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Introduction

We encounter directional data in numerous application areas such as astronomy, biology or engineering.
Examples include the direction of arrival of cosmic rays, the direction of flight of migratory birds or the
orientation of steel fibres in fibre-reinforced concrete.

In part I, we define and apply morphological operators, quantiles and depths for directional data. The
morphological operators are defined for Sd−1-valued images with Sd−1 = {x ∈ Rd :

√
xTx = 1},

d ≥ 2. Since an ordered structure is necessary for a definition of these operators, which is not naturally
given between vectors, an order is determined with the help of the theory of statistical depth functionals.
This allows for defining the basic operators erosion and dilation as well as morphological (multi-scale)
operators for Sd−1-valued images based on them. The operators introduced are related to their grey
value counterparts.

Furthermore, quantiles and the "angular Mahalanobis" depth for directional data introduced by Ley
et al. (2014) are extended. The concept of Ley et al. (2014) provides useful geometric properties of
the depth contours (such as convexity and rotational equivariance) and a Bahadur-type representation
of the quantiles. Their concept is canonical for rotationally symmetric depth contours. However, it
also produces rotationally symmetric depth contours when the underlying distribution is not rotationally
symmetric. We solve this lack of flexibility for distributions with elliptical depth contours. The basic
idea is to deform the elliptic contours by a diffeomorphic mapping to rotationally symmetric contours,
thus reverting to the canonical case in Ley et al. (2014). Our results are confirmed by a Monte Carlo
simulation study and applied to the analysis of fibre directions in fibre-reinforced concrete.

In Part II, we elaborate interdisciplinary results of statistical analysis and stochastic modelling in civil
engineering. Our statistical analysis of the correlation between production parameters (fibre length,
fibre diameter, fibre volume fraction as well as casting method, superplasticiser content and specimen
size) of ultra-high performance fibre reinforced concrete and the fibre system (spatial arrangement and
orientation of the fibres) provides users with a better understanding of this relatively new composite
material. The fibre system is modelled by a Boolean model and the fibre orientation by a one-parameter
distribution. In addition, the behaviour under tensile loading is modelled.
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Part I

Mathematical morphology, quantiles and
depths for directional data
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Chapter 1

Mathematical morphology on directional
images

1.1 Introduction

Mathematical morphology is a non-linear image processing technique that combines ideas from set
theory, topology, and stochastic geometry. It is widely applied for the analysis of spatial structures, e.g.
from geology, biology or materials science. The foundations of mathematical morphology are laid in the
books by Matheron [1], Serra [2, 3], and Soille [4]. Sternberg [5] generalised mathematical morphology
to numerical functions via the umbra method, i.e., the application of set morphology to the graph of the
function. Ronse [6] and Goutsias et al. [7] derived a further generalisation to complete lattices, that is,
partially ordered sets with the property that all subsets have a supremum and an infimum.

The development of imaging methods from binary via grey-scale images to vector-valued images,
such as colour or ultra-spectral images, requires modified morphological operators. In mathematical
morphology, the step from univariate to multivariate pixel values involves the challenging task of or-
dering vectors such that we can define the notions of minimum and maximum of a set of vectors. An
ordering structure for vectors can be derived from the concept of depth. For a set of vectors, depth
functions assign to each vector a value that measures its "centrality" within the set. The "centre" is the
vector maximising the depth function. Thus, a centre-outward ordering based on the depth values of
each vector yields a sound definition of minimum and maximum. Depth extends the univariate notion
of a centre, e.g. the median, to a multivariate setting and enables a non-parametric robust data analysis.

Velasco-Forero et al. [8] defined multivariate mathematical morphological operators via random pro-
jection depth. They illustrated their approach on colour and hyperspectral images. Concepts of depth
for directional data, i.e., unit vectors in Rd, were investigated by Liu et al. [9] and Pandolfo et al. [10].
Ley et al. [11] introduced quantiles for directional data and the angular Mahalanobis depth.

Based on an ordering on the unit sphere Sd−1, mathematical morphology was extended to directional
images by several authors. Roerdink [12] introduced mathematical morphology on the sphere via gen-
eralised Minkowski operations. His motivation was to apply morphological operators to images of the
earth, taking into account the surface curvature of the earth. Morphological operators for angle-valued
images were introduced by Peters [13] and Hanbury et al. [14]. However, a generalisation from their
results to the unit sphere Sd−1 with d ≥ 2 is not straightforward. Frontera-Pons and Angulo [15] de-
fined morphological operators via a local partial ordering. They used the Fréchet-Karcher barycenter as
a local origin µ ∈ Sd−1. The maximum and minimum of a set of vectors are then found via projecting
the vectors into the tangent space at µ. A drawback of their approach is that the minimum and maximum
derived this way are not necessarily elements of the given vector set, which seems unnatural.

Let R = R ∪ {−∞,∞} the extended real numbers. Structuring functions b : E → R determine the
effect of morphological operators. A standard example is b(i) = 0 if i ∈ B and b(i) = −∞ else, with
the so-called structuring element B. Morphological operators are extended to multi-scale morphological
operators if the structuring function is a parametric family {bt}t≥0 depending on the scale parameter t.
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For instance, the scale of a structuring element B can be its size, and therefore {tB}t≥0 determines
the effect of a multi-scale morphological operator. Multi-scale morphological operators are based on
the concept of scale-spaces, see Witkin [16]. The idea of scale-spaces is to use a continuous scale
parameter for spatial filtering of image objects. A scale-space is not necessarily meant as a vector
space or a comparable structure. It is a multi-scale representation of a signal or image I . A scale
parameter t = 0 gives the original image I interpreted as the "finest scale". Higher values of t give
a representation of I at a "coarser scale". A filtering example is smoothing an image by convolution
with a scaled Gaussian kernel. Here, the scale parameter is the standard deviation σ in the Gaussian
kernel (Gaussian scale-space). Small σ (fine-scale) preserves edges and large σ (coarse scale) smooths
the image. Morphological scale-spaces for one-dimensional signals were discussed by Jackway [17,
18]. Heijmans [19] introduced an algebraic framework for linear and morphological scale-spaces with
applications to grey-scale images. The basic idea is to scale the image to a unit scale for the application
of a morphological operator and then re-scale it to the original image size. Vachier [20] defined multi-
scale morphological operators via levellings which are operators preserving the grey-scale order. This
approach preserves local extremes, which was used to extract and analyse image features, i.e., image
objects of interest. Welk [21] stated families of generalised morphological scale-spaces obtained by
algebraic operations related to lp norms and generalised means. Their results are primarily of theoretical
interest but offer an approach to a deeper understanding of scale-spaces.

Angulo [22] extended the concept of multi-scale morphological operators from R-valued to Rd-valued
images. He defined morphological scale-space operators on metric Maslov-measurable spaces for im-
ages supported on point clouds. An application of their operators on RGB-valued point clouds, e.g. for
object extraction, showed the usefulness of applying the theory of multi-scale morphological operators
to Rd-valued images.

It turns out that there are several possible definitions of multi-scale morphological operators to vector-
valued images and there is no established solution to that issue. Theses definitions are often still abstract
and further approaches in this direction are needed.

In this work, we introduce morphological operators for Sd−1-valued images (called directional im-
ages). The morphological operators were defined via the theory of h-adjunctions which ensures a sound
definition. Furthermore, we extend the operators to multi-scale operators where the structuring function
corresponds to a rotation matrix. In this new approach for the structuring function, the scale parameter
determines the angle of rotation. Our approach for the structuring function benefits from a simple inter-
pretation, fulfils the semigroup property as well as further desired properties. Section 1.2 contains basics
about mathematical morphology for grey-scale images and its relation to scale-space theory, and statis-
tical depth functions on Sd−1. The extension to multivariate mathematical morphology via h-ordering
and h-adjunctions is stated. Furthermore, quantiles and depth for directional data from Ley et al. [11]
are summarised. In Section 1.3, we introduce the concept of mathematical morphology on directional
images using the directional projection depth. Basic image processing notions and operations, like a
background/foreground representation and filters, are presented. The extension to multi-scale morpho-
logical operators for directional data is defined in Section 1.4. We illustrate and interpret our findings on
generated and real-world S2-valued images in Section 1.5.

1.2 Basics and notation

1.2.1 Notation

We denote by Sd−1 = {x ∈ Rd :
√
xTx = 1} the (d − 1)-dimensional unit sphere. An image is a

mapping I : E → S that is defined on a q-dimensional (spatial) domain E with E ⊂ Rq or E ⊂ Zq.
The set S is the set of pixel values. We call I a binary image if S = {0, 1}, a grey-scale image if S ⊂ R,
a vector-valued image if S ⊂ Rd and a directional image if S ⊂ Sd−1. Usually, q, d ∈ {2, 3}. We
denote by

• i ∈ E the position of a pixel with pixel value I(i).
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• max I the maximal possible pixel value of an image I . For instance, max I = 1 if I is a binary
image or max I = 255 if I is a 8-bit grey-scale image.

