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Abstract

This dissertation presents a generalization of the generalized grey Brownian
motion with componentwise independence, called a vector-valued generalized
grey Brownian motion (vggBm), and builds a framework of mathematical anal-
ysis around this process with the aim of solving stochastic differential equations
with respect to this process. Similar to that of the one-dimensional case, the
construction of vggBm starts with selecting the appropriate nuclear triple, and
construct the corresponding probability measure on the co-nuclear space. Since
independence of components are essential in constructing vggBm, a natural way
to achieve this is to use the nuclear triple of product spaces:

S𝑑 (R) ⊂ 𝐿2𝑑 (R) ⊂ S
′
𝑑
(R),

where 𝐿2
𝑑
(R) is the real separable Hilbert space of R𝑑-valued square integrable

functions onRwith respect to the Lebesguemeasure,S𝑑 (R) is the external direct
sum of 𝑑 copies of the nuclear space S(R) of Schwartz test functions, and S′

𝑑
(R)

is the dual space of S𝑑 (R). The probability measure used is the the 𝑑-fold prod-
uct measure of the Mittag-Leffler measure, denoted by 𝜇⊗𝑑

𝛽
, whose characteristic

function is given by∫
S′
𝑑
(R)
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
, 𝜑 ∈ S𝑑 (R),

where 𝛽 ∈ (0, 1], and 𝐸𝛽 is theMittag-Leffler function. Vector-valued generalized
grey Brownian motion, denoted by 𝐵𝛽,𝛼

𝑑
:= (𝐵𝛽,𝛼

𝑑,𝑡
)𝑡≥0, is then defined as a process

taking values in 𝐿2(𝜇⊗𝑑
𝛽
;R𝑑) given by

𝐵
𝛽,𝛼

𝑑,𝑡
(𝜔) := (⟨𝜔1, 𝑀

𝛼/2
− 1[0,𝑡)⟩, . . . , ⟨𝜔𝑑 , 𝑀𝛼/2

− 1[0,𝑡)⟩), 𝜔 ∈ S′
𝑑
(R),

where𝑀𝛼/2 is an appropriate fractional operator indexed by 𝛼 ∈ (0, 2) and 1[0,𝑡)
is the indicator function on the interval [0, 𝑡). This process is, in general, not the
aforementioned 𝑑-dimensional analogues of ggBm for 𝑑 ≥ 2, since component-
wise independence of the latter process holds only in the Gaussian case.

The study of analysis around vggBm starts with accessibility to Appell sys-
tems, so that characterizations and tools for the analysis of the corresponding
distribution spaces are established. Then, explicit examples of the use of these
characterizations and tools are given: the construction of Donsker’s delta func-
tion, the existence of local times and self-intersection local times of vggBm, the
existence of the derivative of vggBm in the sense of distributions, and the exis-
tence of solutions to linear stochastic differential equations with respect to vg-
gBm.



Zusammenfassung

In dieser Dissertation wird eine Verallgemeinerung der verallgemeinerten grau-
en Brownschen Bewegung mit komponentenweiser Unabhängigkeit vorgestellt,
die als vektorwertige verallgemeinerte graue Brownsche Bewegung (vggBm) be-
zeichnet wird, und es wird ein Rahmen für die mathematische Analysis dieses
Prozesses geschaffen, um stochastische Differentialgleichungen in Bezug auf die-
sen Prozess zu lösen. Ähnlich wie im eindimensionalen Fall beginnt die Kon-
struktion von vggBm mit der Auswahl des geeigneten nuklearen Tripels und
der Konstruktion des entsprechenden Wahrscheinlichkeitsmaßes auf dem co-
nuklearen Raum. Da die Unabhängigkeit der Komponenten bei der Konstruktion
von vggBm von wesentlicher Bedeutung ist, besteht ein natürlicher Weg, dies zu
erreichen, in der Verwendung des Gel’fand-Tripels von Produkträumen:

S𝑑 (R) ⊂ 𝐿2𝑑 (R) ⊂ S
′
𝑑
(R),

wobei 𝐿2
𝑑
(R) der reelle separable Hilbertraum der R𝑑-wertigen quadratintegra-

blen Funktionen auf R bezüglich des Lebesgue Maßes und S𝑑 (R) die externe
direkte Summe von 𝑑 Kopien des nuklearen Raumes S(R) der Schwartz Test-
funktionen und S′

𝑑
(R) der Dualraum von S𝑑 (R) ist. Als Wahrscheinlichkeits-

maß wird das 𝑑-fache Produktmaß des Mittag-Leffler-Maßes 𝜇⊗𝑑
𝛽
. genutzt, Die

charakteristische Funktionen ist gegeben durch:∫
S′
𝑑
(R)
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
, 𝜑 ∈ S𝑑 (R),

mit 𝛽 ∈ (0, 1], und der Mittag-Leffler-Funktion 𝐸𝛽 . Die vektorwertige verallge-
meinerte graue Brownsche Bewegung, beschrieben durch 𝐵𝛽,𝛼

𝑑
:= (𝐵𝛽,𝛼

𝑑,𝑡
)𝑡≥0, ist

definiert als 𝐿2(𝜇⊗𝑑
𝛽
;R𝑑)-wertiger Prozess durch

𝐵
𝛽,𝛼

𝑑,𝑡
(𝜔) := (⟨𝜔1, 𝑀

𝛼/2
− 1[0,𝑡)⟩, . . . , ⟨𝜔𝑑 , 𝑀𝛼/2

− 1[0,𝑡)⟩), 𝜔 ∈ S′
𝑑
(R),

wobei𝑀𝛼/2 eingeeigneter fraktionaler Integral-oder Differentialoperator ist mit
𝛼 ∈ (0, 2) und 1[0,𝑡) die Indikatorfuktion auf [0, 𝑡) beschreibt. Dieser Prozess ist
im Allgemeinen nicht das vorher beschriebene 𝑑-dimensionale Analog zu ggBm
für𝑑 ≥ 2, da dessen komponentenweise Unabhängigkeit lediglich im Gaußschen
Fall gilt.

Die Analysis von vggBm beginnt mit der Zugänglichkeit zu Appellsystemen,
so dass Charakterisierungen und Werkzeuge für die Analysis der entsprechen-
den Distributionenräume aufgestellt werden. Dann werden explizite Beispiele
für die Verwendung dieser Charakterisierungen und Werkzeuge gegeben: die
Konstruktion der Donsker-Deltafunktion, die Existenz von lokalen Zeiten und
lokalen Selbsüberschneidungszeiten der vggBm, die Existenz der Ableitung der
vggBm im Sinne der Distributionen, und die Existenz von Lösungen zu linearen
stochastischen Differentialgleichungen bezüglich der vggBm.
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Introduction

As a particular case of Gaussian analysis, white noise theory is evolved to a tool
to solve various problems in fields such as statistical mechanics, quantum field
theory, quantummechanics and polymer physics as well as in appliedmathemat-
ics, stochastic analysis, Dirichlet forms, stochastic (partial) differential equations
and finance. For a more detailed explanation of white noise analysis and Gaus-
sian analysis, we refer to the monographs [HKPS93, BK95, Kuo96,Oba94,HS17]
and the article [KLP+96].

In recent years, fractional Brownian motion and processes related to frac-
tional dynamics become more and more an object of intensive study. The rea-
son for this interest from the mathematical and applied science point of view is
twofold: on one hand the processes in general lack both, the Markov and the
(semi-)martingale property, which makes them mathematically challenging and
not accessible by classic methods from stochastic analysis. On the other hand,
due to these properties, it is possible to model processes with long-range and
memory effects. The fractional Brownian motion can be represented in a very
natural way in white noise theory, see e.g. [Mis08].

There is a well-known connection between PDEs and stochastic processes,
provided by the Feynman-Kac formula. By investigating a heat equation, where
the time derivative is a Caputo derivative of fractional order, Schneider intro-
duced grey Brownian motion (gBm) in [Sch92]. He showed that a solution to the
time-fractional heat equation is given in terms of grey Brownian motion like in
the Feynman-Kac case. The link between grey Brownian motion and fractional
differential equations is also studied by Mura and Mainardi in the framework of
fractional diffusion equations in [MM09]. Grey Brownian motion is constructed
on a probability space with a non-Gaussian measure, called Mittag-Leffler mea-
sure, whose characteristic function is given by the Mittag-Leffler function. A
calculus in this setting is established in, e.g., [GJRdS15] and [GJ16]. For recent
results in this framework, see also [BdS17, BGO21]. The mathematical frame-
work, as white noise calculus, generalizes many finite dimensional methods and
concepts known such as differential operators and Fourier transform.

Many applications call for processes with long-range dependence and com-
plex correlation structures. As a generalization of Brownian motion, fractional
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2 Introduction

Brownian motion (fBm) is used to model such dynamics, based on its correlated
increments, which imply short and/or long-range dependence [Mis08,BHØZ08,
Nou12]. Fractional Brownian motion is neither a semi-martingale nor a Markov
process, except for the Brownian motion case. Hence, it is not accessible by
standard stochastic calculus, and thus challenging from the mathematical point
of view. There are various ways to cast fBm into the classical Brownian mo-
tion framework, starting with the famous definition byMandelbrot and van Ness
[MvN68]. This idea is also the starting point for a characterization of fBm using
an infinite superposition of Ornstein-Uhlenbeck processes with respect to the
standard Wiener process; compare the works of Carmona, Coutin, Montseny,
and Muravlev [CCM00, CCM03,Mur11] or also the monograph of [Mis08]. Re-
cently, further applications of this representation have for instance been investi-
gated in [HS19] with a focus on finance and in [BD20] in the context of optimal
portfolios.

The Mandelbrot-van Ness representation can be used to represent fBm in the
framework of white noise analysis [Mis08,BHØZ08,Nou12,Ben03]. White noise
analysis has evolved into an infinite dimensional distribution theory, with rapid
developments in mathematical structure and applications in various domains;
see, e.g. the monographs [HKPS93, Oba94, Kuo96, HS17]. Various characteriza-
tion theorems [PS91, KLP+96, GKS97, HS17, GMN21] are proven to build up a
strong analytical foundation. Almost at the same time, first attempts were made
to introduce a non-Gaussian infinite dimensional analysis, by transferring prop-
erties of the Gaussian measure with the help of bi-orthogonal generalized Appell
systems [Dal91,ADKS96,KSWY98]. In particular, this approach is used to estab-
lish the so-called Mittag-Leffler analysis, introduced in [GJRdS15] and [GJ16].
The class of measures used in this analysis generalize from that of white noise
analysis in the sense that the characteristic function of the Gaussianmeasure, the
exponential function, is replaced by aMittag-Leffler function. The corresponding
process in this analysis, called generalized grey Brownian motion (ggBm), is in
general neither a martingale nor a Markov process. Moreover, it is not possible,
as in the Gaussian case, to find a proper orthonormal system of polynomials to
describe the test and generalized functions. Hence, it is necessary to make use of
the aforementioned Appell system of bi-orthogonal polynomials. The grey noise
measure [Sch92, MM09] is included as a special case in this class of measures,
which offers the possibility to apply Mittag-Leffler analysis to fractional differ-
ential equations, in particular to fractional diffusion equations [Sch90, Sch92],
which carry numerous applications in science, like relaxation-type differential
equations or viscoelasticity. Fractional processes were motivated by phenom-
ena in heterogeneous media modeled by fractional partial differential equations;
see [KE04,Mai10,MS04]. Corresponding stochastic processes governed by these
equations have applications in science, engineering and finance [RD03,Mag09,
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MK00, MK04, Sca06]. Fractional time derivatives are used to model sticking of
particles in porousmedia [SBMB03]. In statistical physics, fractional time deriva-
tives reflects random waiting times between particle jumps [MS04]. Detailed
discussion of such processes is also found in [BB03]. For a detailed study of the
special class of heavy tailed processes, see [LPSŠ17,LPSŠ20,HL05]. An approach
using subordination can be found in [BB03].

With the help ofMittag-Leffler analysis, a relation between the fractional heat
equation and the associated process, ggBm, was proven in [GJ16]. In [BdS17],
Wick-type stochastic differential equations and Ornstein-Uhlenbeck processes
were solved within the framework of Mittag-Leffler analysis. In [BDdS20], the
results of [Mur11] and [HS19] for fBmwere extended to the non-Gaussian case of
ggBm by representing it via generalized grey Ornstein-Uhlenbeck processes. Us-
ing that, ggBm can bewritten as a product of a nonnegative and time-independent
random variable and a fBm [MMP10]. A similar representation can be found in
[DVS+18].

Recently, a multidimensional analogue of ggBm was defined in [BDdS20] us-
ing an extension of the definition of (one-dimensional) ggBm given in [MP08,
MM09], and gave also a representation via a generalized greyOrnstein-Uhlenbeck
process. On the other hand, another multidimensional analogues of represen-
tations of ggBm were also considered in [BB03] in connection with stochastic
solutions of some fractional evolution equations. While some of the results of
the one-dimensional case can be carried over to the multidimensional case, the
processes in both definitions have components which are, in general, not in-
dependent. Properties such as independent components in a multidimensional
process are desirable in many applications.

In Chapter 1, we give a brief overview into the preliminary concepts needed
to follow the theorems and proofs of the thesis. In Chapter 2, we introduce the
Mittag-Leffler space and study finite products of Mittag-Leffler spaces and the
corresponding distributions. We give particular characterization theorems and
show the accessibility to Appell systems. In Chapter 3, the generalization of the
generalized grey Brownian motion with componentwise independence, which
we call a vector-valued generalized grey Brownian motion (vggBm) is defined.
This process is, in general, not the aforementioned 𝑑-dimensional analogues of
ggBm for 𝑑 ≥ 2, since we show that the componentwise independence of the
latter process holds only in the Gaussian case. For this process, we character-
ize Donsker’s delta function, local times, self-intersection local times as suitable
Mittag-Leffler distributions.

In the last chapter of this dissertation, we focus on stochastic differential
equations driven by vggBm. As first examples, we study several stochastic dif-
ferential equations in higher dimensions. Indeed, we study the abstract Cauchy
problem with a vggBm inhomogeneity.



4 Introduction

Preliminary Notations

We denote by N, N0, R, and C the set of positive integers, nonnegative integers,
real numbers and complex numbers, respectively. For a non-empty set A and
𝑛 ∈ N, we denote by A𝑛 the set of 𝑛-tuples of elements in A. If 𝑥 ∈ A𝑛 and
𝑗 = 1, . . . , 𝑛, the 𝑗 th component of 𝑥 is denoted by 𝑥 𝑗 , so that 𝑥 can be written as
(𝑥 𝑗 )𝑛𝑗=1 := (𝑥1, . . . , 𝑥𝑛).

Let K ∈ {R,C} and 𝑛 ∈ N be given. The canonical basis of K𝑛 is the set
{e𝑘 := (𝛿 𝑗,𝑘)𝑛𝑗=1 : 𝑘 = 1, . . . , 𝑛}, where 𝛿 𝑗,𝑘 is the Kronecker delta. For 𝑥,𝑦 ∈ K𝑛 ,
the Euclidean norm of 𝑥 and the Euclidean scalar product of 𝑥 and 𝑦, denoted by
|𝑥 | and (𝑥,𝑦), respectively, are defined as follows:

|𝑥 | :=
(
𝑛∑︁
𝑗=1
|𝑥 𝑗 |2

)1/2
, (𝑥,𝑦) :=

𝑛∑︁
𝑗=1

𝑥 𝑗𝑦 𝑗 .

In particular, for 𝑥 ∈ K1 = K, |𝑥 | is the modulus of 𝑥 , which is also the absolute
value of 𝑥 if 𝑥 ∈ R. The space K𝑛 will be equipped with the Euclidean topology,
and its corresponding Borel 𝜎-algebra is denoted by B(K𝑛). Any subset of K𝑛
will be equipped with the subspace topology or trace topology induced by K𝑛 .

For a topological vector space X over K, we denote by X′ its dual space,
that is, the set of all continuous linear maps from𝑋 toK. In contrast to the usual
literature on functional analysis, we adopt the convention used in, e.g., [KSWY98,
HKPS93, Oba94] that the canonical dual pairing between 𝐹 ∈ X′ and 𝑥 ∈ X
is denoted by ⟨𝐹, 𝑥⟩ := 𝐹 (𝑥), unless otherwise specified. If X is a topological
vector space over R, the complexification of X, denoted by XC, is defined by
XC := {[𝑓1, 𝑓2] : 𝑓1, 𝑓2 ∈ X}. The space XC is a topological vector space over C
under the following operations:

[𝑓1, 𝑓2] + [𝑔1, 𝑔2] := [𝑓1 + 𝑔1, 𝑓2 + 𝑔2] (𝑎 + 𝑖𝑏) [𝑓1, 𝑓2] := [𝑎𝑓1 − 𝑏𝑓2, 𝑏 𝑓1 + 𝑎𝑓2],

for [𝑓1, 𝑓2], [𝑔1, 𝑔2] ∈ XC and 𝑎, 𝑏 ∈ R. In view of its similar structure to that of C,
the element [𝑓1, 𝑓2] ∈ XC is denoted by 𝑓1 + 𝑖 𝑓2. Any linear map 𝐿 between two
real linear spaces extends to a linear map between their corresponding complex-
ifications, denoted by the same symbol, in a natural way:

𝐿(𝑓1 + 𝑖 𝑓2) := 𝐿(𝑓1) + 𝑖𝐿(𝑓2).

In the case of the complexification of the dual space X′, denoted by X′
C
, we pre-

serve the same symbol ⟨·, ·⟩ for the canonical dual pairing, and this pairing is
defined as an extension of its real counterpart in a bilinear way:

⟨𝐹1 + 𝑖𝐹2, 𝑓1 + 𝑖 𝑓2⟩ := ⟨𝐹1, 𝑓1⟩ − ⟨𝐹2, 𝑓2⟩ + 𝑖 (⟨𝐹1, 𝑓2⟩ + ⟨𝐹2, 𝑓1⟩).
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LetH be a Hilbert space over R or C. Unless otherwise specified, we denote
by (·, ·)H and | · |H its scalar product and induced norm, respectively. If H is a
Hilbert space overC, the scalar product is always assumed to be linear in the first
component and anti-linear in the second component. IfH is a Hilbert space over
R, then the complexification HC is a Hilbert space over C under the following
scalar product and induced norm:

(𝑓1 + 𝑖 𝑓2, 𝑔1 + 𝑖𝑔2)HC := (𝑓1, 𝑔1)H + (𝑓2, 𝑔2)H + 𝑖
(
(𝑓2, 𝑔1)H − (𝑓1, 𝑔2)H

)
,

|𝑓1 + 𝑖 𝑓2 |HC := (𝑓1 + 𝑖 𝑓2, 𝑓1 + 𝑖 𝑓2)
1/2
HC .

The above-mentioned Hilbert spaces will be equipped with the topology gener-
ated by its induced metric.





Chapter 1

Preliminary Concepts

This chapter presents the necessary background of this study. It consists of
some facts about nuclear triples, holomorphic functions on locally convex spaces,
some known integrals on vector spaces, and distributions in Gaussian and non-
Gaussian analysis.

1.1 Nuclear triples

Let H be a separable Hilbert space over R and N be a nuclear Frechét space
topologically and densely embedded inH , that is, there is a continuous embed-
ding N ↩→ H whose range is dense in H . By a nuclear Frechét space, instead
of the usual abstract definition (see, e.g., [Trè67, Sch99]), we use the following
characterization (cf. [KSWY98, Theorem 2.1]) as a projective limit of a countable
number of Hilbert spaces.

Theorem 1.1. The nuclear Frechét space N can be represented as

N = prlim
𝑝∈N
H𝑝 (1.1)

where (H𝑝)𝑝∈N is a family of Hilbert spaces such that for all 𝑝1, 𝑝2 ∈ N, there exists
𝑝 ∈ N such that the embeddingsH𝑝 ↩→H𝑝1 andH𝑝 ↩→H𝑝2 are of Hilbert-Schmidt
class. The expression (1.1) means that as a set,

N =
⋂
𝑝∈N
H𝑝

and the topology ofN is the projective limit topology, that is, the coarsest topology
such that the canonical embeddings N ↩→H𝑝 are continuous for all 𝑝 ∈ N.

7



8 Preliminary Concepts | Ch. 1

Together with its (topological) dual spaceN ′, we obtain the following inclu-
sions, called a nuclear (Gel’fand) triple:

N ⊂ H ⊂ N ′,

where we identify each 𝑓 ∈ H as an element of N ′ via the Riesz isomorphism

H ∋ 𝑓 ↔ (𝑓 , ·)H ∈ H ′.

The dual pairing between N ′ and N is then an extension of the scalar product
onH given by

⟨𝑓 , 𝜑⟩ = (𝑓 , 𝜑)H , 𝑓 ∈ H , 𝜑 ∈ N .

Denote by (·, ·)𝑝 and | · |𝑝 the scalar product and induced norm ofH𝑝 , respec-
tively, and set H0 := H so that we can use the notations (·, ·)0 and | · |0 for the
corresponding scalar product and induced norm ofH . Without loss of general-
ity, we assume that the system of norms ( | · |𝑝)𝑝∈N is ordered, that is, whenever
𝑝, 𝑞 ∈ N0 with 𝑝 < 𝑞, we have | · |𝑝 ≤ | · |𝑞 onH𝑞 . LetH−𝑝 := H ′𝑝 be the dual space
ofH𝑝 with corresponding norm denoted by | · |−𝑝 . By general duality theory (see,
e.g., [GV64]), as a set,

N ′ =
⋃
𝑝∈N
H−𝑝 .

We equip the dual space N ′ with the inductive limit topology generated by the
spacesH−𝑝 , 𝑝 ∈ N, written as

N ′ = indlim
𝑝∈N

H−𝑝 .

That is, N ′ is equipped with the finest locally convex topology such thatH−𝑝 is
continuously embedded in N ′ for all 𝑝 ∈ N. Thus, for 𝑝, 𝑞 ∈ N0 with 𝑝 < 𝑞, we
have the following chain of continuous and dense embeddings:

N ⊂ H𝑞 ⊂ H𝑝 ⊂ H ⊂ H−𝑝 ⊂ H−𝑞 ⊂ N ′.

We would also like to have a notion of tensor powers of a nuclear space. To
do this, we start with the usual Hilbert tensor powers of H𝑝 . For 𝑝, 𝑛 ∈ N0,
we define the 𝑛th tensor product H⊗𝑛𝑝 as follows: for 𝑛 = 0, set H⊗0𝑝 := R, and
for 𝑛 ∈ N, H⊗𝑛𝑝 is the completion of the linear span of expressions of the form
𝑓1 ⊗ · · · ⊗ 𝑓𝑛 , 𝑓 𝑗 ∈ H𝑝 , under the scalar product (·, ·)𝑝 defined by

(𝑓1 ⊗ · · · ⊗ 𝑓𝑛, 𝑔1 ⊗ · · · ⊗ 𝑔𝑛)𝑝 :=
𝑛∏
𝑗=1
(𝑓 𝑗 , 𝑔 𝑗 )𝑝, 𝑓 𝑗 , 𝑔 𝑗 ∈ H𝑝 .
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For convenience, we write the 𝑛-fold tensor product 𝑓 ⊗ · · · ⊗ 𝑓 , 𝑛 ∈ N, by 𝑓 ⊗𝑛 ,
and 𝑓 ⊗0 := 1. We also consider the subspace of symmetric elements of H⊗𝑛𝑝 ,
denoted by H ⊗̂𝑛𝑝 , defined as follows. If 𝑛 = 0, set H ⊗̂0𝑝 := R. If 𝑛 ∈ N, then the
map sym𝑛 defined by

sym𝑛 (𝑓1 ⊗ · · · ⊗ 𝑓𝑛) :=
1
𝑛!

∑︁
𝜎∈𝑆𝑛

𝑓𝜎 (1) ⊗ · · · ⊗ 𝑓𝜎 (𝑛), 𝑓 𝑗 ∈ H𝑝,

where 𝑆𝑛 is the set of permutations on {1, . . . , 𝑛}, extends to a continuous linear
map �sym𝑛 : H⊗𝑛𝑝 → H⊗𝑛𝑝 . We defineH ⊗̂𝑛𝑝 := �sym𝑛 (H⊗𝑛𝑝 ). Similar notations are
used forH−𝑝 . In this case, if 𝑛 ∈ N, 𝐹1, . . . , 𝐹𝑛 ∈ H−𝑝 and 𝑓1, . . . , 𝑓𝑛 ∈ H𝑝 , then

⟨𝐹1 ⊗ · · · ⊗ 𝐹𝑛, 𝑓1 ⊗ · · · ⊗ 𝑓𝑛⟩ = ⟨𝐹1, 𝑓1⟩ · · · ⟨𝐹𝑛, 𝑓𝑛⟩.

The norms on H⊗𝑛𝑝 and H⊗𝑛−𝑝 are also denoted by | · |𝑝 and | · |−𝑝 , respectively.
ThenH⊗𝑛−𝑝 is the dual space ofH⊗𝑛𝑝 with respect toH⊗𝑛 . The tensor powersN⊗𝑛
of N are defined as the projective limit of the spaces (H⊗𝑛𝑝 )𝑝∈N, so that (N⊗𝑛)′

is the inductive limit of (H⊗𝑛−𝑝 )𝑝∈N. The symmetric tensor powers N ⊗̂𝑛 are also
defined similarly. In this case, we also obtain the nuclear triples

N⊗𝑛 ⊂ H⊗𝑛 ⊂ (N⊗𝑛)′ N ⊗̂𝑛 ⊂ H ⊗̂𝑛 ⊂ (N ⊗̂𝑛)′.

