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ABSTRACT A flexible operation of multiple robotic manipulators operating in a dynamic environment
requires online trajectory planning to ensure collision-free trajectories. In this work, we propose a real-time
capable motion control algorithm, based on nonlinear model predictive control, which accounts for static and
dynamic obstacles. The proposed algorithm is realized in a distributed scheme, where each robot optimizes its
own trajectory with respect to the related objective and constraints.We propose a novel approach for collision
avoidance between multiple robotic manipulators, where each robot accounts for the predicted movement of
the neighboring robots. Additionally, we propose a method to reliably detect and resolve deadlocks occurring
in a setup of multiple robotic manipulators. We validate our approach on pick and place scenarios involving
multiple robotic manipulators operating in a common workspace in a realistic simulation environment
set up in Gazebo. The robots are controlled using the Robot Operating System. Our approach scales up
to 4 manipulators and computes a path for each robot in a simultaneous pick and place operation in 94% of
all investigated cases without deadlock detection and 100 % of cases with the proposed deadlock resolution
algorithm. In contrast, the investigated conventional path planners, such as PRM, PRM*, CHOMP and RRT-
Connect, successfully plan a trajectory in at most 54% of all investigated cases for a simultaneous operation
of 4 robotic manipulators hindering their application in setups of multiple manipulators.

INDEX TERMS Robotic manipulators, collision avoidance, distributed model predictive control, motion
control, deadlock, ROS.

I. INTRODUCTION
Modern industrial processes are increasingly dominated
by shorter innovation and product life cycles, reflecting
a growing demand for customized products [1]. Conse-
quently, factory systems must become more flexible and
adaptable [2], [3]. Robotic manipulators can provide such
flexibility due to their complex kinematic chain. Areas of
application are, for instance, assembly, disassembly or pack-
aging lines. By operating in a shared workspace, several
robotic manipulators can further increase efficiency, mini-
mize the working area andmake collaboration possible. Fig. 1
constitutes an example of four robotic manipulators sharing
the same workspace and performing a pick and place task.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng H. Zhu .

Traditionally, the collision-free trajectories of all involved
roboticmanipulators in industrial applications are planned for
specific tasks and static environments. As robotic manipu-
lators are generally deployed for repetitive tasks, it suffices
to plan collision-free trajectories only once. In case certain
parts of the production process are changed, a re-planning of
collision-free trajectories and re-programming of all involved
manipulators is necessary. For that reason, it is imperative
to develop efficient, scalable and real-time capable motion
control strategies which allow a safe and flexible operation
of multiple manipulators in changing environments. Such
strategies would enable, for example, an on-demand task
assignment in a multi-robot setting. Furthermore, modular
approaches are conceivable, where each robot may be con-
sidered as an independent module. The ability to couple
and rearrange such modules in a flexible way would be
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FIGURE 1. Setup for a pick and place scenario with four collaborative
UR3 manipulators.

highly desirable from the point of view of modern production
processes.

One promising concept for industrial applications is Model
Predictive Control (MPC), which emerged in 1960s and was
initially applied for multivariable constrained control prob-
lems in oil and chemical industries [4]. The method utilizes a
model of the system dynamics to forecast its future behavior
and to optimize decisions in the future. The approach allows
the incorporation of physical constraints of the system, e.g.,
limiting input voltage or maximum speed of a considered
system. Besides that, themain advantages of theMPCmethod
are its predictive nature and online computation scheme,
that enables its application in various industrial settings.
In the past, MPC was primarily used for processes with
slow dynamics and long sampling times due to the need to
solve an optimization problem in each time step [5]. With
increasing computational performance, problems with faster
system dynamics can be treated, e.g., in automotive systems
and robotics [6].

II. CONTRIBUTION AND OUTLINE
This article is concerned with developing an online motion
control algorithm which enables several manipulators to
operate simultaneously in a common workspace. We formu-
late the problem of online motion control for each manipu-
lator as an optimization problem in the joint space, which
incorporates static and dynamic collision avoidance con-
straints. To this end, we derive a novel approach for collision
avoidance between multiple robots which enables a safe
robot-robot interaction. It is based onMPC to account for dis-
turbances and uncertainties during motion control. Moreover,
we use the predictive nature of MPC to exchange information
between the robots and thus to account for collisions a priori.
We take special care to ensure that our approach can be
applied for real-world applications as an online trajectory
planner. To this end, we use the concept of Distributed Model
Predictive Control (DMPC) in the joint space, where each
robotic manipulator is considered as an agent and shares

the predicted trajectory with its neighbors once at each time
step. Collision avoidance between robots is not sufficient to
overcome the problem of deadlocks. To this end, we introduce
a concept of how deadlocks among two or more robotic
manipulators can be detected and, subsequently, resolved.
Finally, there exists no approach so far, known to the authors,
which combines all the mentioned contributions in one sys-
tem simultaneously.

To demonstrate the efficiency of our approach, we consider
a setup ofmultiple 6-degrees of freedom roboticmanipulators
in the simulation environment Gazebo [7], controlled by the
Robot Operating System (ROS) [8]. The robotic manipulators
are closely placed to each other and operate in a common
workspace. Each robot is assigned several pick and place
tasks. We propose a modular approach for the practical
application, where each robot is placed on an independent
module. Cooperation between robots is possible by coupling
modules to each other. This approach has the advantage of
realizing different setups of multi-robot systems depending
on how many robots and what constellation of robots are
required to fulfill a task. Further, we compare our approach
for motion planning with sampling-based and optimization-
based planners to show its efficiency. Finally, we compare
computation times for different setups and draw conclusions
about scalability of our approach.

The remainder of this article is organized as follows.
In Section III we elaborate on existing trajectory generation
methods and multi-robot planners. In Section IV the dynamic
model of a robotic manipulator is introduced, followed by
a formulation of the DMPC problem in Section V. A novel
approach for collision avoidance is explained in detail in
Section VI. Further, we introduce a new approach for dead-
lock detection and resolution in Section VII. Validation of our
algorithm and simulation results are shown in Section VIII
followed by concluding remarks in Section IX.

III. RELATED WORK
Motion planning is still an on-going and challenging research
area in robotics. In industrial applications, trajectory gener-
ation of manipulators is usually required, in addition to its
feasibility, to minimize certain criteria, such as the distance
traveled or traveling time, and maximizing others, such as
energy efficiency or performance. It is necessary to consider
dynamically changing environments to allow for a flexible
operation of a manipulator. In multi-robot systems, each
robot has to find a feasible path in a complex and constantly
changing environment while sharing its workspace with other
robots. In general, the applied methods for trajectory gener-
ation in robotic applications can be divided into two main
categories: sampling-based and control-based methods.