• | · | the cardinality of a set.

• || · ||2 the Euclidean norm for vectors and the spectral norm for matrices.

• 0d the d-dimensional zero vector.

• 1d the d-dimensional one vector.

• 0d×d the d-dimensional zero matrix.

• Id the d-dimensional unit matrix.

• Sym(d) the set of d× d symmetric matrices.

• SO(d) the set of d× d rotation matrices.

• ⊕ the Minkowski addition.

• × the cross product.

• Sd−2
µ⊥ = {x ∈ Sd−1 : xTµ = 0} the (d − 2)-dimensional unit sphere with vectors orthogonal to

µ ∈ Sd−1.

• Bd(r) = {x ∈ Rd : ||x||2 < r} the d-dimensional open ball of radius r > 0 centred at the origin
0d.

• D
= equality in distribution.

• Fµ the class of distributions on Sd−1 with a bounded density that admit a unique modal direction
µ.

• Bi = i⊕B a set B ⊂ Rq centred at pixel position i if B is centred at the origin.

• b̌ the reflection of a function b : Rq → R, i.e., b̌(i) = b(−i) for all i ∈ Rq, and by B̌ the reflection
of a set B ⊂ Rq, i.e., B̌ = −B.

A function b is called symmetric if b(i) = b̌(i) for all i ∈ Rq and a set B is called symmetric if B = B̌.
Furthermore, we define the unique geodesic [23] from µ ∈ Sd−1 to x ∈ Sd−1 as a mapping

cµ,x : [0, 1] → Sd−1, (1.1)

starting at cµ,x(0) = µ with initial velocity ċµ,x(0) = v and ending in cµ,x(1) = x, where v is a tangent
vector at µ ∈ Sd−1.

1.2.2 Mathematical morphology

We first define morphological operators on grey-scale images I . See [1, 2, 4] for a detailed introduction.
The two fundamental operations of mathematical morphology are erosion ε̃b and dilation δ̃b. They
depend on a structuring function b : Rq → R and are defined as

ε̃b(I)(i) = inf
j∈E

{I(j)− b(j + i)}, i ∈ E, (1.2)

δ̃b(I)(i) = sup
j∈E

{I(j) + b(j − i)}, i ∈ E. (1.3)

In the discrete case, supremum and infimum can be replaced by maximum and minimum. We will not
discuss edge effects here (see [17]).
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A well known and widely used example for b is the flat structuring function. Given a structuring
element B ⊂ Rq, it is defined as

b(i) =

{
0 i ∈ B

−∞ i ̸∈ B.

Morphological operators with flat structuring functions are called flat operators. Symbols for flat opera-
tors will be written with index B rather than b, e.g., a flat erosion with structuring element B is denoted
by ε̃B .

Non-flat or volumic structuring functions assign non-constant weights to the pixel values [2]. For
instance,

b(i) = −
(
||i||2
2

)2

is a non-flat structuring function. Note that the grey-scale ranges of images dilated or eroded by non-flat
structuring functions are not bounded [4]. For instance, an erosion with a non-flat structuring function
of an image with non-negative pixel values can result in negative pixel values. Flat structuring functions
do not suffer from that problem. The output of a flat erosion or dilation is bounded by the grey-scale
range of the input image.

From now on, we assume that b is symmetric and that B is centred at the origin and symmetric. The
composition of erosion and dilation yields the morphological operators opening γ̃b and closing φ̃b

γ̃b(I)(i) = δ̃b(ε̃b(I))(i),

φ̃b(I)(i) = ε̃b(δ̃b(I))(i).

In applications the opening is used to remove bright noise and the closing to remove dark noise.
Let i ∈ E, I, I ′ grey-scale images and {Il}l∈N a family of grey-scale images. We write I ≤ I ′

if I(i) ≤ I ′(i) for all i ∈ E. Furthermore,
∨

denotes the pixel-wise maximum operator and
∧

the
pixel-wise minimum operator. The complement C̃ of a grey-scale image I is pixel-wise defined by

C̃I(i) = max I − I(i), i ∈ E. (1.4)

Some properties of morphological operators are summarised in the following [1, 2, 17].

1. All morphological operators are non-linear (in general), i.e.,

Ψ̃(aI + bI ′) ̸= aΨ̃(I) + bΨ̃(I ′),

where a, b ∈ R and Ψ̃ = δ̃b, ε̃b, γ̃b, or φ̃b.

2. Dilation and erosion are dual w.r.t. complementation C̃, i.e.,

δ̃b(I) = C̃ε̃b(C̃I)

with b(i) = b(−i) due to symmetry.

3. Opening and closing are dual w.r.t. complementation C̃, i.e.

γ̃b(I) = C̃φ̃b(C̃I))

4. Opening and closing are idempotent, i.e.,

γ̃b(γ̃b(I)) = γ̃b(I),

φ̃b(φ̃b(I)) = φ̃b(I).

The idempotence property means, that once such an operator is applied to an image, the result is
not altered by an additional application of that operator.
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5. The following distribution laws hold

δ̃b(
∨
l

Il) =
∨
l

δ̃b(Il),

ε̃b(
∧
l

Il) =
∧
l

ε̃b(Il).

6. Dilation is associative and erosion fulfils the chain rule, i.e.,

δ̃b(δ̃b′(I)) = δ̃δ̃b(b′)(I),

ε̃b(ε̃b′(I)) = ε̃δ̃b(b′)(I).

7. All morphological operators are increasing, i.e.,

I ≤ I ′ ⇒ Ψ̃(I) ≤ Ψ̃(I ′),

where Ψ̃ = δ̃b, ε̃b, γ̃b, or φ̃b.

8. If b is defined at the origin and b(0) ≥ 0, dilation is extensive and erosion is anti-extensive, i.e.,

ε̃b(I) ≤ I ≤ δ̃b(I).

9. Closing is extensive and opening is anti-extensive, i.e.,

γ̃b(I) ≤ I ≤ φ̃b(I).

The latter two properties yield the ordering relation

ε̃b(I) ≤ γ̃b(I) ≤ I ≤ φ̃b(I) ≤ δ̃b(I). (1.5)

We introduce scaled structuring functions in Section 1.2.3 to extend the introduced operators to multi-
scale morphological operators.

1.2.3 Morphological scale-space

In the context of mathematical morphology for grey-scale images, erosion and dilation can be written as
scale-space operators [2, 24]

ε̃bt(I)(i) = inf
j∈E

{I(j)− bt(j + i)} (1.6)

δ̃bt(I)(i) = sup
j∈E

{I(j) + bt(j − i)}, (1.7)

with a scaled structuring function

bt : Rq → R, t ≥ 0 (1.8)

with scale parameter t. We choose bt [17, p.15] to fulfil the following properties:

1. {bt}t is a one-parametric family of convex, continuous, symmetric functions and fulfils the semi-
group property, i.e.

bt+̇bs = bt+s t, s ≥ 0, (1.9)

where +̇, + are group operations [24]. For instance, choosing bt to be a flat structuring function
with structuring element tB the group operations are the Minkowski addition and the standard
addition in R:

tB ⊕ sB = (t+ s)B t, s ≥ 0.
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2. bt is non-positive and monotonically decreasing with a global maximum at the origin of value
zero, i.e.,

bt(i) ≤ 0 ∀ t ≥ 0, i ∈ Rq, (1.10)

bt(i) ≥ bt(j) ||i||2 < ||j||2, (1.11)

bt(0) = 0. (1.12)

An example of a non-flat scaled structuring function is the Poweroid structuring function [17, p.14,
Def. 5]

bt(i) = −|t|
(
||i||2
|t|

)a

a ≥ 0, t ̸= 0. (1.13)

1.2.4 Directional data

Directional data are a set of vectors on the unit sphere Sd−1 for some d ≥ 2. The vector x =
(x1, . . . , xd)

T ∈ Sd−1 can be represented as a point on the surface of Sd−1. For x in Cartesian co-
ordinates a representation in angular coordinates for arbitrary d is given in [25].

For d = 3, we use the usual notation for spherical coordinates

x =

sin (θ) cos (ϕ)
sin (θ) sin (ϕ)

cos (θ)

 (1.14)

with co-latitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). A random vector X ∈ S2 can be represented in
spherical coordinates by random variables Θ and Φ with realisations θ and ϕ.

Note that

(Id − µµT )X = X − µµTX = X − (XTµ)µ (1.15)

with XTµ = µTX . The tangent-normal decomposition of a random vector X ∈ Sd−1 w.r.t. µ ∈ Sd−1

reads [26, 27]

X = (XTµ)µ+ (Id − µµT )X (1.16)

= (XTµ)µ+ Z (1.17)

with Z = (Id − µµT )X the tangential part of X . Note that

||Z||2 =
√
1− (XTµ)2 (1.18)

due to the Pythagorean theorem. Figure 1.1 illustrates the decomposition for d = 3.

