f of the entire structure. The normal distribution
is given by its mean value µ and standard deviation σ, while it is truncated outside
of the interval I.
In Tab. 4.1 the effective refractive indices obtained by FDTD simulations is shown
for various configurations of the DBS model. In this, the same procedure is applied
as for random sphere packings, i.e., spherical regions are extracted from the entire
structure and the respective forward scattering amplitude is minimized by adjusting
the background refractive index. In addition, the received results are compared
to the predictions of the mixing rule for large particles, the Maxwell–Garnett and
Bruggeman mixing rules. The sphere size parameter required to evaluate the mixing
for large particles, is obtained from a sphere that possesses the same volume as a
cuboid with a thickness of µ, i.e., an average cuboid of the DBS model.
As it can be seen in Tab. 4.1, the results of the mixing rule for large particles
indeed agree well with the actual effective refractive index for all studied size dis-
tributions, filling fractions and refractive indices. Contrarily, the classical mixing
rules exhibit significant deviations, showing their inability to predict an accurate
value. As also observed above, the Bruggeman mixing rule slightly outperforms
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Table 4.1: Comparison between the effective refractive index of the DBS model and the results of
various mixing rules. The normal distribution of the layer thickness is characterized by the mean
value µ, the standard deviation σ and the interval I of the used thicknesses. A refractive index
of ni is used and f denotes the respective filling fraction. The effective refractive index nFDTD
obtained by FDTD simulation is given beside the predictions of the mixing rule for large particles
neff,large, the Bruggeman mixing rule nBG, and the Maxwell–Garnett mixing rule nMG. Adapted
from Ref. 225

ni µ (nm) σ (nm) I (nm) f nFDTD neff,large nBG nMG

1.5 190 80 [50, 330] 25% 1.126 1.127 1.116 1.113

1.5 230 160 [50, 410] 30% 1.151 1.153 1.141 1.136

1.5 370 160 [190, 550] 40% 1.210 1.207 1.191 1.183

1.7 130 80 [50, 210] 15% 1.115 1.105 1.092 1.088

1.7 190 80 [50, 330] 25% 1.179 1.179 1.158 1.149

the Maxwell–Garnett mixing rule. This is consistent with expectations, since the
Maxwell–Garnett mixing rule is originally developed for cermet topologies, in sharp
contrast to the here investigated DBS model.
Altogether, this implies that the novel mixing rule is not just able to incorporate
size effects correctly but can be also applied for various structure types, ranging
from cermet topologies to more realistic interconnected structures. Therefore, the
presented mixing rule may find application in several fields.
Beside white beetle scales, scattering and whiteness optimization is generally an issue
of wide interest,18,19,86,233 usually demanding the calculation of effective quantities in
structures where size effects cannot be neglected. Indeed, white paint formulations
typically feature sphere size parameters and refractive index contrasts in the order
of 1.8, hence in the validity range of the novel mixing rule.18

Moreover, the mixing rule for large particles might be also useful in other areas
considering the interaction of light with complex media, e.g., in opto-biomedical
context. As recently reported, it is possible to differentiate between benign and
malignant tissue based on the corresponding effective refractive index, even at an
early stage of the cancerous disease.234,235 To unambiguously identify the size of the
tumor, exact calculation of the effective refractive index is required, which demands
a higher precision than obtained with the currently used Maxwell–Garnett mixing
rule,235 especially when size effects cannot be neglected. This is the case in many
approaches where THz radiation is used for diagnostics. The wavelength range in the
THz regime (roughly 3 mm to 40 µm for 0.1–7 THz) is partially in the same order
than human cells (10–100 µm)236 while refractive index contrasts between benign
and malignant tissue can be as high as 1.8 in this frequency range.237
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whiteness generation

As discussed in the previous chapter, many disordered media can be characterized by
effective quantities, while light transport within these media is treated as a diffusion
process. Since the received macroscopic transport properties often describe the
optical behavior of the medium correctly, this approach is usually preferred to the
laborious solving of Maxwell’s equations within the entire microscopic structure.
However, diffusive light transport inherently neglects coherent effects that could
play a crucial role in some cases.
Regarding the white scales of beetle Cyphochilus, previous studies have been con-
centrated on unveiling the correlation between structural and optical properties
with a special emphasis on the influence of anisotropy, cf. Sec. 2.2.1 and references
therein. In that, the framework of diffusion theory is regularly applied.21,22,26,28–30

Although some studies using fully coherent FDTD simulations,24,25,27 and even co-
herent backscattering is measured and reported for Cyphochilus scales,26 so far, no
work systematically investigated the influence of coherent effects on brilliant white-
ness generation. On the contrary, the observed coherent backscattering cone is a
posteriori reconstructed from the scattering angle distribution obtained by (inco-
herent) Monte Carlo simulations (see also Sec. 2.3), excluding all other coherent
contributions.26

While scattering and whiteness optimization demands detailed knowledge about all
relevant underlying effects, the unknown coherent contribution could inhibit tailor-
ing nanostructure design for enhanced performance. For that reason, time-resolved
spectromicroscopy measurements are performed for scattered light outside of the
coherent backscattering cone to dissect different transport regimes in white beetle
scales and fabricated DBS structures. This analysis is accompanied with incoherent
Monte Carlo and fully coherent FDTD simulations to verify the experimental results
and assess the contribution of diffusive light transport and coherent effects, which
occur as scattering from weakly localized photonic modes.
The work presented below was done in cooperation with Ruben C. R. Pompe from
Walter Pfeiffer’s group at Bielefeld University, who has performed the spectromi-
croscopy measurement for each sample as well as collected and analyzed the exper-
imental data. The main results presented here are also published in Ref. 204

5.1 Fabrication of the DBS structure

Prior to conducting spectromicroscopy measurements, the DBS structure has to be
experimentally realized and characterized. Deploying DLW, the structure is fabri-
cated according to the model presented in Sec. 2.2.2, yielding a brilliant whiteness
comparable to that of beetle Cyphochilus as displayed in Fig. 5.1a. To achieve me-
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Figure 5.1: Comparison of the fabricated DBS structure with the white beetle and the computer
model. a, Photograph of the white beetle Cyphochilus and the direct laser written DBS structure.
The inset shows a magnified view of the DBS structure. b, SEM micrograph of a cross section
through the printed structure shown in (a), exhibiting its top four layers. c, Measured reflectance
of the fabricated DBS structure in comparison to the simulated reflectance for the scaled and
unscaled computer model. (a) is adapted from Ref. 123 and (b) is taken from Ref. 204

chanical stability, the DBS version with constant center-to-center distance is used,
while the structure must be scaled up compared to the original model to allow for
printing. In addition, a scaffold is added to hold the separated layers in place.
In the fabrication step, first an open circular scaffold is printed possessing a diameter
of 64 µm. Afterwards, the uppermost layer of the DBS structure is added on top
of the scaffold with an overlap of 7 µm at the rim. From this layer four 3.8 µm
long pillars with a footprint of 2× 2 µm2 are printed downwards to ensure constant
spacing between consecutive layers. One of these pillars can be seen in the center of
Fig. 5.1b. According to this procedure, the following layers and pillars are fabricated
from top to bottom until the total number of nine layers is completed. In each layer,
the different thickness of individual blocks is received by varying the laser power and
thus the corresponding voxel size. The resulting building blocks possess a footprint
of 1×1 µm2, while their thickness is found to mostly differ between 1–2 µm, as it can
be discerned in Fig. 5.1b. To obtain an overall structure size of about 0.5×0.5 mm2,
as shown in Fig. 5.1a, 46 separate DBS structures are placed on a hexagonal lattice.
To check the conformity of the fabricated with the theoretical DBS structure the
reflectance is determined in both cases. To measure the reflectance of the printed
structure, the sample is mounted at the output aperture of an integrating sphere,
while it is illuminated by a white-light laser source (SuperK EVO equipped with
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5.1 Fabrication of the DBS structure

SuperK Varia, NKT Photonics A/S, Denmark) focused through the input aperture
of the sphere onto the sample. The light collected by the sphere is analyzed using
a spectrometer (USB2000+, Ocean Optics). The recorded spectrum is referenced
on the spectrum of light reflected by a silver mirror placed at the output aperture
under same illumination conditions.
As mentioned above, the fabricated architecture is scaled up, hence for a fair com-
parison a scaled-up version of the computer model should be used too. The corre-
sponding block thickness is therefore chosen to follow a normal distribution with a
mean value of 1.5 µm and a standard deviation of 0.5 µm within a range of 1–2 µm.
The footprint (1 × 1 µm2) and the center-to-center distance of consecutive layers
(3.8 µm) are equal to those of the fabricated structure.
It can be seen in Fig. 5.1c that the experimentally measured reflectance (black line)
is in good accordance with the simulation results for the scaled DBS structure (blue
line) showing an almost constant, high reflectance over the investigated spectral
range. Nevertheless, there are some small deviations for short wavelengths, which
are attributed to the fact that the scaled computer model is idealized, for instance,
with respect to the shape of fundamental building blocks. Moreover, assuming
a dispersion-free, i.e., constant, refractive index in simulations and neglecting any
absorption is not satisfied for a real material like the used IP-L photoresist, especially
for small wavelengths.238

