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ABSTRACT

We dicuss how kinetic and aerodynamic descriptions of a gas can be matched at
some prescribed boundary. The boundary (matching) conditions arise from the
requirement that the relevant moments (p,u,...) of the particle density function
be continuous at the boundary, and from the requirement that the closure relation,
by which the aerodynamic equations (holding on one side of the boundary) arise
from the kinetic equation (holding on the other side), be satisfied at the boundary.
We do a case study involving the Knudsen gas equation on one side and a system
involving the Burgers equation on the other side in section 2, and a discussion for
the coupling of the full Boltzmann equation with the compressible Navier-Stokes

equations in section 3.

1. INTRODUCTION. The problems we are concerned with in this paper arise
naturally if one wants to predict, by computation. the flow around a space vehicle (shuttle)
reentering the atmosphere. The varying atmospheric conditions at different heights lead to
specific problems: At heights above 120 km the air is so thin that collisions between its
molecules can safely be neglected (Knudsen gas): between 70 and 120 km. collisions become
significant. so we cannot use a Knudsen gas model anymore. On the other hand, we are (in

regions of significant size. which decrease as we lose altitude) too far from thermodynamic
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equilibrium to use exclusively classical aerodynamic equations- the latter only become a
reasonably accurate model at heights under 70 km. except in a kinetic boundary layer
around the shuttle. which remains in principle at every altitude.

The implications for numerical simulation are that we have to solve the Knudsen gas

equation

Wf+v-Vef=0 (1.1)

in the first regime. As easy as it is to solve (1), its solutions are very sensitive to the
boundary conditions on the shuttle- we have to pay careful attention to modelling the gas-
surface interaction correctly [3].

The middle domain is where we have to use the Boltzmann equation, whose numerical
solution requires large effort in spite of the typically smooth flow patterns — the Reynolds
number, being inversely proportional to the Knudsen number, is relatively small. Boundary
effects become less significant as we lose altitude.

Why at all is it necessary to use the Boltzmann equation in this regime? There are
in fact two reasons. First, observe that we are still in a regime of low density, and the
Boltzmann collision term contains a factor ﬁ, where A'n is the Knudsen number, which
goes to zero as the density grows. In other words, small density means slow thermalization
from collisions, i.e. we cannot assume to be (or remain) near thermal equilibrium. Second,
the space vehicle itself, via boundary effects, will cause significant deviations from the equi-
librium distribution. For example, in the “bow shock” in front of the shuttle, one expects
nonequilibrium in spite of high densities, because the bow shock is caused by the encounter
with and reflection from the front end of the shuttle by molecules. Strictly speaking, the
whole Knudsen layer around the vehicle requires a kinetic treatment. Worse, high den-
sity means large computation times, because large numbers of particles are needed for the
simulation. _

The Euler or Navier-Stokes equations which are used in the third (lowest) domain
can (in principle) be solved by existing and tested algorithms, where, however, more and
more complex structures emerge at lower altitudes near the surface of the shuttle. These
complexities lead to significant numerical difficulties. The boundary conditions, on the
other hand. become simple (e.g., for the Navier-Stokes equations, after some complicated
slip conditions, ultimately “no slip™). )

In a transition regime between the Boltzmann equation and the aerodynamic equations,
the latter, wherever they are justified. are usually solved with less effort.

These considerations lead to the general task of coupling codes for the simulation of the
Boltzmann equation on the one hand and the aerodynamic equations on the other hand.
The following problems arise: _

(T} At every height. identify the domains in position space which allow aerodynamic model-

ing. and identify those where a Boltzmann simulation is required or not more time-consuming
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than an aerodynan{ic calculation.
(I1) Once these domains are known (we will label them as (A) for aerodynamics and (B) for

Boltzmann), one has to address the problem of coupling the solution procedures.

Problem (I) is the validity problem. problem (I1) is the “matching” problem; (I) and
(IT) together are the domain decomposition problem.

The validity problem is intiinately related to the question under what conditions, and
how well, solutions of aerodynamic equations approximate solutions of the Boltzmann equa-
tion. This question is typically addressed in the context of Hilbert or Chapman-Enskog
expansions, which yield aerodynamics as an approximation of Boltzmann equations. For
example, an extremely difficult question arising here is how the approximation errors in the
equations influence the approximation errors in the solutions. Only preliminary results for
this exist ([5], [6]). Gropengiesser [4] has suggested an approach which is applicable to the
space shuttle simulation.

Here, we are concerned with the matching problem (II) for the time-dependent case.
Suppose that our domain decomposes at time 0 into two subdomains A and B, where we know
initial data for the aerodynamic and kinetic descriptions respectively. The whole domain
Q2 = AUB will partly be bounded by the spacecraft, partly by an artificial exterior boundary.
Problem (1I) is then to find appropriate “transfer” boundary conditions on 8ANaAB.