1.2.5 Statistical depth functions

Depth functions are applied in multidimensional non-parametric robust data analysis and establish an
ordering relation between vectors. See [28] for a detailed introduction. The definition of a centre within
a multidimensional data set induces a centre-outward ordering. Furthermore, each vector of the data set
has a depth value which is maximal at the centre. Denote by F the class of distributions on the Borel
sets of Rd and by FX the distribution of a random vector X . Note that some distributions in F exhibit
a point of symmetry. Such a point is an example of a centre. Zuo and Serfling [28] claimed desirable
properties of depth functions and provided a formal definition (the notation is slightly adapted):

Definition 1.2.1 (Definition 2.1 in [28]). A statistical depth function D·(·) : F ×Rd → R is a bounded,
non-negative mapping satisfying
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(XTµ)µ

Figure 1.1: Tangent-normal-decomposition of X = (XTµ)µ+ Z with Z = (Id − µµT )X on S2.

1. DFAX+b
(AX + b) = DFX

(X) holds for any random vector X ∼ FX , any non-singular matrix
A ∈ Rd×d, and any b ∈ Rd,

2. DF (µ) = supX∈Rd DF (X) holds for any F ∈ F having centre µ ∈ Rd,

3. for any F ∈ F having centre µ, DF (X) ≤ DF (µ+ α(X − µ)) holds for α ∈ [0, 1], and

4. DF (X) → 0 for ||X||2 → ∞, for each F ∈ F .

Property 1 implies that the depth of a vector should be independent of the underlying coordinate
system or measurement scales. Property 2 means that for any F with unique centre µ, the depth function
is maximal at µ. Property 3 indicates that the depth of X decreases monotonically if X moves away
from µ along any fixed ray. Property 4 implies that the depth value of X tends to zero as its norm tends
to infinity. The literature gives several depth functions, for instance halfspace depth [29], simplicial
depth [30], projection depth [31], spatial depth [32], or the Mahalanobis depth [28].

For defining a depth for directional data, we initially restrict attention to the class Fµ of distributions
on Sd−1 with a bounded density that admit a unique modal direction µ. We further assume that µ
coincides with the Fisher spherical median [33], that is

µ = arg min
γ∈Sd−1

E(arccos(XTγ)). (1.19)

Examples of distributions in Fµ are the von Mises–Fisher distribution and some Kent distributions (see
Section 2.2.2) [34].

Ley et al. [11] adapted the Definition 1.2.1 for directional data as follows.

Definition 1.2.2. Consider D·(·) : Fµ × Sd−1 → R, a bounded, non-negative mapping satisfying

1. DFAX
(AX) = DFX

(X) holds for any random unit vector X ∼ F ∈ Fµ and any rotation matrix
A ∈ SO(d),

2. DF (µ) = supX∈Rd DF (X) holds for any F ∈ Fµ,

3. for any F ∈ Fµ, DF (X) ≤ DF (c
µ,X(α)) for the unique geodesic between µ and X given in (1.1)

with α ∈ [0, 1], and

4. DF (−µ) = 0 for each F ∈ Fµ where −µ is the antipodal point of the centre µ.

Then D·(·) is called a statistical depth function on Sd−1.

Depth functions for directional data are, for instance, directional distance-based depths (arc distance
depth, cosine distance depth, chord distance depth) [10] or the angular Mahalanobis depth [11]. For
defining morphological operators, we cannot use the latter since its application violates the ordering
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property (1.5) for morphological operators. We rather use a re-scaled version of the cosine distance
depth from [10] as defined in the following Section.

For d = 3, we define a great circle GC as a closed curve on the surface of S2 created by the intersection
of S2 and a 2-dimensional hyperplane H passing through the origin 0d [34]. We define

GCµ,x = {y ∈ Rd|(x× µ)T y = 0} ∩ Sd−1 (1.20)

the great circle containing µ and the vector x ∈ Sd−1 \ {µ}. Note that x and µ uniquely determine
GCµ,x. The geodesic in property 3 for points on S2 is embedded in GCµ,x.

1.2.5.1 The angular projection depth

We define the angular projection depth for directional data by assigning the value

Dproj
F (x) =

1 + xTµ

2
(1.21)

to each x ∈ Sd−1. The angular projection depth is a re-scaled version of the cosine distance depth from
Pandolfo et al. [10] restricted to µ given in (1.19). Dproj

F (x) provides a centre-outward ordering with
Dproj

F (µ) = 1, Dproj
F (−µ) = 0 and is decreasing on a geodesic from µ to −µ. Let A ∈ Rd×d be any

rotation matrix. Then the distribution of the transformed vector AX has centre Aµ. It follows that

Dproj
FAX

(AX) =
1 + (AX)TAµ

2

=
1 +XTATAµ

2

=
1 +XTµ

2

= Dproj
FX

(X).

Thus, the properties of a directional depth function given in Definition 1.2.2 are fulfilled.
Let X,X1, . . . , Xn ∈ Sd−1 be i.i.d. random vectors with X ∼ F ∈ Fµ and µ̂ the root-n consistent

empirical Fisher spherical median [33]

µ̂ = arg min
γ∈S2

N∑
i=1

arccos(XT
i γ). (1.22)

The empirical angular projection depth reads

Dproj(x) =
1 + xT µ̂

2
, (1.23)

where µ̂ is given in (1.22).

1.2.5.2 Quantiles for directional data

The novel concept of quantiles for directional data from Ley et al. [11] is summarised in the following:
The quantile check function, known from quantile regression [35], reads ρτ (z) = z(τ − 1[z ≤ 0]),

where z ∈ R, τ ∈ [0, 1] and 1[z ≤ 0] the indicator function. The projection quantile is defined by
[11, 36]

cτ = arg min
c∈[−1,1]

E[ρτ (X
Tµ− c)], (1.24)
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τ = 1

τ
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Figure 1.2: The hyperplane Hcτµ divides the unit sphere S2 in the upper quantile cap C+
τ and lower

quantile cap C−τ . The intersection of Hcτµ with S2 corresponds to the τ -depth contour denoted by Ccτµ.

which is the univariate τ -quantile of XTµ. The partition of the sphere due to the hyperplane

Hcτµ = {x ∈ Rd|cτ = xTµ} (1.25)

defines the τ -depth contour

Ccτµ = Hcτµ ∩ Sd−1, (1.26)

an upper quantile cap

C+
τ = {x ∈ Sd−1|xTµ ≥ cτ},

and a lower quantile cap

C−τ = {x ∈ Sd−1|xTµ < cτ}.

For d = 3, Figure 1.2 illustrates Hcτµ, Ccτµ and the quantile caps. Note that the 1/2-quantile c1/2µ is not
related to the most central point. Its associated hyperplane Hc1/2µ divides the probability mass into two
equal halves. A value of τ = 1 (c1 = 1) is reached by µ and a value of τ = 0 (c0 = −1) is reached
by −µ (provided that the neighbourhood of −µ has non-zero probability mass, otherwise an entire cap
around −µ is associated with τ = 0). The empirical projection quantile [11] reads

ĉτ = arg min
c∈[−1,1]

N∑
i=1

[ρτ (X
T
i µ̂− c)]. (1.27)

Note that the authors in [11] transferred the projection quantile cτ into a new definition of depth for
directional data by assigning the value

DF (x) = arg min
τ∈[0,1]

{cτ ≥ xTµ}, (1.28)

to each x ∈ Sd−1. The angular Mahalanobis depth is a rescaled version of (1.28). Note that we return to
this depth in Section 2.2.5. Here, we will not use this depth since its application contradicts the ordering
property (1.5) for morphological operators. The contradiction results from the inequality in Equation
(1.28).

1.2.6 Multivariate mathematical morphology, h-ordering and h-adjunctions

Mathematical morphology needs an ordering relation between pixel values for a sound definition of its
operators. Defining maximum and minimum between d-dimensional vectors, d ≥ 2, is not straightfor-
ward. One approach is to define a mapping h that maps the vectors into a space with a partial order. This
approach has the advantage that we can define morphological operators for vectors over h-adjunctions.
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We follow the notion of Goutsias et al. [7] for h-ordering and h-adjunctions: A space L with a partial
order ≤ is called a complete lattice if every subset L of L has a supremum and an infimum. Note that
the term lattice has nothing to do with the spatial domain of the image (known as grid or lattice for the
discrete case in the image processing community). We denote a complete lattice with (L,≤). Let S ̸= ∅
and h : S → L surjective. We define an equivalence relation on S, denoted by =h, via

s =h s′ ⇔ h(s) = h(s′) s, s′ ∈ S. (1.29)

An h-ordering ≤h is given by

s ≤h s′ ⇔ h(s) ≤ h(s′) s, s′ ∈ S. (1.30)

It is reflexive (s ≤h s) and transitive (s1 ≤h s2, s2 ≤h s3 ⇒ s1 ≤h s3). Note that ≤h is not a partial
ordering: Let s ≤h s′ and s′ ≤h s. Then, s =h s′ but not necessarily s = s′.