Example 1.2. An example of a nuclear triple used in white noise analysis is the
following: let 𝐿2(R) := 𝐿2(R, d𝑥) be the real Hilbert space of square-integrable
functions on Rwith respect to the Lebesgue measure, and S(R) be the Schwartz
space of test functions on R, that is, the space of all infinitely-differentiable func-
tions 𝜙 : R→ R such that for all 𝑘,𝑚 ∈ N0,

sup
𝑥∈R

����𝑥𝑘 d𝑚

d𝑥𝑚
𝜙 (𝑥)

���� < ∞.
It is known that S(R) is dense in 𝐿2(R). Define the linear operator 𝐴 and the
norm | · |𝑝 , 𝑝 ∈ N0, on S(R) as follows:

(𝐴𝜙) (𝑥) :=
(
− d2

d𝑥2
+ 𝑥2 + 1

)
𝜙 (𝑥), |𝜙 |𝑝 := |𝐴𝑝𝜙 |𝐿2 (R), 𝜙 ∈ S(R), 𝑥 ∈ R.

Let H𝑝 be the completion of S(R) (or more precisely, the equivalence class of
S(R) in 𝐿2(R)) with respect to | · |𝑝 . Then S(R) is the projective limit of (H𝑝)𝑝∈N
satisfying the conditions of Theorem 1.1, so that S(R) is a nuclear Frechét space.
Hence, we obtain the following nuclear triple, called the standard nuclear triple:

S(R) ⊂ 𝐿2(R) ⊂ S′(R),

where we write S′(R) for the dual space of S(R). For more details on the proof
of this nuclear triple, see, e.g., [RS72] or [HKPS93, Appendix A.5].
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Remark 1.3. We list several properties of a nuclear Frechét space N that are
used in this dissertation.

(i) The projective limit topology onN coincides with the topology onN gen-
erated by the seminorms ( | · |𝑝)𝑝∈N. Hence, an open neighborhood base of
N at 0 is given by

𝑈𝑝,𝜀 := {𝜑 ∈ N : |𝜙 |𝑝 < 𝜀}, 𝑝 ∈ N, 𝜀 > 0.

In this case, a subset 𝑆 of N is bounded if and only if sup𝜑∈𝑆 |𝜑 |𝑝 < ∞ for
all 𝑝 ∈ N. Moreover, a linear map 𝑓 : N → R is continuous if and only if
there exist 𝑝 ∈ N and 𝐶 ∈ (0,∞) such that |𝑓 (𝜑) | ≤ 𝐶 |𝜑 |𝑝 for all 𝜑 ∈ N .

(ii) In the usual literature, the dual spaceN ′ is equipped with either one of the
following topologies: the strong topology, that is, the topology generated
by the seminorms

|Φ|𝑆 := sup
𝜑∈𝑆
|⟨Φ, 𝜑⟩|, Φ ∈ N ′ (1.2)

where 𝑆 runs over all bounded subsets ofN ; and theweak topology, that is,
the topology generated by the seminorms (1.2) where 𝑆 runs over all finite
subsets of N . It turns out that N is reflexive, that is, if we equip the dual
spaceN ′′ := (N ′)′ ofN ′ with the strong topology, thenN ′′ is isomorphic
to N . As a consequence, the strong topology coincides with the inductive
limit topology on N ′ (see, e.g, [HKPS93, Appendix A.5]).

(iii) Another property of N is that it is a perfect space, that is, every closed,
bounded subset ofN is compact. As a consequence, strong and weak con-
vergence of sequences in N ′ (and N ) coincide (see [GV64, page 73]).

(iv) One of the important results for nuclear Frechét spaces is the kernel the-
orem (see, e.g., [GV64]): if 𝐹 : N𝑛 → R is 𝑛-linear andH𝑝-continuous for
some 𝑝 ∈ N, that is, there is a constant 𝐶 ∈ (0,∞) such that

|𝐹 (𝜑1, . . . , 𝜑𝑛) | ≤ 𝐶
𝑛∏
𝑗=1
|𝜑 𝑗 |𝑝 for all 𝜑 ∈ N𝑛,

then there exists a unique Φ(𝑛) ∈ (N⊗𝑛)′ such that

𝐹 (𝜑1, . . . , 𝜑𝑛) = ⟨Φ(𝑛), 𝜑1 ⊗ · · · ⊗ 𝜑𝑛⟩ for all 𝜑 ∈ N𝑛 .

(v) While Theorem 1.1 is stated for nuclear Frechét spaces over R, the result
is also applicable for nuclear Frechét spaces over C. In particular, ifN is a
nuclear Frechét space over R, then NC is a nuclear Frechét space over C.
Thus, all properties discussed earlier forN can be carried over toNC, with
few adjustments to the notations (see, e.g., [BK95]).
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1.1.1 Nuclear triples on finite direct sums of spaces

Let 𝑑 ∈ N. Suppose that for each 𝑘 = 1, . . . , 𝑑 , we have a nuclear triple N𝑘 ⊂
H𝑘 ⊂ N ′𝑘 , and we denote by 𝜉𝑘 the continuous dense embedding N𝑘 ↩→ H𝑘 .
Consider the (external) Hilbert direct sum

⊕𝑑

𝑘=1H𝑘 , and equip the direct sum⊕𝑑

𝑘=1N𝑘 with the locally convex direct sum topology, that is, the finest locally
convex topology such that for each 𝑗 = 1, . . . , 𝑑 , the canonical injection

N𝑗 ∋ 𝜙 ↦→ 𝜙e 𝑗 := (0, . . . , 𝜙, . . . , 0)
↑

𝑗 thposition

∈
⊕𝑑

𝑘=1N𝑘

is continuous. Then
⊕𝑑

𝑘=1N𝑘 is a nuclear space (see, e.g., [Trè67, Prop. 50.1]).
Moreover, the map⊕𝑑

𝑘=1N𝑘 ∋ 𝜑 := (𝜑1, . . . , 𝜑𝑑) ↦→ (𝜉1(𝜑1), . . . , 𝜉𝑑 (𝜑𝑑)) ∈
⊕𝑑

𝑘=1H𝑘

is a topological embedding whose range is dense in
⊕𝑑

𝑘=1H𝑘 . Now, suppose that
N𝑘 is the projective limit of Hilbert spaces (H𝑘,𝑝)𝑝∈N satisfying Theorem 1.1, and
we use the induced norm | · |𝑝 on the Hilbert direct sum

⊕𝑑

𝑘=1H𝑘,𝑝 given by

|𝜑 |2𝑝 :=
𝑑∑︁
𝑘=1
|𝜑𝑘 |2𝑘,𝑝, 𝜑 := (𝜑1, . . . , 𝜑𝑑) ∈

⊕𝑑

𝑘=1H𝑘,𝑝, (1.3)

where the norm | · |𝑘,𝑝 on the right-hand side of (1.3) is the norm on H𝑘,𝑝 . For
notational convenience, we identify the norm | · |𝑘,0 with the norm onH𝑘 , so that
| · |0 is the induced norm on

⊕𝑑

𝑘=1H𝑘 . Let 𝑝1, 𝑝2 ∈ N. Since the composition
of a Hilbert-Schmidt operator followed by a bounded linear operator is Hilbert-
Schmidt, we can assume without loss of generality that there is 𝑞 ∈ N and an
orthonormal basis (𝑒 (𝑛)

𝑘
)∞𝑛=1 inH𝑘,𝑞 such that for all 𝑗 = 1, 2 and 𝑘 = 1, . . . , 𝑝 ,

∞∑︁
𝑛=1

��𝑖 (𝑘)𝑝 𝑗 ,𝑞 (𝑒 (𝑛)𝑘 )��2𝑘,𝑝 𝑗 < ∞,
where 𝑖 (𝑘)𝑝 𝑗 ,𝑞 is the embedding mapH𝑘,𝑞 ↩→H𝑘,𝑝 𝑗 . Then there is an embedding⊕𝑑

𝑘=1H𝑘,𝑞 ∋ 𝑓 ↦→ 𝑖𝑝 𝑗 ,𝑞 (𝑓 ) :=
(
𝑖
(𝑘)
𝑝 𝑗 ,𝑞
(𝑓𝑘)

)𝑑
𝑘=1 ∈

⊕𝑑

𝑘=1H𝑘,𝑝 𝑗 .

Moreover, the set {𝑓𝑘,𝑛 := 𝑒 (𝑛)𝑘 e𝑘 : 𝑘 = 1, . . . , 𝑑, 𝑛 ∈ N} is an orthonormal basis for⊕𝑑

𝑘=1H𝑘,𝑞 with
∞∑︁
𝑛=1

𝑑∑︁
𝑘=1

��𝑖𝑝 𝑗 ,𝑞 (𝑓𝑘,𝑛)��2𝑝 𝑗 = 𝑑∑︁
𝑘=1

∞∑︁
𝑛=1

��𝑖 (𝑘)𝑝 𝑗 ,𝑞 (𝑒 (𝑛)𝑘 )��2𝑘,𝑝 𝑗 < ∞.
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In this case,
⊕𝑑

𝑘=1N𝑘 is the projective limit of the spaces
⊕𝑑

𝑘=1H𝑘,𝑝 , 𝑝 ∈ N,
satisfying (N1) and (N2), and Theorem 1.1 ensures that

⊕𝑑

𝑘=1N𝑘 is a nuclear
Frechét space. Together with the dual space

(⊕𝑑

𝑘=1N𝑘
)′
, we obtain this nuclear

triple of direct sums:⊕𝑑

𝑘=1N𝑘 ⊂
⊕𝑑

𝑘=1H𝑘 ⊂
(⊕𝑑

𝑘=1N𝑘
)′
. (1.4)

Recalling that inductive limit topology on
(⊕𝑑

𝑘=1N𝑘
)′
coincides with the strong

topology, this dual space is topologically isomorphic to the product space
∏𝑑
𝑘=1N ′𝑘

via the canonical identification(⊕𝑑

𝑘=1N𝑘
)′
∋ 𝜔 ↔ (𝜔1, . . . , 𝜔𝑑) ∈

∏𝑑
𝑘=1N ′𝑘 , 𝜔𝑘 := 𝜔 ◦ 𝜄𝑘 .

(see, e.g., [Bou87, Proposition 14 (IV, p. 12)], or [KN76, 18.10]). Hence, if 𝜔 ∈(⊕𝑑

𝑘=1N𝑘
)′
and 𝜑 ∈

⊕𝑑

𝑘=1N𝑘 , then (see, e.g., [KN76, 14.7])

⟨𝜔,𝜑⟩ =
𝑑∑︁
𝑘=1
⟨𝜔𝑘 , 𝜑𝑘⟩,

where the dual pairing on the right-hand side is that of between N ′
𝑘
and N𝑘 .

Example 1.4. Consider the standard nuclear tripleS(R) ⊂ 𝐿2(R) ⊂ S′(R) from
Example 1.2. Then the following “𝑑-fold sum” is also a nuclear triple:⊕𝑑

𝑘=1 S(R) ⊂
⊕𝑑

𝑘=1 𝐿
2(R) ⊂

(⊕𝑑

𝑘=1 S′(R)
)′
.

For convenience, we will denote this triple by S𝑑 (R) ⊂ 𝐿2𝑑 (R) ⊂ S
′
𝑑
(R).

Remark 1.5. There is an equivalent way to describe the nuclear triple (1.4) if the
“summands” are all equal to a fixed nuclear tripleN ⊂ H ⊂ N ′. DefineN ⊗ R𝑑
to be the projective limit of the Hilbert tensor products H𝑝 ⊗ R𝑑 , 𝑝 ∈ N. In a
similar argument as that of the tensor powers of N , we can construct a nuclear
triple

N𝑝 ⊗ R𝑑 ⊂ H𝑝 ⊗ R𝑑 ⊂ (N𝑝 ⊗ R𝑑)′.

Note that for each 𝑝 ∈ N, the map 𝑓 ⊗ 𝑥 ↦→ (𝑥𝑘 𝑓 )𝑑𝑘=1 for 𝑓 ∈ H𝑝 and 𝑥 ∈ R𝑑

extends to an isomorphism betweenH𝑝 ⊗ R𝑑 and
⊕𝑑

𝑘=1H𝑝 . Therefore, N ⊗ R𝑑

and
⊕𝑑

𝑘=1N are topologically isomorphic.
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1.2 Holomorphy on locally convex spaces

We present some concepts from the theory of holomorphy on locally convex
spaces over C as a prerequisite for the discussion of distribution spaces in non-
Gaussian analysis in Subsection 2.1. For a more detailed discussion of the con-
cepts in this section, we refer to [Din81].

Let E be a locally convex space overC. For 𝑛 ∈ N, denote byL(E𝑛) the space
of 𝑛-linear maps from E𝑛 into C, and L𝑠 (E𝑛) the subspace of L(E𝑛) consisting
of symmetric 𝑛-linear maps, that is, 𝑛-linear maps 𝐿 : E𝑛 → C such that

𝐿(𝑥𝜎 (1), . . . , 𝑥𝜎 (𝑛)) = 𝐿(𝑥), for all 𝑥 ∈ E𝑛, 𝜎 ∈ 𝑆𝑛 .

A map 𝑃 : E → C is said to be a 𝑛-homogeneous polynomial on E if 𝑃 = 𝐿 ◦ Δ𝑛 ,
where 𝐿 ∈ L𝑠 (E𝑛) and Δ𝑛 is the map from E into E𝑛 defined by

Δ𝑛 (𝑣) := (𝑣, . . . , 𝑣︸  ︷︷  ︸
𝑛 times

) 𝑣 ∈ E .

Let 𝑃𝑛 (E) be the space of 𝑛-homogeneous polynomials on E. The polarization
formula

𝐿(𝑥) = 1
2𝑛𝑛!

∑︁
𝜖∈{−1,1}𝑛

𝜖1 · · · 𝜖𝑛 (𝐿 ◦ Δ𝑛) (𝜖1𝑥1 + · · · + 𝜖𝑛𝑥𝑛), 𝐿 ∈ L𝑠 (E𝑛), 𝑥 ∈ E𝑛,

(1.5)

yields a bijection

L𝑠 (E𝑛) ∋ 𝐿 ↔ 𝐿̂ := 𝐿 ◦ Δ𝑛 ∈ 𝑃𝑛 (E).

For 𝑛 = 0, we set L(E0) to be the space of constant maps from E into C, which
can be identified with C itself in a natural way. We also set L𝑠 (E0) := 𝑃0(E) :=
L(E0).
Definition 1.6. Let U ⊂ E be open. A function 𝐹 : U → C is said to be
G-holomorphic (Gâteaux-holomorphic) if for all 𝜂0 ∈ U and 𝜂 ∈ E, the map
C ∋ 𝜆 ↦→ 𝐹 (𝜂0 + 𝜆𝜂) ∈ C is holomorphic in some neighborhood of zero in C.

In a similar way as that of holomorphic functions in complex analysis, a G-
holomorphic function 𝐹 : U → C can be expressed in terms of its “Taylor se-
ries” expansion: for every 𝜂 ∈ U, there exists a unique sequence

(
1
𝑛! d̂

𝑛𝐹 (𝜂)
)∞
𝑛=0

,

d̂𝑛𝐹 (𝜂) ∈ 𝑃𝑛 (E), such that

𝐹 (𝜂 + 𝜃 ) =
∞∑︁
𝑛=0

1
𝑛!

d̂𝑛𝐹 (𝜂) (𝜃 ),

for all 𝜃 belonging to some open setV ⊂ U (see [Din81, Proposition 2.4]).
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Definition 1.7. Let U ⊂ E be open. A function 𝐹 : U → C is said to be
holomorphic (onU) if it is G-holomorphic and for all 𝜂 ∈ U, there exists an open
setV ⊂ U such that the map

V ∋ 𝜃 ↦→
∞∑︁
𝑛=0

1
𝑛!

d̂𝑛𝐹 (𝜂) (𝜃 )

converges and defines a continuous function onV . The function 𝐹 is said to be
holomorphic at 𝜂0 ∈ U if there is an open neighborhood U0 of 𝜂0 contained in
U such that 𝐹 is holomorphic onU0.

A necessary and sufficient condition for a G-holomorphic function to be holo-
morphic is given by [Din81, Lemma 2.8] as follows.

Proposition 1.8. Let U ⊂ E be open and 𝐹 : U → C be G-holomorphic. Then
𝐹 is holomorphic if and only if 𝐹 is locally bounded, that is, for every 𝜂 ∈ U, 𝐹 is
bounded on some neighborhood of 𝜂 contained inU.

Remark 1.9. In the discussion of distribution spaces in Section 1.4, we are only
interested in functions 𝐹 : NC → C, N a nuclear Frechét space, that are holo-
morphic at 0 ∈ NC. In this case, by Proposition 1.8 and the topological properties
of NC (see Remark 1.3), 𝐹 is holomorphic at 0 if and only if there exists 𝑝 ∈ N
and 𝜀 > 0 such that

(i) (local boundedness) there exists 𝐶 ∈ (0,∞) such that |𝐹 (𝜑) | ≤ 𝐶 for all
𝜑 ∈ NC with |𝜑 |𝑝 ≤ 𝜀;

(ii) (G-holomorphy) for all 𝜑0, 𝜑 ∈ NC such that |𝜑0 |𝑝 ≤ 𝜀, the map C ∋ 𝜆 ↦→
𝐹 (𝜑0 + 𝜆𝜑) ∈ C is holomorphic at 0 ∈ C.

1.3 Bochner Integral

This section provides an overview of the integral for Banach space-valued func-
tions that are used in this dissertation, the Bochner integral. For more details on
these integrals, we refer to [Kuo96].

Let (𝑇,B, 𝜈) be a measure space and 𝑋 be a Banach space over C. Equip 𝑋
with the Borel 𝜎-algebra generated by its induced metric.

Definition 1.10. A function 𝑓 : 𝑇 → 𝑋 is said to be

(i) countably-valued if there exist a sequence (𝑥𝑘)𝑘∈N in 𝑋 and a sequence
(𝐸𝑘)𝑘∈N of pairwise disjoint sets in B such that on 𝑇 ,

𝑓 =

∞∑︁
𝑘=1

1𝐸𝑘 (·)𝑥𝑘 (1.6)
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(ii) weakly measurable if the map 𝑥 ↦→ ⟨𝑥′, 𝑓 (𝑥)⟩ is measurable for each 𝑥′ ∈
𝑋 ′;

(iii) almost separately-valued if there exists 𝐸0 ∈ B such that 𝜈 (𝐸0) = 0 and
𝑓 (𝑋 \ 𝐸0) is separable.

Definition 1.11. A countably-valued function 𝑓 : 𝑇 → 𝑋 of the form (1.6) is
said to be Bochner integrable (with respect to the measure 𝜈) if

∞∑︁
𝑘=1

𝜈 (𝐸𝑘) |𝑥𝑘 |𝑋 < ∞.

In this case, for any 𝐸 ∈ B, we define the Bochner integral of a countably-valued
function 𝑓 on 𝐸 by ∫

𝐸

𝑓 (𝑡) d𝜈 (𝑡) :=
∞∑︁
𝑘=1

𝜈 (𝐸 ∩ 𝐸𝑘)𝑥𝑘 .

In the general case, a function 𝐹 : 𝑇 → 𝑋 is Bochner integrable if there exists
a sequence (𝑓𝑛)𝑛∈N of countably-valued Bochner integrable functions such that
𝑓𝑛 → 𝐹 as 𝑛 →∞ 𝜈-almost everywhere and

lim
𝑛→∞

∫
𝑇

|𝑓𝑛 (𝑡) − 𝐹 (𝑡) |𝑋 d𝜈 (𝑡) = 0.

In this case, the Bochner integral of 𝐹 on 𝐸 is given by∫
𝐸

𝐹 (𝑡) d𝜈 (𝑡) := lim
𝑛→∞

∫
𝐸

𝑓𝑛 (𝑡) d𝜈 (𝑡).

Proposition 1.12. A function 𝐹 : 𝑇 → 𝑋 is Bochner integrable if and only if 𝐹
is weakly measurable, almost separately-valued, and

∫
𝑇
|𝐹 (𝑡) |𝑋 d𝜈 (𝑡) < ∞. If 𝑋 is

separable, then 𝐹 is Bochner integrable if and only if it is weakly measurable and
|𝐹 (·) |𝑋 ∈ 𝐿1(𝑇, 𝜈).

1.4 Distributions in infinite-dimensional

analysis

Given a nuclear triple N ⊂ H ⊂ N ′, we equip the space N ′ with the so-called
cylinder 𝜎-algebra C𝜎 (N ′), defined as the 𝜎-algebra generated by the sets

{𝜔 ∈ N ′ : (⟨𝜔,𝜑1⟩, . . . , ⟨𝜔,𝜑𝑛⟩) ∈ 𝐴},
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over all 𝑛 ∈ N, 𝜑1, . . . , 𝜑𝑛 ∈ N and 𝐴 ∈ B(R𝑛). An equivalent way of describing
the cylinder 𝜎-algebra is that it is the smallest 𝜎-algebraM on N ′ such that all
cylinder maps, that is, maps of the form

N ′ ∋ 𝜔 ↦→ 𝐶𝜑1,...,𝜑𝑛 (𝜔) := (⟨𝜔,𝜑1⟩, . . . , ⟨𝜔,𝜑𝑛⟩) ∈ R𝑛, 𝑛 ∈ N, 𝜑1, . . . , 𝜑𝑛 ∈ N ,

areM-B(R𝑛) measurable. Since N is a projective limit of a countable number
of Hilbert spaces, C𝜎 (N ′) coincides with the Borel 𝜎-algebra generated by the
strong topology on N ′. We refer to, e.g., [BK95], for the proof of this property
of the cylinder 𝜎-algebra.

In a similar manner as that of finite-dimensional spaces, we can define a prob-
ability measure on the space (N ′, C𝜎 (N ′)) in terms of its so-called characteristic
function, described by the Bochner-Minlos theorem (see, e.g., [Oba94, Theo-
rem 1.5.2]).

Theorem 1.13. If 𝜇 is a probability measure on (N ′, C𝜎 (N ′)), then its Fourier
transform, defined by

N ∋ 𝜑 ↦→ 𝐶𝜇 (𝜑) :=
∫
N ′
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇 (𝜔) ∈ C,

is a characteristic function on N , that is, 𝐶𝜇 is a continuous function from N into
C such that 𝐶𝜇 (0) = 1 and 𝐶𝜇 is positive definite: for all 𝜆1, . . . , 𝜆𝑛 ∈ C and
𝜑1, . . . , 𝜑𝑛 ∈ N , we have

𝑛∑︁
𝑗,𝑘=1

𝜆 𝑗𝜆𝑘𝐶𝜇 (𝜑 𝑗 − 𝜑𝑘) ≥ 0.

Conversely, if 𝐶 is a characteristic function on N , then there exists a unique prob-
ability measure 𝜇 on (N ′, C𝜎 (N ′)) such that 𝐶𝜇 = 𝐶 .

In view of Bochner-Minlos theorem, we will also call the Fourier transform
𝐶𝜇 as the characteristic function of 𝜇.

Throughout this dissertation, whenever we define a measure 𝜇 on N ′, we
implicitly assume that N ′ is equipped with C𝜎 (N ′) as its 𝜎-algebra, unless oth-
erwise indicated. In this case, we denote by E𝜇 the expectation operator, and for
𝑝 ≥ 1, the 𝐿𝑝 spaces of complex-valued functions on N ′ with respect to 𝜇 are
denoted by 𝐿𝑝 (𝜇) := 𝐿𝑝 (N ′, 𝜇;C) with corresponding norm ∥ · ∥𝐿𝑝 (𝜇) . For 𝑝 = 2,
the corresponding scalar product is denoted by ((·, ·))𝐿2 (𝜇) , and is given by:

((𝐹,𝐺))𝐿2 (𝜇) :=
∫
N ′
𝐹 (𝜔)𝐺 (𝜔) d𝜇 (𝜔), 𝐹 ,𝐺 ∈ 𝐿2(𝜇).
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1.4.1 Distributions in Gaussian analysis

It was shown in, e.g., [Oba94, Lemma 2.1.1] that the map

N ∋ 𝜑 ↦→ exp
(
−1
2
⟨𝜑, 𝜑⟩

)
∈ C

is a characteristic function onN . Hence, by Bochner-Minlos theorem, we obtain
the following measure on N ′.

Definition 1.14. The Gaussian measure onN ′ is a probability measure 𝜇1 onN ′
whose characteristic function is given by∫

N ′
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇1(𝜔) = exp

(
−1
2
⟨𝜑, 𝜑⟩

)
, 𝜑 ∈ N . (1.7)

Remark 1.15. The unusual notation 𝜇1 for the Gaussian measure is used in an-
ticipation for its generalization, the Mittag-Leffler measure, in Chapter 2. This
measure is denoted by 𝜇𝛽 , 𝛽 ∈ (0, 1], and the case 𝛽 = 1 produces the Gaussian
measure.

We state several properties of the probability space (N ′, 𝜇1) from [Oba94] as
follows. If 𝜑1, . . . , 𝜑𝑛 ∈ N form an orthonormal set with respect to the scalar
product inH , then the imagemeasure of 𝜇1 under the cylinder map𝐶𝜑1,...,𝜑𝑛 is the
standard Gaussian measure on R𝑛 , the probability measure on R𝑛 with density 𝜌
(with respect to the Lebesgue measure on R𝑛) given by

𝜌 (𝑥) := 1
(2𝜋)𝑛/2

exp
(
−1
2
|𝑥 |2

)
, 𝑥 ∈ R𝑛 .

From this image measure of 𝜇1, we obtain the following formula:∫
N ′
|⟨𝜔,𝜑⟩|2 d𝜇1(𝜔) = ⟨𝜑, 𝜑⟩2, 𝜑 ∈ NC. (1.8)

Equation (1.8) allows us to extend the definition of the dual pairing ⟨·, ·⟩ toN ′ ×
HC. To see this, let 𝜂 ∈ HC and (𝜑𝑛)∞𝑛=1 be a sequence in NC converging to 𝜂 in
HC. Then Equation (1.8) implies that for all𝑚,𝑛 ∈ N,

∥⟨·, 𝜑𝑚⟩ − ⟨·, 𝜑𝑛⟩∥𝐿2 (𝜇1) = |𝜑𝑚 − 𝜑𝑛 |HC .

As the sequence (𝜑𝑛)∞𝑛=1 is Cauchy in HC, the above equality implies that the
sequence (⟨·, 𝜑𝑛⟩)∞𝑛=1 is Cauchy in 𝐿2(𝜇1). Hence, we can define

⟨·, 𝜂⟩ := lim
𝑛→∞
⟨·, 𝜑𝑛⟩, (1.9)
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where the limit is taken with respect to 𝐿2(𝜇1). This limit is independent of the
sequence in NC approximating 𝜂. Indeed, if another sequence (𝜑𝑛)∞𝑛=1 in NC
converge to 𝜂 inHC and 𝐹 is the limit of the sequence (⟨·, 𝜑𝑛⟩)∞𝑛=1 in 𝐿2(𝜇1), then

∥⟨·, 𝜂⟩−𝐹 ∥𝐿2 (𝜇1) ≤ ∥⟨·, 𝜂⟩−⟨·, 𝜑𝑛⟩∥𝐿2 (𝜇1)+∥⟨·, 𝜑𝑛⟩−⟨·, 𝜑𝑛⟩∥𝐿2 (𝜇1)+∥⟨·, 𝜑𝑛⟩−𝐹 ∥𝐿2 (𝜇1)
= ∥⟨·, 𝜂⟩ − ⟨·, 𝜑𝑛⟩∥𝐿2 (𝜇1) + |𝜑𝑛 − 𝜑𝑛 |HC + ∥⟨·, 𝜑𝑛⟩ − 𝐹 ∥𝐿2 (𝜇1) .

As all the terms on the right-hand side converge to 0 as 𝑛 → ∞, we infer that
⟨·, 𝜂⟩ = 𝐹 in 𝐿2(𝜇1). From this definition of ⟨·, 𝜂⟩, the following formulas hold for
𝜂, 𝜉 ∈ HC and 𝑛 ∈ N0:∫

N ′
𝑒𝑖⟨𝜔,𝜂⟩ d𝜇1(𝜔) = exp

(
−1
2
⟨𝜂, 𝜂⟩

)
,∫

N ′
⟨𝜔,𝜂⟩2𝑛+1 d𝜇1(𝜔) = 0,∫

N ′
⟨𝜔,𝜂⟩2𝑛 d𝜇1(𝜔) =

(2𝑛)!
2𝑛𝑛!
⟨𝜂, 𝜂⟩𝑛,∫

N ′
⟨𝜔,𝜂⟩⟨𝜔, 𝜉⟩ d𝜇1(𝜔) = ⟨𝜂, 𝜉⟩.

(1.10)

Example 1.16. Consider the standard nuclear triple S(R) ⊂ 𝐿2(R) ⊂ S′(R)
from Example 1.2. For 𝑡 ∈ (0,∞), the indicator function 1[0,𝑡) belongs to 𝐿2(R),
and so 𝐵𝑡 := ⟨·, 1[0,𝑡)⟩ is a well-defined element of 𝐿2(𝜇1). Set 𝐵0 := 0. Now, using
(1.10), we have, for 𝑡, 𝑠 ∈ (0,∞),∫

S′ (R)
⟨𝜔, 1[0,𝑡)⟩ d𝜇1(𝜔) = 0,∫

S′ (R)
⟨𝜔, 1[0,𝑡)⟩⟨𝜔, 1[0,𝑠)⟩ d𝜇1(𝜔) = (1[0,𝑡), 1[0,𝑠))𝐿2 (R) = min{𝑡, 𝑠},

and by an approximation procedure, for 𝑡 ∈ (0,∞) and 𝑝 ∈ R,∫
S′ (R)

𝑒𝑖𝑝𝐵𝑡 (𝜔) d𝜇1(𝜔) = exp
(
−1
2
𝑝2𝑡

)
=

1
√
2𝜋𝑡

∫
R
𝑒𝑖𝑝𝑥𝑒−

1
2𝑡 𝑥

2
d𝑥 .

Hence, the stochastic process (𝐵𝑡 )𝑡≥0 is a Gaussian centered process with covari-
ance given by Cov(𝐵𝑡 , 𝐵𝑠) = min{𝑡, 𝑠}. In fact, (𝐵𝑡 )𝑡≥0 has a continuous modifi-
cation which is a Brownian motion. For more details, see, e.g., [HKPS93].

The construction of test functions and distributions on the space (N ′, 𝜇1)
begins with the following subspace of 𝐿2(𝜇1). Let P(N ′) be the complex space
of smooth polynomials on N ′, defined by the space of all maps of the form

N ′ ∋ 𝜔 ↦→ 𝑝 (⟨𝜔,𝜑1⟩, . . . , ⟨𝜔,𝜑𝑛⟩) ∈ C,
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where𝑛 ∈ N, 𝜑1 , . . . , 𝜑𝑛 ∈ NC, and 𝑝 is a polynomial overC in𝑛 indeterminates.
Since the map

(NC)𝑚 ∋ (𝜑1, . . . , 𝜑𝑚) ↦→ ⟨𝜔⊗𝑚, 𝜑1 ⊗ · · · ⊗ 𝜑𝑚⟩ = ⟨𝜔,𝜑1⟩ · · · ⟨𝜔,𝜑𝑚⟩ ∈ C,
𝑚 ∈ N, 𝜔 ∈ N ′,

is𝑚-linear and symmetric, the polarization formula (1.5) provides an alternative
expression for 𝜑 ∈ P(N ′) as the following finite sum:

𝜑 (𝜔) =
𝑁∑︁
𝑛=0
⟨𝜔⊗𝑛, 𝜑 (𝑛)⟩, 𝜔 ∈ N ′, (1.11)

where 𝑁 ∈ N0, and 𝜑 (𝑛) ∈ NC is a (finite) linear combination of elements of
the form 𝜉⊗𝑛 , 𝜉 ∈ NC. Note that (1.10) and (1.11) implies that P(N ′) is indeed
a subspace of 𝐿2(𝜇1). In fact, P(N ′) is dense in 𝐿2(𝜇1) (see, e.g., [Oba94, Propo-
sition 2.3.2]). However, we would like to rewrite smooth polynomials in such a
way that a certain orthogonality relation is satisfied. Thus, we use a different set
of polynomials, the so-calledWick-ordered polynomials, in whichwe use the fol-
lowing construction instead of the usual definition from, e.g., [Oba94,HKPS93].
For a fixed 𝑛 ∈ N0, let Δ(N ⊗̂𝑛C ) be the subspace ofN

⊗̂𝑛
C

spanned by the elements
of the form 𝜉⊗𝑛 , 𝜉 ∈ NC. The polarization formula (1.5) ensures that Δ(N ⊗̂𝑛

C
) is

dense in each of the spaces H ⊗̂𝑛
𝑝,C

, 𝑝 ∈ N0, and so Δ(N ⊗̂𝑛
C
) is also dense in N ⊗̂𝑛

C
.

The𝑛th Wick power of𝜔 ∈ N ′, denoted by :𝜔⊗𝑛 :, is an element of (N ⊗̂𝑛
C
)′ defined

as follows. First, the dual pairing between :𝜔⊗𝑛 : and an element 𝜉⊗𝑛 , 𝜉 ∈ NC is
given by

⟨:𝜔⊗𝑛 :, 𝜉⊗𝑛⟩ =
|𝜉 |𝑛HC
2𝑛/2

𝐻𝑛

(
⟨𝜔, 𝜉⟩
√
2|𝜉 |HC

)
,

where 𝐻𝑛 is the 𝑛th Hermite polynomial:

𝐻𝑛 (𝑥) := 𝑛!
⌊𝑛/2⌋∑︁
𝑘=0

(−1)𝑘
𝑘!(𝑛 − 2𝑘)! (2𝑥)

𝑛−2𝑘 .

Then extend the dual pairing to Δ(N ⊗̂𝑛
C
) via linearity, and finally to N ⊗̂𝑛

C
via

approximation of elements from Δ(N ⊗̂𝑛
C
). Then every 𝜑 ∈ P(N ′) can be written

uniquely as a finite sum of Wick powers:

𝜑 (𝜔) =
∞∑︁
𝑛=0
⟨:𝜔⊗𝑛 :, 𝜑 (𝑛)⟩, 𝜔 ∈ N ′, (1.12)
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where𝜑 (𝑛) ∈ Δ(N ⊗̂𝑛
C
), and𝜑 (𝑛) = 0 except for a finite number of 𝑛 ∈ N0 (see, e.g.,

[Oba94, Corollary 2.2.11]). A smooth polynomial expressed in the form (1.12) is
called a Wick-ordered polynomial on N ′. The advantage of using Wick-ordered
polynomials over the usual expression or expression (1.11) for smooth polyno-
mials is the following orthogonality relation on the Wick powers:∫

N ′
⟨:𝜔⊗𝑚 :, 𝜉⊗𝑚⟩⟨:𝜔⊗𝑛 :, 𝜑⊗𝑛⟩ d𝜇1(𝜔) = 𝛿𝑚,𝑛𝑛!⟨𝜑, 𝜉⟩𝑛, 𝜉, 𝜑 ∈ NC, 𝑚, 𝑛 ∈ N0.

(1.13)

Equation (1.13) implies that if 𝜑 (𝑛) ∈ Δ(N ⊗̂𝑛
C
), then

∥⟨:·⊗𝑛 :, 𝜑 (𝑛)⟩∥2
𝐿2 (𝜇1) = 𝑛!|𝜑

(𝑛) |2𝑝,

Recalling that Δ(N ⊗̂𝑛
C
) is dense inH ⊗̂𝑛

C
, we can define the expression ⟨:·⊗𝑛 :, 𝐹 (𝑛)⟩

for 𝐹 (𝑛) ∈ H ⊗̂𝑛
C

in 𝐿2(𝜇1) in a similar manner as that of (1.9). From this definition
of ⟨:·⊗𝑛 :, 𝐹 (𝑛)⟩ and the density of P(N ′) in 𝐿2(𝜇1), the following result called the
Wiener-Itô-Segal chaos decomposition theorem is proven.

Theorem 1.17. For every 𝐹 ∈ 𝐿2(𝜇1), there exists a unique sequence (𝐹 (𝑛))𝑛∈N0 ,
𝐹 (𝑛) ∈ H ⊗̂𝑛

C
, such that the following equality holds in 𝐿2(𝜇1):

𝐹 =

∞∑︁
𝑛=0
⟨:·⊗𝑛 :, 𝐹 (𝑛)⟩. (1.14)

Moreover, ∥𝐹 ∥2
𝐿2 (𝜇1) =

∞∑︁
𝑛=0

𝑛!|𝐹 (𝑛) |2
H ⊗̂𝑛
C

.

We will call the expression on the right-hand side of (1.14) the (Wiener-Itô-
Segal) chaos decomposition of 𝐹 ∈ 𝐿2(𝜇1).

Example 1.18. Let 𝜑 ∈ NC. The Wick exponential, denoted by : 𝑒 ⟨·,𝜑⟩ : or
:exp ⟨·, 𝜑⟩:, is a map from N ′ to C defined by

:𝑒 ⟨𝜔,𝜑⟩ : :=
𝑒 ⟨𝜔,𝜑⟩

E𝜇1 (⟨·, 𝜑⟩)
= exp

(
⟨𝜔,𝜑⟩ − 1

2
⟨𝜑, 𝜑⟩

)
, 𝜔 ∈ N ′.

The Wick exponential is a well-defined element of 𝐿2(𝜇1) whose chaos decom-
position is given by

:𝑒 ⟨·,𝜑⟩ : =
∞∑︁
𝑛=0

〈
:·⊗𝑛 :, 1

𝑛!
𝜑⊗𝑛

〉
. (1.15)

We refer to, e.g., [HKPS93,Kuo96,Oba94] for the details on the derivation of the
decomposition formula (1.15).
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Now, we are in a position to construct the following spaces of test functions
and distributions on (N ′, 𝜇1). Instead of the approach from, e.g., [KLS96,GKS97],
we will use the chaos decomposition (1.14) as a starting point and follow a con-
struction in a similar way as that of the construction of the Hida spaces of test
functions and distributions (see, e.g., [HKPS93]). We will revisit the former ap-
proach when we discuss the corresponding construction for the non-Gaussian
case in Subsection 1.4.2.

For 𝑝, 𝑞 ∈ N, define the following subspace of 𝐿2(𝜇1):

(H𝑝)1𝑞,𝜇1 =
{
𝐹 =

∞∑︁
𝑛=0
⟨:·⊗𝑛 :, 𝐹 (𝑛)⟩ ∈ 𝐿2(𝜇1) : 𝐹 (𝑛) ∈ H ⊗̂𝑛𝑝,C,

∥𝐹 ∥𝑝,𝑞,𝜇1 :=
( ∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 |𝐹 (𝑛) |2𝑝

)1/2
< ∞

}
.

A quick verification shows that ∥ · ∥𝑝,𝑞,𝜇1 is indeed a norm on (H𝑝)1𝑞,𝜇1 induced
by the scalar product ((·, ·))𝑝,𝑞,𝜇1 on (H𝑝)1𝑞,𝜇1 defined by

((𝐹,𝐺))𝑝,𝑞,𝜇1 =
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 (𝐹 (𝑛),𝐺 (𝑛))𝑝, 𝐹 ,𝐺 ∈ (H𝑝)1𝑞,𝜇1 .

Moreover, for all 𝑝, 𝑝′, 𝑞, 𝑞′ ∈ N with 𝑝 ≤ 𝑝′ and 𝑞 ≤ 𝑞′,

(H𝑝′)1𝑞′,𝜇1 ⊂ (H𝑝)1𝑞,𝜇1 ⊂ 𝐿
2(𝜇1).

Next, we will show that (H𝑝)1𝑞,𝜇1 is complete. Let (𝐹𝑘)𝑘∈N, 𝐹𝑘 =
∑∞
𝑛=0⟨:·⊗𝑛 :, 𝐹

(𝑛)
𝑘
⟩,

be a Cauchy sequence in (H𝑝)1𝑞,𝜇1 . The estimate

|𝐹 (𝑛)
𝑘
− 𝐹 (𝑛)

𝑙
|2𝑝 ≤ (𝑛!)−22−𝑛𝑞 ∥𝐹𝑘 − 𝐹𝑙 ∥2𝑝,𝑞,𝜇1, 𝑘, 𝑙 ∈ N, 𝑛 ∈ N0,

shows that (𝐹 (𝑛)
𝑘
)𝑘∈N is Cauchy in H ⊗̂𝑛

𝑝,C
, and thus for each 𝑛 ∈ N0, there exists

𝐹 (𝑛) := lim𝑘→∞ 𝐹
(𝑛)
𝑘

in H ⊗̂𝑛
𝑝,C

. Set 𝐹 :=
∑∞
𝑛=0⟨: ·⊗𝑛 :, 𝐹 (𝑛)⟩ ∈ 𝐿2(𝜇1). We infer from

Fatou’s lemma that

∥𝐹𝑘 − 𝐹 ∥2𝑝,𝑞,𝜇1 =
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 lim

𝑙→∞
|𝐹 (𝑛)
𝑘
− 𝐹 (𝑛)

𝑙
|2𝑝 ≤ lim inf

𝑙→∞

∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 |𝐹 (𝑛)

𝑘
− 𝐹 (𝑛)

𝑙
|2𝑝

= lim inf
𝑙→∞

∥𝐹𝑘 − 𝐹𝑙 ∥2𝑝,𝑞,𝜇1 → 0 as 𝑘 →∞.

Thus, 𝐹 ∈ (H𝑝)1𝑞,𝜇1 and that 𝐹𝑘 → 𝐹 in (H𝑝)1𝑞,𝜇1 as 𝑘 → ∞. This shows that
(H𝑝)1𝑞,𝜇1 is a Hilbert space.
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Finally, the test function space (N)1𝜇1 is defined to be the space

(N)1𝜇1 := prlim
𝑝,𝑞∈N

(H𝑝)1𝑞,𝜇1 .

It turns out that (N)1𝜇1 is a nuclear Fréchet space densely and topologically em-
bedded in 𝐿2(𝜇1), and that the topology on (N)1𝜇1 is independent of the norms
( | · |𝑝)𝑝∈N topologizingN (cf. [KLS96, Theorem 1]). Moreover, as a projective limit
of the spaces (H𝑝)1𝑞,𝜇1 , every 𝜑 ∈ (N)

1
𝜇1 has the following unique representation

in 𝐿2(𝜇1):

𝜑 =

∞∑︁
𝑛=0
⟨:·⊗𝑛 :, 𝜑 (𝑛)⟩, 𝜑 (𝑛) ∈ N ⊗̂𝑛C , (1.16)

such that

∥𝜑 ∥2𝑝,𝑞,𝜇1 =
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 |𝜑 (𝑛) |2𝑝 < ∞, for all 𝑝, 𝑞 ∈ N.

The distribution space, denoted by (N)−1𝜇1 , is then defined to be the dual space
of (N)1𝜇1 . Let (H−𝑝)−1−𝑞,𝜇1 be the dual space of (H𝑝)1𝑞,𝜇1 with norm denoted by
∥ · ∥−𝑝,−𝑞,𝜇1 . By general duality theory, we have

(N)−1𝜇1 =
⋃
𝑝,𝑞∈N
(H−𝑝)−1−𝑞,𝜇1,

and so we equip (N)−1𝜇1 with the inductive limit topology of the spaces (H−𝑝)−1−𝑞,𝜇1
over all 𝑝, 𝑞 ∈ N. With this, we obtain the following nuclear triple:

(N)1𝜇1 ⊂ 𝐿
2(𝜇1) ⊂ (N)−1𝜇1 .

We shall denote by ⟨⟨·, ·⟩⟩𝜇1 both the dual pairing between (N)−1𝜇1 and (N)1𝜇1 and
that of between (H−𝑝)−1−𝑞,𝜇1 and (H𝑝)1𝑞,𝜇1 . This dual pairing is an extension of the
scalar product in 𝐿2(𝜇1) via

⟨⟨𝐹, 𝜑⟩⟩𝜇1 = ((𝐹, 𝜑))𝐿2 (𝜇1), 𝐹 ∈ 𝐿2(𝜇1), 𝜑 ∈ (N)1𝜇1 .

Moreover, for all 𝑝, 𝑝′, 𝑞, 𝑞′ ∈ N with 𝑝 ≤ 𝑝′ and 𝑞 ≤ 𝑞′, we obtain the following
chain of continuous and dense embeddings:

(N)1𝜇1 ⊂ (H𝑝′)1𝑞′,𝜇1 ⊂ (H𝑝)1𝑞,𝜇1 ⊂ 𝐿
2(𝜇1) ⊂ (H−𝑝)−1−𝑞,𝜇1 ⊂ (H−𝑝′)

−1
−𝑞′,𝜇1 ⊂ (N)

−1
𝜇1 .
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The chaos decomposition formula also allows for a natural decomposition for
distributions Φ ∈ (N)−1𝜇1 in terms of Φ(𝑛) ∈ (N ⊗̂𝑛

C
)′. To see this, given 𝑝, 𝑞 ∈ N

and Φ(𝑛) ∈ H ⊗̂𝑛−𝑝,C, define the map

𝐼𝑛 (Φ(𝑛)) : (H𝑝)1𝑞,𝜇1 ∋ 𝐹 :=
∞∑︁
𝑛=0
⟨:·⊗𝑛 :, 𝐹 (𝑛)⟩ ↦→ 𝑛!⟨Φ(𝑛), 𝐹 (𝑛)⟩ ∈ C.

Note that 𝐼𝑛 (Φ(𝑛)) belongs to (H−𝑝)−1−𝑞,𝜇1 ; indeed, for all 𝐹 :=
∑∞
𝑛=0⟨: ·⊗𝑛 :, 𝐹 (𝑛)⟩ ∈

(H𝑝)1𝑞,𝜇1 ,���⟨⟨𝐼𝑛 (Φ(𝑛)), 𝐹 ⟩⟩𝜇1 ��� ≤ 𝑛!|Φ(𝑛) |−𝑝 |𝐹 (𝑛) |𝑝 ≤ 2−𝑛𝑞/2 |Φ(𝑛) |−𝑝 ∥𝐹 ∥𝑝,𝑞,𝜇1 < ∞.

From here, the dual space (H−𝑝)−1−𝑞,𝜇1 is characterized as the following space:

(H−𝑝)−1−𝑞,𝜇1 =
{
Φ =

∞∑︁
𝑛=0

𝐼𝑛 (Φ(𝑛)) : Φ(𝑛) ∈ H ⊗̂𝑛−𝑝,C, ∥Φ∥
2
−𝑝,−𝑞,𝜇1 =

∞∑︁
𝑛=0

2−𝑛𝑞 |Φ(𝑛) |2−𝑝 < ∞
}
.

Any Φ ∈ (N)−1𝜇1 then has a unique decomposition

Φ =

∞∑︁
𝑛=0

𝐼𝑛 (Φ(𝑛)), Φ(𝑛) ∈ (N ⊗̂𝑛C )
′, (1.17)

where the sum converges in (N)−1𝜇1 . Moreover, for all Φ ∈ (N)−1𝜇1 and 𝜑 ∈ (N)1𝜇1
written in the forms (1.17) and (1.16), respectively,

⟨⟨Φ, 𝜑⟩⟩𝜇1 =
∞∑︁
𝑛=0

𝑛!⟨Φ(𝑛), 𝜑 (𝑛)⟩.

Remark 1.19. The nuclear triple (N)1𝜇1 ⊂ 𝐿
2(𝜇1) ⊂ (N)−1𝜇1 is part of a family of

nuclear triples

(N)𝜌𝜇1 ⊂ 𝐿
2(𝜇1) ⊂ (N)−𝜌𝜇1 (1.18)

parametrized by 𝜌 ∈ [0, 1] (see, e.g., [KLS96]). Such triple starts from using the
following norm

∥𝐹 ∥𝑝,𝑞,𝜌,𝜇1 :=
( ∞∑︁
𝑛=0
(𝑛!)1+𝜌2𝑛𝑞 |𝐹 (𝑛) |2𝑝

)1/2
,
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and then the triple (1.18) will be constructed in a similar manner as that of the
case for 𝜌 = 1. The norm on the corresponding dual space is given by

∥Φ∥2−𝑝,−𝑞,−𝜌,𝜇1 =
∞∑︁
𝑛=0
(𝑛!)1−𝜌2−𝑛𝑞 |Φ(𝑛) |2−𝑝,

and for 𝜌, 𝜌′ ∈ [0, 1] with 𝜌 ≤ 𝜌′, we obtain the following chain of inclusions:

(N)1𝜇1 ⊂ (N)
𝜌 ′

𝜇1 ⊂ (N)
𝜌
𝜇1 ⊂ (N)𝜇1 ⊂ 𝐿

2(𝜇1) ⊂ (N)′𝜇1 ⊂ (N)
−𝜌
𝜇1 ⊂ (N)

−𝜌 ′
𝜇1 ⊂ (N)

−1
𝜇1 .

where we use the notation (N)𝜇1 and (N)′𝜇1 for the spaces (N)𝜌𝜇1 and (N)
−𝜌
𝜇1 ,

respectively, corresponding to 𝜌 = 0. In this dissertation, we are only concerned
with the endpoints (N)1𝜇1 and (N)

−1
𝜇1 of this chain.

1.4.2 Distributions in non-Gaussian analysis

In the previous subsection, we have constructed the spaces of test functions and
distributions on (N ′, 𝜇1) using the Wiener-Itô-Segal chaos decomposition theo-
rem. The chaos decomposition (1.14) relies on the orthogonality relation of the
Wick-ordered polynomials (see Equation (1.13)). However, the construction from
[KLS96, GKS97] describes (H𝑝)1𝑞,𝜇1 as the completion of P(N ′) with respect to
the norm

∥𝜑 ∥2𝑝,𝑞,𝜇1 :=
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 |𝜑 (𝑛) |2𝑝,

for 𝜑 ∈ P(N ′) written in Wick-ordered polynomial form (1.12). It turns out that
we can use this approach to construct test functions and distributions on a more
general probability space (N ′, 𝜇). In this case, we replace theWick-ordered poly-
nomials by the so-called “Appell system”: a pair (P𝜇,Q𝜇) consisting of a set P𝜇 of
specialized polynomials and a set Q𝜇 of distributions properly associated with 𝜇.
Elements of P𝜇 generally do not satisfy an orthogonality relation similar to that of
(1.13). Instead, each pair of elements in P𝜇 ×Q𝜇 satisfy a certain biorthogonality
relation (see Equation (1.23)). This system has been first constructed for smooth
measures 𝜇 by Daletskii [Dal91], and more details and results arising from this
construction were obtained in [ADKS96]. In this subsection, we use the con-
struction of the Appell system from [GJRdS15], which is the same as that from
[KSWY98] but with the exception that the former uses a stronger assumption on
the measure 𝜇 than that of the latter.

As a starting point of constructing test functions and distributions using the
Appell system, we assume that the measure 𝜇 on N ′ satisfy the following prop-
erties.
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(A1) The measure 𝜇 has an analytic Laplace transform in a neighborhood of
zero, that is, the map

NC ∋ 𝜑 ↦→ 𝑙𝜇 (𝜑) :=
∫
N ′
𝑒 ⟨𝜔,𝜑⟩ d𝜇 (𝜔) ∈ C

is holomorphic at 0 ∈ NC.

(A2) The measure 𝜇 has full topological support, that is, for any nonempty open
subsetU ⊂ N ′, we have 𝜇 (U) > 0.

As a side note, in [KSWY98], condition (A2) was replaced by the weaker con-
dition that 𝜇 is non-degenerate, that is, if 𝜑 ∈ P(N ′) such that 𝜑 = 0 𝜇-almost
everywhere, then 𝜑 is identically zero on N ′. However, it was shown in [KK99]
that this assumption is not sufficient to guarantee the embedding of test func-
tions into 𝐿2(𝜇).

Remark 1.20. It was shown in [KSWY98] that the following statements are
equivalent for a measure 𝜇 on N ′.

(i) Condition (A1) holds for 𝜇.

(ii) There exist 𝑝 ∈ N and 𝐶 ∈ (0,∞) such that����∫
N ′
⟨𝜔, 𝜉⟩𝑛 d𝜇 (𝜔)

���� ≤ 𝑛!𝐶𝑛 |𝜉 |𝑛𝑝, 𝜉 ∈ H𝑝,C, 𝑛 ∈ N.

(iii) There exist 𝑝 ∈ N and 𝜀 > 0 such that for all 𝑛 ∈ N,∫
N ′
𝑒𝜀 |𝜔 |−𝑝 d𝜇 (𝜔) < ∞.

Statement (ii) implies that P(N ′) is a subspace of 𝐿2(𝜇). In fact, [Jah15, The-
orem 2.1.4] shows that condition (A1) of the measure 𝜇 ensures that P(N ′) is
dense in 𝐿2(𝜇).

Next step is to construct the Appell system itself and write decomposition
formulas for elements in the space P(N ′) and its dual space. We only provide
an overview of the construction, and we refer to [KSWY98] for further details
of this construction. First, we need to assign a topology on P(N ′) to obtain the
corresponding dual space. Note that every 𝜑 ∈ P(N ′) can be written uniquely
as

𝜑 (𝜔) =
∞∑︁
𝑛=0
⟨𝜔⊗𝑛, 𝜑 (𝑛)⟩, 𝜔 ∈ N ′, (1.19)



26 Preliminary Concepts | Ch. 1

where 𝜑 (𝑛) ∈ N ⊗̂𝑛
C

such that 𝜑 (𝑛) = 0 for all but a finite number of 𝜑 (𝑛) . Ex-
pression (1.19) allows us to construct a natural topology on P(N ′), namely the
topology such that the bijective mapping

𝜑 =

∞∑︁
𝑛=0
⟨·⊗𝑛, 𝜑 (𝑛)⟩ ←→ ®𝜑 := (𝜑 (𝑛))𝑛∈N0

becomes a topological isomorphism between P(N ′) and the topological direct
sum of the spaces N ⊗̂𝑛

C
:

P(N ′) �
∞⊕
𝑛=0
N ⊗̂𝑛C .

Let P′𝜇 (N ′) be the dual space of P(N ′). Then by identifying 𝐿2(𝜇) with its dual
via the Riesz representation theorem, we obtain the following chain of inclusions:

P(N ′) ⊂ 𝐿2(𝜇) ⊂ P′𝜇 (N ′).

Denote the dual pairing between P′𝜇 (N ′) and P(N ′) by ⟨⟨·, ·⟩⟩𝜇 . This dual pairing
is a bilinear extension of the scalar product on 𝐿2(𝜇) given by

⟨⟨𝐹, 𝜑⟩⟩𝜇 = ((𝐹, 𝜑))𝐿2 (𝜇), 𝐹 ∈ 𝐿2(𝜇), 𝜑 ∈ P(N ′).

In addition, since the map 1 : N ′ → C defined by 1(𝜔) = 1 for all 𝜔 ∈ N ′
belongs to P(N ′), we can extend the definition of the expectation operator from
random variables to elements in P′𝜇 (N ′) by

E𝜇 (Φ) := ⟨⟨Φ, 1⟩⟩𝜇, Φ ∈ P′𝜇 (N ′).

and call E𝜇 (Φ) the generalized expectation of Φ.
To construct a decomposition formula for elements in P(N ′), we introduce

the 𝜇-exponential defined as follows. Since 𝑙𝜇 (0) = 1 and 𝑙𝜇 is holomorphic at
0 ∈ NC by (A1), there exists a neighborhoodU0 ⊂ NC of zero such that 𝑙𝜇 (𝜑) ≠ 0
for all 𝜑 ∈ U0. The 𝜇-exponential or normalized exponential is then defined as
follows:

𝑒𝜇 (𝜑 ;𝜔) :=
𝑒 ⟨𝜔,𝜑⟩

𝑙𝜇 (𝜑)
, 𝜑 ∈ U0, 𝜔 ∈ N ′C.

The holomorphy of the map 𝜑 ↦→ 𝑒𝜇 (𝜑 ;𝜔) for each 𝜔 ∈ N ′C implies that the
𝜇-exponential can be expressed as a power series in a similar way as that of the
case for one-dimensional Appell polynomials (see, e.g., [Bou04]), that is,

𝑒𝜇 (𝜑 ;𝜔) =
∞∑︁
𝑛=0

1
𝑛!
⟨𝑃 𝜇𝑛 (𝜔), 𝜑⊗𝑛⟩, 𝜑 ∈ U0, 𝜔 ∈ N ′C, (1.20)
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for suitable mappings 𝑃 𝜇𝑛 : N ′
C
→ (N ⊗̂𝑛

C
)′. Using this expansion, every 𝜑 ∈

P(N ′) has the following unique decomposition:

𝜑 (𝜔) =
∞∑︁
𝑛=0
⟨𝑃 𝜇𝑛 (𝜔), 𝜑 (𝑛)⟩, 𝜔 ∈ N ′C, (1.21)

where 𝜑 (𝑛) ∈ N ⊗̂𝑛
C

and 𝜑 (𝑛) = 0 except for a finite number of 𝑛 ∈ N0. The set

P𝜇 := {⟨𝑃 𝜇𝑛 (·), 𝜑 (𝑛)⟩ : 𝜑 (𝑛) ∈ N ⊗̂𝑛C , 𝑛 ∈ N0}

is then called the P𝜇-system, and its elements are called Appell polynomials.
For the elements in P′𝜇 (N ′), we define the following continuous linear op-

erator on P(N ′). Given Φ(𝑛) ∈ (N ⊗̂𝑛
C
)′, define the continuous linear operator

𝐷 (Φ(𝑛)) on P(N ′) acting on the monomials ⟨(·)⊗𝑚, 𝜑 (𝑚)⟩ by

𝐷 (Φ(𝑛))⟨(·)⊗𝑚, 𝜑 (𝑚)⟩ =


𝑚!
(𝑚 − 𝑛)! ⟨(·)

⊗(𝑚−𝑛) ⊗̂Φ(𝑛), 𝜑 (𝑚)⟩, 𝑚 ≥ 𝑛,

0, 𝑚 < 𝑛,

Then every Φ ∈ P′𝜇 (N ′) also has a unique decomposition:

Φ =

∞∑︁
𝑛=0

𝑄
𝜇
𝑛 (Φ(𝑛)), (1.22)

for suitable Φ(𝑛) ∈ (N ⊗̂𝑛
C
)′. In this representation, 𝑄𝜇

𝑛 (Φ(𝑛)) := 𝐷 (Φ(𝑛))∗1, where
𝐷 (Φ(𝑛))∗ is the adjoint of 𝐷 (Φ(𝑛)). The set

Q𝜇 := {𝑄𝜇
𝑛 (Φ(𝑛)) : Φ(𝑛) ∈ (N ⊗̂𝑛C )

′, 𝑛 ∈ N0}

is called the Q𝜇-system. The pair (P𝜇,Q𝜇) is then called the Appell system gener-
ated by 𝜇.

The main property of the Appell system is the following biorthogonality re-
lation (see [KSWY98, Theorem 4.17]).

Theorem 1.21. For all Φ(𝑛) ∈ (N ⊗̂𝑛
C
)′ and 𝜑 (𝑚) ∈ N ⊗̂𝑚

C
,

⟨⟨𝑄𝜇
𝑛 (Φ(𝑛)), ⟨𝑃

𝜇
𝑚 (·), 𝜑 (𝑚)⟩⟩⟩𝜇 = 𝛿𝑚,𝑛𝑛!⟨Φ(𝑛), 𝜑 (𝑛)⟩. (1.23)

From here on, we always use the representations (1.21) and (1.22) for 𝜑 ∈ P(N ′)
and Φ ∈ P′𝜇 (N ′), respectively.
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Finally, we use the Appell system to construct test functions and distributions
on (N ′, 𝜇). For 𝑝, 𝑞 ∈ N, the space (H𝑝)1𝑞,𝜇 is defined as the completion of the
space P(N ′) with respect to the norm

∥𝜑 ∥2𝑝,𝑞,𝜇 :=
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 |𝜑 (𝑛) |2𝑝, 𝜑 ∈ P(N ′) .

Note that the sum is finite since only a finite number of 𝜑 (𝑛) is nonzero. This
norm on P(N ′) is induced by the scalar product ((·, ·))𝑝,𝑞,𝜇 on P(N ′) defined by

((𝜑,𝜓 ))𝑝,𝑞,𝜇 :=
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 (𝜑 (𝑛),𝜓 (𝑛))𝑝, 𝜑,𝜓 ∈ P(N ′),

and hence (H𝑝)1𝑞,𝜇 is a Hilbert space. It has been shown in [KK99] that under
condition (A2), there exist 𝑝′, 𝑞′ ∈ N such that for all 𝑝 > 𝑝′ and 𝑞 > 𝑞′, (H𝑝)1𝑞,𝜇
can be topologically embedded in 𝐿2(𝜇). The test function space (N)1𝜇 is then
defined as

(N)1𝜇 := prlim
𝑝,𝑞∈N

(H𝑝)1𝑞,𝜇 .

This is a nuclear space which is continuously and densely embedded in 𝐿2(𝜇).
Moreover, every 𝜑 ∈ (N)1𝜇 has a representation as an entire function on N ′

C
in

terms of a power series:

𝜑 (𝜔) =
∞∑︁
𝑛=0
⟨𝑃 𝜇𝑛 (𝜔), 𝜑 (𝑛)⟩, 𝜔 ∈ N ′C, (1.24)

where 𝜑 (𝑛) ∈ N ⊗̂𝑛
C

such that

∥𝜑 ∥2𝑝,𝑞,𝜇 =
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞 |𝜑 (𝑛) |2𝑝 < ∞, for all 𝑝, 𝑞 ∈ N.

It turns out that (N)1𝜇 is the same for all measures 𝜇 satisfying (A1) and (A2),
and so we drop the subscript 𝜇 and denote the test function space by (N)1.

The distribution space (N)−1𝜇 is defined as the dual space of (N)1. Let (H−𝑝)−1−𝑞,𝜇
be the dual space of (H𝑝)1𝑞,𝜇 with norm denoted by ∥·∥−𝑝,−𝑞,𝜇 . The biorthogonality
relation (1.23) implies that

(H−𝑝)−1−𝑞,𝜇 =
{
Φ ∈ P′𝜇 (N ′) : ∥Φ∥2−𝑝,−𝑞,𝜇 =

∞∑︁
𝑛=0

2−𝑞𝑛 |Φ(𝑛) |2−𝑝 < ∞
}
.
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General theory of duality then implies that

(N)−1𝜇 =
⋃
𝑝,𝑞∈N
(H−𝑝)−1−𝑞,𝜇,

and so we equip (N)−1𝜇 with the inductive topology:

(N)−1𝜇 := indlim
𝑝,𝑞∈N

(H−𝑝)−1−𝑞,𝜇 .

Hence, we obtain the nuclear triple

(N)1 ⊂ 𝐿2(𝜇) ⊂ (N)−1𝜇 ,

and for all 𝑝, 𝑝′, 𝑞, 𝑞′ ∈ N with 𝑝 ≤ 𝑝′ and 𝑞 ≤ 𝑞′, we obtain the following chain
of continuous embeddings:

P′𝜇 (N ′) ⊂ (N)1 ⊂ (H𝑝′)1𝑞′,𝜇 ⊂ (H𝑝)1𝑞,𝜇 ⊂ 𝐿2(𝜇)
⊂ (H−𝑝)−1−𝑞,𝜇 ⊂ (H−𝑝′)−1−𝑞′,𝜇 ⊂ (N)−1𝜇 ⊂ P′𝜇 (N ′). (1.25)

We keep the notation ⟨⟨·, ·⟩⟩𝜇 for the dual pairing between (N)−1𝜇 and (N)1𝜇 and
that of between (H−𝑝)−1−𝑞,𝜇 and (H𝑝)1𝑞,𝜇 . The biorthogonality relation (1.23) im-
plies that for any 𝜑 ∈ (N)1 and Φ ∈ (N)−1𝜇 , we have

⟨⟨Φ, 𝜑⟩⟩𝜇 =
∞∑︁
𝑛=0

𝑛!⟨Φ(𝑛), 𝜑 (𝑛)⟩.

Example 1.22. Consider the normalized exponential 𝑒𝜇 (𝜑 ; ·) for 𝜑 ∈ U0, a
neighborhood of zero in NC such that 𝑒𝜇 (𝜑 ; ·) is well-defined as a function on
N ′
C
. In view of (1.20), we have for 𝑝, 𝑞 ∈ N,

∥𝑒𝜇 (𝜑 ; ·)∥2𝑝,𝑞,𝜇 =
∞∑︁
𝑛=0
(𝑛!)22𝑛𝑞

���� 1𝑛!𝜑⊗𝑛����2𝑝 =
∞∑︁
𝑛=0

2𝑛𝑞 |𝜑 |2𝑛𝑝 .

Note that the last expression is finite if and only if 2𝑞 |𝜑 |2𝑝 < 1. Hence, 𝑒𝜇 (𝜑 ; ·) ∉
(N)1 whenever 𝜑 ≠ 0, but 𝑒𝜇 (𝜑 ; ·) ∈ (H𝑝)1𝑞,𝜇 if 𝜑 ∈ U0 ∩U𝑝,𝑞 , where

U𝑝,𝑞 := {𝜑 ∈ NC : 2𝑞 |𝜑 |2𝑝 < 1}.

In fact, it turns out that the linear span of the set
{
𝑒𝜇 (𝜑 ; ·) : 𝜑 ∈ U0 ∩U𝑝,𝑞

}
is

dense in (H𝑝)1𝑞,𝜇 .



30 Preliminary Concepts | Ch. 1

Integral transforms and characterization theorems

As in the case of Gaussian analysis, it is useful to characterize distribution spaces
by certain integral transforms. In this dissertation, we only consider two of them.
Note that each Φ ∈ (N)−1𝜇 belongs to (H−𝑝)−1−𝑞,𝜇 for some 𝑝, 𝑞 ∈ N. In view of
Example 1.22 and the chain (1.25), we can choose 𝑝, 𝑞 ∈ N such that the normal-
ized exponential 𝑒𝜇 (𝜑 ; ·) is well-defined onN ′C for all 𝜑 ∈ U𝑝,𝑞 . With this choice
of 𝑝, 𝑞 ∈ N, the 𝑆𝜇-transform and the𝑇𝜇-transform of Φ, denoted by 𝑆𝜇Φ and𝑇𝜇Φ,
respectively, are defined on 𝜑 ∈ U𝑝,𝑞 as the following dual product:

𝑆𝜇Φ(𝜑) := ⟨⟨Φ, 𝑒𝜇 (𝜑 ; ·)⟩⟩𝜇, 𝑇𝜇Φ(𝜑) := ⟨⟨Φ, 𝑒𝑖⟨·,𝜑⟩⟩⟩𝜇 .

For a vector 𝚽 with components in (N)−1𝜇 , its 𝑆𝜇-transform and 𝑇𝜇-transform is
a vector field defined on U0 whose components are the 𝑆𝜇-transform and 𝑇𝜇-
transform, respectively, of the corresponding components of 𝚽. Of course, we
have the following relationships between the two transforms:

𝑇𝜇Φ(𝜑) = 𝑙𝜇 (𝑖𝜑) · 𝑆𝜇Φ(𝑖𝜑), 𝜑 ∈ U𝑝,𝑞 . (1.26)

The characterization theorem for the space (N)−1𝜇 via the 𝑆𝜇-transform is done
using the spaces of holomorphic functions on NC. We denote by Hol0 (NC) the
space of (equivalence class of) holomorphic functions at zero, where we identify
two functions which coincides on a neighborhood of zero. See [KSWY98, Theo-
rem 8.34] for the details and proof of the following characterization theorem.

Theorem 1.23. The 𝑆𝜇-transform is a topological isomorphism from (N)−1𝜇 to
Hol0 (NC).

A corollary of Theorem 1.23 is the result characterizing strongly convergent
sequences in (N)−1𝜇 and integrable maps with values in (N)−1𝜇 in a weak sense.
We refer to [Jah15, Theorem 2.2.2, Theorem 2.3.1]) for the proof of the next two
results.

Theorem 1.24. Let (𝑇,B, 𝜈) be a measure space and Φ𝑡 ∈ (N)−1𝜇 for all 𝑡 ∈ 𝑇 . Let
U0 be a neighborhood of zero in NC and 𝐶 ∈ (0,∞) such that

(i) the map 𝑇 ∋ 𝑡 ↦→ 𝑆𝜇Φ𝑡 (𝜑) ∈ C is measurable for all 𝜑 ∈ U0; and

(ii)
∫
𝑇
|𝑆𝜇Φ𝑡 (𝜑) | d𝜈 (𝑡) ≤ 𝐶 for all 𝜑 ∈ U0.

Then there exists a unique Ψ ∈ (N)−1𝜇 such that for all 𝜑 ∈ U0,

𝑆𝜇Ψ(𝜑) =
∫
𝑇

𝑆𝜇Φ𝑡 (𝜑) d𝜈 (𝑡).

We denote Ψ by
∫
𝑇
Φ𝑡 d𝜈 (𝑡) and call it the weak integral of (Φ𝑡 )𝑡∈𝑇 .
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Theorem 1.25. A sequence (Φ𝑛)𝑛∈N in (N)−1𝜇 converges strongly in (N)−1𝜇 if and
only if there exist 𝑝, 𝑞 ∈ N such that

(i) (𝑆𝜇Φ𝑛 (𝜑))𝑛∈N is a Cauchy sequence for all 𝜑 ∈ U𝑝,𝑞 ;

(ii) for each 𝑛 ∈ N, 𝑆𝜇Φ𝑛 is holomorphic on U𝑝,𝑞 , and there exists a constant
𝐶 ∈ (0,∞) such that |𝑆𝜇Φ𝑛 (𝜑) | ≤ 𝐶 for all 𝜑 ∈ U𝑝,𝑞 and 𝑛 ∈ N.

A consequence of Theorem 1.25 that is used for applications to stochastic
differential equations is the following sufficient condition for the derivative and
the 𝑆𝜇-transform to commute.

Corollary 1.26. Let 𝐼 ⊂ R be an interval and (Φ𝑡 )𝑡∈𝐼 be a family of distributions
in (N)−1𝜇 . Assume that there exist 𝑝, 𝑞 ∈ N such that

(i) for all 𝑡 ∈ 𝐼 , 𝑆𝜇Φ𝑡 is holomorphic onU𝑝,𝑞 ;

(ii) for each 𝜑 ∈ U𝑝,𝑞 , the map 𝐼 ∋ 𝑡 ↦→ 𝑆𝜇Φ𝑡 (𝜑) ∈ C is differentiable;

(iii) there exists a constant such that���� dd𝑡 𝑆𝜇Φ𝑡 (𝜑)���� ≤ 𝐶, for all 𝑡 ∈ 𝐼 , 𝜑 ∈ U𝑝,𝑞 .

Then Φ· is differentiable in (N)−1𝜇 at all 𝑡 ∈ 𝐼 , that is, for each 𝑡 ∈ 𝐼 ,

d
d𝑡
Φ𝑡 := lim

ℎ→0

1
ℎ
(Φ𝑡+ℎ − Φ𝑡 )

exists as an element of (N)−1𝜇 . Moreover, for each 𝜑 ∈ U𝑝,𝑞 and 𝑡 ∈ 𝐼 ,

𝑆𝜇
d
d𝑡
Φ𝑡 (𝜑) =

d
d𝑡
𝑆𝜇Φ𝑡 (𝜑).

Proof. Let 𝑡 ∈ 𝐼 and (ℎ𝑛)𝑛∈N be a nonzero sequence in R with 𝑡 + ℎ𝑛 ∈ 𝐼 and
ℎ𝑛 → 0 as 𝑛 →∞. For each 𝑛 ∈ N, set

Ψ𝑛 :=
1
ℎ𝑛
(Φ𝑡+ℎ𝑛 − Φ𝑡 ) ∈ (N)−1𝜇 .

Then for all 𝜑 ∈ U𝑝,𝑞 , (𝑆𝜇Ψ𝑛 (𝜑))𝑛∈N is a Cauchy sequence, since

𝑆𝜇Ψ𝑛 (𝜑) =
1
ℎ𝑛
(𝑆𝜇Φ𝑡+ℎ𝑛 (𝜑) − 𝑆𝜇Φ𝑡 (𝜑)) →

d
d𝑡
𝑆𝜇Φ𝑡 (𝜑) as 𝑛 →∞.
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Moreover, we infer by the Fundamental Theorem of Calculus that

|𝑆𝜇Ψ𝑛 (𝜑) | ≤
1
|ℎ𝑛 |

�����∫ 𝑡+ℎ𝑛

𝑡

d
d𝑠
𝑆𝜇Φ𝑠 (𝜑) d𝑠

����� ≤ 𝐶.
Thus, the sequence (Ψ𝑛)𝑛∈N fulfills the assumptions of Theorem 1.25, implying
the existence of d

d𝑡Φ𝑡 in (N)
−1
𝜇 . Moreover,

𝑆𝜇
d
d𝑡
Φ𝑡 (𝜑) = lim

𝑛→∞
𝑆𝜇Ψ𝑛 (𝜑) =

d
d𝑡
𝑆𝜇Φ𝑡 (𝜑). □

Remark 1.27. As the space Hol0 (NC) is an algebra, we infer from Equation
(1.26) that Theorem 1.23, Theorem 1.24, Theorem 1.25, and Corollary 1.26 also
hold if the 𝑆𝜇-transform is replaced by the 𝑇𝜇-transform.



Chapter 2

Mittag-Leffler Analysis in Product

Spaces

In this chapter we will introduce the Mittag-Leffler measure. Moreover we will
in addition consider finite products of the corresponding probability space. We
show that for this setting, i.e. independent products of theMittag-Lefflermeasure
suitable distributions can be identified. In addition we give a characterization of
these distributions. We show the admissibility for Appell systems for the product
measure and moreover work out the well-known Donskers Delta function as
example.

2.1 The Mittag-Leffler space

The definition of the Mittag-Leffler measure onN ′ relies on the following func-
tion introduced by Mittag-Leffler in a series of papers [ML03,ML04,ML05]; see
also [Wim05a,Wim05b]. We also introduce two generalizations of this function
first appeared in [Wim05a] and in [Pra71], respectively.

Definition 2.1. For 𝛽 ∈ (0,∞), the Mittag-Leffler function 𝐸𝛽 is an entire func-
tion defined by its power series

𝐸𝛽 (𝑧) :=
∞∑︁
𝑛=0

𝑧𝑛

Γ(𝛽𝑛 + 1) , 𝑧 ∈ C, (2.1)

where Γ is the Gamma function. In addition, for 𝜌,𝛾 ∈ (0,∞), the two-parameter
Mittag-Leffler function 𝐸𝛽,𝜌 and the three-parameter Mittag-Leffler function 𝐸𝛾

𝛽,𝜌

are entire functions defined by the power series

𝐸𝛽,𝜌 (𝑧) :=
∞∑︁
𝑛=0

𝑧𝑛

Γ(𝛽𝑛 + 𝜌) , 𝐸
𝛾

𝛽,𝜌
(𝑧) :=

∞∑︁
𝑛=0

(𝛾)𝑛
Γ(𝛽𝑛 + 𝜌)𝑛!𝑧

𝑛

33
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for 𝑧 ∈ C, where (𝛾)𝑛 := 𝛾 (𝛾 + 1) . . . (𝛾 + 𝑛 − 1) = Γ(𝛾 + 𝑛)/Γ(𝛾) is the 𝑛th
Pochhammer’s symbol.

Note that for any 𝑧 ∈ C, 𝐸1
𝛽,𝜌
(𝑧) = 𝐸𝛽,𝜌 (𝑧), 𝐸𝛽,1(𝑧) = 𝐸𝛽 (𝑧), and 𝐸1(𝑧) = 𝑒𝑧 .

Moreover, since 𝐸𝛽 is entire, we can calculate its derivative by differentiating
term-by-term the series in (2.1), and obtain

d
d𝑧
𝐸𝛽 (𝑧) =

1
𝛽
𝐸𝛽,𝛽 (𝑧). (2.2)

For 𝛽 ∈ (0, 1), it was shown in [GJRdS15] that the following Laplace transform
holds: ∫ ∞

0
𝑀𝛽 (𝑡)𝑒−𝑧𝑡 d𝑡 = 𝐸𝛽 (−𝑧), 𝑧 ∈ C,

where𝑀𝛽 is the so-called𝑀-Wright function:

𝑀𝛽 (𝑧) :=
∞∑︁
𝑛=0

(−𝑧)𝑛
𝑛!Γ(−𝛽𝑛 + 1 − 𝛽) , 𝑧 ∈ C.

Now, it was shown in [Pol48] that for all 𝛽 ∈ (0, 1], the map 𝑥 ↦→ 𝐸𝛽 (−𝑥) is
completely monotonic on [0,∞), that is, for all 𝑛 ∈ N and 𝑥 ≥ 0, we have
(−1)𝑛𝐸 (𝑛)

𝛽
(−𝑥) ≥ 0. Using this fact, we can show in a similar manner as that of

[Sch92] that the map

N ∋ 𝜑 ↦→ 𝐸𝛽

(
−1
2
⟨𝜑, 𝜑⟩

)
∈ R

is a characteristic function onN . Using the Bocher-Minlos theorem, the follow-
ing definition from [GJ16] makes sense.

Definition 2.2. For 𝛽 ∈ (0, 1], the Mittag-Leffler measure 𝜇𝛽 is defined as the
unique probabilitymeasure on the space (N ′, C𝜎 (N ′))whose characteristic func-
tion is ∫

N ′
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇𝛽 (𝜔) = 𝐸𝛽

(
−1
2
⟨𝜑, 𝜑⟩

)
, 𝜑 ∈ N .

Remark 2.3. The class of Mittag-Leffler measures onN ′ includes the following.

(i) For 𝛽 = 1, the Mittag-Leffler measure 𝜇1 onN ′ is the usual Gaussian mea-
sure on N ′ (see Subsection 1.4.1).

(ii) IfH = N = R𝑛 , 𝑛 ∈ N, the Mittag-Leffler measure onN ′ = R𝑛 is called the
𝑛-dimensional Mittag-Leffler measure, and is denoted by 𝜇𝑛

𝛽
. This has been

studied in [Sch92].
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(iii) The measure 𝜇𝛽 on S′(R) is also called the grey noise (reference) measure
in [GJRdS15,GJ16].

In [GJRdS15,GJ16], the following properties of the measure 𝜇𝛽 are obtained.

Proposition 2.4. For any 𝜑 ∈ N and 𝑛 ∈ N0,∫
N ′
⟨𝜔,𝜑⟩2𝑛+1 d𝜇𝛽 (𝜔) = 0;∫

N ′
⟨𝜔,𝜑⟩2𝑛 d𝜇𝛽 (𝜔) =

(2𝑛)!
2𝑛Γ(𝛽𝑛 + 1) ⟨𝜑, 𝜑⟩

𝑛 .

In particular, for all 𝜑,𝜓 ∈ N ,

∥⟨·, 𝜑⟩∥2
𝐿2 (𝜇𝛽 ) =

1
Γ(𝛽 + 1) |𝜑 |

2
0. (2.3)∫

N ′
⟨𝜔,𝜑⟩⟨𝜔,𝜓 ⟩ d𝜇𝛽 (𝜔) =

1
Γ(𝛽 + 1) ⟨𝜑,𝜓 ⟩.

Remark 2.5. Equation (2.3) allows us to extend the definition of the dual pairing
⟨·, ·⟩ toN ′×H in a similar manner as that of the Gaussian case (see the discussion
on Subsection 1.4.1 about expression (1.9)). To find the characteristic function
of ⟨·, 𝜂⟩, 𝜂 ∈ H , by dropping to a subsequence, we can assume without loss
of generality that (⟨·, 𝜑𝑛⟩)∞𝑛=1 converges to ⟨·, 𝜂⟩ 𝜇𝛽-almost surely. Then for all
𝑝 ∈ R, (𝑒𝑖𝑝 ⟨𝜔,𝜑𝑛⟩)∞𝑛=1 converges to 𝑒𝑖𝑝 ⟨𝜔,𝜂⟩ . Since |𝑒𝑖𝑝 ⟨𝜔,𝜑𝑛⟩ | ≤ 1, we infer from
Lebesgue’s dominated convergence theorem that∫

N ′
𝑒𝑖𝑝 ⟨𝜔,𝜂⟩ d𝜇𝛽 (𝜔) = lim

𝑛→∞

∫
N ′
𝑒𝑖𝑝 ⟨𝜔,𝜑𝑛⟩ d𝜇𝛽 (𝜔) = lim

𝑛→∞
𝐸𝛽

(
−𝑝

2

2
⟨𝜑𝑛, 𝜑𝑛⟩

)
.

Since lim
𝑛→∞
⟨𝜑𝑛, 𝜑𝑛⟩ = ⟨𝜂, 𝜂⟩, the continuity of 𝐸𝛽 implies that∫

N ′
𝑒𝑖𝑝 ⟨𝜔,𝜂⟩ d𝜇𝛽 (𝜔) = 𝐸𝛽

(
−𝑝

2

2
|𝜂 |20

)
, 𝑝 ∈ R, 𝜂 ∈ H . (2.4)

Using Equation (2.4), it was then shown in [GJRdS15,GJ16, Jah15] that Proposi-
tion 2.4 holds for elements inH .

Proposition 2.6. Let {𝜑1, . . . , 𝜑𝑛},𝑛 ∈ N, be an orthonormal set inH . The random
variables ⟨·, 𝜑1⟩, . . . , ⟨·, 𝜑𝑛⟩ on the probability space (N ′, 𝜇𝛽) are independent if and
only if 𝑛 = 1 or 𝛽 = 1.
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Proof. Using (2.4), for all real numbers 𝑝1, . . . , 𝑝𝑛 ,∫
N ′

exp

(
𝑖

𝑛∑︁
𝑟=1

𝑝𝑟 ⟨𝜔,𝜑𝑟 ⟩
)
d𝜇𝛽 (𝜔)

=

∫
N ′

exp

(
𝑖

〈
𝜔,

𝑛∑︁
𝑟=1

𝑝𝑟𝜑𝑟

〉)
d𝜇𝛽 (𝜔) = 𝐸𝛽

(
−1
2

𝑛∑︁
𝑟=1

𝑝2𝑟

)
. (2.5)

If 𝑛 ≠ 1, then independence of ⟨·, 𝜑1⟩, . . . , ⟨·, 𝜑𝑛⟩ holds if and and only if

𝐸𝛽 (−(𝑥 + 𝑦)) = 𝐸𝛽 (−𝑥)𝐸𝛽 (−𝑦), for all 𝑥,𝑦 ≥ 0. (2.6)

Indeed, if (2.6) holds, then Equations (2.5) and (2.4) imply that∫
N ′

exp

(
𝑖

𝑛∑︁
𝑟=1

𝑝𝑟 ⟨𝜔,𝜑𝑟 ⟩
)
d𝜇𝛽 (𝜔) =

𝑛∏
𝑟=1

∫
N ′

exp(𝑖𝑝𝑟 ⟨𝜔,𝜑𝑟 ⟩) d𝜇𝛽 (𝜔), (2.7)

that is, ⟨·, 𝜑1⟩, . . . , ⟨·, 𝜑𝑛⟩ are independent, and conversely, if (2.7) holds, then
Equations (2.5) and (2.4) imply that

𝐸𝛽

(
−1
2

𝑛∑︁
𝑟=1

𝑝2𝑟

)
=

𝑛∏
𝑟=1

𝐸𝛽

(
−1
2
𝑝2𝑟

)
, 𝑝1, . . . , 𝑝𝑛 ∈ R,

and in particular, (2.6) holds. Now, as 𝐸𝛽 is entire and 𝐸𝛽 (0) = 1, the identity
theorem from complex analysis implies that (2.6) holds if and only if 𝐸𝛽 is the
exponential function, that is, 𝛽 = 1. □

2.2 Finite products of Mittag-Leffler spaces

Let 𝑑 ∈ N, and consider the nuclear triple (1.4) in Subsection 1.1.1:

Ñ :=
⊕𝑑

𝑘=1N𝑘 ⊂ H̃ :=
⊕𝑑

𝑘=1H𝑘 ⊂ Ñ ′ :=
(⊕𝑑

𝑘=1N𝑘
)′
=

∏𝑑
𝑘=1N ′𝑘 .

In this case, the cylinder 𝜎-algebra C𝜎 (Ñ ′) coincides with the product 𝜎-algebra⊗𝑑

𝑘=1 C𝜎 (N ′𝑘). Indeed, since C𝜎 (N ′𝑘) and C𝜎 (Ñ
′) coincide with the Borel 𝜎-

algebras B𝜎 (N ′𝑘) and B𝜎 (Ñ
′) generated by the strong topology on N ′

𝑘
and Ñ ′,

respectively (see Section 1.4), we use, e.g. [Els05, Kap. III, Satz 5.9], to obtain

C𝜎 (Ñ ′) = B𝜎 (Ñ ′) ⊃
𝑑⊗
𝑘=1
B𝜎 (N ′𝑘) =

𝑑⊗
𝑘=1
C𝜎 (N ′𝑘),
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while the other inclusion follows from the fact that the cylindrical map

Ñ ′ ∋ 𝜔 ↦→ (⟨𝜔,𝜑1⟩, . . . , ⟨𝜔,𝜑𝑛⟩) =
𝑑∑︁
𝑘=1
(⟨𝜔𝑘 , 𝜑1

𝑘
⟩, . . . , ⟨𝜔𝑘 , 𝜑𝑛𝑘 ⟩) ∈ R

𝑛 (2.8)

for 𝑛 ∈ N and 𝜑1, . . . , 𝜑𝑛 ∈ Ñ is
⊗𝑑

𝑘=1 C𝜎 (N ′𝑘)-B(R
𝑛) measurable, since the 𝑘 th

term of the sum in (2.8) is a composition of the canonical projection
∏𝑑
𝑘=1N𝑘 →

N ′
𝑘
followed by a cylinder map on N ′

𝑘
.

Now given 𝜑 ∈ Ñ , consider the following measurable map

Ñ ′ ∋ 𝜔 ↦→ (⟨𝜔1, 𝜑1⟩, . . . , ⟨𝜔𝑑 , 𝜑𝑑⟩) ∈ R𝑑 . (2.9)

We would like to have a probability measure on Ñ ′ such that (2.9) is a random
vector whose components are mutually independent random variables with re-
spect to the Mittag-Leffler measure 𝜇𝛽 . A natural way to obtain this property is
to equip the Mittag-Leffler measure 𝜇𝛽 on each of the spaces N ′

𝑘
, 𝑘 = 1, . . . , 𝑑 ,

and use the 𝑑-fold product measure on Ñ ′, denoted by 𝜇⊗𝑑
𝛽
, whose characteristic

function is given by∫
Ñ ′
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
, 𝜑 ∈ Ñ . (2.10)

Proposition 2.7. For any 𝜑 ∈ Ñ and 𝑛 ∈ N0,∫
Ñ ′
⟨𝜔,𝜑⟩2𝑛+1 d𝜇⊗𝑑

𝛽
(𝜔) = 0; (2.11)∫

Ñ ′
⟨𝜔,𝜑⟩2𝑛 d𝜇⊗𝑑

𝛽
(𝜔) = (2𝑛)!

2𝑛
∑︁
𝑟

⟨𝜑1, 𝜑1⟩𝑟1 · · · ⟨𝜑𝑑 , 𝜑𝑑⟩𝑟𝑑
Γ(𝛽𝑟1 + 1) · · · Γ(𝛽𝑟𝑑 + 1)

, (2.12)

where the sum in Equation (2.12) is taken over all 𝑟 ∈ N𝑑0 such that 𝑟1 + · · · +𝑟𝑑 = 𝑛,
and we use the convention that ⟨𝜑𝑘 , 𝜑𝑘⟩0 = 1, even if 𝜑𝑘 = 0. In particular, for all
𝜑,𝜓 ∈ N ,

∥⟨·, 𝜑⟩∥2
𝐿2 (𝜇⊗𝑑

𝛽
) =

1
Γ(𝛽 + 1) |𝜑 |

2
0, (2.13)∫

Ñ ′
⟨𝜔,𝜑⟩⟨𝜔,𝜓 ⟩ d𝜇⊗𝑑

𝛽
(𝜔) = 1

Γ(𝛽 + 1) ⟨𝜑,𝜓 ⟩. (2.14)
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Proof. The multinomial theorem yields that for𝑚 ∈ N0,∫
Ñ ′
⟨𝜔,𝜑⟩𝑚 d𝜇⊗𝑑

𝛽
(𝜔) =

∫
Ñ ′

(
𝑑∑︁
𝑘=1
⟨𝜔𝑘 , 𝜑𝑘⟩

)𝑚
d𝜇⊗𝑑

𝛽
(𝜔)

=
∑︁
𝑝

𝑚!
𝑝1! · · · 𝑝𝑑 !

𝑑∏
𝑘=1

∫
N ′
𝑘

⟨𝜔𝑘 , 𝜑𝑘⟩𝑝𝑘 d𝜇𝛽 (𝜔𝑘),

where the sum is taken over all 𝑝 ∈ N𝑑0 such that 𝑝1 + · · · + 𝑝𝑑 = 𝑚. Equa-
tions (2.11)-(2.12) then follow directly from Proposition 2.4. Set 𝑛 := 1 to Equa-
tion (2.12) to obtain Equation (2.13), and Equation (2.14) follows immediately. □

Remark 2.8. In a similar manner as that of Remark 2.5, Equation (2.13) allows
us to define ⟨·, 𝜂⟩ for 𝜂 ∈ H̃ as an 𝐿2(𝜇⊗𝑑

𝛽
)-limit of the sequence (⟨·, 𝜑𝑛⟩)𝑛∈N,

where (𝜑𝑛)𝑛∈N is a sequence in Ñ that converges to 𝜂 with respect to the norm
in H̃ , and this limit is independent of the approximating sequence (𝜑𝑛)𝑛∈N of 𝜂.
Moreover, Lebesgue’s dominated convergence theorem and the continuity of the
Mittag-Leffler function 𝐸𝛽 imply that∫

Ñ ′
𝑒𝑖𝑝 ⟨𝜔,𝜂⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
−𝑝

2

2
|𝜂𝑘 |2𝑘,0

)
, 𝑝 ∈ R, (2.15)

In fact, for 𝜇⊗𝑑
𝛽
-almost all 𝜔 ∈ Ñ ′,

⟨𝜔,𝜂⟩ =
𝑑∑︁
𝑘=1
⟨𝜔,𝜂𝑘e𝑘⟩ =

𝑑∑︁
𝑘=1
⟨𝜔𝑘 , 𝜂𝑘⟩. (2.16)

Indeed, let (𝜑𝑛)𝑛∈N be a sequence in Ñ that converges to 𝜂 in H̃ . Then for each
𝑘 = 1, . . . , 𝑑 , the sequences (𝜑𝑛

𝑘
)𝑛∈N and (𝜑𝑛

𝑘
e𝑘)𝑛∈N converge to 𝜂𝑘 ∈ H𝑘 and

𝜂𝑘e𝑘 ∈ H̃ , respectively. Hence, the following equality holds in 𝐿2(𝜇⊗𝑑
𝛽
):

⟨·, 𝜂⟩ = lim
𝑛→∞
⟨·, 𝜑𝑛⟩ =

𝑑∑︁
𝑘=1

lim
𝑛→∞
⟨·, 𝜑𝑛

𝑘
e𝑘⟩ =

𝑑∑︁
𝑘=1
⟨·, 𝜂𝑘e𝑘⟩,

and similar computations hold for the other equality. From (2.16) and Remark 2.5,
we infer that Proposition 2.7 holds for elements in H̃ . These observations can
be extended to the space H̃C: if 𝜑 := 𝜑1 + 𝑖𝜑2 ∈ ÑC,

∥⟨·, 𝜑⟩∥2
𝐿2 (𝜇⊗𝑑

𝛽
) =

∫
Ñ ′

(
⟨𝜔,𝜑1⟩2 + ⟨𝜔,𝜑2⟩2

)
d𝜇⊗𝑑

𝛽
(𝜔)

=
1

Γ(𝛽 + 1)
(
|𝜑1 |20 + |𝜑2 |20

)
=

1
Γ(𝛽 + 1) |𝜑 |

2
0.
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Thus, ⟨·, 𝜂⟩ for 𝜂 ∈ H̃C is defined in 𝐿2(𝜇⊗𝑑
𝛽
) in a similar manner as that of the

case for H̃ .

Remark 2.9. Ageneralization of the product measure 𝜇⊗𝑑
𝛽

on Ñ ′ can be obtained
as follows. Let 𝛽 ∈ (0, 1]𝑑 . Equip each space N ′

𝑘
with the measure 𝜇𝛽𝑘 , and use

the product measure 𝜇 ®𝛽 := 𝜇𝛽1 × · · · × 𝜇𝛽𝑑 on Ñ ′. In this case, the characteristic
function is given by∫

Ñ ′
𝑒𝑖⟨𝜔,𝜑⟩ d𝜇 ®𝛽 (𝜔) =

𝑑∏
𝑘=1

𝐸𝛽𝑘

(
−1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
, 𝜑 ∈ Ñ .

Moreover, by following the proof similar to that of Proposition 2.7, the following
equations hold for all 𝜑 ∈ Ñ and 𝑛 ∈ N0:∫

Ñ ′
⟨𝜔,𝜑⟩2𝑛+1 d𝜇 ®𝛽 (𝜔) = 0,∫

Ñ ′
⟨𝜔,𝜑⟩2𝑛 d𝜇 ®𝛽 (𝜔) =

(2𝑛)!
2𝑛

∑︁
𝑟

⟨𝜑1, 𝜑1⟩𝑟1 · · · ⟨𝜑𝑑 , 𝜑𝑑⟩𝑟𝑑
Γ(𝛽1𝑟1 + 1) · · · Γ(𝛽𝑑𝑟𝑑 + 1)

,

where the sum in the last equation is taken in the same manner as that of Equa-
tion (2.12). In particular, on the space 𝐿2(𝜇 ®𝛽), we have

∥⟨·, 𝜑⟩∥2
𝐿2 (𝜇 ®𝛽 )

=

𝑑∑︁
𝑘=1

1
Γ(𝛽𝑘 + 1)

|𝜑𝑘 |2𝑘,0, 𝜑 ∈ Ñ ,

so that we can define ⟨·, 𝜂⟩, 𝜂 ∈ H̃ , on the space 𝐿2(𝜇 ®𝛽) in a similar way as that
of Remark 2.8.

2.3 Distributions on the product Mittag-Leffler

measure

As 𝜇⊗𝑑
𝛽

is generally non-Gaussian, we use the Appell system to construct test
functions and distributions on (Ñ ′, 𝜇⊗𝑑

𝛽
). In the following, we show that 𝜇⊗𝑑

𝛽

satisfies (A1) and (A2).

Lemma 2.10. Let𝜑 ∈ Ñ and 𝜆 ∈ R. Then the exponential map Ñ ′ ∋ 𝜔 ↦→ 𝑒 |𝜆⟨𝜔,𝜑⟩|

is integrable with respect to 𝜇⊗𝑑
𝛽

and∫
Ñ ′
𝑒𝜆⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
𝜆2

2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
.
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Proof. By [GJRdS15, Lemma 4.1],∫
Ñ ′
𝑒 |𝜆⟨𝜔,𝜑⟩| d𝜇⊗𝑑

𝛽
(𝜔) ≤

∫
Ñ ′

exp

(
𝑑∑︁
𝑘=1

��𝜆⟨𝜔𝑘 , 𝜑𝑘⟩��) d𝜇⊗𝑑
𝛽
(𝜔)

=

𝑑∏
𝑘=1

∫
N ′
𝑘

exp
(��𝜆⟨𝜔𝑘 , 𝜑𝑘⟩��) d𝜇𝛽 (𝜔𝑘) < ∞,

and ∫
Ñ ′
𝑒𝜆⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

∫
N ′
𝑘

𝑒𝜆⟨𝜔𝑘 ,𝜑𝑘 ⟩ d𝜇𝛽 (𝜔𝑘) =
𝑑∏
𝑘=1

𝐸𝛽

(
𝜆2

2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
. □

Proposition 2.11. The map

ÑC ∋ 𝜑 ↦→ 𝑙𝜇⊗𝑑
𝛽

(𝜑) :=
∫
Ñ ′
𝑒 ⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) ∈ C

is a holomorphic map from ÑC to C.

Proof. Note that if 𝜑 := 𝜑1 + 𝑖𝜑2 ∈ ÑC, then Lemma 2.10 implies that

|𝑙𝜇⊗𝑑
𝛽

(𝜑) | ≤
∫
Ñ ′
𝑒 ⟨𝜔,𝜑

1⟩ d𝜇⊗𝑑
𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
1
2
⟨𝜑1
𝑘
, 𝜑1
𝑘
⟩
)
. (2.17)

Since 𝐸𝛽 is continuous on C, for each 𝜑0 ∈ ÑC, estimate (2.17) shows that 𝑙𝜇⊗𝑑
𝛽

is bounded on the neighborhood {𝜑 ∈ ÑC : |𝜑 − 𝜑0 |0 ≤ 1} of 𝜑0, and thus 𝑙𝜇⊗𝑑
𝛽

is locally bounded on ÑC. Now we show that 𝑙𝜇⊗𝑑
𝛽

is G-holomorphic, that is, the

map C ∋ 𝑧 ↦→ 𝑓 (𝑧) := 𝑙𝜇⊗𝑑
𝛽

(𝜑0 + 𝑧𝜑), where 𝜑0, 𝜑 ∈ ÑC, is holomorphic on some
neighborhood of zero inC. Note that 𝑓 is continuous: given 𝑧 ∈ C and a sequence
(𝑧𝑛)𝑛∈N in C converging to 𝑧, the following estimate holds for sufficiently large
𝑛:

| exp(⟨𝜔,𝜑0 + 𝑧𝑛𝜑⟩) | ≤ exp( |⟨𝜔,𝜑0⟩|) exp
(
(1 + |𝑧 |) |⟨𝜔,𝜑⟩|

)
,

and thus continuity of 𝑓 follows from Lemma 2.10, Cauchy-Schwarz inequal-
ity, and Lebesgue dominated convergence theorem. Moreover, if 𝛾 is a closed,
bounded curve in C, then the compactness of 𝛾 allows us to use Fubini’s theo-
rem:∫
𝛾

∫
Ñ ′

exp(⟨𝜔,𝜑0 + 𝑧𝜑⟩) d𝜇⊗𝑑
𝛽
(𝜔) d𝑧 =

∫
Ñ ′

∫
𝛾

exp(⟨𝜔,𝜑0 + 𝑧𝜑⟩) d𝑧 d𝜇⊗𝑑
𝛽
(𝜔) = 0,



§2.3 | Distributions on the product Mittag-Leffler measure 41

where the last equality holds as the exponential function is holomorphic on C.
By Morera’s theorem, 𝑓 is holomorphic on C, and thus, 𝑙𝜇⊗𝑑

𝛽

is G-holomorphic.
By Proposition 1.8, 𝑙𝜇⊗𝑑

𝛽

is holomorphic. □

Corollary 2.12. For 𝜂 ∈ H̃C and 𝑧 ∈ C, the map Ñ ′ ∋ 𝜔 ↦→ 𝑒 |𝑧⟨𝜔,𝜂⟩| is integrable
with respect to 𝜇⊗𝑑

𝛽
and∫
Ñ ′
𝑒𝑧⟨𝜔,𝜂⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
𝑧2

2
⟨𝜂𝑘 , 𝜂𝑘⟩

)
.

Proof. In the proof of Proposition 2.11, we have shown that for all 𝜑0, 𝜑 ∈ ÑC,
the map

C ∋ 𝑧 ↦→
∫
Ñ ′
𝑒 ⟨𝜔,𝜑

0+𝑧𝜑⟩ d𝜇⊗𝑑
𝛽
(𝜔) ∈ C

is holomorphic on C. Since∫
Ñ ′
𝑒 ⟨𝜔,𝜉

1+𝑡𝜉2⟩ d𝜇⊗𝑑
𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
1
2
⟨𝜉1
𝑘
+ 𝑡𝜉2

𝑘
, 𝜉1
𝑘
+ 𝑡𝜉2

𝑘
⟩
)
, 𝑡 ∈ R, 𝜉1, 𝜉2 ∈ Ñ ,

by Lemma 2.10, we infer from the identity theorem in complex analysis that∫
Ñ ′
𝑒 ⟨𝜔,𝜉

1+𝑧𝜉2⟩ d𝜇⊗𝑑
𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
1
2
⟨𝜉1
𝑘
+ 𝑧𝜉2

𝑘
, 𝜉1
𝑘
+ 𝑧𝜉2

𝑘
⟩
)
, 𝑧 ∈ C, 𝜉1, 𝜉2 ∈ Ñ .

If 𝜑 ∈ ÑC and 𝑧 ∈ C, then we set 𝑧𝜑 := 𝜉1 + 𝑖𝜉2 with 𝜉1, 𝜉2 ∈ Ñ to obtain∫
Ñ ′
𝑒𝑧⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

∫
Ñ ′
𝑒 ⟨𝜔,𝜉

1+𝑖𝜉2⟩ d𝜇⊗𝑑
𝛽
(𝜔)

=

𝑑∏
𝑘=1

𝐸𝛽

(
1
2
⟨𝜉1
𝑘
+ 𝑖𝜉2

𝑘
, 𝜉1
𝑘
+ 𝑖𝜉2

𝑘
⟩
)
=

𝑑∏
𝑘=1

𝐸𝛽

(
𝑧2

2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
.

Now, we apply Equation (2.16) and use a proof similar to that of [GJRdS15,
Lemma 4.1] to infer that Lemma 2.10 holds for 𝜂 ∈ H̃ . From here, the proof
for the case 𝜂 ∈ H̃C and 𝑧 ∈ C is constructed in a similar manner as that of
ÑC. □

It is shown in [GJRdS15, Theorem 4.5] that the Mittag-Leffler measure satis-
fies (A2), and so the proof that 𝜇⊗𝑑

𝛽
also satisfies (A2) is straightforward.
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Proposition 2.13. For any nonempty open subsetU ⊂ Ñ ′, we have 𝜇⊗𝑑
𝛽
(U) > 0.

Proof. LetU be a nonempty open subset in Ñ ′. As Ñ ′ is a finite product space,
there exist nonempty open setsU1, . . . ,U𝑑 inN ′1, . . . ,N ′𝑑 , respectively, such that
U1 × · · · × U𝑑 ⊂ U. Since the measure 𝜇𝛽 on N ′

𝑘
satisfies (A2) by [GJRdS15,

Theorem 4.5], we have

𝜇⊗𝑑
𝛽
(U) ≥ 𝜇𝛽 (U1) · · · 𝜇𝛽 (U𝑑) > 0. □

Since (Ñ ′, 𝜇⊗𝑑
𝛽
) satisfies (A1) and (A2), we can construct the Appell system

generated by 𝜇⊗𝑑
𝛽
, and all results from Subsection 1.4.2 are applicable to 𝜇⊗𝑑

𝛽
. To

finish this section, we write all the formulas constructed using the Appell system
generated by 𝜇⊗𝑑

𝛽
that are needed for subsequent discussions.

Now, Corollary 2.12 shows an explicit formula for the Laplace transform of
𝜇⊗𝑑
𝛽
:

𝑙𝜇⊗𝑑
𝛽

(𝜑) =
∫
Ñ ′
𝑒 ⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔) =

𝑑∏
𝑘=1

𝐸𝛽

(
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
, 𝜑 ∈ ÑC. (2.18)

Since 𝐸𝛽 is entire and 𝐸𝛽 (0) = 1, there exists 𝜀𝛽 > 0 such that 𝐸𝛽 (𝑧) ≠ 0 for all
𝑧 ∈ C in the open disk {|𝑧 | < 𝜀𝛽}. Thus, 𝑙𝜇⊗𝑑

𝛽

(𝜑) ≠ 0 for all 𝜑 in the following

neighborhood of zero in ÑC:

U𝛽 := {𝜑 ∈ ÑC : |⟨𝜑𝑘 , 𝜑𝑘⟩| < 𝜀𝛽, for all 𝑘 = 1, . . . , 𝑑}.

Thus, the normalized exponential

𝑒𝜇⊗𝑑
𝛽

(𝜑 ; ·) = 𝑒 ⟨·,𝜑⟩

𝑙𝜇⊗𝑑
𝛽

(𝜑) = 𝑒
⟨·,𝜑⟩

𝑑∏
𝑘=1

1
𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
is well-defined on Ñ ′ for all 𝜑 ∈ U𝛽 . Throughout this dissertation, whenever we
use 𝑒𝜇⊗𝑑

𝛽

(𝜑 ; ·), we frequently refer to U𝛽 as an explicit neighborhood of zero in

ÑC where 𝑒𝜇⊗𝑑
𝛽

(𝜑 ; ·) is defined.
Using the neighborhoodU𝛽 , we can further specify the domain of the 𝑆𝜇⊗𝑑

𝛽

-

transform and 𝑇𝜇⊗𝑑
𝛽

-transform of a distribution Φ ∈ (Ñ)−1
𝜇⊗𝑑
𝛽

:

𝑆𝜇⊗𝑑
𝛽

Φ(𝜑) := ⟨⟨Φ, 𝑒𝜇⊗𝑑
𝛽

(𝜑 ; ·)⟩⟩𝜇⊗𝑑
𝛽

, 𝑇𝜇⊗𝑑
𝛽

Φ(𝜑) := ⟨⟨Φ, 𝑒𝑖⟨·,𝜑⟩⟩⟩𝜇⊗𝑑
𝛽

,
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for 𝜑 ∈ U𝑝,𝑞 , where 𝑝, 𝑞 ∈ N are chosen such that Φ ∈ (H−𝑝)−1−𝑞,𝜇⊗𝑑
𝛽

and U𝑝,𝑞 ⊂
U𝛽 . In view of Equation (2.18), Equation (1.26) relating the two transforms be-
comes

𝑇𝜇⊗𝑑
𝛽

Φ(𝜑) = 𝑆𝜇⊗𝑑
𝛽

Φ(𝑖𝜑)
𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
, 𝜑 ∈ U𝑝,𝑞 . (2.19)

2.4 Donsker’s delta of Mittag-Leffler random

vectors

In this section, we want to construct a distribution in (Ñ)−1
𝜇⊗𝑑
𝛽

for 𝛽 ∈ (0, 1], which
is a generalization of Donsker’s delta of 𝑑-dimensional Brownian motion. First,
for 𝜂 ∈ H̃ , define the random vector 𝐺 (·, 𝜂) on Ñ ′ by

𝐺 (𝜔,𝜂) := (⟨𝜔,𝜂1e1⟩, . . . , ⟨𝜔,𝜂𝑑e𝑑⟩) = (⟨𝜔1, 𝜂1⟩, . . . , ⟨𝜔𝑑 , 𝜂𝑑⟩) ∈ R𝑑 ,
for 𝜇⊗𝑑

𝛽
-a.a. 𝜔 ∈ Ñ ′.

This random vector is well defined as an element of 𝐿2(𝜇⊗𝑑
𝛽
;R𝑑) by Remark 2.8.

The following properties of𝐺 (·, 𝜂) follow directly from the definition of 𝜇⊗𝑑
𝛽

and
Proposition 2.4.

Proposition 2.14. Let 𝜂, 𝜁 ∈ H̃ and 𝑝 ∈ R𝑑 .

(i) The characteristic function of 𝐺 (·, 𝜂) is given by

E𝜇⊗𝑑
𝛽

(
𝑒𝑖 (𝑝,𝐺 (·,𝜂))

)
=

𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑝2
𝑘
|𝜂𝑘 |2𝑘,0

)
.

(ii) The characteristic function of 𝐺 (·, 𝜂) −𝐺 (·, 𝜁 ) is given by

E𝜇⊗𝑑
𝛽

(
𝑒𝑖 (𝑝,𝐺 (·,𝜂)−𝐺 (·,𝜁 ))

)
=

𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑝2
𝑘
|𝜂𝑘 − 𝜁𝑘 |2𝑘,0

)
.

(iii) The expectation vector of 𝐺 (·, 𝜂) is zero, and for all 𝑖, 𝑗 = 1, . . . , 𝑑 ,

E𝜇⊗𝑑
𝛽

(
𝐺 (·, 𝜂)𝑖 𝐺 (·, 𝜁 ) 𝑗

)
=

1
Γ(𝛽 + 1)𝛿𝑖, 𝑗 (𝜂𝑖, 𝜁𝑖)H𝑖

.
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In particular,

∥ |𝐺 (·, 𝜂) | ∥2
𝐿2 (𝜇⊗𝑑

𝛽
) =

1
Γ(𝛽 + 1) |𝜂 |

2
0.

and the covariance matrix of 𝐺 (·, 𝜂) is given by

1
Γ(𝛽 + 1)diag

(
|𝜂1 |21,0, . . . , |𝜂𝑑 |2𝑑,0

)
.

(iv) The components of 𝐺 (·, 𝜂) are mutually independent.

Proposition 2.15. For 𝜂 ∈ H̃ , the 𝑆𝜇⊗𝑑
𝛽

-transform of the random variable ⟨·, 𝜂⟩ on

Ñ ′ is given by

𝑆𝜇⊗𝑑
𝛽

⟨·, 𝜂⟩(𝜑) =
𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ⟨𝜑𝑘 , 𝜂𝑘⟩, 𝜑 ∈ U𝛽 . (2.20)

Proof. Since ⟨·, 𝜂⟩ ∈ 𝐿2(𝜇⊗𝑑
𝛽
) by Remark 2.8, for 𝜑 := 𝜑1 + 𝑖𝜑2 ∈ U𝛽 ,

𝑆𝜇⊗𝑑
𝛽

⟨·, 𝜂⟩(𝜑) = 1
𝑙𝜇⊗𝑑

𝛽

(𝜑)

∫
Ñ ′
⟨𝜔,𝜂⟩𝑒 ⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔)

=

∫
Ñ ′

d
d𝑡
𝑒 ⟨𝜔,𝜑⟩+𝑡 ⟨𝜔,𝜂⟩

����
𝑡=0

d𝜇⊗𝑑
𝛽
(𝜔) ·

𝑑∏
𝑘=1

1
𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) . (2.21)

Now, for 𝑡 ∈ [−1, 1], the map Ñ ′ ∋ 𝜔 ↦→ 𝑒 ⟨𝜔,𝜑⟩+𝑡 ⟨𝜔,𝜂⟩ belongs to 𝐿1(𝜇⊗𝑑
𝛽
) by

Hölder’s inequality and Corollary 2.12. Moreover, for 𝜇⊗𝑑
𝛽
-a.a. 𝜔 ∈ Ñ ′,���� dd𝑡 𝑒 ⟨𝜔,𝜑⟩+𝑡 ⟨𝜔,𝜂⟩ ���� = |⟨𝜔,𝜂⟩| |𝑒 ⟨𝜔,𝜑⟩+𝑡 ⟨𝜔,𝜂⟩ | ≤ 𝑒 ⟨𝜔,𝜑1⟩𝑒2|⟨𝜔,𝜂⟩|,

and the map Ñ ′ ∋ 𝜔 ↦→ 𝑒 ⟨𝜔,𝜑
1⟩𝑒2|⟨𝜔,𝜂⟩| also belongs to 𝐿1(𝜇⊗𝑑

𝛽
) by Hölder’s in-

equality, Lemma 2.10, and Corollary 2.12. Thus, interchanging the derivative
and integral in Equation (2.21) is allowed. Since 𝑒 ⟨𝜔,𝜑⟩+𝑡 ⟨𝜔,𝜂⟩ = 𝑒 ⟨𝜔,𝜑+𝑡𝜂⟩ for each
𝑡 ∈ [−1, 1] and for 𝜇⊗𝑑

𝛽
-a.a. 𝜔 ∈ Ñ ′, applying Corollary 2.12 and Equation (2.2)

after interchanging the derivative and integral yield∫
Ñ ′

d
d𝑡
𝑒 ⟨𝜔,𝜑⟩+𝑡 ⟨𝜔,𝜂⟩

����
𝑡=0

d𝜇⊗𝑑
𝛽
(𝜔) = d

d𝑡

(
𝑑∏
𝑘=1

𝐸𝛽

(
1
2
⟨𝜑𝑘 + 𝑡𝜂𝑘 , 𝜑𝑘 + 𝑡𝜂𝑘⟩

)) �����
𝑡=0

=
1
𝛽

𝑑∑︁
𝑘=1
⟨𝜑𝑘 , 𝜂𝑘⟩𝐸𝛽,𝛽

(
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

) ∏
𝑗≠𝑘

𝐸𝛽

(
1
2
⟨𝜑 𝑗 , 𝜑 𝑗 ⟩

)
.

The last equation and (2.21) imply (2.20). □
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Corollary 2.16. For 𝜂 ∈ H̃ and 𝜑 ∈ U0, U0 ⊂ ÑC a suitable neighborhood of
zero,

𝑆𝜇⊗𝑑
𝛽

𝐺 (·, 𝜂) (𝜑) =
𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ⟨𝜑𝑘 , 𝜂𝑘⟩e𝑘 .
Proof. Apply Proposition 2.15 to the random variable ⟨·, 𝜂𝑘e𝑘⟩, 𝑘 = 1, . . . , 𝑑 , and
note that𝐺 (𝜔,𝜂) = ∑𝑑

𝑘=1⟨𝜔,𝜂𝑘e𝑘⟩e𝑘 for 𝜇
⊗𝑑
𝛽
-almost all𝜔 ∈ Ñ ′ by Equation (2.16).

□

Theorem 2.17. Let 𝜂 ∈ H̃ such that 𝜂𝑘 ≠ 0 for all 𝑘 = 1, . . . , 𝑑 . Then the 𝑑-
dimensional Donsker’s delta at 𝑎 ∈ R𝑑 , defined via the integral representation

𝛿𝑎 (𝐺 (·, 𝜂)) :=
1
(2𝜋)𝑑

∫
R𝑑
𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) d𝑠,

exists in the space (Ñ)−1
𝜇⊗𝑑
𝛽

as a weak integral in the sense of Theorem 1.24.

Proof. Since 𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) ∈ 𝐿2(𝜇⊗𝑑
𝛽
), we apply Corollary 2.12 to obtain its 𝑇𝜇⊗𝑑

𝛽

-

transform at 𝜑 ∈ ÑC:

𝑇𝜇⊗𝑑
𝛽

𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) (𝜑) =
∫
Ñ ′
𝑒𝑖 (𝑠,𝐺 (𝜔,𝜂)−𝑎)𝑒𝑖⟨𝜔,𝜑⟩ d𝜇⊗𝑑

𝛽
(𝜔)

= 𝑒−𝑖 (𝑠,𝑎)
∫
Ñ ′

exp

(
𝑖

〈
𝜔,

𝑑∑︁
𝑘=1

𝑠𝑘𝜂𝑘e𝑘 + 𝜑
〉)

d𝜇⊗𝑑
𝛽
(𝜔)

= 𝑒−𝑖 (𝑠,𝑎)
𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
(2.22)

Hence, the map R𝑑 ∋ 𝑠 ↦→ 𝑇𝜇⊗𝑑
𝛽

𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) (𝜑) is measurable for all 𝜑 ∈ ÑC. Now,
for each 𝑘 = 1, . . . , 𝑑 and 𝑀 ∈ (0,∞), there exists a constant 𝐶𝑘 ∈ (0,∞) such
that ∫

R

����𝐸𝛽 (
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜙, 𝜙⟩

)���� d𝑠𝑘 ≤ 𝐶𝑘 .
for all 𝜙 belonging to the set U𝑘 := {𝜙 ∈ N𝑘,C : |𝜙 |H𝑘,C

< 𝑀}. Indeed, the case
for 𝛽 ∈ (0, 1) has been proven in [GJRdS15, Proposition 5.2]. The case for 𝛽 = 1
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is even simpler: setting 𝜙 := 𝜙1 + 𝑖𝜙2 ∈ U𝑘 , we have∫
R

����𝐸𝛽 (
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜙, 𝜙⟩

)���� d𝑠𝑘
=

∫
R
exp

(
ℜ

(
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜙⟩ −
1
2
⟨𝜙, 𝜙⟩

))
d𝑠𝑘

=

∫
R
exp

(
−

(
1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

+ 𝑠𝑘 ⟨𝜂𝑘 , 𝜙1⟩ +
1
2
(
|𝜙1 |2H𝑘

− |𝜙2 |2H𝑘

) ))
d𝑠𝑘

=

√︄
2𝜋
|𝜂𝑘 |2H𝑘

exp

(
⟨𝜂𝑘 , 𝜙1⟩2

2|𝜂𝑘 |2H𝑘

+ 1
2
|𝜙2 |2H𝑘

− 1
2
|𝜙1 |2H𝑘

)
.

Since 𝜙 ∈ U𝑘 , we use Cauchy-Schwarz inequality to obtain the following bound:

⟨𝜂𝑘 , 𝜙1⟩2

2|𝜂𝑘 |2H𝑘

+ 1
2
|𝜙2 |2H𝑘

− 1
2
|𝜙1 |2H𝑘

≤ 1
2
|𝜙2 |2H𝑘

<
1
2
𝑀2,

and so∫
R

����𝐸𝛽 (
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜙, 𝜙⟩

)���� d𝑠𝑘 ≤ √︄
2𝜋
|𝜂𝑘 |2H𝑘

exp
(
1
2
𝑀2

)
< ∞.

Hence, for all 𝜑 belonging to U0 := {𝜑 ∈ ÑC, |𝜑 |H̃C < 𝑀}, we use the last
estimate and (2.22) to obtain

1
(2𝜋)𝑑

∫
R𝑑

��𝑇𝜇⊗𝑑
𝛽

𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) (𝜑)
�� d𝑠 ≤ 1

(2𝜋)𝑑
𝑑∏
𝑘=1

𝐶𝑘 < ∞. (2.23)

Therefore, 𝛿𝑎 (⟨·, 𝜂⟩) ∈ (Ñ)−1
𝜇⊗𝑑
𝛽

by Theorem 1.24. □

Remark 2.18. We can use [GJRdS15, Theorem 5.3] to obtain an explicit formula
for the 𝑇𝜇⊗𝑑

𝛽

-transform of the Donsker’s delta at 𝑎 = 0: for all 𝜑 ∈ U0, U0 as in
the proof of Theorem 2.17,

𝑇𝜇⊗𝑑
𝛽

𝛿0(𝐺 (·, 𝜂)) (𝜑) =
1

(2𝜋)𝑑/2
𝑑∏
𝑘=1
⟨𝜂𝑘 , 𝜂𝑘⟩−1/2𝐻 1 1

1 2

(
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩ −

⟨𝜂𝑘 , 𝜑𝑘⟩
⟨𝜂𝑘 , 𝜂𝑘⟩

����� ( 12 , 1)
(0, 1), ( 12𝛽, 𝛽)

)
,

where𝐻 is the Fox𝐻 -function (see, e.g., [GJRdS15, AppendixA] for the definition
of this function). Note that this particular Fox 𝐻 -function has a representation
in terms of the three-parameter Mittag-Leffler function (see, e.g., [GKMR14]):

𝐻 1 1
1 2

(
−𝑧

����� (1 − 𝛾, 1)
(0, 1), (1 − 𝜌, 𝛽)

)
= Γ(𝛾) 𝐸𝛾

𝛽,𝜌
(𝑧), 𝑧 ∈ C,
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so that

𝑇𝜇⊗𝑑
𝛽

𝛿0(𝐺 (·, 𝜂)) (𝜑) =
1

2𝑑/2

𝑑∏
𝑘=1
⟨𝜂𝑘 , 𝜂𝑘⟩−1/2𝐸1/2

𝛽,1−12 𝛽
(𝑧𝑘), 𝑧𝑘 :=

⟨𝜂𝑘 , 𝜑𝑘⟩
⟨𝜂𝑘 , 𝜂𝑘⟩

− 1
2
⟨𝜑𝑘 , 𝜑𝑘⟩.

The expectation of the Donsker’s delta at 0 is given by

E𝜇⊗𝑑
𝛽

(𝛿0(𝐺 (·, 𝜂))) = ⟨⟨𝛿0(𝐺 (·, 𝜂)), 1⟩⟩𝜇⊗𝑑
𝛽

= 𝑇𝜇⊗𝑑
𝛽

𝛿0(𝐺 (·, 𝜂)) (0)

=
1

2𝑑/2Γ(1 − 1
2𝛽)𝑑

𝑑∏
𝑘=1
⟨𝜂𝑘 , 𝜂𝑘⟩−1/2.

While Donsker’s delta is defined merely as a distribution in (Ñ)−1
𝜇⊗𝑑
𝛽

, if the

space 𝐿2(𝜇⊗𝑑
𝛽
) is separable, then the following result shows that it can be ap-

proximated in (Ñ)−1
𝜇⊗𝑑
𝛽

by Bochner integrable functions with values in 𝐿2(𝜇⊗𝑑
𝛽
).

Theorem 2.19. Suppose that 𝐿2(𝜇⊗𝑑
𝛽
) is separable. Let 𝜂 ∈ H̃ such that 𝜂𝑘 ≠ 0 for

all 𝑘 = 1, . . . , 𝑑 . Then for 𝑎 ∈ R𝑑 and 𝑛 ∈ N, the function

[−𝑛, 𝑛]𝑑 ∋ 𝑠 ↦→ 𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) ∈ 𝐿2(𝜇⊗𝑑
𝛽
) (2.24)

is Bochner integrable with respect to the Lebesgue measure on [−𝑛, 𝑛]𝑑 , and

𝛿𝑎 (𝐺 (·, 𝜂)) = lim
𝑛→∞

1
(2𝜋)𝑑

∫
[−𝑛,𝑛]𝑑

𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) d𝑠 in (Ñ)−1
𝜇⊗𝑑
𝛽

, (2.25)

where the integral on the right-hand side of (2.25) is a Bochner integral.

Proof. Note that for all 𝐹 ∈ 𝐿2(𝜇⊗𝑑
𝛽
), the function

[−𝑛, 𝑛]𝑑 ∋ 𝑠 ↦→ ((𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎), 𝐹 ))𝐿2 (𝜇) ∈ C

is measurable. Thus, the function (2.24) is weakly measurable by Riesz represen-
tation theorem. Moreover,∫

[−𝑛,𝑛]𝑑



𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎)


𝐿2 (𝜇⊗𝑑

𝛽
) d𝑠 = (2𝑛)

𝑑 < ∞.

Since𝐿2(𝜇⊗𝑑
𝛽
) is separable, we conclude that (2.24) is Bochner integrable by Propo-

sition 1.12. Now, to prove (2.25), we choose 𝑝, 𝑞 ∈ N such that U𝑝,𝑞 ⊂ U0, the
neighborhood of zero from the proof of Theorem 2.17. For convenience, set

Φ𝑛 :=
1
(2𝜋)𝑑

∫
[−𝑛,𝑛]𝑑

𝑒𝑖 (𝑠,𝐺 (·,𝜂)−𝑎) d𝑠 ∈ 𝐿2(𝜇⊗𝑑
𝛽
), 𝑛 ∈ N.
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By applying similar arguments as that of Theorem 2.17, the integral in the defi-
nition of Φ𝑛 also exists as a weak integral in the sense of Theorem 1.24, and we
use (2.22) to obtain for 𝜑 ∈ U𝑝,𝑞 the following:

𝑇𝜇⊗𝑑
𝛽

Φ𝑛 (𝜑) =
1
(2𝜋)𝑑

∫
[−𝑛,𝑛]𝑑

𝑒−𝑖 (𝑠,𝑎)
𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
d𝑠 .

As 𝑛 →∞, the function

R𝑑 ∋ 𝑠 ↦→ ℎ𝑛 (𝑠) := 1[−𝑛,𝑛]𝑑 (𝑠)𝑒−𝑖 (𝑠,𝑎)
𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
converges pointwisely in 𝑠 ∈ R𝑑 to

R𝑑 ∋ 𝑠 ↦→ ℎ(𝑠) := 𝑒−𝑖 (𝑠,𝑎)
𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑠2
𝑘
|𝜂𝑘 |2H𝑘

− 𝑠𝑘 ⟨𝜂𝑘 , 𝜑𝑘⟩ −
1
2
⟨𝜑𝑘 , 𝜑𝑘⟩

)
for all 𝜑 ∈ U𝑝,𝑞 . In addition, estimate (2.23) shows that ℎ𝑛 and ℎ is integrable
with respect to the Lebesgue measure on R𝑑 . Hence, by dominated convergence
theorem and (2.22),

𝑇𝜇⊗𝑑
𝛽

Φ𝑛 (𝜑) =
1
(2𝜋)𝑑

∫
R𝑑
ℎ𝑛 (𝑠) d𝑠

𝑛→∞−→ 1
(2𝜋)𝑑

∫
R𝑑
ℎ(𝑠) d𝑠 = 𝑇𝜇⊗𝑑

𝛽

𝛿𝑎 (𝐺 (·, 𝜂)) (𝜑),

𝜑 ∈ U𝑝,𝑞 . (2.26)

In particular, (𝑇𝜇⊗𝑑
𝛽

Φ𝑛 (𝜑))𝑛∈N is a Cauchy sequence. Finally, estimate (2.23) shows
that there is𝐶 ∈ (0,∞) such that |𝑇𝜇⊗𝑑

𝛽

Φ𝑛 (𝜑) | ≤ 𝐶 for all 𝜑 ∈ U𝑝,𝑞 . Therefore, the

sequence (Φ𝑛)𝑛∈N converges in (Ñ)−1
𝜇⊗𝑑
𝛽

by Theorem 1.25, and convergence (2.25)

follows from (2.26). □



Chapter 3

Finite-Dimensional Grey Noise

Analysis

In this chapter, we will generalize the definition of the generalized grey Brown-
ian motion given by Schneider in [Sch92] and formalized by Grothaus and Jah-
nert [GJ16]. In particular we will use the results from the previous chapter to
construct vector-valued generalized grey Brownian motion, which components
are independent. In addition we will obtain properties of this process and use
the characterization theorem to identify the local time and self-intersection local
time of this process in a suitable distribution space.

3.1 Overview of generalized grey Brownian

motion

Here, we discuss the definition of the generalized grey Brownian motion 𝐵𝛽,𝛼 :=
(𝐵𝛽,𝛼𝑡 )𝑡≥0 for 𝛽 ∈ (0, 1], 𝛼 ∈ (0, 2), introduced by Schneider in [Sch92] and fur-
ther studied by Mura, Mainardi and Pagnini [MP08, MM09]. The construction
of this process was done originally via proper nuclear triples, indexed by 𝛼 , and
corresponding characteristic functions given by 𝐸𝛽 (−∥ · ∥2𝛼 ), where ∥ · ∥𝛼 is the
norm of the Hilbert space in the nuclear triple. Here, we follow the construction
by Grothaus and Jahnert [GJ16], starting with the Mittag-Leffler measure 𝜇𝛽 on
S′(R) and construct the process in the probability space (S′(R), 𝜇𝛽) for all 𝛼 . Let
𝛼 ∈ (0, 2) be given and define the fractional operator𝑀𝛼/2

± on S(R) as follows:

S(R) ∋ 𝜑 ↦→ 𝑀
𝛼/2
± 𝜑 :=


𝐾𝛼/2𝐷

(1−𝛼)/2
± 𝜑, 𝛼 ∈ (0, 1),
𝜑, 𝛼 = 1,

𝐾𝛼/2𝐼
(𝛼−1)/2
± 𝜑, 𝛼 ∈ (1, 2),

49
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where 𝐾𝛼/2 :=
√︁
𝛼 sin(𝛼𝜋/2)Γ(𝛼) is a normalization constant, and for 𝑟 > 0, 𝐷𝑟±

is the right-sided and the left-sided Marchaud fractional derivative of order 𝑟 ,
while 𝐼 𝑟± denote the right-sided and the left-sided Riemann-Liouville fractional
integral of order 𝑟 . Although𝑀𝛼/2

± is defined onS(R), its actual domain is larger.
In particular, the domain includes the indicator function 1[0,𝑡) , 𝑡 ≥ 0, and that
𝑀
𝛼/2
± 1[0,𝑡) ∈ 𝐿2(R) (see [GJ16, Remark 3.2]). Moreover, by [GJ16, Corollary 3.5],

the following scalar product holds.

Proposition 3.1. For all 𝑡, 𝑠 ≥ 0, 𝛼 ∈ (0, 2) and𝑚,𝑛 ∈ N,

(𝑀𝛼/2
− 1[0,𝑡), 𝑀

𝛼/2
− 1[0,𝑠))𝐿2 (R) =

1
2
(𝑡𝛼 + 𝑠𝛼 − |𝑡 − 𝑠 |𝛼 ) . (3.1)

Definition 3.2. For 𝛽 ∈ (0, 1], 𝛼 ∈ (0, 2) and 𝑡 ≥ 0, define 𝐵𝛽,𝛼𝑡 as follows:

S′(R) ∋ 𝜔 ↦→ 𝐵
𝛽,𝛼

𝑡 (𝜔) := ⟨𝜔,𝑀𝛼/2
− 1[0,𝑡)⟩,

The process 𝐵𝛽,𝛼 := (𝐵𝛽,𝛼𝑡 )𝑡≥0 takes values in 𝐿2(𝜇𝛽), and is called a generalized
grey Brownian motion (briefly ggBm). If 𝛼 = 𝛽 , the process 𝐵𝛽,𝛽 is denoted by
𝐵𝛽 := (𝐵𝛽𝑡 )𝑡≥0, and is called a grey Brownian motion (briefly gBm).

We state the following properties of the process 𝐵𝛽,𝛼 from [GJ16].

Proposition 3.3. Let 𝛽 ∈ (0, 1] and 𝛼 ∈ (0, 2).

(i) 𝐵𝛽,𝛼 has mean zero and covariance

E𝜇𝛽

(
𝐵
𝛽,𝛼

𝑡 𝐵
𝛽,𝛼
𝑠

)
=

1
2 Γ(𝛽 + 1) (𝑡

𝛼 + 𝑠𝛼 − |𝑡 − 𝑠 |𝛼 ) =: 1
2
𝐺𝛽,𝛼 (𝑡, 𝑠), 𝑡, 𝑠 ≥ 0.

(ii) For all 𝑝 ∈ N, there exists 𝐾 < ∞ such that

E𝜇𝛽

(���𝐵𝛽,𝛼𝑡 − 𝐵𝛽,𝛼𝑠 ���2𝑝 ) ≤ 𝐾 |𝑡 − 𝑠 |𝛼𝑝, 𝑡, 𝑠 ≥ 0,

and hence 𝐵𝛽,𝛼 has a continuous modification by Kolmogorov’s continuity
theorem.

(iii) The density 𝑓𝛽,𝛼 of the finite-dimensonal (marginal) distributions of 𝐵𝛽,𝛼 are
given as follows: for 𝑥 ∈ R𝑛 and 0 ≤ 𝑡1 < · · · < 𝑡𝑛 < ∞,

𝑓𝛽,𝛼 (𝑥 ; 𝑡1, . . . , 𝑡𝑛) =
(2𝜋)−𝑛/2√︁

Γ(1 + 𝛽)𝑛 det𝐺𝛽,𝛼

∫ ∞

0

𝑀𝛽 (𝜏)
𝜏𝑛/2

exp

(
−1
2

𝑥𝑇𝐺−1
𝛽,𝛼
𝑥

𝜏Γ(1 + 𝛽)

)
d𝜏
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if 𝛽 ∈ (0, 1), and if 𝛽 = 1,

𝑓1,𝛼 (𝑥 ; 𝑡1, . . . , 𝑡𝑛) =
1√︁

(2𝜋)𝑛 det𝐺1,𝛼
exp

(
−1
2
𝑥𝑇𝐺−11,𝛼𝑥

)
.

Here, 𝐺𝛽,𝛼 ∈ R𝑛×𝑛 whose (𝑖, 𝑗)-entry is 𝐺𝛽,𝛼 (𝑡𝑖, 𝑡 𝑗 ).

Remark 3.4. In view of Proposition 3.3, the family of processes 𝐵𝛽,𝛼 , 𝛽 ∈ (0, 1],
𝛼 ∈ (0, 2), includes the following:

(i) The process 𝐵1 = 𝐵1,1 is a standard one-dimensional Brownian motion (see
[HKPS93]).

(ii) The process 𝐵1,𝛼 is a one-dimensional fractional Brownian motion with
Hurst parameter 𝛼/2 (see [Ben03]).

Remark 3.5. There is a representation of a scaled version of ggBm due to [GJ16,
Remark 3.10] and [MP08, Proposition 3]:

(𝐵𝛽,𝛼21/𝛼𝑡 )𝑡≥0
d
= (

√︃
𝐿𝛽𝑋

𝛼
𝑡 )𝑡≥0, (3.2)

where d
= denotes equality in the sense of finite-dimensional distributions, (𝑋𝛼𝑡 )𝑡≥0

is a fBm with Hurst parameter 𝛼/2, and 𝐿𝛽 is a nonnegative random variable
independent of 𝑋𝛼 whose Laplace transform is 𝐸𝛽 (−·).

3.2 Vector-valued generalized grey Brownian

motion (vggBm)

In this section, we construct a random vector whose components are indepen-
dent ggBms with the same parameters 𝛼 and 𝛽 . For this, we start with the nu-
clear triple S𝑑 (R) ⊂ 𝐿2𝑑 (R) ⊂ S

′
𝑑
(R) from Example 1.4 and equip S′

𝑑
(R) with the

product measure 𝜇⊗𝑑
𝛽
. For convenience in writing, the test function and distribu-

tion spaces (S𝑑 (R))1
𝜇⊗𝑑
𝛽

and (S𝑑 (R))−1
𝜇⊗𝑑
𝛽

on the space (S′
𝑑
(R), 𝜇⊗𝑑

𝛽
) are denoted by

(S𝑑)1 and (S𝑑)−1, respectively.

Definition 3.6. For𝑑 ∈ N, 𝛽 ∈ (0, 1], 𝛼 ∈ (0, 2), and 𝑡 ≥ 0, define 𝐵𝛽,𝛼
𝑑,𝑡

as follows:

𝐵
𝛽,𝛼

𝑑,𝑡
(𝜔) := 𝐺

(
𝜔,

∑𝑑
𝑘=1𝑀

𝛼/2
− 1[0,𝑡)e𝑘

)
= (⟨𝜔1, 𝑀

𝛼/2
− 1[0,𝑡)⟩, . . . , ⟨𝜔𝑑 , 𝑀𝛼/2

− 1[0,𝑡)⟩),
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for 𝜇⊗𝑑
𝛽
-a.a.𝜔 ∈ S′

𝑑
(R). The process 𝐵𝛽,𝛼

𝑑
:= (𝐵𝛽,𝛼

𝑑,𝑡
)𝑡≥0 takes values in 𝐿2(𝜇⊗𝑑𝛽 ;R𝑑),

and is called a vector-valued generalized grey Brownian motion (briefly vggBm). If
𝛼 = 𝛽 , the process 𝐵𝛽,𝛽

𝑑
is denoted by 𝐵𝛽

𝑑
:= (𝐵𝛽,𝛽

𝑑,𝑡
)𝑡≥0, and is called a vector-valued

grey Brownian motion (briefly vgBm).

If we define a vggBm using the standard Mittag-Leffler measure 𝜇𝛽 on S′𝑑 (R)
for 𝑑 ≥ 2, then in view of Proposition 2.6, it has independent components if and
only if it is a fractional Brownian motion. However, since this process is defined
using the product measure 𝜇⊗𝑑

𝛽
, we get the following result.

Proposition 3.7. The process 𝐵𝛽,𝛼
𝑑

has the following properties.

(i) For each 𝑡 ≥ 0, 𝐵𝛽,𝛼
𝑑,𝑡

has characteristic function

E𝜇⊗𝑑
𝛽

(
𝑒
𝑖 (𝑝,𝐵𝛽,𝛼

𝑑,𝑡
)
)
=

𝑑∏
𝑘=1

𝐸𝛽

(
−1
2
𝑝2
𝑘
𝑡𝛼

)
, 𝑝 ∈ R𝑑 .

(ii) For each 𝑡 ≥ 0, 𝐵𝛽,𝛼
𝑑,𝑡

has expectation zero, and for all 𝑖, 𝑗 = 1, . . . , 𝑑 and
𝑡, 𝑠 ≥ 0,

E𝜇⊗𝑑
𝛽

(
(𝐵𝛽,𝛼
𝑑,𝑡
)𝑖 (𝐵𝛽,𝛼𝑑,𝑠 ) 𝑗

)
=

1
2 Γ(𝛽 + 1)𝛿𝑖, 𝑗 (𝑡

𝛼 + 𝑠𝛼 − |𝑡 − 𝑠 |𝛼 ) .

In particular, for each 𝑡 ≥ 0, the covariancematrix of𝐵𝛽,𝛼
𝑑,𝑡

is given by
𝑡𝛼

Γ(𝛽 + 1) 𝐼𝑑 ,
where 𝐼𝑑 is the identity matrix of order 𝑑 .

(iii) For each 𝑡 ≥ 0, 𝐵𝛽,𝛼
𝑑,𝑡

has independent components.

(iv) 𝐵𝛽,𝛼
𝑑

is 𝛼/2 self-similar: for every 𝑎 > 0, (𝐵𝛽,𝛼
𝑑,𝑎𝑡
)𝑡≥0

d
= (𝑎𝛼/2𝐵𝛽,𝛼

𝑑,𝑡
)𝑡≥0.

(v) 𝐵𝛽,𝛼
𝑑

has stationary increments in the strict sense: for every ℎ ≥ 0, (𝐵𝛽,𝛼
𝑑,𝑡+ℎ −

𝐵
𝛽,𝛼

𝑑,ℎ
)𝑡≥0

d
= (𝐵𝛽,𝛼

𝑑,𝑡
)𝑡≥0.

Proof. Since statements (i)-(iii) follow directly from Proposition 2.14 and Equa-
tion (3.1), we only need to prove (iv) and (v). Let 𝑝 := (𝑝1, . . . , 𝑝𝑛) ∈ (R𝑑)𝑛 and
0 ≤ 𝑡1 < 𝑡2 < . . . < 𝑡𝑛 < ∞. To show 𝛼/2 self-similarity, we need to show that
for all 𝑎 > 0,

E𝜇⊗𝑑
𝛽

(
exp

(
𝑖

𝑛∑︁
𝑟=1
(𝑝𝑟 , 𝐵𝛽,𝛼

𝑑,𝑎𝑡𝑟
)
))

= E𝜇⊗𝑑
𝛽

(
exp

(
𝑖

𝑛∑︁
𝑟=1
(𝑝𝑟 , 𝑎𝛼/2𝐵𝛽,𝛼

𝑑,𝑡𝑟
)
))
. (3.3)
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By Proposition 2.14(i), Equation (3.3) is equivalent to

𝑑∏
𝑘=1

𝐸𝛽
©­«−12

����� 𝑛∑︁
𝑟=1

𝑝𝑟
𝑘
𝑀𝛼/2
− 1[0,𝑎𝑡𝑟 )

�����2
𝐿2 (R)

ª®¬ =

𝑑∏
𝑘=1

𝐸𝛽
©­«−12

�����𝑎𝛼/2 𝑛∑︁
𝑟=1

𝑝𝑟
𝑘
𝑀𝛼/2
− 1[0,𝑡𝑟 )

�����2
𝐿2 (R)

ª®¬ ,
and this equation holds. Indeed, for all 𝑘 = 1, . . . , 𝑑 , we use Equation (3.1) to infer
that ����� 𝑛∑︁

𝑟=1
𝑝𝑟
𝑘
𝑀𝛼/2
− 1[0,𝑎𝑡𝑟 )

�����2
𝐿2 (R)

=

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

𝑝𝑟
𝑘
𝑝𝑠
𝑘

(
𝑀𝛼/2
− 1[0,𝑎𝑡𝑟 ), 𝑀

𝛼/2
− 1[0,𝑎𝑡𝑠 )

)
𝐿2 (R)

=

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

1
2
𝑝𝑟
𝑘
𝑝𝑠
𝑘
((𝑎𝑡𝑟 )𝛼 + (𝑎𝑡𝑠)𝛼 − |𝑎𝑡𝑟 − 𝑎𝑡𝑠 |𝛼 )

= 𝑎𝛼
𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

1
2
𝑝𝑟
𝑘
𝑝𝑠
𝑘

(
𝑡𝛼𝑟 + 𝑡𝛼𝑠 − |𝑡𝑟 − 𝑡𝑠 |𝛼

)
= 𝑎𝛼

����� 𝑛∑︁
𝑟=1

𝑝𝑟
𝑘
𝑀𝛼/2
− 1[0,𝑡𝑟 )

�����2
𝐿2 (R)

.

A similar procedure may be applied in order to prove that the increments are
stationary; we have to show that for all ℎ ≥ 0,

E𝜇⊗𝑑
𝛽

(
exp

(
𝑖

𝑛∑︁
𝑟=1
(𝑝𝑟 , 𝐵𝛽,𝛼

𝑑,𝑡𝑟+ℎ − 𝐵
𝛽,𝛼

𝑑,ℎ
)
))

= E𝜇⊗𝑑
𝛽

(
exp

(
𝑖

𝑛∑︁
𝑟=1
(𝑝𝑟 , 𝐵𝛽,𝛼

𝑑,𝑡𝑟
)
))
. (3.4)

Indeed, for each 𝑟, 𝑠 = 1, . . . , 𝑛,(
𝑀𝛼/2
− 1[0,𝑡𝑟+ℎ) −𝑀𝛼/2

− 1[0,ℎ), 𝑀
𝛼/2
− 1[0,𝑡𝑠+ℎ) −𝑀𝛼/2

− 1[0,ℎ)
)
𝐿2 (R)

=
1
2

( (
(𝑡𝑟 +ℎ)𝛼 +(𝑡𝑠+ℎ)𝛼−|𝑡𝑟 −𝑡𝑠 |𝛼

)
−

(
(𝑡𝑟 +ℎ)𝛼 +ℎ𝛼−𝑡𝛼𝑟

)
−

(
ℎ𝛼 +(𝑡𝑠+ℎ)𝛼−𝑡𝛼𝑠

)
+2ℎ𝛼

)
=
1
2

(
𝑡𝛼𝑟 + 𝑡𝛼𝑟 − |𝑡𝑟 − 𝑡𝑠 |𝛼

)
=

(
𝑀𝛼/2
− 1[0,𝑡𝑟 ), 𝑀

𝛼/2
− 1[0,𝑡𝑠 )

)
𝐿2 (R),

so that for all 𝑘 = 1, . . . , 𝑑 ,����� 𝑛∑︁
𝑟=1

𝑝𝑟
𝑘
(𝑀𝛼/2
− 1[0,𝑡𝑟+ℎ) −𝑀𝛼/2

− 1[0,ℎ))
�����2
𝐿2 (R)

=

����� 𝑛∑︁
𝑟=1

𝑝𝑟
𝑘
𝑀𝛼/2
− 1[0,𝑡𝑟 )

�����2
𝐿2 (R)

.

Equation (3.4) then follows from Proposition 2.14(i). □
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Proposition 3.8. For all 𝑟 ∈ N and 𝑡, 𝑠 ≥ 0,

E𝜇⊗𝑑
𝛽

(���𝐵𝛽,𝛼
𝑑,𝑡
− 𝐵𝛽,𝛼

𝑑,𝑠

���2𝑟 ) =
𝑟 !
2𝑟

(∑︁
𝑝

𝑑∏
𝑘=1

(2𝑝𝑘)!
Γ(𝛽𝑝𝑘 + 1)𝑝𝑘 !

)
|𝑡 − 𝑠 |𝛼𝑟 , (3.5)

where the sum in (3.5) is taken over all 𝑝 ∈ N𝑑0 such that 𝑝1 + · · · + 𝑝𝑑 = 𝑟 .

Proof. Recalling that Proposition 2.7 holds for elements in 𝐿2
𝑑
(R) by Remark 2.8,

we have

E𝜇⊗𝑑
𝛽

(���𝐵𝛽,𝛼
𝑑,𝑡
− 𝐵𝛽,𝛼

𝑑,𝑠

���2𝑟 )
=

∫
S′
𝑑
(R)

(
𝑑∑︁
𝑘=1
⟨𝜔, (𝑀𝛼/2

− 1[0,𝑡) −𝑀𝛼/2
− 1[0,𝑠))e𝑘⟩2

)𝑟
d𝜇⊗𝑑

𝛽
(𝜔)

=
∑︁
𝑝

𝑟 !
𝑝1! · · · 𝑝𝑑 !

𝑑∏
𝑘=1

∫
S′ (R)
⟨𝜔𝑘 , 𝑀𝛼/2

− 1[0,𝑡) −𝑀𝛼/2
− 1[0,𝑠)⟩2𝑝𝑘 d𝜇𝛽 (𝜔𝑘)

=
∑︁
𝑝

𝑟 !
𝑝1! · · · 𝑝𝑑 !

𝑑∏
𝑘=1

(2𝑝𝑘)!
2𝑝𝑘Γ(𝛽𝑝𝑘 + 1)

��𝑀𝛼/2
− 1[0,𝑡) −𝑀𝛼/2

− 1[0,𝑠)
��2𝑝𝑘
𝐿2 (R)

=
𝑟 !
2𝑟

∑︁
𝑝

𝑑∏
𝑘=1

(2𝑝𝑘)!
Γ(𝛽𝑝𝑘 + 1)𝑝𝑘 !

|𝑡 − 𝑠 |𝛼𝑝𝑘

=
𝑟 !
2𝑟

(∑︁
𝑝

𝑑∏
𝑘=1

(2𝑝𝑘)!
Γ(𝛽𝑝𝑘 + 1)𝑝𝑘 !

)
|𝑡 − 𝑠 |𝛼𝑟 . □

Remark 3.9. Proposition 3.8 shows that for each 𝛾 ∈ (0, 𝛼2 ), 𝐵
𝛽,𝛼

𝑑
has a modifi-

cation whose trajectories are locally 𝛾-Hölder continuous. Indeed, choose 𝑟 ∈ N
such that 𝛾 < 𝛼

2 −
1
2𝑟 . Proposition 3.8 shows that there is a constant 𝐶 ∈ (0,∞)

such that

E𝜇⊗𝑑
𝛽

(���𝐵𝛽,𝛼
𝑑,𝑡
− 𝐵𝛽,𝛼

𝑑,𝑠

���2𝑟 ) ≤ 𝐶 |𝑡 − 𝑠 | (𝛼𝑟−1)+1, 𝑡, 𝑠 ∈ [0,∞).

Kolmogorov’s continuity theorem then implies that𝐵𝛽,𝛼
𝑑

has amodificationwhose
trajectories are locally 𝛾-Hölder continuous.

Remark 3.10. An elliptically contoured random field is a scale mixture of Gaus-
sian random fields. Examples include Gaussian distributions of course, but also
others such as Student’s 𝑡-distributions [Ma13b, AM19], hyperbolic [DLMS12]
and Mittag-Leffler distributions [Ma13a]. A more general example of a class of
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such fields is the class of isotropic randomfields with infinitely divisible marginal
distributions [WLM18]. It is known (see, e.g., [FKN90]) that the characteristic
function of an elliptically contoured random field 𝑋 := (𝑋1, . . . , 𝑋𝑑)𝑇 , 𝑑 ∈ N, is
given by

E(𝑒𝑖𝑝𝑇𝑋 ) = 𝑒𝑖𝑝𝑇 𝜇𝜙 (𝑝𝑇Σ𝑝), 𝑝 ∈ R𝑑 , (3.6)

for some 𝜇 ∈ R𝑑 , a symmetric positive definite Σ ∈ R𝑑×𝑑 , and a map 𝜙 : R→ R.
It has been shown in [GJ16] that all finite-dimensional marginal distributions of
ggBm are elliptically contoured. However, for all 𝑡 > 0 and dimensions 𝑑 ≥ 2,
𝐵
𝛽,𝛼

𝑑,𝑡
is elliptically contoured if and only if 𝛽 = 1, that is, it is Gaussian. Indeed, if

𝐵
𝛽,𝛼

𝑑,𝑡
has the characteristic function given by (3.6), then Proposition 3.7(ii) and

[CHS81, Theorem 4] imply that Σ is a diagonal matrix. Since 𝐵𝛽,𝛼
𝑑,𝑡

has inde-
pendent components, [Kel70, Lemma 5] would imply that 𝐵𝛽,𝛼

𝑑,𝑡
has a Gaussian

distribution.

Remark 3.11. We can use representation (3.2) and the independence of the com-
ponents of vggBm to obtain a similar realization for the scaled vggBm 𝐵

𝛽,𝛼

𝑑
:=

(𝐵𝛽,𝛼
𝑑,21/𝛼𝑡 )𝑡≥0:

𝐵
𝛽,𝛼

𝑑

d
=

(√︃
𝐿
(1)
𝛽
𝑋𝛼,1, . . . ,

√︃
𝐿
(𝑑)
𝛽
𝑋𝛼,𝑑

)
, (3.7)

where 𝑋𝛼,𝑘 , 𝑘 = 1, . . . , 𝑑 , are independent one-dimensional fBm with Hurst pa-
rameter 𝛼/2, and 𝐿(𝑘)

𝛽
, 𝑘 = 1, . . . , 𝑑 , are i.i.d. nonnegative random variables with

Laplace transform 𝐸𝛽 (−·) which are independent of 𝑋𝛼,𝑘 , 𝑘 = 1, . . . , 𝑑 . Represen-
tation (3.7) seems to be particularly useful from a modeling point of view, since
the properties of ggBm can be studied using results known in fBm without delv-
ing too much into the details of its construction in infinite-dimensional analysis.
However, performing analysis for vggBm using (3.7) requires a realization of a
𝑑-dimensional fBm, a construction of a similar 𝑑-dimensional realization of the
process after incorporating the random variables (𝐿(𝑘)

𝛽
)𝑘=1,...,𝑑 , and then proceed

with the calculations. Performing such calculations, either in the framework of
classical stochastic analysis or white noise analysis, would be considerably much
difficult than that of the realization of vggBm using Definition 3.6, as we shall
see in further discussions.

Remark 3.12. We can use the same framework to further generalize vggBm in
such a way that its components are independent (one-dimensional) ggBm with
possibly different indices 𝛽 and 𝛼 . Let 𝛽 ∈ (0, 1]𝑑 and consider the product mea-
sure 𝜇 ®𝛽 from Remark 2.9. For 𝛼 ∈ (0, 2)𝑑 , define the process ®𝐵𝛽,𝛼 := ( ®𝐵𝛽,𝛼𝑡 )𝑡≥0
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taking values in 𝐿2(𝜇 ®𝛽 ;R
𝑑) given by the following:

S′
𝑑
(R) ∋ 𝜔 ↦→ ®𝐵𝛽,𝛼 (𝜔) := (⟨𝜔1, 𝑀

𝛼1/2
− 1[0,𝑡)⟩, . . . , ⟨𝜔𝑑 , 𝑀𝛼𝑑/2

− 1[0,𝑡)⟩).

A slightmodification of the proofs of Proposition 2.11 and Proposition 2.13 shows
that the product measure 𝜇 ®𝛽 also satisfies (A1) and (A2), so that the Appell system
can be utilized to study the process ®𝐵𝛽,𝛼 .

To determine the derivative of the vggBm 𝐵
𝛽,𝛼

𝑑
in the sense of Corollary 1.26,

we use Corollary 2.16 and [GJ16, Equation (21)] to infer that for all 𝑡 ≥ 0,

𝑆𝜇⊗𝑑
𝛽

𝐵
𝛽,𝛼

𝑑,𝑡
(𝜑) =

𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ⟨𝜑𝑘 , 𝑀𝛼/2
− 1[0,𝑡)⟩e𝑘

=

𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ∫ 𝑡

0

(
𝑀
𝛼/2
+ 𝜑𝑘

)
(𝑥) d𝑥 e𝑘 ,

on the setU𝛽 . We infer from the continuity of𝑀𝛼/2
+ 𝜑𝑘 on R (see Theorem 2.7 in

[Ben03]) that for 𝜑 ∈ U𝛽 ,

d
d𝑡
𝑆𝜇⊗𝑑

𝛽

𝐵
𝛽,𝛼

𝑑,𝑡
(𝜑) =

𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) (𝑀𝛼/2
+ 𝜑𝑘

)
(𝑡) e𝑘 .

Now, as the Mittag-Leffler functions are holomorphic, there are 𝑝, 𝑞 ∈ N and a
constant 𝐾 < ∞ such thatU𝑝,𝑞 ⊂ U𝛽 , and for all 𝜑 ∈ U𝑝,𝑞 and 𝑘 = 1, . . . , 𝑑 ,�����𝐸𝛽,𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ����� ≤ 𝐾.
Moreover, [Ben03, Theorem 2.3] shows that there exists 𝑝′ ∈ N and a constant
𝐶 < ∞ such that for all 𝑘 = 1, . . . , 𝑑 , and 𝑥 ∈ R,��� (𝑀𝛼/2

+ 𝜑𝑘
)
(𝑥)

��� ≤ 𝐶 |𝜑𝑘 |𝑝′ .
Thus, by choosing 𝑝∗ > max{𝑝, 𝑝′}, the following estimate holds for all 𝑡 ≥ 0,
𝜑 ∈ U𝑝∗,𝑞 , and 𝑘 = 1, . . . , 𝑑 ,�����𝐸𝛽,𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) (𝑀𝛼/2
+ 𝜑𝑘

)
(𝑡)

����� ≤ 𝐾𝐶 |𝜑 |𝑝∗ ≤ 2−𝑞𝐾𝐶. (3.8)

Therefore, by Corollary 1.26, we establish the existence of the derivative of 𝐵𝛽,𝛼
𝑑,𝑡

in (S𝑑)−1, called the vggBm noise.



§3.3 | Local time and self-intersection local time for vggBm 57

Proposition 3.13. For each 𝑡 ≥ 0, d
d𝑡𝐵

𝛽,𝛼

𝑑,𝑡
exists as a vector with components in

(S𝑑)−1 in the sense of Corollary 1.26. Moreover, for all 𝜑 belonging to a suitable
neighborhood of zero in S𝑑 (R)C,

𝑆𝜇⊗𝑑
𝛽

d
d𝑡
𝐵
𝛽,𝛼

𝑑,𝑡
(𝜑) =

𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) (𝑀𝛼/2
+ 𝜑𝑘

)
(𝑡) e𝑘 , 𝑡 ≥ 0.

3.3 Local time and self-intersection local time for

vggBm

Here, we consider the local time and the self-intersection local time for vggBm,
which are given respectively by

𝐿𝛽,𝛼 (𝑎,𝑇 ) :=
∫
[0,𝑇 ]

𝛿𝑎 (𝐵𝛽,𝛼𝑑,𝑡 ) d𝑡, 𝑎 ∈ R𝑑 , 𝑇 > 0,

𝐿𝑠
𝛽,𝛼
(𝑇 ) :=

∫
[0,𝑇 ]

∫
[0,𝑇 ]

𝛿0(𝐵𝛽,𝛼𝑑,𝑠 − 𝐵
𝛽,𝛼

𝑑,𝑢
) d𝑢 d𝑠, 𝑇 > 0.

The vggBm local time 𝐿𝛽,𝛼 (𝑎,𝑇 ) is used tomeasure the amount of time the sample
path of a vggBm spends at 𝑎 ∈ R𝑑 within the time interval [0,𝑇 ], while the
vggBm self-intersection local time 𝐿𝑠

𝛽,𝛼
(𝑇 ) is intended to measure the amount of

time in which the sample path of a vggBm spends intersecting itself also within
the time interval [0,𝑇 ]. A priori, the expressions above have no mathematical
meaning, since Lebesgue integration of Dirac delta distribution is not defined.
In the following, we prove that under some constraints, we can make sense of
these objects as weak integrals in the sense of Theorem 1.24.

Theorem 3.14. For 𝑑 ∈ N, 𝛼 ∈ (0, 2
𝑑
), 𝛽 ∈ (0, 1),𝑇 > 0 and 𝑎 ∈ R𝑑 , the vggBm lo-

cal time 𝐿𝛽,𝛼 (𝑎,𝑇 ) and the vggBm self-intersection local time 𝐿𝑠
𝛽,𝛼
(𝑇 ) exist in (S𝑑)−1

as weak integrals in the sense of Theorem 1.24. Moreover, for all 𝜑 belonging to a
suitable neighborhoodU0 ⊂ S𝑑 (R)C of zero,

𝑇𝜇⊗𝑑
𝛽

𝐿𝛽,𝛼 (𝑎,𝑇 ) (𝜑) =
∫
[0,𝑇 ]

𝑇𝜇⊗𝑑
𝛽

𝛿𝑎 (𝐵𝛽,𝛼𝑑,𝑡 ) (𝜑) d𝑡 .

𝑇𝜇⊗𝑑
𝛽

𝐿𝑠
𝛽,𝛼
(𝑇 ) (𝜑) =

∫
[0,𝑇 ]

∫
[0,𝑇 ]

𝑇𝜇⊗𝑑
𝛽

𝛿0(𝐵𝛽,𝛼𝑑,𝑠 − 𝐵
𝛽,𝛼

𝑑,𝑢
) (𝜑) d𝑢 d𝑠 .

Proof. Let 𝜑 ∈ S𝑑 (R)C with |𝜑 | < 𝑀 , for some 𝑀 < ∞, and for convenience, set
𝜂𝑡 := 𝑀𝛼/2

− 1[0,𝑡) for 𝑡 ∈ [0,𝑇 ]. Following the same calculations from [GJRdS15,
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Proposition 5.2] and using Proposition 3.1, we have∫
[0,𝑇 ]

���𝑇𝜇⊗𝑑
𝛽

𝛿𝑎 (𝐵𝛽,𝛼𝑑,𝑡 ) (𝜑)
��� d𝑡

≤ 1
(2𝜋)𝑑

∫
[0,𝑇 ]

𝑑∏
𝑘=1

∫
R

����𝐸𝛽 (
−1
2
𝑠2⟨𝜂𝑡 , 𝜂𝑡 ⟩ −

1
2
⟨𝜑𝑘 , 𝜑𝑘⟩ − 𝑠 ⟨𝜂𝑡 , 𝜑𝑘⟩

)���� d𝑠 d𝑡
≤ 1
(2𝜋)𝑑

∫
[0,𝑇 ]

𝑑∏
𝑘=1

[√︂
2𝜋
𝑡𝛼

∫ ∞

0
𝑀𝛽 (𝑟 )𝑟−1/2 exp

(
1
2
𝑀2𝑟

)
d𝑟

]
d𝑡 .

By [GJRdS15, Lemma A.4],

𝐾 :=
∫ ∞

0
𝑀𝛽 (𝑟 )𝑟−1/2 exp

(
1
2
𝑀2𝑟

)
d𝑟 < ∞,

so that∫
[0,𝑇 ]

���𝑇𝜇⊗𝑑
𝛽

𝛿𝑎 (𝐵𝛽,𝛼𝑑,𝑡 ) (𝜑)
��� d𝑡 ≤ 𝐾𝑑

(2𝜋)𝑑/2

∫
[0,𝑇 ]

𝑡−𝛼𝑑/2 d𝑡 =
2

2 − 𝛼𝑑𝐾
𝑑𝑇 1−𝛼𝑑/2 < ∞.

Therefore, 𝐿𝛽,𝛼 (𝑎,𝑇 ) ∈ (S𝑑)−1 by Theorem 1.24. A similar computation holds for
the case of 𝐿𝑠

𝛽,𝛼
(𝑇 ): for all 𝜑 ∈ S𝑑 (R)C with |𝜑 | < 𝑀 ,𝑀 < ∞, and 𝑠,𝑢 ∈ [0,𝑇 ],���𝑇𝜇⊗𝑑

𝛽

𝛿 (𝐵𝛽,𝛼
𝑑,𝑠
− 𝐵𝛽,𝛼

𝑑,𝑢
) (𝜑)

���
≤ 1
(2𝜋)𝑑

𝑑∏
𝑘=1

∫
R

����𝐸𝛽 (
−1
2
𝜆2
𝑘
⟨𝜂𝑠 − 𝜂𝑢, 𝜂𝑠 − 𝜂𝑢⟩ −

1
2
⟨𝜑𝑘 , 𝜑𝑘⟩ − 𝜆𝑘 ⟨𝜂𝑠 − 𝜂𝑢, 𝜑𝑘⟩

)���� d𝜆𝑘
≤ 1
(2𝜋)𝑑

𝑑∏
𝑘=1

(√︄
2𝜋

⟨𝜂𝑠 − 𝜂𝑢, 𝜂𝑠 − 𝜂𝑢⟩

∫ ∞

0
𝑀𝛽 (𝑟 )𝑟−1/2 exp

(
1
2
𝑀2𝑟

)
d𝑟

)
=

𝐾𝑑

(2𝜋)𝑑/2
|𝑠 − 𝑢 |−𝛼𝑑/2,

so that∫
[0,𝑇 ]

∫
[0,𝑇 ]

���𝑇𝜇⊗𝑑
𝛽

𝛿 (𝐵𝛽,𝛼
𝑑,𝑠
− 𝐵𝛽,𝛼

𝑑,𝑢
) (𝜑)

��� d𝑢 d𝑠 ≤ 2𝐾𝑑

(2𝜋)𝑑/2

∫
[0,𝑇 ]

∫
[0,𝑠]
(𝑠 − 𝑢)−𝛼𝑑/2 d𝑢 d𝑠

=
8𝐾𝑑𝑇 2−𝛼𝑑/2

(2𝜋)𝑑/2(2 − 𝛼𝑑) (4 − 𝛼𝑑)
< ∞.

The conclusion follows from Theorem 1.24. □
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Remark 3.15. Let 𝑑 ∈ N and 𝛼 ∈ (0, 2
𝑑
).

(i) If 𝛽 ∈ (0, 1), then by Theorem 3.14 and Remark 2.18, the generalized ex-
pectation of 𝐿𝛽,𝛼 (0,𝑇 ) is given by

E𝜇⊗𝑑
𝛽

(𝐿𝛽,𝛼 (0,𝑇 )) =
∫
[0,𝑇 ]

𝑇𝜇⊗𝑑
𝛽

𝛿0(𝐵𝛽,𝛼𝑑,𝑡 ) (0) d𝑡

=
𝑇 1−𝛼𝑑/2

2𝑑/2−1Γ(1 − 1
2𝛽)𝑑 (2 − 𝛼𝑑)

, (3.9)

while the generalized expectation of 𝐿𝑠
𝛽,𝛼
(𝑇 ) is given by

E𝜇⊗𝑑
𝛽

(𝐿𝑠
𝛽,𝛼
(𝑇 )) =

∫
[0,𝑇 ]

∫
[0,𝑇 ]

𝑇𝜇⊗𝑑
𝛽

𝛿0(𝐵𝛽,𝛼𝑑,𝑠 − 𝐵
𝛽,𝛼

𝑑,𝑢
) (0) d𝑢 d𝑠

=
𝑇 2−𝛼𝑑/2

2𝑑/2−2Γ(1 − 1
2𝛽)𝑑 (2 − 𝛼𝑑) (4 − 𝛼𝑑)

. (3.10)

(ii) Consider the case 𝛽 = 1, in which the process 𝐵𝛽,𝛼
𝑑

is a 𝑑-dimensional fBm
with Hurst parameter 𝐻 = 𝛼/2. In this case, the assumption that 𝛼𝑑 < 2
reduces to 𝐻𝑑 < 1, and Corollary 4.10(a) in [HØ02] shows that the right-
hand side of (3.9) corresponds to the generalized expectation of the fBm
local time at 0. Moreover, a simple application of Lebesgue’s dominated
convergence theorem to Equation (14) in [HN05] shows that the right-
hand side of (3.10) corresponds to the expectation of the 𝐿2-limit of the
approximated self-intersection local time 𝐼𝜀 of fBm defined by Equation (2)
in [HN05].





Chapter 4

Stochastic Differential Equations

Perturbed By Vector-valued Grey

Noise

Stochastic differential equations (SDEs) are one core element in classical stochas-
tic analysis. First, SDEs in the case of Mittag-Leffler analysis have been studied
by Bock and Silva [BdS17]. In particular, they studied Ornstein-Uhlenbeck pro-
cesses. In this chapter, we generalize these results to vggBm and consider in
particular linear SDEs driven by vggBm.

4.1 Linear stochastic differential equations driven

by vggBm noise

In this section, we study linear stochastic differential systems of the form{
d𝑋𝑡 = 𝐴(𝑡)𝑋𝑡 d𝑡 + 𝜎 d𝐵𝛽,𝛼𝑑,𝑡 , 𝑡 ∈ [0,𝑇 ]
𝑋0 = 𝑥0 ∈ R𝑑 ,

(4.1)

where we assume that for𝑇 > 0, 𝐴 : [0,𝑇 ] → R𝑑×𝑑 is continuous, and 𝜎 ∈ R. As
in the case for white noise analysis, we rewrite (4.1) as a system of equations in
(S𝑑)−1: 

d
d𝑡
𝑋𝑡 = 𝐴(𝑡)𝑋𝑡 + 𝜎

d
d𝑡
𝐵
𝛽,𝛼

𝑑,𝑡
, 𝑡 ∈ [0,𝑇 ]

𝑋0 = 𝑥0 ∈ R𝑑 ,
(4.2)

and seek a vector-valued process 𝑋𝑡 with components taking values in (S𝑑)−1
that solves the system (4.2) for all 𝑡 ∈ [0,𝑇 ].

61
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First, assume that there exists such a process𝑋𝑡 . If we apply the 𝑆𝜇⊗𝑑
𝛽

-transform
to both sides of (4.2)1, then by Corollary 1.26, for some neighborhoodU0 of zero
in S𝑑 (R)C,

d
d𝑡
𝑆𝜇⊗𝑑

𝛽

𝑋𝑡 (𝜑) = 𝐴(𝑡)𝑆𝜇⊗𝑑
𝛽

𝑋𝑡 (𝜑) + 𝜎𝑆𝜇⊗𝑑
𝛽

d
d𝑡
𝐵
𝛽,𝛼

𝑑,𝑡
(𝜑), 𝑡 ∈ [0,𝑇 ], 𝜑 ∈ U0. (4.3)

Note that in (4.3), the matrix 𝐴(𝑡) and 𝑆𝜇⊗𝑑
𝛽

-transform commute since 𝐴(𝑡) is
independent of 𝜔 ∈ S′

𝑑
(R). Set 𝑌𝑡 (𝜑) := 𝑆𝜇⊗𝑑

𝛽

𝑋𝑡 (𝜑) and use Proposition 3.13 to
obtain

d
d𝑡
𝑌𝑡 (𝜑) = 𝐴(𝑡)𝑌𝑡 (𝜑) + 𝜎𝐶𝛽,𝛼 (𝜑, 𝑡), 𝑡 ∈ [0,𝑇 ], 𝜑 ∈ U0, (4.4)

where, for convenience, we set

𝐶𝛽,𝛼 (𝜑, 𝑡) :=
𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) (𝑀𝛼/2
+ 𝜑𝑘

)
(𝑡) e𝑘 .

Equation (4.4) is a linear nonhomogeneous ordinary differential system, with
initial condition

𝑌0(𝜑) = 𝑆𝜇⊗𝑑
𝛽

𝑋0(𝜑) = 𝑥0. (4.5)

It has a unique solution on [0,𝑇 ] for each 𝜑 ∈ U0, since both 𝐴 and 𝑀𝛼/2
+ 𝜑𝑘 ,

𝑘 = 1, . . . , 𝑑 , are continuous on [0,𝑇 ]. The solution of (4.4) with initial condition
(4.5) is computed using the method of variation of constants:

𝑌𝑡 (𝜑) = 𝑉 (𝑡)𝑉 (0)−1𝑥0 + 𝜎𝑉 (𝑡)
∫ 𝑡

0
𝑉 (𝑠)−1𝐶𝛽,𝛼 (𝜑, 𝑠) d𝑠, 𝑡 ∈ [0,𝑇 ], 𝜑 ∈ U0,

(4.6)

where 𝑉 : [0,𝑇 ] → R𝑑×𝑑 is the fundamental matrix to the homogeneous system

d
d𝑡
y(𝑡) = 𝐴(𝑡)y(𝑡), 𝑡 ∈ [0,𝑇 ] . (4.7)

Now, let 𝑢 𝑗,𝑘 : R → R, 𝑗, 𝑘 = 1, . . . , 𝑑 , be the ( 𝑗, 𝑘)-entry of 𝑉 −1, extended
to zero outside [0,𝑇 ]. Since 𝑢 𝑗,𝑘 is continuously differentiable on the compact
interval [0,𝑇 ], for each 𝑡 ∈ [0,𝑇 ], the product 1[0,𝑡)𝑢 𝑗,𝑘 belongs to 𝐿𝑞 (R) for
every 1 ≤ 𝑞 ≤ ∞. Moreover, 𝑀𝛼/2

−
(
1[0,𝑡)𝑢 𝑗,𝑘

)
∈ 𝐿2(R). Indeed, this is clear for

𝛼 = 1. If 1 < 𝛼 < 2, then the statement follows from Theorem 5.3 in [SKM93],
since 1[0,𝑡)𝑢 𝑗,𝑘 ∈ 𝐿2/𝛼 (R). For 0 < 𝛼 < 1, the function 1[0,𝑡)𝑢 𝑗,𝑘 is piecewise
Lipschitz with a finite number of discontinuities and 1[0,𝑡) (𝑥)𝑢 𝑗,𝑘 (𝑥) → 0 as
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|𝑥 | → ∞, so that 𝑀𝛼/2
−

(
1[0,𝑡)𝑢 𝑗,𝑘

)
∈ 𝐿2(R) by Theorem 11.7 and Theorem 6.1

in [SKM93]. Furthermore, by following a proof similar to that of Lemma 2.5 in
[Ben03], we have the following duality relation for all 𝜙 ∈ S(R)C:

⟨𝜙,𝑀𝛼/2
−

(
1[0,𝑡)𝑢 𝑗,𝑘

)
⟩ = ⟨𝑀𝛼/2

+ 𝜙, 1[0,𝑡)𝑢 𝑗,𝑘⟩ =
∫ 𝑡

0
(𝑀𝛼/2
+ 𝜙) (𝑠) 𝑢 𝑗,𝑘 (𝑠) d𝑠 . (4.8)

For each 𝑡 ∈ [0,𝑇 ] and 𝑗 = 1, . . . , 𝑑 , set

𝜂𝑡, 𝑗 :=
𝑑∑︁
𝑘=1

𝑀𝛼/2
−

(
1[0,𝑡)𝑢 𝑗,𝑘

)
e𝑘 .

Then for all 𝑡 ∈ [0,𝑇 ] and 𝑗 = 1, . . . , 𝑑 , 𝜂𝑡, 𝑗 belongs to 𝐿2𝑑 (R). Moreover, by
Proposition 2.15 and Equation (4.8),

𝑆𝜇⊗𝑑
𝛽

⟨·, 𝜂𝑡, 𝑗 ⟩(𝜑) =
𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ⟨𝜑𝑘 , 𝑀𝛼/2
−

(
1[0,𝑡)𝑢 𝑗,𝑘

)
⟩

=

𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) ∫ 𝑡

0
(𝑀𝛼/2
+ 𝜑𝑘) (𝑠) 𝑢 𝑗,𝑘 (𝑠) d𝑠, 𝜑 ∈ U0,

so that by Theorem 1.23, each component of the right-hand side of (4.6) is holo-
morphic at zero in S𝑑 (R)C for all 𝑡 ∈ [0,𝑇 ], and that

𝑋𝑡 = 𝑆
−1
𝜇⊗𝑑
𝛽

𝑌𝑡 = 𝑉 (𝑡)𝑉 (0)−1𝑥0 + 𝜎𝑉 (𝑡)
𝑑∑︁
𝑗=1
⟨·, 𝜂𝑡, 𝑗 ⟩e 𝑗 ∈ 𝐿2(𝜇⊗𝑑𝛽 ;R𝑑).

Finally, we show that the components of (𝑋𝑡 )𝑡∈[0,𝑇 ] satisfy the assumptions of
Corollary 1.26, that is, for some 𝑝, 𝑞 ∈ N, each component of the right-hand side
of (4.4) is uniformly bounded in 𝑡 ∈ [0,𝑇 ] and 𝜑 ∈ U𝑝,𝑞 . Now, using Estimate
(3.8), we can choose 𝑝, 𝑞 ∈ N and a constant 𝐾 < ∞ such that

|𝐶𝛽,𝛼 (𝜑, 𝑡) |euc ≤ 𝐾, 𝑡 ≥ 0, 𝜑 ∈ U𝑝,𝑞 .

Then the continuity of 𝐴,𝑉 ,𝑉 −1 on the compact interval [0,𝑇 ] yield a uniform
bound of |𝑌𝑡 (𝜑) |euc, and hence, of

�� d
d𝑡𝑌𝑡 (𝜑)

��
euc, in 𝑡 ∈ [0,𝑇 ] and 𝜑 ∈ U𝑝,𝑞 . There-

fore, by Corollary 1.26, we obtain the following result.

Theorem 4.1. The process

𝑋𝑡 = 𝑉 (𝑡)𝑉 (0)−1𝑥0 + 𝜎𝑉 (𝑡)
𝑑∑︁
𝑗=1
⟨·, 𝜂𝑡, 𝑗 ⟩e 𝑗 , 𝑡 ∈ [0,𝑇 ],
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with values in 𝐿2(𝜇⊗𝑑
𝛽
;R𝑑) solves (4.2) as a system of equations in (S𝑑)−1, where

𝑉 : [0,𝑇 ] → R𝑑×𝑑 is a fundamental matrix to the homogeneous system (4.7),

𝜂𝑡, 𝑗 :=
𝑑∑︁
𝑘=1

𝑀𝛼/2
−

(
1[0,𝑡)𝑢 𝑗,𝑘

)
e𝑘 ,

and for 𝑗, 𝑘 = 1, . . . , 𝑑 , 𝑢 𝑗,𝑘 : R → R is the ( 𝑗, 𝑘)-entry of 𝑉 −1, extended to zero
outside [0,𝑇 ]. Its 𝑆𝜇⊗𝑑

𝛽

-transform is given by

𝑆𝜇⊗𝑑
𝛽

𝑋𝑡 (𝜑) = 𝑉 (𝑡)𝑉 (0)−1𝑥0+𝜎𝑉 (𝑡)
∫ 𝑡

0
𝑉 (𝑠)−1

𝑑∑︁
𝑘=1

𝐸𝛽,𝛽
( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

)
𝛽𝐸𝛽

( 1
2 ⟨𝜑𝑘 , 𝜑𝑘⟩

) (𝑀𝛼/2
+ 𝜑𝑘

)
(𝑠) e𝑘 d𝑠,

for 𝑡 ∈ [0,𝑇 ] and 𝜑 ∈ U0, whereU0 is a suitable neighborhood of zero in S𝑑 (R)C.
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