We sketch a method which, to our knowledge, is the only one being used so far ([7], [10],
[11]). A solution to the aerodynamic equations is computed in the whole domain and then
used as “zeroth” approximation for the kinetic equation. This gives macroscopic quantities
p° u® and T (density, bulk velocity and temperature) everywhere, in particular at the
boundary between A and B. If one now wants to “improve” this solution by solving the
Boltzmann equation, one uses for the ingoing particle density at the boundary a suitable
kinetic density based on the macroscopic quantities p°, u® and T°. For the Euler equations,

the Maxwellian

£ M v—u’ _ p° e {”” - uoﬂz}
27RT9)372 " \arTo/) ~ (2xRT)372 “P V" 3RTO

B

is a natural choice. For the Navier-Stokes equations, the so-called Navier-Stokes density

40 L
fus[p® w®, T%(v) = Za,-(po. w®, T, ©p° Vul, VT%) b (-—L,-—QR;O) M (_t'_ggl;:o)
(1.2)

is suggested by the formal derivation of the compressible Euler equations via the Chapman-
Enskog expansion. Here. the b; are certain Sonine polynomials. We mention the problem
that fys is. in the usual form. not necessarily nonnegative. Lukschin [11] has suggested a

simple modification to avoid this difficulty.



Given these densities at the boundary. we know in particular the incoming density
there. and can therefore solve the Boltzmann equation (in pririciple) in B. This solution will
then determine the distribution density of the gas leaving B. and. unfortunately, this density
will in general not be of the form prescribed above (i.e. Maxwellian or fxs associated with
p°. u% etc.). Recall that we are specifically interested in the case where solving the Boltzmann

equation in B is essential. i.e. where the density deviates significantly from equilibrium.

We obtain a new density distribution for the particles leaving B and therefore new
macroscopic quantities p!, u'and T!. The next step is to solve the aerodynamic equations
in A with p!, u! and T! as boundary conditions — whether this is possible depends on the
type of aerodynamic equation (for the compressible Navier-Stokes equations, u' and T
can indeed be prescribed at the boundary) and also on the flow conditions (e.g.. if u! is
directed from A into B, we cannot prescribe p!, which solves the continuity equation, on the
boundary. See the case study in section 2 for a discussion of this phenomenon). In any case,
we possibly get new boundary values p?, u?, T2 by solving the aerodymanics equations in
A, or we keep p!, uland T'. Forming the Maxwellian or Navier-Stokes densities with these

macroscopic quantities, we solve the Boltzmann equation again in B, etc.

This procedure implies an iteration between Boltzmann and aerodynamic equations,
a very lengthy and expensive proposition. If this procedure converges (and there is so far
no convergence proof), we would obtain conditions for the flow at the boundary separating
A and B which would guarantee continuity of p,u and T there. The isolines for density,
Mach number and temperature would then be without jumps—the final objective of such an
iteration. Further smoothing of the isolines can be achieved by adding an intermediate layer
between A and B. This is better from a computational point of view, but hardly different

conceptually [10].

We must ask whether continuity of p, u and T across the boundary is really the right
thing to ask for. This question has been investigated in the context of a Knudsen boundary
layer, inside which a linearized Boltzmann equation has to be solved [9]. However, the gen-
eralization of Golse’s theory to our case of interior boundaries leads to additional problems,

as pointed out by A. Klar (personal communication).

The idea is to visualize in A. near the boundary, a boundary layet of width e¢. This
boundary layer is rescaled by a transformation y = Z; after taking the limit ¢ — 0. one
obtains a half-space problem for the linearized Boltzmann equation, which forms a natural
interpolating problem between our two descriptions. For this linearized half-space problem,
the inflow from B is given by the solution of the full Boltzmann equation. Under some
restrictions, it is shown that the solution of the linearized problem at infinity (i.e. at the
other end of the boundary laver) is an aerodynamic density distribution with specific values
for p.u and T, which differ in general from the values at the boundary of B. If these new

macroscopic quantities are used as boundary values for the aerodynamic equations. there
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will therefore be “jumps”, i.e. significant changes in the aerodynamic quantities over the
width of the boundary layer.

We should not be surprised: Why should continuity give the best global result?

However. even if we neglect these unresolved theoretical questions of the approach,
there remain almost unsurmountable computational difficulties. It is exceedingly hard to
calculate the new p, u and T'; and once they are there. we have to resolve the question of how
to match the solution in A and B such that the “right” jumps will emerge. The last question
is the one we are really interested in; it is independent from the continuity requirement, and
we will therefore simply assume continuity in the sequel.