Nevertheless, the surjectivity of h and the Axiom of Choice (existence of a least element) imply the
existence of a mapping h← : L → S such that [7]

hh←(l) = l, l ∈ L. (1.31)

The mapping h← is unique if h is injective. Define a mapping Ψ : S → S to be

• h-increasing, if

s ≤h s′ ⇒ Ψ(s) ≤h Ψ(s′). (1.32)

• h-idempotent, if

Ψ2 =h Ψ. (1.33)

• h-extensive, if for every s ∈ S

s ≤h Ψ(s). (1.34)

• h-anti-extensive, if for every s ∈ S

Ψ(s) ≤h s. (1.35)

For Ψ h-increasing, it holds that

hΨh←h = hΨ. (1.36)

Furthermore, Ψ is h-increasing if and only if there is an h-increasing mapping Ψ̃ : L → L such that

Ψ̃h = hΨ. (1.37)

The mapping Ψ̃ is uniquely determined by Ψ via

Ψ̃ = hΨh←. (1.38)

An h-adjunction is a pair (ε, δ) of two mappings ε, δ : S → S with

δ(s) ≤h s′ ⇔ s ≤h ε(s′) s, s′ ∈ S. (1.39)

Let ε, δ be h-increasing mappings and ε̃ = hεh← and δ̃ = hδh←. Then, (ε, δ) is an h-adjunction on S
if and only if (ε̃, δ̃) is an adjunction on L. Note that ε is h-anti-extensive and δ is h-extensive.

Let (ε, δ) an h-adjunction. Then

γ(s) ≤h s ≤h φ(s) s ∈ S. (1.40)

Thus, γ is h-anti-extensive and φ is h-extensive. Both are h-increasing and h-idempotent.
Via the h-adjunction argument we call
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Figure 1.3: Vector ordering by directional projection depth. The indices in round brackets denote the
order statistics.

• ε an h-erosion on S if ε̃ is an erosion on L.

• δ an h-dilation on S if δ̃ is a dilation on L.

• γ = δε an h-opening on S if γ̃ = δ̃ε̃ is an opening on L.

• φ = εδ an h-closing on S if φ̃ = ε̃δ̃ is a closing on L.

1.3 Mathematical morphology on directional images using directional pro-
jection depth

For directional images, we use the projection depth Dproj
F to define an ordering relation between unit

vectors. Thus, we use Dproj
F as an h-ordering to inherit the h-adjunction properties. This allows for a

definition of erosion and dilation, and the morphological operators derived from them as described be-
low. For simplicity, we focus on flat morphological operators with structuring element B. We introduce
non-planar structuring functions in Section 1.4.1.

Let L = [0, 1] and S ⊂ Sd−1. (L,≤) is a complete lattice. We define an h-ordering (denoted by ≤hI
)

hI(x) := Dproj(x), (hI -depth) (1.41)

where I is a directional image with pixel values x and Dproj
F is given in Equation (1.21). Assume that x

is a realisation of X ∼ F ∈ Fµ.
In a given application, the assumption F ∈ Fµ is not fulfilled. Nevertheless, a suitable central

direction µ may be derived from the experimental setup. For example, the insertion direction of glass
fibre reinforced materials or tension direction could be defined as µ. Hence, µ can be interpreted as a
parameter. If that is the case we will write Dproj

µ for the projection depth using µ ∈ Sd−1 as centre. The
parameter µ can be selected globally for the whole image or in a locally adaptive manner for parts of the
image. The latter is not considered here.

The hI -erosion εB of a directional image I at pixel position i ∈ E is (implicitly) defined by

hI(εB(I))(i) = ε̃B(hI(I))(i), (1.42)

where ε̃B is the flat erosion of a grey-scale image. Analogously, the hI -dilation δB of a directional
image I at pixel position i ∈ E is (implicitly) defined by

hI(δB(I)(i)) = δ̃B(hI(I))(i), (1.43)

25



where δ̃B is the flat dilation of a grey-scale image. Note that (ε, δ) is an hI -adjunction on S since (ε̃, δ̃)
is an adjunction on L. Hence, a dilation will select the most central direction w.r.t. µ covered by the
structuring element B while an erosion selects the most outlying direction.

The explicit definition reads

εB(I)(i) = h−1I (ε̃B(hI(I))) (i), (1.44)

δB(I)(i) = h−1I

(
δ̃B(hI(I))

)
(i) (1.45)

where h−1I refers to the preimage under hI .
As hI is not injective, the preimage may consist of more than one element. Consider vectors x1, x2 ∈

Sd−1 with xT1 µ = xT2 µ. Then, hI(x1) = hI(x2) but x1 = x2 is not necessarily the case. To resolve
this issue we use a lexicographic order for vectors of same depth value which yields a total ordering
[8]. Rotate the vectors such that µ = (0, 0, 1)T . Among the vectors {xi}i=1,...,n with hI(xi) = hI(xj)
but xi ̸= xj , i ̸= j, we choose the vector x∗ ∈ {xi}i=1,...,n with the smallest longitude angle, i.e.,
x∗ = argmin

xi

ϕi with (θi, ϕi) spherical coordinates of xi, i = 1, . . . , n. Then rotate x∗ back.

Let (εB, δB) be an hI -adjunction. hI -opening and hI -closing are defined by

γB(I)(i) = δB(εB(I))(i), (1.46)

φB(I)(i) = εB(δB(I))(i). (1.47)

Of course, further morphological filters have their hI -depth analogy. For instance, the scalar differ-
ence between the hI -depth of hI -dilation and hI -erosion defines the morphological gradient

ghI ,B(I)(i) = hI (δB(I)) (i)− hI (εB(I)) (i).

The gradient filter applied to a directional image results in a grey-scale image and identifies edges at
which depth values change sharply. The morphological Laplacian is defined by

∆hI ,B(I)(i) = ∆δ(i)−∆ε(i)

with ∆δ(i) = hI (δB(I)) (i) − hI(I)(i) and ∆ε(i) = hI(I)(i) − hI (εB(I)) (i). The shock filter is
defined by

sfhI ,B(I)(i) =


εB(I)(i) ∆hI ,B(I)(i) < 0,

δB(I)(i) ∆hI ,B(I)(i) > 0,

I(i) otherwise.

Shock filtering is used to enhance edges. For grey-scale images, the idea is to dilate near local maxima
and erode near local minima. Here, transitions in the spatial domain between regions of pixel values
with high and low depth are enhanced.

1.3.1 Background/foreground representation of directional images

Let I be a directional image, XI its set of pixel values and I(i) ∼ F ∈ Fµ, i ∈ E. Using hI -depth
we can order the elements in XI . As for binary or grey-scale images, one could assume that vector-
valued images consist of two main parts [8]: background and foreground. An idea how to define such
an division for an directional image is given in the following. We identify foreground pixel values with
directions of small angular deviation to µ. Vice versa, the background pixels have pixel values with
outlying directions w.r.t. µ.

A formal background/foreground representation (similar to [8]) is as follows: We assume that XI

has a disjoint decomposition in background pixel values (denoted by X(B)) and foreground pixel values
(denoted by X(F )), i.e.,

XI = X(B) ∪̇ X(F ). (1.48)
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We determine background and foreground pixel values in analogy to the thresholding for grey-scale
images. Consider τ ∈ [0, 1]. The foreground pixel values are given by

X(F ) =
{
x ∈ XI : cτ ≥ xTµ

}
(1.49)

and the background pixel values are given by

X(B) =
{
x ∈ XI : cτ < xTµ

}
(1.50)

with cτ given in (1.24). Thus, it follows that for all x ∈ XI , hI(x) ≤ hI(x
′) for some x′ ∈ X(F )

and hI(x) ≥ hI(x
′) for some x′ ∈ X(B). Analogous to grey-scale images, the largest pixel value

is in the foreground (argmaxx∈XI
hI(x) ∈ X(F )), and the smallest pixel value is in the background

(argminx∈XI
hI(x) ∈ X(B)).

The partition of the sphere in background and foreground pixel values due to a hyperplane Hcτµ

defines a foreground cap C(F ) =
{
x ∈ Sd−1 : cτ ≥ xTµ

}
and analogously a background cap C(B) ={

x ∈ Sd−1 : cτ < xTµ
}

. All foreground pixels, seen as points on the sphere, are contained in C(F ) and
all background pixels in C(B).

This background/foreground representation of directional images leads to the following interpretation
of εB and δB: Consider that the threshold τ is fixed. εB leads to larger and δB to less angular deviations
between the transformed pixel values and µ. Thus, εB could reduce the number of foreground pixel
values. Furthermore, the component size of connected foreground pixels (seen from the spatial domain
E) shrinks depending on B. Vice versa, δB could reduce the number of background pixel values and
enlarges the component size of connected foreground pixels.

1.3.2 Complement operator C

The complement is a basic operator in image processing [4]. We define the complement of a directional
image by reversing the sign of each vector coordinate, i.e., the complement of I reads

C I(i) = −I(i), i ∈ E. (1.51)

It follows for the hI -depth value of C I(i) that

hI(C I)(i) = hI(−I)(i) (1.52)

=
1− I(i)Tµ

2
(1.53)

= 1− 1 + I(i)Tµ

2
(1.54)

= 1− hI(I)(i), (1.55)

(1.56)

where we see an analogy to (1.4) since maxhI = 1.