Sampling-based methods include the widely used algo-
rithms based on either Rapidly Exploring Random Trees
(RRT’s) [9] or Probabilistic Roadmaps (PRM’s) [10]. The
RRT method is realized as a multi-query planner, whereas
the PRM method is a single-query planner [11]. The
sampling-based planners are suitable for high-dimensional
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configuration spaces and thus for multi-robot systems,
which is the main advantage of these methods. Several
sampling-based approaches exist for multi-robot motion
planning, such as discrete RRT (dRRT) [12] and subdi-
mensional expansion [13]. Recently, an asymptotically opti-
mal extension of dRRT was introduced denoted as dRRT*,
that was successfully applied for 4 robotic arms, each with
7 degrees of freedom sharing a common workspace [14].
However, the sampling-based methods are mainly applied
for static environments, as the trajectories are first planned
for a specific task and thereafter executed. The methods are
therefore mainly used for offline trajectory planning. Further
limitation of the sampling-based method includes difficulties
in planning trajectories for narrow passages that often lead
to jerky and unnecessary motions [15]. The Open Motion
Planning Library (OMPL) [16] includes a large variety of
sampling-based planners which are also integrated in the
Robot Operating System (ROS) [8] framework.

Control-based planners require a more tailor-made
approach depending on the type of robot. This category
includes artificial potential fields [17] and optimization-based
approaches [18]–[20]. Both methods search for a fea-
sible path towards the goal based on local information
from the environment. The artificial potential field method
uses a potential function that induces repulsive forces
against obstacles and attractive forces towards the goal.
Wang et al. [21] applied this method for a space manipula-
tor with multiple obstacles occupying the same workspace.
Obstacles were only considered if the manipulator undercut
a predefined minimal distance to the individual objects.
Bosscher et al. [22] applied velocity damping for a cooper-
ative motion planning of two robotic manipulators, where
a trajectory was planned for each robot in advance and
collisions were considered only during the execution of the
trajectory. The main drawback of the potential field method
is its limitation to a low-dimensional configuration space.

Optimization-based approaches are usually formulated as
constrained optimization problems where a kinematic and a
dynamic model of the corresponding robot are incorporated
in the constraints of the optimization problem. Additionally,
static as well as dynamic obstacles may be considered by
adding additional constraints to the optimization problem.
However, a large number of constraints can result in high
computational burden. Therefore, an efficient incorporation
of constraints is required, especially for multi-robot systems
in a dynamic environment. The concept of MPC [23] in
a receding horizon formulation is suitable for solving the
trajectory generation problem for a dynamic environment by
formulating an optimization problem that is solved over a
prediction horizon of finite length. Exchange of information
with other robots enables to account for potential collisions
a priori. Further, the closed-loop control accounts for model
uncertainties and disturbances.

Lam et al. [24], Arkadani et al. [25] and Belda et al. [26]
carried out trajectory generation with MPC for a single
robotic manipulator without collision avoidance. There are

two possible approaches integrating collision avoidance into
trajectory generation with MPC. In the first approach, the
MPC algorithm itself is extended by solving the optimization
problem not over the whole state space of the considered
system, but only over a subset of the state space. This sub-
set excludes all states where a collision might occur and
needs to be determined a priori. This method was applied by
Liu et al. [27] and Schoels et al. [28] for trajectory generation
of a mobile robot, where Schoels et al. [28] approximated
the collision-free subset by circles and Liu et al. [27] used
polyhedra at the current state. Rösmann et al. [29] used a
global planner to optimize trajectories of multiple mobile
robots maneuvering in a low dimensional space.

The second approach to integrate collision avoidance into
trajectory generation with MPC is to introduce further con-
straints to the optimization problem. There exist several
approaches to formulate these constraints. One approach is
to restrict the distance of all collision-prone object pairs,
where the corresponding objects are approximated by convex
bodies. Thus, for a kinematic model of a manipulator this
results in a connected chain of convex bodies [22], [30], [31],
where each pair of collision-prone bodies introduces an addi-
tional constraint into the optimization problem, e.g., in case
of multiple manipulators or a manipulator and a human.

The computation of distances between two convex bod-
ies is performed by algorithms with nested logical condi-
tions [32]–[34]. However, the derivatives of the constraints
are not smooth, which poses additional challenges to solving
the underlying optimization problem. Krämer et al. [31]
extended the collision avoidance approach from
Lumelsky [32] and proposed an online motion control for one
robotic manipulator in collaboration with a human. The com-
putation times prove the efficiency of the approach, where
the optimization problem is solved with a self-developed
hypergraph [35] to mitigate the problem of nested logical
conditions.

As an alternative to restricting the distance, virtual hyper-
planes can be used to separate two collision-prone bodies.
By approximating the considered objects by polyhedra and
applying Farkas’ lemma, collisions of the considered objects
can be avoided. An implementation with multidimensional
polyhedra was proposed by Gerdts et al. for a robotic manip-
ulator [36]. In the work of Zhang et al. [37] this approach
was extended so that, in addition to collision avoidance,
a minimum distance between two bodies can be guaranteed.
The former approach comes with the disadvantage, that for
every pair of collision-prone objects, several constraints have
to be added to the underlying optimization problem. Six new
optimization variables have to be introduced into the opti-
mization problem for each considered object pair. The num-
ber of additional constraints depends linearly on the number
of polyhedron faces, which is computationally intractable for
multi-robot systems.

The framework of MPC can be realized in a central-
ized or distributed scheme. The drawback of the Cen-
tralized MPC (CMPC) is the limited scalability and high
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computational complexity [38]. A DMPC framework can
help to split the computational burden, where each agent
optimizes its own objective function [38]. This concept
was already introduced for robot-human collaboration by
Flad et al. [39]. Yanhao et al. [40] proposed an approach
based on a distributed control for a cooperative manipu-
lation of an object. Tika et al. applied CMPC [41] and
DMPC [42] for a synchronous pick and place scenario for
two robotic manipulators. However, the focus lies on a syn-
chronous task completion for two robotic manipulators rather
than collision avoidance. Furthermore, deadlocks are not
treated in any of the mentioned works. Reliably and tem-
porally detecting deadlocks between a group of robots is
a challenging task.

IV. DYNAMICAL MODEL
We consider a robotic manipulator withN joints. The dynam-
ical model of a manipulator can be derived by Lagrange’s
equations of the second kind and formulated in a matrix form
as

M(q(t))q̈(t)+ C(q(t), q̇(t))q̇(t)+ g(q(t)) = τ (t), (1)

where q(t) ∈ RN denotes the vector of generalized coordi-
nates, which is the joint angular position vector. The inertia
matrix is denoted by M(q(t)) ∈ RN×N , C(q(t), q̇(t)) ∈
RN×N maps the angular velocities q̇(t) to Coriolis and cen-
trifugal torques, g(q(t)) ∈ RN is the vector of gravitational
and τ ∈ RN denotes the vector of generalized torques.