Compared to the scaled model, the reflectance of the unscaled model generally
decreases with increasing wavelength (Fig. 5.1c, green line), with noticeably lower
reflectance in the near-infrared region beyond 700 nm. In the visible spectral range,
however, the reflectance is at the same level or only slightly lower.
The deviation in the near-infrared range can be explained as follows. The unscaled
DBS model shows a high reflectance due to the disorder-induced broadening of
the second order stop band at 475 nm originating from the underlying Bragg stack
structure (cf. Sec. 2.2.2). In contrast, the first order stop band at 1426 nm is only
slightly affected by disorder limiting the range of high reflectance mainly to the
visible. When the model is scaled up, the spectral positions of the stop bands are
shifted accordingly. Thus, for the scaled model the seventh to twelfth order stop
bands lie in the visible range, experiencing a similar broadening due to disorder
as the second order stop band in the original model. Additionally, the fifth and
sixth order stop band are in the range between 700 nm and 850 nm, hence extending
the range of constant reflectance to this region. The underlying physics responsible
for broad reflectance is, in consequence, not affected by the scaling, which allows
to compare light transport mechanisms in the fabricated DBS structure with those
found in beetle scales and the unscaled computer model.
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5 Study of weak localization effects on brilliant whiteness generation

5.2 Light scattering spectromicroscopy on brilliant white
media

Multiple scattering occurring in random media is generally an elastic process.70,80 As
a result, interference effects are always existent, and every scattering event adds a
well-defined phase to the scattered light which is stored in the time evolution of the
corresponding electric fields. Thus, to analyze the influence of coherent transport on
the brilliant whiteness of ultrathin scattering media, the time-resolved electric field
of the scattered light must be evaluated. This is done by deploying the scattering
light spectromicroscopy setup sketched in Fig. 5.2a to investigate a single beetle
scale as well as the printed DBS structure, both displayed in 5.2b.
The detection of coherent effects is notably eased if only a small number of in-
terfering paths is considered. For example, laser speckles are most prominent if
the illuminated and detected area on the scattering medium is kept small, while in
return they disappear if the detector integrates over a large area, i.e., many inter-
fering paths. In such configurations, the light transport is still coherent but due
to averaging most interference effects, except coherent backscattering, vanish and
the resulting propagation can be well described by light diffusion theory. Therefore,
to consider only a low number of interfering paths, the here shown investigation is
based on focused excitation and detection of scattered light from a small sample
volume.
To reach the spatial resolution required to detect only a small number of scatter-
ing paths, a femtosecond laser beam is focused onto the sample with a spot size of
≲ 3 µm using a parabolic mirror (see Fig. 5.2a and Sec. 3.2.2 for further details).
In addition, the parabolic mirror collects the light scattered from the focal spot
under an angle of ≈ 24° with respect to the specular direction. To examine inter-
nal scattering rather than surface scattering, a cross-polarization setup is applied.
Mounting the respective sample on a piezo stage, the excitation spot can be scanned
over the sample. The time-resolved electric field is obtained for every scan position
by evaluating the spectral interference between the scattered and the reference pulse
as described in Sec. 3.2.2.
The resulting amplitude of the electric field is shown in Fig. 5.2c for the investigated
beetle scale. The temporal evolution of the electric field exhibits a spatially varying
exponential decay which is superimposed by pronounced beatings, a typical finger-
print of interference effects. As revealed below, the light transport can be dissected
in two different regimes. Initially, a diffusion-like transport regime prevails (illus-
trated in Fig. 5.2d). At a later stage, leakage from weakly localized photonic modes
arising from randomly closed scattering paths (Fig. 5.2e) contributes considerably
to the scattered light, leading to the observed beating behavior.
While different transport regimes can be distinguished due to their characteristics in
the frequency domain, a temporal dissection requires an analysis in the time domain.
For that reason, the coherent scattering signal (Fig. 5.2f) is investigated with the aid
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Figure 5.2: Time-resolved spectromicroscopy of light scattered from a Cyphochilus scale. a, Sketch
of the deployed experimental setup. b, Microscopy image of a single beetle scale (upper right)
and printed DBS structure (lower right) obtained from the respective objects shown in the pho-
tograph. c, Time-resolved amplitude of the light scattered from the beetle scale at different scan
positions. The threshold between the diffusive and the weak localization assisted scattering regime,
as identified in the Wigner representation (g), is marked by the gray bar. d,e, Illustration of light
transport in the diffusive (d) and the weak localization assisted scattering regime (e). The gray
and black patterns display the intra-scale and the DBS structure, respectively. f, Electric field of
the scattered light obtained for the scan position indicated in (c) by the white, dashed line. g,
Wigner representation of the electric field shown in (f). The gray bar denotes the found threshold
between distinct transport regimes, while the black line marks the calculated pulse round trip
time. h–j, Computed Fourier spectra for the red (h) and blue (i) short time windows exhibited
in (f) and (g) and for the entire time signal (j). Moreover, the excitation spectrum (black line) is
depicted in each panel. Adapted from Ref. 204

of the Wigner distribution function, which enables a simultaneous representation of
the frequency and time domain. The Wigner distribution function is basically the
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5 Study of weak localization effects on brilliant whiteness generation

Fourier transform of the autocorrelated signal and hence given by

W (t, ω) =
∫ ∞

−∞
E

(
t− t′

2

)
E∗
(
t+ t′

2

)
e−iωt′ dt′ , (5.1)

with E and E∗ being the electric field and its complex conjugate, respectively.239

While the Wigner distribution function features the highest possible time–frequency
resolution, it has the disadvantage of not being a linear transformation, resulting
in cross-terms with no actual physical meaning.239 Therefore, the analysis must be
accompanied by calculating the spectral power of the short-time Fourier transform,
that is the Fourier transform of the signal within a specific time window.
For that purpose, a Tukey window with a width of ∆t = 120 fs and a rising time
of tr = 30 fs is applied. A Tukey windows is obtained as the convolution of a
cosine lobe with a rectangular window.240 As a result, it has smoother slopes than a
rectangular window which reduces spectral leakage, i.e., the introduction of spectral
components that are not present in the original signal but are introduced as a result
of multiplying the time signal by a finite window.240

The resulting Wigner distribution function (Fig. 5.2g) exhibits for early times broad-
band features, as expected for diffusion-like transport, which is largely wavelength
independent. Indeed, computing the short-time Fourier transform for the regime
indicated by the red window, the spectrum of the scattered light reproduces the
excitation spectrum in good agreement, as revealed in Fig. 5.2h. However, around
105 ± 10 fs (gray bar in Fig. 5.2g), a qualitative change in the Wigner spectrum is
observed, as the broadband features are substituted by sharp modulations. These
spectral modulations arise from resonance peaks, which are also found in the accord-
ing short-time Fourier transform spectrum (Fig. 5.2i) independent of the excitation
spectrum. As shown in Fig. 5.2j, the Fourier spectrum obtained for the entire time
signal exhibits a broadband background superimposed by sharp spectral peaks, fea-
turing the attributes of both transport regimes.
The found threshold time at which the spectral characteristic changes coincides
closely with the pulse round trip time tprt, scale (Fig. 5.2g, black line). The pulse
round trip time is the duration that a light pulse takes to propagate back and forth
through the scale under the assumption of an effective medium, as it is usually done
in the diffusion approximation. It is calculated as the sum of the effective round trip
time obtained for a single photon and the pulse length to ensure that ‘all’ photons
within the pulse have hit the top of the scale again. The effective round trip time
is given by teff, scale = 2lscaleneff/c0, with lscale = 10 µm being the thickness of the
beetle scale.27 Since the diameter of the fibrils in the intra-scale network follows an
normal distribution with a mean value of 230 nm,24 the effective refractive index can
be calculated with the mixing rule for large particles presented in Ch. 4 according
to the procedure used for the DBS structure in Sec. 4.4. For a filling fraction of
fscale = 31%27 and a refractive index of nchitin = 1.55,96 a value of neff, scale = 1.17
is obtained, which results in an effective round trip time of teff, scale = 78 fs. With a
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Figure 5.3: Lifetime distribution measured for a Cyphochilus scale. a, Spectra of the light scattered
from the beetle scale at different scan positions. b, Spectral intensity (blue) obtained for the scan
position marked by the white line in (a). The gray area shows the incoherent, normalized sum
of all spectra of the scan and the black, dashed line the corresponding excitation spectrum. As
depicted by the red curve, individual peaks are identified, and the peak width is determined to
extract the associated lifetime. c, Distribution of the photonic mode lifetimes, received for the scan
shown in (a). The distribution is closely fitted by a log-normal distribution (red line). Adapted
from Ref. 204

pulse length of 29 fs (measured from the pulse front to the drop of the amplitude to
1/e of the peak value) a pulse round trip time of tprt, scale = 107 fs is received.
While applying the short-time Fourier transform enables to temporally dissect dif-
ferent transport regimes based on their spectral signature, the resolution of the
resonance peaks suffers from the short time windows. To unequivocally clarify the
existence of weak localization assisted scattering, full-time Fourier transform is used
to retrieve the probability distribution of the resonance lifetimes. As it can be seen
in Fig. 5.3a for all scan positions, multiple peaks which differ in center frequency and
width can be found in the respective spectrum. Due to the averaging of spectral
peaks, the incoherent sum of all spectra of the scan (Fig. 5.3b, gray area) corre-
sponds to the excitation spectrum (black, dashed line) which macroscopically leads
to the white appearance.
Identifying the peaks using a Matlab routine, as illustrated in Fig. 5.3b by the
red curve, the spectral width can be obtained, which provides a lower limit to the
resonance lifetime. Figure 5.3c shows the resulting distribution of lifetimes obeying
a log-normal distribution (red line) as expected in the case where localization effects
are present.241 The log-normal distribution deviates from the normal distribution in
that it features a larger fraction of long lifetimes associated with the existence of
localized modes in which light dwells comparatively long in closed scattering paths
before coupling into loss channels.242

As mentioned above, the fabricated DBS structure is investigated and analyzed ac-
cording to the procedure described for the beetle scales. The measurement results
in time domain (Fig. 5.4a) and frequency domain (Fig. 5.4b,c) as well as the corre-
sponding analyses by means of Wigner distribution function and short-time Fourier
transform (Fig. 5.4d-h) qualitatively agree with those of the beetle scales. However,
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Figure 5.4: Time-resolved spectromicroscopy of light scattered from the fabricated DBS structure.
a, Time-resolved amplitude of the light scattered from the DBS architecture at various scan po-
sitions. b, Corresponding spectra in dependence of the scan position. c, Lifetime distribution
received for the scan exhibited in (b). d, Electric field of the scattered light for the scan position
marked in (a) by the white, dashed line. e, Wigner representation of the electric field shown in
(d). The gray bar indicates the identified threshold between different transport regimes. f–h,
Calculated Fourier spectra for the red (f) and blue (g) short time windows shown in (d) and (e) as
well as for the complete time signal (h). In addition, the incoherent, normalized sum of all spectra
of the scan (gray area) is displayed in (h) and the excitation spectrum (black line) is shown in
each panel. Adapted from Ref. 204

due to larger structure thickness, about 30 µm for the DBS structure compared to
10 µm for the scales, the time scale is shifted. In consequence, the threshold at
which broad features transform to fine modulations in the Wigner representation is
identified around 190± 10 fs, at a significantly later time than in the beetle scales.
The computation of a corresponding pulse round trip time is a delicate matter in the
case of the DBS structure. The individual blocks of the printed DBS architecture
reach thicknesses of up to 2 µm, considerably larger than the laser wavelength of
780 nm. For this reason, the structure is far beyond the validity range of the mixing
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rule developed in Ch. 4, which thus prevents its use for calculation. Moreover,
according to the analysis of random sphere packings with sphere sizes beyond this
validity range in Sec. 4.3, the treatment of the printed DBS structure as an effective
medium is generally invalid.
Nevertheless, the brilliant whiteness generation in the heterogeneous DBS structure
relies on multiple scattering, i.e., the scattered light passes different compounds of
the structure several times. As a result, the optical length of an average scattering
path will still depend on a mixture of both refractive indices.
For an approximate estimation of the pulse round trip time, the average refractive
index is assumed to be given by the sum of the refractive indices of air and photoresist
(nIP-L = 1.51)238 weighted by their respective volume fractions (the filling fraction
of the structure is 33%). Thus, an average refractive index of navg, DBS = 1.17 is
received, yielding a pulse round trip time of around 260 fs.
While this time does not match the found threshold, it is at least in the same order.
It is therefore assumed that the deviation is mainly due to the rough estimation of
the average refractive index, which is made because the dimension of the printed
DBS structure inhibits the application of any mixing rules. In contrast, in the case of
beetle scales, which comply with the description as an effective medium, the mixing
rule presented in Ch. 4 provides an adequate result for the pulse round trip time.

5.3 Numerical investigation of different transport regimes

In contrast to experiments, where interference is always existent due to elastic light
scattering, altering the simulation approach used allows to systematically enable
and disable interference effects and thus to unambiguously verify the experimental
result presented in the last section. In fact, the results of fully coherent FDTD
simulations can be directly related to those of incoherent Monte Carlo simulations.
Using simulations, it is moreover possible to assess the intrinsic light transport
directly while the experimental evaluation completely relies on scattered light.
FDTD simulations, however, can only handle relatively small sample volumes, so
periodic boundary conditions must be used. To study spatial characteristics of
closed scattering loops, sufficiently large lateral simulation dimensions of 20×20 µm2

have to be applied to avoid parasitic effects from the artificial periodicity. At this
extent, closed loops fit entirely in a single period, even at the upper edge of the
log-normal distribution (around 150 fs, cf. Fig. 5.3c), where the corresponding path
length is about 40 µm, i.e., 20 µm in one direction. Since meshing of a complex
structure such as the intra-scale network is computationally extremely demanding
in such large-scale simulations, deploying the simple DBS model is favored to keep
the computation time acceptable.
While experimentally the DBS structure and the Cyphochilus scales reveal qualita-
tively the same transport behavior, the validity to directly infer from the unscaled
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Figure 5.5: Resonance peaks and corresponding lifetime distribution of simulated model structures.
a,b, Exemplary spectrum gathered in FDTD simulations with a point monitor placed in the intra-
scale network (a) and the DBS model (b), respectively. c,d, Corresponding lifetime distribution
received for the intra-scale network (c) and the DBS model (d) by evaluating the spectra of all
used point monitors. Adapted from Ref. 204

DBS model to the intra-scale structurea must be first confirmed performing FDTD
simulations (with a lateral dimension of 7 × 7 µm2). Local spectra recorded inside
both structures indeed feature distinct resonance peaks in a similar way, as ex-
emplarily shown in Fig. 5.5a and b, respectively. Using all recorded spectra (see
Sec. 3.1.1 for details), the computed lifetime distributions are in excellent agree-
ment with each other (Fig. 5.5c and d) as well as with the experimentally obtained
distribution for the beetle scales (Fig. 5.3c). Therefore, it can be concluded that
(i) the properties retrieved from scattered light indeed reflect the intrinsic behavior
and (ii) the DBS model can be used for further investigations applying large-scale
simulations.
In these simulations, the spatio-temporal evolution of the local power is gathered
in a monitor plane sectioning the DBS model vertical to its surface. In addition,
the results are compared to the associated spatio-temporal evolution of the photon
number in similar Monte Carlo simulations. However, to set up appropriate Monte
Carlo simulations, first the correct transport and scattering mean free path must
be determined. To obtain the transport mean free path, the transmittance of the
DBS model as a function of the structure height L is computed applying FDTD
simulations and subsequently fitted with Eq. (2.19) as shown in Fig. 5.6a. The fit

amodel data supplied by courtesy of B. Wilts24
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5.3 Numerical investigation of different transport regimes

 

0 100 200 300 400 500 600 700 800 900 1000

Time t (fs)

10-24

10-22

10-20

10-18

A
v
e
ra

g
e
 p

o
w

e
r 
P

a
v
g
 (

W
)

A
v
e
ra

g
e
 p

h
o
to

n
 c

o
u
n

ts
 N

a
v
g

10-2

100

102

104

0

1

2

3

1 µm

R
e
la

ti
v
e
 e

n
h
a
n

ce
m

e
n

t
〈
P
/P

a
v
g
〉    t

1 µm 0.85

0.95

1.05

1.15

R
e
la

ti
v
e
 e

n
h
a
n

ce
m

e
n

t
〈
N

/N
a
v
g
〉    t

τ ≈ 78 fs

τ ≈ 86 fs
τ ≈ 99 fs

MC, ls = 1 µm
FDTD

a b

c

Thickness L (µm)

0 200 400 600

Time t (fs)

A
v
e
ra

g
e
 p

o
w

e
r 
P

a
v
g
 (

W
)

10-21

10-20

10-19

10-18

A
v
e
ra

g
e
 p

h
o
to

n
 c

o
u
n

ts
 N

a
v
g

101

102

103

104

MC, ls = 2.5 µm
FDTD

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Tr

a
n
sm

it
ta

n
ce

 T

Diffusion theory
FDTD

Figure 5.6: Spatio-temporal evolution of coherent and diffusive light transport. a, Transmittance
of the DBS model as a function of the structure thickness obtained through FDTD simulations.
The results are fitted with the isotropic diffusion equation (red line). b, Comparison of the average
power (black line) and the average photon count (gray line) in the monitor plane for a scattering
mean free path of 2.5 µm in Monte Carlo (MC) simulations. The black dotted box indicates the area
where the top of both curves deviates. c, Same as (b) but applying a scattering mean free path of
1 µm in Monte Carlo simulations. Both ordinates span the same order of magnitudes, allowing for
direct comparison of the slopes. The colored exponential slopes with various lifetimes τ highlight
the non-exponential decay of the FDTD results. The vertical gray, dashed line corresponds to
the calculated round trip time. Insets: Local power enhancement (upper right, FDTD) and local
photon count enhancement (lower left, Monte Carlo) averaged over the time span marked by the
blue line (170–650 fs) shown for a snippet of the entire monitor plane. Adapted from Ref. 204

yields a value of lt = 3.0 µm at 780 nm in accordance with previous investigations.95

Using this value in Monte Carlo simulations together with neff, DBS = 1.15 (calculated
with the mixing rule for large particles for fDBS = 27% and ni = nchitin), the received
reflectance matches that obtained by FDTD simulations.
Unlike the transport mean free path, the scattering mean free path does not affect the
transmittance and hence reflectance directly, as it can be discerned in Eq. (2.19) in
conjunction with Eq. (2.18). Therefore, the scattering mean free path is determined
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5 Study of weak localization effects on brilliant whiteness generation

by comparing the temporal profile of the average power in the monitor plane (FDTD
simulations, black line in Fig. 5.6b and c) with the time evolution of the average
photon count (Monte Carlo simulations, gray line in Fig. 5.6b and c) for different
scattering mean free paths. As it can be seen in Fig. 5.6b for ls = 2.5 µm, the top of
both curves diverges (black, dotted box) whereas they align for a scattering mean
free path of ls = 1.0 µm (Fig. 5.6c).
In consequence, there is a set of parameters at which Monte Carlo simulations repli-
cate all transport properties obtained by fully coherent FDTD simulation, namely,
reflectance, transport mean free path and initial temporal evolution of the power
within the structure. Thus, the initial light transport can be modeled as a diffusive
process in close approximation even if interference effects might be existent.
However, from ≈ 170 fs a discrepancy between the FDTD and Monte Carlo results
starts to appear (Fig. 5.6c), indicating that the description as light diffusion breaks
down. In this regime, a multi-exponential decay is found for FDTD simulations,
with decay times ranging from roughly 80 fs to about 100 fs. This straightly relates
to the lifetime distribution (Fig. 5.5d) with a mean value around 80 fs, implicating
that random photonic modes with long lifetimes dominate the decay at later times.
Contrarily, Monte Carlo simulations reveal a mono-exponential decay with a decay
constant of 65 fs, which neither correspond to the simulated nor to the measured
lifetime distribution. Hence, only a fully coherent description suffices to model this
regime where weakly localized photonic modes characterize the transport behavior.
Computing the pulse round trip time in analogous to the experiment yields a value
of 162 fs for the 100 fs long pulses used in the simulation. As shown by the gray,
dashed line in Fig. 5.6c, this time closely matches the point where both simulation
approaches starts to deviate. This implies that the pulse round trip time is an
appropriate assessment for the upper limit of the diffusive transport regime.
To further verify that indeed weakly localized modes are present in the regime
beyond 170 fs, the time averaged local power enhancement is calculated. In the first
step, the momentary power enhancement:

Pρ̄(x, z, t) = P (x, z, t)
ρ̄(t) , (5.2)

with the mean power in the x-z-monitor plane:

ρ̄(t) =
∫

A

P (x, z, t)
A

dA , (5.3)

is computed to compensate for radiation losses to the far field (for orientation of the
DBS model see Fig. 2.6e). Eventually, the time averaged local power enhancement
for the interval [t1, t2] is received via

⟨P/Pavg⟩t = ⟨Pρ̄⟩t =
∫ t2

t1

Pρ̄(x, z, t)
(t2 − t1)

dt . (5.4)
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5.4 Contribution of distinct transport regimes to the whiteness

The upper right inset in Fig. 5.6c shows the local power enhancement averaged
over the time marked by the blue line (170–650 fs) applying FDTD simulations.
Here, distinct spatially localized hotspots can be discerned, which possess a power
enhancement up to a factor of three. Since this enhancement persists even when av-
eraged over almost 500 fs, it is concluded that the hotspots are stationary. They can
thus be associated with antinodes of weakly localized long-lasting random modes,
leading to the sharp resonance peaks observed in experiments and simulations. In-
deed, performing a similar analysis for Monte Carlo outcomes, the time averaged
local photon number enhancement does not show any hotspots at all, as revealed in
Fig. 5.6c, lower left inset. Instead, a constant photon number is found in the lateral
direction, while the slight variation in the axial direction can be attributed to the
fact that light escapes at the boundaries of the slab.

5.4 Contribution of distinct transport regimes to the white-
ness

Based on the experimental and simulation outcomes, the contribution of the diffusive
and the weak localization enhanced scattering regime on the reflectance and hence
the whiteness can be assessed. To evaluate each portion the accumulated scattering
yield Σ is determined for every structure by integrating the incoherent intensity
signal over time. The incoherent intensity is thereby received through averaging the
square modulus of the time-resolved scattered field over all recorded positions. To
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Figure 5.7: Time-resolved accumulated scattering yield and related color impression. a, The
measurements performed at the beetle scales reveal a scattering yield from the weak localization
enhanced scattering regime, i.e., after the threshold time, of 35% (white horizontal line). b, The
corresponding results for the simulated DBS structure reveal a scattering yield of 21% from this
regime. c, The measurement outcome for the fabricated DBS structure show an scattering yield of
20% from weak localization. The background shading displays for each sample the resulting color
impression from black to white in dependence of the accumulated scattering yield at each point in
time. Adapted from Ref. 204
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5 Study of weak localization effects on brilliant whiteness generation

compare the various results in the same manner, each time scale is normalized to
the respective threshold time, which divides both transport regimes.
As revealed in Fig. 5.7, a significant portion of 20% to 35% of the reflected light
originates from the weak localization assisted scattering regime. As a result, the
brilliant white media would appear rather gray than white if this regime was absent,
as illustrated by the background shading in Fig. 5.7.
Hence, photon leakage from weakly localized photonic modes is a crucial mechanism
for the generation of brilliant whiteness in ultrathin scattering media. Although
such modes have been identified beforehand in random laser materials with coherent
feedback,80,243 their important role in whiteness generation was not considered yet.
While the structures examined here show clear characteristics of individually lo-
calized modes, the reported results do not reveal the onset of strong localization.
Anderson localization would require the complete halt of light transport even for
finite sample size,39 which is obviously not the case for the investigated structures.
In addition, none of the structures satisfies the Ioffe-Regel criterion (cf. Sec. 2.3.3).
Nevertheless, the investigated structures clearly demonstrate that localization ef-
fects can significantly affect light transport even outside of the regime of strong
localization.
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6 Developing of bio-based resists and establishing
the sensitization effect for DLW

While nature provides a large pool of design concepts to tailor various properties,
for example optical properties as shown in the previous chapter, it also offers a great
variety of corresponding building materials.2 Such materials are also of technologi-
cal interest, in particular for microfabrication, since they enable reproducing natural
structures in facsimile for testing, analyzing, and biomimetic engineering. In addi-
tion, devices for biomedical applications, especially in vivo, require biocompatibility,
which is inherently given for a wide range of natural materials.244,245

Indeed, animal-based biomaterials used for DLW are commonly hydrogel formu-
lations, i.e., soft materials,54–58 which allow for imitating the extracellular matrix
as needed in tissue engineering or drug delivery applications.246,247 Many architec-
tures in nature, however, make use of rigid materials, e.g., cellulose in wood cells
or chitin in arthropods’ cuticle and scales, offering a whole new level for designing
bionic structures. While plant-based carbohydrates, such as cellulose, are already
available for printing rigid structures via DLW,9 their animal-based counterparts are
currently lacking.
To close this gap, first a derivative of the monomeric unit of chitin, namely N-
acetyl-D-glucosamine (NAG), is functionalized with methacrylic side groups. Sub-
sequently, this methacrylated NAG serves as the basis for non-hydrogel photoresist
formulations that establish a new class of animal-sourced photoresists for DLW. In
addition, the resists presented in this chapter rely on a low molecular compound,
i.e., a monomer, in contrast to bio-based photoresists reported so far, which use
polymers as basic unit.9,55,58

Beside developing NAG-based photoresists, a new crosslinking strategy is estab-
lished by adapting the UV sensitization effect for two-photon polymerization. In
this, a sensitizer–photoinitiator pair is used instead of a single photoinitiator. The
sensitizer absorbs light via two-photon absorption and subsequently transfers the
acquired energy to the photoinitiator, which cleaves in highly reactive radicals and
starts the polymerization. Unlike a single photoinitiator, the system allows separate
optimization of the absorption efficiency and the crosslinking capability by select-
ing an appropriate sensitizer–photoinitiator pair, which outperforms the use of a
photoinitiator or sensitizer alone.
The work shown in this chapter was done in cooperation with Maximilian Rotham-
mer and Maximilian Maier from Cordt Zollfrank’s group at the Technischen Univer-
sität München, who performed the synthesis, functionalization, and chemical char-
acterization of the NAG derivatives used to mix the photoresists. The key findings
reported in this chapter are also published in Ref. 248
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6 Developing of bio-based resists and establishing the sensitization effect for DLW

6.1 Chemical functionalization of N-acetyl-D-glucosamine

While plain NAG is not photo-crosslinkable, unsaturated side groups must be added
to the monosaccharide, which is done by applying methacrylic acid anhydride in a
N,N-dicyclohexylcarbodiimide-coupled esterification as described below. First, un-
der continuous stirring and reflux conditions, 3.05 g NAG are dissolved in 100 mL
DMF at 58 °C. Once the solution is cooled down to room temperature, 5.8 mL
methacrylic acid anhydride (94%, Sigma Aldrich), 0.1 g 4-dimethylaminopyridine
(DMAP, 99%, Acros Organics) and 4.04 g N,N-dicyclohexylcarbodiimide (DCC,
99%, Alfa Aesar) are admixed. After constantly stirring the reaction mixture for
45 h, it is concentrated using a rotary evaporator. The methacrylated NAG is even-
tually obtained through precipitation in an excess of diethyl ether (technical grade,
VWR International) placed within an ice bath. However, before the methacrylated
NAG is used to mix a photoresist, it is washed five times with diethyl ether and
once with ethanol deploying a centrifuge for 20 min (at 4000 rpm and 20 °C), while
the solvents are subsequently allowed to evaporate using a rotary evaporator.
To proof whether the esterification is successful, Fourier transform infrared (FTIR)
and nuclear magnetic resonance (NMR) spectroscopy are used to investigate and
compare the compounds. Since FTIR spectra reveal absorption bands caused by
vibronic transitions characteristic of a specific chemical bond, they enable detec-
tion of the appearance and disappearance of bonds associated with esterification
and crosslinking. The corresponding measurements are performed using a Frontier
MIR spectrometer (L1280018) equipped with an attenuated total reflection diamond
(PerkinElmer, Inc., USA) providing a resolution of 4 cm−1. For each spectrum at
least eight scans are recorded. To study crosslinked methacrylated NAG, a photore-
sist composed of 50 mg methacrylated NAG, 250 µL DMSO, and 1 mg Irgacure 369
is polymerized for 30 min under an 8 W UV lamp (Herolab GmbH, Germany) using
the 245 nm and 365 nm output concurrently.
Figure 6.1a shows the FTIR analyses for NAG, methacrylated NAG, and polymer-
ized methacrylated NAG confirming the proper esterification of NAG as well as
crosslinking via the added methacrylic side groups. The observed absorption bands
at 1624 and 1546 cm−1 refer to amide I and amide II modes, respectively, which are
assigned to the amide carbonyl group in secondary amides.249–254 C=O stretching
vibrations are primarily responsible for the amide I band, while small contribu-
tions originate from N–H bending as well as N–H and C–H stretching vibrations
of the amide.255,256 The amide II band is characterized by N–H bending and the
presence of certain C–H stretching vibrations.255–257 Absorption bands at 3453 cm−1

and 3322 cm−1 are related to O–H and N–H stretching vibrations, while C–O–C
antisymmetric bridge oxygen stretching vibrations, C–O stretching vibrations, an-
tisymmetric in-phase ring vibrations, as well as C–O–H stretching vibrations give
rise to the features at 1125, 1049 and 1018 cm−1, respectively.251–253,257,258
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6.1 Chemical functionalization of N-acetyl-D-glucosamine
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Figure 6.1: Chemical characterization of NAG derivatives. a, FTIR spectra of NAG (blue line),
methacrylated NAG (MANAG, green line), and crosslinked methacrylated NAG (red line). For
better visibility the spectra of NAG and crosslinked methacrylated NAG are vertically shifted. The
dashed colored lines indicate the corresponding transmittance of 100% for each graph. b, Structural
formula of NAG (R = hydrogen at all sites) and methacrylated NAG (R = methacrylate group at
least at one site). c, 13C-NMR spectrum of methacrylated NAG with attribution of the observed
peaks to the appropriate groups. The asterisks denote peaks which are identified as impurities of
N,N-dicyclohexylcarbodiimide (DCC) (55.8, 25.6, 24.7 ppm), 4-dimethylaminopyridine (DMAP)
(155.9, 149.3, 107.5 ppm), diethyl ether (66.1, 15.1 ppm), and ethanol (56.1, 18.5 ppm) using an
online database such as NMRShiftDB.259 Adapted from Ref. 248

After the methacrylation process, novel bands occur at 1721 and 812 cm−1 (Fig. 6.1a,
green line). The former is related to the carbonyl C=O stretching vibrations of
the ester,249,252,255,260 while the latter arises from C=CH2 out of plane deformation
vibration of the carbon double bonds in the methacrylate group,9,260 proving the
successful functionalization of NAG. In addition, the absorption band at 3453 cm−1

belonging to hydroxyl groups is diminished after esterification. This meets the
expectation, since hydrogen is substituted by methacrylate groups in one or multiple
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6 Developing of bio-based resists and establishing the sensitization effect for DLW

Table 6.1: Signal attribution for the 13C NMR spectra measured for NAG and methacrylated NAG
(MANAG). Adapted from Ref. 248

Sample
Assignment of chemical shift δ (ppm)

C=O C=O C=C C=C C1–C6 CH3 CH3

(NAG) (MANAG) (NAG) (MANAG)

NAG 170.0 - - - 91.1–54.8 23.2 -

MANAG 169.8 166.9 136.3 126.3 91.6–54.8 23.2 18.6

OH-groups, depending on the degree of substitution. The corresponding molecules
are depicted in Fig. 6.1b.
During polymerization via methacrylic side groups, the corresponding carbon double
bond is cleaved. Indeed, the dip associated with this double bound (812 cm−1) is
absent in the spectrum of crosslinked methacrylated NAG (Fig. 6.1a, red line),
implying that the photo-crosslinking takes place via the methacrylic side groups.
To further verify the esterification, 13C NMR spectroscopy is applied, which enables
identification of carbon in different chemical bonds by the shift of the magnetic
resonance as a function of the chemical environment. The measurements are con-
ducted using a ECS-400 NMR (JEOL Ltd., Japan), while the data acquisition and
evaluation is done with the software Delta v 5.0.4 (JEOL) and MestReNova v 14.2.3
(Mestrelab Research S.L., Spain). Spectra are obtained for the compounds dissolved
in DMSO-d6 at 25 °C as the result of 2048 scans.
Figure 6.1c displays the 13C NMR spectrum obtained for methacrylated NAG, while
Tab. 6.1 summarizes the characteristic shifts received for NAG and methacrylated
NAG. Signals at 170.0, 91.1–54.8, and 23.2 ppm are found for both compounds, since
the signals between 91.1–54.8 ppm correspond to the C1–C6 atoms of the glucose
backbone of the monosaccharide, while the signals at 170.0 and 23.2 ppm can be
attributed to the ester and the methyl group of the N-acetate moiety, respectively.261

In contrast to NAG, methacrylated NAG features peaks around 166.9, 136.3, and
126.3 ppm (Fig. 6.1c), which are associated with the C=O and C=C bond in the
methacrylate, exhibiting the successful esterification of NAG.9,261 In addition, the
peaks related to the CH3 group of the methacrylic side group are observed around
18.6 ppm.260

As revealed by the splitting of the corresponding signals, esterification takes place
at several positions of the NAG backbone. However, due to overlapping and the
overall complex signal structure, an unequivocally evaluation of the exact positions
is not possible. Moreover, as revealed in Fig. 6.1c by the peaks marked with an
asterisk, some impurities caused by the deployed coupling agents exist. Therefore,
the degree of methacrylation cannot be precisely assessed.
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6.2 DLW in NAG-based photoresists

Element analysis of the synthesized methacrylated NAG performed with an EuroEA-
Elemental Analyser (Eurovector, Italy), nevertheless suggests a degree of methacry-
lation in the domain between one and three. In consequence, the obtained polymer-
ized resist is likely to feature linear polymers for methacrylated NAG monomers with
a degree of methacrylation of one as well as crosslinked polymer networks composed
of methacrylated NAG monomers with a degree above one. The resulting variation
in crosslinking density might be responsible for the partly rough surfaces, especially
observed for bulky structures, as shown in the next section.

6.2 DLW in NAG-based photoresists

After functionalization of the NAG with methacrylate side groups, it can be applied
to create photoresists. To obtain a photoresist that allows patterning via two-photon
absorption, however, the methacrylated NAG must be dissolved in a proper solvent
as well as mixed with an appropriate photoinitiator.

a b

c d

5 µm 5 µm

5 µm2 µm

0.5 µm

1.0 µm

Irgacure 369 Irgacure 819

Irgacure 369 Irgacure 819

Figure 6.2: SEM micrographs of structures realized with NAG-based photoresists containing either
Irgacure 369 or Irgacure 819. a, 2D lines printed at a writing speed of 10 µm/s and a laser power
of 30% (100% =̂ 57.8 mW), exhibiting a submicron feature size as well as a micron resolution. b,
Fabricated 2D grid structure using a speed of 50 µm/s and a power of 90%. c, Realization of a 3D
model of the rainbow stag beetle at a speed of 1000 µm/s applying 90% laser power. d, Written
arch using a writing speed of 100 µm/s and a power of 30%, showing the capability to fabricate free
standing 3D structures. (a,b) reveal top views, while (c,d) exhibit side views on the structures at
an angle of 45°. Adapted from Ref. 248
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6 Developing of bio-based resists and establishing the sensitization effect for DLW

a b

c d

5 µm 5 µm

5 µm 5 µm

Figure 6.3: SEM micrographs of structures obtained with a NAG-based photoresist containing
DETC. a–c, Patterned 2D grids using a writing speed of 20 µm/s and a laser power of 30% (a), a
writing speed of 20 µm/s and a laser power of 100% (b), as well as a writing speed of 200 µm/s and
a laser power of 50% (c), respectively. d, Attempt to print an upright arch structure at a speed of
100 µm/s and a power of 50%. All panels display side views at 45°. Taken from Ref. 248

Since methacrylated NAG is soluble in DMSO, this solvent is used to first pre-
pare stock solutions, each containing a different photoinitiator at a concentration
of 0.05 M. Subsequently, the photoresists are obtained by adding the respective
stock solution to the methacrylated NAG until a concentration of 250 g methacry-
lated NAG per liter is received. Using a magnetic stirrer, the photoresists are
mixed overnight and eventually separated for 20 min deploying a centrifuge (Mini-
Zentrifuge, Carl Roth GmbH & Co. KG, Germany) to remove unsolved particles.
To find the best suited photoinitiator, a variety of 2D and 3D structures is printed in
each photoresist, revealing that Irgacure 369 and 819 provide the best structure qual-
ity (Fig. 6.2). Contrarily, photoinitiators such as DETC, which are renowned to be
among the most efficient for DLW at 780 nm,262,263 fail to produce well-defined stable
structures, independent of the used writing speed and laser power (cf. Fig. 6.3).
Therefore, the performance of NAG-based resists is further studied for Irgacure
369 (Fig. 6.2a,c) and Irgacure 819 (Fig. 6.2b,d) loaded ones. For 2D structures,
typical lateral resolution of 1 µm and feature sizes in the order of 500 nm are ob-
served (Fig. 6.2a), closely matching the properties of a prior published cellulose-
based resist.9 To reach such specifications is crucial for printing biomimetic archi-
tectures, since many functional structures found, e.g., in insects, are nano- and
microstructures.2
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6.3 Identifying appropriate sensitizer–photoinitiator pairs

Although 2D structures in NAG-based resists can be successfully printed, this comes
at the cost of a rather low writing speed. Patterning a 2D grid structure (Fig. 6.2b)
at a speed of 50 µm/s requires already 90% of the total laser power in the case of
using Irgacure 819, while similar results are obtained for Irgacure 369. To enable
considerably faster printing, the laser power would have to be increased accordingly
to obtain the same dose. Thus, no well-defined delicate 2D structure are achieved
for higher writing speeds.
In the case of bulky 3D structures, however, higher writing speeds of up to 1000 µm/s
can be reached, as shown in Fig. 6.2c for the printed miniaturized model of a rainbow
stag beetlea. Together with the fabricated arch structure, which is composed of two
skewed pillars topped by an architrave (Fig. 6.2d), this further reveals that free
standing 3D structures are feasible, highlighting the ability of the resists for 3D
microfabrication.

6.3 Identifying appropriate sensitizer–photoinitiator pairs

Compared to a vast number of DLW photoresists which allow for maximum writing
speeds of several mm/s or even higher,262 the NAG-based photoresists presented in
the last section feature only a relatively low maximum writing speed, especially for
fabrication of delicate 2D structures. However, this disadvantage can be circum-
vented by adding a suitable sensitizer to the photoresist that forms a pair with the
photoinitiator capable to exhibit the sensitization effect.
In principle, a sensitizer is also a photoinitiator, but it must satisfy two additional
conditions. On the one hand, the sensitizer should provide a higher absorption than

T1

ISC

Radical generation

ISC

Triplet engery 
transfer

hν hν

Photoinitiator Sensitizer

hν hν

S0

Sn

S0

Sn

T1

Figure 6.4: Simplified Jablonski diagram of the sensitization effect for two-photon absorption. Due
to the larger two-photon absorption cross section of the sensitizer, the T1 level of the photoinitiator,
which is responsible for radical generation, is mainly excited via two-photon absorption in the
sensitizer followed by intersystem crossing (ISC) and triplet energy transfer from the T1 level of
the sensitizer to the T1 level of the photoinitiator. A minor amount of excitation is also provided
by two-photon absorption in the photoinitiator, followed by corresponding intersystem crossing.

athe free 3D model is received from the website www.ameede.net
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Figure 6.5: Two-photon absorption transmittance dip measured with a z-scan setup at 780 nm
for different compounds. a, Rhodamine 6G in methanol. b, ITX in DMSO. c, Irgacure 369 in
DMSO. d, Irgacure 819 in DMSO. The measurement data are fitted with Eq. (3.30) in each case
(red line). The intensity at the focal spot I0 is adapted for every compound as denoted in each
panel to consider various two-photon absorption coefficients. In addition, the obtained two-photon
absorption cross section (TPCS) is given. The ordinate in (b–d) is scaled differently than in (a)
for the sake of detectability of the characteristic dip. Taken from Ref. 248

the photoinitiator at the applied wavelength, i.e., in the case of DLW a larger two-
photon absorption cross section. This is the case, for instance, if the wavelength
closely matches the center of the absorption band of the sensitizer, while it is right
at the edge of the absorption band of the photoinitiator, as depicted in Fig. 6.4. On
the other hand, the triplet energy of the sensitizer must be higher than that of the
photoinitiator. As a result, a triplet energy transfer can occur, passing the energy
stored in the T1 state of the sensitizer to the T1 state of the photoinitiator, where
the formation of radicals is initialized (Fig. 6.4). In the meantime, the sensitizer
reverts to the ground state being preserved for a new cycle.59,264

Because of these conditions, selecting a proper sensitizer–photoinitiator pair concep-
tually differs from just combining two photoinitiators, as presented elsewhere in the
literature.265 Since the photoinitiator is responsible for crosslinking the monomer,
it is convenient to start with choosing an appropriate photoinitiator. As shown in
the previous section, Irgacure 369 and 819 are promising candidates in the case of
NAG-based photoresists.
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6.4 Deploying the sensitization effect for DLW

To find compatible sensitizers, the triplet energy must be considered first. While
Irgacure 369 and 819 offer a triplet energy of 60.0 and 55.5 kcal/mol, respectively,59

compounds such as ITX (61.4 kcal/mol)59 or benzophenone (69.1 kcal/mol)59 are
potential candidates. DETC, in contrast, has a triplet energy of 45.7 kcal/mol263

and is thus not suited as a sensitizer. To serve as a sensitizer, however, the candidates
must also possess a higher two-photon absorption cross section than the respective
photoinitiator.
For that reason, the two-photon absorption cross section is measured for the pho-
toinitiators (Irgacure 369, 819) as well as for the potential sensitizers (ITX, ben-
zophenone), deploying the (open) z-scan setup described in Sec. 3.2.3. Prior to
taking measurements, the setup used is validated using the well-known two-photon
absorption cross section of Rhodamine 6G in methanol at a wavelength of 780 nm,
which is 16 GM.208 As it can be seen in Fig. 6.5a, the here deployed setup provides
a value of 17 GM in close agreement with the literature.
Since both the solvent and the wavelength affect the resulting two-photon absorp-
tion cross section,208 for z-scan measurements the same conditions are applied as for
DLW, i.e., a wavelength of 780 nm and DMSO as solvent are deployed. Benzophe-
none does not show any two-photon absorption, even if the maximum laser power
of the z-scan setup is used. Therefore, it is discarded as a potential sensitizer. In
contrast, ITX possesses a two-photon absorption cross section of 2 GM (Fig. 6.5b),
which is about three times higher than that of the Irgacure photoinitiators, each
revealing a two-photon absorption cross section around 0.6–0.7 GM (Fig. 6.5c,d). In
Fig. 6.5, it should be noted that a two times higher laser power must be applied to
observe the characteristic two-photon absorption dip in the case of Irgacure 369 and
819 compared to ITX.
The obtained results meet furthermore the expectations, since the two-photon ab-
sorption maximum of ITX at 760 nm is indeed close to the applied wavelength,
while the two-photon absorption maxima of Irgacure 369 (670 nm) and Irgacure 819
(600 nm) deviate considerably.266 In consequence, ITX can act as a suitable sensitizer
for both Irgacure photoinitiators, which is examined in the section below.

6.4 Deploying the sensitization effect for DLW

To test the identified sensitizer–photoinitiator pairs, in the context of DLW, photore-
sists containing Irgacure 369 and ITX as well as Irgacure 819 and ITX are prepared.
The corresponding stock solutions are thereby blended in different ratios, prior to
mixing the respective photoresist. Since all stock solutions possess the same mo-
lar concentration (cf. Sec. 6.2), the total number of photoactive molecules remains
constant, no matter if a single photoinitiator, sensitizer or the corresponding pair
is used. Hence, the effect observed below does not arise from increasing the total
amount of photoinitiator molecules, as it would be the case for just adding a second
initiator, but from a beneficial combination of two initiators leading to a higher
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Figure 6.6: SEM micrographs comparing structures fabricated by either applying the photoini-
tiator, the sensitizer, or the corresponding sensitizer–photoinitiator pair. a–c, 2D grid structure
obtained via DLW in a photoresist containing Irgacure 369 (a), a mixture of Irgacure 369 and ITX
in the ratio 3:1 (b), and ITX (c). A writing speed of 20 µm/s and a laser power of 30% is used in
each case. d,e Printing of the same grid structure using Irgacure 369 (d) and the combination of
Irgacure 369 and ITX (e) but at a higher laser power of 50%. f,g Corresponding grid structures
realized in NAG-based resists comprising Irgacure 819 (f) and a mixture of Irgacure 819 and ITX
in the ratio 7:1 (g), applying a writing speed of 50 µm/s and a power of 40%. h, Same as (g) but
fabricated at a writing speed of 500 µm/s at a power of 50%. This panel shows a side view at an
angle of 30°. Taken from Ref. 248

absorption efficiency. Moreover, for a fair comparison between different resists, only
structures fabricated with the same settings, i.e., writing speed and laser power, are
directly compared.
Figure 6.6a–c displays similar grid structures fabricated in NAG-based resists com-
prising solely Irgacure 369 (a), a mix of Irgacure 369 and ITX (b) as well as only
ITX (c). While the resists containing Irgacure 369 solely or in mixture with ITX
exhibit raised lines for the applied writing condition (20 µm/s writing speed and
30% laser power), barely no lines can be discerned for the resist relying purely on
ITX. Instead, a weak contrast between the written structure and the substrate can
be observed, implying that the applied laser power is below the power threshold
needed to obtain raised structure. Indeed, solid lines can be fabricated if a laser
power close to 100% is used.
Comparing both resists including Irgacure 369, it can be seen that applying the
sensitizer–photoinitiator pair results in a considerably better overall structure qual-
ity, especially at the edge of the structure (cf. Fig. 6.6a and b). This shows that the
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6.4 Deploying the sensitization effect for DLW

sensitizer–photoinitiator pair significantly outperforms both the photoinitiator and
the sensitizer when used alone.
Since Irgacure 369 crosslinks the methacrylated NAG more efficiently than ITX, this
advantage arises from maximizing the amount of radicalized Irgacure 369 molecules
due to the sensitization effect, as explained in the previous section. However, since
Irgacure 369 acts as a photoinitiator itself, a comparable amount of radicalized
Irgacure 369 molecules can be also obtained by increasing the applied power to 50%.
This indeed results in a similar structure quality using Irgacure 369 alone (Fig. 6.6d).
Conversely, the same power enhancement leads to a notable overexposure of the lines
in the case of the sensitizer–photoinitiator pair, as revealed in Fig. 6.6e. Altogether,
this demonstrates that the sensitization effect diminishes the needed dose, which is
advantageous since the writing speed at a given dose is limited by the maximum
laser power of the device used.
To show that the sensitization effect is rather universal than limited to a particular
sensitizer–photoinitiator pair or writing conditions, accompanying experiments are
performed for Irgacure 819 and ITX. Applying a NAG-based resist with Irgacure
819 at a writing speed of 50 µm/s, solid structures might be received for high powers
in the order of 90% (Fig. 6.2b), but not for a power as low as 40% (Fig. 6.6f). De-
ploying the corresponding sensitizer–photoinitiator pair, in contrast, raised lines can
be realized already at 40% laser power (Fig. 6.6g), where neither the photoinitiator
nor the sensitizer alone allows for structure fabrication.
It should be further noted that this effect is reached by adding only a minor amount
of ITX, here one part per seven parts Irgacure 819. This further proves the successful
adaption of the sensitization effect for DLW, as the sensitizer will be generally not
cleaved during sensitization, allowing to reuse the same sensitizer molecule several
times.264