Remark 1.3.1. We give another approach of a complement operator which is based on DF . The con-
struction and an illustration are given in Appendix A.

1.3.3 Properties

We saw that hI -erosion εB and hI -dilation δB for directional images from an hI -adjunction. Thus, they
inherit properties of morphological operators [2, 4, 7, 8, 37], see Section 1.2.2. In the following, we give
some remarks about their properties which is useful for applications:
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1.3.3.1 Duality

We illustrate the duality property between hI -dilation and hI -erosion. Due to the implicit definition of
δB and εB , we show the duality via the hI -depth:

hI(δB(C I))(i) =δ̃B(hI(C I))(i)

= sup
j∈Bi

hI(C I)(j)

= sup
j∈Bi

1− I(j)Tµ

2

=
1

2
− inf

j∈Bi

I(j)Tµ

2

=1− inf
j∈Bi

1 + I(j)Tµ

2

=maxhI − inf
j∈Bi

hI(I)(j)

=C̃ε̃B(hI(I))(i),

with maxhI = 1, C given in (1.51) and C̃ given in (1.4).

1.3.3.2 Ordering relation via geodesic lengths

The hI -erosion εB is less than or equal to the hI -dilation δB w.r.t. hI , i.e., εB ≤hI
δB . This can be

interpreted in terms of geodesic lengths as follows: Let x = I(i), i ∈ B, cµ,x the geodesic on Sd−1 from
x to µ and ||cµ,x|| its length. The length of the geodesic cµ,δB(x) on Sd−1 from δB(x) to µ is less than
or equal the length of the geodesic cµ,εB(x) on Sd−1 from εB(x) to µ, i.e., ||cµ,δB(x)|| ≤ ||cµ,εB(x)||. A
smaller geodesic length to µ corresponds to a larger value hI . Due to the definition of hI -erosion and
hI -dilation it follows that

||cµ,δB(x)|| ≤ ||cµ,x|| ≤ ||cµ,εB(x)||.

Thus, we have the same ordering relation as with hI but reversed inequality signs.
From this view point of geodesic lengths, we could also define morphological operators: An erosion

applied on a set of vectors would give the vector of the smallest and a dilation the vector of the largest
geodesic length to µ. Thus, the interpretation of our introduced hI -based morphological operators would
be switched.

1.3.3.3 Invariance

Let XI be a matrix whose column vectors correspond to the pixel values. For mathematical morphology,
invariance to affine transformations is essential. The authors in [8] defined an h-ordering to be invariant
to affine transformations if, for every positive definite matrix A ∈ Rd×d and vector b ∈ Rd, h-ordering
is invariant to the transformation defined by Γ(I) = AXI + b. Thus, x1 ≤hI

x2 ⇒ x1 ≤hΓ(I)
x2 for all

x1, x2 ∈ Rd.
With x ∈ Sd−1 it turns out that the rotation group replaces the Euclidean translation group [12]. Note

that the Euclidean translation group is commutative, but the rotation group SO(d), d > 2, is not. An
approach is to move the points on Sd−1 such that the the geodesic distance to µ is unchanged. Thus,
x1 ≤hI

x2 ⇒ x1 ≤hΓ(I)
x2 for all x1, x2 ∈ Sd−1, Γ(I) = AXI , A ∈ SO(d) with Aµ = µ. The

restriction Aµ = µ ensures that the XI are rotated around µ. Thus, if the XI are interpreted as points on
the surface of Sd−1 these points are shifted along a contour line, which does not change their geodesic
distance to µ.
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1.3.3.4 Local knowledge

The local knowledge property [4] means that applying transformations on an image I : E → S or on
I : E′ → S with E′ ⊂ E give identical results. More precisely, for E′ ⊂ E it holds Ψ(I) = Ψ(I|E′),
with Ψ an image transformation and I|E′ the restriction of the spatial domain E of image I to a subset
E′. Due to the definition, the value of hI(I)(i), i ∈ E′ ⊂ E, does not differ if the depth function is
calculated using all i ∈ E or only all i ∈ E′. It differs if we need to estimate µ by µ̂. This is because
µ̂ could change if just the vectors I(i) with E′ are considered. Of course, if we use Dproj

µ with globally
fixed µ the local knowledge property is preserved.

1.3.4 Connection to rank filters

Rank filters are non-linear filters using a (local) ordering. Ranking is trivial in the one-dimensional
real-valued case, in contrast to higher dimensions. However, cτ is an approach for the computation of
rank values (such as the infimum and supremum for erosion and dilation, respectively). Keep in mind
that the meaning of rank τ differs from the usual rank interpretation (see Section 1.2.5.2): The sphere is
divided by a hyperplane Hcτµ such that (1− τ) · 100-percent of the data points are closer to µ than the
τ -depth contour Ccτµ. Therefore, it is formidable in trimming (removing extreme values called outliers):
Choosing a rank τ can be used to delete all I(i) ∈ Sd−1 "below" the τ -depth contour Ccτµ.

1.4 Morphological multi-scale operators for directional images

Here, we introduce morphological multi-scale operators for directional images. As with Rd-valued im-
ages, multi-scale operators cannot be straightforwardly transferred from their counterparts for grey-scale
images (see [8, 22]). Our approach gives a structuring function which has a meaningful interpretation,
fulfils the semi-group property and delivers bounded non-flat operators.

The latter is briefly discussed here: In general, structuring functions bt : E → R are unbounded.
Thus, multi-scale hI -dilation and hI -erosion inherit this unboundedness if we use h(I(i)) + bt(i) and
h(I(i)) − bt(i), respectively. Furthermore, we can not associate a vector with a depth value outside
[0, 1] since no unit vector could be found as preimage. In our approach we redefine structuring functions
bt : E → SO(d). We will define the operation I(i)+bt(i) and I(i)−bt(i) to be a vector rotation of I(i)
where the rotation angle depends on the scale t. Therefore, the hI -depths of I(i)+ bt(i) and I(i)− bt(i)
are both bounded.

The main idea is to rotate a pixel value x = I(i), i ∈ E, about x × µ towards µ or away from µ on
a great circle GCµ,x. This increases or decreases the hI -depth value of the rotated x which gives our
approach also a meaningful interpretation. Note that I(i) + bt(i) and I(i)− bt(i), i ∈ E, result again in
directional images which seems natural.

1.4.1 Structuring function for directional images

In the following, we will redefine the structuring function. In particular, our structuring function no
longer maps into R. Let i ∈ E, x = I(i) ∈ Sd−1 and Rµ,x ∈ SO(d) be a rotation matrix which rotates
x about µ× x, Rµ,x(θ)x = µ and θ = arccos (xTµ). We define a structuring function bt for directional
images by a mapping

bt : E → SO(d)

i 7→ bt(i) = Rµ,x(αt(i)), (1.57)

with rotation angle αt(i), t ≥0. Since Rµ,x depends on x, the structuring function is locally adaptive.
We choose

αt(i) =
||i||22
2t

(1.58)
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µ

GCµ,x

S2

α+

α−

x

z

z

x− bt

x+ bt

Figure 1.4: Illustration of the operation x − bt = Rµ,x(α−)x and x + bt = RT
µ,x(α+)x. A rotation

from x to x + bt increases the geodesic distance to µ by α+. A rotation from x to x − bt decreases the
geodesic distance to µ by α−. The rotation moves x on the great circle GCµ,x.

following the Poweroid structuring function given in (1.13) with a = 2. Let f□g be the infimal convo-
lution of two functions f, g : E 7→ R [38], i.e.,

(f□g)(i) = inf
j∈E

{f(i− j) + g(j)} (1.59)

with function f, g : E 7→ R. Furthermore, let oi be the line segment from the origin o ∈ E to i ∈ E.
For E ⊂ Rq and t, s > 0, let j∗ be a point on oi ⊂ E such that

||j∗||2 =
s

t+ s
||i||2 (1.60)

||i− j∗||2 =
t

t+ s
||i||2. (1.61)

Then,

(αt□αs)(i)
(1.59)
= inf

j∈E
{αt(i− j) + αs(j)}

(1.58)
= inf

j∈E

{
||i− j||22

2t
+

||j||22
2s

}
j∗∈oi
=

||i− j∗||22
2t

+
||j∗||22
2s

(1.62)

(1.60),(1.61)
=

t||i||22
2(t+ s)2

+
s||i||22

2(t+ s)2

=
||i||22

2(t+ s)
(1.58)
= αt+s(i). (1.63)

Let

(bt+̇bs)(i) = Rµ,x((αt□αs)(i)). (1.64)

The structuring element bt fulfils the semi-group property as follows

bt(i)+̇bs(i)
(1.64)
= Rµ,x((αt□αs)(i)) (1.65)

(1.63)
= Rµ,x(αt+s(i)) (1.66)

(1.57)
= bt+s(i) (1.67)
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Remark 1.4.1. Note that for E ⊂ Zq it follows that oi ̸⊂ E. Thus, the equality (1.62) does only hold
for j∗ ∈ E and some t, s > 0. If j∗ ̸∈ E it holds that

inf
j∈E

{
||i− j||22

2t
+

||j||22
2s

}
≥ ||i− j∗||22

2t
+

||j∗||22
2s

.