With feedback linearization, i.e., inner-loop control, which
linearizes the nonlinearity of the system, we obtain a system
dynamics of N double integrators, where each joint is inde-
pendently controlled [43]. As a result, the dynamical model of
a manipulator applied in this work admits the representation[

q̇(t)
q̈(t)

]
=

[
0 I
0 0

] [
q(t)
q̇(t)

]
+

[
0
I

]
u(t), (2)

where u(t) ∈ RN denotes the control input vector, the matrix
I ∈ RN×N denotes the identity matrix and 0 ∈ RN×N

represents the zero matrix.
We derive a discrete-time representation of the linear sys-

tem with the state vector x(t) = [qT(t), q̇T(t)]T ∈ R2N in the
state-space

xk+1 = Adxk + Bduk , (3)

where Ad
∈ R2N×2N represents the discrete state matrix and

Bd
∈ R2N×N the input matrix. Equation (3) is discretized

with a sample time Ts, where (·)k represent discrete variables
at time tk = k · Ts. The discrete states are denoted in the
following as xki = xi(tk ) and discrete control inputs as uki =
ui(tk ) for a manipulator i. The linear system in (2) describes
the dynamics of a robotic manipulator in the joint space,
which will be integrated as a constraint into an optimization
problem. This will be discussed in more detail in Section V.

V. DISTRIBUTED MODEL PREDICTIVE CONTROL
In the next step, we consider a system of M robotic manip-
ulators. Each manipulator i = 1, . . . ,M represents an inde-
pendent subsystem. The main objective of performing a
cooperative task for every robotic manipulator is to safely
reach the target joint state accounting for static, dynamic and
self-collision constraints.

CMPC considers the system dynamics of all subsystems
in a single optimization problem with respect to an aggre-
gated objective function. However, the degrees of freedom of
the centralized approach increase linearly with an increasing
number of robots such that the computational costs quickly
becomes inadmissible for real-time applications. In this work,
we investigate DMPC where each robot is considered as an
agent. For robotic manipulators working independently in a
shared workspace, as e.g. pick and place tasks, the system
dynamics are decoupled in states and control inputs.

A. FORMULATION OF DMPC PROBLEM FOR A
MULTI-AGENT SYSTEM
In this work, we consider a single communication iteration
between the robots at each time step, where they are allowed
to share their current and predicted states with all other
agents.

Keeping the former in mind, we turn our attention to
the formulation of the online trajectory planning problem
based on DMPC. We choose the multiple shooting method
for discretizing the optimization problem. The optimization
problem is split equidistantly into tk = k · Ts time steps with
k = 0, . . . ,Np, where Np denotes the prediction horizon. For
the sake of brevity, we choose the following notation for deci-
sion variables, i.e., states x

0:Np
i = [x0i , . . . , x

Np
i ] and control

inputs u
0:Np−1
i = [u0i , . . . ,u

Np−1
i ]. The DMPC formulation

for each involved robotic manipulator i takes the following
form

min
u
0:Np−1
i ,x

0:Np
i

J fi (x
Np
i )+

Np−1∑
k=0

J ci (x
k
i ,u

k
i ) (4)

s.t. xk+1i = Ad
i x
k
i + Bd

i u
k
i , k = 0, . . . ,Np − 1, (4a)

x0i = xsi , (4b)

xki ∈ Xi, k = 0, . . . ,Np, (4c)

uki ∈ Ui, k = 0, . . . ,Np − 1, (4d)

R(xki ) ∩O = ∅, k = 0, . . . ,Np, (4e)

R(xki ) ∩R(x∗ k
−i ) = ∅, k = 0, . . . ,Np. (4f)

The quadratic cost function J ci : R
2N
× RN

→ R,

J ci (x
k
i ,u

k
i ) := (xki − xfi)

TQx
i (x

k
i − xfi)

+uk T
i Ru

i u
k
i +1uk T

i Rd
i1uki (5)

penalizes the squared state error, i.e., the deviation of the
state xki from the desired state xfi = [qf Ti , 0 T]T, the mag-
nitude of the control input uk and the control smoothness,

i.e., the magnitude of 1uki =
uk+1i −u

k
i

Ts
, with the positive

VOLUME 10, 2022 55769



N. Gafur et al.: Dynamic Collision and Deadlock Avoidance for Multiple Robotic Manipulators

definite weighting matrices Qx
i ∈ R2N×2N , Ru

i ∈ RN×N

and Rd
i ∈ RN×N , respectively. The terminal state cost

J fi : R
2N
→ R

J fi (x
Np
i ) := (x

Np
i − xfi)

TQf
i(x

Np
i − xfi) (6)

penalizes the terminal squared state error with the positive
definite weighting matrix Qf

i ∈ R2N×2N .
The dynamics of manipulator i is given by equation (4a),

see Section IV, whereas the equation (4b) sets the measured
joint state xsi of manipulator i as the initial condition of the
state vector xki at time tk = 0. The equations (4c) and (4d)
represent lower and upper bounds on the states and control
inputs, i.e.,

Xi := {xki ∈ R2N
| xi,min ≤ xki ≤ xi,max},

Ui := {uki ∈ RN
| ui,min ≤ uki ≤ ui,max}. (7)

The equation for joint angles (7) also accounts for
self-collision constraints through limitation of the joints’
angle ranges.

We formulate static and dynamic collision avoidance con-
straints in the task space, transforming joint positions into
positions in Cartesian space using the nonlinear forward
kinematics. The forward kinematics of a manipulator turns
the optimization problem (4) into a non-convex one. This
concerns the constraints (4e) and (4f) where forward kine-
matics is applied. R(xki ) denotes the interior set of Cartesian
points occupied by manipulator iwith state xki . The trajectory
vector xk = [xk1, . . . , x

k
M ] collects the trajectories of all

involved robots. To account for static objects in the task
space, we define the set O containing all interior points of
all static obstacles. Indeed, constraint (4e) enforces that the
intersection of R(xki ) and the obstacles O for state xki is
empty. To consider dynamic collision avoidance constraints,
i.e., the prevention of inter-robot collisions, the short-hand
notation

R(xk
−i) :=

M⋃
j=1,j6=i

R(xkj ) (8)

is introduced. Consequently, constraint (4f) prevents the
inter-robot collision of robot i with all other robots.
The efficient implementation of constraints (4e) and (4f) is
the topic of the subsequent section. In the following, we focus
on solving the DMPC.

Note, that constraint (4f) establishes the coupling between
the manipulators in states. Constraint (4f) implies that the
optimal trajectories of all other robots, collected in x∗ k

−i,
is known a priori in order to solve the optimization
problem (4) for manipulator i. To obtain

x
∗ 0:Np
−i = [x

∗ 0:Np
1 , . . . , x

∗ 0:Np
i−1 , x

∗ 0:Np
i+1 , . . . , x

∗ 0:Np
M ], (9)

for collision constraint (4f) we use an extrapolation
approach [38]. Suppose

x̂∗ 0:Np = [x̂
∗ 0:Np
1 , . . . , x̂

∗ 0:Np
M ] (10)

FIGURE 2. Control structure of collision-free online motion control for
multiple robotic manipulators.

denotes the manipulators’ optimal trajectories from the last
converged DMPC-step. We obtain x∗ 0:Np (and thus also
x
∗ 0:Np
−i ) by shifting x̂∗ 0:Np by one time step and extrapolating
the last state. In other words, for every manipulator i =
1, . . . ,M , we compute

x
∗ 0:Np
i = [x̂

∗ 1:Np
i , x

∗Np
i ]. (11)

where the last predicted optimal state x
∗Np
i is obtained by

the extrapolation of x̂
∗ Np
i using the discrete system dynam-

ics, i.e.,

x
∗Np
i = Ad

i x̂
∗Np
i + Bd

i u
∗Np−1
i . (12)

Note, that the equation (12) can be obtained by setting

u
∗Np−1
i = û

∗Np−1
i , i.e. the two last optimal inputs in the

sequence u
∗ 0:Np−1
i are assumed equal.