We approach the problem from a formal mathematical point of view. Different equations
do govern the evolution of the system in (A) and (B), but the equations in (A) follow from
the equation in (B) as moment equations plus a closure relation. Hence we can summarize:
A transport equation () holds in region (B), and the equations (a) holding in (A) are
simply moment equations of (,3), complemented by a closure relation. The solution of (3) is
a density function f(t,z,v), which yields in particular the relevant moments p|g, u|g and
T|s; in (A). the equations (a) will typically directly yield p|, , u|, and T|, (but as we
shall see, this may not be true for some choices of the decomposition and some examples of
aerodynamic equations).

On the boundary we insist on a match, i.e. the moments calculated from both sides

must define continuous or even differentiable functions.

2. A SIMPLE CASE STUDY. Our objective in this section is a coupling of the simplest
kinetic equation, the equation for a Knudsen gas in one dimension, with simple aerodynamic
equations. Let A = {z;z < 0}, B = {z;z > 0},

8 f +v0:f =0, f(0,z,v) = fo(z,v) in B (2.1)
(2.1) yields equations for the moments N;(t,z) = [t/ f(t,z)dv, j=0,1,2,...,
6,.\',- +6,.‘\Fj+1 =0 ;=0,1,2,... . (22)

If all moments of f make sense, then (2.2) follows from (2.1). Conversely. (2.1) can be
reconstructed from (2.2) under certain assumptions on f. In this sense. we call (2.1) and
{2.2) equivalent.

In the domain (A), we now close the infinite system (2.2) by choosing a closure relation.

To be consistent with standard notation, let p = Ny, pu =.N| and set
plt.z):= [(v —u)f(t.r,v)dv

(the notation p is here chosen because of the relation to pressure). The closure relation we
discuss is

p(t.r) = Na — 2uN| + u’No = p(t)
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in A or
o:p=0 (2.3)
in A.i.e. we assume that p does not depend on r there. Alternatively, we could assume the
validity of a state equation
Pz = p'(plp:
in A, and the subsequent calculations would change slightly (but not significantly). We
confine our attention to (2.3) for simplicity. _
By using the definition of Ny, V|, p and u, we see that the closure relation (2.3) can
also be written as _
, 8: Na = 8:(u’p). (2.4)
The first two equations in (2.2) then form a closed system and read
Oip + 0z (pu) =0
O(pu) +9: N2 =0 (2.5)
8: N2 = 8- (v’p)

or, assuming enough regularity,
Op+ 3:(pu) =0
(2.6)
Siu+ ud;u=0
i.e. we_have the continuity equation coupled with Burgers’ equation. Equation (2.1) is

uniquely solvable in (B), provided that the incoming flow is given at the boundary, i.e.
f(t,0,v) = F(t,v) forv>0. (2.6a)
The solution of (2.1) in r > 0 is then '
fo(z=vt,v)forz—vt >0, ie v< -E—
Jtz) = { Ft=Z v)fort—2>0, ie v>2
v v t
For r = 0 we get :
f(t,0,v) = fo(=1t,v)
for v < 0, and .

fos(—vt,v) for v < 0

B,f(t,O,U) = Fg(t,v) . (——:—) forv>0 ‘

(2.7)

We need this later.
The system (2.6) is uniquely solvable in (A) if we have initial data p(0,z) = po(z),

u(0, 2) = up(x) and if we assume that up(z) > 0.

Remark. Here. “uniquely solvable” is meant in a local sense. We shall assume that there
is a time T > 0 such that the initial value problem for (2.6) is classically solvable, via the
method of characteristics, in A x [0, T]. If ug > 0 in A, the characteristics starting at t =0
have positive slope and therefore “cover” the region {r < 0} x [0.7]. In particular, this
defines the boundary values ['(t) := u(t.0) and P(t) := p(t.0).

6



See Figure 1.

Figure 1

A characteristic for 8u + ud;u = 0 passing through (£, r) satisfies an equation a = f_;r{,
and it therefore must have left the line t = 0 from z(§, 7) = § — ar < 0. Here, the slope a

is given by the initial value and the equation, as

o= ug(f — ar).

We will assume that for every (£, 7) with £ < 0 and 0 € 7 < T this equation has a unique
solution a = a(€, r) > 0. Thus

u(€, 7) = uo(€ — alf, 7)7) = (&, 7).

The equation for p can be solved over the same characteristic base lines z = £ + a(t - 7),

but p is not constant along these lines, because
Op + ubep = —p0O:u

and so

pE.7) = po(§ —ar)exp {-[ O u(€ +ale —T1). a’)do'} .
0
The boundary values U(t) and P(t) on r = 0 are given by solving '
a = ug(—at).

This equation will determine a = a(t). and we can then calculate

U(t) = uo(—at) = aft)

t
P(t) = po(—at)exp {/ ur(aloc — !).d’)do’} .
0

-
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If ug(x) is negative and in particular ug(0) < 0, this method of characteristics will not
determine u and p in 4 x [0.T}: the method only works for r < ug(0)t (see Figure 2). In
fact, we can prescribe {" and P on r = 0. and they will then determine the solution of (2.6)
in ug(0O)t < r <0 as

u(r, t)y =10 (t -

where a is the solution of the last equation.

) =a(r.t),

a(r,t)

4

Z
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Figure 2

The difference between the two cases up > 0 and ug < 0 is that in the first case, the
macroseopic flow is from the aerodynamic into the kinetic regime, and the initial condition
alone suffices to obtain a unique continuation of p and u onto the boundary, whereas in the

second case, no such continuation is given — we have additional degrees of freedom.

The closure relation (2.4) should hold at the boundary if the transition from kinetic
to aerodynamic is to be meaningful there. A first glance at (2.4) suggests that in order to
discuss (2.4), we need methods to calculate u; and p; at r = 0. However, we shall later see
that the special closure relation which we consider here is such that we can actually satisfy
it without knowing u, and p, beforehand at r = 0.

However, their values there can actually be easily determined, as follows. If we assume
for the moment that the equations (2.6) still hold at z = 0, we can easily calculate u;(¢,0)
and p.(t,0) in terms of I’ and P: Solving u; + uu; = 0 for u, yields

U'(t
wlt,0) = - ) (2.8)
and from pu, + up; = —p, it follows that
Pt + pur -P + P%
Pz |r=0 = - =
u r=0 2 (29)
_=UP+PU" _ (f)'
=— 7 = )

The validity of the representations (2.3-9) actually follows also from the solution represen-

tation given earlier and thus implies that our equation remain valid at r = 0. We formulate

this as a Lemma:
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Lemma. u (t.0) = —‘L—(“'—)’ pe(t.0) = _.({E,) ]

Proof. From u(r.t) = U (t - ;j—”) = a(r.t) we conclude that u; = a,. If we set
G(t.r,a) .= U(t — £) — a, the function a(t, r) is implicitely defined from G(t.r.a) = 0.
The implicit function theorem guarantees differentiability of a. and from G; + G, -a, =0
it follows that

By using the definition of G, it follows that G.(t.r.a) = U'(t - i)(é), that G4(t, r,a) =
Ut = £}. =% — 1 and finally that

o a? -

al”(t — £)

I 9t = _-'_'__"L'_
o (-l' ) J?U'(t—f}—az
For z = 0, the identity a(0,t) = U(t) implies

_u

uz(0,1) = az(0,t) = TR

Furthermore, from

plz,t) =p(0,t = i‘)eXP (— [:‘ ur(a(r —t+ 2), r)dr)

we find

t
arp(ost) = P(t)a: (_'c"_(":_t)) + P(t) 'ax (-/ ux(ﬂ(f A E)! T)df) .
1 r=0 t—%

Now use that

r —a + ra, 1
a — —  e— = —- —_—.
i ( G(J.', t)) =0 a? =0 o Tras =0 U(t)

The remaining derivative also simplifies at r = (0. We obtain

P 1

p(0.1) = T + Pu.(0.¢) (nz—)
PP
r U

--(¢)
= )
A brief way to summarize this result is to state that the Poincaré- Steklov operator for
( P ( p(0.1)
& ur(0.4) )

9

L
Lr

our problem. defined as



is given explicitly as

We have now solved problems (a) and (.3) separately in the regions (A) and (B) and
finally face the “matching” problem. The situation is as follows. In (A) we have equations
(2.5), whereas in (B) we have only the first two equations of (2.5), and .V> is given via the

solution of a kinetic equation. At r = 0, we require the "matching” conditions

ola = plg (2.10)
ul, = ulg, (2.11)
and, most important, that the boundary values at # = 0 of the solution in (B) will satisfy
the same closure relation as the solution of the equations in (A), i.e.
lim(8: Na — 8- (NoN1)) =0 (2.12)
F AN
(compare this with (2.4)). Please note that (2.12) can well be violated if

ll.l{l‘é(Nz — NgNy) =0. (2.13)

The closure relation is (2.12), not (2.13)!

Now note that -
.’\’2 - “\"0.}\'1 = / (U - U)zf db‘,

20

hence

8r(Ny — NoNy) = =2u, f(v —u)fdv+ /(v— u)?f: dv.

The first term on the right is zero by the definition of u (this is the reason why we do not

need the value of u, at r = 0), and our closure relation therefore reduces to

| /(U —u)’fo(t,z,v)dv =0 (2.14)

with .
u=ul,=ulg=U
by (2.11).

The equations (2.10). (2.11) and (2.14) yield the following conditions for P, U and F
from (2.6a):

0 *x
P(t):j fo(—rt‘v)dr-}-/ F(t.v)dv (2.13)
- 0
0 x .
P(!){'(t):/ l‘fo(—t‘f.l')dl‘+] vF(t. v)dv (2.16)
—-C 0
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N i 4]
/ (1-—['({))'-'&:'}..).&- =] (1'—['(())Zagfq(—vt‘r)dr. (2.17)
0

-

Let G(t,v) = %F(t‘ v) and G(t) = fox v*G(t, v)dv. Then (2.15-17) read as

Gi(t) = P(t) - / fo(—vt v)dv (2.18)
0
0
Ga(t) = P(t)U(t) —f v fo(—vt,v)dv (2.19)
0
8:Gy — 2U8,Gy + U?6,Gg = / v2; fo(=rt.v)dv
= (2.20)

0 0
- 2('/ vo: fo(—rt,v)dv + L'Z/ Oz fo(—vt, v) dv.

Obviously 8; fo(=vt,v) = 8, fo(—vt,v) - (—1). By substituting this in the right hand side of
(2.20), we get

d 0 : d 0
- (Gg +f v fo(—vt, v) dv) -2U— (Gl +] fg(—vt,v)dv)
dt oo dt oo
2 d 0 dv
[ — - — ] =
+ U at (Go-{--/-oofo( vt, v) L') 0,
and by using (2.18) and (2.19) here this simplifies to

d .. . 2 d ° dv _
&—;(PD)—-2UP+U T (G0+j;m fg(—vt.u)T) =0,

% (Gg +f_2o fo(-ut,v)i‘;—) = % (5) : | (2.21)

Please note that in order to justify these calculations, we have to make the assumption

or

that %fo(—vt, v) is integrable over (—oo, 0), an assumption which is, for example, violated for
fo(z,v) = e~v’. Integrability of 19, fo(—vt, v) holds provided that 8; fo(—vt, v) is integrable
(clearly, v = 0 is the critical value).

We will work either under the assumption that % fo{—vt, v) is actually integrable over
v (by truncating fo in a neighborhood of v = 0, this can always be enforced), or that fy be
independent of x (as in the above example). In this latter case clearly %agfo(—vt.v) =0,
and the problem terms disappear from the start.

Motivated by the definition of G;, we now set

Gi(t) = jo v fo(—vt, v) du.
—x
Then (2.18), (2.19) and (2.21) become
Gi(t) = P(t) - Gi(t)

Ga(t) = P()U(t) — Ga(t) (2.22)
d - d /P
g (GotGo) =4 (c—) |
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Theorem. [f the "maiching conditions” (2.22) are satisfied. then even the derivatives of p

and u are continuous at r = 0.

Proof. In domain (B) we have

rft ac T
p(l,r):/ fo(.r—vt‘r)dv+/ F(t - =, v)dv,
- rft v
and therefore, assuming the reasonable normalization

fol0,v) = f(0,0,v) = F(0,v),

0 oo d.
p,(t,0)=/ fgx(—vt,v)dv—-/o F,(t,v)Tb

d = d
= —EGo(‘f) - EGo(t)

-_4/(F

Todt \U

= pe(t, 0)',4 .
Similarly, in the domain (B)

zft .00 z
- pu = j fo(z — vt,v)v dv+j vF(t = —,v)dv,
—-oc zft ‘ v
hence
0 -]
(pu),|z=nzj fg,(—-vt,v)vdv—/o. Fi(t,v)dv
-0

d
= wEP.
On the other hand, in (A)
(pu)z = pru + puc,
hence 4P i
(pu)elo = —5; (g) U - P
- _P

The Theorem follows from this.

The assertion of this Theorem follows also from the simple observation that u. and p;

at r = 0 can be calculated from {" and P via u; = —§ and p; = —4 (£). These identities

hold at = = 0 also from the kinetic domain, because by our closure relation
Ui+ lu =0
Po+ Pu,+Up: =0

at r = 0.
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The equations (2.22) are equations for the functions [ (¢). P(¢) and Git,v) = .I_F“- ).
The G; depend only on the initial value fg.

We briefly discuss the difference between the two cases up < 0 and uy > 0 in the domain
(A). If ug > 0, then the intial values determine the solution in domain (A) completely as
far as the method of characteristics is applicable (the formations of shocks is a phenomenon
which can be discussed. but which we will not consider here). In particular. our assumptions
then imply that U(t) and P(T) will be given for 0 < t € T, and U/(t) > 0. Hence the system
(2.22) is then a system of equations for F.

If up < 0, this is not the case. " and P can be prescribed arbitrarily (smooth for ¢t = 0
at best) on r = 0, and there are infinitely many ways to match the two equations. This
seems unreasonable from a physical point of view: The reduction at t = 0 to p and u in the
domain (A) means that we lose all information about the domain u{0}t <z <0,0<t<T.
This is unacceptable for our concept of “matching”.

The remedy we suggest is to choose a different boundary in this situation, e.g. the
moving boundary given by r = u(0)t instead of * = 0. The boundary moves then with
the flow; from the point of view of the aerodynamic observer, we do not accept boundaries
lagging behind the flow.

Specifically, if u(0) = ag < 0, then r = ayt is the new boundary. If the macroscopic

equation holds on this boundary in the sense of characteristics, we have
U(t) = u(aot,t) = u(0) = ao.

P(t) = p(apt,t) is given similarly.
If Fis given on the new boundary, the solution in domain (B) = {(z,t); a0t < 2,0 <
t < T} is then
f(t, aot,v) = F(t,v)

for v > ag, and

. . I
folr =1t v)ifr~vt>0,1e v < n

[t z,v) = - r—ut r—ut F 4
F( ,v) if >0, ie. v>=2>ap
ag — v g — v t

Therefore,
fos((ap = v)t,v) if v < ag

of Y=
g(t,aot. l) = { Ft(t,v)

The first two equations of (2.22) become

if v > ap.
Gp — U .

P(t) = jac fol(ap — v)t, v)dv + /x F(t.v)de
T o (2.23)

P (1) = /‘00 tfo((ao — v)t.v)de + /w vF(t.v)de

-0 Qg
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and the third equation,

af/x("‘“ff{f-x-‘v)dv =0,

oo

r=apt

vields after substitutions

/:x (» - L"(t))z Fi(t,v)- f:}o =f_°° (n - 6’(:))215,((00 — )t v} dv.

]

Setting U'(t) = U(t) - ao (the velocity relative to the boundary), F(t, w) = F(t, w+ag) and

Gox(t) = f_‘ fo(—wt, ag + w)uw*~! du we arrive after some sunpllﬁcatlon at

Gi(t) =f0 F(t,w)dw = P(t) - Go (1)

Ga(t) = /;w wF(t, w)dw = P(t)U(t) — G at) (2.24)
Golt) =_/0 F(:w) dw = fg; — Go.o(t),

L.e. exactly the same equations as before, where we simply write U — e for U, F(t,u+ ao)
for F(t, w) and fo(z, w+ ag) for fo(z,w). Note that after the transformation /(t) and thus
U(t) will actually be constant.

We return to the equations (2.22). In the sequel, we will assume that L' and P (U and
P respectively) are given. Then the equations (2.22) are 3 equations for F(t,v), equations
which do of course not determine F(t,v) uniquely. We have to restrict our attention to
special classes of F’s such that (2.22) becomes uniquely solvable in each class. We suggest

three possible such classes below.

(I) Assume that G(t, v) is Maxwellian, i.e.
F(t,v)=v-Ae™ =
Equations (2.22) become

f =B gy = P(t) - Gu(t) = Hi (1)

“f S g = POU () = Gat) = Halt)

] ;u-am' _ Eg_; - Gn(t) +C, = Ho(t).

Here. C') is an integration constant arising from an integration of the third equation of
(2.22).



It 1s not immediately clear whether these three nonlinear equations have solutions -A(t),

B(t) and C(t) with the necessary additional requirement 4 >0, C' > 0.

(II) A second class which we have investigated is of the form
F(t,v) = a(t)e M y(v),

where a. .3 and ) are three functions to be determined. Ve have succeeded to formally solve
the system (2.22) for this ansatz, by using Laplace transform methods and techniques from
the theory of ordinary differential equations. We omit these details, because their practical

significance is presently unclear.

(I1I) The third and for practical calculations promising class are discrete velocity models,

defined by the form
N
F(t,v)=Y_ a;(t)s,,

i=1
where the vj, j = 1,..., N are fixed velocities such that 0 < v; for all j and such that v; # v;
for i # j. For this case
N N N
Golt) = —a;(t), Gi(t) = a(t), Ga(t) = vjaj(t),
° J; v J ) ng 7 Jz::l f Rt

and defining 3; = %;L, we obtain a system of 3 equations for the j3;:

Je G
11...1 0
Ba
r] Ug 1Y =| G
T ) G2
- BN
For example, in the case N = 3 we have 3 equations for three unknowns, and as the

determinant of the matrix is in this case
{va — vi){va —v2){v3 — v1) # 0,

the system is uniquely solvable. Please note, however, that we insist on nonnegative solu-
tions' The velocities vy, . ... vy must therefore be chosen such that nonnegativity of the a;’s
is true. For N > 3, there may well be more than one nonnegative solution, and we have
the freedom to choose additional criteria to select one; this freedom is probably useful in

practical calculations. Investigations to this end are planned for future work.

3. THE GENERAL CASE. We now consider the more realistic and more general situ-
ation of three dimensions, where 4 = {r € ®;z; <0} and B = {z € %, z; 2 0}. In B,

we assume description of the gas by the Boltzmann equation
df+rv-Nof=QUff) (3.1)
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where at t = 0 an initial density f(0.r.v) = fo(r, v} is given. In order to be able to solve
(3.1) (even in principle). we need in addition data about the particles entering the domain

B at ry =0, ie. about f(0.r2.r3.v.t) for vy > 0. Setting F = (r1.r3), we write
F(t.z.v)= f(t,0,% v).for v; > 0.