We illustrate the construction for d = 3: The rotation matrix Rµ,x rotates x on the great circle GCµ,x.
Thus, the structuring function is symmetric since a rotation on GCµ,x can be represented by a rotation
matrix in SO(2) and bt(i) = bt(−i) due to (1.58). We use Rµ,x to move a pixel value x ∈ S2 towards
µ or away from µ on GCµ,x. Therefore, we define the operation x− bt and x+ bt, which are illustrated
in Figure 1.4, as follows:

x− bt(i) := Rµ,x(α−)x (1.68)

with

α− =

{
αt(i), for αt(i) ∈ [0, θ]

θ, for αt(i) ∈ (θ, 2π).

x+ bt(i) := RT
µ,x(α+)x (1.69)

with

α+ =

{
αt(i), for αt(i) ∈ [0, π − θ]

π − θ, for αt(i) ∈ (π − θ, 2π).

Note that x − bt has a smaller geodesic distance to µ as x, and x + bt has a larger geodesic distance
to µ as x.

Remark 1.4.2 (Fixation of a vector). We need the restriction of α− to θ if αt(i) ∈ (θ, 2π) and of α+ to
π − θ if αt(i) ∈ (π − θ, 2π) to achieve the ordering relation in (1.70). Otherwise it would be possible
to rotate x beyond µ which would decrease hI(x− bt(i)) or it would be possible to rotate x beyond −µ
which would increase hI(x+bt(i)). This can be interpreted as fixing the vector at µ or −µ, respectively.
If we fix the vector at µ or −µ, the semi-group property is no longer valid.

With these restrictions it follows that

hI(x+ bt) ≤ hI(x) ≤ hI(x− bt). (1.70)

We obtain (in some sense) analogue properties to (1.10)−(1.12):

1. bt is non-positive w.r.t. hI in the sense that for rotations of x away from µ its hI -depth decreases,
i.e.

hI(x+ bt(i))− hI(x) ≤ 0. (1.71)

2. bt is monotonically decreasing w.r.t. hI in the sense that for increasing distance between pixel
positions the hI -depth decreases, i.e.

hI(x+ bt(i)) ≥ hI(x+ bt(i
′)), ||i||2 < ||i′||2. (1.72)

3. bt has a global maximum at the origin w.r.t. hI in the sense that x + bt(i) = x if i = 0 ∈ E and
the hI -depth is unchanged, i.e.

hI(x+ bt(0))− hI(x) = 0. (1.73)
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Note that the rotation matrix Rµ,x is not necessary to calculate x + bt and x − bt, respectively: The
projection of x+ bt on µ is

(x+ bt(i))
T µ = cos (θ + α+) (1.74)

and the projection of x− bt on µ is

(x− bt(i))
T µ = cos (θ − α−), (1.75)

see Figure 1.4. Let z+ be the tangential part of x+ bt, i.e.,

z+ = (Id − µµT )(x+ bt(i)) (1.76)

with length

||z+||2
(1.18),(1.74)

=
√

1− cos2 (θ + α+), (1.77)

and let z− be the tangential part of x− bt, i.e.,

z− = (Id − µµT )(x− bt(i)) (1.78)

with length

||z−||2
(1.18),(1.75)

=
√

1− cos2 (θ − α−). (1.79)

The tangential part z of x points in the same direction as the tangential part z+ (z−) of x+ bt (x− bt),
see Figure 1.4. Thus,

z+
||z+||2

=
z−

||z−||2
=

z

||z||2
. (1.80)

Then,

z+
(1.77)
=

z+
||z+||2

√
1− cos2 (θ + α+)

(1.80)
=

z

||z||2
· sin (θ + α+) (1.81)

and

z−
(1.79)
=

z−
||z−||2

√
1− cos2 (θ − α−)

(1.80)
=

z

||z||2
· sin (θ − α−). (1.82)

Finally, x+ bt can be derived from

x+ bt(i)
(1.17)
=
(
(x+ bt(i))

Tµ
)
µ+ z+ (1.83)

(1.74)(1.81)
= cos (θ + α+)µ+

z

||z||2
sin (θ + α+) (1.84)

and x− bt can be derived from

x− bt(i)
(1.17)
=
(
(x− bt(i))

Tµ
)
µ+ z− (1.85)

(1.75)(1.82)
= cos (θ − α−)µ+

z

||z||2
sin (θ − α−). (1.86)
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1.4.2 Morphological multi-scale operators for directional images

Let bt be as in Equation (1.57). The multi-scale hI -erosion εbt of a directional image I at pixel position
i ∈ E is (implicitly) defined by

hI(εbt(I))(i) = inf
j∈E

{hI(I(j)− bt(j − i))}, (1.87)

where I(j) − bt(j − i) is defined in Equation (1.68). Analogously, the multi-scale hI -dilation δbt of a
directional image I at pixel position i ∈ E is (implicitly) defined by

hI(δbt(I))(i) = sup
j∈E

{hI(I(j) + bt(j − i))}, (1.88)

where I(j) + bt(j − i) is defined in Equation (1.69).
The interpretation of the multi-scale operators is as follows: We want to rotate the vector I(j) de-

pending on ||i− j||2 and the scale t towards µ (hI increases) or towards −µ (hI decreases).
Multi-scale hI -opening, hI -closing, morphological gradient and shock filter can be defined as ana-

logue to their flat counterparts.

Remark 1.4.3. Note that (1.87) and (1.88) reduce to (1.42) and (1.43), respectively, if

bt(j − i) =


Rµ,x(0), j − i ∈ B

RT
µ,x(π − θ), if j − i ̸∈ B and we calculate hI(I(j) + bt(j − i))

Rµ,x(θ), if j − i ̸∈ B and we calculate hI(I(j)− bt(j − i))

with B the structuring element and θ = arccos ((I(j))Tµ).

1.4.2.1 Properties

The properties of the multi-scale operators are analogous to their flat counterparts. Furthermore, it holds
that εbt and δbt are hI -ordered w.r.t. scale, i.e., if 0 < s < t then

εbt(I)(i) ≤hI
εbs(I)(i) ≤hI

I(i) ≤hI
δbs(I)(i) ≤hI

δbt(I)(i) (1.89)

for all i ∈ E.

1.5 Applications

In this section, we investigate the effect of the morphological operators on generated S2-valued images
and compare them to their standard grey-scale counterparts. As real application example, we enhance
changes in the displacement field of a compressed glass foam.

1.5.1 Flat morphological operators

To investigate the newly defined flat morphological operators, we generate a 2-dimensional S2-valued
image I mimicking direction vectors obtained from two fibres on a homogeneous background. That is,
the image contains two objects consisting of vectors with a small angular deviation from µ, see Figure
1.5. The background is formed by vectors directed along a plane perpendicular to µ. Flat hI -dilation and
flat hI -erosion (Figure 1.6) show a similar behaviour as their standard grey-scale counterparts. Dilation
expands objects. That is, directions of background pixels that are close to the edge of objects are rotated
to match the directions of the objects. An erosion shrinks objects, i.e., object vectors at the edge are
rotated so that they are assigned to the image background.

In a similar manner, the flat hI -opening removes foreground objects that are smaller than the struc-
turing element. Figure 1.7 reveals that object vectors in an object of size smaller than the structuring
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Figure 1.5: Original S2-valued image I . The direction vectors within the fibres are rotationally sym-
metric around µ (large red vector). Their angular deviation from µ is uniformly drawn from (0, π/8).
Background vectors are also rotationally symmetric around µ. Their angular deviation from µ is uni-
formly drawn from [π/8, 7π/10].

element B are rotated such that we assign them to the image background. The flat hI -closing removes
small holes in the foreground. Vectors with large angular deviation from µ within a background object
of size smaller than B are rotated to become part of the image foreground.

The results of shock filtering of I is shown in Figure 1.8. The edges between the two objects and the
background pixels are enhanced.

1.5.1.1 Duality with respect to C

The property of duality between erosion and dilation w.r.t. the complement operator C is illustrated in
Figure 1.9. We apply on C I (Figure 1.9a) the hI -dilation which results in Figure 1.9b. Furthermore, we
apply on εB(I) (Figure 1.9c) the complement C which results in Figure 1.9d. We observe that Figure
1.9b corresponds to Figure 1.9d which illustrates δB(C I) = C εB(I).