To sum up, the model predictive controller of each robot
receives its current joint state and the (extrapolated) predicted

joint states of neighbored robots x
∗ 0:Np
−i to account for colli-

sions in the future and choose a proper control strategy to
avoid them.

B. CONTROL STRUCTURE
We propose the following control structure of our approach,
illustrated in Fig. 2. First, a task planner assigns a sequence of
tasks S(xfi) to the robots. In general, collision avoidance alone
is not sufficient to prevent deadlocks. A deadlock occurs
when robots prevent each other from reaching their respective
target by reaching a local minimum. Therefore, a supervisory
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instance is required to coordinate the robots to resolve dead-
locks. The supervisory role is taken over by a coordinator
to resolve deadlocks once they are locally detected by the
manipulators. Therefore, communication between the robots
and the coordinator is necessary, which is indicated by gray
lines in Figure 2. The coordinator receives a deadlock status
denoted as γD,i from each agent whether it is currently in
a deadlock. In addition, the coordinator receives the current
states xsi and current target poses x

f
i of the robots. This infor-

mation is necessary to reliably detect and resolve deadlocks.
If manipulators report a deadlock, the coordinator resolves
it by sending an activation or deactivation status to each
agent denoted as γR,i. Based on the clustering of robots
into deadlock-affected and non-deadlock-affected group of
robots, the manipulator closest to its target is allowed to
proceed its movement, whereas the other ones receive a new
target towards a neutral pose. Note, that the coordinator has
no knowledge of the system dynamics of any manipulator.
It relies solely upon the information shared by the robots.
The DMPCs of the M agents solve the problem in parallel
by accounting for predicted state sequences x

∗ 0:Np
−i of the

last converged DMPC step of the neighbored robots. The
optimal control inputs u∗ 0i = const., i = 1, . . . ,M for
[t0, t1) are sent to the robots’ underlying tracking controllers.
The robots’ controllers generate joint actuator torques τ i(t)
which are applied to each robots’ joints. Subsequently, the
current state of a robot xsi , i = 1, . . . ,M is measured
and sent to the DMPC. At the same time, the obtained
optimal state sequence x

∗ 0:Np
i , i = 1, . . . ,M is commu-

nicated to the neighbored robots, indicated by red dashed
lines in Figure 2.

VI. COLLISION AVOIDANCE METHOD FOR MULTIPLE
ROBOTIC MANIPULATORS
In the previous section, we formulated the motion control
problem of M robotic manipulators as M coupled DMPCs.
This section is dedicated to the efficient implementation of
the static and dynamic collision constraints (4e) and (4f).

One of the most applied algorithms among collision avoid-
ance methods in the literature is the Lumelsky algorithm [32].
The method approximates the robot links with line segments
and introduces an algorithm to compute the minimum dis-
tance between them. The approximation of robot links as
line segments is also known as line-swept sphere [22], [30],
[31]. The nested logical conditions pose challenges to solving
an optimization problem due to the non-smooth property
of the function. Therefore, we introduce a novel approach
for collision avoidance by approximating a robot’s geometry
by line segments and ellipsoids and derive an efficient and
smooth formulation that enables the robots to safely avoid
collisions.

A. ELLIPSOID - LINE SEGMENT (ELS) APPROACH
To overcome the problem with nested logical conditions,
we do not use a distance function to compute the distance
between two links. Instead, we ensure at each optimization

step that there is no intersection between line segments and
ellipsoids formulated as hard constraints in (4f). In the fol-
lowing, we proceed from the perspective of a manipulator i
with a set of interior points in the task space denoted byR(xki ).
The sets of interior points of the other robotic manipulators is
designated byR(x∗ k

−i). We approximate the links of a manip-
ulator i, for which the optimization problem is solved, by line
segments and the links of the remaining manipulators by
ellipsoids, we abbreviate it as ELS method. See Fig. 3 for an
illustration, where the robot on the left side is approximated
by 5 ellipsoids while the robot on the right is approximated
by 8 line segments. By choosing proper dimensions of the
ellipsoids with a suitable safety margin and thus ensuring
that the lines and ellipsoids do not intersect, we assure that
the constraints (4f) hold. Please note, that for every time step
k = 0, . . . ,Np pairs of ellipsoids and line segments of all
involved robotic manipulators must be considered.

FIGURE 3. Illustrative approximation of robots’ geometry with ellipsoids
and line segments from the perspective of robot i on the right side.

In the following we consider collision avoidance between
a robot i and a robot j, where robot i is modeled with line
segments and robot j with ellipsoids. A line segment sm of a
link m is described by the equation

sm(xki ) := bm(xki )+ αmrm(x
k
i ), αm ∈ [0, 1], (13)

where vector bm(xki ) ∈ R3 is the position vector of the basis
of the considered link and vector rm(xki ) ∈ R3 designates the
direction from bm(xki ) to bm+1(xki ) of the subsequent link.
The parameter αm restricts the line segment to the length of
the considered link.

For a given state xkj ∈ R2N , the ellipsoid {e ∈ R3
|

Hn(e, xkj ) = 1} of a link n is parameterized by the following
quadratic equation

Hn(e, xkj ) := (e− e0,n(xkj ))
TRn(xkj )EnR

T
n (x

k
j )(e− e0,n(xkj )),

(14)

where e ∈ R3 is a point on the ellipsoid. The centre point of
the ellipsoid is denoted as

e0,n(xkj ) =
1
2
(bn+1(xkj )+ bn(xkj )), (15)
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the rotation matrix Rn(xkj ) ∈ SO(3) describes the rotation of
link n relative to the inertial frame and the diagonal matrix

En = diag

(
1

l21
,
1

l22
,
1

l23

)
∈ R3×3 (16)

contains the squared inverse principal semi-axes l1, l2, l3 ∈
R>0. To ensure that (4f) holds, the width of an ellipsoid
should be at least twice as large as the width of a robot link
and an ellipsoid should also occupy the two joints connecting
the link.

