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Abstract

In group theory, a big and important family of infinite groups is given by the algebraic
groups. These groups and their structures are already well-understood. In representa-
tion theory, the study of the unipotent variety in algebraic groups — and by extension
the study of the nilpotent variety in the associated Lie algebra — is of particular interest.

Let G be a connected reductive algebraic group over an algebraically closed field k,
and let Lie(G) be its associated Lie algebra. By now, the orbits in the nilpotent and
unipotent variety under the action of G are completely known and can be found for ex-
ample in a book of Liebeck and Seitz. There exists, however, no uniform description of
these orbits that holds in both good and bad characteristic. With this in mind, Lusztig
defined a partition of the unipotent variety of G in 2011. Equivalently, one can con-
sider certain subsets of the nilpotent variety of Lie(G) called the nilpotent pieces. This
approach appears in the same paper by Lusztig in which he explicitly determines the
nilpotent pieces for simple algebraic groups of classical type. The nilpotent pieces for
the exceptional groups of type G, Fy, Eg, E7, and Eg in bad characteristic have not yet
been determined. This thesis gives an introduction to the definition of the nilpotent
pieces and presents a solution to this problem for groups of type G», F, Eg, and partly
for E;. The solution relies heavily on computational work which we elaborate on in
later chapters.

Zusammenfassung

In der Gruppentheorie bilden sogenannte algebraische Gruppen eine grofSe und wich-
tige Familie von unendlichen Gruppen. Algebraische Gruppen und ihre Strukturen sind
in der Vergangenheit bereits sehr ausfiihrlich untersucht worden. Insbesondere die
Struktur der unipotenten Varietit — und damit der nilpotenten Varietat in der aso-
ziierten Lie-Algebra — ist von grofsem Interesse in der Darstellungstheorie.

Sei GG eine zusammenhidngende reduktive algebraische Gruppe iiber einem algebra-
isch abgeschlossenem Korper k. Sei weiterhin Lie(G) die zu G asoziierte Lie-Algebra.
Zum jetzigen Zeitpunkt sind alle unipotenten und nilpotenten Bahnen unter der Ope-
ration einer algebraischen Gruppe bekannt. Diese sind beispielsweise ausfiihrlich in
dem Werk von Liebeck und Seitz beschrieben. Allerdings gibt es keine uniforme Be-
schreibung der Bahnen, die sowohl in guter als auch in schlechter Charakteristik gilt.
In Betracht dieser Tatsache definierte Lusztig in 2011 eine Partition der unipotenten
Varietdt von G. Es ist moglich, stattdessen auch bestimmte Teilmengen der nilpoten-
ten Varietdt von Lie(G) zu betrachten, welche die ,,nilpotenten pieces“ genannt werden.
Auch dieser Ansatz wird von Lusztig beschrieben. In demselben Artikel bestimmt Lusz-
tig auflerdem die nilpotenten pieces fiir die klassischen algebraischen Gruppen. In den
exzeptionellen Gruppen vom Typ G, Fy, Eg, E7 und Eg miissen die nilpotenten pieces
noch bestimmt werden. Diese Dissertation gibt eine Einfiihrung in die Definition der
nilpotenten pieces und stellt eine Losung fiir Gruppen vom Typ G, Fy, Eg und teilweise
E; vor. Die Losung hiangt grofSteils von programmiertechnischen Verfahren ab, welche
in spateren Kapiteln beleuchtet werden.






Preface

In this thesis, we take a closer look at certain subsets of Lie algebras arising from al-
gebraic groups, the so-called nilpotent pieces.

Algebraic groups form an important subset of the family of infinite groups and have
been extensively studied in the past. Algebraic groups can, for example, be defined as
closed subgroups of the general linear group GL,, (k) for an algebraically closed field k
of arbitrary characteristic. The nilpotent pieces arise from the idea to define a partition
of the nilpotent variety in the Lie algebra which is similar to the orbits in the nilpotent
variety under the adjoint action of the corresponding algebraic group. The aim is to
complete further steps in the proof that the nilpotent pieces form a partition of the
nilpotent variety. More precisely, we believe that the following conjecture holds and
work towards proving it.

Conjecture A. Let G be a connected reductive algebraic group over an algebraically closed
field k and let g be its Lie algebra. Then the set of nilpotent pieces for g is in bijection with
the set of nilpotent orbits of a group G defined over C with the same root datum as G.
In particular, any nilpotent piece is given by a union of nilpotent orbits having the same
T-labelling (see [20, Chapter 10]) as the corresponding orbit in good characteristic.

The nilpotent pieces have been defined by George Lusztig in a series of papers,
[21], [22], [23], and [24]. We will work with the definition of the nilpotent pieces given
in [23]. Lusztig originally defined the unipotent pieces in [21] and elaborated on the
concept in [22], [23], and [24]. However, having computed the nilpotent pieces, it
should be within reach to give a description of the unipotent pieces as both defini-
tions rely crucially on the same sets.

Algebraic groups form an important family of groups that gives rise to the finite
groups of Lie type which are a large collection of groups appearing in the classification
of finite simple groups. As such, we are also interested in the representation theory
of the finite groups of Lie type and by extension the structures of algebraic groups,
such as the nilpotent orbits. As mentioned above, the idea behind the definition of
the nilpotent pieces comes from certain orbits in the Lie algebras of algebraic groups,
called the nilpotent orbits. These orbits arise from the action of an algebraic group on
its Lie algebra given by the adjoint representation. The study of the nilpotent orbits is
closely related to the unipotent conjugacy classes in algebraic groups and both objects
find applications in representation theory. These orbits have been extensively studied
and are well-understood. A thorough description can be found in the book by Liebeck
and Seitz [20], for instance. We notice that there is no uniform description of the nil-
potent orbits which holds in every characteristic. Especially in small characteristic we
may get a different number of nilpotent orbits. By defining the nilpotent pieces, we
hope to give a more uniform description closely related to the nilpotent orbits “coming
from characteristic 0”. This problem has already been solved for the classical algebraic
groups in [23]. It is closely related to the representation theory of algebraic groups
and should help to work out specifics for generalised Gelfand—Graev representations
in small characteristics, see [12]. In this paper, Geck describes a way to define gener-
alised Gelfand-Graev representations in small characteristic. This relies heavily on a
linear map A being in “sufficiently general position” which can be checked with the
knowledge of the nilpotent pieces.

Interestingly, there exist different definitions of partitions of the nilpotent variety.
In [13], Hesselink defines a stratification of the nilpotent variety. Clarke and Premet



define their own nilpotent pieces in [9] and show that this leads to the same strati-
fication as proposed by Hesselink. In [33], Xue computes nilpotent pieces in g* for
groups of type F; and G2 using the definition for the nilpotent pieces in g* proposed
by Clarke—Premet in [9]. One would hope that these definitions lead to the same ob-
ject, and this is indeed the case for algebraic groups of classical type. We expect the
equality to hold in the exceptional cases as well.

Conjecture B. The nilpotent pieces as defined by Clarke—Premet in [9] result in the same
nilpotent pieces as defined by Lusztig in [23].

The main result of this thesis is as stated below.

Theorem A. Conjecture|Aland Conjecture|B hold for simple algebraic groups of type G,
Fy, and Eg.

This thesis is organised as follows. In the first chapter, we give an introduction

to algebraic groups and their Lie algebras, presenting results that are already very
well understood. Following this, we describe the construction of the nilpotent orbits
and give orbit representatives for simple Lie algebras of type Gs, Fy, Eg, and E7 in the
second chapter. Furthermore, we introduce the weighted Dynkin diagrams which en-
able us to describe the nilpotent orbits in characteristic 0 in a concise way. In chapter
[3]we define the nilpotent pieces relying heavily on the weighted Dynkin diagrams and
examine their properties, as well as give case-free descriptions of certain nilpotent
pieces. For instance, it is always possible to explicitly determine the regular nilpotent
piece, arising from the regular weighted Dynkin diagram without explicit computa-
tions.
In Chapter [4 we propose a way to compute the nilpotent pieces with a computer pro-
gramme written in Magma [2]. In order to write a functioning algorithm, we need to
develop a way to compute the action of elements in a connected reductive algebraic
group G on the associated Lie algebra. This can be done by writing the group elements
in the Bruhat decomposition for a fixed maximal torus 7', a fixed Borel subgroup B con-
taining 7', a root system ® with simple roots IT with respect to 7" and B, and a fixed
total ordering on ®*. Using the paper by Geck [11], we are able to implement formulas
for the action of G on its Lie algebra via the adjoint map on a basis of Lie(G). This
means also that we rely heavily on a given root system and the linear combination of
elements in Lie(G) with respect to the Chevalley basis for this root system.

In the course of Chapter |4, we also work out results on the structure of the nil-
potent pieces in order to simplify the computations. At the end of this chapter we
describe an algorithm to compute the nilpotent pieces, based on the previous theor-
etical discussions. This algorithm uses further algebraic structures in order to solve
non-linear equation systems, such as Grobner bases and various constructions in poly-
nomial rings.

We will elaborate on these programming aspects in the following chapters. In
Chapter[5|we propose further possible approaches for the computations of the nilpo-
tent pieces, such as an inductive method. In Chapter [6| we describe the implementa-
tion in more detail, focusing especially on ways in which to efficiently solve non-linear
equation systems.

The results for simple algebraic groups of type Gs, Fy, and Eg, and partly E; for
characteristic 2 are stated in the final chapter, leading to the main theorem of this
thesis.
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1 Preliminaries

As this work will mainly focus on algebraic groups and their Lie algebras, we start by
giving an overview of this extensive area in group theory. It is, unfortunately, not pos-
sible to give all proofs and background information on algebraic groups, but the most
important results that are necessary to understand this work are stated in this chapter.
Further background information can be found in the books of Malle and Testerman
[25], Geck [10], and Humphreys [15] for example. The structure of the first chapter
will, in most parts, follow the book by Malle and Testerman.

Throughout this text, let k be an algebraically closed field of arbitrary characteristic
unless stated otherwise.

1.1 Algebraic varieties

First, we need to understand the definition of algebraic groups. Algebraic groups arise
from a background in algebraic geometry. We keep this section rather short and only
define strictly necessary objects.

Definition 1.1 (Affine algebraic variety, [10, Definition 2.1.6]). Let X # ) be a non-
empty set and let k be a field. Then the set Maps(X, k) of maps from X to k is a
k-algebra with pointwise defined operations. For each map f : X — k, thatis f €
Maps(X, k), define

£y : Maps(X,k) — k
fr— f(z).

Let A[X] C Maps(X, k) be such that
1. A[X]is a finitely generated k-algebra such that 1 € A[X],

2. fortwoelementsz,y € X withx # ythereexists f € A[X]suchthat f(x) # f(y),
and

3. if A : A[X] — k is a k-algebra morphism there exists © € X such that A = ¢,.
The tuple (X, A[X]) is called an affine algebraic variety, or affine variety.
If the choice of A[X] is clear from the context, we will also just refer to the set X
as an affine variety. Sometimes we will just write A instead of A[X].

Affine varieties can be turned into topological spaces via the Zariski topology.

11



12 CHAPTER 1. PRELIMINARIES

Definition 1.2 (Zariski Topology, [10, 2.1.7]). Let (X, A) be an affine variety. For all
subsets S C A the sets

Vi(S):={z € X | f(z) =0forall f € S}

form the closed sets of the Zariski topology. The open sets are given by the comple-
ments of the closed sets.

In the terminology of classical algebraic geometry, affine algebraic varieties are
also defined as algebraic sets together with the induced Zariski topology. A set X is
called an algebraic set if

X ={(a1,...,20) €K" | f(z1,...,2,) = Oforall f € I},

where I < k[X7,...,X,]is an ideal, see for instance |25} 1.1].
Note also that it is possible to define algebraic varieties which are not affine varieties.
For instance, it is also possible to define projective varieties, see |25, Section 5.1].

Example 1.3.

1. Let X = k™ and let A[X] = k[Y; | 1 <i < n] for indeterminates Y;,i € {1,...n}.
Then (X, A[X]) is an affine variety, see [10, 2.1.8].

2. Let X beasin(1l),let S C A[X]andletV ={z € k" | f(x) =0forall f € S} be
a closed subset of X with respect to the Zariski topology. Let

AWV = AX]/(r € AIX) | f(z) = 0forallz € V}-
Then (V, A[V]) is also an affine variety, see [10, 2.1.12].
Next, let us define morphisms of affine varieties following the definition in [[10].

Definition 1.4 (Morphism of affine varieties, [10, 2.1.6]). Let (X, A) and (Y, B) be
affine varieties. The map
p: X —Y

is called a morphism of affine varieties if g o ¢ € A for all ¢ € B. In this case we
define the comorphism of ¢ as

o :B— A gr—>goqp.

Definition 1.5 (Dominant, [10, Proposition 1.4.15]). Let (X, A) and (Y, B) be affine
varieties. A morphism
p: X —Y

is called dominant if the image ¢(X) is densein Y.

1.2 Algebraic groups

Having defined affine algebraic varieties and a corresponding topology, we can move
on to the study of algebraic groups. It turns out that it is possible to endow groups
with the structure of algebraic varieties. This indeed gives rise to a mathematically
interesting object, an algebraic group. We can find out more about their properties by
also taking into account their structure as affine varieties, rather than purely looking
at them as abstract groups. In the following section, we are going to define these
structures and find a way to link a Lie algebra to each algebraic group.
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Definition 1.6 (Algebraic groups, |25, Definition 1.1]). Let (G, A) be an affine variety
and let (G, ) be a group. There exist maps

w:GxG— G, t:G— G,
(9, h) —> g x gr—g "
If both 1 and « are morphisms of affine varieties, then G is called an algebraic group.

Remark 1.7. For two affine varieties (X, A) and (Y, B) over a field k£ we can take the
cartesian product X x Y endowed with the Zariski variety. Then (X x Y, A ®; B) is
again an affine variety, see [10} 2.1.13]. This shows that taking the product G x G in
the above definition makes sense.

We will give a couple of first examples in order to get a better understanding of
algebraic groups. In fact, quite a few groups that are already well-understood are also
algebraic groups.

Example 1.8.

1. Let G, := (k,+) be the additive group of the field k. By Example G, is
a variety. It is possible to prove that both ;. and . are morphisms of varieties,
therefore G, is an algebraic group, see [25, Example 1.2].

2. Let G,, := (k*,-) be the multiplicative group of the field k. Similar to above, G,,
is also an algebraic group, see |25, Example 1.2].

3. The group of invertible n x n-matrices
GL, (k) = {C € k™" | det(C) # 0}

is an algebraic group. To see this, note that GL, (k) is isomorphic to the set
{(C,y) e K" x k | det(C)y = 1}. Then

A[GL, (k)] = k[Xij, Y [ 1< 4,5 < n]/(det (Xi)7_,)Y — 1),

see [25) section 1.1] and Example[1.3](2).

4. The group SL, (k) = {C € GL, (k) | det(C) = 1} C GL, (k) is an algebraic group
and a closed subgroup of GL,,(k), see [25} section 1.2].

5. In fact, we have the following result: Let G < GL, (k) be a closed subgroup (with
respect to the Zariski topology). Then G is an algebraic group. We call these
groups linear algebraic groups. Each algebraic group as given in Definition|1.6
is isomorphic to a linear algebraic group, see [10, Corollary 2.4.4].

From now on we want to focus on the irreducible components of algebraic groups,
which leads us to the concept of connected groups.

Definition and Proposition 1.9 (Connected group, [10, Proposition 1.3.13]). Recall
that a variety is a topological space and that a topological space X is called irredu-
cible if X cannot be decomposed as X = X; U X; where X, X # X and X1, Xo # ()
and both X; and X5 are closed.
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If G is an irreducible algebraic group, we call G connected. Otherwise, G can be writ-
ten as a decomposition of irreducible components, that is, a union of maximal irre-
ducible topological subspaces.

Let G° denote the irreducible component of GG containing 1 € G. By [10, Proposition
1.3.13 (a)] G° is uniquely determined, G° is an algebraic group, and G/ge is a finite
group.

The so-called unipotent and semisimple elements play a central part in under-
standing the structure of algebraic groups.

Definition 1.10 (Unipotent and semisimple elements, [31} Definition 2.1]). Let (G, A)
be an algebraic group. For every element g € G we define the map

Py A— A,
fr—= (h— f(hg)).

We call g unipotent if pj is unipotent, i.e. the map p; — id is nilpotent. Recall that
an element ¢ is called nilpotent if there exists n € N such that ¢™ = 0.
We call g semisimple if p} is diagonalisable.

In fact, every element of an algebraic group can be written as a commuting product
of a semisimple and a unipotent element.

Proposition 1.11 (Jordan decomposition, [31, Proposition 2.4.1]). For each element
g € G there exists a unipotent element u, € G and a semisimple element s, € G such that
g = ugsy = squg. This is called the Jordan decomposition of g.

1.2.1 Lie algebras of algebraic groups

As previously mentioned, it is possible to define a Lie algebra linked to an algebraic
group. In order to do so, we will first recall a few facts about Lie algebras, tangent
spaces, and derivations.

Definition 1.12 (Lie algebra). A Lie algebra is a vector space L over a field k such
that there exists a bilinear product

[,]:LxL—1L
which fulfils the Jacobi identity:
[.’L’, [y:z“—i_[yv [Z,.TH+[Z, [xvy“ :07 vayazELv

and is alternating, that is
[,2] =0, Vze€lL.

Definition 1.13 (Tangent Space, Derivation, [15} 5.1]).

1. Let (X, A) be an irreducible variety and € X. Note that in this case, A is an
integral domain, see [15, 1.5]. Define the localised ring

O, = {j’c ’ fige A, f(z) £ 0} C Frac(A).
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Then we have a unique maximal ideal of O, given by

mx_{ff\g@)—o, ) £0}b 0.

We call the dual space of the k-vector space Mz /m§7 denoted by

T(X)e 1= (Me/m2)
the tangent space of X at x.

2. We call a k-linear map 6 : A — A a derivation if all elements f, g € A fulfil the
product rule:

6(fg) = fo(g) + go(f).
We denote by Dery (A, A) the space of all derivations of A into A.

Remark 1.14. The set of derivations Dery (A, A) is a Lie algebra, see [10, Example 1.4.2
(a)]-

Let us now consider the connection between Lie algebras and algebraic groups.

Definition 1.15 (Lie algebra of an algebraic group, [15} 9.1]). Let (G, A) be an algebraic
group. Forxz € Glet \, : A — A, f — (g — f(xg)) be the left translation. We define
the Lie algebra of G by

Lie(G) :={d € Derk(A, A) | 6\, = N0 forall x € G}.

Remark 1.16. Lie(G) is isomorphic to .7 (G)1, where we identify .7 (G); with .7 (G°)4,
see [15, Theorem 9.1].

Depending on the problem at hand, considering Lie(G) either as a tangent space
or as a set of derivations might yield better results.

As an example, we will give the Lie algebras of two well-understood algebraic groups,
GL, (k) and SL,, (k).

Example 1.17 ([25, Example 7.5] and [15} 9.4]).

1. Let G = GL, (k) and let g[,, (k) = k™*" be the Lie algebra with Lie product
[A,B] = AB — BA, for A, B € k™"

using the usual matrix multiplication. Then Lie(G) ~ gl,, (k) via the map
ol, (k) = Lie(G), X v (Dx : (Tiy)ig = (O TuXi;)i)-
=1

2. We have Lie(SLy (k) ~ sl, (k) = {A € gl,, (k) | tr(A) = 0}.

It is possible to define Lie algebra homomorphisms from morphisms of algebraic
groups. This may simplify some problems, as passing to the Lie algebra "linearises”
some actions.



16 CHAPTER 1. PRELIMINARIES

Definition 1.18 (Differentials and the adjoint representation, [15, 5.4] and [25, Sec-
tion 7.2]). Let (X, A) and (Y, B) be two varieties and ¢ : X — Y be a morphism of
varieties. Let x € X and y := ¢(z) € Y. The composition of o* withamap h € 7 (X),
induces the k-linear map

dog : T(X)y — T(Y)y, hr—hoyp".

The map dy, is called the differential of © at x.
Let G be an algebraic group. For each = € G we get the morphism of affine varieties

Inty : G — G, g+ xgz ),
given by conjugation. We write Ad(x) for the differential dInt,. Then the map
Ad : G — GL(Lie(Q))
is called the adjoint representation of the group G on its Lie algebra Lie(G).

Remark 1.19. Following [7, Section 1.3], we see that the adjoint map can also be dif-
ferentiated. We write ad := dAd. Then ad(x) € End(Lie(G)) and in fact

ad(z) : Lie(G) — Lie(G),
y— [z, yl.

The map ad is also called the adjoint representation of the Lie algebra Lie(G).

Proposition 1.20 (Differential criterion for dominance, [10, Proposition 1.4.15]). Let
k be an infinite perfect field (e.g. k algebraically closed) and V' C k™, W C K™ be ir-
reducible algebraic sets. Furthermore, let o : V. — W be a regular map, so there exist
fiseoos fm € k[ X1, ..., X, such that o(x) = (fi(x),..., fm(z)) forallz € V.

Assume that dy, : T(V), — (W), is surjective, where x € V and y € W are such that
dim(V) = dim(7(V),) and dim(W') = dim(.7 (W),). Then ¢ is dominant.

We will now consider some examples of derivations of well-known morphisms as
well as for the adjoint representation of GL,, (k) and SL,, (k).

Example 1.21 (|15, Proposition 10.1] and |25, Example 7.13]).

1. Let G be an algebraic group. Consider the maps

uw:GxG— G, t: G — G,

(9,h) — gh, g— g "

By Definition [I.6] these maps are morphisms of affine varieties. Their differen-
tials are given by

d,u(m) : y(G X G)(l,l) — y(G)l, diy : y(G)l — 9(G)1,
(g:h) — g+ h, g— —g.

2. Let G = GL, (k). Then one can explicitly compute the adjoint map to be given
by Ad(g)(z) = gzg~*forg € G, x € gl, (k).
The adjoint map for SL,, (k) is simply given by restricting the adjoint map for
GL, (k).



1.2. ALGEBRAIC GROUPS 17

1.2.2 Structures in algebraic groups

In this section we study algebraic groups by taking a closer look at their structures.
This will lead to the Structure Theorem which is of central importance when
working with algebraic groups. This section follows the book by Malle and Testerman,
[25, Chapters 8 and 9], closely.

Definition 1.22 (Torus, character group of a torus, [25, Definitions 3.3 and 3.4]). Let
D, (k) < GL, (k) denote the subgroup of diagonal matrices, that is

Dy(k) = {diag(t1, .., ta) | £; € K*}.

By Example (3), D, (k) is an algebraic group. A group 7' ~ D,, (k) is called a torus.
Note that a torus is an abelian group.
The group

X(T):={x:T — G, | x is a homomorphism of algebraic groups}
is called the character group of 7.
Example 1.23 (|25, Example 3.5]). The maps x; : D,,(k) — G, with
xi(diag(t1,...,t,)) =t; forall 1 < i < n,

are characters of 7. In fact, every character y € X (D, (k)) can be written as x =
a1x1 + - ..+ anXxn, a; € Z. This shows that X (D,,(k)) ~ Z".

If we want to consider structures in G that depend on subgroups such as the max-
imal tori, it would be helpful if they would not depend on the choice of a maximal
torus. Indeed, the following proposition gives the desired result, see [25, Corollary
6.5].

Proposition 1.24. Let G be an algebraic group. Then all maximal tori in G are conjugates
of each other.

Additional to the maximal tori, we can find subgroups in G that contain a maximal
torus. These so-called Borel subgroups are defined as follows:

Definition 1.25 (Borel subgroup, [25, Definition 6.3]). Let G be an algebraic group
and B < G such that:

(i) B isclosed,
(ii) B is connected,
(iii) B is solvable,
(iv) B is maximal with respect to (i)-(iii).
Then B is called a Borel subgroup of G.

As mentioned above, each maximal torus is contained in a Borel subgroup. There
is a similar result to Proposition[1.24]for Borel subgroups, see [25, Theorem 6.4 (a)].

Proposition 1.26. Let G be an algebraic group. Then all Borel subgroups in G are con-
jugates of each other. Each maximal torus lies in a Borel subgroup of G.
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Example 1.27 ([25, Example 6.7 and 11.4]).

1. Let G = GL, (k). Then D, (k) is a maximal torus and a Borel subgroup B is given
by B, (k), the subgroup of all upper triangular matrices. All unipotent elements
in B are given by the upper triangular matrices with 1 on the diagonal, denoted
by U, (k). Then D,,(k)U, (k) = B.

2. Let G = SL, (k). It is possible to prove that B = G N B,,(k) is a Borel subgroup,
U = G N Uy,(k) is the subgroup of unipotent elements in B, and 7' = G N D, (k)
is a maximal torus.

Definition 1.28 (Radical, reductive, semisimple, simple, [25, Definition 6.13 and 6.14]).
Let GG be a connected algebraic group. Define

R(G) = <S <G S normal, solvable, > <o

closed, connected

The subgroup R(G) is called the radical of G. Furthermore, the unipotent radical is
given by R, (G) := {g € R(G) | g is unipotent}.

If R, (G) = 1,the group G is called reductive. If R(G) = 1, G is a semisimple algebraic
group.

Furthermore, a non-trivial semisimple algebraic group that has no non-trivial proper
closed connected normal subgroups is called a simple group.

Example 1.29 (|25, Example 6.17]). The group GL, (k) is reductive and SL, (k) is
semisimple.

From now on we consider only reductive connected algebraic groups. We note that
for any connected algebraic group G, the factor group G/ R, (@) is reductive, see [1}
11.21].

Definition 1.30 (Roots, Weyl Group, [25, Definition 8.1]). Let G be an algebraic group.
Let T' < G be a maximal torus and let g := Lie(G) be the Lie algebra of G. We define
the weight spaces under the action of G on g for all x € X(7T') as

gy = {z €g|Ad(t)(z) = x(t)x forallt € T'}.
Then the roots of G with respect to 7" are given by the set
(G) :={x € X(T) | x # 0,95 # 0}
Furthermore, we define the Weyl group of G with respect to T" as
W= Na(T)/c(1).

If G is connected reductive, Cz(7T) = T, so in this case the Weyl group is given by
Na(T) ), see [25) Corollary 8.13].

Remark 1.31. We can write the Lie algebra of G as a direct sum of the root weight spaces
and go = Lie(7'). This results in

9=00® P 0o

ac®(G)
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Example 1.32. Let G = GL, (k) and ' = D, (k) as before. For 1 < i,j < n define
maps

xij : T — k>, diag(ty, ..., tn) — t,-tj—l.
Then x;; € X(T') and
Oxi; = {CEij | ceE k}a and i # 7,

where the entries of E;; € k™*" are given by (E;;)x; = d(; ) (), that is the E;; € k™"
are matrices with entry 1 at the position (7, j) and 0 elsewhere.
In fact, we have ®(GL,,(k)) = {xi; | 1 <i,j < n, i # j} and it is clear that

n
g[n(k) = @ gxij EB Lle(T)a
4,j=1,
i#]

where Lie(T) = {diag(c1,...,¢n) | c1,...,cn € k}.
One can prove that the corresponding Weyl group is isomorphic to S,,, the symmetric
group on n elements, see [25, Example 8.2].

Remark 1.33. The Weyl group W acts on the roots as follows: Let
w=n,Cq(T) eW
where n,, € Ng(7T) and o € ®(G). Then
w.a(t) = a(ny'tn,), forallteT,

and Ad(ny)(ga) = guw.a, See [25, Chapter 8.1, Proposition 8.4, and Theorem 8.17].

Remark|[I.31]suggests the question of whether it is possible to find a similar result
for algebraic groups. Indeed, we have already seen that roots and maximal tori seem
to play a central role in understanding the structure of algebraic groups. The following
theorem, taken from [25, Theorem 8.17], summarises the results on the structure of
connected reductive groups.

Theorem 1.34 (Structure theorem for reductive groups). Let G be a connected reductive
algebraic group, T < G a maximal torus, and ®(G) = ®. Then we have the following
properties:
() 9= 090D P, cqp 9a With dim(g,) = 1 forall o € ® and gy = Lie(T).
(ii) For each o« € ® there exists a unique morphism of algebraic groups (up to right
composition with the multiplication by ¢ € k*) given by

Uy : Gy — G

such that tug(c)t=! = uq(a(t)c) forallt € T, c € G,.
Furthermore, let U,, := im(u,,). Then the restriction u,, : G, — U, is an isomorph-
ism and Lie(Uy) = ga.

(iip) Let w € W = NG(T)/CG(T) and n,, € Ng(T') such that n,Cq(T) = w. Then
ananful =Uyp.a-
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(V) G = (T,Uy | a € D).

W) Z(G) = Noea ker(a).

Definition 1.35 (Root Subgroups). The subgroups U,, « € ®, from Theorem[1.34]are
called the root subgroups of G with respect to T'.

Let V be a real, finite-dimensional vector space. An element s € GL(V) is called
a reflection along v € V if v is an eigenvector of s with eigenvalue —1 and s fixes
a hyperplane of V' pointwise. The Weyl group of an algebraic group is generated by
reflections, as stated in the next proposition, see also [25, Lemma 8.19 and Proposition
8.20].

Proposition 1.36. Let C, := Cg(ker(a)) for each a« € ®. Define s, = noCq(T) for
ne € No, (T)\ Ca(T) (we have C(T) < N¢, (T') and [N, (T) : Ca(T)] = 250 sq 1S
well-defined). The elements s,, are reflections along « in the vector space V = X (T') @z R.
The Weyl group W is generated by the s,, S0 W = (s, | a € ).

If G is a semisimple group, there are stronger results on its structure than stated
in Theorem|[1.34} see [25, Theorem 8.21].

Proposition 1.37. Let G be a semisimple algebraic group and let the notation be as in
Theorem[1.34. Then

() G= (U, |oc®).
(i) G =[G, G].

(iii) G = G; - - - G, where the G; are simple algebraic groups that are normal subgroups
of G.

For connected reductive groups we get the following connection with semisimple
groups as stated in |25} Corollary 8.22].

Proposition 1.38. Let G be a connected reductive group. Then
G =[G,GIR(G) = [G,G]Z(G)°
and [G, G| is semisimple.