1.5.2 Morphological multi-scale operators

We illustrate the multi-scale hI -dilation and hI -erosion on I . δbt(I) and εbt(I) behave like their grey-
scale counterparts: Figure 1.10 shows that δbt(I) enlarges objects in the foreground and Figure 1.11
shows that εbt(I) shrinks objects in the foreground. Of course, the enlargement and shrinkage depend
on the continuous scale parameter t. Note that fixation at µ or −µ, respectively, in the sense of Remark
1.4.2 was needed. The behaviour of multi-scale hI -dilation and hI -erosion reminds of quadratic scaling,
especially due to the definition of αt in (1.58). For an example of quadratic scaling of an erosion scale-
space (resp. a parabolic morphological scale-space), see [19, Figure 5.1].

1.5.3 Enhancement of fault zones in compressed glass foam

To characterise the structural behaviour of complex materials during loading, mechanical tests and si-
multaneous micro-computed tomography imaging (in situ µCT) can be used to estimate local displace-
ments of the material on the micro scale. We analyse a glass foam which consists of very thin struts, see
Figure 1.12a.
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(a) Original image I

(b) δB(I), B is 3× 3 (c) δB(I), B is 5× 5

(d) εB(I), B is 3× 3 (e) εB(I), B is 5× 5

Figure 1.6: Original S2-valued image I (a), flat hI -dilation δB (b,c) and flat hI -erosion εB (d,e) with B
a square as structuring element. The large red vector corresponds to µ.
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(a) Original image I

(b) γB(I), B is 3× 3 (c) γB(I), B is 5× 5

(d) φB(I), B is 3× 3 (e) φB(I), B is 5× 5

Figure 1.7: Original S2-valued image I (a), flat hI -opening γB (b,c) and flat hI -closing φB (d,e) with
B a square as structuring element. The large red vector corresponds to µ.
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(a) sfB(I), B is 3× 3 (b) sfB(I), B is 5× 5

Figure 1.8: Flat shock filter sfB(I) with B a square as structuring element.

The µCT images were recorded while the glass foam was compressed in Z-direction. The foam is
expected to fail very suddenly due to its thin struts. Nogatz et al. [39] computed the displacement field
for the transition from strain level 1% (Figure 1.12b) to strain level 3.8% (Figure 1.12c) which is shown
in Figure 1.13a. During compression, a fault zone forms which is now post-processed by directional
morphology. To this end, our flat morphological operators are applied to the directional component of
the displacement vectors. That is, the vectors were normalised for the calculation of the morphological
operators and were subsequently scaled back to their original length. As we mostly expect compression
along the compression direction, we choose µ = (0, 0, 1) and define hI = Dproj

µ . Here, the analysis is
limited to one slice of the 3D image.

We enhance the fault zone with the morphological gradient, see Figure 1.13b. If motion estimation
algorithms fail to reconstruct these sharp edges, we can enhance them by an hI -erosion, as shown in
Figure 1.13c. Some other materials however are known to show creep before failure. Here, a smoother
transition seems more reasonable, which is obtained by a hI -dilation, see Figure 1.13d.
hI -opening (Figure 1.13f) and hI -closing (Figure 1.13e) remove misalignment in the transition be-

tween the two regions.

1.6 Conclusion

We have formulated the theory of mathematical morphology for directional images. The required or-
dering for unit vectors is derived from the directional projection depth which enables a sound definition
of Sd−1-valued morphological (multi-scale) operators and filters. Furthermore, we gave a background/-
foreground representation of directional images and rank filters using directional quantiles from [11].
Relations of introduced morphological operators to their grey-scale counterparts are emphasised. Fur-
thermore, we used the operators to enhance regions of significant changes in a displacement field of a
glass foam under compression.
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(a) C I (b) δB(C I)

(c) εB(I) (d) C εB(I)

Figure 1.9: Duality between erosion and dilation w.r.t. the complement operator C. Complement of
I (a), flat dilation of C I (b), flat erosion of I (c), and complement of εB(I) (d). B is a 3 × 3-square
centred at the origin.
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(a) t = 0.1 (b) t = 0.5

(c) t = 0.7 (d) t = 0.9

(e) t = 1.1 (f) t = 2

Figure 1.10: δbt(I) at scales t = 0.1, 0.5, 0.7, 0.9, 1.1, 2. The large red vector corresponds to µ.
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(a) t = 0.1 (b) t = 0.5

(c) t = 0.7 (d) t = 0.9

(e) t = 1.1 (f) t = 2

Figure 1.11: εbt(I) at scales t = 0.1, 0.5, 0.7, 0.9, 1.1, 2. The large red vector corresponds to µ.
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(a) Unloaded glass foam (b) Strain level 1% (c) Strain level 3.8%

Figure 1.12: XZ-slice of the unloaded (a) and loaded (b,c) glass foam analysed in [39]. The thin struts
are bright. The displacement field is was estimated between image (b) and (c) where the strain level was
increased from 1% to 3.8%. Sample, in situ testing and imaging by TU Bergakademie Freiberg.
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(a) Displacement field (b) Morphological gradient

(c) hI -erosion (d) hI -dilation

(e) hI -opening (f) hI -closing

Figure 1.13: XZ-slice of the displacement field from Nogatz et al. [39]. Yellow colour indicates move-
ment along the Z-direction, and blue refers to the opposite direction. The computed displacement field
reflects the influence on the microstructure during compression (a). The morphological gradient (with
B a 3× 3 square) enhances the fault zone (b). The results of other morphological operators are given in
(c-f) with B a 15× 15 square.
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Chapter 2

Quantiles and depth for directional data
from elliptically symmetric distributions

2.1 Introduction

The classes of rotationally symmetric distributions and elliptically symmetric distributions in Rd have
been well investigated by Kelker [40], Cambanis et al. [41] and Fang et al. [42]. A random vector
X ∈ Rd has a rotationally symmetric distribution if the distribution of X is identical to the distribution
of OX for all O ∈ SO(d). Rotationally symmetric distributions are often regarded as the most natural
non-uniform distributions in Rd. For instance, the charge distribution of an electric field is rotationally
symmetric around its source. In practice, not all real phenomena can be represented by symmetric
models. Elliptically symmetric distributions extend the class of rotationally symmetric distributions.
Note that a random vector with an elliptically symmetric distribution can be transformed into a random
vector with a rotationally symmetric distribution via a linear transformation.

These concepts of symmetry transfer to the sphere Sd−1 for the description and analysis of direc-
tional data. Distributions on Sd−1 which are rotationally symmetric about a direction µ ∈ Sd−1 are also
often regarded as a natural non-uniform distribution on Sd−1 [27]. In most cases, rotationally symmet-
ric distributions have tractable normalising constants (compared with other non-rotationally symmetric
models). Note that the density f(x) of a rotationally symmetric distribution is proportional to a function
f(xTµ). Thus, a projection on µ enables a one-dimensional analysis of the distribution, for example, its
concentration around µ. The class of rotationally symmetric distributions about a direction µ ∈ Sd−1 is
denoted by Rµ.

In practice, however, symmetric models are often too restrictive. For instance, Leong and Carlile [43]
illustrated that rotational symmetry about a direction is a too strong assumption for a directional data
set from neurosciences. Kent [44] has fitted his elliptical model to a data set of 34 measurements of
the directions of magnetisation for samples from the Great Whin Sill (Northumberland, England). As
in Rd, distributions that are elliptically symmetric about a direction µ on Sd−1 are an extension of the
rotationally symmetric distributions. The contours are more flexible to form elliptical shapes. Due to
the curved shape of the sphere, the transition from distributions which are rotationally symmetric about
µ ∈ Sd−1 to distributions which are elliptically symmetric about µ is not obvious. A remedy to this
problem is to linearise Sd−1 at some base point µ. The linear space resulting from this is called the
tangent space at µ and denoted by TµSd−1. Then, we can provide a transformation between the two
distributions in the tangent space analogous to Rd.

Ley et al. [11] introduced a concept of quantiles and depth for directional data. They showed that
their quantiles are asymptotically normal and established a Bahadur-type representation [45] for direc-
tional data X ∼ FX ∈ Rµ. A Monte Carlo simulation study corroborated their theoretical results.
Statistical tools, like directional DD- and QQ-plots and a quantile-based goodness-of-fit test, were de-
fined and illustrated on a data set of cosmic rays. Their results are canonical for rotationally symmetric
distributions. But their concept suffers from the disadvantage of producing rotationally symmetric depth
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contours, even if the underlying distribution has elliptical contours.
In this chapter, we present a procedure solving the latter issue if the underlying distribution has el-

liptical contours. The chapter is organised as follows. In Section 2.2, we first introduce the considered
distributions. Following Pennec [46], we relate the directional density contours on Sd−1 with their pro-
jection into a tangent space TµSd−1, and extend the notation of Mahalanobis transformation to Sd−1.
Furthermore, we summarise the findings of Ley at al. [11]. Section 2.3 contains our main contribution.
The idea is to map the unit vectors into the tangent space TµSd−1 where µ is the median direction of the
unit vectors. The mapped vectors are elliptically symmetric around the origin in TµSd−1. The multivari-
ate Mahalanobis transformation [46, 47] is applied to the mapped vectors in TµSd−1. The transformed
vectors are rotationally symmetric distributed around the origin in TµSd−1. These are mapped back to
Sd−1. This procedure results in unit vectors which are rotationally symmetric about µ. Thus, we can ex-
ploit the results from [11]. All transformations are diffeomorphic such that we can trace back the results
to the original unit vectors. Section 2.4 affirms our findings by a Monte Carlo study. Furthermore, we
apply our approach to a real-world data set from [48]: Directions of short steel fibres crossing a crack in
ultra-high performance fibre-reinforced concrete (UHPFRC).