In order to ensure, that line segment m and ellipsoid n do
not intersect, the condition

1− Hn(sm(xki ), x
k
j ) ≤ 0, ∀αm ∈ [0, 1] (17)

has to hold. Alternatively, the former can be reformulated into
an optimization problem, i.e., solving

min
αm

Hn(bm(xki )+ αmrm(x
k
i ), x

k
j ) (18)

s.t. 0 ≤ αm ≤ 1 (18a)

for α∗m holds. Please note, we drop further explicit reference
to xki and x

k
j for sake of readability. Problem (18) is solved in

the following way. First, the solution α̂m ∈ [−∞,∞] of the
unconstrained optimization problem computes to

α̂m = −
(bm − e0,n)TRnEnRT

n rm
rTmRnEnRT

n rm
. (19)

The former is guaranteed to exist since Hn(e) is positive
definite, i.e., rTmRnEnRT

n rm > 0 holds. Projecting α̂m onto
the unit interval by the projection operator P : (−∞,∞)→
[0, 1] gives rise to the solution α∗m of (18) in closed form

α∗m = P
(
−
(bm − e0,n)TRnEnRT

n rm
rTmRnEnRT

n rm

)
. (20)

Since P is not continuously differentiable, we approximate P
by

P̂(α) = α 8(α)− (α − 1) 8(α − 1) (21)

where8 refers to the smooth approximation of the Heaviside
function

8(α) =
1

1+ exp(−cα)
(22)

and c ∈ R>0 is a scaling parameter. For c→∞ the function
P̂ converges towards P. Both, P̂ and P are depicted in Fig. 4
for c = 20. For the former parameter choice, the maximum
absolute error of α∗m amounts to 1.13 · 10−2.
Considering static collision avoidance, formulated in equa-

tion (4e), we follow a similar approach as explained before by
approximating objects with convex bodies, i.e., by spheres
or ellipsoids depending on the geometry of the considered
object. In our setup, the table represents a static object, so that
there is a risk that the robot i chooses a trajectory below or
through the table to avoid another robot j. For this purpose it
is sufficient to formulate a plane along the table and restrict

FIGURE 4. A comparison between the projection operator P(α) and the
approximated function P̂(α) with parameter c = 20.

the intersection of the basis of each link bm of the robot i
with the plane by the height of the table denoted as vector
z = [0 0 zT], i.e.

bm ≥ z+ zmin, (23)

with an offset zmin. In case of the gripper, which is attached
to the end effector, an additional offset equal to the length of
the gripper should be considered.

B. INTER-ROBOT COLLISION AVOIDANCE WITH ELS
METHOD FOR TWO ROBOTS
In order to ensure a collision-free trajectory of a robot
in a multi-robot setting, it is necessary to encompass the
whole geometry of a robot, as described in the previous
section VI-A. The number of collision avoidance constraints
is a matter of the geometric composition of the robots and
therefore setup-dependent and might be determined in a pre-
processing step. In case of 2manipulators withN = 6 degrees
of freedom, we approximate the robot i for which the DMPC
problem is solved by NL = 8 line segments, starting from
the basis and ending by the gripper, depicted in Fig. 3.
We approximate the neighbored robot by NE = 5 ellipsoids,
encapsulating the basis, subsequent three links (Shoulder,
Elbow, Wrist 2) and the end-effector including the gripper,
which is referred to as Wrist 3. By ensuring no intersections
between any line segment with any ellipsoid, this results in
formulating Ndyn = NL · NE = 40 collision constraints for
every time step of the prediction horizon. As the ellipsoids
should be chosen large enough to contain at least the diameter
of the neighbored link, it is sufficient to omit the 3 short line
segments connecting two joints, i.e., line segment connecting
Basis and Shoulder joints, Shoulder and Elbow joints as well
as Wrist 1 and Wrist 2 joints. This results in formulating
Ndyn = 25 collision constraints for a single time step.
However, the former only serves as an upper bound. Geo-

metrically it is impossible to position robots in a pick &
place setup, where all constraints need to be considered,
as the manipulators operate in a certain distance to each other.
Hence, a pre-processing step can be performed to reduce the
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number of required collision constraints, depending on the
considered setup. In the work at hand, each manipulator (may
it be the two, three or four robot setup) is positioned on top
of a flexible module which might be combined arbitrarily
with other modules to form larger formations. The minimum
distance between the robots dictated by the modules ensures,
for example, that one robot cannot touch the base of the
other robot. Furthermore, the shoulders of both robots are
also not able to collide. Thus, the formulation can be reduced
to Ndyn = 14 collision avoidance constraints for each time
step, which are sufficient for a safe interaction between two
robots with N = 6 degrees of freedom. Those are listed in
Table 1. For instance, choosing a prediction horizon length of
Np = 20 results in a total of 280 constraints to be considered
for each manipulator by the DMPC. In case that the robots
are placed very close to each other, similar assumptions can
be made, where certain constraints can be omitted as well.

TABLE 1. Intersection of links for formulating collision avoidance
constraints in case of two robots j and i .

VII. DETECTING AND RESOLVING DEADLOCKS FOR
ROBOTIC MANIPULATORS
Deadlocks occurring in a setup of multiple robots is a
well-known problem in the field of mobile robots, UAVs and
robotic manipulators [44], [45]. The problemmay arise if one
or more robotic manipulators block each other, effectively
prohibiting each other from reaching their target state. In our
case, the solution of the optimization problem (4) is at a
local minimum. To this end, resolving deadlocks requires a
supervisory instance, i.e., a coordinator, and some sort of
information exchange between the robotic manipulators and
the coordinator.

We propose an approach involving a local deadlock detec-
tion, where each robotic manipulator i checks by itself if
it is currently in a deadlock and sends the information to
the supervisory instance, i.e., the coordinator. The coordi-
nator, as previously introduced in Section V-B, resolves an
occurring deadlock. A manipulator i detects a deadlock if the
following two conditions are true, i.e., if the change of joint
velocities over the prediction horizon is sufficiently small,
meaning that manipulator i is slowed down and cannot move
further and, at the same time, the deviation of the robot’s
measured state xsi and the desired state x

f
i is sufficiently large∥∥∥q̇∗ Np

i − q̇∗ 0i
∥∥∥
2
≤ εv ∧

∥∥∥xsi − xfi
∥∥∥
2
≥ δx ⇒ γD,i = 1. (24)

If both conditions are satisfied, a deadlock is detected and
deadlock parameter γD,i ∈ {0, 1} is set to γD,i = 1 and
subsequently sent to the coordinator. In case of no deadlocks,

the deadlock parameter takes a value of zero. Besides, each
manipulator i sends its current and target states to the coordi-
nator at each time step.

To resolve a deadlock, the coordinator classifies robots in
deadlock-affected and non-deadlock-affected groups by their
mutual distances. First, all robots Ri, i = 1, . . . ,M are part of
M disjoint clusters Ci, i.e., Ci = {Ri}. The coordinator checks
for every robot if a deadlock has been detected. In case of
γD,i = 1, the coordinator moves all robots Rj (j 6= i) which
are sufficiently close to robot Ri to cluster Ci (using forward
kinematics and the provided states). The following pseudo-
code Algorithm 1 summarizes these steps.

Algorithm 1 Classification and Clustering
1: for i = 1 to M do
2: if γD,i = 1 then
3: Check which robots are sufficiently close
4: for j = 1 to M do
5: if i 6= j & dist(Ri,Rj) ≤ dmin then
6: Add robot Rj to the cluster Ci
7: else
8: Robot Rj remains in its own cluster
9: end if
10: end for
11: end if
12: end for

In the next step, the coordinator sends, for all deadlock-
affected clusters, the resolving parameter γR,i = 0 to all
robots in this cluster except for the robot with the smallest
residual. A resolving parameter of γR,i = 0 assigns the robots
a new target pose xD, designated as neutral pose. The robot
with the smallest residual, i.e., which is closest to its target
state retains its original target state. Once this robot reaches its
target state, the cluster is reset by sending all involved robots
to their respective cluster Ci = {Ri} and setting their resolving
parameters to γR,i = 1, i.e., robots that were assigned a
neutral pose are given their former targets in order to be able
to finish their previous tasks. The steps are summarized as
pseudo-code in Algorithm 2.

Algorithm 2 Resolving Deadlocks
1: for i = 1 to M do
2: kmin = argmink∈Ci res(k)
3: Send γR = 1 to robot kmin
4: Send γR = 0 to all robots in Ci \ kmin
5: if res(kmin) < εres then
6: Send γR = 1 to all robots in Ci
7: Redistribute all robots to their original clusters
8: end if
9: end for

This clustering procedure ensures that manipulators that
are not affected by a deadlock operate undisturbed in the
workspace.
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VIII. RESULTS
A. SIMULATION SETUP AND CONTROLLER
PARAMETRIZATION
The multi-robot setup is built in the robotic simula-
tion environment Gazebo [7] with simulated collabora-
tive robotic manipulators UR3 from Universal Robots with
N = 6 degrees of freedom each.Gazebo provides an interface
to control the robots using ROS. In this work, we use the
distribution ROS Noetic. The communication is established
through the ROS action client to the Universal Robot ROS
driver. Therefore, a velocity controller hardware interface is
applied. The ROS interface allows for an easy replacement
of the simulation environment in Gazebo by an experimental
test bed.

The control algorithms are implemented in Matlab using
CasADi [46] for setting up the nonlinear program for
the DMPCs. The merit of CasADi is its automatic differen-
tiation capability, i.e., CasADi computes the first and sec-
ond order derivatives of the cost function and constraints
using automatic differentiation. We use the interior point
solver IPOPT [47] to solve the DMPC problems and apply
MA27 [48] to solve the underlying linear system. We set the
maximum number of iterations to 1000. In addition, CasADi
is instructed to pre-compile the optimization problems
using just-in-time compilation. We choose a sampling time
of Ts = 200 ms.

The model predictive controllers run in parallel on a com-
puter with an Intel i7-11800H CPU at 2.30 GHz using 32 GB
RAM under Ubuntu 20.04. The coordinator is running on the
same computer and communicates with the model predictive
controllers via the UDP protocol. The trajectories between
the robots are exchanged via the UDP protocol as well.

The weighting matrices of the DMPCs are chosen as

Qx
i = diag(1, 1, 1, 0.2, 0.2, 1, 1, 1, 1, 0.1, 0.1, 0.1),

Qf
i = 10 ·Qx

i , Ru
i = I6×6 and Rd

i = I6×6.

Joint positions and velocities of the three wrist links (con-
necting the last three joints) are penalized less to allow for
a greater freedom of motion. The absolute values of joint
velocities of an UR3 manipulator are limited to

[π, π, π, 2π, 2π, 2π ]
rad
s
.

In addition, the absolute values of accelerations are limited to

[π, π, π, 2π, 2π, 2π ]
rad
s2
.

The parameters for the deadlock algorithm were chosen as
follows

εv=1.5 · 10−3
rad
s
, δx = 1.2 · 10−2 rad, dmin = 0.2 m.

B. INPUT DELAYS OF CLOSED-LOOP NONLINEAR MODEL
PREDICTIVE CONTROL
The number of active dynamic collision constraints summa-
rized in equation (4f) change dynamically, as not all possible

FIGURE 5. Simulation setup with 2 modules of UR3 robots.

collisions can occur at each time step tk . The number of active
collision constraints considerably affects the computation
times of the non-convex optimization problem (4). However,
the sampling time Ts cannot be increased arbitrarily, other-
wise tunneling will occur resulting in undetected collisions.
For this reason, we choose a sufficiently small sampling
time and account for the non-negligible computation times
as explained by Grüne and Pannek [49].

C. VALIDATION OF THE MOTION PLAN ALGORITHM
In this section, we demonstrate the flexibility of our approach
by arranging the robot modules into different constellations
of two, three, and four robots to study the optimal trajectories
and computation times for pick and place tasks in more detail.
Each manipulator is placed on top of a module of a height
zT = 1.107 m. The task for each robot i is to grasp a number
of objects in a common workspace and to place them into the
assigned trays. Each tray is shared by two manipulators.

In our first setup, we consider two robots, two trays and
six objects as shown in Fig. 5. We consider 20 pick and place
sample tasks with different object positions in the shared
workspace. For each sample task the six objects are ran-
domly placed in a common workspace via random sequential
adsorption (RSA) [50] by considering additional reachability
constraints of the robots. The randomly distributed objects
in the common workspace can be reached by both robots.
Similarly, each tray can be served by both robots and contains
three slots. The robots are placed close to each other, so that
inter-robot collisions are imminent. In first step, the tasks
are equally distributed among the two robots by providing
a sequence of setpoints to each manipulator. Each robot’s
task is to place three of the randomly distributed objects
into assigned trays. To analyze the influence of the pre-
diction horizon length Np on performance and computation
times, we choose three different prediction horizon lengths
Np ∈ {10, 15, 20}.
For illustration purposes, several time frames are depicted

in Fig. 6 for one selected sample (sample task 1) with a
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FIGURE 6. Selected time frames from Gazebo simulation for 2 robots for
a selected sample (sample task 1).

prediction horizon length of Np = 20. The initial poses of
the robots are depicted in Fig. 6a. The first two objects are
grasped by two robots without any problems, see Fig. 6b.
In contrast, grasping the next two objects leads to a dead-
lock as the robots’ trajectories intersect. Therefore, at time
t = 29 s in Fig. 6c, a deadlock is resolved, where the robot
on the left has been sent to a neutral pose while allowing the
robot on the right to grasp its object. At time t = 54 s in
Fig. 6d the robot on the left successfully plans an optimal and
collision-free motion above its neighbor to reach its target.
Later, at time t = 73 s in Fig. 6e another deadlock occurs,
so that the robot on the left moves to its neutral pose allowing
the robot on the right to grasp its object. Both robots have to
serve the same tray and therefore cannot place their objects
simultaneously. Therefore, the robot on the left moves to its
neutral pose once again at time t = 82 s until the robot on
the right finishes its task, shown in Fig. 6f. After finishing
the assigned tasks, which took 100 s, the robots return to
their initial pose, see Fig. 6g. This example demonstrates a
frequent occurrence of deadlocks, where collision avoidance
alone cannot solve the motion control problems.

The cost functions for both robots are provided in Fig. 7.
As the cost function punishes the deviation of the current state
to the desired state, it rises every time a robot receives a new

FIGURE 7. Cost function (4) dependence on prediction horizon Np for
sample task 1.

FIGURE 8. Comparison of computation times Tc to prediction horizon Np
for sample task 1.

target pose. Furthermore, it can be observed that the execution
time, i.e., the time needed to finish all pick and place tasks,
reduces with increasing prediction horizon length. For this
reason, a prediction horizon length as large as possible is
desired that results in faster reactions to upcoming collisions
and therefore sooner actions can be taken to avoid them.

Concerning the optimality of the DMPC, we compare the
joint angles with the results obtained by CMPC for different
prediction horizon lengths. In Fig. 9 all joint angles are
depicted for sample task 1, solved in the distributed and
centralized scheme. Please note that the CMPC forNp = 20 is
not applicable as the computation times consistently exceed
the sampling time Ts. Thus, we restrict to prediction horizon
lengths of Np = 10 and Np = 15. It can be observed, that
the difference between the two solutions of CMPC and the
DMPC increase with time for Np = 10 for both joint angles.
For Np = 15 the results indicate that with increasing pre-
diction horizon length, the solution of DMPC closely follows
the solution of CMPC. The corresponding computed control
inputs for each joint are provided in Fig. 10.

The computation times for every time step for sample
task 1 are depicted in Fig. 8. As expected, the computa-
tion time increases with an increasing prediction horizon
length Np. Grasping as well as placing procedures are per-
formed without solving the DMPC, as once the robot reaches
its target it moves down or up within a short time interval.
The gaps in the computation times correspond to grasping and
placing procedures. To get a better impression of computation
times of the DMPC and the CMPC for all 20 sample tasks, the
mean computation times as well as the standard deviations
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FIGURE 9. Comparing solutions from distributed and centralized MPC for
all joint angles with different prediction horizon lengths for Robot 1
(sample task 1).

are summarized in Table 2. The left column corresponds to
the robot on the left in the simulation environment and the
right column corresponds to robot on the right, see Fig. 6.
In case of the DMPC the mean computation times increase
superlinearly with an increasing prediction horizon length
which might be attributed to the direct solver used by IPOPT.
Importantly, the standard deviation increases in the same
fashion as well. Compared to the computation times obtained
by the CMPC, a speed-up factor of more than 2.5 has been

FIGURE 10. Computed control inputs of all joint angles from DMPC for
different prediction horizon lengths for Robot 1 and Robot 2 (sample
task 1).

achieved by solving the problem in a distributed scheme.
As mentioned earlier, the CMPC for Np = 20 computation
times are omitted.

D. BENCHMARK PROBLEMS WITH OMPL PLANNERS
AND CHOMP PLANNER
We compare our approach with several sampling-basedmeth-
ods integrated in OMPL, such as RRT-Connect, PRM, PRM∗

55776 VOLUME 10, 2022



N. Gafur et al.: Dynamic Collision and Deadlock Avoidance for Multiple Robotic Manipulators

TABLE 2. Benchmark results for 20 sample tasks in a setup with 2 robots.

and the optimization-based method CHOMP with regard
to execution time, pathlength, planning (computation) time,
smoothness and success rate for a setup of 2 robots. The exe-
cution time Te designates the time which is needed to finish
the pick and place tasks by both robots. The path length L
describes the total distance traveled by the end effector of one
robot to finish the assigned tasks. The time Tc corresponds
to the planning time to compute the trajectory from initial
to the target pose for the investigated OMPL planners. For
the MPC approach, time Tc is referred to computation time
which is needed to perform a single MPC step. The trajectory
smoothness s =

∫
Te
||q̈(t)||dt describes the Euclidean norm

of the integral of joint accelerations. Success rate Sr speci-
fies percentage of how many sample tasks were successfully
planned for 2 robots simultaneously by a planner. Table 2
summarizes the results of 20 sample tasks for the chosen
planners, where the mean values and standard deviations
for the selected metrics are provided. Note, RRT-Connect
is abbreviated as RRTC in the Table 2. The results are also
visualized in Fig. 11 to provide a comparison between the
planners. The results for Robot 1 (left column in Table 2,
respectively for each metric) are visualized in Fig. 11.

The sampling-based methods guarantee a probabilistic
completeness, i.e., a planner is guaranteed to find a solution
with a given probability in a finite amount of time. Planners
such as PRM∗ need certain amount of time to plan a tra-
jectory which is to be specified by the user. Not restricting
the planning time results in a not terminating algorithm. The
benchmark methods plan the trajectories for the two robots at
the same time and send them to the robots executing the tra-
jectories simultaneously. To ensure comparability between
the benchmark methods and the DMPC regarding success
rate, we integrate the same deadlock resolution procedure
as for the DMPC, described in Section VII. In other words,
once a planner fails to find a solution for both robots, e.g.,
simultaneous picking or placing is not feasible due to oth-
erwise occurring collisions (geometrically infeasible poses),
one robot is sent to its neutral pose, so that the other one
can grasp or place an object. Comparing the success rate of
the planners, CHOMP manages to find a path for 2 robots
simultaneously in only 43% of the considered sample tasks.
In other words, in 57% of sample tasks only one robot at the
same time could operate in a shared workspace. Although the
pathlength keeps up with the results of MPC, it should be

FIGURE 11. Comparison of MPC approach with some selected OMPL
planners for 20 sample tasks in a setup with 2 robots for Robot 1.

noted that in half of the cases the path could not be planned,
thus the robot could not travel as much as in the case of MPC.
The execution time is the second longest compared to the
other planners, followed by the second longest planning time.
CHOMP plans jerky trajectories resulting in high standard
deviations of trajectory smoothness meaning high fluctuation
of joint velocities. In addition, we encountered several colli-
sions with the CHOMP algorithm between the robots result-
ing in a poor performance. This can be explained by the fact
that collision avoidance constraints are incorporated as soft
constraints in the objective function and thus a collision-free
trajectory cannot be guaranteed.

PRM and RRT-Connect have a success rate of 75% and
72%, respectively. The execution times are the smallest one
compared to CHOMP and RRT∗. However, shorter planning
times do not necessarily lead to shorter path legnth. As can
be seen from Fig. 11b, the pathlengths for both planners
are longer than for CHOMP and PRM∗. In contrast to other
planners, planning time of PRM shows a large standard devi-
ation. PRM and RRT-Connect plan trajectories of similar
smoothness.
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The planner PRM∗ leads to the highest planning time as it
fully utilizes the given (maximum) planning time of 10 s and
then uses the best result up to that point. This results also in
the highest execution time. However, it provides the highest
success rate of 76%. As PRM∗ creates a dense graph, it leads
to smooth paths compared to other non-optimal sampling-
based planners. The pathlength of PRM∗ slightly exceeds
the values of DMPC and thus belongs to the shortest one
compared to the investigated OMPL planners and CHOMP.

From the obtained results, the execution time of DMPC and
CMPC tend to decrease with increasing prediction horizon.
It is considerably shorter compared to CHOMP and PRM∗.
The pathlength does not considerably change with increasing
prediction horizon in case of DMPC and CMPC. However,
the computation time increases superlinearly with increasing
prediction horizon as more constraints have to be accounted
for. The MPC schemes compute the smoothest trajectories
compared to the considered OMPL planners and CHOMP.
The success rate in case of DMPC describes the number of
time steps, where both robots perform pick and place tasks
simultaneously, i.e., the remaining time steps the robots were
resolving a deadlock. The comparison to other planners show
that the DMPC approach finds an optimal path in 95% for
simultaneous pick and place tasks, independent of the pre-
diction horizon length, and leads to better results for almost
all metrics except for execution time, where RRT-Connect
outperforms. In addition, the MPC approach has the benefit
of reacting to dynamically changing environments. In other
words, once the one robot’s target pose changes the other
robot’s target is not influenced and it can still re-plan its
own motion at any time. Therefore, MPC approach provides
flexibility by not defining the changes beforehand, which is
not the case with the planners studied here and thus are only
limited to offline planning.

E. SCALABILITY OF THE DMPC APPROACH
Subsequently, we study setups of three and four robot mod-
ules to investigate how the computation times scale with an
increasing number of robots. The setup with three modules,
each comprising a single robot, are set up in a row, where
the outer robots cooperate with the robot in the middle,
illustrated in Fig. 12. The robot in the middle is performing
pick and place tasks in two different workspaces. For sake of
brevity, two time steps from a selected sample are illustrated
in Fig. 13, where deadlock and collision avoidance occurred.
The pick and place tasks were successfully performed by the
three robots for all sample tasks.

As the last setup, we consider four modules with four
manipulators and 12 objects in the shared workspace,
depicted in Fig. 14. In this case, not all objects are reach-
able by all robots and each tray can only be served by two
robots. As before, we study several samples with randomly
placed object. The robots perform the pick and place tasks for
12 objects into the four provided trays. In Fig. 15, two distinct
time steps are illustrated showing the robots performing the
pick and place tasks.

FIGURE 12. Simulation setup with 3 modules of UR3 robots.

FIGURE 13. Selected time frames from Gazebo simulation for 3 robots.

FIGURE 14. Simulation setup with 4 modules of UR3 robots.

FIGURE 15. Selected time frames from Gazebo simulation for 4 robots.

We compare mean computation times for the setups of two,
three and four robots and their dependence on the predic-
tion horizon length. From Fig. 16 it can be observed that
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FIGURE 16. Scaling of computation times with the number of robots.

FIGURE 17. Scaling of DMPC and OMPL planners regarding success rate
with the number of robots.

computation times rise with an increasing number of robots.
The mean computation times for prediction horizon lengths
Np ∈ {10, 15} do not exceed 100 ms for 2 and 3 robots.
Moreover, the mean computation times remain under 200 ms
even for 4 robots with Np = 20. As previously shown for
a setup of 2 robots, prediction horizon length of Np = 15
is sufficient as the solution closely follows the solution of
the CMPC.

Finally, we assess how the OMPL planners and CHOMP
scale with number of robots with regard to success rate. The
results in Fig. 17 show that CHOMP delivers better results
for the linear setup of 3 robots, see Fig. 12 than for 2 robots
which can be attributed to the fact that the robot in the mid-
dle interacts with the outer robots in an alternating manner.
However, for the setup of 4 robots, where all the robots
share a common workspace, the performance of CHOMP
considerably deteriorates going from 3 to 4 robots. For the
setup of 4 robots, CHOMP manages to find a solution for
all four robots in one third of times. The success rates of
the considered OMPL planners decrease almost linearly with
the number of robots. In contrast, DMPC approach delivers a

success rate of approximately 94 % regardless of the number
of robots.

IX. CONCLUSION
In this work, we introduced a novel motion control algo-
rithm for multiple robotic manipulators. The manipulators
were set up as modules which were combined into larger
structures of 2, 3 and 4 robots. Each robot planned its own
collision-free trajectory using Distributed Model Predictive
Control (DMPC) that accounted for static and dynamic obsta-
cles. The framework required a communication between the
manipulators for safe interaction with each other. We pro-
posed a new approach for collision avoidance between mul-
tiple robotic manipulators. Each robot was approximated
by line segments, while the other surrounding robots were
approximated by ellipsoids. Excluding intersections between
line segments and ellipsoids ensures a collision-free trajec-
tory of each robot. This formulation allowed for a computa-
tion of the optimal trajectories in real-time. In a setup of mul-
tiple robotic manipulators, deadlocks may occur, which is a
well-known problem in robotics. In our approach eachmanip-
ulator detects if it is currently in a deadlock. Based on this
information, the introduced coordinator resolves occurring
deadlocks without interrupting the motion of not deadlock-
affected robots.

The motion control algorithm was validated on different
constellations of robotic modules for two, three and four
manipulators performing pick and place tasks. The setup was
built in the simulation environment Gazebo and controlled
by ROS. We observed that for cases where robots have
to serve the same tray or have to pick objects very close
to each other, deadlocks consistently occurred. However,
in each case, the manipulators reliably detected deadlocks
and the coordinator successfully resolved them. Concern-
ing the optimality of our approach, we compared trajecto-
ries of the proposed DMPC approach with the centralized
solution. The results showed, that with longer prediction
horizon, the difference between the solutions decreases and
the distributed solution closely follows the centralized one.
Finally, a comparison of computation times with central-
ized MPC as a benchmark showed, that a considerable
speed-up is achieved by solving the problem in a dis-
tributed scheme. Finally, we compared our approach with the
well-known sampling-based (RRT-Connect, PRM, PRM*)
and optimization-based planners (CHOMP). In simple static
cases, the new DMPC approach shows better performance
in most cases concerning execution time, pathlength and
smoothness of the trajectories compared to the investigated
OMPL planners and CHOMP. Moreover, with the DMPC
approach, robots can perform pick and place tasks simulta-
neously in 94% of sample tasks regardless of the number of
robots. The comparison with other planners showed, that the
success rate to find a feasible path for each robot decreases
with the number of robots, e.g. CHOMP succeeds to find a
plan in only 30% of cases while the OMPL planners do not
exceed a success rate of 54% in case of 4 robots. The main
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advantage of the new DMPC approach is to bring in more
functionality and flexibility for dynamic environments, i.e.,
each robot can freely move and change its target pose on the
fly without requiring a replanning for all robots simultane-
ously. In other words, each robot is capable of reacting upon
path changes of other robots at each time step, which is not
the case with the investigated planners. Finally, we showed
by comparing computation times obtained for different num-
bers of robots, that our framework scales to multiple robotic
manipulators.

In future, we plan to realize the proposed approach on an
experimental testbed for at least two robotic manipulators
performing assembly and disassembly tasks. So far, we inves-
tigated our approach for a homogeneous group of robots.
However, it would be also desirable to extend the approach to
a non-homogeneous robotic setup. Our approach can further
be extended to collaboration tasks with a human and the
presence of other dynamic obstacles in the workspace.
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