At the end of this section we want to compute the structures in the symplectic
group of dimension 4 over an algebraically closed field k.

Example 1.39. The symplectic group in k*** is defined as

. o1
Spa(k) := {4 € GL4(k) | A J A = J4}, where Jy := ( oot )
. ..

First note that the Lie algebra of Sp, (k) is given by
Lie(Spy(k)) = {A € My(k) | JybA+ A" J, = 0},

see [20, Lemma 2.7].
We define the subgroup 7" of Sp, (k) as
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Clearly, T is abelian and 7' ~ Ds(k), so T' is a torus. In fact, 7" is a maximal torus of
Sp4(k), as for each A € Sp,(k) we have Adiag(ty,ta,t, .1, ") = diag(ty, ta, t5 1,17 1)A
if and only if A € T. This shows that there is no abelian subgroup 7" containing 7 as
a proper subset.

Next, we want to determine the roots of Sp,(k). In order to do so, we compute the
adjoint representation of elements in 7" on Lie(Sp,(k)). As a subgroup of GL4(k), the
adjoint representation of Sp,(k) on its Lie algebra is also given by conjugation, see
[25, Example 7.13 and remarks before]. For A € Lie(Sp,(k)) we therefore have

Ad(diag(ty, ta, t5 ', 17" ))(A) = (tit; @i )i jo1-

By the strucuture of T we have t;* = t,_;,, fori € {1,2,3,4}. In particular

tityt = taty tityt = taty !
tot !t = taty !, tatyt = tats .

This means, we are interested in matrices of the form

fora,b,c,d € k, as

Ad(diag(t1, ta, t; ', 11 1))(A1(a)) = trty ' As(a),
Ad(diag(t1,ta, ty 1, tl ) (A2(b)) = t1taAs(b),
Ad(diag(ti, ta, t5 1, 7)) (A3(¢)) = 21 43(c),
Ad(diag(ty, ta, t5 1, t7) (As(d)) = 263 A4(d)
Indeed, we have the characters
t1 .
. to . .
XliT‘—)kX7 o t2_1 . r—)tl,
. !
t1 .
Lto . .
XQZT—>k><, o t;l . — 19,

and therefore the root spaces
s ={(Ta)oerf ma={(05)]ac},
dune = { (71)aexf, e ={ (%) |acxl.

Defining the characters o := y; — x2 and 8 := 2y gives rise to the root system
O =& P~ where " = {«, 3,a + 3,2a + B}.
Finally, we can compute the root subgroups. Recall that root subgroups for a root
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x € ® are defined by U,, = {uy(c) | ¢ € k} where u,, : k — G is a homomorphism of
algebraic groups and tu, (c)t~! = u, (x(t)c) forall ¢ € T and ¢ € k. Clearly, the maps
of the form ¢ — A;(c) + I, fori € {1,...,4} are of this form, resulting in the root

subgroups
la. . 1. ..
Ua:{<fi_'a> aek}, Uﬁ:{<:?%:>a€k},
US| |
1.a. 1. .a
Ua+ﬁ={(:?i?>a€k}, U2a+/a={<:?i:>a€k}-
| S

1.2.3 Root systems

Root systems can also be considered and studied as abstract objects. As seen in the
Structure Theorem [1.34] understanding root systems may lead to a deeper under-
standing of algebraic groups. In fact, we can prove that there are only nine different
types of irreducible root systems that occur for simple algebraic groups. This is an
important tool in the classification of these groups.

Definition 1.40 (Abstract root system, Weyl group, [25, Definintion 9.1]). Let £ be a
finite-dimensional real vector space and ® C E. Then ® is an abstract root system
in F if the following properties are fulfilled:

(R1) @ is finite, 0 ¢ ®, and (P)r = E.
(R2) If ¢ € Ris such that a, ca € @, then ¢ = +1.

(R3) For each a € @ there is a reflection s, € GL(F) along a. For each g € ® we have
sq(8) € P.

(R4) For a, § € @, the expression s, () — /8 is an integer multiple of «.
The group W = (s, | « € ®) is called the Weyl group of o.

Note that E can be equipped with a positive definite symmetric bilinear form (, ),
left invariant by W, and thus becomes an Euclidean vector space, see [30} 7.1.7] and
25, 9.1].

Since ® spans the vector space E, we can find a basis for F in ®, that is every root can
be written as a linear combination of elements of a basis in ®. It turns out that we
have an even stronger result, see [25, Definition 9.3 and Proposition A.7].

Definition and Proposition 1.41 (Simple Roots). Let ® be an abstract root system in
E. We call a subset IT C @ a set of simple roots if II is a basis of the vector space E
and each root § € ® can be written as an integer linear combination g = ) cacx
such that either ¢, > O foralla € ITor ¢, < 0 for all o € II.

Let
ot ::{B:ana€¢|ca>0Va6H}
a€ll
and ®~ := —(®*). The elements of ®* are called the positive roots and the elements

of &~ are the negative roots. We have ® = &+ LI $ .
For each root system & there exists a set of simple roots.
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One way to store information about a root system is the Cartan matrix.

Definition 1.42 (Cartan matrix, [8, 6.1]). Let ® be a root system with simple roots
IT={a,...,a }. We fix an ordering (o4, ..., «,) and define a matrix by

(v, o))

C = (c; ;)" =9 ,
(cis) s (0, )

i,j=1"

called the Cartan matrix.
We will define a few important terms in the context of root systems.

Definition 1.43 (Irreducible and reducible root systems, |25, Section 9]). Let ® be
a root system with simple roots II. The root system & is called reducible or de-
composable if we can write IT = II; U IT, for two orthogonal sets II;, II, such that
¢ = (ZII; N @) U (ZIIy N ®@). Otherwise @ is called irreducible or indecomposable.

Definition 1.44 (Height of a root, [25, Definition A.10]). Let ® be a root system and
IT C ® be the simple roots. For any root 5 € ® with

8= Z CaOt
acll
we define the height of 3 as ht(5) := >y ca-

Definition 1.45 (Highest root, |25, Definition B.6]). Let ® be an indecomposable root
system and IT C @ be the simple roots. Let ag € ®* with g = Y o[y cacr such that for
every other root 3 € ®* with 8 = > act e We have n, < ¢, forall a € II. Then ag
is called the highest root.

It is clear that ht(«g) is maximal if « is the highest root.

Remark 1.46. The highest root exists for every indecomposable root system, see |25}
Proposition B.5].

Definition 1.47 (Coxeter number, [8, Definition 12.3]). Let ® be a root system with
highest root ag. The number ¢ := 1 + ht(«y) is called the Coxeter number of ®.

Recall that the Weyl group acts on the root system and by extension also on
(P)gp = E.

Definition 1.48 (Fundamental domain, [16}, Section 1.12]). A set D of representatives
for the orbits of E under the action of the Weyl group W is called a fundamental
domain for the action of W on E.

It is possible to explicitly write down a fundamental domain for the action of W on
E.

Definition and Proposition 1.49 (Fundamental chamber, |25, Theorem A.27]). Let
® be a root system with Weyl group W, simple roots II, and (®)g = E. Then

C:={veFE]|(v,a)>0forall a € II}
is called the fundamental chamber of W with respect to II. The closure of C,
C={veFE]|(v,a)>0forall ac II},

is a fundamental domain for the action of W on E.
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As mentioned before, one can show that the root systems arising from algebraic
groups are in fact also abstract root systems, see [25, Proposition 9.2].

Proposition 1.50. Let G be a connected reductive algebraic group. Then the root system
® C X (T') with respect to a maximal torus T' < G is an abstract root system in the vector
space (P)r C E := X (T) ®z R. If G is semisimple, we have (P)r = E.

Knowing this, we can combine the structure theorem and the results on abstract
root systems in order to get a better picture of the elements in algebraic groups. The
result is called the Bruhat decomposition and is stated in the following theorem, see
[15, Theorem 28.4].

Theorem 1.51 (Bruhat decomposition). Let G be a connected reductive algebraic group
over k and W = Na(T)/ Ce(T) the Weyl group of G with respect to a maximal torus
T C G. Furthermore, let ® be the root system of G with respect to T.

The Bruhat decomposition of an element g € G is given by g = u'tn,,u where

1. ny € Ng(T) is a representative of w € W,
2. u€J]pcor Ua =1,
3. teT, and

4 v el]l pepr Ua=:U,.
wl.aced™
This decomposition is uniquely defined for any fixed choice of the n.,, w € W. In particular,
we have
G= || BnuB,
weWw

where B is a Borel subgroup such that T C B. In fact, TU = UT is such a Borel subgroup.

Knowing this, we are interested in classifying the irreducible components of a root
system, which in turn will lead us to the classification of the root systems of simple
algebraic groups.

Graphically, the irreducible root systems can be described by their Dynkin dia-
grams:

Definition 1.52 (Dynkin Diagrams, [25, Section 9.1]). Let ® be an irreducible root
system with simple roots II. Define a diagram with |II| nodes where each node corres-
ponds to a simple root.

Two nodes corresponding to the simple roots «, 5 € II are connected by m — 2 edges
if ord(sqs3) = m, for m € {2, 3,4}, and 3 edges if ord(s,sg) = 6, where s, and sg are
the reflections along « and 3 respectively.

If two nodes corresponding to «, 3 € II are connected and «, $ have different length,
we draw an arrow on the edge connecting the nodes. The arrow points in the direction
of the shorter root.

Theorem 1.53 (Classification of Irreducible Root Systems). Let ® be an irreducible root
system in a Euclidean vector space E. Then ® is described by one of the Dynkin diagrams
in Figure|l.1
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Figure 1.1: The Dynkin diagrams of irreducible root systems

Example 1.54. Let G = SL, (k). We already know by Example that a maximal
torus in G = SL,, (k) is given by T' = D,,(k) N SL,,(k). We have the root system ¢ =
{xij | 1 < i,j < n,i# j}with the same notation as in Example [.32] Then IT :=
{Xii+1 | 1 <i < n—1}isasetof simple roots for . We have ord(snsg) = [(Za+ZF)N
| for two simple roots «, 3 € II by [25, Example 9.5]. Note that

(Zxi,iv1 + Zxj+1) N Ot =3ifj =i+ 1,
(ZXiiv1 + Zxjje1) N O =2i0fj > i+ 1.

This gives us the following diagram:

O—O .................. O—O R

X1,2 X2,3 -+ Xn—2mn-1 Xn—1n

so the roots of G form an irreducible root system of type A,,_1.

An important tool in understanding the multiplication of group elements is the
commutator formula which describes the form of the commutator of two elements in
the root subgroups. This is stated, for example, in [15, Lemma 32.5.] and |25, Theorem
11.8].

Proposition 1.55 (Commutator formula). Let ® be a root system of a connected reduct-
ive group G over an algebraically closed field k and fix a total ordering in ® compatible
with addition. Let o, 3 € ® be two roots such that o # +3. Then there exist cg‘g € Z and
isomorphisms w., for every v € ® as in Theorem|[I1.34|(ii) such that

[ua(cr),ug(ca)l =[] wmatns(chgcles) foralle, ¢ € k.

m,n>0
ma+nBeP

In Lie algebras we would like to understand how the Lie product [e,, e5] behaves for
a,B € ® and (e,) = g, generating the root weight space of the roots « € ®. Indeed,
there is a similar formula, see [5, Ch. VIII, §2, n°4].

Proposition 1.56. Let g = t ® @4 9o be the decomposition of a Lie algebra with root
system ®. We have a basis {h; | i € {1,...,|[II|}} U {eq | @ € ®} where IL is a system of
simple roots and the e, generate the one-dimensional spaces g,. For the Lie product we
have
No,geatps ifa+ped
[60” 6/3] - .
0, ifa+p ¢ PU{0}

and [eq, e_q] € t. The N, g are constants in k* depending on the root system.
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1.2.4 Parabolic subgroups

Sometimes it is a good idea to consider smaller subgroups with their own root system
in an algebraic group G. This can be done by defining the parabolic subgroups. This
section mainly follows the book by Malle and Testerman, |25, Chapter 12].

For this section, let G be a connected reductive group, 7' < G a maximal torus, B < G
a Borel subgroup such that 7' < B, and ® a root system with respect to 7" with simple
roots IT defined by B. Furthermore, let W = N¢(T') /7 denote the Weyl subgroup with
respect to the maximal torus 7.

Parabolic subgroups can be defined via a corresponding root system, see [25, Section
12.1].

Definition 1.57 (Parabolic Weyl subgroups, parabolic root subsystems).

Let S := {so | a € II} be the set of simple reflections defined by the simple roots II
from above. Fix a subset I C S. Then the subgroup W; := (s € I) < W is called a
standard parabolic subgroup of W. Any subgroup of W conjugate to W is called a
parabolic subgroup of V.

Letll; :={a €Il | s, € I[}and &; := PN
parabolic subsystem of the roots.

oet1, Za. Then @7 is the corresponding

It is indeed the case that the parabolic subsystems form their own root systems
and Weyl groups, see [25, Proposition 12.1].

Proposition 1.58. Let the notation be as in Definition Then ®; is a root system in
R®; with simple roots I1; and Weyl group W7.

Using these root subsystems, it is possible to define parabolic subgroups in algeb-
raic groups.

Definition 1.59 (Parabolic subgroup, [25, Example 12.4]). Let the notation be as in
Definition @ Then P; := BW;B = ||,c, BnwDB is a subgroup of G, called a
standard parabolic subgroup. A parabolic subgroup of G is a subgroup which is
conjugate to P; for a subset I C S.

We summarise a few results on parabolic subgroups, as stated in |25, Proposition
12.2].

Proposition 1.60. Let the notation be as in Definition We have the following prop-
erties of the parabolic subgroups.

1. Py is a closed, connected, self-normalising subgroup of G which contains B.

2. The P; are not conjugate to each other. In particular, if P; = Pj for two subsets
I,JC S, thenl = J.

3. Wehave P; = (T, U, | « € @7 U ®j).

4. Every parabolic subgroup contains a Borel subgroup and every subgroup containing
a Borel subgroup is a parabolic subgroup.

We see that a parabolic subgroup in itself does not just contain root subgroups for
a € ®; but also for all & € ®T. In order to argue inductively by using groups with
smaller root systems, we would like to know the role of the group (T, U, | « € ®1) in
P;. Indeed, this gives rise to a rather interesting decomposition of the subgroup P;.
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Proposition 1.61 (Levi decomposition, see |25, Proposition 12.6]). Let P; be a para-
bolic subgroup of G for some subset I C S. Define two subgroups of P; as follows.

Ur:= H U :(Ua\a€<1>+\<1>1>,
oz€<1>+\<1>[

Ly := <T, U, | o€ (I>]>.

Then the unipotent radical satisfies R,,(Pr) = Uy, and Ly is a complement to Uy, that is
P; = Uy x Ly. Furthermore, L; is a connected reductive group with root system ®;.

Definition 1.62 (Levi decomposition, |25, Definition 12.7]).

The decomposition P; = U; x Ly is called the Levi decomposition of P; and L; is
the standard Levi complement of P;. All subgroups conjugate to L; are called Levi
subgroups of G.

1.2.5 Formulas for the adjoint representation

Following [11], we can give explicit formulas of a semisimple algebraic group G acting
on its Lie algebra via the adjoint representation. Let ® be the root system of G with
respect to a maximal torus 7' C G and II C & a set of simple roots.
For a, 8 € ® define the integers p3 o, g3, € N in the following way:

B+pgace® and B+ (pgo+1)a ¢,

B — gB,a € ® and B — (q67a + 1)Oé ¢ d. (1.1)

Then s,(8) = 8 — (¢80 — Pg.a)c, see [4, VI, §1, no. 1.3, Proposition 9].

It is possible to fix a Chevalley basis C = {h; | i € {1,...,[II|}} U {eq | @ € ®} where
(ea) = go for each o € @, such that we can explicitly describe the action of G on this
basis. In order to do this, we define the map

exp : Lie(G) —+ GL(Lie(G)), « — Y .l,adi(x)-
1.
=0

Following [11], we will list the action of each factor in the Bruhat decomposition, using
the same notation as in Definition[I.51] Additionally, fix an ordering («, ..., a;) of
the simple roots IT = {«, ..., a,}.

1. Action of an element u,(c,) € U, on g where o € ®* and ¢, € k. Let z € g.

Then
Ad(ua(ca))(z) = exp(caea) ()
Coo i
= Z jea(aj%
i>0
where we set e, (7) := [eq, 7] and € (z) := [ei !, z] fori > 1, by [11}, 4.10. and
Section 5].

Note that we are dividing by ¢! in this formula. In particular, we need to be
careful if the characteristic of k is positive: In this case we will first compute
Ad(uqa(cq))(x) in characteristic 0 and then reduce modulo the characteristic of
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k. This is possible since the coefficients %‘ are integers, see [11} 4.10. and Co-
rollary 5.6.].
Alternatively, we can also describe the action of the elements u,(c,) for roots «
such that a € IT or —« € II on the Lie algebra elements eg for § € ® as follows
by [11}, 4.10]:

k a :
E k>0 ( +%ﬁ7 )C§6ﬁ+ka if o € Q)+’ « 7& :l:ﬁa

B+kacd
€a ifa€@+,a:ﬁ7
€5+Cahi+cg¢€a ifacdt a=-3,
Ad(ua(ca))(eg) and a = o; € 11,
U\ C e = )
alCa B > k>0 (k+zﬂ,a)c§€5_ka ifa e d,a# £p,
B—kacd
€a ifaE(I)_,a:ﬁ7
es + cahi + caea ifaecd,a=-8,

\ and —a =q; €11

. Action of a representative n,, € Ng(T) C G of the element w € W. First, define

the map n,(c) : g — g for c € k* and « € II by

na(c) == exp(ceq) exp(—c te_q) exp(ceq).
There exist elements h; € tfori € {1,...,|II|} that form a basis of t, that is
t=(h;|ie{l,...,|lI}),and Il = {ay,...,an} as in [11}, Definition 5.2.]. Then
fori e {1,...,/11|}

(aiv « )
o)) = 1y~ 20222 1,
C*Qe_ai o= o4,
N, (¢)(ea) = { Pea, a=—aw,

(ag,00)

_olay,a)
—(—1)qa’ai+lc (aiﬁai)esa_(a) else.

Here 2% is the (4, j)-th entry of the Cartan matrix of G and ¢, ,, is as in
(1.1). In this case we have Ad(ns, )(x) = no(1)(z) for all z € g. Alternatively, the
element n,, can also be described by ns, = un(1)u_qo(—1)uq(1), see [7, Section

1.9, p. 19].

. Action of an element of the torus T on g. For every element in 7" we can find

¢ € k* and « € II such that the action of this element can be represented by the
map hq(c) := ne(c)na(—1), see [6, Theorem 12.1.1].

Note that these actions are all defined up to sign, depending on the concrete choice of
the Chevalley basis, see [11, Lemma 5.1 and Definition 5.2].

1.3 The classification of semisimple algebraic groups

As mentioned before, an important tool in the classification of semisimple algeb-
raic groups is given by their root systems. However, it is possible to have two non-
isomorphic semisimple groups with the same root system, as shown by the following
example, see [25, Example 9.9].
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Example 1.63 (Root systems of SLy(k) and PGLy(k)).
(i) Let G = SLa(k) and T' = Dy (k) N G. Then the character group of T is generated

by the element y, where
t 0 —¢
X\o 1)) ="

Furthermore, let o € X (T) such that o ((,%)) = t%. Then ®(G) = {£a} as

seen in Example and Z® = (2x), X (T) = Zx.
(i) Let G = PGLy(k) = GL2(k)/ 7(GL, (k). We have the homomorphism

B : GLQ(k) — PGLQ(k),
Av— A = AZ(GLy(k)).

Then a maximal torus of PGLy (k) is given by T = D5 (k), the image of Ds(k)
under . The root system is given by ® = {43} where

t 0 y
B((O 1>>:t, fort € k
and X(T') = Z9.

We see that (SLy(k)) is isomorphic to ®(PGLy(k)). However, the indices [ X (T') : Z®]
are not the same.

We would therefore like to define some structures that differ if the groups are not
isomorphic.

Definition and Proposition 1.64 (Cocharacters and Coroots, |25 Definition 3.4 and
Lemma 8.19]). Let G be a connected reductive algebraic group and 7' C G a maximal
torus. We define the cocharacters of 7' by

Y(T) :={v:G,, — G |~ is a homomorphism of algebraic groups}.

The Weyl group W = Na(T) /7 of G with respect to 7" acts on Y (T') as follows: Let
w € W and n,, € Ng(T') be a fixed corresponding representative in G. Let v € Y/(T)
and ¢ € k. Then

w.y(e) = nuwy(e)ny, .

We have a map
() X(T)xY(T) —Z

where (y, 7) is defined by x(y(t)) = t& forall t € G,,.

It is possible to prove that this map induces isomorphisms Hom(X(T),Z) ~ Y (T') and
Hom(Y (T),Z) ~ X(T), see [7, 1.9]. Furthermore, let ® be the root system of G with
respect to 7 and let o € ®. Then there is a unique element oV € Y (T') such that

saX =X — (x,a")a, forall y € X(T)and
S0y =7 — (a,y)a¥, forally € Y(T).
In particular, (o, o) = 2.

The element «" is called the coroot of a and &V = {a" | a € ®} is the set of all
coroots of o.
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Example 1.65 (Coroots of SLy(k) and PGLy(k), [25, Example 9.9]). We continue Ex-
ample using the same notation as before.

(i) Let G = SLa(k). Recall that ®(G) = {£a}.

The coroot of « is given by

t 0
aV(t) = (0 t‘l) fort € k".

Then Z® = (2x), X(T) = Zx and Z®" =Y (T).
(ii) Let G = PGLay(k) and ® = {£/}. The coroot of 3 is given by

so- 8-

Therefore Z®" = 2Y (T).

In particular, we see that both SLy(k) and PGLy(k) have the same root system,
but there are still differences in the relations of (co-)roots and (co-)characters. This
motivates the following definition:

Definition 1.66 (Root Datum, |25} Definition 9.10]).
A quadruple (X, ®,Y, ®") is called a root datum if:

(i) X ~Z" ~Y and thereisamap (, ) : X xY — Z such that each homomorphism
X — Zis of the form y — (x,~) for a unique v € Y and each homomorphism
Y — Z is of the form v — (x,~) for a unique x € X.

(i) ® C X, &V C Y are abstract root systems in Z® ®y, R, respectively Z®" @7 R.
(iii) There exists a bijection ® — ®V, a — «" such that (o, a") = 2.

(iv) The reflections s, of the root system ® and s,v of the root system ®" are given
by

Sa.X =X — (x,a")a, forall x € X and
Sqv.y =7 — {a,7)a, forallycY.

It remains to see that the corresponding structures in algebraic groups form a root
datum, which is indeed the case, see [25, Proposition 9.11].

Proposition 1.67. Let ® be a root system of a connected reductive algebraic group G with
respect to a maximal torus T < G with Weyl group W. Let " = {a" | a € ®} be the set
of coroots of ®. Then the quadruple (X (T),®,Y (T),®") is a root datum.

Finally, we need to prove that different root data do indeed define non-isomorphic
simple algebraic groups and vice versa. This result is stated in Chevalley’s classifica-
tion theorem, see [25, Theorem 9.13]:

Theorem 1.68 (Chevalley’s Classification Theorem). Two semisimple algebraic groups
are isomorphic if and only if they have isomorphic root data. For each root datum there
exists a semisimple algebraic group and this group is simple if and only if its root system
is irreducible.
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1.3.1 Isogenies and isogeny types

We have already seen that each connected reductive algebraic group has a root system
and that groups with the same root system are not necessarily isomorphic. The ques-
tion that poses itself in this context, is whether there is a way to compare groups with
the same root system. In order to solve this problem, we are going to define special
homomorphisms of algebraic groups, so-called isogenies. For this section let G be a
semisimple algebraic group.

First, we are going to look at the different types of groups that exist for each root sys-
tem. Recall that ® C X := X (T') and as (®)r = E O X the group Z® has finite index
in F, see Proposition|1.50

Let Q := Hom(Z®",Z). We can consider Z® C X C € via the homomorphism

X ~ Hom(Y (T),Z) — Hom(Z®",Z) = (.
We recall that Z®" has finite index in Y (7'), so the homomorphism is injective.

Definition 1.69 (Fundamental group, simply connected, adjoint, [25, Definition 9.14]).
Let A := A(®) := /7. This group does not depend on X and therefore not on
the torus 7" or the group G. The set A(®) is called the fundamental group of ¢ and
A(G) := 1/ x is called the fundamental group of the semisimple group G. If X = Q
(i.e. A(G) = 1), then G is called simply connected. If X = Z®, then G is of adjoint
type. We write G4 for an adjoint algebraic group and Gy, for a simply connected al-
gebraic group with root system ®.

Note also that all root data with a fixed root system ® are classified by the sub-
groups X /73 < {!/7@ of the fundamental group of ®.
We are interested in finding homomorphisms between the different types of semisimple
algebraic groups G for a given root system ®. These maps are called isogenies and the
types of algebraic groups for a given root system are called isogeny types.

Definition 1.70 (Isogeny). Let ¢ : G — H be a surjective homomorphism of algeb-
raic groups. If the kernel of ¢ is finite, ¢ is called an isogeny. If G is connected, the
kernel lies in the centre of G. If GG is also reductive, then ker ¢ lies in all maximal tori
of G, see also [30, 9.6.1].

We have the following properties for isogenies of algebraic groups, see
[30} 9.6.1,9.6.3] and [1}, Corollary 22.5]:

Proposition 1.71. Let G and H be two connected reductive algebraic groups with max-
imal tori T, and Ty and corresponding root data V¢ = (X¢g, ®q, Yo, @Y%) of G and
Uy = (Xp, Py, Yy, ®);) of H. Let ¢ : G — H be an isogeny. We have the follow-
ing properties.

L. If (T;) = Ty, the isogeny ¢ defines two homomorphisms f : Xy — Xg and
fY : Yo — Yy of the character and cocharacter groups respectively.
Then (x, f¥(\)) = (f(x),\) forall x € Xy and )\ € Yg.

2. There is a bijection p : &g — ® g with p(Us) = U, where the U, denote the root
subgroups in G or H.
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3. For p as above we have f(p(a)) = q(a)a and fV(a) = q(a)(p(a))Y where q(a) is
a power of the characteristic p of k (or 1 if char(k) = 0).
The isogeny ¢ is called central if ¢(«)) = 1 for all o € .

4. If pis central, then im(dy) contains all nilpotent elements of Lie(H) = h. We have
b = de(g) + Lie(Th).

It is in fact true that we can find an isogeny between groups of different isogeny
types with the same root system. This result is stated in the isogeny theorem, see for
example [30, Theorem 9.6.5].

Theorem 1.72 (Isogeny theorem). Let (f,p,q) be as in Proposition Then there
exists an isogeny ¢ : G — H with o(T¢) = Ty. If ¢ is another isogeny fulfilling these
properties, then there exists an element t € T such that ¢’ = p(tgt=") for all g € G.

In particular, there are isogenies 7y and o with

T T
Gse — G —= Gaq.

1.4 Good and bad primes

Recall that the commutator formula given in Proposition[1.55/depends (amongst other
things) on constants ¢ ﬁ € Z. In small prime characteristic it can happen that ¢, 5 =
0 for fixed o, B € ® and n,m € N but c” " # 0 for char(k) = 0. Certainly, this de-
pends on the root system. It follows therefore that the calculations in these cases are
different than for characteristic 0.

Definition 1.73 (Bad primes, [|25, Definition 14.14]). Let G be a simple algebraic group.
Depending on the root system of an algebraic group G, the following primes are called
bad primes:

type of G bad primes
A, -
B, (n>3), D, (n>4), Cy, (n=>2) 2
Go, Fy, Eg, E7 2,3
Es 2,3,5

Table 1.2: Bad primes of simple algebraic groups

If p is a bad prime and char(k) = p, then the characteristic of k is called bad for G.
Otherwise, the characteristic is called good for G. If G is not simple, the bad primes
for G are the bad primes of the irreducible components of the root system of G.

Example 1.74 (Bad primes in Sp,(k)). The prime p = 2 is a bad prime for G = Sp,(k),
as the root system has type Cs, see for instance |25} Table 9.2].
We compute the commutator of two elements in Sp,(k), where a, b € k*:

(i) Gl =Clha) G (i) ()
(1)
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la. 1.0.
It is easy to see that the matrices ( L ) and ( -1y b> only commute if char(k) =

~a
o1 1
2.



2 Nilpotent orbits

In this chapter we give an overview of the theory of nilpotent orbits. Let G be a connec-
ted reductive algebraic group and g := Lie(G) be its Lie algebra. As noted in Definition
G acts on g via the adjoint representation Ad. Let .45 C g be the nilpotent vari-
ety consisting of all nilpotent elements in g. Then Ad fixes .4; and we can consider the
action of G on the nilpotent variety. The orbits under this action are called the nilpo-
tent orbits and have been extensively studied. By now, all nilpotent orbits are known
for each type of root system regardless of the characteristic of k. For the description
see for example [20]. In good characteristic the nilpotent orbits can be parametrised
by objects called the weighted Dynkin diagrams. Note that we have to consider the
cases where char (k) is bad for GG separate from the cases in good characteristic for the
description of the nilpotent orbits. This means that we do not always get a uniform
description of the orbits in each type.

We additionally give a list of explicit representatives of the orbits in the exceptional
groups, as this will prove useful in later chapters.

2.1 Weighted Dynkin diagrams

In the following section let G be defined over an algebraically closed field k, such that
the characteristic of k is good for G. In this case the nilpotent orbits of g can be de-
scribed by certain diagrams, called the weighted Dynkin diagrams.

Let 0 # e € g = Lie(G) be a nilpotent element. The construction of the weighted
Dynkin diagrams relies on embedding e in a 3-dimensional subalgebra (e, i, f) of g
isomorphic to sl (k). This will in turn define a linear map from the roots of G, ®(G),
to Z which gives rise to the weighted diagram of the orbit of e.

In order to do so, we first need the fact that any nilpotent element can indeed be em-
bedded in a subalgebra isomorphic to sls(k). This is a result of the Jacobson-Morozov
theorem.