2.2 Basics

The notation is as in Section 1.2.1.

2.2.1 Rotational and elliptical symmetric distributions in Rd

Before we restrict our attention to distributions on the sphere, we give the definition of rotationally and
elliptically symmetric distributions in Rd. These will be used when we linearise the sphere Sd−1 at µ
and transfer density contours from Sd−1 into the (flat) tangential space TµSd−1. See [41] for a detailed
introduction.

Definition 2.2.1 (Rotationally symmetric distribution). Let V ∈ Rd be a random vector. The distribution
of V is rotationally symmetric if and only if

V
D
= OV (2.1)

for every O ∈ SO(d).

Every random vector V ∈ Rd following a rotationally symmetric distribution can be represented as

V
D
= RU (2.2)

where U ∼ Unif(Sd−1) (uniformly distributed on Sd−1) and independent of the real-valued random
variable R with distribution FR. U gives the direction of V and R is the length of V .

Definition 2.2.2 (Elliptically symmetric distribution). Let W ∈ Rd be a random vector. The distribution
of W is elliptically symmetric if and only if

W
D
= m+RΣ1/2U (2.3)

with m ∈ Rd, U ∼ Unif(Sd−1), R real-valued with distribution FR and Σ ∈ Rd×d a symmetric,
positive definite matrix, and U and R are independent.

If W ∈ Rd has an elliptically symmetric distribution, we write W ∼ E(m,Σ, FR). The centre
of W is m and Σ1/2U produces the elliptical density contours. From now on, let m = 0d such that
W ∼ E(0d,Σ, FR) is centred at the origin. The matrix Σ is called the dispersion or scatter matrix of
W . Since Σ is symmetric, positive definite it follows that Σ1/2,Σ−1 and Σ−1/2 are well defined. The
spectral decomposition of Σ describes the semi-axes of the elliptical contours. For Σ = Id, we are in
the rotationally symmetric case.

Elliptical symmetry is connected to rotational symmetry as follows.
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µ

o

S2

X
Z

(XTµ)µ

S1
µ⊥

Γµuµ(X)

Figure 2.1: Illustration of Γµuµ(X) for d = 3. Γµuµ(X) to corresponds to the direction of Z.

Proposition 2.2.1. W ∼ E(0d,Σ, FR) if and only if V = Σ−1/2W ∼ E(0d, Id, FR).

Proof. Let W ∼ E(0d,Σ, FR). By Definition 2.2.2 follows that W D
= RΣ1/2U . Then,

V = Σ−1/2W
D
= RΣ−1/2Σ1/2U = RU. (2.4)

Thus, V ∼ E(0d, Id, FR). The other direction follows analogously.

2.2.2 Rotational and elliptical symmetry about a direction on Sd−1

We follow the notation of García-Portugués et al. [27]. Let Γµ =
(
Γ
(1)
µ , . . . ,Γ

(d−1)
µ

)
∈ Rd×d−1, where

the columns Γ(i)
µ ∈ Rd, i = 1, . . . , d − 1, build an orthonormal basis of the orthogonal complement to

µ so that

ΓT
µΓµ = Id−1, (2.5)

ΓµΓ
T
µ = Id − µµT . (2.6)

Define

uµ(X) :=
ΓT
µX

||ΓT
µX||2

=
ΓT
µX√

(1− (XTµ)2
∈ Sd−2

µ⊥ . (2.7)

||ΓT
µX||2 =

√
(1− (XTµ)2 holds since

Γµuµ(X) =
ΓµΓ

T
µX

||ΓT
µX||2

, (apply Γµ on both sides of (2.7)) (2.8)

⇒ ||Γµuµ(X)||2 =
||ΓµΓ

T
µX||2

||ΓT
µX||2

, (apply || · ||2 on both sides of (2.8)) (2.9)

||ΓT
µX||2 =

||ΓµΓ
T
µX||2

||Γµuµ(X)||2
, (rearranged terms of (2.9))

(2.6)
=

||(Id − µµT )X||2
||Γµuµ(X)||2

(1.17)
=

||Z||2
||Γµuµ(X)||2

=
√
(1− (XTµ)2.
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The last equality holds with ||Γµuµ(X)||2 = 1 due to the fact that the columns of Γµ build an orthonor-
mal basis of Sd−2

µ⊥ and uµ(X) ∈ Sd−2
µ⊥ , and Z the tangential part of X as given in (1.17) has norm

||Z||2 =
√

(1− (XTµ)2. The connection between uµ(X) and Z reads

Z
(1.17)
= (Id − µµT )X

(2.6)
= ΓµΓ

T
µX

(2.7)
=
√
1− (XTµ)2Γµuµ(X). (2.10)

Thus, Γµuµ(X) corresponds to the direction of Z, see Figure 2.1.

Definition 2.2.3 (Rotational symmetry about a direction). Let X ∈ Sd−1 be a random vector and
µ ∈ Sd−1. The distribution of X is rotationally symmetric about µ on Sd−1 if and only if X D

= OX for
every O ∈ SO(d) fulfilling Oµ = µ.

Let Rµ be the class of distributions which are rotationally symmetric about µ ∈ Sd−1.

Theorem 2.2.1 (Watson 1983 [49]). Let X ∼ FX ∈ Rµ. Then,

XTµ and Γµuµ(X) are independent (2.11)

and

Γµuµ(X) ∼ Unif(Sd−2
µ⊥ ). (2.12)

Projecting X onto a vector space orthogonal to µ yields rotationally symmetric contours. Distributions
FX ∈ Rµ are characterised by densities of the form

x 7→ fRµ(x) = cdf(x
Tµ), x ∈ Sd−1, (2.13)

where f : [−1, 1] → R≥0 is absolutely continuous and cd a normalising constant [11]. The distribution
of XTµ is absolutely continuous w.r.t the Lebesgue measure on [−1, 1] [26]. The density of XTµ reads

f̃(t) = ωd−1cd(1− t2)
d−3
2 f(t), (2.14)

where

ωd−1 =
2π(d−1)/2

Γ
(
d−1
2

) (2.15)

is the surface area of Sd−2 [27]. A widely known distribution in Rµ is the von Mises-Fisher distribution
Md(µ, κ) with

f(t) = exp(κt) (2.16)

in (2.13).

Definition 2.2.4 (von Mises-Fisher distribution Md(µ, κ)). The probability density function of the von
Mises–Fisher distribution for a random vector X ∈ Sd−1 is given by

fvMF (x) = cd exp (κx
Tµ), (2.17)

where κ ≥ 0, µ ∈ Sd−1, and the normalising constant is equal to

cd =
κd/2−1

(2π)d/2Id/2−1(κ)
. (2.18)

Iν(z) is the order-v modified Bessel function of the first kind

Iν(z) =
1

π

∫ π

0
ez cos θ cos νθ dθ − sin νπ

π

∫ ∞
0

e−z cosh t−νt dt, z > 0.

The parameters µ and κ are called the mean direction and concentration parameter, respectively. The
concentration around µ increases with κ. The Md(µ, κ) is unimodal for κ > 0, and is uniform on the
sphere for κ = 0.
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A generalisation of the von Mises-Fisher distributions are the Fisher-Bingham distributions [26]. The
idea is to add a general quadratic equation in the exponent of the density in (2.13). An example of the
Fisher-Bingham distributions is the Kent distribution K(µ, κ,A) [44].

Definition 2.2.5 (Kent distribution K(µ, κ,A)). The probability density function of the Kent distribution
for a random vector X ∈ Sd−1 is given by

fK(x) = cd,K exp (κxTµ+ xTAx), (2.19)

where κ ≥ 0, µ ∈ Sd−1, A ∈ Sym(d) with Aµ = 0d and the normalising constant cd,K . The
parameters µ, κ and A are called the mean direction, concentration and shape parameter, respectively.
The concentration around µ increases with κ. A ∈ Sym(d) controls the shape of the density contours.

For large κ, the Kent distribution has a mode at µ and density contours which are elliptical [34, p.177].

Remark 2.2.1. Note that the definition of the class Rµ does not include that µ is the unique modal
direction. However, we restrict our attention to distributions in Rµ ∩ Fµ from now on, where Fµ was
the class of distributions on Sd−1 with a bounded density that admit a unique modal direction µ equal
to the Fisher spherical median given in (1.19) as described in Section 1.2.5. Md(µ, κ) ∈ Rµ ∩ Fµ for
κ > 0, and K(µ, κ,A) ∈ Fµ for κ > 0 and some matrices A ