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Abstract. We consider a linearized kinetic BGK equation and the associated acoustic system on
a network. Coupling conditions for the macroscopic equations are derived from the kinetic conditions
via an asymptotic analysis near the nodes of the network. This analysis leads to the consideration
of a fixpoint problem involving the solutions of kinetic half-space problems. This work extends the
procedure developed in [13], where coupling conditions for a simplified BGK model have been derived.
Numerical comparisons between different coupling conditions confirm the accuracy of the proposed
approximation.
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1. Introduction. Coupling conditions for macroscopic partial differential equa-
tions on networks including scalar hyperbolic equations and hyperbolic systems like
the wave equation or Euler type models have been discussed in many works, see
[4, 5, 10, 11, 14, 16–18, 22, 28]. In [17, 29] coupling conditions for scalar hyperbolic
equations on networks are discussed and investigated. [2] treats the wave equation
and general nonlinear hyperbolic systems are considered in [4, 5, 10, 14, 18]. We fi-
nally note, that, for example, for hyperbolic systems on networks there are still many
unsolved problems, like finding suitable coupling conditions without restricting to
subsonic situations.

On the other hand, coupling conditions for kinetic equations on networks have
been discussed in a much smaller number of publications, see, for example, [12,13,30,
31]. In [12] a first attempt to derive a coupling condition for a macroscopic equation
from the underlying kinetic model has been presented for the case of a kinetic equa-
tions for chemotaxis. In [13] a more general and more accurate procedure has been pre-
sented motivated by the classical procedure to find kinetic slip boundary conditions for
macroscopic equations based on the analysis of the kinetic layer [3,7,8,23,24,33,36–38].
In this work coupling conditions for the wave equation on a network have been derived
from a simplified BGK equation via an asymptotic analysis of the situation near the
nodes. In the present paper we extend this approach to the full linear BGK prob-
lem [15, 27] with the linearized Euler equations as limit equations for small Knudsen
numbers.

The paper is organized as follows. In section 2, we present the basic kinetic
and macroscopic equations defined on a graph. Section 3 describes the half-moment
approximation of the kinetic equation. Section 4 contains the general procedure to
obtain coupling conditions for the macroscopic equations from the kinetic conditions.
In section 5 the application of the half moment approximation to determine accu-
rate approximate solutions of the kinetic half-space problem is discussed. Section 6
contains a derivation of coupling conditions for the macroscopic problem using the
half-moment approximation. These conditions include an approximation of the ki-
netic quantities in the fluid dynamic limit at the nodes. Finally, in section 7, we give
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a numerical investigation of the kinetic and macroscopic equations on the network.
The results show the very good approximation of the underlying kinetic model by the
macroscopic model with the coupling conditions derived here.

2. Kinetic and macroscopic equations. For f = f(x, v, t) with x ∈ R and
v ∈ R at time t ∈ [0, T ] we consider the linear kinetic BGK model

∂tf + v∂xf = −1

ϵ
Q(f) = −1

ϵ

(
f −

(
ρ+ vq +

1

2
(v2 − 1)(S − ρ)

)
M(v)

)
, (2.1)

where density, mean flux and total energy are given by

ρ =

∫ ∞

−∞
f(v)dv, q =

∫ ∞

−∞
vf(v)dv, S =

∫ ∞

−∞
v2f(v)dv

and the standard Maxwellian is defined by

M(v) =
1√
2π

exp(−v2

2
).

The associated limit equation for ϵ → 0 is the acoustic system

∂tρ+ ∂xq = 0,

∂tq + ∂xS = 0,

∂tS + a2∂xq = 0

(2.2)

with a2 = 3. See [6,9,25] for the derivation of the acoustic limit from Boltzmann and
BGK equation. (2.2) is the linearization of the compressible Euler equations around
a state with velocity zero. This is a linear strictly hyperbolic system with eigenvalues
−a, 0 and +a. On a bounded interval, here [0, 1], we prescribe for the kinetic equation
boundary values at x = 0 and x = 1. The values of f for all ingoing velocities have
to be fixed, i.e.

f(0, v), v > 0 and f(1, v), v < 0.

For (2.2) boundary conditions should be formulated in characteristic variables. The
corresponding Riemann invariants are

r− = S − aq, r0 = S − a2ρ, r+ = S + aq. (2.3)

At the left boundary the data for the Riemann invariant associated to the positive
eigenvalue r+ = S+aq have to be prescribed, on the right end the Riemann invariant
for the negative eigenvalue r− = S − aq. The Riemann invariant r0 associated to the
0-characteristic is not specified at the boundaries.

3. Half-moment approximation. In this section we will construct a half-
moment approximation for the kinetic equation (2.1). We refer, for example, to [21].
We will use this approximation in the following sections to obtain explicit and accurate
coupling conditions for the equations in the fluid limit. We define

ρ− =

∫ 0

−∞
f(v)dv, q− =

∫ 0

−∞
vf(v)dv, S− =

∫ 0

−∞
v2f(v)dv,

ρ+ =

∫ ∞

0

f(v)dv, q+ =

∫ ∞

0

vf(v)dv, S+ =

∫ ∞

0

v2f(v)dv.

(3.1)

2



As closure assumption, we use the following approximation of the distribution function
f by quadratic functions in v to determine half-moment equations

f(v) = (a+ + vb+ + v2c+)M(v), v ≥ 0, (3.2)

f(v) = (a− + vb− + v2c−)M(v), v ≤ 0.