Theorem 2.1 (Jacobson—-Morozov, [7, Theorem 5.3.2]). Let G be a simple algebraic
group over an algebraically closed field k of characteristic 0 or a good prime p for G. Let
g := Lie(G) and e € g, e # 0 be a nilpotent element such that ad(e)™ = 0 for some
m € N. In the case of char(k) = p, we additionally assume that m < p — 2. Then
there exist elements h, f € g with [h,e] = 2e, |h, f] = —2f, le, f] = h, that is, e can be
embedded in a subalgebra (e, h, f) C g isomorphic to slz(k).

It follows therefore, that each nilpotent element e € g, e = 0 can be embedded in a
subalgebra isomorphic to sly (k) if char(k) = 0. This poses the question what happens
if there are two such subalgebras. We cannot expect them to be the same. However,
following [7, Proposition 5.5.10] we see that they are in the same G-orbit.

34
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Proposition 2.2. Let char(k) = 0 or char(k) = p > 3(c — 1) where c is the Coxeter
number of G. Let (e, h, f) and (e, h1, f1) be two subalgebras of g as in Theorem Then
there exists an element g € C(e)° such that Ad(g)(h) = h1 and Ad(g)(f) = fi, that is
(e, h, f) and (e, hi, f1) are in the same G-orbit.

In fact, it follows that the Lie algebra g is a direct sum of irreducible sl (k)-modules
as stated in [7, Theorem 5.4.8].

Theorem 2.3. Let V be a finite-dimensional sls(k)-module affording the representation
p. We use the notation from Theorem Suppose there is a positive integer m > 2 such
that p(e™ 1) = 0, p(f™ ') = 0. Suppose that p # 2 and m < p if char(k) = p. If
char(k) = 0, we do not need any restrictions on m. Then V is a direct sum of irreducible
submodules each of which affords one of the representations p; for some j < m — 1. Here
the representations p; are defined as follows: Let x1,...,x; be a basis of an irreducible
sly(k)-module. Then

pje).o; = xit1, 1=1,2,...,5—1, pi(e).z; =0,
pj(f)$l+1 :Z(]_Z)wh i=1,2,...,5—1, p](f)xl =0,

as defined in [7, Section 5.4].

Setting V' := g in the above theorem, it follows that g is a direct sum of irreducible
sly(k)-modules with a basis z1, ..., z; and representations p; of sly(k) as above.
Letc € kand zy, ..., z; be a basis of an irreducible sl,(k)-module in g as above. There
is a homomorphism of algebraic groups, v : k* — G, such that the elements in its
image act on this basis by

y(e).x; = ey, ce kX (2.2)

and +(c) describes an action of (§ 691 ) € SLz(k) on g, see [7, Proposition 5.5.6].
Therefore, if char(k) = 0 or m < char(k) — 2, we can define such a map v for each

nilpotent element e € g. The following result holds by [7, Theorem 5.5.11].

Proposition 2.4. Let char(k) = 0 or char(k) = p > 3(c — 1) where c is the Coxeter
number of G. Then there is a bijection between the non-zero nilpotent orbits of g and the
G-orbits of the subalgebras of g isomorphic to sly (k).

By Pommerening [27] and [28], as well as Premet [26], this result also holds if char(k) is
good for G.

Proof. We follow the proof in [7].
Define a map

¢ : o\(15\{0}) — 7\ {subalgebras isomorphic to slz(k)},
O — G.(e,h, f).

First note that each non-zero nilpotent element e € g is contained in a subalgebra
(e, h, f) C gisomorphic to slz(k), which follows from the Jacobson-Morozov Theorem
By Proposition[2.2] this subalgebra is in the same G-orbit as any other subalgebra
(e, f1, h1) isomorphic to (e, h, f). This shows that ¢ is well-defined. In order to see
that ¢ is surjective, note that each subalgebra in g isomorphic to sl (k) is of the form
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(e, f,h). Now this subalgebra (e, f, h) is the Lie algebra of a subgroup H C G where
H is isomorphic to SLy(k) or PGLa(k) (see for example [7, 5.5.5]). In particular, e is
a non-zero nilpotent element in Lie(H) and therefore also in Lie(G). Thus, for each
subalgebra § of g isomorphic to sly(k), we can find e € g, e nilpotent, such that ¢(0,) =
G.h.

Now suppose ¢(0,) = ¢(0,/) for two non-zero nilpotent elements e, e’ € g. In gl,(k)
each non-zero nilpotent element is conjugate to (§ ) under the action of GL»(k), i.e.
e, ¢, and ({9) are in the same orbit under this action. Since

Carym <<$ 8)) - {<Z 2)

we have GLa(k) = SLa(k).Cqr,x) (({§)). Thus, any two non-zero nilpotent elements
in a subalgebra isomorphic to sl (k) are conjugate under SLy(k), and therefore under
G which contains a subgroup related to £ and either isomorphic to SLa (k) or PGLg (k)
by [7}, 5.5.6]. This means that &, = 0./, so ¢ is injective. O

cek,aekx},

Let v : k* — G be a homomorphism of algebraic groups. If we choose a maximal
torus 7' C G such that im(y) C T, the map ~ gives rise to a linear map

Ny:®—7Z, a—(a,7). (2.3)

Here yoa : k* — k*, ¢+ " forsomen € Z. We set («, ) := n. If vis the homomorph-
ism from (2.2), there exists a set of simple roots IT C ® such that . (II) C {0, 1,2} by
[7, Proposition 5.6.6]. We will briefly repeat the proof of this fact here.

Lemma 2.5. Let n : ® — Z be a linear map, that is n(—«) = —n(«a) and n(a + B) =
n(a)+n(B) forall a, B € ® suchthat a+ 5 € ®. Then there exists a system of simple roots
IT C @ such that n(«) > 0 for all o € 1. In fact we have n(«) € {0,1,2} if n corresponds
tothemap v € Y(T) and  is as in (2.2)).

Proof. Note that 7 is determined by its values on the simple roots and can be uniquely
extended to an element in Hom(X,Z) where X = X(7T') = Z®. As Hom(X,Z) ~ Y =
Y (T), we also have a unique cocharacter v € Y to which n» maps under this bijection
such that n(a) = («,~) for all « € ®. Now choose a system of simple roots II such
that («,~) > 0 for all « € II. This is possible, as this means that ~ is in the closure of
the fundamental chamber, which is a fundamental domain for the action of the Weyl
group W of ® on Y, see Proposition|1.49

Suppose 7 is as in (2.2). For each i € Z define the sets

gi:={x cg|y(c)z=caforall c € k*}. (2.4)

These sets form a grading of the Lie algebra g, i.e. g = @, ., 9;- Let j € Zand o € ®
with (a,v) = j. Then e, € g;, where (e,) = ga, as

7(€)-ea = Ad(7(¢))(ea) = aly(e))ea = ¢ Veq

forall ¢ € k*. Recall, that this is because v € Y is a cocharacter and therefore y(c) € T
for all ¢ € k*. Note that [h,e|] = 2e, [h, f] = —2f, and [e, f] = h. By restricting the
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(e, f,h)-module g to (e, f, h) and taking the basis z; := f,z9 := h,x3 := —2e we get
the action

e.x1 = e, f] = h =z, far=1[f,f1=0,

e.r2 = [e,h] = —2e = x3, faa=[f,h]=2f=1-(3— 1),

e.x3 = e, —2e] =0, f.xs =[f, —2¢e] = 2h,

h.l’l = [h,f] = —2f = (2-1 -3 - 1)1:1,
h.(L‘Q = [h,h] =0= (2‘2—3— 1)1‘2,
h.wz = [h,—2¢] = —4e = (2-3 -3 — 1)x3.

This means that we get a (e, f, h)-module with representation p3. Then

1 1
~v(c).e = 7(0).(—51‘3) = —502'373711‘ = ?e,
v(e)-f =(e)ar = ey = 72,
y(c).h = ~(c).xy = F2 3 ey = Ph

Soe € go, f €g_s,and h € gg. Therefore,

f= Z )\565 for )\5 ek.
ped
v(B)=-2

In particular, all roots 3 occurring in the above linear combination are negative roots,
as v(a) > 0 for all simple roots «, and therefore for all positive roots. Then

[f7ea]: Z /\5[6576a]€t@ @ Ja+s

BED a+ped
V(B)=—2 v(B)==2

by Proposition[1.56] As a € Il is a simple root, this is a linear combination of elements
in t = Lie(T)) and of eg/, where 3’ is a negative root. Therefore, [f,e.] € D, 9:-

We first suppose that [f,e,] # 0. The above calculation and Proposition show
that [f,eq] € gj_2 fore, € g;andso j —2 < 0, thatis j < 2. Then the only possibilities
are j € {0,1,2}.

If conversely [f, en] = 0, we have e, € Cy(f) C @D, 9:- This follows because we can
write g = @ V,,, where the V, are the irreducible (e, f, h)-submodules. If we take the
standard basis {x;1,...,z,,} as in Theorem[2.3|for each V;, there exists exactly one
vector z,.; in the centraliser of f for each V;.. To see this, recall by (2.1) that

P (f)ritr = i(r = D)r

for1 < i< j,—1,and soz,; € Cy(f)if [f,z,;] = 0,i.e.i = 1. We have v(c).z,1 =
=z, 1,80 2,1 € g1—j, and surely j, > 1.
Then e, € g; N P, 9 with j > 0. This means that j = 0 and the claim follows. [

We fix such a system of simple roots II in order to define the weighted Dynkin dia-
grams, see [7), Text after Proposition 5.6.6.].
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Definition 2.6 (Weighted Dynkin diagrams). Let v be as above. Then we can define
the linear map v : ® — Z, where v(«) = (v, a), as before.

As v is a linear map, v is determined by its values on the set of simple roots. This
means that, instead of giving ~, we can take the Dynkin diagram corresponding to ®
and assign to each node for a simple root « € II the value ~(«). By Lemma 2.5, we can
find a system of simple roots such that the nodes are labelled by 0, 1 or 2. The resulting
diagram is called the weighted Dynkin diagram of ~.

Note that this construction still requires some restrictions if char(k) = p, even if p
is good for G, as it relies heavily on the Jacobson-Morozov Theorem[2.1] However, this
classification also works in any good characteristic due to the work of Pommerening
[27] and [28] and Premet [26].

Example 2.7 (Weighted Dynkin diagrams of type G5). For type G5 we have the fol-
lowing weighted Dynkin diagrams, taken from [7} 13.1, p. 401].

() =0 ()= (ii))c=o
0 0 0 1 1 0

(iv) =0 (V) =0
0 2 2 2

Figure 2.1: The weighted Dynkin diagrams of type G-

Remark 2.8. Even though the weighted Dynkin diagrams arise from the above con-
struction in good characteristic, we can define corresponding maps § : & — Z such
that §(«) corresponds to the weight of the node belonging to the simple root « € II in
every characteristic. In the next section we will see how to define so-called T-labellings
which are just the weighted Dynkin diagrams in good characteristic.

It remains to see that each weighted Dynkin diagram is uniquely determined by a
nilpotent orbit. This fact is for example proved in the book of Carter, see [7, Proposi-
tions 5.6.7 and 5.6.8].

Proposition 2.9. The weighted Dynkin diagram defined by a nilpotent element ¢ € g is
uniquely determined by the nilpotent orbit of e in g. If e, e; € g are two nilpotent elements
then the weighted Dynkin diagrams of e and e, are the same if and only if e and e, are in
the same nilpotent orbit.

For later use we will define a parabolic subgroup determined by a nilpotent element
e and prove that the centraliser of e in G is contained in this subgroup. We suppose
that char(k) is good for G such that the above construction is possible. Recall that a
nilpotent element e € g gives rise to a map v : k* — G. We fix a root system with
simple roots IT C & such that y(«a) € {0, 1,2} for each a € II. This gives rise to a
parabolic subgroup

GLy = (T,Uqy | @ € ® with (o, 7) > 0). (2.5)

We will see this group again in the next section. With respect to this parabolic sub-
group the following proposition holds, see [7, Proposition 5.7.1].
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Proposition 2.10. Let the notation be as before and char(k) = 0 or char(k) = p >
3(c — 1) for the Coxeter number c. Then

1L G;O is uniquely determined by e.

2. Cgle) € Gy,

2.2 T-labellings

In [20, Chapter 10] there is an alternative definition for the parametrisation of the
nilpotent orbits, called a T-labelling. In fact, the T-1abellings have the same labels
as the weighted Dynkin diagrams in good characteristic, see the introduction of [20].
This approach allows us to define weighted diagrams for nilpotent orbits in bad char-
acteristic as well.

Definition 2.11. Let G be a simple algebraic group over k and 7" C G be a maximal
torus. Let ® be the root system of G with respect to 7" and for each o € ® we have the
weight vector e, € g generating the root space g,. Let v : k* — T be a cocharacter.
If v is not trivial, the image S := ~(k*) C T is a one-dimensional torus in G. Then
Ad(v(e))(eq) = c™e, for all ¢ € k* and some n,, € Z. As stated in Lemma /2.5 it is
possible to choose a set of simple roots IT C ® such that v(«) € {0,1,2} forall o« € II
in good characteristic. In bad characteristic this is a result in [20] as stated below.
The corresponding Dynkin diagram of G with each node « labelled by n,, is called the
labelled diagram for S.

Let e € g. Then there exists a one-dimensional torus S = {v(c¢) | ¢ € k*} such
that Ad(v(c))(e) = c®e for all ¢ € k*. This follows from [20, Section 5.1 and 16.1]. This
torus will determine a 7-1abelling corresponding to the nilpotent orbit of the element
e. As mentioned above, these labellings are exactly the weighted Dynkin diagrams in
good characteristic. Each labelling determines a parabolic subgroup P as follows: Let

P=(T\U, | a€ ®, ny >0),

using the notation in Definition Then P is a parabolic subgroup of G with Levi
subgroup L = (T,U, | no = 0) and unipotent radical Q@ = [[, ., Ua- This is just
the subgroup G2, from (2.5). For representatives of nilpotent orbits in g we get the
following result, see [20, Theorem 1, Lemma 2.29, Theorem 9.1, Lemma 15.3, Lemma
15.4, and 16.1.1]. Note that in good characteristic this is just Proposition[2.10

Proposition 2.12. Let e € g\ {0} be a nilpotent orbit representative. Then there exists
a one-dimensional torus S giving rise to a labelling and a parabolic subgroup P = QL as
above. Furthermore,

e € Lie(Q)s2 = @ o

acd
Na =2

and Cg(e) C P.
If e is a representative of an orbit occurring both in good and bad characteristic, then we
even have

e € Lie(Q)2 = @ o

acd
Na=2
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2.3 Orbit Types

In this section we explore the different kinds of nilpotent orbits and how they are de-
noted. We start with the classical groups and move on to the exceptional groups. We
will give representatives of the orbits occurring only in the exceptional groups, as well
as a complete list of representatives in exceptional groups.

Let G be an exceptional simple algebraic group over an algebraically closed field k. Let
e € g be a representative of a nilpotent orbit. Then e = }";_, e;, where each e lies
in a subgroup Lj of G such that [L,L] = L' := L;--- L, is a commuting product of
simple factors L and L is a Levi subgroup of GG. The elements ¢, are distinguished in
the Ly, see [20, chapter 9]. Here, we refer to e € g as distinguished if the connected
group C¢(e)® is unipotent. The element e is denoted by the sequence of the Lie(Ly). If
e is the representative of an exceptional orbit, that is, an orbit only occurring in bad
characteristic, we denote the orbit type by (L),.

2.3.1 In classical groups

For classical groups we fix a notation for the classes as follows. J,, denotes a nilpotent
Jordan block of dimension n, so

e k"xn,

S
Il
o~ o0

The nilpotent orbits with a representative in Jordan form J,, 1, Jon+1, Jon, or (J1, Jan—1)
will be denoted by A,,, B,,, C,,, or D,, respectively.

For G = SOg,(k) with root system type D,, the distinguished nilpotent class with
Jordan form (Jo;4+1, Jon—2i—1), Where 1 < i < ”T‘l, will be denoted by D,, (a;).
Furthermore, we define three kinds of indecomposable modules, see [20, 5.1]. In the
following list, let V be a finite-dimensional vector space over k with char(k) = 2, and
G = Sp(V) or O(V). G preserves a non-degenerate symmetric bilinear form (, ) on
V and if G = O(V), additionally a quadratic form Q). Let e € g = Lie(G) be a nil-
potent element. Then V' | e is a direct sum of modules isomorphic to the modules
introduced below. Furthermore, let S = {7(c) | ¢ € k*} be a one-dimensional torus
corresponding to e as described below Definition|2.11

1. For the group G = Sp(V) define the module V(m) as a non-degenerate space

of dimension m, where m is even, and a basis {v_y,4+1,V—m+3,- -+, Um—3, Um—1},
where
( ) 0 ifj # —1,
Vi, Vi) = . .
Y 1 ifj = —i.

For a one-dimensional torus S = {v(c) | ¢ € k*} as in Section[2.2]and e € g we
have the action

y(e)w; = vy, foralli € {-m+1,-m+3,...,m—3,m—1},

e.v; = viro, fori<m —1lande.v,_1=0.



2.3. ORBIT TYPES 41

2. In G = Sp(V), the module W (m) is a non-degenerate space of dimension 2m
with a basis

B = {T—m+17 T—m+35 ey ’'m—3, Tm—l} U {S—m—i-l, 3—m+37 ce oy Sm—3, Sm—l}u
where for v, w € B

(0, ) 1 ifvo=r, w=s_,0rv=s; w=r_,
v, W) =
’ 0 otherwise.

The operation of the one-dimensional torus S and the nilpotent element e is
given by
v(c).ri = c'ry, forallie {-m+1,-m+3,...,m—3,m— 1},
v(c).s; = c's;, forallie {—m+4+1,-m+3,...,m—3,m — 1},
e.ri =rizo, fori<m—1lande.r,, 1 =0,

€.8; = Sjy9, fori<m—1lande.s; 1 =0.

For G = O(V') the space W (m) is defined in the same way with Q(s;) = Q(r;) = 0.
Here Q : V — k is a fixed non-degenerate quadratic form with the associated
symmetric bilinear form (, ): V xV — k.

3. Wy(m) is defined for 0 < I < im and is a non-degenerate space of dimension
2m.
For G = Sp(V') we define W;(m) as the vector space with a basis

B = {U—2l+17 ey U211, V2041 - -+ UZm—Ql—l} U {w—2m+2l+1) .o, Wor—3, w?l—l}'

The subspace spanned by all w; is totally singular, while the subspace spanned
by all v; has a radical. This radical is given by the subspace spanned by the v; for
i =2l+1,...,2m — 2l — 1. The quotient is the non-degenerate space spanned
by images of v; fori = —(21 - 1),...,2[ — 1.

For two elements v, w € B we have

1 fv=v,w=v_for — (20 —1) <i<20—1,
0 if v =wv;, w=v;fori, jnotasabove,
(v,w) = . .
1 ifv=wv;, w=w_;foralls,
0 ifv=w;, w=wj;andi# j.
The operation of the one-dimensional torus S and the nilpotent element e is
given by
y(e).v; = cv;, forall i,
v(c)w; = dw;, forallj,
€.V; = Vj42, fori < 2m — 2l —1and e.Vom—91—1 = 0,
e.Ww; = Wji42, forj <2l —1and e.wg_1 = 0.

In the case of G = O(V) let a basis for W;(m) be given by

B = {07214»27 <., V-2,00,02,... 7U2m72l} U {w72m+2l7 <., Wo, W2, . .. le*Q}'
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Here, the subspaces spanned by all v; and by all w;, respectively, are singular
under the bilinear form Q. Furthermore, Q(vp) = 1, Q(v;) = Q(w;) = 0 for all 4
and j. For (, ) we have (v;, w_;) = 1 and (v;,w;) = 0if ¢ # —j. The operation of
the one-dimensional torus S and the nilpotent element e is given by

v(e).v; = cv;, forall i,
v(c).w; = dw;, forallj,
ev; = vito, 1 <2m —2land e.vg,_o =0,

6.’U)j = wj+27 ] <2l -2 and e.wgy_9 = 0.

Let G = SO(V) with dim V' = 2n and p = 2. Then we denote the G-class of a nilpotent
element e € g where V' | e = W;(n) by D,,(a,,—;). For n = [ we get the class D,,.

In type C5 there is a distinguished class corresponding to V' (4) + V' (4), see [20, Lemma
3.12 and Proposition 5.3]. This class is labelled by Cs(a;).

2.3.2 In exceptional groups

In exceptional groups the labels are given as in Table which also states the rep-
resentatives in the Lie algebra, see [20, Table 13.3, Table 14.1, and Table 16.2].

Notation

Before we state the orbit representatives, we give a few remarks about the notation we
use. Let 5 € ® be aroot and eg € g be a nilpotent element such that (eg) = gz and
the eg form (together with a basis {h; | i € {1,...,|II|}} of Lie(T)) a Chevalley basis
of g. We fix a system of simple roots II = {3, ..., «,} and an ordering (o, ..., a;).
We can write each 3 € ® as § = )., A\, that is, as a linear combination of the «;
with coefficients \; € Z. Instead of eg we then write e;x; 5, .. If A; = 0 for some
j € {1,...,r}, we will omit the term ;i in this list. For \; = 1 for some j € {1,...,r}
we will simply write j instead of j!.

The order of the «; € 11 is chosen as stated in the following diagrams.

1 3 4 5 6
Gy = Fy o—o>=0—0 FEs
1 2 1 2 3 4 I
2
1 3 4 5 6 7 1 3 4 5 6 7 8
E7°—°—I—°—°—° Eso—o—i—o—o—o—o
2 2

Figure 2.2: Numbering of the nodes in the exceptional Dynkin diagrams

We give a list of the exceptional nilpotent orbit representatives in the exceptional
groups, taken from |20, Table 13.3, Table 14.1, and Table 16.2]. Also note that the
representatives e in the exceptional classes (L), are given by € = e + e, wheree € L
and a € @, [20, Theorem 14.1 and text after]. In the following table the element ¢, is
given in brackets.
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G | label of nilpotent | orbit representative T-labelling
orbit
Gz | (A1)3 (p=3) €125 + (€13 22) ==
=0
G2 e1 + e 5 5
Ga(a1) €2+ €139 OEC2
A O0—0O==0—o0
Fy | (A1)2 e1,22,33 42 + (€12 93 34 42) o o0 o0 1
A O0—0O==0—o0
(A2)2 62,32,4 + €1,2,34 + O 0 0 2
(612,23,34,42)
0—0=>=0—0
(BQ)Q 62732742 +€17273+(61’22732) 5 0 0 1
0—0=>=0—0
(C3)2 €123 T €232 + €4 + 1 0 1 2
(61722’32’42) (p = 2)
0—0==0—0
(C3(a1))2 €1,23 1 €23242 + €332 + 1 0 1 o0
(6’1,22,32,42) (p=2)
A O0—0==0—>0
(A241)2 e234 + €19324 + 0 1 0 1
12232 + (€932 42)
(p=2)
0—0o==0—0
Fy €] +ex+e3+ey 5 5 5 o
0—0o==0—0
F4(a1) e1+ex+ea3+e3q 5 2 0 o
0—0o==0—0
F4(a2) er2+ €9 32 +eq4+e34 0 2 0 2
0—0o==0—0
Fy(as3) eate12+eg32+€1 932 42 o 2 0 o
2 2 2 2 2
Eg | Eg e1tex+estes+es+eg
2
2 2 0 2 2
Eg(ay) e1+e3+exa+ega+ ]
es + € 2
2 0 2 0 2
Eg(as3) e1+esstexstexsst I
€2345 1+ €56 0
0020 2 0
E; | (Asg)2 es6 + e67 + €134 + I
€234+ €345+ €245+ 0
(61,2,32,42,5> (p=2)
2 2 2 2 2 2
Ey e1+ex+e3+eq4+e5+ I
e¢ + er 2
2 2 0 2 2 2
Ez(aq) e1 +ex+exq+e3q+ I
es5 + eg + er 2

43
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E7(as) el +ex+e3+eaq+ i
€45+ €56 1 €6,7 2
2020 2 2
E7(as) e1+egat+e3qteaas+ i
€2345 €56+ €7 0
202 00 2
E7(ayq) e1+ex3atesss+es st i
€456 1 €3,4,56 + €6,7 0
00200 2
E;(as) e134+exs3ateisaset I
€245+ €456 + €567 1 0
€3,4,5,6
210110 1
Eg | (D7) er+ex34+ €345 + I
€245+ €456 + €567+ 1
e6,7,8 + (€1,2,34,5,6,73)
(p=2)
200 200 2
(D7(a1))2 €5 +ea5 +€2342567 F I
e13+e2456t€3456+ 0
ers + (es) (p=2)
000200 2
(D5Az2)2 €12345 T €23425 + I
€13456 + €23456 + 0
€3456,7 1+ €2456,7 +
e7s + (e678) (p = 2)
1010110
(A7)s €567 +€1234+€1345+ i
€34,56 T €2456 1 0
€2,3425 + €678 +
(es56,78) (p=3)
22 2 2 2 2 2
FEg e1+ex+e3+e4+e5+ I
e + e7 + eg 2
2202 2 2 2
Eg(al) el +ex+exq+e3q+
es + e+ er +eg 2
22020 2 2
Ex(as) e1+ex+e3+exs+ I
eq5 + e56 1 €67 + €3 2
2020 2 2 2
Exg(a3) e13+ezatesatess+ I
€345 + €56 + €7 1 e 0
2020 20 2
Eg(as) e13+eg4+esat+ess+ i

€345 T €56+ €67+ €78
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FEs(as)

e13+e234+ €345+
€245t €456t €2456+
€67 + €73

2 02 00 2 0

Eg (CLG)

FEs(ar)

Es(bs)

Eg(bs)

FEs(be)

e134+terosatersas+
€2345 + €123456 +
€456 1 €6,7 T €78

€12345 1+ €23456 +
€234256 T €1234256 1+
€3,4,5,6,7 1+ €1234256,7 T
€1,2,32 42 56,7 T €4,5,6,7,8

€13+ €234+ €345+
€245 tes67+ €456+
er + eg

€134 +ex34+e1345+
€e245+€156+€23456+
es5.6,7 T €8

€1,234 + €1345 +
€2345 1+ €2456 1
€4,5,6,7 1 €3456 1+ €78 +
e5.6,7,8 (0 # 2)

€1,234 + €1345 +
€2345 1+ €2456 1
€4,5,6,7 1 €3456 1+ €78 +
67,8 (P = 2)

0 00 2 000

0

2 0 2 0 0 2 2

0

00 2 00 2 2

0 02 000 2

0

45

Table 2.3: Some nilpotent orbit representatives in exceptional groups

A table of every nilpotent orbit representatives for each exceptional group can be
found in the Appendix[A.1] These are also the representatives used in the programme
described in Chapter[4]



3 The nilpotent pieces

In the following chapter we give a first definition of the nilpotent pieces as stated in
Lusztig’s paper [23]. In order to do so, we define a set of maps % and see that the
maps in % are in fact the weighted Dynkin diagrams in good characteristic. These
maps give rise to a grading of g and define certain subsets g' for each map 6 € %g.
Provided these sets are known, we can compute the nilpotent pieces. In certain cases,
it is possible to find the nilpotent piece linked to a weighted Dynkin diagram in a case-
free way. These pieces are described at the end of this chapter.

Let k be an algebraically closed field with char(k) = p prime or char(k) = 0 and let G
be a connected reductive algebraic group over k with Lie algebra g. We fix a maximal
torus 7' C G and denote by ® C X(T') the corresponding root system consisting of
characters of 7.

3.1 The set 9

Consider a homomorphism of algebraic groups § : k* — G mapping an element
c e k*toanelement¢. € T C G. Then §(k*) C T and we can apply the roots in ® to
elements in im(9).

Let o € ®, and consider aod : k* — k*. This is a homomorphism of algebraic groups
and therefore there exists n € Z such that (a0 §)(¢) = ¢" for all ¢ € k*, as stated in
Chapter[2] (2.3). Let (c, §) := n. This defines a bilinear map on ® x Hom(k*, G). Recall
from the previous chapter that we can define a linear map

ns:® —7Z, ar— (a,0). (3.1)

In the following section we are interested in a particular subset of these maps 7; as
above. We follow the construction of this subset as given in [23} 1.1].

Let G’ be a connected reductive algebraic group defined over C of the same type as
G, that is, G’ has the same root datum but is defined over C. There exists a bijection
between the sets of orbits \Hom(k™, &) and g\Hom(C*,G"),

Proposition 3.1. Let G be a reductive connected algebraic group over the algebraically
closed field k and let G’ be a reductive connected group of the same type as G over C.
Both G and G’ act on Hom(k*, G), respectively Hom(C*, G"), via conjugation. There is a
bijection between the set of orbits \Hom(k™, G) and \Hom(C*, G"),

Proof. First note that for a fixed maximal torus 7' C G the set Y(7T') := Hom(k*,T)
is the cocharacter group. Similarly, let 7/ C G’ be a maximal torus and Y (7”) :=
Hom(C*,T"). Instead of Y(T') and Y/ (7”) we will also write Y; and Yv. Both N (T)
and N¢/(T") act on Y and Yy, respectively, by conjugation.
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Let W = (s4 | @ € @) be the Weyl group of G. As G is of the same type as GG, the group
W is (up to isomorphism) also the Weyl group of G’. In this proof we will also write
W’ for the Weyl group of G'.

Now W = Na(T) /T acts on T by conjugation and therefore W also acts on Y, and
by the same argument on Y, as follows: Let v : k* — T be an element in Y. For
any w € W we define the action of w on v by (w.y)(c) := nyy(c)ny' for ¢ € k* and
nw € Ng(T) a representative of w, see Remark[1.33] Note that the orbits of W on Y
and of W’ on Y are in natural bijection. We therefore construct a bijection between
o\Hom(k*,G) and 137\ Yc and by the same argument between ¢\Hom(C*, G’) and
w’\Yc . The bijection between 7\ Hom(k*, G) and ¢\ Hom(C*, G') follows from the
existence of the above bijections.

The bijection between \Hom(k™, G) and 7\ Y& is given by

o\Hom(k™, G) «— py\ Yo 30
69 s O, -2
where 0§ denotes the orbit with a representative § in ¢\Hom(k™,G) and &}/ is the
orbit in 7\ Yo with a representative ¢’ such that &' € 6.

The image of k* under § is a subgroup of some maximal torus 7" in G. Thus, there
exists g € G such that &' := gd¢g—' and the image of k* under ¢’ is in T, so we can in
fact define this map.

Aseachelement ¢’ € Y is also contained in Hom(k*, &), this map is clearly surjective.
In order to see that the map (3.2) is well-defined, we follow the proof of [7, Proposition
3.7.1]. Let § and &’ be in the same orbit in ;\Hom(k™, &), that is, there exists g € G
such that gé(c)g~! = §'(c) for all ¢ € k*. Assume further that both im(J) and im(&’)
are subsets of the maximal torus 7. We need to show that &} = ¢}/. Using the
Bruhat decomposition and notation from Theorem [1.51} we write g = u/tn,u. Then
go(c) =¥ (c)g, so u'tny,ud(c) = 0’ (c)u'tn,u and

Inwd(c)tud(c) and
8 (e)u'tnyu = &' (e)u'd' (¢) 71 (¢)tny,u SO
w'tn,d(c)ng nyd(c) tud(c) = ' (c)u' 8 (¢) 1 (¢)tnyu.

u'tnyud(c) = u'tng,d(c)ny,

Set t; = tnyd(c)ng' € T, ur = d(c) tud(c) € U, ug = §(c)u'd’(c)”! € U, and
to := §'(c)t € T. Since T is abelian, it follows that ¢t = ¢’(¢)t = td’(¢). The above

equation can therefore be written as
u’tlnwul = UgtoNyU.

Since the Bruhat decomposition is unique, it follows that v/ = wus, u = wuq, and in
particular t; = to, that is, tn,d(c)n,' = t9(c) and therefore n,d(c)n,' = &'(c). This
shows that § and ¢’ are in the same orbit under the action of W.

Finally, we need to prove that this map is injective. Suppose there are two orbits &§’
and ﬁ’SG in Hom(k*, G) such that their images agree, that is, ﬁ’y/ = 6’%’," for two rep-
resentatives & € 0§ and §' € 0¢ such that §'(k*) C T and §'(k*) C T. Then ¢

and ¢’ are in the same IV -orbit and therefore in the same G-orbit. As shown above, §
and ¢’, as well as 4 and ¢’, are also in the same WW-orbit. By transitivity it follows that
6§ = 0. O
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Let

3 !
_@G/ = { f c HOHI(CX 7 G/) there exists i € HOI’H(SLQ(C), G ) s.t. } .

h(& %) = f(a)foralla € C*

0a?!

We define a similar set 9 C Y for the group G in the following way: An element
d € Hom(k*, G) is contained in % if we find a representative ¢’ € % of the orbit in
o \Hom(C*, G') corresponding to the orbit of § in (y\Hom(k™, G).

We note that 75(a) = ns(«) for all roots o € @ in this case for the right representatives
8, 0’ of an orbit in yy/\ Yo ~ p\Yer.

Remark 3.2. Recall the construction of the weighted Dynkin diagrams in Section (2.1
We take a map ~ as in (2.2). Choose a maximal torus 7' C G such that im(y) C 7 and
IT C ® such that n,(II) C {0,1,2}, see Lemma[2.5]

1. From the definition of the weighted Dynkin diagrams and the map v : k* — G
it is clear that each such map ~ is contained in ;. Conversely, let 6 € 2. Then
d defines a representation of SLy(C) on ¢’ := Lie(G’) by
(8 agl ).z = Ad('(a))(z)

fora € k*, x € ¢/, and ' € 2 being the corresponding element to § € % as
defined above. Recall that (¢ % ) = §(a) and

SLy(C) -2 &' 24 GL(g).

Note that this representation acts like one of the maps p; in (2.I) on irreducible
sl;(C)-modules in g’ by Theorem[2.3] In particular, § acts on g like a map arising
from a nilpotent element e € g’ (recall that the nilpotent elements can be em-
bedded in a subspace isomorphic to sly(C)). This shows that ¢ gives rise to a
weighted Dynkin diagram.

2. Let § € Y and let ' € P be the corresponding map. We can find a system of
simple roots IT such that ny (o) € {0,1,2} for all « € II, see (1) and Lemma|2.5]
We can therefore — up to conjugation — focus on the maps ¢’ such that s («) €
{0,1,2} for a fixed system of simple roots IT C ®. To see this, let n,, € Ng/(T")
be a representative of w € W’/ = Ng/(T") /7’ Then w acts on a root & € ¢
by w.a(t) = a(nyltn,) forallt € T. As W’ acts transitively on the systems of
simple roots, see [25, Theorem A.22], the claim follows.

Now 75 is conjugate to a map that acts on the root system & as s acts on the
root system ®. This means that each orbit in 2 contains a map § € % such
that n5(«) € {0, 1,2} for a fixed system of simple roots IT C ®.

3. For the nilpotent element e = 0 we choose the map § € % such that ns(a) =0
for all a € .

Definition 3.3. Let - be as in (2.2), the map corresponding to ¢ under the bijection in
Section We will call § the map arising from the weighted Dynkin diagram of ~ if
ns(a) = ny(a) for all o € 11 (and hence all o € ®).

By abuse of notation we will also denote ;s by 6 for all § € 2.
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3.2 The sets g), ¢2,, and g}

Following [23], Section 1], we will define certain subsets of the Lie algebra g which will
eventually lead us to the definition of the nilpotent pieces.

From now on, let the characteristic of k be arbitrary. Let § € % with 6(k*) C T,
and ;: € Z. We can define subspaces of the Lie algebra g depending on the weighted
Dynkin diagram corresponding to 4. These subspaces are crucial in the definition of
the nilpotent pieces, whose union will prove to be the nilpotent variety.

As G is a connected reductive group, we have g = t ® @ .4 9o Where t = Lie(T') and
the g, = {x € g | Ad(¢)(z) = a(t)z forallt € T} = Lie(U,) are the one-dimensional
weight spaces of the roots, see Theorem|1.34]

We define fori € Z

90 :={z € g| Ad(6(a))(z) = a'z foralla € k*}.

Note that these are just the sets defined in (2.4) in good characteristic. Clearly, we
have g7 = @ sco ga foralli € Z\ {0}. For two sets g, g’ let 2 € g? and y € gJ. Then

d(a)=t

the Lie product of z and y is in g¢ it

Ad(8(a)([z,y]) = [Ad(8(a))(x), Ad(5(a)) (y)] = [a'w, a’y] = a'" [z, y].

Ifi = 0,wehave g) = t& @ oco 0o Note that fori # 0 the set g is not a Lie algebra:
6(a)=0

We have [ga,95] C ga+p for two roots a, 3 € ® such that a + 8 € ®. In particular,

§(a+ B) = 2iif go, 95 C g¢, as shown above.

Similarly, for i € Z define the sets

9;‘ = @Q?-

Jjzi

By the same argument as above, we can see that for i > 0 the g‘;i are in fact Lie subal-
gebras of g.

We can define the corresponding subgroups G2, of G fori > 0,such that Lie(G;) = g,
by

G‘;i = (U, | a€®,{a,0) =14) ifi>0,
and
Gy = (T,Uy | a € ®,(a,d) > 0).

Again, note that we have defined this set already in (2.5). In particular, G‘;O is a para-
bolic subgroup of G with the Levi subgroup G = (T,U, | a € ®,(a,6) = 0). This
follows easily from Definition[1.59} If we fix the set I := {s, | a € II, (o, §) > 0}, then
Gy = Pr.
We have an equivalence relation on the set 2, where § ~ §’ if g‘;i = g‘;i foralli € Z.
Write

Asi=1{0' € D | ¢%; = g%, foralli € Z}

for the equivalence class of amap § € 2.
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Definition 3.4 (g)'). Let z € g be a nilpotent element. The subgroup Cg(z) = {g €
G | Ad(g)(z) = x} of G defines the stabiliser of x in G. For each § € Z; we define the
sets

gg! = {x € gg | Cq(z) C G(;O}'

Note that in general, 0 ¢ g3', so g3' is not a subspace of g.

From now on we may also write g2, g4, instead of g, g2, where A=a;.
We have the obvious isomorphism of vector spaces

~ A
g5 — 922/g§3.
Let X% be the image of g$' under this isomorphism. Furthermore, with the natural map
A
TigS, — 922/g§3

we can define the set o* := 7=1(X*). We let A5 be the G-orbit of As via the conjug-
ation action of G, that is, As = {Ag]| g&'(c)g~! = d(c) for all ¢ € k*}. The following
definition is due to Lusztig, [23, A.6.], defining the central objects of this thesis, the
nilpotent pieces.

Definition 3.5 (Nilpotent Pieces). The sets

Mto=J o*

ACAs
are the nilpotent pieces in g = Lie(G).

Remark 3.6. Note that each orbit A contains all the maps § € % parametrising exactly
one nilpotent orbit.
Therefore, if § € % arises from a weighted Dynkin diagram, we will also write %5.

In good characteristic it is relatively easy to see that each nilpotent piece .#;*’
is just the nilpotent orbit corresponding to the weighted Dynkin diagram ¢. We will
prove this in Proposition[3.11} Furthermore, the nilpotent pieces are explicitly known
for the classical groups in all characteristics and we will state them later in Section[3.4,
However, we do not know the nilpotent pieces in bad characteristic for simple groups
of exceptional type yet, i.e. for G of type Gs, Fy, Eg, or E; for p = 2,3, and G of type
Egforp=2,3o0rb5.

For further computations we note that it is enough to assume that G is a semisimple
adjoint group.

Proposition 3.7. Let G be a connected reductive algebraic group. Then the nilpotent
pieces of G are the same as those of the semisimple adjoint group of the same type.

Proof. Let G4 be an adjoint group of the same type as G. We first show that the nil-
potent pieces in g,q := Lie(G,q) are the same as in g.

There exists a central isogeny 7 : G — G,q by Theorem [I.72 with differential dr :
g — gad- By Proposition[1.71] dr is injective on each g, := Lie(U,) and by the same
proposition g.q = dm(g) + t where ' = Lie(7”), and T’ C G,q is a maximal torus in
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Gag-
Let x € g such that z € g for some § € 9. For each g € G we have

Ad(n(g))(dm(x)) = (d(Intr(g)) o dr)(x) = d(Int, (g o 7)(x)
=d(molInty)(x) = dr(Ad(g)(x)).

Since z € @ .ca 9a is nilpotent, we have Ad(g)(z) = z if and only if dr(Ad(g)(z)) =
§(a)=2

dm(z),i.e. Adéﬂ')(g)) (dm(x)) = dr(x), and every nilpotent element in g,4 can be written
as dr(y) for some nilpotent element y € g by Proposition[1.71](4). For z € g3' we have
Ad(g)(z) = z only for g € Ci(z) C G%,. As 7 is an isogeny, 7 induces a bijection p
between the root systems of G' and G.q where 7(U,) = U, by Proposition In
particular, 7(g) € (Gada)o with d(a) = §(p~*(a)) and so dr(z) € gi'. As 7 restricted to
U, is an isomorphism onto its image, the claim is also true in the other direction.

We now show the reduction to semisimple groups. If G is not semisimple, we can write
G = [G,G]Z(G)° and |G, G] is semisimple, see Proposition @} Thus, G/z(g)o =
[G, G]. By [25, Theorem 7.9] it follows that Lie(G/Z(G)o) ~ Lie(G)/Lie(z(G)O). This
means that for every z € Lie(G) we have x = z1 + 9 for x; € Lie([G,G]) and zo €
Lie(Z(G)°), so zo is semisimple. By [30), Section 4.4.19 and Theorem 4.4.20] every
element in the Lie algebra can uniquely be written as the sum of a nilpotent and a
semisimple element. Therefore, if 2 € g is nilpotent, we have = € Lie(|G,G]) =: ¢ .
We have Cg(z) = Cigg(2)Z(G)° € G if and only if Cig g(z) € [G,G)%, for a
weighted Dynkin diagram ¢ and therefore for all § € Z. O

It is helpful to prove that each nilpotent piece consists of a union of nilpotent or-
bits. To verify this, let z € #*. By Deﬁnitionwe have x € o% fora A€ A. Fur-
thermore, let y = Ad(g)(x) for some g € G. Then y € Ad(g)(c”). We want to see that
Ad(g)(c®) € AzA. In order to do so, we write o* = g§' @ g4, for some § €A. This
means that we have to consider Ad(g)(g3') and Ad(g)(g4s).

Lemma 3.8. Letg € Gandi € Z. Let § € Y and A:=Ag. Then
() Ad(g)(g%,) = ¢Z; and

(i) Ad(g)(ed) = g5

Proof. (i) Asgs; = @, g5 forallg € G, itis enough to show that Ad(g)(g%) = g7
We have

Ad(9)(g5) = Ad(9)(g})
= {Ad(g)(z) € g | Ad(6(a))(z) = o’z for all @ € k*}
= {zcg|Ad(6(a)g ) (z) = a?Ad(¢7")(x) for all & € k*}
= {2z cg|Ad(gé(a)g ) (z) = a’z foralla € k*}
=g]",
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and therefore Ad(g2,) = @,-; Ad(g5) = P, 07" = 027
(ii) Firstly, we have

Ca(Ad(g)(x)) = {h € G | Ad(hg)(z) = Ad(g)(x)}
={h € G| Ad(g 'hg)(z) = x}
= {ghg™" € G| Ad(h)(z) = x}

= gCq(x)g™ "

Recall from Sectionthat G%, is the well-defined parabolic subgroup of G such
that Lie(G%,) = g5,. Then Lie(G%y) = g% and by (i) gZ5 = Ad(g)(g5,)-

It follows, that Lie(GZ5) = Ad(g)(Lie(G%,)) = Lie(9G409~ 1), 50 GZ5 = gG4o97 L
Finally, this shows that

Ad(g)(g3) = {Ad(g) () | = € g3, Ca(z) C G20}
= {Ad(g)(2) | 2 € g5, Co(z) C G5}
= {2 |z € Ad(9)(85), Ca(Ad(g~")(x)) € G0}
={z|zeg’ g 'Cu(z)g C G5}
={z e g)" | Calz) C Gy~ "}
= {z € g"* | Ca(x) C GL5}

5)!
:ggg "

-
-

O]

Corollary 3.9. If z € g is nilpotent and 0, is the G-orbit of z, then x € #;* if and only
if 0, C AA.

In order to compute the nilpotent pieces, it is therefore enough to check for each nilpotent
orbit in g whether a chosen representative of this orbit lies in a given piece.

Proof. Suppose x € #;*. Then x € Ad(g)(c*) for some g € G and Ac A. Lety € Oy,
y = Ad(¢')(z) for some ¢’ € G.

By (i) and (ii) in Lemmawe have y € Ad(¢"'g)(c2) =09 92 and soy € At
The converse statement is clearly true. O

Example 3.10 (The nilpotent pieces in Sp,(k)). We want to compute the nilpotent
pieces in Sp, (k) for both char(k) # 2, that is good characteristic, and char(k) = 2.
The group G = Sp, (k) is defined as

o1
Sp4(k) = {A € GL4(k) | AtrJ4A = J4}, where Jy = ( — 1 >
1. .

We recall the structures from Example The maximal torus is given By

t1,t9 € kX} .
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This is a Borel subgroup by [25, Example 6.7.(4)]. Furthermore, we have two homo-
morphisms of algebraic groups given by

t1 .. .
.t . .

Oc:T—>k><7 ( .2t;1 .)'—>t1t21,
1

ot

[ .

.t . .
,82T—>k><, (A.Qtzl )l—)t%

I

1

One can easily see that « and 3 are indeed roots, see also Example[1.39] as there exist
weight spaces which are non-zero and given by

e () e {0 [een).
This results in the root system ® := {£«, 3, £(a + ), £(2a + ()} with simple roots
IT := {«, 8} and Dynkin diagram

This gives us the following root spaces

w{(C bt s

((+)feet)
S () S R
{

(
(- )leerd
(

la. . 1. ..
Ua={<:?i'a> :?i‘:)aek}

R S

1.a. 1. .a
Ua+6:{<ﬁ?i?>aek}, U2a+5={<fi;>aek}.

S S

The group G = Sp, (k) has four nilpotent orbits in good characteristic described by
the following weighted Dynkin diagrams, see [7, Section 13.1]. We also give the sets
g5 and g3’ which are easy to compute in this case. We let (e.) = g, for all roots y € ®.

and the root subgroups

aEk}, Ug

weighted nilpotent orbit

Dynkin representative ad a5
diagram 9§
o==0 Ty = {0} {0}

. 1 ) 92048 9205 \ {0}

2
(102€q1 8 + A105€241 3 \

0
R
o==0 T3 = (; = %) 95D 0atp D 020rp | 05\ (02048 U {ar1ep +
ay,az € k})

N
::?_'1) go + 98 (80 @ 9p) \ (82 U gp)
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In characteristic 2 we have the following orbit representatives, taken from |18,
Table 7]:

( . also orbit representatives
Tyi= <I - i) in good characteristic

1
Note that for A4 := 2 | € Spy(k), 22 = —1, and char(k) # 2 we have
o 1

z 2z

Ax3A~! = x5, that is, 23 and x5 are in the same orbit if char(k) # 2.

The aim now is to figure out which orbit has representatives in the sets g3' & g2 for
all weighted Dynkin diagrams 4. Note that we have to check the sets (g3' & g25) N 0,
for each representative x, even if we have already found another orbit &, such that
(g @ g‘;3) N O, # 0. In most cases we can just check whether g§' N &, is non-empty, as

g‘;3 is the empty set. In fact, g‘;3 is only non-empty for the weighted Dynkin diagram

2 27
It is easy to see that in both char(k) = 2 and char(k) # 2

o 11 € g) for =0

0 O
1. . o1
-x2695and<1"_'1)x2(1- -i>:(~~~>egg!f0r 0=0
B RS Ll 1o
o o for o==0
. 9! o==0
x4 € gy for =9

x5 € gj for o=0.

We now take a closer look at the sets g3’ in arbitrary characteristic.

a

o For gon4\ {0} every element is of the form < : ) where a # 0. It is clear that

in this case g3' only contains elements from one orbit.

e The set

(95 D a+8 © 82a+4) \ (92048 U {a1eg + arazearp + araiesayp | a1, az € k})

..bec
contains elements of the form < -a b> ,wherea,b,c € kand (a, b, c) # (d, de, de?),

(a,b) # (0,0) for elements d, e € k. In particular, ca — b2 # 0.
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Suppose first that a = 0. Then b # 0 and

. bec
is suchthatC(: . {’)C‘l = z3.

Next let b = 0. Then a # 0 and ¢ # 0. Let t1,¢2 € k be such that ¢ = ¢~! and
t3 = a~ ! (this is possible since k is algebraically closed). Then

0 0

2 0
C:= 0ty
0 0

1

o oo
-
AR

0
0
0
1

t
issuchthatC(fE‘?;)C‘l = x3.

Now let a,b # 0 and ¢ = 0. Let z € k be such that 22 = —1 and z € k such that

z2 = —a. We choose
xb~1 a:’ll 0 0
R 0 zx— 0 0
= 0 0 —zxzbz~! |-
0 0 0 bz !

b
In this case we have C<; ;6}?)0‘1 = 5.

Finally suppose that a, b, ¢ # 0. Set d := ca—b? and choose z € k such that 22 = ¢
as well as = € k such that 22 = (ac — b?)c~!. Then

z*ll 0.0
R —bd™ " x xed™ 0
= 0 0 T

0
8) € Spy(k)
0 0 bz7"'z

..be
is suchthatC’(::ab)C1 = 5.

In this case we see that the only orbits included in g$' are those of x3 and z5. In
the case of char(k) # 2 this is just one orbit.

» Let g3' = (9o @ 95) \ (ga U gs). Elements in g3’ are of the form < : b_a> for
a,b € k\ {0}. Let t5 € k be such that t3 = b~! and define -

t2a”l 0 0 0
0 to O 0

C:= 0 0t 0 € Spy(k).
0 0 0 t;'a

a

Then C ( : b _:a ) C~! = z,. However, note that in this case, unlike in the other

cases, we need to actually check the orbits of the elements in g3’ @ g‘;g, as g‘;g #
.ac d

(0. This means that we also have to check elements of the form <; b > for

a,be k\ {0} and c,d € k.
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Indeed, let » € k be such that z? = a?b and let y € k such that y? = —b(db — ¢?).
Then we find a matrix

271 27 la7 162 (—cab+yz) 0 0

C = 0 az~1! ya~ b1 (dab®—abc?+zyc)(z~ta=1b72) c Sp4(k)
0 0 z"lab (cab—yz)z~1b~1
0 0 0 z

a c

Lac d
suchthatC(: : ’?_Ca>01 = z4.

We have successfully computed the nilpotent pieces in Sp,(k) and give the result in
the following table.

5 ks
Oo==0
=9 {0}
Oo==0
1 0 s

o0 | O U0y, p=2

0 2 ﬁxdz xs)p#Q
o==0 ﬁz;;

In good characteristic the nilpotent orbits in g correspond bijectively to the weighted
Dynkin diagrams, see Proposition It would therefore be reasonable to expect
each nilpotent piece %‘5 to be just the nilpotent orbit corresponding to the weighted
Dynkin diagram §. Indeed, this is true and it is possible to give a case-free proof of the
fact. The results follows from [23], Section 1.2(a)].

Proposition 3.11 (The nilpotent pieces in good characteristic). Let char(k) be good
for the simple algebraic group G. Let § be a weighted Dynkin diagram and C's the corres-
ponding nilpotent orbit in g. Then the nilpotent piece 4;*°, parametrised by 6, is given by
Os.

Proof. Let char(k) be good for G and e € g be an element in the nilpotent orbit corres-
ponding to the weighted Dynkin diagram arising from a map § €As€ A. By the proof
of Lemmal|2.5|or Proposition[2.12|we have Ad(g)(e) € g3 for a suitable element g € G.
As ,/Vg‘S is a union of nilpotent orbits, it is enough to assume that e € g3. Note that then
the orbit of e under the action of C(6(k*)) = G is a subset of g3. If 2 is this orbit,
we directly get that ¢° C g3 by Proposition For the other inclusion we follow
[23], Section 1.2].

We want to show that any element 2 € g lies in ¢°. It is enough to show that
Ad(GY)(x) is a dense subset of g3. Then Ad(G?)(x) = &° as there exists only one
open dense orbit of G¢ in g3 and &7 is also open and dense in g3 by [7, Proposition
5.6.2]. Now Ad(GJ)(z) is a dense subset of g3 if ad : g} — g3, y — [z,v] is surjective.
Then as ad = dAd, the map defined by Ad is dominant. This is because the sets g¢ are
algebraic sets as the sets of zeros of polynomial equations, and therefore we can apply
Proposition|1.20

In order to see this, let x(, ) be the Killing form. In good characteristic the Killing
form is non-degenerate. For y € g°, note that [z, y] € g). Then 0 = x(y, [z, z]) for all
z € g) means that x(z, [z,y]) = 0 for all z € gJ. Then we have by the non-degeneracy
of x that [z,y] = 0,80y € Cy(z) € D 2. This is because in good characteristic we
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have Cy(z) = Lie(Cg(x)) for all # € g by [17, Theorem 3.10]. As y € g7, N @D, 0l it
follows that y = 0. Thus, we have shown that « : g°, x [z, g3] — k is non-degenerate.
Now [z, gj] is a subspace of g3 and « : g°, x g§ — k is non-degenerate. Then it must
follow that [z, g}] = g3. Consequently, ad : g — g3, y ~ [, y] is surjective and we are
done.

This means that in good characteristic each piece .4;* is given by the nilpotent or-
bit in G of an element corresponding to the weighted Dynkin diagram arising from
§ EASE A. O

3.3 Alternative definition of nilpotent pieces

As remarked upon in the introduction, there exists an alternative definition of the
nilpotent pieces, given in [9] and originally defined in [21] for the unipotent variety.
We use the same notation as before. Additionally, let H*(g) = U,c, 95,-

Definition 3.12 (Nilpotent CP-Pieces, [9, Section 7.1]). Let

H*(g) == H*(9) \ | JH* (g)

where we take the union over all G-orbits A’ of the sets Ay:= {§' € Yg | g‘;i =

g%, foralli € Z} such that H4'(g) C H*(g). Then the sets H4(g) are the nilpotent
CP-pieces in g.

One can show that CP-pieces are disjoint and form a partition of the nilpotent
variety in g, see [9, Theorem 7]. It is in fact true that the nilpotent pieces defined by
Clarke-Premet agree with the nilpotent pieces defined by Lusztig if G is of classical
type. Note that the CP-pieces come from the stratification of the nullcone, defined by
Hesselink in [13], see [9, Theorem 5]. In [33], Xue computes the nilpotent pieces in g*,
using the definition of Clarke-Premet. As it is not clear whether the nilpotent pieces
as introduced by Lusztig agree with the CP-pieces, the nilpotent pieces still have to
be computed in g. In [34] Xue describes the Springer correspondence for the types Gs
and F}, and uses it to compute nilpotent orbit representatives in g. We cannot find the
nilpotent pieces from g* under this correspondence, as they are computed by using the
CP-definition.

Theorem 3.13 ([9} 7.3, Remark 1]). If G is simple of classical type A, B, C, or D in any
characteristic, we have H* (g) = 4,* for all orbits A.

Again, this problem has not been solved for G of exceptional type in bad character-
istic yet, but we hope for the nilpotent pieces and the CP-pieces to agree in all cases.

Remark 3.14. If the nilpotent variety is a disjoint union of the nilpotent pieces, they
agree with the nilpotent CP-pieces, as shown in [9, Remark 7.2.1].

Finally, there is an equivalent way to define the nilpotent pieces as defined by
Lusztig. This definition will prove helpful when computing the nilpotent pieces in
exceptional groups.

Let x € g be a nilpotent element and § € % correspond to a weighted Dynkin dia-
gram. As we are interested in the set g} we will define the “parts” of an element z € g
that lie in it.
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Definition 3.15 (g/-part). Let z € g be a nilpotent element such that we can write
T = ) ,co AaCa Where each e, generates the subalgebra g, and A, € k for a € ®.
Then we define for : € Z the element

[x}g;s = Z A€o

o(a)=1

as the g2-part of z. In particular, we have = = [2] s + Y wca Aacq foralli € Z.
¢ S(a)#i

We can use this in order to give the alternative definition of the nilpotent pieces
defined by Lusztig.

Definition 3.16. Let GG be a reductive connected algebraic group. Furthermore, let

(i) 6 : ® — Z be a linear map describing a nilpotent orbit in good characteristic,
that is, § is a weighted Dynkin diagram,

(i) R be a set of representatives of the nilpotent orbits in g, and

(iii) Rs € R such that z € R; if there exists an element g € G that satisfies

Then 4;° = Uper, O
We prove that this definition does indeed agree with Definition|[3.5]
Lemma 3.17. The above definition and Definition[3.5| are equivalent.

Proof. In order to see that Definition [3.16|is equivalent to Definition |3.5| of the nil-
potent pieces, we will proceed as follows. First assume = € Rj for a fixed weighted
Dynkin diagram ¢. Then there exists g € G such that Ad(g)(z) = [Ad(g)(z)] Ty for

some y € g2; and [Ad(g)(z)]yg € g3 - Let
T:gs, — 9@2/2@3
be the natural epimorphism. Then by definition
Ad(g)(x) € 71 ([Ad(g)(2)]gs + 025) € 0°

and so z € .4, by Lusztig’s definition.

Conversely, assume that z € 4. Then 2 € Ad(g)(¢?) for some g € G, that is
Ad(g)(x) = [Ad(g)(x)}gg + y for some y € g2 ; and [Ad(g)(m)]gg € g3'. But then x € R;
if we choose z to be a nilpotent orbit representative of its orbit. This shows that both
definitions are equivalent. O
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3.4 Nilpotent pieces in classical groups for characteristic 2

Asin good characteristic, the nilpotent pieces for classical groups in bad characteristic,
that is char(k) = 2, have already been computed by Lusztig in [23, 1.6-1.8]. It is worth
noting that the nilpotent pieces are not given explicitly as a union of nilpotent orbits
but in the form of the sets g3'.

As there is no bad characteristic for simple groups of type A,,, we will focus on groups
of type B,,, C,, and D,,. Hence, it is enough to give the results for the groups Sp,, (k)
and SO,, (k). Let V be an n-dimensional k-vector space with char(k) = 2.

We follow Lusztig, [23], 1.4 and 1.5], in stating these results.

3.4.1 Spu(k)

Let n be even. Define the group Sp(V') by taking a non-degenerate symplectic form
(,): VxV — kand defining Sp(V) = {A € GL(V) | Apreserves (, )}. The Lie
algebra of Sp(V) is given by

s(V):={A € End(V) | (Av,?") + (v, Av') = 0 for all v,v" € V'}.

We say a Z-grading of V = @, Vi is s-good if dim V; = dim V_; > dim V_;_, for all
i > 0 and dim V; is even if 7 is even. Furthermore, we want (V;,V;) = 0 for i + j = 0.
Note that in this case we can define § € % by the Z-grading such that 6(a)|y, = a"id
foralla € k* and r € Z.

With respect to this grading we define

End(V)z := {A € g| A(V;) C Visa),
End(V)g:={Aecg| A(V;) C Vyqo, A" : V_,, — V,, is an isomorphism}.

Finally, set 5(V)2 = (V) N End(V)s. Then g} = s(V) and g3 = s(V)2 NEnd(V)3 by
23, 1.4].

3.4.2 S0,(K)

First of all, consider the group O(V'). For O(V') we take a non-degenerate quadratic
form @ : V — ksuch that (v,v") = Q(v +v') — Q(v) — Q') for all v, € V where
(,): V xV — kis the associated symmetric bilinear form. Let R be the radical of
(,)-ThenO(V) ={A € GL(V) | Q(A(v)) = Q(v) forall v € V'}.

Now let G = SO(V) be the identity component of O(V'). The Lie algebra of G is given
byg=0o(V)={A € End(V) | (Av,v) =0forallv € V, A|g = 0}.

A Z-grading V = @,., V; is called o-good if:

e dimV; =dimV_; > dimV_; s forall: > 0,
» dimV; is even for any odd 7,
e (V;,V;) =0wheni+j # 0, and

* Qlv, =0fori #0.
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As before, define sets

End(V)z :={A e g|A(V;) C Vrya},
o(V)2 :=0o(V)NEnd(V)ga,

n
2

Az : V_, — Vpisinjective and
o(V)g: =L Aco(V), Q\A%(V_n) is non-degenerate if n is even,
A" . V_, — V, is an isomorphism if n is odd

Then g3 = o(V)$ by [23, 1.5].
The previous results lead to the following theorem on the nilpotent pieces in classical
groups.

Theorem 3.18 ([23, A.6]). The nilpotent pieces </Vg‘ form a partition of the nilpotent
variety g of g if G is simple of classical type A, B, C, or D in any characteristic.

3.5 Some special pieces

We are now in the position to describe a few nilpotent pieces. Every nilpotent piece
not described in this section will have to be computed case-by-case.

3.5.1 The diagonal cases

Let e € g be a nilpotent orbit representative, where g := Lie(G) for a group G of
exceptional type. Then e is either in an exceptional orbit, that is, an orbit which only
occurs in bad characteristic, or e is in a non-exceptional orbit, see [20, Theorem 9.1
and Tables 22.1.1-22.1.5]. Now each orbit gives rise to a so-called T-labelling of the
Dynkin diagram which in good characteristic is the weighted Dynkin diagram ¢., see
Deﬁnition We will refer to the cases in which we check whether e € .#;** as the
diagonal cases.

Lemma 3.19. Let e € g be a representative of a nilpotent orbit, where g is the Lie algebra
of a group G of exceptional type. Let 6. be the T-labelling for the orbit of e, as noted above.
Then e € A %.

Proof. Firstassume eisinanon-exceptional orbit. By Propositionwe havee € ggE.
Furthermore, the same Proposition shows that C¢(e) C G‘;‘fo. But then it follows
automatically that e € g3 by definition, so e € .#;*% as claimed.

Now suppose ¢ is the representative of an exceptional orbit. Then we can write e =
€ + e, for some root o € &, see [20, Chapter 14, text after Theorem 14.1]. Here € is
the nilpotent representative of the non-exceptional orbit with the same labelling J..
Considering the representatives in Table we see that there are two options. If the
representative e is in gge, then Cg(e) C G, and therefore e € ggﬁl by [20, Theorem
14.1]. Otherwise, e = € + e, where [e]gge = € as we can see by checking all cases

in Table As ¢ is a standard distinguished element with ¢ € gge, it follows that
Ca(e) € G%, by [20, Lemma 2.26]. This means that [e}gae — ¢ € gi¢'. In both cases we
= 2

have e € 1", O
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Remark 3.20. This shows in particular that

M=UA
1)

where § runs over all weighted Dynkin diagrams. Note that it does not follow that the
nilpotent pieces are disjoint.

3.5.2 The regular piece

Let § be the map corresponding to the weighted Dynkin diagram with weight 2 for every
simple root. This is known to always parametrise a nilpotent orbit, see [7, Chapter
13.1]. We will call this the regular diagram and the corresponding piece the regular
piece. In this case, we have g5, = @ 4+ 9o and g5 = P, da-

Proposition 3.21 (The regular piece). Let %‘ be the regular piece. Then </Vg‘ = O,
the nilpotent orbit of x = ) 11 ea With 0 # e, € go, for all a € 1L

Proof. Let 6 eAc A correspond to the regular diagram and suppose that y € gis a

nilpotent element such that y = Y.y Ages € g with A, = 0 for some a € II. We fix
this « for the rest of the proof. For v, 5 € ® let ps ,, g3, € N be so that

B+ppyy €D and B+ (psry+ 1)y ¢ @,
B—aqsyyEP and B— (g~ + 1)y ¢ @,

see [4, VI, §1, no. 1.3, Proposition 9] and (I.I). For v,3 € Il and 8 # ~ we have

48,y = 0.
Lett € T and « € 1II fixed as above, such that §(t) = (—1)Ps= forall g € 11\ {a}
and «a(t) = —1. Then set g := uq(1)tns, us(—1) by the Bruhat decomposition [1.51

This choice is possible by Dedekind’s theorem ([19, Chapter VIII, §4]) and from [15,
Lemma 16.2 C]. As ng, = uq(1)u_a(—1)ua(1) and u_o(—1) ¢ G, we have n,, ¢ G,

However, uq(1), t, and uq (—1) are elements in G, so g ¢ GZ,. We want to show that

Ad(g)(y) = y-
To compute the action of Ad on g we use the formulas from Section|1.2.

Ad(ua(—1))(y): Recall that gg , = 0, so (k+zﬁv°‘) = (}') = 1. We have

Ad (ua(—1)) (1) = Ad(ua(=1)) (D Ages)

Bell

= > AsAd(ua(—1))(ep)

Bell

=D % D (k +kQ5,a> (—1)*epsra

pell k>0
B+kacd

=> A Y (—DFegipa =19

BEIl pB,a>k>0
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by Section

Ad(ns,)(y'): We have s4(8) = 8 — (¢80 — Pp,a) = B+ psac for o, § € II, see Section
Then

Ad(ns,)(y') = Ad(ns,) Z Ag(— 65+ka)

Bell,
b3, a>k>0

= > Ag(=D"Ad(ns,)(€s1ka)

Bell,
ps, a2k>0

Z )\B )p/a o e,@-l—(pg,a—k)a

Bell,
pB,a>k‘>0

> As(=1)PPesy g ke =Y
Bell,
pﬂ,a>k’>0

by Section (2).
Ad(t)(y"): An element ¢ € T acts on the elements e, € g by Ad(t')(en) = a(t')eq. It
follows that with the above choice for ¢t we have

Ad()(y") = Ad()( Y As(=1)Pegy (s 0 —k)a)

ﬁ€H7
pﬁ,a>k>0

= D Ap(=1)PPeAd(t)(€p1(ps 0 —h)a)

BGH’
p@ a>k>0

Z )\ﬁ 1)P8eB(t)a ()pﬂ‘aikeﬁ+(p/@’a7k)a

BeEll,
pB,a>k>0

aik —
= E /\6(_1)176, €B4(p0—k)a = y///.
5€H7
pﬁ,a>k>0

Now

Z (_1)keﬁ+ka = Z (_1)pﬂyaikeﬂ+(p37afk)aa

Pg,a2k>0 Pg,a=k>0

therefore ¢y = 4/ by our choice for ¢.
Ad(ua(1))(y"): Finally,

Ad(ua(1))(y") = Ad(ua(1))(y) = Ad(ua(1))(Ad(ua(=1))(y)) = y.

This shows that g € C(y),soy ¢ g3
Conversely, let z = Y~ e, asabove and g € G\ GZ,. We can write g = u/tn,u by

the Bruhat decomposition
Let w # 1. Then, as = € g3, it follows that

2’ == Ad(u)(z) € g2, and

2" = Ad(nu)(7) € g2, & P a5
Bed—
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as there is at least one y € ®* with \, # 0 such that w.y € ®~ fora’ = 35 4+ Ages,
(eg) = g3, and Ag € k (otherwise w.®* C ®* which is only possible for w = id, see for
example [25, Theorem A.22]). In particular, Ad(n,)(z') ¢ g2,. But then Ad(ut)(z") ¢
g3 and so there is no element g € G \ G, that centralises z.

As we can find t € T such that A\g = §(¢) for all g € Il and A\g € k* (again by [19,
Chapter VIII, §4] and [15, Lemma 16.2 C]), it follows that

05 ={D_ Aseg | Ag # 0forall B € IT}.
Bell

This proves the claim. O

3.5.3 The highest root piece

Lemma 3.22. Let v € ® be the highest root. By checking the weighted Dynkin diagrams
for G of exceptional type, one can see that there exists a diagram 6., such that gg” = g,
We will call this the highest root diagram and the corresponding piece the highest root
piece. In this case, ,/1@6” =0,

Proof. The highest root diagram corresponds to a non-exceptional orbit and therefore
we have by Lemma thate, € Jl/gé”. In fact, since gg” = g, this proves that gg”! =

g~ \ {0} and therefore Jl/gd” = 0, the orbit with representative e,.
O



4 A computational approach

This chapter focuses on finding the nilpotent pieces by using computational meth-
ods. In order to compute the nilpotent pieces as defined in Definition|[3.5] we will first
present a few results on the action of G on its Lie algebra and in particular on the
sets g3'. Having computed the nilpotent pieces in the Lie algebras of exceptional type,
it should be within reach to prove that Lusztig’s nilpotent pieces agree with the CP-
pieces as noted in Remark|[3.14]

As before, G will denote a connected reductive algebraic group over the algebraically
closed field k and g is the Lie algebra of G. We will write ¢ for a weighted Dynkin
diagram where § €A;€ A with notation as in Section[3]

4.1 Computing the action of Ad

As mentioned in section|1.2.5{we can compute the action of G via Ad on g up to sign by
following [11]. We will consider the actions of a unipotent element in B, an element
of the torus and a Weyl group representative respectively. As the action of Ad on g
is linear, it is enough to examine this action on the elements ¢, where (e,) = g, for
a € ® since every nilpotent element has a conjugate which is a linear combination of
the elements e,.

4.2 Practical aspects

Our aim is to develop an algorithm to compute the nilpotent pieces. In order to do so,
we would like to decide whether a nilpotent orbit representative = € g is contained in
a nilpotent piece .#;* for a given orbit A. This can be done by checking two things, as
we have already seen in Definition|3.16

1. Check whether there exists some element g € G such that Ad(g)(z) € g2, for
d €Ac A. If not, then z cannot lie in %‘.

2. If the condition in (1) is fulfilled, we need to take a closer look at the g3-part of
Ad(g)(z). By Definition [3.15|we have

Ad(g)(2) = [Ad(g)(x)]gg + Y _[Ad(9)(2)]gs.

123

and so Ad(g)(z) € 0® C A if [Ad(g)(2)]y; € g3 Conversely, suppose that there
isno g € G such that [Ad(g)(z)]y € g9 Then z ¢ .#;* as otherwise we would
have z € ¢ for some h € G, h.0 € h.A € A and by Lemma 3.8 we would have

64
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Ad(h™")(z) € o°. In particular, [Ad(h~")(x)]y; € g3 which is a contradiction.
We can therefore concentrate on deciding whether [Ad(g)(z)] o € ad'.

As @ is a connected reductive group, every element g € G can be written uniquely
as g = u/tn,u by the Bruhat decomposition, see Definition[1.51] Furthermore, every
element u € [[,cq+ Ua can be written as u = [] cq+ ua(ca) for fixed isomorphisms
Uq : kX = Uy, co € k*, and a fixed and total ordering of ®* as in Theorem[1.34] Thus,
after choosing a fixed set of preimages n,,, w € W, the elements in G can be paramet-

rised by w € W, co, ¢, € k* such that u = ], cq+ ua(ca), v = ] qear ualc,), and

w.aed™
teT.

Let g, := u/tn,u € G as above. Since W is finite, it can be possible to decide whether
Ad(gw)(z) € g2, for each w € W. In practice, we might encounter restraints such as
memory space or time, that might make it difficult to compute the whole Weyl group
W or decide whether Ad(g.,)(z) € g2,.

Following Section|1.2.5|we can compute

I11]

Ad(gw)(x) = Ad(u'tn,u)(x) = Z Aw,g€g + Z Pawilis 4.1)
Bed i=1

where the h; form a basis of Lie(T') = t and A, 3, itw; € k depend on g,, and can be
determined by the rules in Section|1.2.

To check whether we can choose g,, such that Ad(g.)(z) € g2, we need to solve the
system of non-linear equations given by (4.1):

Aw,8(Cas vy, Cor) qareat = 0 forall g e ®withd(8) <1,
~yell

i (Cars Ay o) gt =0 foralli € {1,...,[TI[},
vyell

(4.2)

where )\, 3, (i are polynomials in the variables c,, ¢/, and d, determined by

=[] valca), v'= [ wa(dy), and t=]] h(d,)
acdt o edt ~ETT
wl.a'ed—
as given in Section[1.2.5](3). Using Grobner bases, we can decide whether the system
can be solved and determine a solution. In Section[6.3we will take a closer look at how
to solve these systems of non-linear equations.
If Ad(gw)(z) € g‘;Q, we continue with step (2) from the above list, otherwise we check
whether Ad(g.,)(z) € g2, for the next w € W.
It would be desirable to simplify the elements g,, without losing any information. First
of all, we would like to compute Ad(g,,)(z) only for certain elements w € W. To this
end we define Weyl group elements w € W of weight 0.

Definition 4.1. Let § € % be a map arising from a weighted Dynkin diagram and let
W = Sq, - Sa, € W be a reduced expression of w and «y,...,«, € II. Then we say
that w has weight 0if §(«;) = - - - = §(a,) = 0. These elements form a subgroup of W
which we will denote by W¢ := (s, | a € I, 6(a) = 0).

We can show that n,, fixes the set g2, if w has weight 0. It turns out that an even
stronger result is true, as stated in the following lemma.
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Lemma 4.2. Let § € 9 be a map arising from a weighted Dynkin diagram. Let g,, =

w'tng,
@
(i)

u € G as in Definition and y € g%,. Then:

The element g,, is contained in G, if and only if w € W{.

Ifgw S Ggov then Ad(gw)(y) € 922'

In particular, Ad(g.,)(y) € 2, if and only if Ad(n,u)(y) € g2,.

Proof.
@)

(i)

To

To
To

Write g,, = u/tn,,u using the Bruhat decomposition with the notation from Defin-
ition Clearly, any elements u € U and t € T are contained in G, so
u,u/,t € G2, and therefore g, € G, if and only if n,, € G%,. Furthermore,
let s, € W be the reflection for the root « € ®. Then we can choose ns, =
o (1)u—_o(—1)us(1), see Section Note also that s, = s_, in W, there-
fore n,, = ns__. It follows that if 6(a) > 0 we have u,(1) € G‘;O and there-
fore ny, = ua(1)u_oa(—1)ua(l) € G, if and only if §(a) = 0. If, on the other
hand, §(e) < 0, we have u_o(1) € G as well as t € G and therefore n,, =
ns_ot = u_o(L)ua(—1)u_q(1)t € G%, if and only if §(e) = 0. This means that for
W= Sq, * Sq, We have n, € G if 6(ay) = -+ = §(ay) = 0, i.e. if w has weight
0.

Conversely, let w = s,, - - - 54, be a reduced form of w € W. Since ¢ arises from
a weighted Dynkin diagram, we have §(a) > 0 for all « € ®*. Then G‘;O =P =
BW;B is a standard parabolic subgroup, where ®; = {a € ® | §(«) = 0} and
Wi = (sq | @ € @j). Clearly, Wg = W;. By the uniqueness of the Bruhat decom-
position in Theorem'EI, ny € G, if and only if w € W;. Therefore, §(c;) = 0
foralli € {1,...,r} if n, € G%,. This proves the claim.

To see that Ad(g)(y) € g‘;z, it is enough to show that for each es € ggwith g € @
such that 6(8) > 2 the following claims are true:

(1) Ad(ua(ca))(ep) € g2, forall ¢, € k,
(2) Ad(t)(eg) € g2, forallt € T, and
(3) Ad(nw)(eg) € g2, for all n,, € GZ,.

(1): We have

Ad(ua(ta))(eg) = Z tlgzck,a,ﬂeﬂ+ka € 9(;27
B+kacd

k=0
for some ¢y, ¢ 05 € kand §(8 + ka) = 0(5) + kd(«) > 2 asboth k£ > 0 and
d(a) = 0fora € .

(2): Fort € T'we have Ad(t)(eg) = B(t)eg € gg, so the action of T stabilises g‘;Q.

(3): By Section (2) we have Ad(ny)(gs) = gwp- As before, write w =
Say * " Sa, Where (o) = --- = d(a,) = 0and «; € I foralli (since §(5) > 2,
the reflection sz is not in this product). For two roots «, 5 € ® we have
5q0(B) = B + kqpa for some ky g € Z. If §(a) = 0, then 6(so(8)) = d(B).
Iteratively, we get §(w(3)) = 6(8) and s0 Ad(n.,)(g5) = Gu(s) € 922-
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Finally, let w € W be an arbitrary element of the Weyl group and suppose that

Ad(gw)(y) = = € g2,.

Asu't € G, sois (u't)~t € G, and therefore by the above calculations

Ad(nyu)(y) = Ad((u't) 1) (z) € g,.
Conversely, suppose that Ad(n,u)(y) = = € g2,. Since, as before, u't € G2, it
follows that Ad(u'tn,u)(y) = Ad(u't)(z) € g,. This proves the claim. u

In particular, this shows that for all elements g € G‘;O we do not have to check
whether Ad(g)(y) is in g2,, as the above lemma states that this is the case whenever

y e 9(;2-

Corollary 4.3. Letu = v'v” foru € U, v’ € [[ pee+ Usandu” € U, Thenitis enough
w.aedT

to check whether Ad(n,u")(y) € g%, in order to see that Ad(n,u)(y) € g2, .

Proof. By Theorem [1.34we have n,u = nyu'ng'n,u” and nyu'ng' € U € G%;. So

Nt = (nyu'n,n,u” and by the above lemma the claim follows. O

Another direct consequence is the following: Suppose we already know that

Ad(nwu)(y) € 02 or  Ad(nywu)(y) ¢ 02,

for some w € W. Then for all w' € W with weight 0 we have Ad(n, n,u)(y) =
Ad(tnyu)(y) € g2, (resp. Ad(tny,u)(y) ¢ g2,) for some t € T and therefore
Ad(nw’wu) (y) € 9522 (resp. Ad(nw’wu) (y) §é g(;Q)

There is a similar result when we consider the gj-part and the set g3'. From now on we
will only consider 6 € 2 where § arises from a weighted Dynkin diagram.

Lemma4.4. Let z € gbeanilpotent element andw € W, u € U,, with Ad(n,u)(x) € 9522
and [Ad(nyu)(z)]gs ¢ a3
Then we have [Ad(ny,u)(x)]y ¢ g3 for anyw' € Wy

Proof. As Ad(n,u)(z) € g2, it follows that Ad(n,,u)(z) € g2, for any v’ € W{ by
Lemma[4.2l

For g € GJ we have (by a similar calculation as in the proof of Lemmaf4.2) Ad(g)(g?) =
gf for each i € Z. Note that for the representatives n,, n,/, nyw € Ng(T) we have
Ty = tNyy Ny, for some ¢t € T. Then

[Ad(nru) ()]s = Ad(tny) ([Ad(nwu)(2)]g)

since n,, € GY.

To simplify notation let y := [Ad(nwu)(az)]gg and ¢/ := [Ad(nw'wu)(l’)]gg- Suppose that
there exists g € G\ G, with Ad(g)(y) = y,50 g € Ci(y). Then Ad(tn.gn, t =) (y) =
y'. Astn, € Gy and g ¢ G2, we have tn,,gn_/t~1 ¢ GS,andsoy’ ¢ g'. O

This lemma simplifies the calculations further: It is enough to check whether Ad(n,u) €
g‘;Q for only one element w € W of every right coset of W. However, we do need some
further results to justify focusing on elements of the form Ad(n,u)(z).

Lemma 4.5. Let z € g2y, u = [[5cq+ ug(cs) € U, cg € kand §(8) > 0 forall oo € @+,
Let u := HBG(I)* ug(cg) € U.

5(8)=0
Then [Ad(u)(z)]gs = Ad(@)([z]g)-
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Proof. We have z = ) .4+ A€o for suitable A, € k. Furthermore, let 5 € & and
6(a)=2
consider Ad(ug(c))(x) for some ¢ € k. We have

Ad(’LLB(C))($): Z )\a Z Ca,k,BC€a+kp
acdt k>0,
o) =2 at+kped

and

Ad(ug(@)([z]5) = D Aa D Cakplatks
acdt k>0,
sa)=2  atkped
for some ¢, 1, 5 € k. As 3 € &+ we have either §(8) = 0 or §(3) > 0.
In the first case, é(a + kB) = 0(«) for all k£ € Z>p and in the second case we have
da+kB) =d(a)+kd(B) > d(a) forall k € Zy.
So [Ad(us(c)(x)],5 = Ad(ug(c))([z]43) € g if 6(8) = 0.
Suppose §(3) # 0. Then

Ad(ug(c))(z) = Z (Aata + Ao Z Cak,B€a+ks)

aEdt k=0,

§(a)=2 a+kped
+ Z Ao Z Ca,k,BE€a+kp>
acdt k>0,

5(a)>2  a+kped

and 50 [Ad(us () (@)]yg = 3 peat Aaca = [2],5-

d(a)=2

The claim follows inductively. O

Proposition 4.6. We use the same notation as in Lemma Suppose that
[Ad(nyu) ()] & of.
(i) Then forall v’ € U andt € T it follows that [Ad(u'tn,u)(z)]y ¢ a3’ as well.
(ii) For wo € Wg we have [Ad(nugwu)(2)]gs ¢ 63 -

It is therefore enough to check whether [Ad(nwu)(x)]gg is in g for w contained in a right

transversal of Wy in W in order to decide if [Ad(u'tnwywu)(x)]ys is in g3 for all v’ € U,

t € T and wy € W{.

Proof. Lety := [Ad(nwu)(:p)]gg.

(i) Ast € T we have [Ad(tnwu)(x)]gg = Ad(t)([Ad(nwu)(m)]gg) = Ad(t)(y). By the
Lemmaﬂwe can write [Ad(u'tnyu)(z)]ys = Ad(at)(y) for @ as in Lemma

Asy ¢ g3 there exists g € G\ G2 suchthat Ad(g)(y) = y. Then h := aitg(at)~! €
G\ Gy asat € Gy and Ad(h)(Ad(at)(y)) = Ad(at)(y) which proves (i).

(ii) As we have seen before, n,,, = tn,n, for some ¢ € T which stabilises the
sets gJ. Since wy € W¢ we have n,, € G and therefore [Ad(nyywu) ()]

o3
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Ad(tnw,)(y) as seen in the proof of Lemma[4.4] By the same argument as in (i)
there exists g € G\ G2 2o such that Ad(g)(y) = y and therefore

Ad(tnug gyt ™) ([Ad(nuguwtn)(@)]g) = [Ad(nuguwu) (2)lgs = Ad(tnuw,) (y).

As tnygngit™h & G 2o it follows that the element [Ad(1ugwu) ()] @ is not con-
tained in g3
2 0

In the next section, we will use the results we just proved to formulate an algorithm
that will decide which nilpotent orbits are contained in a given nilpotent piece.

4.3 Description of the algorithm to compute the nilpotent
pieces

To determine which nilpotent orbits make up a piece .#;* we fixamap  €A€ A arising
from a weighted Dynkin diagram, and for each nilpotent orbit &' in g check whether
0 C A~ We will use the results from the previous sections to simplify the computa-
tions and proceed in several steps, checking if Definition [3.16|is fulfilled.
We fix the following notation: Let 2 € g denote a nilpotent 0rb1t representative, where
x is chosen such that = ) 4+ Aae, for suitable A\, € k. Define tuples

C:::( )a€¢+a

c: = (), ac®™  forw e W, and

/
w “lacd~

d:::(da)aeﬂa

=C

where the entries are elements in a function field over k, which we will denote by F.
Let gu(c,d, ) = u/(¢)t(d)nyu(c) be the Bruhat decomposition of an element in G
over this function field, where

a€dT
wlacd~

t(d) := ][ ha(da), and

a€ll

u(c) :== H Ua(Ca)

acdt

with the h,, defined as in Section and for a fixed ordering on ®*. We write
(e, d, ) = Ad(u' ()t(d)nyu(e))(z)

for the action of g, (c, d, ¢’) on z. Finally, let A, g(c,d, ') € Fforg € ®and pu,(c,d, ) €
Fforie {1,...,|I1|} be defined as in (.1):

1l

Ad(gw(c,d,c)) Z)\wgcdc 65+2szcdc
ped
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Step 1:

Step 2:

Step 3:

Step 4:

CHAPTER 4. A COMPUTATIONAL APPROACH

Let § arise from a fixed weighted Dynkin diagram and z = 4+ Aaca € g for
suitable )\, € k be a nilpotent element and a representative of a nilpotent orbit,
denoted by 0.

Fix w € W. We want to check if for an arbitrary element g,,(c,d,¢') € Bn,B
we have Ad(gu(c,d,d))(z) = zy(c,d, ) € g2,. In this manner, it is possible to
compute the Ad-action of every element in G on .

By Corollary it is enough to check if Ad(n,@)(z) € g2, where

U = Uqa, (Cay ) Ua, (Cay)

denotes an element in U, parametrised by the elements ¢, , . . ., ¢,, € k for some
r € Nand ay,...,a, € ® such that w.o; ¢ &t foralli = 1,...,r. From
now on we will use the notation ¢,, instead of ¢,, for easier reading and let
() = Tyw(Cayy - Ca,) = Ad(ny,@)(z) be the element that depends on the
Cay»

In order to check if Ad(n,u)(x) € g‘;g, we first compute the action of n,,a on x
as in Section[1.2.5] Following this, the resulting system of non-linear equations
for the ¢,, (see (4.2)) can be solved by computing a Grobner basis of this system.
For this we use the standard algorithm in Magma, see |3}, Section 112.4.3] with a
reverse lexicographical ordering. In order to speed this process up, we will first
check for variables that occur in linear equations and solve for those variables.
We will apply this every time we compute a Grobner basis. This approach is de-
scribed in Chapter [6]in more detail. Note that in general the solution (if there
exists one) will still depend on some of the ¢,,. This means that we will have to
check whether [Ad(n,a)(z)]y; € g3’ for each solution.

Suppose there exists a solution such that Ad(n,@)(z) € g2,. As mentioned in
[Step 1|this solution will still depend on some of the c,,. Let y,, := @y (e1, ..., &r),
g;i € {0,1,...,char(k) — 1} if char(k) # 0, and ¢; € {0,1,2...} otherwise, be
the element arising from a particular solution where we replaced the ¢, in . =
Uqy (Cay) -~ Ua, (Ca, ) Dy the solution in which we set the remaining ¢,, to zero if
possible or otherwise another fixed element in the prime field of k. This depends
on which solution is possible, so that we do not divide by zero when replacing
the c,,.

Let 2),(c) := [zw(c)] o0 and yry = [Yw) o3 Dy setting the coefficients of the basis
elements not contained in g3 to zero.

Check if there is an element g,, € G2, such that we have z/,(c) = Ad(gy; )(y.,)-
As in [Step 1| we will use Section to compute Ad(g, )(v,,) and determine
a Grobner basis to solve the resulting system. Note that the solution g,, will
depend on the variables ¢,, that z/,(c) depends on.

Case 1: If such an element g,, € G2 with z/,(c) = Ad(g, )(y,,) exists, we can
focus our computations on !, (c):

Case la: If there isno ¢’ € G \ G, such that Ad(¢')(y,,) = v, then
yi, € g5 and so both y,, € #* and z € 2.

Case 1b: There is ¢’ € G\ G such that Ad(¢')(y,,) = v, Theny), ¢
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Step 5:

g3 As 2/, (c) = Ad(gy, ) (y;,) we have
Ad(g'g,, ) (a7,(¢) = Ad(g') (y) = Wy

and it follows that Ad(gygug’gi;l)(:v’w(c)) = al,(c).
As before gy;ﬂg’gz;l ¢ G, 50 27,(c) ¢ 03 -

Case 2: If there is no g,, € G such that z/,(c) = Ad(gy, )(v,,), we first check
whether Case 1b holds for y,. If it does, we check the same thing for
a/,(c), i.e. if there is an element ¢’ € G \ G, such that Ad(g')(z/,(c)) =
z,,(c). Note that ¢’ may depend on the variables in 2/ (c), so we need to
make sure that this solution holds for all possible values of the c,,.
Sometimes we might find such a g,, € G‘;O only for certain values of
the ¢,,. If this is the case, we will have to check everything in
for the values of the ¢,, := c,, for which no g,, € G, as above exists.
For these cases we need to check separately whether 2/ (c) € g$' for the
arising elements 2!/ (¢) := [2(Cay, - - - » Ca,. )] o depending on the ¢,, .

For each w” € W first check whether w” has weight 0, i.e. w” € W{. If this is
not the case, let g,,» € Bn,»B and note that g,,» ¢ G2, by Lemma 4.2 We want
to check whether g,,» centralises y,,, so as before we compute Ad(g,)(v.,) and
solve the system y/, = Ad(g.~)(y,,) by using Grobner bases. If this system has
no solution, there is a possibility that y/, € g3' and we repeat[Step 5|for the next
element w” € W.

If there is a solution, we take the elements 2/, (c) from[Step 4Jfor which we found
no g € G%, such that Ad(g)(y,,) = «/,(c). We will check whether there is a
solution for z!/ (¢) = Ad(g,») (2 (c)) in each case. If we find a solution, it imme-
diately follows that 7, (c) ¢ g3 and we move on to the next w”’ € W in|[Step 1]
If we have checked each w"’ € W, it follows that this particular orbit is not con-
tained in the piece.

If there exists z/ (c) as in Case 2, that is, there is no element g € G,
with 2/ (¢) = Ad(g)(v.,), we need to check if there is a solution to z//(c) =
Ad(gy) (2l (c)) for each w” € W for which we have already seen that y/, #
Ad(gy)(y,,)- If so, then 2 (c) ¢ g3 and we move to the next w” € W in[Step 1]
Otherwise we continue [Step 5|by replacing y., with 27, (c).

If we do not find a solution for any element in W in [Step 5| we have success-
fully proved that the centraliser of «,(c) is contained in G, and therefore the
orbit &, is contained in the piece. We can move on to check the next orbit. As we
already know that certain orbits are contained in certain pieces, see Lemma|3.19,
we expect that in most cases ¢, will not be contained in /I{f , see also Conjecture
This means we can run (and try to optimise) this algorithm keeping in mind
that the most likely outcome is that there is an element g ¢ G‘;O centralising
[Ad(nwu’)(2)]

ad

There are a few ways in which to simplify the computations further: If ng € GJ for
a fixed w € W, we check if Ad(ny)(y,,) = y,, where y,, is as in above. If this is
the case and we know that there exists a g € G \ G2, such that Ad(g)(y.,) # v.,, then

for

-1 -1 -1 -1 -1, -1
h‘ € {gnu”; 7gnlﬂan1ﬂganw ganﬁ}gnﬁ] 7n’lﬂgnu~17n@ gnw 7nu”) gn’lﬂ}
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it follows that Ad(h)(y.,) # v,, by Lemma This means that we do not have to
check whether the above elements stabilise y,,. Especially in groups with smaller root
systems, it usually takes longer to compute the Bruhat decomposition of the elements
in the above set than to compute the nilpotent pieces without it. We will therefore not
always use this approach.

Similarly, if & € U := [[,cq+ Ua With Ad(a)(y,,) = ¥, it is enough to check whether
Ad(ag)(y.,) = vy, or Ad(gu)(y.,) = y.,- This means we may choose  in the centralizer
of y/, in such a way that g depends on fewer variables ¢, : If g = u/tn,,u as in Definition
Where U = Ugy () ey (c,) aNd U = Uq, (Cay) - - - Uay (Ca,) TOT coy, €, € Kk,
then choose 1, 1y € U such that v’ := @,/ and v := @ou depend on fewer variables
Cays Co, € F. Tt will now be easier to compute Ad(t1gw2)(Yr,) = Y-

Example 4.7. Consider a simple algebraic group of type G over a field k with char(k) =
3, simple roots IT = {a1, a2}, and Dynkin diagram &= .

1 Qa2

We have already seen that 3523 is a weighted Dynkin diagram. We want to see

whether the orbit described by = := e,, is contained in the piece for this weighted
Dynkin diagram. The Weyl group has only 12 elements and we only have to consider a
transversal of the subgroup generated by W¢ = (s,, ). We choose the elements

{ida Sags SazSars SazSarSasgs (SOQ Say )27 (Saz Say )25(12}-

We will apply the algorithm for the action of w = s,,. We have the set of positive roots
ot = {041, o, a1 + a9, 200 + aig, 3aq + ai, 3y + 2a2}.

Step 1: Check if Ad(nyua,(cas))(z) € g2,. This is enough, as w.ae € ®* forall « € T
with o # as. Then Ad(nyta, (Cas))(%) = Cazeas + €ay+as- This element is in g2,
if o, = 0.
This means z,,(c) := Ad(ny)(z) = €q,+a,- In this case, z,,(c) does not depend
on any variables, so we can skip replacing them and move on to Step 3.

Step 3: Infact, 6(ay + ag) = 2,80 2}, (¢) = .
Step 4: Asy, = x},(c) we can skip this step.

Step 5: We simplify this computation by finding elements v € U and ¢ € T which cent-
ralise z,(c). In order to do so, we compute the elements u € Uandt € T
for which Ad(u)(zy(c)) = zw(c), Ad(t)(zw(c)) = zw(c). This is true for u =
Uy (Cloy ) ey 103 (Coy 4a,) ANA E = D, (do,) With €, ¢l 4, € kand d,, € k*. That
means we only have to consider torus elements without the factor ., (¢) € T and

unipotent elements without the factors

Uqy (C,O(Q )Ua1+a2 (C/ozl+a2) € U
Consider the element gy, (c, d, ') 1= u'ha, (day )15y, s0ysa, Us FOT
!/

U = ual (6;1)u20¢1+042 (6/2a1+a2)u3041+062 (6§)a1+a2)7 and

u = uOCl (C:)q )u2041+042 (6/2041+012)u3041+a2 (Cgaﬁraz )u3041+2042 (Céa1+2a2 )7
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o ~/ / / / / _
Wlth Cal ’ 02a1+a27 C3O{1+O¢27 Cal ) 62a1+a27 63a1+a27 CSa1+2a2 € k‘ Then Ad(gw)(xw(c)) -
>‘a16041 + )‘O<1+0426041+012 + )‘2a1+0262a1+0¢2 + A*ale*al + :ulhl with

2 -
)\al — c/ 0/2

o] o1
da,

2 ;o

— 3
>\041+062 - d ca102a1+a2 + 2da27
a2
2 2
o A A A 3
)\2041"!‘042 - da Ca10a162a1+a2 + da CoqCalCSal—l—ag + dOéQCOzl’
2 2
1
_ /
Aoy = 7 Cons
a2
/,Ll — LC/ é/
dag (e Ste%]

Thus, in order to see if there are values of the variables such that Ad(g,)(y) = v,
we need to solve the system

)

Aoy =

)‘aq +oaz —

i

A, =
p =

i

0
1
A2a;+as = 0,
0
0

We find a solution given by

— ~ ~/ ~/ / / /
da2 - 2’ Coq - Coq - 07 and 02041+0¢27 C3O¢1+0¢27 62061"1‘()(27 63041—1—0427 CSO¢1+2042 € k

That means z,,(c) ¢ g5
Note that all steps have to be repeated for every element w in the transversal in order
to be able to conclude that z ¢ .4,°.

A pseudocode to compute the nilpotent pieces

We summarise this section with the following pseudocode and graphic. The code is
rather brief and only sketches the most important steps in the algorithm.

Algorithm 1 Computation of the nilpotent pieces

1: procedure Pieces(zx, S, W, 9)
INPUT:
x - nilpotent orbit representative
S - type of root system
W - Weyl group
0 - weighted Dynkin diagram
OUTPUT: result whether z is in .4,
2: find all elements v € U =[] ,cq+ Ua s.t. Ad(u)(z) = x // we get U from the root
system
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3: save the indices i of u,, (¢;) in a list Lu where u,, (¢;) is a factor in w such that ¢;
can be chosen arbitrarily and Ad(uq, (¢;))(z) = x

4: save all w € W with weight 0 in a list L
5: compute a right transversal T of all the elements of weight 0 in W
6: L2 :=]]
7: forallw € T, w ¢ L2 do
8: y := Ad(nyu)(z), u not containing any factors u,,, i € Lu
9: if y € g2, then
10: z + replace all variables ¢; in y by 0 or 1 // in practice these two values are
usually enough. If not, we have to choose another value in the prime field.
11: Y = [Ygs
12: 2= [z]gg
13: check if there exists g € G, such that Ad(g)(z) = y,,
14: if there exist values of the ¢; such that there exists no such g then
15: 21 < values of the ¢; such that there exists no such ¢
16: end if
17: for all w’' € W do
18: if ' ¢ L then
19: if Ad(gw)(2') # 2/ then
20: go to the next v’
21: else
22: check the same for all z;
23: if Ad(gy)(21) # 21 then
24: go to the next v’
25: else
26: go to the next w and save all g.w for g € G in L2
27: end if
28: end if
29: end if
30: end for
31: else
32: go to the next w and save all g.w for g € G>¢ in L2
33: end if
34: end for
35: if for all w € T there exists w’ € W \ L with Ad(g,/)(z') = 2’ then
36: return “z not in piece”
37: else
38: return “z in piece”
39: end if

40: end procedure
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We also give a schematic representation of the programme for a better overview.
Note that this is a rather simplified version of the programme, as it does not display

every step in great detail.

nilpotent orbit weighted Dynkin group and
representative x diagram structures

compute additional data:
uw € U with Ad(u)(z) =z

actionof g, € Gonzx

[not checked

[guw-m € 922]

compute additional data:
check whether there exists g,, € G,

with Ad(gy, ) () = Ad(gw)()

forall g.s] | action of g, € G\ G,

on [gw.x}gg

[g. does not

| / / input

| D process
<> decision
8 additional data
() start/stop

[guw-T & 9‘;2]

centralise [g,,.x] o . [gw centralises [g,,.z] o

[no g.» € G'\ G2, centralises [g,.7]y]

L orbit in piece }

Stop

)

L orbit not in piece }

-

Figure 4.1: Schematic representation of the algorithm to compute the nilpo-

tent pieces



5 Alternative approaches

In this chapter we present some alternative approaches to the problem of computing
the nilpotent pieces. The first approach will not lead to viable solutions or give any
great advantages compared to the algorithm introduced in the previous chapter.

5.1 Computing the centralizers of the orbit representatives

One alternative approach is to focus on computing the sets g3'. For this we would
have to compute the centralizer of each nilpotent orbit representative which is not
exceptional. We recall the fact that Cg(z) C G‘;O where § is the weighted Dynkin
diagram for the orbit of = in good characteristic, see Proposition However, this
does not necessarily mean we can easily solve the problem.

Once C¢(z) is known, we can compute the centraliser of any element y := Ad(g)(z)
in the orbit of x for g € G. The centraliser is given by gC(x)g~". In order to decide
whether y is in g3, it is enough to find one element not contained in G, (provided
y € g3). Note, however, that g does depend on indeterminates defined over k and so
do the elements in Cg(z) that we conjugate with g. In particular, we have to check
for values of the variables where denominators in the solution turn to zero. This step
turns out to take too much computation time in general, so that even in type F} it is
not always possible to arrive at a solution. We will look at a small example in Sp, (k).

.1
Example 5.1. Consider the orbit representative z3 := ( -- -1 ). We can compute

(by using the Bruhat decomposition) that for ¢1,t, € k* and di, a,a3,a4,b; € k the
matrices

t1 t1a1 ti(araz+a3) ti(aiaz+ays)

| ot ast]! asty! N
Cr=1,"% " O , where a; = 0 if char(k) # 2, and
0 o 0 trt

—b1t1 (blt%al—l)tgl (blt§a1(a1a2—a3)—a2)t2_1 (b1 (a1a3—a4)t§a1—a3)t2_1

O, i— —to —taa1 —t2(araz+as) —t2(araz+as)
2= 0 0 —bltg(letgal—l)_l —(b1t%(l1+1)(2a1b1t%—t2)_1 ’
0 0 t2(2b1t%a171)*1 7t2a1(2b1t%a171)’1

where a; = b; = 0if char(k) # 2,

centralise x3. Each element centralising x5 is of the form of one of these matrices.
Clearly, these matrices are already dependent on a number of variables which will
complicate further computations. We now need to figure out if the orbit of x3 inter-
sects with one of the sets gJ' for all weighted Dynkin diagrams ¢. In order to do so, we

76
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compute Ad(g,)(z3) where

Gu = Ua(ch)up(ch)uats(Chys)tzats(Coat p)tnuwtialca)us(cs)tats(Cats)uzatp(C2a+5)

and ¢, = 0ifw.y € ®*. Furthermore, w € W, where W is the the Weyl group of Sp, (k),
teT,and cy,c, € kforally € . The result is a linear combination of elements of the
Chevalley basis. We then have to solve a system of non-linear equations arising as in
(4.2), where we set the basis coefficients in the linear combination of the basis to zero

if the basis element is not in @ ,co+ ga-

0(a)=2
Here, this means that we want to find a solution such that Ad(g,)(x3) € g3. If there is
a solution, we will evaluate g,, at the elements in the solution, leading to an element

g., € G. Then the centraliser of Ad(g,,)(z3) can be easily computed as

t1,t2 € k¥,

CSP4(k) (Ad(gil’)(x?’)) - g:UClg’iu_l ai,a2,03,a04 € k7

a; = 01if char(k) # 2
t1,ta € k™,

g:uCQg;U_l a17a27a37a47b1 S k7

a; = bl =0 if Char(k) 75 2

Thus, it is easy to decide whether Ad(g/,)(x3) is contained in g3' or not. For instance,
consider the element g,, for w = 1. Then g, = tuq(ca)ug(cs)tats(Cats)t2a+8(C20+8)
or as a matrix

t1 tica t1(cacg+catp) t1(cacatpg+caa+s)

0 t tacg tacatp
Guw=10 o t5 —caty ! ;
0 0 0 7!

where ¢1,ty € k* and cq, ¢3, o448, 20+ € k. Thus,

00 tito Zt%al

Ad(gw)(w3) = <0 00 tity > :
00 0 0
By Example [3.10, the result is contained in g3 only for the weighted Dynkin diagram
0 given by 8=¢<23 , as tita # 0. Then the centraliser of Ad(g,,)(x3) is given by matrices

of the form ¢,,C1g,! and g,Cag,," with t1,ts € k*, a1,a2,a3,a4,b1 € k, and a; = 0 if
char(k) # 2, respectively a; = b; = 0 if char(k) # 2. All matrices of these forms are
contained in G‘;O. This is because g, itself is contained in G‘;U, as well as C7 and Cs.
Thus the orbit of 23 has a non-trivial intersection with g3

Finally, we have to decide whether there are elements = € g3' N &, such that elements
of the form = + y fory € g‘;3 are not in the orbit of x3. However, note that in this case
g‘;g is empty. Otherwise, we would have to check whether general elements of the
form z3 + y, y € g2, are in the same orbit as z;.

5.2 The nilpotent pieces in Levi subgroups

As it is easier (and faster) to compute the nilpotent pieces for groups of smaller rank,
the question arises whether we can use these results in order to simplify the calcula-
tions. We note for instance that simple groups of type E; contain parabolic subgroups
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P with their Levi subgroups having root systems of type Ag, Fg, and Dg, which can
easily be seen by the Dynkin diagram:

Ag (.

Figure 5.1: Dynkin diagrams of E; with subsystems Ag, Fg, and Dg

There are several difficulties to consider when comparing the nilpotent pieces in Levi
subgroups G to the nilpotent pieces in the bigger group G.

1. Note that the weighted Dynkin diagrams of G and G are in general not compat-
ible with respect to their weights.

2. We need to know which nilpotent Gy-orbits are included in which nilpotent G-
orbits. As there are usually more G-orbits than Gg-orbits, there will be G-orbits
that do not contain any Gy-orbits. For instance, in the case of E7, simple groups
of type Eg, Ag, and Dg possess fewer nilpotent orbits than a simple group of type
E;. For the orbits not containing an orbit of a smaller rank subgroup, we may
not be able to use any results from G in order to help with the calculations in
G.

3. Suppose we find a nilpotent orbit representative = € Lie(Gy) C g where Gy <
G is a Levi subgroup of which we already know the nilpotent pieces. Suppose
further that we can find a map & conjugate to § for a weighted Dynkin diagram
§ € 9¢ of G, such that § agrees with a weighted Dynkin diagram on the simple
roots of Gy. In this case we know whether for g € Gy we have [Ad(g)(ac)]gg~ € g5

However, there seems to be no easy way to extend this to g € G \ Gy. It does not
even seem possible to only consider elements in a (right or left) transversal of
Gy in G. The problem is the following. Suppose g = g1 9> for an element g € G
with g; € L and g € G where L is a right transversal of G/ Go- Then we would
have to decide whether Ad(g1¢2)(z) € g2,. Note that even if Ad(g:)(z) ¢ g2,, we
might have Ad(g1g2)(z) € g2, (or vice versa). It is therefore not enough to focus
on a transversal.

Example 5.2. To illustrate this problem, consider a simple algebraic group G of
type E7 with simple roots IT = {«;, ag, ..., ar} corresponding to the nodes in the
weighted Dynkin diagram as in Figure and a Levi subgroup G of type Dg.
Let {ay,...,as} be the simple roots of the root system of Gy. Let § arise from
the weighted Dynkin diagram

00 0 0 0 2

oo

0
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Let x9 = €42 92 32 41 53 62 7 € g be a nilpotent orbit representative, using the same
notation as described in Section Then we can compute the action of ele-
ments n,, and n,, on x2, where w = s,, € W and w’ = su, SagSas SaySasSa; € W.
Note thatina transversal of G/ G, both elernents are in the same coset. However,
Ad(ny)(z2) € g2, and Ad(n,)(z2) ¢ g2,.

The first problem can be solved as follows. Recall, that the weighted Dynkin diagrams
are a way to describe one representative § € % under the action of G. It is not strictly
necessary to use the map § induced by the weighted Dynkin diagram in our calcula-
tions. Any map g¢.9 in the same G-orbit on % can be used in the same way, unless
specified otherwise in Chapter[d] The easiest way to find other maps in the orbit of §
is to compute them under the action of W.

Lemma 5.3. Let § : ® — 7Z be a map induced from 6 € Y¢. Let w € W and n,, € G be
a representative. Then n,,.6(a) = §(w~t.a) forall o € ®.

Proof. We recall the definition of §: we have §(«a) = («, §) where a(5(c)) = ¢!*? for all
¢ € k. Then n,.0(a) = (o, ny,.0), SO COMpute

(ny.6(c)) = a(nyd(c)ny') = ngt.a(d(c)) = (wt.a)((c)).
This shows that (a, n,,.0) = (w™t.a, §), and hence the claim follows. O

Lemma 5.4. Let 6 be a weighted Dynkin diagram for G and 69 € Y¢ such that 6y ~ ¢
with n,,.0 = &y for some w € W. Furthermore, let y € g‘;g be a nilpotent element. Then

ylgg = Ad(n,") ([Ad(mu) ()] )

Proof. Writey =Y nco Aaeq Where A, € kand (e,) = go. Then [y ] 5= =Y acd Aafa-
0(a) =2 0(a)=2

Note that as y € g2, we have Ad(n,)(y) € Ad(ny)(gls) = 0% by Lemmag (). It is
therefore possible to compute [Ad(nw)(y)]gao.
2

On the other hand, we have
Ad(nw)(y) = D Aal=1Fvepq

acd
d(a)=2

= Z )\a(_l)ka’wew.aa

acd
do(w.a)>2
where k., € Z arises from the action of n,, as described in Section[I.2.5] As the exact
value of k, ,, is not important for this calculation, we do not need to specify it.
S0 [Ad(nw)(®)] 50 = 2 ace Ao (=1)kewe,, . Finally, we have
2

o(w.a)=2

Admy") (M) @) ) = D Aal=DFr (=1 vey 0
Bo(i-ay=2

= Z A€o

acd
do(w.a)=2

= Z Aa€a = [Y].s

acd
o(a)=2



80 CHAPTER 5. ALTERNATIVE APPROACHES

This completes the proof. O

The two previous lemmas can be used to simplify the computations if the nilpotent
pieces in smaller root systems are already known.

Proposition 5.5. Let G be a connected reductive algebraic group with root system ® :=
®(G). Let Gy C G be a closed connected reductive algebraic group of maximal rank in G
with root system &g := ®(Go) C .

Suppose that the nilpotent pieces in gy := Lie(Gy) are already known for each weighted
Dynkin diagram 6y, and that for each nilpotent orbit representative xy € gy we know the
nilpotent orbit representative x € g such that xy € O,.

Suppose further that there exists w € W such that &, := n,,d with §(a)) = do(cv) for all
a € O, where § is a weighted Dynkin diagram of G and o, is a weighted Dynkin diagram
OfG().

Fix a nilpotent orbit representative x € g. If for each nilpotent orbit representative xy €
O, N go it is known that O, N gy ¢ A, then W] ¢ g3 forally € 0, N g, where

go ?
Ad(nw)(y) € go-
Proof. Lety € O, N g%, with Ad(n,)(y) € go. By assumption, Ad(n.,)(y) ¢ A0. As
in the proof of Lemma , it follows that 3/, := Ad(ny,)(y) € gi{g N go. We already
know that Cg, <[y{u} (50)%0 ¢ (Go)‘;OO as we assume that 0,, N gy ¢ Jg/ggo This means

that there exists an element g,, = v'tn,u € Gy with v’ = s4, - 8q,., @; € P and
Ad(gw)(y.,) = (y.,). Now w’ does not have weight 0 with respect to y the defin-

ition of ¢;,. It follows that g, ¢ Gi)o as an element of G' by Lemma Therefore,

Collyyl o ) € (G)i(l’o. Note that, since y,, € go, we have [y.,], s, = [y.,] s -
85 z (g0); (9)5°

2 2

The fact that Co <[y{u] 56> is not a subset of G(;)O is equivalent to

D)
1 / —1 0 na' .8, 5
n, Ca <[y“’]956> nw € Ny, Glynw = G 70 = G2,
2

Finally, note that

ot (B g, ) o = Co () (10t )
2 2
by Lemma So it follows that Cg ([y] g%) ¢ G2, thatis, [y] o ¢ g as claimed. [
In order to use the result of this proposition, we need to know two things:

1. Orbit inclusion of the smaller Lie algebras in the orbits of the Lie algebra.

2. The weighted Dynkin diagrams §, of G such that 4 is in the same G-orbit as a
weighted Dynkin diagram ¢ € %.

We can compute these by using the help of the programme from the previous section.
The results are stated in the Appendix in Tables[A.5|-[A.8] This makes the computation
easier once the results for (1) and (2) are known. Note however, that both (1) and (2)
have to be computed for every type of root system.



6 Implementation

In this chapter we take a closer look at implementing the ideas developed in the pre-
ceding chapters. For the implementation Magma V2.26-6 (]2]) was used on Gentoo
Linux, version 5.15.32. Examining the implementation in more detail, we notice that
there are two main difficulties to consider, namely

1. the implementation of the action of the simple algebraic group G on its Lie al-
gebra g and

2. solving non-linear equation systems with many indeterminates (e.g. in E; we
may have up to 78 indeterminates to consider).

Additionally, we cannot work over a finite field or a field of characteristic 0, as the solu-
tion of the non-linear equation systems is sometimes in the algebraic closure of a field
of positive characteristic. Keeping this in mind, the choice of the underlying program-
ming language is rather limited (unless we would like to programme a rather large set
of structures and algorithms ourself). We have therefore decided to use Magma, [2],
as the underlying programming language.

We will use the following notation, similar to Section|4.3] Let z € g denote a nilpotent
orbit representative. Define tuples

¢ := (Ca)aco+s

di=d,:=() aco+ ,» forweWw, and (6.1)
wl.aced—

d:::(da)aeﬂy

where the entries are indeterminates in a function field over k. Let g,, := v/ (¢/)t(d)nyu(c)
be the Bruhat decomposition of an element in a group of the same type as G but defined
over a function field, where

acdt
wl.acd—

t(d) := [] ha(da), and

a€ll

u(c) := H Ua(Ca)

acdt
with the h,, defined as in Section and for a fixed total ordering on ®*. We write
(e, d,d) = Ad(u/ () t(d)ny,u(c)) ()

81
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for the action of g,, on z, where we consider x as an element in the Lie algebra over
the function field.
Furthermore, let 2/, (¢, d, ) := [z (c, d, c/)]gg and write y,, := x(ce, de, ¢.) with

Ce = (Cen)acat
de = (de., )yem, and

Ce = (CIE/B) BedT
wl.aed™

where ¢, c. ,d 5rde, € {0,1,...,char(k) — 1} are fixed elements, such that we do not

divide by zero when computing y,, for o € &+, g € &+ withw='.3 € &=, and vy € II.
If char(k) = 0 we will check whether this is possible for c._,c. 5 de, € {0,1}. If not,

we will not replace the corresponding entries in ¢, d, or ¢. For the g3-part of y write
/

yw = [yw]g5
Finally, let A, 5(c,d, &) € k for 5 € @ and puyi(c,d, ) € kfori € {1,...,[II|} be
defined as in @#.1)):

I

Ad(gw)(xw(c,d, ) Z)\wBCdC elg—i—z,uwlcdc
ped

This chapter will be organised as follows: We first look at the Ad-action of G on g.
Considering the fact that we need free variables in the computations, we next describe
the construction of the polynomial rings containing these elements. In the last step,
we describe how to best solve the arising non-linear equation systems.

6.1 Implementation of the Ad-action of Gon g

While there exists an implementation of the Ad-action of G on g in Magma, this does
not work if G (and therefore also g) is defined over certain polynomial rings. Unfor-
tunately, as noted above, we need to be able to use indeterminates and are therefore
forced to implement the action of G on g ourselves. This is done with the help of the
results described in Section[1.2.5] In order to minimise computational work, we com-
pute the action of each n,, ha;,and v := [[ c4+ ua(ca) on a Chevalley basis of the Lie
algebra. Here, o; € Il = {a,...,a,} and the ¢, are indeterminates defined over the
field k for all o« € ®. In order to compute the action of G on g, we can use the results
of this action on the Chevalley basis as determined earlier. The action on an arbitrary
element in g is computed by linear extension without having to explicitly calculate
the Ad-action again. Especially in groups with bigger root systems this saves a lot of
time, as the calculation on the basis elements has to be done only once. In compar-
ison, computing the Ad-action by using linear combinations of the results on the basis
elements is a lot easier and faster than computing the action anew each time.

6.2 Polynomial rings, function fields and algebraic closures

In order to compute the action of G on the Lie algebra and to solve certain equations,
it is necessary to define polynomial rings and function fields containing the indeterm-
inates of the actions from (6.1I). The construction is done as follows:
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1. Asafirst step, we need to compute the action of an element g,, € G on anilpotent
orbit representative e € g. The naive approach is to construct a polynomial ring
over the finite field F,, and add indeterminates ¢, ¢/, and dg with o € @1, 3 € II,
using the same notation as above. We note, however, that the indeterminates dz,
parametrising torus elements, need to be invertible. Therefore, we need to first
define a function field f := F,(dg | 8 € II), containing the indeterminates dg.
Note that mathematically we would like to use the ring of Laurent polynomials,

Fp[ca,c%,dw,dgl | a, B € @ty el

However, at the time of programming this, it was not possible to use this con-
struction in Magma and we use the function field construction instead.

In the second step, we can define the polynomial ring P := flc,,c,, | @ € ®T].
This will allow us to compute Ad(gy)(z) = xy(c, d, ).

2. We need to decide whether (¢, d, ¢) is in g‘;z. This results in a system of equa-
tions, setting each coefficient A\, (c, d, ') of e,, € g, to zero if §(«) > 2. However,
the solutions may be in an algebraic closure of an underlying finite field. Addi-
tionally, we want the indeterminates in d to be considered for the solution. This
means that (once we have the equation system) we redefine everything over the
polynomial ring

P :=TFplca, ¢, dy |, B € ot v eI

Note that each equation needs to be multiplied by the common denominator of
its coefficients in order to do so. The solution will in most cases still depend on
indeterminates which we also call (by an abuse of notation) ¢, d, ¢. We need to
take the algebraic closure of IF,, in order to compute the solutions that are not in
F,.

3. Suppose, we know that z,(c,d, ') € g‘;g. Next we want to compute the central-
iserof 2 (c,d, ) := [xy(c, d, c/)]gg for all possible values for ¢, d, and . However,
if we try to compute a Grobner basis over a polynomial ring containing these
indeterminates, the solution might depend on explicit values of ¢, d, and ¢'. In
order to prevent this from happening, we need to redefine x,(c, d, ¢) over a func-
tion field containing the indeterminates ¢, d, and ¢’. Additionally, we would like
to have the algebraic closure containing the solution from (2). As this proves to
be difficult when solving further non-linear equation systems, we instead add
the minimal polynomials (given in the corresponding indeterminates) of ele-
ments in the algebraic closure (and not in k) to the equation systems. Then we
define the corresponding indeterminates over a polynomial ring, not a function
field. We now have redefined z,,(c, d, ¢’) over P := f[X;] where f = F,(c,d, ) is
a function field containing the free variables from the solution in (2), and the X;
are the indeterminates with solution in an algebraic closure.

4. Finally, we want to have a similar construction as in (1), so that we can compute
the action of a g,» on 2/, (¢, d, ') := [zy(c,d, )]gs and solve the system arising
from the equation Ad(g./)(x,(c,d, ")) = 2!, (c,d, ). We therefore define a poly-
nomial ring over a function field over f in the same number of indeterminates
as in (1), adding the X; from the previous step to the polynomial ring.
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Note that this brings also another set of difficulties with it: as the construction of the
polynomial rings and function fields is rather complicated, it is not easy to change the
ring or field over which the indeterminates are defined. Mostly, the polynomial ring
will be defined as a variation of something as follows:

P:=Flco, ¢ | o€ @F]

Fi=A(d, | o« € T0)

A algebraic closure of f

fi=K(Ca, & dy| o, € DT, vyl

K either finite field F,, or Q

We need these constructions in different parts of the programme, depending on which
problem needs to be solved. Note for instance, that Grobner bases will only provide
a solution for the indeterminates in a polynomial ring, not the indeterminates in any
function fields contained in the polynomial ring.

6.3 Solving non-linear equation systems

Having described a way in which to define the elements over polynomial rings, we are
now in the position to attempt to find a solution for the non-linear equation systems
described in Section[4.3] This part proves to be the most difficult one. Even for smaller
root systems, the naive computation of Grobner bases may require too much memory
space. It is therefore necessary to find several ways in which to simplify the system
of non-linear equations that need to be solved. We have already seen a few ways in
which to do this in the previous section and in Chapter[4]

Note also that we have different problems for each of which we need to solve a system
of non-linear equations. We will look at each problem separately and remark upon the
ways in which to simplify the arising Grobner bases.

6.3.1 General remarks

For the computation of Grébner bases, we use the command GroebnerBasis(I) in
Magma, where I is an ideal in a polynomial ring. We use the construction as detailed
in [3}, Section 112.4.3] without any further parameters. The Grobner basis returned by
Magma is unique and sorted with respect to a fixed monomial ordering, see [3}, Section
112.4.2]. In the case of this programme we have fixed the graded reverse lexicograph-
ical order “grevlex” see [3, Section 112.2.3].

In general, solving non-linear systems of equations can be simplified as follows:
Checking each equation, it may turn out that in some equations certain indetermin-
ates only occur as a linear factor. In this case we can easily solve this equation for one
of the indeterminates occurring linearly. It is then possible to replace this variable in
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the system by the solution which will be saved in a separate list in the programme.
Not only does this reduce the number of equations contained in the system, but also
the number of indeterminates. In fact, if we reduce the number of indeterminates in
the polynomial ring over which the system is defined to only the indeterminates con-
tained in this system, it is easier to find a Grobner basis.

Furthermore, we note that some equations can be factorised into several polynomi-
als. In this case we get a new equation system for each factor. This in turn means we
only have to check the systems until one of them yields a solution. However, we would
need to check every equation system to be sure that no equation yields a solution. If
we expect this to be the case, it is better not to factorise the equation.

Note furthermore, (as already remarked upon in the previous section) that the non-
linear equation systems arise from the action of an element g,, = u'tn,,u in the Bruhat-
decomposition (see (4.2)). It is usually the case for an element = € g that there exists
a subset @ C ®* such that [[, 4+ ua(ca) € Cg(x) for any choice of ¢, € k. We will
compute this subset ®; for each z that gives rise to a non-linear equation system. This
in turn will enable us to solve a system arising from the action of g, = @/tn,a on z
instead. In this case we have

= H uq(co) and @' = H ua(c).
acdt\ & acdt\&Ff
wl.acd~
It is clear that this system contains less indeterminates and should consequently be
easier to solve.
The same approach can be used when considering the torus elements ¢ € 7. Recall
that we can parametrise a torus element by a product ¢ = [, cha(da), do € k™.
As before, we can check for which simple roots a € II an orbit representative = € g
is centralised by h,(d,) (regardless of the choice of d, € k*). Let II, C II denote
the set of simple roots fulfilling this property. In this case, we may instead consider

t' = [Taemm, ha(da), da € k*, see Section[4.3]

A closer look at the torus variables

It is also worth noting that — even if a solution of an equation system exists — it does
not necessarily mean that the equation system is solvable for every choice of variables.
For instance, the variables describing the action of the torus on g cannot be zero. Thus,
we have to check that this does not occur. Additionally, note that these variables must
be invertible when computing the action of g,, on z. It is therefore necessary that we
first compute the action of g,, on z (including variables) by defining a polynomial ring
over a function field over F,,. The variables describing the action of the torus will be
contained in the function field while all other variables are in the polynomial ring, see
Section[6.2] In a second step, once we have computed the system of equations, we will
multiply by all denominators containing indeterminates over the function field such
that we can now consider the whole system over a polynomial ring. This is necessary
so we can apply the Grobner basis algorithm without disregarding the torus variables.
Note that in this case we also need to ensure that none of the denominators we mul-
tiplied with will be zero in the solution.

Computing the solutions from the Grobner basis

Having computed the Grobner basis, we are still faced with the task of finding the ac-



86 CHAPTER 6. IMPLEMENTATION

tual solution of the system. One problem is that, in general, we will have to solve the
system while considering that some variables can be chosen freely.

We proceed as follows. We start with the last element with respect to the reverse de-
gree lexicographic order in the list of the Grobner basis and continue up until the
first element. We check if this is a univariate polynomial, in which case the solu-
tion will be given by its roots. Note that the roots have to be computed in the algeb-
raic closure of F,, that is, in practice we define k") := F,(a11,...,a1,,) and k) :=
k(i—l)(aiyl, ...,a;n,) fori > 1 for each equation we solve, where the q; ; are the roots
of the ith polynomial. Consequently, we have to redefine all elements of the Grobner
basis over k() in each step. For each solution a; we will get a new basis where we eval-
uate the remaining Grobner basis elements at a;. We then proceed as before for each
new arising basis.

Should we come across a polynomial that is not univariate, we will have to choose one
indeterminate with respect to which we compute the roots of the polynomial. In or-
der to do that, we will redefine the elements of the Grobner basis over an algebraic
closure of a function field containing all other indeterminates in the polynomial and
proceed as before. This will however lead to the problem that at some point there
might be a polynomial in the Grobner basis only containing indeterminates defined
over the function field. In this case we have to chose one of the indeterminates, re-
define this indeterminate over the polynomial ring, and find the roots with respect to
this indeterminate. We need to take care to replace this indeterminate by its roots in
the solutions already computed.

6.3.2 Free variables and preventing division by zero

Suppose we are at a point where we have to check whether there exists an element
gw € G such that Ad(gw)(z),(c,d,c)) = z!,(c,d,) (respectively for y., or z! (¢) by
the notation in Section [4.3). This means that we are in in Section Note
that we want this equality to hold regardless of the choices for ¢, d, and /. However,
the solution g,, may depend on the choice of our variables. In general, this will be no
problem unless we divide by a term containing one of the indeterminates. To ensure
that we do find a solution for any possible choice of ¢, d, and ¢/, we proceed as follows:

1. Find the solution from the Grobner basis arising from the system
Ad(gw)(2,(c,d, ) = 2l (c,d, )
as described before.

2. Check each term in the solution for division by a term with an indeterminate
contained in ¢, d, or ¢’. Note that these terms may also be hidden in an element
defined over an algebraic closure. For these elements we have to check the min-
imal polynomial instead.

3. Save the values for the indeterminates for which division by zero occurs in a list
L.

4. For each value z € Ly we compute 2, (2) := [z4(2)] @ and recursively check
everything again for 2/, (z) starting from (1).
If there is a solution such that L is empty, we can go up one step in the recursion
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and continue with the programme.

Should we not find a solution for z/,(z), set y := z/,(z) and continue checking for
all the Weyl group elements w € W if there exists g, € G \ G‘;O that centralises
y'. If we find such a g,,, proceed as before. Otherwise we have y %‘.

6.3.3 Deciding whether an element is in g2,

As seen in Section we first want to decide whether Ad(g,)(z) € g, for a given
representative of a nilpotent orbit 2 € g and an element of the Weyl group w € W. This
system is still relatively easy to solve: We have seen that it is enough to check whether
Ad(nyi')(z) € g, where @ is as in Section[6.3.1] (see also Corollary[4.3). In this case
the polynomial ring we work over is not too complex, as it is only the polynomial ring
over k (in fact we will first find the Grobner basis over F,, where p = char(k) and in a
later step solve for the indeterminates over the algebraic closure of F,). We proceed
by the steps given in “General remarks”, Should there exist a solution, we need
to decide whether [Ad(n, @) ()] € ad'.

6.3.4 Deciding whether an element is in g’

Firstly, we want to decide whether the solutions are in g§' for all possible solutions
Tyw(c,d, ) as detailed in Section [6.3.3]in the above step. We will therefore compute
Ad(n,u)(x), where we have replaced the indeterminates in @’ by their solutions such
that Ad(n,@')(z) € g, and @’ contains only these factors u,(co) with w.c € @~ asin
Section If there are free variables in the solution, we will define a function field
containing these indeterminates and use them instead as described in Section[6.2](3).
Note that the following calculations will be more complex if a function field is involved.
We will therefore also define one specific fixed element y,,, in which each free variable
is replaced by an element in k, depending on whether one of the options leads to divi-
sion by zero. In practice we will only check this for the elements {0, 1,. .., char(k) — 1}
or {0, 1} if char(k) = 0. If every option results in division by zero, this indeterminate
cannot be replaced. The idea is to check for each element w € W whether g, = v/tn,u
centralises (for arbitrary «/, ¢, v) this fixed representative. Should this be the case, we
need to check the same thing for the representative = depending on the indetermin-
ates c, ¢/, and d. We can skip this step if it turns out that these elements are in the
same orbit under the action of some element g,, € G, as described in Section
We check whether Ad(gy)(yw) = zw(c, d, ') recursively: Should we find a solution for
the resulting Grobner basis, we need to ensure that this solution for g,, holds for all
choices of variables in (¢, d, ¢’). In particular, we need to make sure that division by
zero does not occur. In order to check this, we look at the resulting solutions and con-
sider all denominators, proceeding as in Section|[6.3.3] If there are variables for which
the denominators turn zero, we save the values for these variables. For each value,
we evaluate the new element (it now depends on less indeterminates) and repeat the
process. If at some point the process returns that there is no solution for the choice
of variables, we save them in a list. In this case, we need to check whether an element
guw € G also centralizes (¢, d, ) evaluated at these values if g, centralised y,, in
the first place.

Note that this way of solving the problem might not always be the best; sometimes
it is better to just decide whether Ad(g./)(xw(c,d, ) = zy(c,d, ) (that is whether
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xw(c, d, ) is centralised by an element g,,) for all values of the free variables. This is
in particular the case when some variables are contained in the algebraic closure but
not in the prime field.

It may be the case that an element z,(c,d,¢’) € g is already centralised by some
guw = u'tn,u € G where t = 1. Let

I, :={a € | ho(ds) € Cq(zy(c,d, ) forall d, € k*},

see Section[6.3.1] We will compute II, and try solving the equations first for ¢ = 1. We
will successively add one factor £, (c, ) to the previously used ¢, where « ¢ 11, until we
find a solution or we have added all such factors (this may not always be the fastest way,
however note that proceeding in this manner may provide us with a solution where it
was difficult for the computer to solve the system before).



7 Results

In this last chapter we present the results of the programme described in the previous
chapters. We fix the following notation for this chapter: Let IT = {«,...,«,} be the
set of simple roots of a simple algebraic group G for some r € N. Denote the elements
€q SPANNINg go, a € @, g = Lie(G) by €1iy gis_pin = €ijontizag+-tirar, i € Z and
i1 +igas +- - +iya, € ®.Ifi; = 0, we will simply leave 5% out, see also the notation
in Section[2.3.2] If we can prove that the nilpotent pieces in a Lie algebra g are disjoint,
the nilpotent pieces agree with the CP-pieces. For the results stated in this chapter,
we repeat Remark[3.14]about the CP-pieces.

Remark 7.1. Note that by [9, Theorem 7.3] the CP-pieces agree with the nilpotent pieces
if the nilpotent pieces form a partition of the nilpotent variety . 4;.

7.1 G,
The weighted Dynkin diagrams of type G- are as in Figure[7.1] see [7, 13.1, p. 401].

(1) =0 (2) =0 (3) =0

0 0 0 1 1 0
4) =0 5) =
0 2 2 2

Figure 7.1: The weighted Dynkin diagrams of type G>

Furthermore, the root system is given by

O = {faq, tag, H(a1 + a2), (201 + a2), £(3a1 + a2), =(3a1 + 2a2) },
where the simple roots {«1, as} are as in the following Dynkin diagram: ﬁ .

We begin with the case where char(k) = 2. By [32], we have the following orbit rep-
resentatives, where we let g, = (e,) for v € ®. Recall that we have already given the
nilpotent orbit representatives in table

1. 1 :=0, 4. x4 :=eq,,
2. T2 1= €q; + €ay, 5. x5 := eqy-
3. x3:= €a; T €2a14a9>

Let 0 be the orbit corresponding to the representative x;,i € {1,...,5}, and .4; be
the nilpotent piece corresponding to the weighted Dynkin diagram (i), i € {1,...,5},
as in Figure This results in the following nilpotent pieces:

89
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1. 4 :={0} = 0Oy, 4., N, = O3,
2. N = U, 5. N = Os.
3. N5 = Oy,

If char(k) = 3, the following nilpotent orbit representatives are again given by [32]
using the same notation as above:

1. z1:=0, 4. x4 := e€qy + €201 +ans
2. Ty =€y + €ay, 5. x5 :=eqy,
3. T3 := €qy + €ay+ans 6. T 1= €qy-

Then we get the following pieces:

L. M = {0} = 0, 4. Ny = 0,
2. N = U, 5. N5 := 0.
3. M= 03U O,

Note that in good characteristic, the representatives x3 and x5 are in the same nil-
potent orbit, as Ad(u2a;+as (—§) N(su, sa,)2) (€3) = T5.
In order to give a better overview, we give the above results in the form of a table. If not
otherwise stated, the nilpotent orbit representatives are true for all characteristics. In
case (iii) we get a union of two orbits in characteristic 3, and the additional represent-
ative is denoted by z3 ». We remark that the elements ey, + €24, +a, and eq, + €20, +as
are in the same nilpotent orbit. In the list above, we have chosen the nilpotent orbit
representatives as in [32], which is why they differ.

Weighted Dynkin Diagram Nilpotent orbit representative
(i) 85‘8 21:=0
(ii) gEIJ T2:= €qy
(ii) =0 e
T32:= €y + €artas, P =3
(iv) = T4'= €qp + €201 +an
v) 35‘23 5= €y + €ay

Table 7.2: Nilpotent pieces in G,

We summarise the above results as follows:

Theorem 7.2 (Nilpotent pieces for G5 in characteristic 2 and 3). We use the same nota-
tion as above and let
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1. z1:=0, 4. x4 = eq, + €201 +a9>
2. x3:=€ny + €ay, 5. x5 :=eq,,
3. x3:=e€ny + €artan; 6. T 1= €qy.

Then the nilpotent pieces for Gy with respect to the weighted Dynkin diagrams are given
by

1. 5/1/1 = {0} == ﬁrl, 4. J‘{l = ﬁ:&p
2. Ny 1= O, 5 N5 =0,
3. N3 1= Oy,

if char(k) = 2 and by
1. M = {0} = ﬁ;tl, 4. N = ﬁx;u

2. Ny = O, 5. M5 := 0Oy,
3. M= Opy U O,

if char(k) = 3. In particular, the nilpotent pieces form a partition of the nilpotent
variety and therefore agree with the CP-pieces by Remark|7.1}

Remark 7.3. In his paper [13], Hesselink describes a stratification of the nullcone of
the Lie algebra of G5. The results are exactly the nilpotent pieces as computed here,
coming from an entirely different definition. But this stratification is just the CP-
pieces, see [9, Theorem, Section 5].

7.2 Fy

We proceed as above by listing the weighted Dynkin diagrams for I, as well as the orbit
representatives in good and bad characteristic. Note that the orbit representatives in
good characteristic are the same as in characteristic 3. For the orbit representatives
see [20, Table 22.1.4] and [29], and Table The simple roots are as given in the
Dynkin diagram:

O—C0C—=—0—->0.

a1 a2 a3 Qyq

As the nilpotent orbit representatives are the same in good characteristic and for char-
acteristic 3, these cases are not distinguished. In characteristic 2 we get additional
orbits, which are denoted by z; 5 if they are in the same orbit as z; in good character-
istic. All orbit representatives in good characteristic (or characteristic 3) are also orbit
representatives in characteristic 2. Applying the programme described in Section {4
results in the following pieces in characteristic 2 (with the same notation as for G5):
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1. M =0, 9. My = 0y U Oy,
2. Ny = O, 10. A = O19U O1p,2,
3. N3 = 03U O3, 11. M1 = 01y,

4. N, = Oy, 12. Mo = 012,

5. N5 = O, 13. M3 = 013U 0132,
6. M = Op U Og 2, 4. My = Oy,

7. N = Oy, 15. M5 = Oy,

8. M= OgU Oy, 16. Mg = O,

where 414 follows by Proposition|3.21

Note that each of the pairs of nilpotent orbit representatives x3 and 32, as well as
x¢ and x¢ 2, g and xg 2, rg and zg 2, x19 and x19 2, and z13 and z13 2 are in the same
nilpotent orbits in good characteristic. In particular, the nilpotent pieces contain the
same nilpotent orbits (or the nilpotent orbits they split into) as in good characteristic.
More precisely we can give explicit group elements sending one element to the other.
We will use the same notation for the root subgroup elements wu,(c,), co € k, a0 € P,

as for the e,, see Section[2.3.2]
1
Ad <h4(1)u1,2,3 <—2>> (.1‘3) = .1‘3,2
Ad (hl(—l)hg(—l)u1’22’3374 <—2

)
Ad <ua3(1)h1(—1)u;; <;)> (z8) = w82
))

1 1 1
Ad (hl(—l)h2(—1)n5agu3 (—2) U132 4 (8) Ug 32 42 (—2

Ad <u3,4(z)h1(1)h3(—1)h4(Z)U2,3 (;)) (z10) = 7102

Ad <h1(—1)h3(1)h4(—1)n5a2u172273274 <—;>> (213) = 7132.

Here we choose z € k such that 22 = —1. We expect this to be a pattern that should
hold for the other exceptional groups as well. In characteristic 3 we use the same orbit
representatives (i.e. mapping the coefficients of the linear combinations of basis ele-
ments into k). Applying the programme results in the same pieces as in characteristic
0,i.e.we have 4, = ¢, forall: = 1,...,16 with the same notation as above. As before,
we also state the results in the form of a table.



7.2. Fy
Weighted Dynkin diagram Nilpotent orbit representative
i 0—0==0—0 -
Q) 0 0 0 0 r1:=0
.o o_()ﬁz()—() =
(11) 1 0 0 o Tro=eq
xr3.= €192 33 42
cee oO—0O==0—"30 1499
(iii) 0o 0 0 1
T3,2:7 €1 22 33 42 + €12,93 34 42, P = 2
: 0—0==0—0 =
(iv) 0 5 o o T4:= €192 33 4 1T €1 22 32 42
0—0==0—0 =
(V) 5 0 0 0 T5:= €192 32 + €1 232 42
. 0—0==0—0 T6:=€1,2,34 1+ €2324
(vi) 0 0 0 2
T6,2:= €1,234 + €232 4 + €12 93 34 42,
p=2
p 0—O0==0—0 =
(vii) o 0 1 0 T7i= €192 32 + €1 232 4 1 €232 42
o0—0o=0—0 Tgi=€1,2,3 1 €932 42
(viii) 2 0 0 1
Tgpi=€12+ e1932 + €332 42,0 =2
) 00 T9i= €123 + €932 4 + €122 32 42
(ix) 0 1 0 1
T92'=€123 + €332 4 + €1932 42 +
€1,2232, P =2
> omro—o Z10:=€1,2,3 + €232 4 + €932 42
%) 1 0 1 0
Z102:=€12 + €324 + €1932 42 +
€1,223442, P = 2
: 0—0==0—0 =
(xi) 5 5 0 o T11:= €123 1T €1 232 1T€234+ €92 32 42
s 0—O0==0—0 =
(xii) 5 5 0 0 T12:= €1 + €23 + €234 + €332 42
0—o=r0—0 T131= €4+ €12,3 + €32
(xiii) 1 0 1 2
Z132:= €4 + €123 + €932 + €1 22 32 42,
p=2
: 0—0==0—0 =
(xiv) 0 2 o 2 T14:=e12 + €23+ €34+ €19232
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O—O=—=0—7">0 o=
xv) 5 2 0 o T15:= €1 +eq4 +e23 + €932
. O—O==0—20 =
(xvi) 5 5 9 9 T16:-=€1 +ex +e3+ ey

Table 7.3: Nilpotent pieces in F}

Theorem 7.4 (Nilpotent pieces for F} in characteristic 2 and 3). We use the same nota-
tion as above. Then the nilpotent pieces for F; in characteristic 2 are given by A; = 0;U0; o
fori € {3,6,8,9,10,13} and .4; = O; otherwise.

In characteristic 3 we get .#; = ©; for all 1 < i < 16. In particular, the nilpotent pieces
form a partition of the nilpotent variety and therefore agree with the CP-pieces by Re-
mark([Z 1l

7.3 L

If the root system is of type Eg, we get the same number of orbits in good and bad
characteristic. In fact we can choose the “same” orbit representatives for each charac-
teristic, where the coefficients of the ¢, are either 0 or 1. They can be found in Table
Here, the roots {ay, as, ..., ag} are the simple roots of ¢ as denoted in the Dynkin
diagram:

a1 a3 Q4 a5 Qg
5 o—o—i—o—o

a2

&

Figure 7.4: The Dynkin diagram of type Fjs

The table below lists the nilpotent orbit representatives contained in the nilpotent
pieces that are described by the weighted Dynkin diagrams in the left column.

Weighted Dynkin Diagram Nilpotent orbit representative
00000
(1) I z1:=0
0
00000
(ii) i T2:= €1,2232 43 52 6
1
1000 1
(iii) T31= €12324256 1 €1,2,342,52,6
0
00000
(@iv) i T4:=€23456 1+ €123425
2




7.3. Eg
00100
W) H_I_o_o T5:=€1232425 T €1234256 +
0 €93.42526
1000 1
(vi) I T6:T €1,34,56 T €2,34,56 T €123425
1
1000 1
(vii) O_O_I_o_o Tri=eg34+ €245+ €13456
2
01010
(viii) I T8i= 12345 +€1,3456+€23425+
0 €2.3.4,5.,6
200 0 2
(ix) I T9:=e1234 + €1345 + €2456 +
0 €3.4,5,6
01010
(9] i T10:=e€345 + €1234 + €2456 +
1 €1,3,4,5,6
200 0 2
(xi) I T11:=e56 +e134+ €234+ €245
2
00200
(xii) I Ti2:=ex2t+e;34+e345+ €456
2
00200
(xiii) 1 T13:= €345+ €456 +€1234 +€2456
0
101 0 1
(xiv) I T14=e1234 + €1345 + €2456 +
0 €3,4,56 1+ €23 425
110 1 1
(xv) I Tisi=esp + €134+ €234+ €245+
1 €345
2 10 1 2
(xvi) I Ti:=€1+eg+ea34+ €245+ €345
1
20 2 0 2
(xvii) D Ti7:= e +eg+e13+e3q+ess
2
110 1 1
(xviii) I rigi=e13+esat+ess+esast+esss
2
2 2 0 2 2
(ixx) i xri9:=e1+e3+exs+ess+es+es
2
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2 0 2 0 2
(Xx) I Too:=e1te3qgtesqte245+€2345+
0 €5,6
2 2 2 2 2

(xxi) To1:=e1 +ex+e3+eq+es5+eq
2

Table 7.5: Nilpotent pieces in F

Applying the programme results in the same pieces as in characteristic 0, i.e. we have
N = 0;foralli=1,...,21 with the same notation as above.

Theorem 7.5 (Nilpotent pieces for F in characteristic 2 and 3). We use the same nota-
tion as above. Then the nilpotent pieces for Eg in both characteristic 2 and 3 are given by
N, = O; forall 1 < i < 21. In particular, the nilpotent pieces form a partition of the
nilpotent variety and therefore agree with the CP-pieces by Remark|7.1}

74 FE;

Unfortunately, the computations for type E7 in this version of the programme are still
too complex to yield results for every piece. However, it was possible to compute some
of the nilpotent pieces in characteristic 2, the solution of which will be given below.
We use the same notation as in Eg and the nilpotent orbit representatives are the ones
given in Magma for non-exceptional type and are taken from the book of Liebeck and
Seitz [20] otherwise.

The following table displays the weighted Dynkin diagrams and in the right column the
nilpotent orbit representatives in the nilpotent pieces corresponding to the respective
weighted Dynkin diagrams. The rows that have not been computed yet have been left
out.

Weighted Dynkin Diagram E; Nilpotent orbit representative

00 0 0 0 O

(1) I .= 0

(11) I XTo:= €12 22 33 44 53 62 7

(111) xr3:= 61,22,32743,52,62,7 +

0 €1,2,32,43 53 62,7

(iv) I T4i=e€1232 42 56,7 + €1,234252,6,7 T

0 €2,3.42 52 62,7
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010000
W) I T5:= €192 32 43 52 6 1 €1,2,32 43 5267 1
0 €1,2,32 42 52 62,7
200000
(vi) 1 T61=€1234256,7 T €1,2,32.42,52,6
0
00000 1
(vii) I T7i=e1932 42567+ €12342526,7 T
1 €2,3,42,5262,7 T €122 32 43 52 6
100010
(viii) I T8 €1234256,7 T €1,23242526 T
0 €2.3,42 52 62,7
001000
(ix) 1 T9i=e12324256 + €12342526 +
0 €1,2,3,42,5,6,7 T €2,342.526,7
000020
(xi) I T11:=€1,3456,7 T €2,3456,7 +
0 €1,23,4256 1T €2342526
0000GO0O
(xii) I T12:5€19324256 T €12342526 T
2 €1,2,34256,7 T €23425267
2000 0 2
(xiii) O_O_I_O_H T13'= €2,4,5,6,71€3456,71T€1 23425+
0 €1,2,3,4,5,6
020000
(xvi) O_O_I_O_H T16°= €2,34,561T€34,5671€123425F
0 €1,3,4,5,6,7

Table 7.6: Nilpotent pieces in E7 for char(k) = 2
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Appendix

A.1 Nilpotent orbit representatives

We write down the representatives of the nilpotent orbits in the case of bad character-
istic for the exceptional groups of Lie type for later use. They are taken from [20, Tables
22.1.1 - 22.1.5] as well as from the nilpotent orbit representatives given in Magma [2].
The orbit representatives in F; are taken from [29, Table 1]. Note that in bad charac-
teristic one has to check that each of the representatives given by Magma defines a
different orbit. For instance, the representatives given in Magma for the orbits of type
As and FEg(as) in the simple group of type Ej are in the same orbit in characteristic 2

and we have to choose a different representative for the orbit of type Fg(as).

A1l G
Class | Weighted Dynkin Diagram Nilpotent orbit representative
1 85‘8 x1:=0
Ay gEf T9:= €9
4 =0 T3i=e1,p# 3
(Ay)3 b r32:=e2+e12,p =3
Ga(a1) = T4=eg + €3 g
Go CQ’E‘; T5:=e1 + e
Table A.1: Nilpotent orbits in G2
Al1l2 F,
Class | Weighted Dynkin diagram Nilpotent orbit representative
1 8_8:":‘8_8 z1:=0
Ay ?_g:’:‘g_g T9:= €1
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A.1. NILPOTENT ORBIT REPRESENTATIVES
A1 . 0 o o xr3.= 61,22,33742
. 0 0 1
(A1)2 T321= €192 33 42 + €293 34 42, P = 2
141 o Ol ? OO OO T4:= €192 33 4 T €1 22 32 42
0—0==0—0 =
A2 0 0 0 Is5. 61722’32 + 6172732742
A2 O0—O==0—0 .1'6:: 61,2,3,4 + e2,32,4
_ 0 0 2
(A2)2 6,21 €1234 + €232 4 + €12 93 31 42,
p=2
A 0—O0==0—0 =
A Aq 55 o XT7i=e19232 + €1232 4 1 €332 42
0—0==0—0 -
B> o0 1 rgi=e123+ €932 42
0—0==0—0 - —
(BQ)Q o0 1 Tg2:=e12+te1932 €932 42, P = 2
A2 Ay OO0 T9i= €123 + €932 4 + €1 92 32 42
_ 1 0 1
(A3A1)o xT92:=€123 + €324 + €1232 42 +
61,22732, p = 2
Cs(aq) 0—O=0—0 10:=€1,2,3 + €232 4 + €932 42
0 1 0
(C3(a1))2 x102:=€12 + €324 + €1232 42 +
61,22,34742, p = 2
0—O0==0—0 =
Fy(a3) SR T11:= €123+ €1 932 €234+ €92 32 42
0—0==0—0 —
B3 5 0 0 T12:= €1 + €23+ €234 + €332 42
Cs o—Oo0—0 T13:= €4 + €123 + €932
0 1 2
(C3)2 T132'F €4+ €123 + €932 + €] 92 32 42,
p=2
0—O0==0—0 =
Fy(a2) 5 0 2 Ti14:=e12 + €23+ €34+ €132
0—O0=x0—0 —
Fy(ay) 5 0 3 T15:= €1+ eq + €23 + €332
0—O0==0—0 =
Fy 5 5 5 T16:=€1 +e2 +e3+ ey

Table A.2: Nilpotent orbits in F}
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A.1.3 E;

Weighted Dynkin diagram Nilpotent orbit representative

0 00 0 O

%

x1:=0
0
0 0 0 0 O

o= 61722,32,43,52,6

=

—

0 0 0 1

e

T3:7€19324256 T €12342526

=]

[e=]
[e=]
[e=]
[e=]
[en]

T4:=€23456 1+ €123425

&

[e=]
=]
—_
[e=]
[e=]

T5:=€19232425 T €1234256 T

o
=
O%

€9.3,42 52 6
1000 1
Ax Ay I X6:=€1,34,56 1 €23456+ €123425
1
1000 1
As I T7i=ea34 + €245+ €1,3456
2
01010
2 —
Ay A3 xgi=e€12345 T €13456 T €23425+

.

€2,3.4,5,6

(]
o
o
o
[V}

r9:=e1234 +€1345 + €2456 +

N
NN
O%

€3,4,5,6
01010
AzAq I T10=€345 + €1234 + €2456 +
1 €1,3,4,5,6
2 00 0 2
Ay T11:=es6t+e€134+€234+ €245

.

o
o
[\V]
o
o

ri2:=ezt+e134+€345+ €456

S

00200
Dy(ar) I T13:=e3a5+es56+€1,234+€2456
0
1010 1
AZA, T14:=€1234 +€1345 + €2456 +

.

€34,56 + €23425




A.1. NILPOTENT ORBIT REPRESENTATIVES 101
110 1 1
Ay I Ti5:=e56 + €134 + €234 + €245+
1 €345
2 1 01 2
As i Ti6:=€1+eg+e234+ €245+ €345
1
202 0 2
Ds ri7'=extegte13+e3qteygs
2
110 1 1
Ds(aq) I rig:=e13+ezatesgt+esastesss
2
2 2 0 2 2
Eﬁ(al) ri9:=e;teztexstegs+es+eg
2
202 0 2
FEs(a3) I T20:= e1+e3atexsterssteaszast
0 €56
2 2 2 2 2
Es To1:=€1 +ex+e3+eq+e5+ e
2
Table A.3: Nilpotent orbits in Fg
Al4 E,;
Class | Weighted Dynkin Diagram FE~; Nilpotent orbit representative
0000O0O
1 x1:=0
0
100000
A1 o= 612,22,33744,53,62,7
0
000010
2 °—°—I—°—°—° —
Al xI3.= 61,22,32,43,52762,7 +
0 €1,2,32,43 53,627
00000 2
3\(1 —
(Al)( ) i T4:=€193242567 T €1,23425267 T
0 €2.3,42 52 62,7
010000
33(2 —
(43)@ I T5:= €192 32 43 52 6 T €1232 43 52 6,7+
0 €1,2,32 42 52 62,7




102

A. APPENDIX

200000
Ay I X61=€1234256,7 T €1,2,3242526
0
000001
A3 I T7i=€123242567 T €1,23425267 T
1 €9,3,42,52,62,7 T €122 32 43 52 6
100010
Ag Ay I T8I=€12342567 T €1,23242526 T
0 €2,3,42 52 62,7
001000
Ag A3 I xT9i=e19324256 + €12342526 T
0 €1,2,342,56,7 T €23425267
200010
As i T10:=€1,234 +€1,345 +€2342 52627
0
000020
A2 i T11:F €134,5,6,7 + €234567 +
0 €1,234256 T €2342526
0000O0O
Ax A3 I T121=€19232 4256 + €12342526 T
2 €1,2,342,56,7 T €23425267
20000 2
(AzA;)M ] T13:= €2,4,5,6,7T€3,4,56,7 6123425+
0 €1,2,3,4,5,6
010010
AZA, i T14'F €13456,7 + €234,56,7 +
0 €1,2,32425 T €1234256 +
€9,3,42 52 6
101000
(A3A1)(2) o—o—I—o—o—o Ti15:=€33425 + €123456 +
0 €1,3,4,5,6,7 1+ €2.342 52 62,7
020000
Dy(aq) i T16:= €2,3,4,5,61€3,4,5,6,7 €123 425+
0 €1,3,4,5,6,7
1001 0 1
Az A2 i T17:= €2,45,6,7T€34,56,7 6123425+
0 €1,2,3,4,56 T €2342526
2 2 000 0
Dy i x18:=e1+ey3 42 51+€234561€3456,7
0
010001
Dy(a1)A; i T19:=€23456 1t €2456,7+€3456,7 1
1 €123425 1+ €1,34,56,7
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A3zAy o—o—I—o—o—oo oo T20:= €1,3.4,5,6 1+ €2,34,56+€2,4.56,7+
o €3,4,5,6,7 T €123425
(A3A2)o T202:= €7 + €654 + €65432 €543 +
€42+ €76
2000 2 0
Ay O_O_I_O_o_o T91:=€1234 + €1345 + €4567 +
0 €23456
000200
Az Az Aq H_I_o_o_o T92'=€12345+€13456 1 €23425+
0 €23.456 t €2456,7 1 €3456,7
200 0 2 2
(AE))(l) I To3i=er+er234+e1345+€2456+
0 €345,6
21000 1
D4Aq O_O_I_O_o_o Toai=e1 + ex3425 + €23456 +
1 €2,4,5.6,7 T €3,45,6,7
101010
AyAy I To5:=€1234 + €1345 + €4567 +
0 €r3425 T €23456
2 01010
Ds(aq) i Tog:=e13 + €456 + €456,7 +
0 62’374275 + €3,4,5,6,7
002000
AyAg I To7i=e1234 + €1345 + €2345 +
0 €2456+€3456+ €4567
101020
(A5)(2) I Tog:=es6t+e7+€1234+€1345+
0 €2342 5
1010 1 2
As Ay O_O_I_O_o_o Tog:=er+erp3ater3asteaaset
0 €34,56 1+ €23425
2 00 2 0 0
Ds(a1)A; H_I_o_o_o T30:=e345+€456+T€567+€1234+
0 €23456 t €2456,7
01010 2
Deg(as) O_O_I_o_o_o T31:= €67+ €245+ €345 +€1234+
1 €3.4,5,6 T €1,345,6
020020
Eg(a3) T x32:=€e134+ €234+ €456+ €567+
0 €2345 t€12345
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Ds I T3z =ei1t+ez3atessstessetessy
0
00 20 0 2
Er(as) I T34 = €134+ €234+ €245+ €456+
0 €567+ €3456 1 €1,34,56
002020 —
Ag T35:= €56 + €67 + €134 + €234 +
I €245+ €345
0
(As)2 T3s2:=es56 + €67+ €134+ €234+
€345 €245+ €1932425
2 1011 0
D5 Ay I x36:=e1 +ex34 + €245+ €345+
1 €456 T €56,7
21 010 2
Dg(ar) I x37i=€1 + eg7 + €234 + €245 +
1 €345 1+ €345,6
20 2 0 0 2
E7(ayq) I r3g:=e13t+eq5 + €67+ €234+
0 €2345 T €2456 1 €3456
2101 2 2
Dg I T39:= e1+egter+es3atesss5+esas
1
202 0 2 0
Es(a1) I za0:=e13+eza+ess+ese+esr+
0 €345
2 2 2 0 2 0
FEg ry=ertestexzstesstesstesy
0
20 2 0 2 2
E7(a3) I Tq2:=e1+egqa+e3atera5+e€2345+
0 €56 1 er
22 0 2 0 2
E7(a2) I T43:=€] + e+ e3 + €24+ ea5 +
2 es5.6 + €67
22 0 2 2 2
E7(aq) I Ta4:=e1+estexstesstes+ester
2
2 2 2 2 2 2
Er T45:=€1+ €2+ €e3+e4+e€e5+¢€g+er

Table A.4: Nilpotent orbits in E~
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A.2 Orbit inclusions
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We give the orbit inclusions needed for the calculations in Section[5.2} These inclu-
sions have been computed using parts of the programme. We check whether the rep-
resentatives are in the same orbit in E;. This can be made easier by taking the orbit
representatives in F; and checking whether we can find an element in the group, such
that they are sent to an element in the Lie algebra of the parabolic subgroup. Then we
can check whether these elements are in the same orbit in the smaller Lie algebra.

Orbit Orbit Orbit Orbit
Orbit Type representative representative representative | representative
E; Es Ag D
1 £U1:0 y1:0 2’1:0 w1:0
Ay Ty = €1292 33 44 53 627 | Y2 = €1223243 526 | 22 = €1,345,6,7 | W2 = €23 4252627
W31 = €3.4.56,7
A2 T3 = €1,2232435262,7 | Y3 = €1,2,32,425,6 23 = €1,3,4,5,6 T €2.4567
! + €1,2,32 43 53 62,7 + 612342526 +€3,4,5,6,7 W0 = €53 42 567
+€2342526
Ty4 = €1,2,324256,7 Wy = €2.456,7
(AW +€1,2,3,42 52,6,7 - - +€23456
+ €2.342 52 62,7 +€23425
W51 = €3.4.56,7
+ €2.3.4,5,6
T5 = €1,22 32 43 52 6 Ys = €1,2,32 42 5 25 = €1,3,4,5 +e93425
(AH@ + €1,2,32 43 52 6,7 +€1234256 +€34,56,7 o
+ €1,2,32,42 52 62,7 + €2,342 526 + €4,5,6,7 Ws,2 = €3,4,5,6,7
+ €2.456,7
+€2342526
A, Te = €1,2,3,42,5,6,7 Y6 = €2,3,4,5,6 Z6 = €1,34 We = €2.4,5,6
+€1,2.32 42 52 6 +€123425 + €5,6,7 + €3,4,5,6,7
T7 = €1,2,32.4256,7 W7 = €3,4,5,6,7
Al +€1,2,342526,7 _ B + €2.4.5,6,7
+ €342 52 62,7 +€23456
+ €122 32 4352 6 +€23425
Ty = €1,2,3,42,5,6,7 Ys = €1,3,4,5,6 Z8 = €1,34 wg = €2.4,5,6
As Ay +€1,2,32,.42 52 6 +€2.3,4,5,6 + e5,6,7 +€3456,7
+ €9,3,42 52,62 7 +e123425 +€3456 +e23425
Tg = €1,2324256 Y9 = €1,2,3,4,5 29 = €1,34 W9 = €4,5,6,7
Ay A2 +€1,2342528 +€1,3456 +e345 + €3,4,5,6
+€1,2,34256,7 + €2,3.425 +es456 + €2.4,5,6
+€2342526,7 + €2.3.4,5,6 + €5,6,7 +€2345
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w10,1 = €6,7
+es56
w10 = 61’2’3’4 Y10 = 62’3’4 210 = €1 + er + 6273,4275
e +e245
Az +e1,345 +esass wros = o
+ €2.3.42 52 62,7 + €1,3,4,5,6
s +e345,6
+€245,6
= = W11 = €245
T11 = €1,3,4,5,6,7 Y11 = €1,2,34 21 = s+ o
' ' + €234
A2 t 6234567 te134,5 teras 3,
2 H +e456,7
+ €1,2,3,425,6 + €2.4,5,6 tesas
+ €2.342 526 + €3,4,5,6 + €3,4,5,6
T12 = €1,2,32.42,5,6
+ €1,2,3,42,526 B B
Ay A3 -
+ €1,2,3,42,56,7
+ €2.3.42 52 6.7 .
W13 = €547
T13 = €2,4,5,6,7 13
+ €456
(Agap® | TCeaane . . 5
M +e245
+e123425
+ €234
+€1,234,56 3,
T14 = €1,3,4,5,6,7 Y14 = €1,2,34
+ €2.3.45,6,7 +e1,345
A3 A, +e12,32.425 +e2456 -
+€1,2,34256 + €3,4,5,6
+€2342526 +€23425 .
Wi15,1 = €5,6,7
+ €456
Y15 = €34 +e345
T15 = €2.3,42 5 15 = €3,4,5 _
15 = €13+ €45 +e234
2) + €1,2,3,4,5,6 +e1,234 tegn
(A3A1) Yo ] , y e
+ €1,3,4,5,6,7 2,4,5, Yesass 152
+ €9,342 52 62,7 + €1,3,4,5,6 +e345.6
+ €2.4.5,6
+€23425
= Wig = €
T16 = €2,3,4,5,6 Y16 = €3,4,5 16 6,7
+ €345
Da(ar) + €3,4,5,6,7 + €456 B 4,
4(0a1 .
+€1,2,3425 +€1,2,3,4 + €245
+ €2.456
+€1,34567 te2456 A5,
w17 = €5,6,7
T17 = €2,4,5,6,7 17
+ €456
+€3456,7 5,
- - +e345
Az A7 +e123425 4
+ €245
+€1,234,56 A,
+ €234
+€2,3,42,52,6 3,
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T8 = €1 Yig = €2
wig = €7 +€eg
+e23425 +e€1,34
Dy - +e345
+€23456 +e345
+e245
+€3,4,5,6,7 t €456
T19 = €23456 W19 = €6,7
+ €2.45.6,7 + €345
Dy(a1)Ar +e3.4,56,7 - - +e245
+e1,23425 + €234
+ €1,3,4,5,6,7 +€2456
T20 = €1,3,4,5,6 220 = €13 W0 = €34
+ €2.3,45,6 + €34 + €24
Az Ay + €2.4,5,6,7 - +ess + e5,6,7
+ €3,4,5,6,7 +e56 + €456
+ €1,2,3,42 5 + e6,7 + €2.3,4,5
To1 = €7+ e24 Wo1 = €7
+ €67 +e456
(AsAsz)o + €456 - - +e23456
+e2345 +e345
+€23456 +e24+ €67
T22 = €1,2,3,4 Y22 = €56
A, +e1,345 +e1,34 Zoo = €1 +e7 W2 = €67 + €56
+ e456,7 +e23.4 +esstese +e24+e€345
+€23456 +e245
T23 = €1,2,3,4,5
+€1,3,4,5,6
As Ay, +e23425 B B B
+€23456
+€2456,7
+ €3,4,5,6,7
Xog = €7
+e€1,2,3,4 Woq = €2 1 €67
(A5)® +e1345 - - +e56+ €4
+e€245.6 +e3,4
+€3456
T25 = €1
W25 = €7 1 €¢
+ €2,3425 Le
DyA, +e23456 - - 45
+ €2,4,5,6,7 T eaus
+ €234
+ €3.45,6,7
T26 = €1,2,34 Y26 = €56
+e1345 +e134 Zo6 = €1 + ey
AsAq +e456,7 +e234 +esatess | —
+e23425 +e245 +es56
+ €2,3.4,5,6 + €345
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Ds(ar)

Zo7

=e1,3
+e2456
+e456,7
+e23425

+ €3,4,5,6,7

Y27 = €1,3
+e24
+e56
+e345

+ €456

Wa7 = €7 + €56
+e34+ €24

+ €245

AgA

T28

= €1,2,3,4
+€1,345
+e2345
+e2456
+ €3.45,6

+ e456,7

(A5)(2)

T29

=e56t+ €67
+e1,234
+€e1,345

+e23425

Y29 = €1 + €6
+e23.4
+e2.45
+ €345

Zog = €1 + €3
+e4 + €6

+ €45

Wag = €3 + €67
+e56 + €45
+e2.4

AsAq

30

+€1,23.4
+e1,345
+e2456
+ €3,4,5,6
+e23425

D5 (a1 )Al

T31

= €345
+e456

+ e5.6,7
+e1234
+ €2.3.45,6

+ €2.4.56,7

Dﬁ(ag)

32

= €6,7
+e245
+e3.45
+e€1,2,34
+€3.4,5,6

+ €1,345,6

W39 = €3 + €9
+ e6,7 + €56
+es45+ €24

E6 (ag)

I33

= €1,3,4
+ €234
+es456
+ e5,6,7
+€2.3.45

+€12345

Ysz =€1+e3q

+e24+e€245

+e2345+ €56

Ds

T34

+e234
+ €345
+ €456
+ €567

Y34 = €2+ €g
+e13+esq

+ €4,5

w34 = €7 1 €g
+e5+e3q

+e2.4
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E7(CL5)

I35

=e€134
+ €234
+e245
+e456
+ e5,6,7
+€34,5,6

+€1,23456

Ag

T36

=e5,6 1+ €6,7
+e134
+e234
+e245
+e345

Z36 = €1 +e3
+e4te5
+e6 +er

x37

= e5,6 1+ €6,7
+ €134
+ €234
+€ca5
+e345

+e€1,232425

D5A1

I38

=e1t+ez3q
+e2.45
+e345
+e456

+ €567

De(ar)

T39

=e1 +és7
+ €234
+e245
+ €345

+ €3.4,5,6

w3g = e7 + €g
+ ez + €2

+e45+e24

E7(CL4)

T40

=e13+teqs
+ e6,7

+ €234
+e2345

+ €2.45,6

+ €3.4,5,6

Dg

T41

=€ + €6
+er+e23.4
+e245
+e345

wq1 = €7 + €g
+e5+e4+ €3
+ e2

EG (al)

T42

=e13+tezqy
+e45+ €56
+e6,7 + €345

Yq2 = €1 + €3
+e24+teys
+e5 + €6

Es

T43

=e1 +e3
+e24+e€45
+e56 + €6,7

Ya3 = €1 + ez
+e3 4+ eq
+ e5 + €4
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Er(a3)

T44 =e€7t+ €13
+e24+e34
+es5+tese

+€2345

Er(az)

T45 = €1 + €3
+er+exsteqs

+e56 + €456

Er(ay1)

Ty = €1 t+ €3
+e5+eg+er

+e24+ €45

Tar = €1 + €2
+e3+estes

+ e+ e7

Table A.5: Orbit inclusions for E;

A.3 Parabolic subgroups in F;

We first give alternative “weighted Dynkin diagrams” computed as in Lemma5.3in E;
that agree with weighted Dynkin diagrams on the respective nodes of Levi subgroups

of type Es, Ag, and Dg. We will give the elements n,, as a list of integers [i1, ..
‘ns,, Where the «; are the simple roots with the ordering as in Figurep

'nw = nsail ..

iy if

Note that in some cases, we get several nilpotent orbits in the underlying Lie algebras
of type Eg, Ag, and Dg for one nilpotent orbit in the Lie algebra of type E7.

A.3.1 For type Ej;

Weighted Weighted n,, With belongs to orbit
Dynkin Dynkin
Diagram 6 of E7 | Diagram ¢ for | 6 = ny.0 in Fg
Es
000000 /| 0O0O0GOTO OO
@) 1 T | 1
0 0
100000 | 0000 O0-1
(11) I i [77 65 57 47 37 1] Al
0 1
o000 1000 1 -2 7.6,5,4,3,2,4,5, )
(iii) A7
0 0 6]
00000 2 00000 2
(iv) { I [ 1
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2 I I [2,4,2] A}

i) | T | T | [7,6,5,4,3,1) Ay

(vii) I I [ Ay

[77 6? 57 47 37 27 47 57

(viii) 6,1] A2 Ay

7,6,5,4,3,2,4,5,

x)| *y " | Ty L34 A A2

[77 6’ 5’ 47 37 27 47 57

x) 1 7 6.1] As

7,6,5,4,3,2,4
(Xl) O—O—I—O—O—O o—o—I—o—o—o [6]? 9 Yy Ty Iy &y 757 A%

(xii) i i [ Ay

(xiii) [6] A2

[7,6,5,4,3,2,4,5,

(xiv) 613 AZA

(XV) I I [47 5; 6a 77 1] A3A1

(xvi) (2,4, 2] Dy(ay)

0 0
1 0 01 0 1 1 01 0 1 -2
ovil) | T | T 3 A3A,
0 0

[37 ]‘? 47 27 37 47 57 67

(xviii) . Dy

(ixx) (2,4, 3] As




112 A. APPENDIX
00 1 0 1 0 01 0 1 0 -2
ooy | T T | 6,7,6) (A34,)@
0 1
2 0 00 2 0 2 0 0 0 2 —6 [76543245
(XXi)O—O—I—O—O—O O—O—I—O—O—O 9 Uy Uy Ty Iy LAy Ty Yy A4
0 5 6, 1]
0O 0 0 2 00 00 2 0 0 —2
(XXii) o—o—i—o—o—o o—o—I—o—o—o [1] D, (al)
0 0
2 0 0 0 2 2 2 0 0 0 2 2
(XXiii) o—o—I—o—o—o o—o—I—o—o—o H AQA%
0 0
2 1 0 0 0 1
(xxiv) o—o—I—o—o—o _ _ _
1
1 01 0 1 0 1 1 0 1 1 -6 [76543245
(XXV)O_O_I_O_O_O O—O—I—O—O—O 9 Uy Uy Ty Iy Sy Ty Yy A4A1
o ° 6,1,3,4]
2 01 0 1 0 11 0 1 1 -7
xvi) | T | T | [4,5,6,3,2,4,5) AsA;
0 2
00 2 0 0 O 0O 0 2 0 0 O
(XXVii) o—o—I—o—o—o o—o—I—o—o—o H Dy ((11 )
0 0
1 01 0 2 O 2 1 0 1 2 =8
xvii) | L T | T | [4,5,6,4,3,2,4, 5] As
0 1
1 01 0 1 2 1 01 0 1 2
(XXiX) o—o—I—o—o—o o—o—I—o—o—o H A§A1
0 0
2 0 0 2 0 O 00 2 0 0 —4
(xxx) ¥ ¥ (5,6, 2] Dy
0 2
o1 0 1 0 2
01 0 1 0 2 °_°_I_°_°_° H A3A1
(XXXi) o—o—I—o—o—o °
1 2 101 2 -6
T | [3,4,5,2,4, 3] As
1
0 2 0 0 2 O 2 0 2 0 2 -8
coodi) | T | T | [4,5,2,4, 1] Ee(as)
0 0
2 2 0 0 2 0 2 0 2 0 2-10
xxiip) | 0L 0 00 | T T | [5,6,1,3,4,1) Ds
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00200 2
00200 2 °—°—I—°—°—° i D,
(XXXiV) o—o—I—o—o—o °
0 2 0 2 0 2 -6
T | 5,6,2,4) Eg(a3)
0
0020 2 0
(XxxV) - - -
0
210110
(xxxvi) - - -
1
2 1010 2 2 1 0 1 2 -2
(xxxvii) o—o—I—o—o—o o—o—I—o—o—o [2] As
1 1
2 02 0 2 -8
2020 0 2 O—O—I—O—O—O [5]
(xxxviii) O_O_I_O_H 9 D5
0 2 0 2 0 2 -8
[7,5,6,3,2]
2
2101 2 2 2 10 1 2 2
(xXXix) o—o—I—o—o—o o—o—I—o—o—o H As
1 1
2020 20 2 2 0 2 2-12
(x1) [4,5,6,4,3,2,4,5] Eg(ay)
0 2
2.2 20 20 2 2 2 2 2-16 1,3,4,5,6,5,3,4
(Xll)O—O—I—O—O—O O—O—I—O—O—O 3]77777777 E6
0 2
20 2 0 2 2
2.0 2 0 2 2 °—°—I—°—°—°
i) | T 0 H Folas)
0 2 2 0 2 2 -6
I [6, 7, 1] Eg(al)
2
2 2 0 2 2 -2
2 2 020 2 °—°—I—°—°—°
(xliii) O_O_I_O_H 2 . Folaw)
2 2 2 2 2 2-14
i [7,6,4,3,2,4,3,1] FEg
2
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2 2 0 2 2 2
2 2 0 2 2 2 °—°—I—°—°—° I
(XliV) 2 Eﬁ(al)
2 2 2 0 2 2 2
[5,3,4]
2
2 2 2 2 2 2 2 2 2 2 2 2
x1lv) I Fg
2 2

Table A.6: Corresponding weighted Dynkin diagrams for Eg in E7

A.3.2 For type A;

Weighted Dynkin | Weighted Dynkin | n,, with belongs to orbit
Diagram ¢ of E; | Diagram ¢ for Ag | 6( = nyy.0 in Ag
0O 0 0 0 0 O 0 0 0 0 0 O
(i) o—o—i—o—o—o o—o—i—o—o—o H 1
0 0
100000 10000 1
(ii) [7,1] Aq
0 -1
000010 010010
(iii) o—o—I—o—o—o o—o—I—o—o—o [2,4,5,6] A%
0 -2
00000 2
(iV) O—O—I—O—O—O _ _ _
0
010000 001100
W | T T | [7.5.6.5,3] (49
0 -3
2 0 0 0 0 O 2 0 0 0 0 2
0 -2
000001
(vii) I : - - _
1
1000 10 1100 1 1
ity | T T | 17,4,5,4,3,2) As Ay
0 -3
001000 101 10 1
ix)| 77 T | [5,6,7,2,4,5,4] Ay A2
0 —4
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2 000 10 2100 1 2
(X) I I [77 47 57 47 37 2] A3
0 —4
000020 0200 20
(xi) °°I°°° °°I°°° [2,4,5,6] A2
0 —4
00000 O
0O 0 0 0 0 O O—O—I—O—O—O []
(xii) ° 5 1
2 00000 O
[7,6,5,4]
-2
2 0000 2
20 0 0 0 2 O—O—I—O—O—O H
(xiii) > i o—o—° 0 A,
0 2000 0 2
I [5,2,4,3,2,1]
—4
010010
0 1 00 1 0 O—O—I—O—O—O []
xiv) | T 0 A7
0 010010
5,4,3,2,4,5,6,3,
o—o° i 0—0—0 [ (A3A1)(2)
4 4,5,2,1]
101 000 2 01 10 2
(XV) I i [6a 55 ]-7 37 27 47 27 1] (A3Al)(2)
0 -5
020000
(xvi) - - -
0
1100 1 1
3 1 00 1 0 1 O—O—I—O—O—O [7’2]
(xvii) 1 1 Ar Ay
0
é_é_i_ﬂ_é_é [5,6,4,5,3,4,1,3,
5 2,4,5,4,3,2]
2 2 00 0 0
(xviii) - - -
0
10110 1
. 0 1 0 0 O 1 O—O—I—O—O—O [5’2]
(ixx) I 9 Az Ay
1
é_S_i_é_fi_é [4,2,3,1,5,4,2,7,
6 6,5,4,2,3,4]
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001010 111 1 1 1 1,3,4,5,6,7,5,6
(xx) 1 1 1] AzAy
0 —6
2 000 2 0 2 2 00 2 2
(XXi) o—o—I—o—o—o o—o—I—o—o—o [7’ 4543, 2] A,
0 —6
0200 20
000 2 0 0 °—°—I—°—°—° [4]
(xxii) e (Ag)?
0 0200 20
i [6,4,1,3,2,4,5,2]
—6
200 0 2 2
(xxiii) - - -
0
2 100 0 1
(xxiv) - - -
1
101010 2111 1 2 4 1
ooxv) | T T [2’ 422] Lo, Auy
0 -7 » %9
201010
(xxvi) - - -
0
00200 0
(xxvii) I o—o° - - _
0
1010 20 2 2 11 2 2 13,4,5,6,7,6,1,3 )
(XXViii) o—o—I—o—o—o o—o—I—o—o—o 2747572]7 s Uy Ly 9y Aé)
0 -9 )
1010 1 2
(xxix) - - -
0
200 200
(XxX) 1 - - -
0
01010 2
(XXX]) O—O—I—O—O—O _ _ _
1
0200 20
0200 20 °—°—I—°—°—° I
(xxxii) | T 0 0 (Ag)?
’ S_i_§_<‘§_§_2 5,4,3,2,4,5,6,3,
_g 4,5,2,1]




A.3. PARABOLIC SUBGROUPS IN E- 117
2 2 0 0 2 O
(XXXiii) o—o—I—o—o—o _ _ _
0
0O 0 2 0 0 2
(XXXiV) o—o—I—o—o—o _ _ _
0
0O 0 2 0 2 0 2 2 2 2 2 2 [13456756
(XXXV) O—O—I—O—O—O O—O—I—O—O—O 1])7777777 A6
0 —12
21 0 1 1 0
(XXXV]) O—O—I—O—O—O _ _ _
1
21 0 1 0 2
(XXXVii) o—o—I—o—o—o _ _ _
1
2 2 2 2 2 2
202002 T 116,3,2,4,5,3,1]
(xxviii) | T 00 o Ag
0 2 2 2 2 2 2 [5,6,7,1,3,4
O—O—I—O—O—O gy My by Ly ey
S 5,1,3,4,3,2,1]
21 0 1 2 2
(XXXiX) o—o—I—o—o—o _ _ _
1
2 2 2 2 2 2
2 0 2 0 2 0 O_O_I_O_O_o [7,5,6,5,4]
& | T 8 Ag
’ ?;_i_%_i_?,_ﬁ 5,6,7,5,6,1,3,4,
S 5,1,3,2,4,1,3,1]
2 2 2 0 2 0
(Xli) o—o—I—o—o—o _ _ _
0
2 0 2 0 2 2
(Xlii) o—o—I—o—o—o _ _ _
0
2 2 0 2 0 2
(Xllll) o—o—I—o—o—o _ _ _
2
2 2 2 2 2 2
. 2 2 0 2 2 2 o—o—i—o—o—o [6]
(th) o—o—I—o—o—o ° Ag

[6,2,4,5,3,4,1,3,
2,4,5,6,7,6,5,4,
3,2,4,5,6,1,3, 4,
5,3,2,4,1,3]




118 A. APPENDIX
2 2 2 2 2 2 2 2 2 2 2 2
(x1v) I Ag
2 2

Table A.7: Corresponding weighted Dynkin diagrams for Ag in E~

A.3.3 For type Dy

Weighted Dynkin | Weighted Dynkin | n,, with belongs to orbit
Diagram ¢ of E; | Diagram ¢, for Dg | 0( = ny.0 in Dg
000000 000000
i) o—o—I—o—o—o o—o—I—o—o—o H 1
0 0
100000 1000 1 0
(11) I I [475] Al
0 0
20 100 0
000010 °—°—I—°—°—° 1,3, 4] A2
(iii) o—o—i—o—o—o o
0 -10 0 0 0 2
T | 06,7,3,4) A2
0
00000 2 20 00 0 0
) | T | T 16,7 (AH))
0 2
3200 0 0
01 0 0 00 o—o I 0—0—0 [6,7,6,5,3] (Aff)(?)
) I 0
0 -20 0 1 0 1
T | 7,1,3,2] (A$H )
0
200000 20 00 2 0
(Vi) I I [475] A2
0 0
000001 3100 0 1
(Vii) o—o—I—o—o—o o—o—I—o—o—o [5747 3, 1] Ail
1 1
1000 10 3010 10
ity | T T ] 06,7,3,4,2 Ax A4
0 0
001000 30 0 2 00
(ix) O_O_I_O_H O_O_I_O_H [5,6,7,4,2, 1] AQA%
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2 00 0 1 O OOEOOO [6,7,3,4,2]
®| Ty B As

0 300 0 2 2
I 6,7,2,4,5,1]
0
0000 2 0 —40 2 0 0 0
o) | T | T | g A3
0 0

(Xll) O_O_I_o_o_o -20 0 2 0 O [2]

0 Ay AT

I 3,4, 5,4]

T 16,7,5,3,2) (43)®@

2 0 0 0 0 2

—-20 0 0 2 2
(et ! T | 5,6,4] As

i (3,4,1] (AzA)M

I [7,4,5,6,3] As

5] Ag Ay
010010

(XiV) o—o—I—o—o—o -30 2 0 0 O
:: [576777571]

[37 47 17 37 27 47 57 37

; 4,9]

[57 6? 7? 47 57 3? 2’ 4’

MRS GRS AxA
1,3,2] 2
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52 00 2 0
1o l900 I [2747576777675’4} (A3A1)(2)
(xv) M i oo ° 0
0 4010 1 2
T | 5,6,7,3,2,4,2 (A3Ap)?)
0
02000 0 40 0 2 0 2
(XVi) o—o—I—o—o—o o—o—I—o—o—o [77 1,3, 2] D4(a1)
0 0
10010 1 51 0 1 1 0
vi) | T 0 T | 5,6,3,4,5,2,4,2] Az A2
0 1
2 2 0 0 0 O —-60 0 2 2 2
xvit) | 7L 70 T | 2,4,5,6,4] Dy
0 0
0100 01 51 0 1 0 2
(IXX) I I [7,4, 5, 6, 2,4, 5, 4} D4(CL1)A1, (A3A2)2
1 1
001010 50 2 0 0 2
(XX) I I [47576>572747113} A3A2
0 0
2 000 2 0 —-60 2 0 2 0
(XXi) o—o—I—o—o—o o—o—I—o—o—o [6,7, 3.4, 2] A,
0 0
000 2 00
{ [ A A7
0
—20 00 20
000200 I [5, 6] (A5A)W
(XXii) o—o—I—o—o—o 2
0 40 2 0 0 2
I 6,7, 3] A3Ay
0
—-60 2 0 0 2
T | 2,4,5,6,7, 5] As A,
0
—-60 0 0 2 0
T | 06,7,6,4,5,1, 3] (AsA)D
2
—-60 0 2 0 0
T | 17,1,3,4,5,6,4,2] Ay A2
0
2000 2 2 80 2 0 2 0
xxil) | T 0 T | 17,6,5,2,4,2] A
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| 2100 0 1 o 22 |13,4,56,7,5,2.4,
(xxiv) I I ik
1 1 2
1 01 01 0
0
2101 10
101010 I 6,3] Asdl
(xxv) I :
° 50 2 0 2 0
o—o—I—o—o—o 7,6,1,3,4,5,2,4]
0 i
-70 2 0 2 0 [1,3,2,4,5,6,4,3,
[) 274717372]
o Y 111,3,4,5,6,4,3,2, 2
o—o—I—o—o—o Az A7
1 475747372747173}
7010 10 |1[62453413,
o—o—i—o—o—o 27 47 5’ 6, 7’ 6, 4’ 5’ A2A1
0 3]
. 2 01010 =70 20 2 2 4,3,2,4,5,3,2,4,
v o—o—g—o—o—o Ds(a1)
Io o 3,2]
00 2 000
(xxvii) { 002000 A
0 [77274]
0
002000
o—o—I—o—o—o [7,2,4,5,6,5,4,2]
0
IEEBEEE. oo 2020 116,7.6,54,1,3,2, @)
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Table A.8: Corresponding weighted Dynkin diagrams for Dg in E7
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