The boundary density F may be coupled with the density of the particles leaving B via a
boundary condition

v F(t.r.v) = / R(v' — v)ry f(t,0,F,0")dv'.
v <0

In the sequel, however, we will treat F as a boundary condition which is independent of

the interior solution of the Boltzmann equation. This is consistent with the concept of an

artificial “interior” boundary. As usual, we set

p(t,r):/f(t,.r,v)dv
u(t,z) = %fvf(t,z,v)dv

and —
pij = /(Us' —ui}(v; —u;) f(¢, z,v) dv.

From the Boltzmann equation, we obtain by integration in the usual way and proper use of

the collision invariants the moment equations

dep + div(pu) = 0

3 3.2
6g(puj)+za,.(pu;u,' +p.‘j)=0 (32)

i=1
J = 1,2,3. We will confine our attention to this system of 4 equations for more than 4
unknowns.
As in the case study done in the previous section, we close these equations in the
domain (A) by adding a closure relation. The closure relations leading to the compressible

Navier-Stokes equations are

3 3
Z Oz, pij = Z a:, (pé.-_,— — (O, ui — Bz, u;) + gp div unS,-j) (3.3a)
i=1

i=1
(for u = 0, these closure relations lead to the compressible Euler equations), and we only

consider the isentropic case by adding a state equation

p=p(p). (3.3h)
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We choose to write the closure relation in the differential form (3.3a). similarly to the way
in which we chose a differential identity as closure relation in the case study:

Summarizing, we have equations (3.2) and (3.3) in domain (A). equation (3.1) and hence
equation (3.2) in domain (B): in domain (B) the pi; are not given by (3.3), but instead by
solving the Boltzmann equation.

As before, we impose the following matching conditions at r = 0:

—-continuity of pand uat r =0 |

-validity of (3.3) at £; = 0+, i.e. for the kinetic equation at r; = 0.

We find as before
/ f(t,O,.i,v)dv—i-/ F(t, z,v)dv = p(t,0,2) = P(t, 7). (3.4)
v <0 v, 20

However. the equation (3.4) is more subtle than the corresponding equation before, because

now the density f(t,0,Z,v) for v; < 0 will in general depend on F(t,z,v). The mapping

F(tlilv}ltuzo - f(t!ou lis v)lulsﬂ )

where fo is given in (B), 1s called albedo operator. If Q(f,f) = 0, i.e. in the case of
a Knudsen gas, the flux leaving the domain (B) is independent of the flux entering (B),
“and the albedo operator is trivial. If there is interaction, calculation of the albedo operator
requires solving the Boltzmann equation, a formidable task. Hence even the equation (3.4)
poses serious difficulties.

We suggest to overcome this problem by using the well-known procedure of “splitting”,
which allows us to decompose the Boltzmann equation for a short time interval into a free
flow part (including the boundary conditions), modeled by the Knudsen gas equation, and
into the spatially homogeneous equation, for which no boundary condition in space is needed.
This procedure is standard in numerical approximation schemes for the Boltzmann equation
and should in our case actually give an approximation of the albedo operator in question.

Then, on short enough time intervals, we only need to study (3.4) for the case Q(f, f) =0.

The second matching equation is

[ v,-f(t,(),i,v)dv+j v F(t, .v) dv = pu;(t,0, ) = U; P(t. £) (3.5)
v <0

bxzﬂ

(the same difficulty as in equation (3.4) arises. and we suggest the same remedy).

By using the obvious identity

/(r,' —u)f(t. r.vYdv = 0.
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the validity of (3.3) at 0+ transforms into

3 3
Za.r,Pu = Z@,, / (v; — U,‘)(L‘j - u,)f(t,.r,v)dv
i=1 i=1 RI

3
S [t = wey = w0 fit.5, ) dy
1=1
3 3
= N 5'6;-‘fd'—u 'l'a:.fd
;f{ vj v j /;f. v

3
- i [ 0, fdv+ iuj | O, fd
f;u fr,] v Zu u_,[ v
=/uj(v.vrf)du—u,-/(v,V,f)dv
3
_Zu‘-fvjar,fdv+uj/(u,V,f)dv

i=1

:—]ujatfdv+ujj6,fdl'—u1/vj6,,fdv

3 3
...Zug/vja,,fdv—lrujulfazlfdv+u,-Zu,-/@,_fdv.
i=2

=2

For the last identity, we have used that 8,f +v-V.f = 0. Also, in the last terms, we have
separated derivatives with respect to r; from others—the latter ones are “inner derivatives”
at the boundary z; = 0 and can be expressed as derivatives of F. The former are derivatives

transversal to £; = 0, and we have to eliminate them.

Every one of the integrals in the last chain of identities is over v; > 0 and v; < 0. On
the boundary given by r; = 0, where the closure conditions are to apply, the integrals over

vy > 0 can be written in terms of F if we take advantage of the representation
1
0, f = o (0cf + 120z, f + v30:, f) .
For vy 2 0 this yields
1
a:lfl:1=0‘v1>n = _v—(6IF+ vadz, F + v30:, F).
1

The other relevant derivatives. like, e.g. 8-, f, are just given as d;,F at ; =0 and v; > 0.

In the collisionless case. the integrals over v; < 0 depend only on fo and on U, and we

write ®(fo. U)(t. %) for the result of all these integrations. Note that [" enters quadratically
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into ®. After implementing all these changes and simplifications. we get

3
Z@:.PU = -"/ L‘JthdU‘FL} angl'
i=1 v >0

v1>0
+ U 2 (BeF + vadp, F + v3d;, F) dv
vy >0 Uy
2 1
- Z/ wiv; O, Fdv — U0 ] — (0eF + v20:, F + v30r, F) dv
i=2 Jni>0 vi20 U1

3
+; ZU,—/ e, F dv + ®(fo.U)(t. 3)
i=2 v

1>0

3
2 .
Za:_ (p(p)é.'j —H (3:) u; + 6‘,,u,-) + §,u div ué.-,-)
i=1

=0

NS[pou](t, ).

(3.6)
Observe that this last expression does not only depend on P and U, but also on the deriva-
. a2
tives 8, p, ﬁ_j atr; = 0.

If we introduce the convenient abbreviations
G(t, 3,v) = —F(t, ,v),

and

G%t,z) = G dv,

vy 20

G}(t,i) = / v;G(t, 2, v)dv
vy 20

the equations (3.6) become

NS[p,ul — &(fo,U) = — [0; + U28:, + Uab:,) G
+ U; [0c + U20r, + U36:,] G}
+ U1 (8:,G2, 4+ 8:,G33) . (3.7)
= U;U1 (0:,G3 + 8:,G3)
+ U (&G} - U;8,G°)
In order to “solve” these equations. we have to do two more steps:

-express NS[p.u](t, ) in terms of fy. P.U' and their derivatives with respect to r».r3

(“inner” derivatives)
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'choose a class of functions G(t.z.v) for which the resulting system of dlﬂ'erentlalv

algebraic equations is efficiently solvable.

The first step is straightforward. For the second one, we suggest again to try a discrete

velocity approach. i.e.

K
G(t. kF.v) = Zak(t.i')éuk.

where vf = (vF o5 o) By using the definitions of G°(t, #). Gl(t r) and G? (. E), (3. 4)

and (3.5) respectively turn into

K _
D wkau(t, £) = P(t, 2) + &, [fo](t. F) (3.8)
k=1

K .
vivian(t, #) = PU;(t, %) + ®3[fo)(t, 7) (3.9)
k=1

where ®,[fo] and ®}[fo] are given in terms of fo (e.g., ®1[fol(t,2) = —fw{Of(t,O,i,v) dv
), see (3.4) and (3.5). Equation (3.7) becomes

Z UJ Uf [6; + Uza:, + Uaaz,] Qk(t. E)
k

— Z Uf t.';;c [6: + 0'26.1:; + U361.'3] O'k(t, ‘;')
k

+UL |3 ok (vF = Uj) Ocyan + 37 ok (o = 1) By (3.10)
k k
+UL Y (vf = U;) Beas
k
=NSlp, u] — ®(fo,U).
We rewrite (3.10) as follows. Let V be the 3 x K- matrix defined by
V=0u'=C,... .05 =0).
After some calculation, (3.10) is seen to be equivalent to
(L = v1)8ray + (U1vd = Uav})0p,ay + (U0 — Uar})d:, o
14 =E,
(U = v)oak + (Crek = Uael )0 an + (Ul = UstF)or,an
(3.11)

where £ := NS — ®. The solution procedure for (3.10) is then clear: First solve the linear

equations V'3 = E (for A" = 3. this is a quadratic system: otherwise it is underdetermined.
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and we expect an infinity of solutions. one of which must be chosen by additional criteria).
Once 3= (J(t.1)... ... Ji(t.T)) is given, one has to solve the first order partial differential

equations
(L1t = v])draj + (L11] = Uat])3s,05 + (Uivd — Ust])dr,a; = 35
i=1.. K. subject to algebraic side conditions given by (3.8} and (3.9).

Clearly, the solution of (3.11) with these side conditions is in itself a challenge, but,
as we have demonstrated. it is a logical way to arrive at smooth isolines connecting the
aerodynamic and the kinetic regimes. Numerical experiments will have to be made to
investigate the practical feasibility of the boundary conditions which we have suggested

here.
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