Inserting (3.2) into (3.1) leads to

ρ∓ =
1

2
a∓ ∓ 1√

2π
b∓ +

1

2
c∓,

q∓ = ∓ 1√
2π

a∓ +
1

2
b∓ ∓ 2√

2π
c∓,

S∓ =
1

2
a∓ ∓ 2√

2π
b∓ +

3

2
c∓,

and inverting gives

a∓ =
1

π − 3

(
(3π − 8)ρ∓ ±

√
2πq∓ − (π − 4)S∓

)
,

b∓ =
1

π − 3

(
±
√
2πρ∓ + 2πq∓ ±

√
2πS∓

)
,

c∓ =
1

π − 3

(
−(π − 4)ρ∓ ±

√
2πq∓ + (π − 2)S∓

)
.

Furthermore, we obtain the following approximation of the higher order half moments

∫ ∞

0

v3f(v)dv =
2√
2π

a+ +
3

2
b+ +

8√
2π

c+

=
−(5π − 16)ρ+ +

√
2π(3π − 10)q+ + (3π − 8)S+

√
2π(π − 3)

, (3.3)∫ 0

−∞
v3f(v)dv = − 2√

2π
a− +

3

2
b− − 8√

2π
c−

=
(5π − 16)ρ− +

√
2π(3π − 10)q− − (3π − 8)S−
√
2π(π − 3)

. (3.4)

Multiplying (2.1) with 1, v and v2 and integrating over positive and negative velocity
domains, we can obtain a closed system for the half-moment approximation of the
kinetic equation. With the notation

α :=
5π − 16√
2π(π − 3)

, β :=
3π − 10

(π − 3)
, γ :=

3π − 8√
2π(π − 3)

,
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the system for the half-moments reads

∂tρ
+ + ∂xq

+ =
−1

ϵ

(
ρ+ −

(
1

2
ρ+

1√
2π

q

))
∂tq

+ + ∂xS
+ =

−1

ϵ

(
q+ −

(
ρ√
2π

+
q

2
+

1√
8π

(S − ρ)

))
∂tS

+ + ∂x(−αρ+ + βq+ + γS+) =
−1

ϵ

(
S+ −

(
1

2
ρ+

2√
2π

q +
1

2
(S − ρ)

))
∂tρ

− + ∂xq
− =

−1

ϵ

(
ρ− −

(
1

2
ρ− 1√

2π
q

))
∂tq

− + ∂xS
− =

−1

ϵ

(
q− −

(
− ρ√

2π
+

q

2
− 1√

8π
(S − ρ)

))
∂tS

− + ∂x(αρ
− + βq− − γS−) =

−1

ϵ

(
S− −

(
1

2
ρ− 2√

2π
q +

1

2
(S − ρ)

))
.

(3.5)

On a finite interval this system requires boundary conditions on both sides. For
the left boundary the positive quanitites ρ+, q+, S+ and for the right boundary the
negative quantities ρ−, q−, S− have to be prescribed.

For later use we introduce the even-odd variables

ρ = ρ+ + ρ−, q = q+ + q−, S = S+ + S−,

ρ̂ = ρ+ − ρ−, q̂ = q+ − q−, Ŝ = S+ − S−

and rewrite the system as

∂tρ+ ∂xq =0

∂tq + ∂xS =0

∂tS + ∂x(−αρ̂+ βq + γŜ) =0

∂tρ̂+ ∂xq̂ =− 1

ϵ

(
ρ̂− 2√

2π
q

)
∂tq̂ + ∂xŜ =− 1

ϵ

(
q̂ − 2√

2π
ρ− 1√

2π
(S − ρ)

)
∂tŜ + ∂x(−αρ+ βq̂ + γS) =− 1

ϵ

(
Ŝ − 4√

2π
q

)
.

(3.6)

Obviously, for ϵ → 0 one obtains the same limit problem (2.2) as before.

3.1. Coupling conditions for the kinetic model. To consider the above
equations on a network coupling conditions have to be imposed at the nodes. In the
following, we consider a node connecting n edges, which are oriented away from the
node, as in Fig.3.1. Each edge i is parameterized by the interval [0,∞] and the kinetic
and macroscopic quantities are denoted by fi and ρi, qi, Si respectively. A possible
choice of coupling conditions for the kinetic problem are given by

f i(0, v) =

n∑
j=1

cijf
j(0,−v), v > 0, (3.7)

where the ingoing quantities are distributed according to given parameters ci,j , i, j =
1, . . . , n. Further properties of these coupling conditions can be found in [12,13]. The

4



1

2

3

Fig. 3.1: Node connecting three edges and orientation of the edges.

total mass in the system is conserved, if

n∑
i=1

cij = 1

holds for any j = 1, . . . , n. In the following, we use the vector notation

f+ = Cf−, v > 0,

where C = (ci,j)i,j=1,··· ,n and f± = (f1(0,±v), . . . , fn(0,±v))T .
The coupling condition for the half-moment approximation is easily found from

the kinetic coupling conditions by integration with respect to v. We obtain

∫ ∞

0

 1
v
v2

 f(0, v)dv =

n∑
j=1

∫ ∞

0

 1
v
v2

 cijf
j(0,−v)dv

=

n∑
j=1

∫ 0

−∞

 1
−v
v2

 cijf
j(0, v)dv

or ρ+

q+

S+

 =

n∑
j=1

cij

 ρ−

−q−

S−

 . (3.8)

The coupling conditions for the macroscopic quantities are conditions on the char-
acteristic variables

Si
B + aqiB

using the given values of

Si
B − aqiB ,

where the subscript B denotes the value of the macroscopic solution at the boundary
or node. In the following, we discuss how to determine macroscopic conditions from
the kinetic coupling conditions (3.7) and perform an explicit procedure for the half-
moment approximation with coupling conditions (3.8).

4. Derivation of coupling conditions for macroscopic equations via ki-
netic layer analysis. We consider first the classical procedure to derive boundary
conditions for macroscopic equations from the underlying kinetic equation.
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4.1. Boundary conditions. Consider the left boundary of the interval [0, 1].
A rescaling of the spatial variable in equation (2.1) with x → x

ϵ , gives

∂tf +
1

ϵ
v∂xf =

1

ϵ
Q(f).

This yields to first order in ϵ the stationary kinetic half-space problem for the
layer function fL = fL(x) with x ∈ [0,∞)

v∂xfL = Q(fL).

Such half-space problems have been investigated in many papers, see, for example,
[1,20,26]. One obtains a well-posed problem, if on the one hand, at x = 0, a boundary
condition for the half space problem is prescribed

fL(0, v) = k(v) = f(0, v), v > 0.

Moreover, an additional condition prescribing the value of the Riemann Invariant
(2.3) r− = S − aq of the macroscopic system (2.2) is required∫ ∞

−∞
(v2 − av)fL(∞, v)dv =

∫ ∞

−∞
(v2 − av)fL(x, v)dv = SB − aqB .

Note that
∫∞
−∞ vkfL(x, v)dv, k = 1, 2 are invariants for the half-space problem.

The boundary condition for (2.2) is obtained by determining r+ from the asymp-
totic solution of the half space problem by setting r+ = S∞ + aq∞, where the values
ρ∞, q∞ and S∞ are the macroscopic quantities associated to the solution of the half-
space problem at infinity.

Then, the solution of the half space problem can be used to determine the outgoing
distribution

f(0, v) = fL(0, v), v < 0

in the limit ϵ → 0.

4.2. Coupling conditions for the macroscopic model. We use the above
procedure to determine the coupling conditions for the macroscopic equations. Start-
ing from the kinetic coupling conditions (3.7) we determine the coupling conditions for
the macroscopic equations in the following way. From the kinetic coupling conditions
we obtain conditions on the in- and outgoing solutions of the half space problems on
the different arcs. That means the layer functions satisfy

f i
L(0, v) =

n∑
j=1

cijf
j
L(0,−v), v > 0.

If the outgoing values f i
L(0, v) are determined via the solution of the half-space prob-

lems on arc then, this is a fix point equation for fL(0, v)) = (f1
L, . . . , f

n
L)(0, v), v > 0.

Note that, to solve the half-space problems, we need the additional conditions∫ ∞

−∞
(v2 − av)f i

L(0, v)dv = Si
B − aqiB ,

which connect the values of the layer to the states in the domain.
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Then, the outgoing characteristics on the different arcs are determined by

ri+(0) = Si
∞[ki] + aqi∞[ki],

which gives the coupling values for the acoustic system.
In the next section, we use the half moment approximation to find numerically

tractable expressions for these coupling conditions. This approximation is numerically
compared to the solution of the full kinetic equation in the last section.

5. Half-moment half-space problem. Proceeding as for the original kinetic
problem and rescaling the spatial variable at the node in the half-moment problem
with ϵ and neglecting lower order terms we obtain the half-space problem of (3.6) for
x ∈ [0,∞)

∂xq =0

∂xS =0

∂x(−αρ̂+ βq + γŜ) =0

∂xq̂ =−
(
ρ̂− 2√

2π
q

)
∂xŜ =−

(
q̂ − 2√

2π
ρ− 1√

2π
(S − ρ)

)
∂x(−αρ+ βq̂ + γS) =−

(
Ŝ − 4√

2π
q

)
.

(5.1)

Boundary conditions for ρ+(0), q+(0), S+(0) are needed, as well as a condition at
infinity

S∞ − aq∞ = r−(0) = C.

With these data at hand, the half-space problem can be solved explicitly. We deter-
mine a bounded solution up to four constants, which will be fixed with the above four
conditions. First, we observe that we have three invariants

q = C1,

S = C2,

−αρ̂+ βq + γŜ = C3. (5.2)

So, we can find ρ̂ from (5.2) as

ρ̂ =
γ

α
Ŝ + C̃3,

where C̃3 = βq − C3 = βC1 − C3. Plugging these invariants into (5.1) yields

∂xq̂ = −
(
γ

α
Ŝ + C̃3 −

2√
2π

C1

)
∂xŜ = −

(
q̂ − 1√

2π
(C2 + ρ)

)
∂x(−αρ+ βq̂) = −

(
Ŝ − 4√

2π
C1

)
.

(5.3)
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Combining the first and last equation of (5.3) gives

∂x

(
αρ− βq̂ +

α

γ
q̂

)
= −α

γ
C̃3 +

2α√
2πγ

C1 −
4√
2π

C1.

If

−α

γ
C̃3 +

2α√
2πγ

C1 −
4√
2π

C1 ̸= 0

then, the last differential equation has no bounded solution. This requires

−α

γ
C̃3 +

2α√
2πγ

C1 −
4√
2π

C1 = 0 ⇒ C̃3 =
2√
2π

C1

(
1− 2γ

α

)
.

We obtain

ρ̂ =
γ

α
Ŝ +

2√
2π

C1

(
1− 2γ

α

)
and invariance of

αρ− βq̂ +
α

γ
q̂ ⇒ ρ =

β

α
q̂ − 1

γ
q̂ + Ĉ3.

Inserting this into (5.3) gives

∂xq̂ = −
(
γ

α
Ŝ − 4γ√

2πα
C1

)
∂xŜ = −

(
q̂ − 1√

2π
(C2 +

β

α
q̂ − 1

γ
q̂ + Ĉ3)

)
or finally

∂xq̂ = −
(
γ

α
Ŝ − 4γ√

2πα
C1

)
∂xŜ = −

(
q̂√
2π

(
2

α
+

1

γ

)
− 1√

2π
C4

) (5.4)

with C4 = C2 + Ĉ3.
The eigenvalues of the system matrix of the linear system (5.4) are ±λ, with

λ =
√
α+2γ
4√2πα

< 0. The solutions of (5.4) can be computed explicitly as

q̂ = δ1 exp(λx) + δ2 exp(−λx) +
αγC4

α+ 2γ
,

Ŝ = −λαδ1
γ

exp(λx) +
λαδ2
γ

exp(−λx) +
4√
2π

C1,

where δ1, δ2 are positive constants. As for layers only the bounded solutions of (5.4)
can be used, we look at

q̂ = δ1 exp(λx) +
αγC4

α+ 2γ
,

Ŝ = −λαδ1
γ

exp(λx) +
4√
2π

C1

8



which gives for the other variables

ρ =
β

α
q̂ − 1

γ
q̂ + C4 − C2,

ρ̂ =
γ

α
Ŝ +

2√
2π

C1

(
1− 2γ

α

)
,

q = C1,

S = C2.

The four parameters are fixed with the four conditions

1

2
(ρ(0) + ρ̂(0)) = ρ+(0),

1

2
(q(0) + q̂(0)) = q+(0),

1

2
(S(0) + Ŝ(0)) = S+(0)

and the condition at infinity

S∞ − aq∞ = r−(0) = C. (5.5)

Altogether we obtain

ρ+(0) =
1

2

((
γβ − α

αγ

)(
δ1 +

αγC4

α+ 2γ

)
+ C4 − C2 − λδ1 +

2√
2π

C1

)
,

q+(0) =
1

2

(
C1 + δ1 +

αγC4

α+ 2γ

)
,

S+(0) =
1

2

(
C2 −

λαδ1
γ

+
4√
2π

C1

)
.

With help of the asymptotic values

C1 = q∞, C2 = S∞, C4 =
α+ 2γ√
2παγ

(ρ∞+S∞)

this can be rewritten as

ρ+(0) =
1

2

((
γβ − α

αγ
− λ

)
δ1 + ρ∞ +

2√
2π

q∞

)
, (5.6)

q+(0) =
1

2

(
q∞ + δ1 +

ρ∞ + S∞√
2π

)
,

S+(0) =
1

2

(
S∞ − λαδ1

γ
+

4√
2π

q∞

)
.

Together with the condition at infinity, this determines the asymptotic values ρ∞, q∞,
S∞ and δ1. The outgoing quantities ρ−(0), q−(0), S−(0) are then determined by

ρ−(0) =
1

2

((
γβ − α

αγ
+ λ

)
δ1 + ρ∞ − 2√

2π
q∞

)
,

q−(0) =
1

2

(
q∞ − δ1 −

ρ∞ + S∞√
2π

)
,

S−(0) =
1

2

(
S∞ +

λαδ1
γ

− 4√
2π

q∞

)
.
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Remark 1 (Maxwell approximation for the half-moment problem [34, 35]). A
straightforward approximation of the asymptotic states is obtained by equalizing the
first two half fluxes at x = 0 with those at x = ∞, i.e.∫ ∞

0

(
v
v2

)
f(0, v)dv =

∫ ∞

0

(
v
v2

)(
ρ+ vq +

1

2
(v2 − 1)(S − ρ)

)
M(v)dv.

This gives

q+(0) = q+(∞) =
1

2
(q∞ + q̂∞) =

q∞
2

+
ρ∞+S∞

2
√
2π

,

S+(0) = S+(∞) =
1

2
(S∞ + Ŝ∞) =

S∞
2

+
2q∞√
2π

and the condition at infinity (5.5). This leads to an approximation of the outgoing
quantities by

ρ−(0) = ρ−(∞) =
ρ∞
2

− q∞√
2π

,

q−(0) = q−(∞) =
q∞
2

− ρ∞ + S∞
2
√
2π

,

S−(0) = S−(∞) =
S∞
2

− 2q∞√
2π

.

5.1. Comparison with a direct computation. To estimate the accuracy of
our approximation method, we consider a boundary value problem related to the
determination of the slip boundary coefficient. For x ∈ R+, v ∈ R, we consider the
half-space equation

v∂xf = −
(
f −

(
ρ+ vq +

1

2
(v2 − 1)(S − ρ)

)
M(v)

)
(5.7)

with
∫
R vfdv = q = 0 and f(0, v) = v(v2−a2)M(v), v > 0 where a2 = 3. We compute

the asymptotic values by a direct numerical solver for the equation (5.7), compare [19]
and [32]. Choosing a velocity discretization with Nv = 350 grid points on [−5, 5] and
a spatial discretization with ∆x = L

Nx
with Nx = 500 and L = 5, we obtain the

asymptotic values as ρ∞ = −2.41561 and S∞ = 1.71757.

The corresponding values by the Maxwell approximation from Remark 1 are

ρ∞ = − 4√
2π

≈ −1.59617, S∞ =
4√
2π

≈ 1.59617.

The above half-moment approximation gives

1

2

((
γβ − α

αγ
− λ

)
δ1 + ρ∞

)
= − 1√

2π
,

1

2

(
δ1 +

ρ∞ + S∞√
2π

)
= 0,

1

2

(
S∞ − λαδ1

γ

)
=

2√
2π

,
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which yields (
γβ − α

αγ
− λ

)
ρ∞ + S∞√

2π
− ρ∞ =

2√
2π

,

S∞ +
λα√
2πγ

(ρ∞ + S∞) =
4√
2π

.

The solution of these equations is

ρ∞ =
2(λα+ 2)(2γ + α)√

2π(2γ + α+ λα(α+ γ))
≈ −2.23425,

S∞ =
2(4γ + 2α−

√
2παγ + λα(2γ + α))√

2π(2γ + α+ λα(α+ γ))
≈ 1.68775.

Thus the error for the above half-moment method is approximately 7.5% for ρ∞ and
1.7% for S∞. For the Maxwell method the errors are 33.9% and 7.1% respectively.

Numerical solver Maxwell Half-moment Maxw./Num. Half/Num.
ρ∞ -2.41561 -1.59617 -2.23425 33.9% 7.5%
S∞ 1.71757 1.59617 1.68775 7.1% 1.7%

Table 5.1: Comparison of results with the different approximations.

6. Half-moment coupling conditions. In this section, we determine the cou-
pling conditions on the basis of the half-moment approximation of the half-space
problem and compare them to coupling conditions based on the Maxwell approxima-
tion and to a condition given by the invariance of the second moment S.

Multiplying first the kinetic coupling conditions (3.7) by v and integrating over
positive velocities gives for i = 1, . . . , n

qi+(0) = −
n∑

j=1

cijq
j
−(0).

Inserting (5.6) yields for i = 1, . . . , n

1

2

(
qi∞ + δi1 +

ρi∞ + Si
∞√

2π

)
= −

n∑
j=1

cij
1

2

(
qj∞ − δj1 −

ρj∞ + Sj
∞√

2π

)
. (6.1)

By summing these equations one obtains directly the balance of fluxes

n∑
j=1

qj∞ = 0. (6.2)

6.1. Invariants at the nodes. For a uniform node with equal distribution
cij =

1
n−1 , i ̸= j and 0 otherwise, we have

−
n∑

j=1

cij
qj∞
2

=

n∑
j=1

(−cij)
qj∞
2

+
1

n

n∑
j=1

qj∞ =
∑
j ̸=i

(
− 1

2(n− 1)

)
qj∞ +

∑
j ̸=i

1

n
qj∞ +

1

n
qi∞

=
∑
j ̸=i

(
1

n
− 1

2(n− 1)

)
qj∞ +

1

n
qi∞ =

∑
j ̸=i

1

n− 1

n− 2

2n
qj∞ +

1

n
qi∞.
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Hence, (6.1) can be written as

1

2

(
qi∞ + δi1 +

ρi∞ + Si
∞√

2π

)
=
∑
j ̸=i

1

n− 1

1

2

(
n− 2

n
qj∞ + δj1 +

ρj∞ + Sj
∞√

2π

)
+

qi∞
n

.

This gives for each i = 1 . . . , n

n− 2

n
qi∞ + δi1 +

ρi∞ + Si
∞√

2π
=
∑
j ̸=i

1

n− 1

(
n− 2

n
qj∞ + δj1 +

ρj∞ + Sj
∞√

2π

)
.

These equations can be rearranged to

n− 2

2n
qi∞ +

δi1
2

+
ρi∞ + Si

∞
2
√
2π

=
n− 2

2n
qj∞ +

δj1
2

+
ρj∞ + Sj

∞
2
√
2π

,

which can be equivalently formulated as the invariance of the quantity

n− 2

n
q∞ + δ1 +

ρ∞ + S∞√
2π

.

Integrating the kinetic coupling conditions (3.7) for positive v additionally gives

ρi+(0) =

n∑
j=1

cijρ
j
−(0).

This yields

1

2

((
γβ − α

αγ
− λ

)
δi1 + ρi∞ +

2√
2π

qi∞

)
=

=
∑
j

cij
1

2

((
γβ − α

αγ
+ λ

)
δj1 + ρj∞ − 2√

2π
qj∞

)
.

Using again
∑n

j=1 q
j
∞ = 0, we have

n∑
i=1

δi1 = 0.

For a uniform node, one obtains using the same arguments as before

1

2

(
γβ − α

αγ
− λ(n− 2)

n

)
δi1 +

ρi∞
2

+
n− 2

n
√
2π

qi∞ =

=
1

n− 1

n∑
j=1

1

2

(
γβ − α

αγ
− λ(n− 2)

n

)
δj1 +

ρj∞
2

+
n− 2

n
√
2π

qj∞.

This gives for any i and j

1

2

(
γβ − α

αγ
− λ(n− 2)

n

)
δi1 +

ρi∞
2

+
n− 2

n
√
2π

qi∞ =

=
1

2

(
γβ − α

αγ
− λ(n− 2)

n

)
δj1 +

ρj∞
2

+
n− 2

n
√
2π

qj∞
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and therefore invariance of

1

2

(
γβ − α

αγ
− λ(n− 2)

n

)
δ1 +

ρ∞
2

+
n− 2

n
√
2π

q∞

at the node. Finally, one obtains from the kinetic coupling conditions

Si
+(0) =

n∑
j=1

cijS
j
−(0)

which yields

1

2

(
Si
∞ − λαδi1

γ
+

4√
2π

qi∞

)
=

n∑
j=1

cij
1

2

(
Sj
∞ +

λαδj1
γ

− 4√
2π

qj∞

)

and, considering again the case of a uniform node, invariance of

S∞ − λα(n− 2)

γn
δ1 +

4(n− 2)√
2πn

q∞.

Note now that the combination of the invariants allows to eliminate δ1 and using
suitable linear combinations one obtains the invariants

S∞ +
n− 2

n

4n(2γ + α) + 5
√
2παλ(n− 2)√

2πn(2γ + α) + 8αλ(n− 2)
q∞ (6.3)

and

ρ∞ +
n− 2

n

(2π − 4)n(α− γβ) + 2
√
2παγn+ 3

√
2παλ(n− 2)√

2πn(2γ + α) + 4αλ(n− 2)
q∞. (6.4)

Each of these invariants gives n− 1 conditions for the quantities ρi∞, qi∞ and Si
∞.

Remark 2. The Maxwell approximation for the half-space problem gives the
conditions

1

2

(
qi∞ +

ρi∞ + Si
∞√

2π

)
= −

n∑
j=1

cij
1

2

(
qj∞ − ρj∞ + Sj

∞√
2π

)
and

1

2

(
Si
∞ +

4√
2π

qi∞

)
=

n∑
j=1

cij
1

2

(
Sj
∞ − 4√

2π
qj∞

)
,

which gives the invariants

n− 2

n
q∞ +

ρ∞ + S∞√
2π

and S∞ +
4(n− 2)√

2πn
q∞.

Combining this implies the invariance of

n− 2

n
q∞ +

ρ∞ + S∞√
2π

− 1√
2π

(
S∞ +

4(n− 2)√
2πn

q∞

)
=

(n− 2)(π − 2)

πn
q∞ +

ρ∞√
2π

or respectively

ρ∞ +

√
2π(π − 2)

π

n− 2

n
q∞.
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6.2. Coupling conditions for the macroscopic equation. The coupling con-
ditions are up to now given by the invariance of the two quantities

ρ∞ + C1q∞, and S∞ + C2q∞ (6.5)

together with the balance of fluxes and the n conditions at infinity

S∞ − aq∞ = r−(0) = SB − aqB . (6.6)

Altogether, we have 1+2(n−1)+n = 3n−1 conditions at a node for the 3n quantities
ρi∞, qi∞ and Si

∞.
The conditions obtained by different approximations differ in the factors C1 and

C2. With a2 = 3 the half moment approximation gives the values

C1 =
n− 2

n

(2π − 4)n(α− γβ) + 2
√
2παγn+ 3

√
2παλ(n− 2)√

2πn(2γ + α) + 4αλ(n− 2)
,

C2 =
n− 2

n

4n(2γ + α) + 5
√
2παλ(n− 2)√

2πn(2γ + α) + 8αλ(n− 2)

compared to C1 =
√
2π(n−2)(π−2)

πn , C2 = 4(n−2)√
2πn

for Maxwell.

For the case n = 2 we have simply C1 = C2 = 0, i.e. the continuity of density
and second moment. From the balance of fluxes the continuity of the flux follows in
this case.

For the case n = 3, this yields C1 ≈ 0.37883, C2 ≈ 0.53006 compared to C1 ≈
0.30327, C2 ≈ 0.532058 for Maxwell.

We note that we already have a sufficient number of conditions for the coupling of
the macroscopic equations: due to the 0-characteristic only 2n conditions are required.
They are given by the balance of fluxes

∑
j q

j
∞ = 0, the invariance of S∞+C2q∞ and

the n conditions at infinity. This fixes the values of qi∞ and Si
∞ at the node, which is

sufficient to couple the macroscopic equations.
Remark 3. A simplified coupling condition corresponding to the widely used

equality of pressure condition is given by choosing C2 = 0 in the above invariant
requiring the equality of the second moment S.

Remark 4. Considering again the situation with n = 3 we observe from the above
consideration that due to the very similar numerical values for C2 we do not expect to
see a significant difference between the numerical results using the Maxwell conditions
and those obtained from using the half moment conditions. For larger values of n the
differences become slightly larger.

6.3. Determination of the kinetic values at the node. To fix all values
including ρi∞ at the nodes and to obtain a complete approximation of the kinetic
solution in the small ϵ limit at the node, we need additionally to the 3n−1 conditions
above a last condition at the node. To obtain such a condition we use a higher order
approximation. We remark that the kinetic coupling conditions yields additionally to
the balance of fluxes

n∑
i=1

∫
vf i(v)dv =

n∑
i=1

qi = 0 (6.7)
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also the balance of higher order odd moments, for example

n∑
i=1

∫
v3f i(v)dv = 0. (6.8)

We approximate this condition to first order via a Chapman-Enskog type approx-
imation using equations (3.3), (3.4) and (3.6). This leads to∫

v3f(v)dv = −α(ρ+ − ρ−) + β(q+ + q−) + γ(S+ − S−) = −αρ̂ + βq + γŜ.

Due to (3.6), this is equal to∫
v3f(v)dv =

− α

(
2√
2π

q − ϵ∂tρ̂− ϵ∂xq̂

)
+ βq + γ

(
4√
2π

q − ϵ∂tŜ − ϵ∂x(−αρ+ βq̂ + γS)

)
.

Using a Chapman-Enskog type procedure up to order O(ϵ2) this is approximated by∫
v3f(v)dv =− α

(
2√
2π

q − ϵ∂t
2√
2π

q − ϵ∂x
(ρ∞ + S∞)√

2π

)
+ βq+

+ γ

(
4√
2π

q − ϵ∂t
4√
2π

q − ϵ∂x(−αρ+ β
(ρ∞ + S∞)√

2π
+ γS)

)
.

This gives∫
v3f(v)dv =

(
− 2α√

2π
+ β +

4γ√
2π

)
q + ϵ

(
α√
2π

+ αγ − βγ√
2π

)
∂xρ+

+ ϵ

(
3α√
2π

− 4γ√
2π

− βγ√
2π

− γ2

)
∂xS.

Thus, due to the balance of first (6.7) and third order fluxes (6.8), we have

n∑
i=1

(
(α+

√
2παγ − βγ)∂xρ

i + (3α− 4γ − βγ −
√
2πγ2)∂xS

i
)
= 0

or

n∑
i=1

∂xρ
i = − (3α− 4γ − βγ −

√
2πγ2)

(α+
√
2παγ − βγ)

∑
i

∂xS
i.

Approximating the spatial derivatives yields the final form of the missing condition

n∑
i=1

(ρi∞ − ρiB) = − (3α− 10γ)

α+ 2γ

∑
i

(Si
∞ − Si

B). (6.9)

6.4. Summary of coupling conditions. In summary, the coupling condition
(6.2) and (6.9) together with the conditions at infinity (6.6) and the conditions given
by the invariants (6.3) and (6.4) yield a system of 3n linear equations for the 3n
unknowns ρi∞, qi∞, Si

∞.
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Define C3 = − (3α−10γ)
α+2γ , then, for example in the case n = 3, the system of

equations for the 9 unknowns

(ρ1∞, ρ2∞, ρ3∞, q1∞, q2∞, q3∞, S1
∞, S2

∞, S3
∞)T

is given by a linear system with the system matrix

0 0 0 1 1 1 0 0 0
0 0 0 1 −1 0 C2 −C2 0
0 0 0 0 1 −1 0 C2 −C2

0 0 0 −a 0 0 1 0 0
0 0 0 0 −a 0 0 1 0
0 0 0 0 0 −a 0 0 1
1 −1 0 C1 −C1 0 0 0 0
0 1 −1 0 C1 −C1 0 0 0
1 1 1 0 0 0 −C3 −C3 −C3


and right hand side

(0 0 0 S1
B − aq1B S2

B − aq2B S3
B − aq3B 0 0

∑3
i=1(ρ

i
B − C3S

i
B))

T .

The determinant of the matrix C is equal to

9(1 + aC2)
2.

Since, a as well as C2 are positive we have a unique solution to our coupling problem
for the Maxwell approximation as well as for the half-moment approximation.

7. Numerical results. In this section, we compare the numerical results of
the different models. The solutions of the kinetic equation (2.1) serve as reference
solutions for the half-moment approximation (3.5) and the macroscopic wave equation
(2.2). For the wave equation we use the coupling conditions (6.5) with the different
coefficients C1 and C2 derived from the half-moment approach. Moreover, a classical
coupling condition, the equality of the second moment S on all edges, i.e. the above
conditions with C2 = 0 is included for comparison.

The networks are composed of coupled edges, each arc is given by an interval
x ∈ [0, 1], which is discretized with 500 spatial cells if not otherwise stated. In the
kinetic model the velocity domain is discretized with 500 cells and we choose different
values of ϵ.

For the advective part of the equations we use an upwind scheme. The source
term in the kinetic and half moment equations is approximated with the implicit Euler
method.

In general, at the outer boundaries of the network, boundary conditions have to
be imposed. For the kinetic problem and the half-moment approximation, we use the
conditions described above in the respective sections or free boundary conditions. For
the linearized Euler equation, we use the approximations from the kinetic problem
discussed above to determine boundary values or again free boundary conditions.

7.1. Tripod network. In the first example, we consider a tripod network with
initial conditions f i(x, v) = (ρi + vqi + 1

2 (v
2 − 1)(Si − ρi))M(v) where M(v) is the

standard Maxwellian. The macroscopic states are (ρ1, q1, S1) = (1, 0, 2), (ρ2, q2, S2) =
(0, 0, 0) and (ρ3, q3, S3) = (2, 0, 4). We use free boundary conditions at the exterior
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boundaries. The final time is chosen such that the waves generated at the node do
not reach the exterior boundaries.

First we investigate the accuracy of the half-moment approximation of the full
kinetic problem. In Figure 7.1 we compare the kinetic solution and the half-moment
approach for a uniform node with symmetric coupling conditions at final time T = 0.1
and different values of ϵ between 0.0001 and 1. We note that kinetic and half-moment
approach give almost identical results for times T > ϵ. For T ≤ ϵ one observes the
influence of the hyperbolic characteristics of the half-moment approach, whereas the
value at the node is still captured accurately.

Second, the different coupling conditions are compared for the tripod. In Figure
7.2 we compare the kinetic solution for ϵ = 0.01 and the wave equation with coupling
conditions given either by the the half-moment half-space approach or by the assump-
tion of equal second moment S at time T = 1. We note that the Maxwell conditions
and the half-moment approach give almost identical results for the macroscopic solu-
tion.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

x on edge 2

ρ

kinetic
half-moment

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

x on edge 2

ρ

kinetic
half-moment

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

x on edge 2

ρ

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

x on edge 2

ρ

Fig. 7.1: Kinetic equation and half-moment approximation for different relations of
∆ = ϵ

T . ρ on edge 2 of the tripod. Upper row: ∆ = 0.001 (left) and ∆ = 0.01 (right).
Lower row: ∆ = 0.1 (left) and ∆ = 1.0 (right).

We observe that the interior state is approximated very accurately by the half-
moment half-space coupling conditions. Moreover, also the kinetic state at the bound-
ary, in particular the value of the density ρ, is very well approximated by the Chapman
Enskog type procedure described in subsection 6.3, which is in Figure 7.2 denoted by
a cross. This is obvious for the values of q and S which are transported into the
domain, but less obvious for the values of ρ, which coincide very well with the actual
value of the kinetic solution at the boundary.
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2

x

x on edge 3

S

Fig. 7.2: Kinetic equation and wave equation with coupling conditions given by the
Maxwell/half-moment approach and by the equality of S. ρ, q, S on edge 2 (left) and
edge 3 (right) at time T = 1. The values at the nodes obtained from the coupling
conditions are denoted by a cross

We note that the Maxwell approximation gives a similarly good approximation
in the present case.

7.2. Diamond network. As a second example, we consider a network topology
given in Figure 7.3.

As initial conditions for the kinetic equation, we have chosen f1(x, v) = 4M(v),
f2(x, v) = 3M(v), f3(x, v) = 7

3M(v) and f j(x, v) = 2M(v) for j = 4, . . . , 7 which
correspond to macroscopic quantities ρ1 = 4, ρ2 = 3, ρ3 = 7

3 and ρj = 2 for j =
4, . . . , 7, qj = 0 for j = 1, . . . , 7 and finally S1 = 4, S2 = 3, S3 = 7

3 and Sj = 2,
for j = 4, . . . , 7. These data are also prescribed at the two outer boundaries, i.e.
f1(0, v) = 4M(v), v ∈ [0, 1] and f7(1, v) = 7

3M(v), v ∈ [−1, 0]. Boundary conditions
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Fig. 7.3: Diamond network.

0 0.5 1 1.5 2 2.5 3
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ρ

kinetic
half-moment
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0 0.5 1 1.5 2 2.5 3

2.05

2.1

2.15

2.2

2.25

x on edge 4

ρ

kinetic
half-moment

equal

Fig. 7.4: Kinetic equation and wave equation with coupling conditions given by the
Maxwell/half-moment approach and by the equality of S. ρ on edge 2 (left) and edge
4 (right) at time T = 1 .

for the wave equation with full moment, Maxwell and half moment conditions are
derived as detailed above.

In Figure 7.4 the density ρ4 on edge 4 is displayed at time t = 3 and t = 10. As
before, we observe a good agreement of the half moment coupling with the kinetic
and half moment model. The Maxwell approximation gives again a result, which is
very similarly to the one obtained from the half-moment approach.

Remark 5. The above procedure can be extended to the linear BGK model with
x ∈ R, v = (v1, v2, v3) ∈ R3, i.e.

∂tf + v1∂xf = −1

ϵ
Q(f) = −1

ϵ

(
f −

(
ρ+ v1q +

1

2
(|v|2 − 3)(S − ρ)

)
M(v)

)
with

ρ =

∫
R3

f(v)dv, q =

∫
R3

v1f(v)dv, S =
1

3

∫
R3

|v|2f(v)dv.

and standard Maxwellian in 3D given by

M(v) =
1

(2π)3/2
exp

(−|v|2
2

)
.

The associated limit equation for ϵ → 0 is again the acoustic system but in this case
with a2 = 5

3 .
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Conclusion. In this work, we have extended previous work in [13] to the case of
the linearized one-dimensional BGK equation on a network with the acoustic system as
the limit model. We have derived explicit coupling conditions for the acoustic system
on a network. They are based on coupling conditions for the underlying kinetic BGK
model, a half-moment approximation of the kinetic problem and a layer analysis near
the nodes. It turns out that in this case approximate coupling conditions given by
the equality of fluxes give a very good approximation. Due to the wave with zero
speed an additional expansion of the coupling conditions is needed to determine all
asymptotic states at the coupling points.
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