While the maximum writing speed for delicate 2D structures in Irgacure 819 loaded
resists is restricted to roughly 50 µm/s due to the needed dose, writing speeds of
up to 500 µm/s become available if the sensitizer–photoinitiator pair is used instead
(Fig. 6.6h). This enhancement by an order of magnitude is the result of a significant
decrease of the required dose due to the sensitization effect, and thus highlights the
benefit of utilizing the sensitization effect for DLW.
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7 Outlook

While each of the issues explored in the last three chapters provides a starting point
for further research, this outlook is intended to mainly highlight the next steps in
the development of bio-based resists, as some of them have already been taken.
Nevertheless, possible further investigations resulting from the findings of Ch. 4 and
Ch. 5 will first be briefly summarized.
The novel mixing rule deduced here is currently limited to calculate the real part of
the effective refractive index for heterogeneous dielectric materials with negligible
absorption. Thus, in a subsequent step, the investigation can be expanded to eval-
uate the complex effective refractive index for structures incorporating also metallic
and absorbing materials. While the successful application of the new mixing rule
to non-cermet structures is shown for one example, a systematic analysis of the
influence of particle shape and size distribution would be worthwhile. In this, the
field of application could be delimited more precisely, while further modifications
might be found, which enable to include a greater variety of structures. Last but
not least, the slope of the empirically found linear function might provide a good
starting point to derive a mixing rule for large particles a priori.
In the context of this thesis, leakage from weakly localized photonic modes is found
to significantly contribute to the brilliant whiteness of ultrathin scattering media.
However, since coherent backscattering is a frequently observed phenomenon, it
is believed that the weak localization assisted scattering regime is not exclusive
for brilliant white structures but emerges in many other random media as well.
Investigating its occurrence for a great variety of structures could provide a more
general insight into the temporal dynamics of light transport and its relation to
the morphology of the underlying structure. For instance, this might be germane
to sensing through turbid media or random lasing action in disordered media with
gain.74,267,268 In addition, the observed long-living local hotspots offer the potential
for enhanced light-matter interaction, a quantity that is subject to optimization in
the field of solar energy harvesting or optical sensor applications, to name just a
few.38,67,269,270

While the sensitization effect is studied for two different sensitizer–photoinitiator
pairs and a specific monomer, there is no fundamental limit to these compounds.
On the contrary, other sensitizer–photoinitiator combinations might be found that
exhibit an even stronger sensitization effect. Since most photoinitiators are soluble
in common photoresist formulations, the sensitization effect can be straightforwardly
applied in a broad spectrum of resists. Moreover, highly reactive UV photoinitiators,
which are currently inaccessible to DLW because of their vanishingly small two-
photon absorption cross section at the wavelength used, may become available due to
the sensitization effect, as only the sensitizer needs to provide a sufficient absorption.
However, while the sensitization effect is beneficial in a myriad of applications that
demand large scale fabrication in a decent time, the use of one or even two photoini-
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tiators is often undesirable in applications that require biocompatibility due to the
cytotoxic nature of many photoinitiators.271 This issue is overcome in photoresists
which can be crosslinked without any additional photoinitiator. Such formulations
are received by attaching side groups to the underlying monomer that enable poly-
merization via two-photon absorption by the molecule itself.
While adding such side groups to obtain an alternative photoinitiator-free NAG-
based resist is desirable in the long term, the proof of concept of a photoinitiator-
free bio-based resist is done using cellulose diacetate (CDA) instead. In contrast to
NAG, the synthesis of cellulose-based resists is an established and well controllable
process,9,245 reducing the imponderables in the implementation of new functional-
ization concepts.
In the sections below, the main aspects of the synthesis as well as the first results of
DLW in photoinitiator-free cellulose-based resists are summarized. The presented
study was also done in cooperation with Maximilian Rothammer and Maximilian
Maier of Cordt Zollfrank’s group, who synthesized, functionalized, and characterized
the CDA derivatives. The outcomes of this work are published in Ref. 272 providing
all details of this study.

7.1 Synthesis of bifunctional cellulose diacetate derivatives

While polymerization of photoinitiator-loaded cellulose-based resists relies on a
radical chain-growth mechanism via methacrylic side groups, a different strategy
is used to obtain photoinitiator-free resists. The strategy’s foundation lies in a
step-growth mechanism using a thiol-ene reaction, as this reaction can be driven
without a photoinitiator273 and thiol-ene polymerization have been already success-
fully exploited for DLW.274,275 Both properties, however, are not yet combined in
a bio-based resist, i.e., the presented thiol-ene bio-resists for DLW still demand
a photoinitiator.275 Consequently, the approach shown in this section aims for a
functionalization that enables a thiol-ene polymerization without using any pho-
toinitiator.
Since the thiol-conjugated crosslinking results from the formation of thioether bonds
between thiol and alkenes,276 two distinct side groups must be added to the CDA
backbone. Here, two different bifunctional CDA derivatives are prepared, deploying
a thiol moiety and either an olefinic (CDA-SH 4-pentenoate) or a methacrylic side
group (CDA-SH methacrylate).
The corresponding synthesis consists of three steps, as schematically shown in Fig. 7.1
for CDA-SH 4-pentenoate. In the first step, using 3,3’-dithiodipropionic acid, a
monobenzylated asymmetric disulfide with one inert end and one reactive carboxylic
group is synthesized (Fig. 7.1, top), according to the procedure presented in the
literature.277 Since this disulfide compound is the center of the thiolation strategy
to introduce the reactive thiol group in the final step,277 it is attached to the CDA
backbone deploying DCC coupling with DMAP as catalyst (Fig. 7.1, center left). In
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Synthesis disulfide compound

DCC, DMAP

THF, 0 °C → RT, 16 h

THF  Tetrahydrofuran

RT      Room temperature

DCM  Dichloromenthane

Synthetic strategy

DCC, DMAP, 
disulfide compound

DCM, RT, 72 h 

DCC, DMAP, 
4-pentenoic acid

DCM, RT, 72 h 

DTT, TEA

CHCl3, 0 °C → RT, 
16 h

Figure 7.1: Sketch of the synthesis steps to obtain CDA-SH 4-pentenoate. Depending on the
degree of substitution R can be hydrogen, acetyl, disulfide substituent, olefin, or thiol substituent.
Adapted from the accepted manuscript version of Ref. 272 The figure is excluded from the CC BY
license of this thesis.

addition, an esterification reaction, also based on DCC coupling, is used to add ei-
ther the methacrylate or the 4-pentenoate functionalities to the backbone, as shown
in Fig. 7.1, center right for 4-pentenoate. Eventually, the thiol activation is achieved
by a disulfide cleavage using 1,4-dithiothreitol (DTT, Alfa Aesar) as a reducing agent
and triethylamine (TEA, Acros Organics) as a catalyst (Fig. 7.1, bottom).
A detailed description of each synthesis step can be found in Ref. 272 As in the case
of the NAG functionalization, the successful synthesis is monitored and confirmed
using FTIR and NMR measurements, as also exhibited in this publication.

7.2 DLW in photoinitiator-free cellulose-based resists

The CDA derivatives presented in the last section are solid, so a proper solvent
must be added to produce DLW-suitable photoresists. Although there are several
possible solvents, DMF is chosen because it is neither highly volatile like acetone or
chloroform, nor does it affect already polymerized structures as DMSO does.
Once the solvent has been selected, it is necessary to test various concentrations to
obtain a suitable viscosity. Applying the resist to the substrate with a syringe can
cause unwanted air bubbles in the resist if its viscosity is too high. On the other
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Figure 7.2: SEM micrographs of structures printed in photoinitiator-free cellulose-based resists.
a, Fabricated 2D line grid using CDA-SH 4-pentenoate. The magnified view shown in the inset
reveals one of the bulges observed on the lines. b, Printed four-layer woodpile structure deploying
the same resist. In both cases a writing speed of 100 µm/s and a laser power of 100% are applied. c,
2D line pattern obtained with a CDA-SH methacrylate resist. d, Four-layer grid structure written
in the same resist. The same writing speed of 20 µm/s is used for both structures while the laser
power differs from 80% (c) to 40% (d). In panel (b) and (d) a side view at 45° is depicted. Taken
from the accepted manuscript version of Ref. 272 The figure is excluded from the CC BY license of
this thesis.

hand, a drop of a highly fluid resist does not stay in form but tends to disperse during
a print job. This restricts the maximum height and leads to undesired dynamics
within the drop. Moreover, the viscosity also influences the radical diffusion within
the resist, which has an effect on the obtainable feature size and resolution.200

Studying different mixing ratios, a good trade-off between handling of the resist
and resulting structure quality is found for concentrations between 100 g and 140 g
CDA-SH 4-pentenoate per liter DMF. In the case of CDA-SH methacrylate, the
optimum concentration is found at a distinctly lower value of about 50 g/L.
The successful use of the thiol-ene reaction for photoinitiator-free DLW can be seen
in Fig. 7.2, displaying various structures printed in a CDA-SH 4-pentenoate resist
(Fig. 7.2a,b) and a CDA-SH methacrylate resist (Fig. 7.2c,d). Both resists enable
the fabrication of 2D structures with features sizes as small as 220–230 nm, however,
in terms of structure quality the CDA-SH 4-pentenoate resist (Fig. 7.2a) is clearly
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surpassed by the CDA-SH methacrylate resist (Fig. 7.2c). While printed lines in the
former suffer from the frequent formation of bulges (cf. zoomed view in Fig. 7.2a),
well-defined, sharp lines can be realized using CDA-SH methacrylate.
The observed difference can be ascribed to the distinct character of the added side
groups. Compared to the methacrylic side group, the terminal double bond of the
olefinic group is sterically less inhibited, resulting in an enlargement of the range
where the polymerization can be induced. In combination with the omnipresent dif-
fusion of radicals, unwanted polymerization tends to occur between features written
in close proximity to each other. As a result, the formation of bulges in such line
grids is facilitated while the achievable resolution is diminished.
Due to this issue, fabrication of filigree 3D structures is a challenge. While the
general shape of the four-layer woodpile structure printed in a CDA-SH 4-pentenoate
resist can be recognized in Fig. 7.2b, bulges also emerge here, hampering a better
structure quality. As in the case of 2D structures, the CDA-SH methacrylate resist
also enables a better structure quality in 3D. The four-layer grid structure displayed
in Fig. 7.2d indeed exhibits some lines that bridge the underlying lines, showing
the fundamental potential for 3D fabrication. However, unintended polymerization
also occurs with CDA-SH methacrylate, which, although not as pronounced as with
the other derivative, results in small filaments between adjacent features. As a
result, the total structure height of delicate 3D architectures is currently limited
to a few microns, as a polymer film starts to overgrow larger structures. Bulky
structures, nevertheless, can reach larger heights, e.g., simple blocks taller than
10 µm are successfully fabricated.
Despite some further improvements are necessary to print complex 3D architec-
tures, the results indicate the potential of the proposed functionalization to create
photoinitiator-free bio-based resists for DLW. It further should be noted that re-
markably small feature sizes in the order of 230 nm are not only obtained for 2D but
also for simple 3D structures (cf. Fig. 7.2d). This is just about the half of the mini-
mum feature size reached with current photoinitiator-loaded cellulose-based resists,9
underlining the fundamental potential of using thiol-ene polymerization to improve
existing photoresists.
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8 Conclusions

In this dissertation, the brilliant white scales of the beetle Cyphochilus are con-
sidered from two different viewpoints, namely from an optical and from a material
perspective. Regarding their optical properties, first a new mixing rule to accurately
calculate the effective refractive index in the presence of large features is deduced.
Subsequently, different light transport regimes that occur in the scales are identified
and their respective contribution to the whiteness is assessed. The material aspect
of the scales serves as an inspiration for the development of novel bio-based pho-
toresists for 3D microfabrication in the second part of the thesis. In addition, this
work presents an innovative concept for enhancing writing speed by transferring the
sensitization effect from UV curing to DLW.
To derive a new mixing rule, FDTD simulations are used to systematically inves-
tigate the influence of the particle size on the resulting effective refractive index.
For this purpose, the condition that the forward scattering amplitude vanishes in
the case of index matching between the effective medium and the background is
implemented for the first time in FDTD simulations. This approach enables a fast
and accurate evaluation for arbitrary structures and any feature size as long as the
investigated medium behaves as an effective one. Indeed, in the regime where the
Maxwell–Garnett mixing rule is valid, the simulation results are in perfect agreement
with the theoretical predictions both for the real and imaginary part.
For composite media with particles sizes beyond this regime, the prediction of the
Maxwell–Garnett mixing is shown to break down as expected. Instead, for sphere
size parameters between x ≈ 1 and x ≈ 2, it is found that the effective refractive
index can be described by a simple quadratic polynomial function in good approx-
imation. The coefficients of this polynomial are retrieved from an empirical linear
function. Therefore, an easy-to-use mixing rule is presented that greatly extends
the current upper bound of such rules (x ≲ 1) to encompass particles approaching
the boundary of the geometrical optics regime.
Originally, the here reported mixing rule is derived for random sphere packings.
Nevertheless, it is exhibited that this mixing rule is also applicable to complex
interconnected structures composed of non-spherical particles. Testing several real-
ization of the DBS structure, i.e., a model of the white beetle scales, reveals in all
cases good agreement between the simulation outcomes and the prediction of the
presented mixing rule. Common mixing rules such as those of Maxwell–Garnett and
Bruggeman, in contrast, fail to yield the effective refractive index correctly. Since a
large spectrum of natural as well as artificial structures feature particles in the scope
between x ≈ 1 and x ≈ 2, the novel mixing rule is believed to replace the widespread
Maxwell–Garnett and Bruggeman mixing rules in a myriad of situations.
The influence of coherent effects on the brilliant whiteness of the beetle scales is
studied experimentally and in simulations. Using spectromicroscopy measurements,
the time-resolved electric field is reconstructed, which shows a characteristic beating
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behavior for light scattered from the scales. Analyzing the electric field by means of
the Wigner distribution function and the short-time Fourier transform, two different
light transport regimes are identified. An initial diffusion-like transport is followed
by a regime where scattering via leakage from weakly localized photonic modes
dominates. It is further shown that the transition between both regimes coincides
with the round trip time of a light pulse propagating through the scale, assuming
the scale acts as an effective medium.
Similar experimental results are obtained for a direct laser written DBS structure.
Compared to the original DBS model, the structures must be scaled up to allow for
fabrication. As a result, the same two transport regimes as in the scales are found,
but on an accordingly shifted time scale.
The distribution of resonance lifetimes measured for the scales as well as simu-
lated for a computer model of the intra-scale network and the DBS model follows
in all cases a similar log-normal shape, a typical signature of weak localization.
Simulations are additionally used to verify the identification of the experimentally
observed transport regimes. While the initial diffusive transport is well modeled by
fully coherent FDTD and incoherent Monte Carlo simulations, the latter fail to cor-
rectly describe the behavior after the characteristic pulse round trip time is reached.
Moreover, FDTD simulations exhibit persistent local hotspots that are attributed to
the antinodes of randomly closed scattering loops, giving rise to the experimentally
observed resonances.
Since many functional structures found in nature, such as the white beetle scales, are
composed of chitin, its monomer unit N-acetyl-D-glucosamine is modified to enable
its use for 3D microfabrication via DLW. To obtain a crosslinkable compound,
a methacrylic side group is attached to the NAG backbone via an esterification
reaction. The successful functionalization is confirmed performing FTIR and NMR
measurements on the reagents and products. Applying photoresists composed of the
functionalized NAG, a proper solvent and photoinitiator, various microstructures are
realized, showing micron resolution, submicron feature sizes and the ability to print
free standing 3D structures.
In contrast to existing animal carbohydrate-based resists, the reported resists rely on
a non-hydrogel formulation and thus establish a new class of photoresists. This first
realization of these resists may pave the way for synthesizing more complex animal-
based carbohydrates like chitin to allow for microfabrication. Such rigid materials
are frequently deployed in the animal kingdom as the fundamental building block
of functional structures. Thus, the opportunity of 3D printing these materials offers
new routes to replicate these structures for analyzing their functionality or for bionic
tasks.
While a single photoinitiator is sufficient to crosslink the NAG-based resists, it is
demonstrated that the addition of a suitable sensitizer can enhance the maximum
writing speed by up to an order of magnitude. To transfer the sensitization effect
from the renowned case of one-photon absorption in UV curing to two-photon ab-

100



sorption in DLW, suitable sensitizer–photoinitiator pairs must be selected. For this
purpose, an open z-scan setup is used to measure the two-photon absorption cross
section of various photoinitiators identifying two appropriate pairs, each using ITX
as sensitizer and either Irgacure 369 or Irgacure 819 as photoinitiator. While both
pairs are capable to increase the maximum writing speed in NAG-based resists,
the effect is believed to be also beneficial for other DLW-suitable photoresists. In
addition, due to the universal nature of the sensitization effect further sensitizer–
photoinitiator pairs might be found that outperform the current ones.
Finally, a short outlook is given on using a thiol-ene reaction to receive bio-based
photoresists that enables DLW without the need of any photoinitiator. In this,
thiol moieties and either olefinic or methacrylic side groups are added to a cellulose
diacetate backbone to prove the concept. Beside developing a proper synthesis
scheme, the successful fabrication of first structures via DLW in photoinitiator-
free cellulose-based resists is shown. Although the current synthesis requires some
improvement to also enable complex, large scale 3D architectures, the feasibility
of the fundamental concept to shed cytotoxic photoinitiators in bio-based resists is
confirmed.
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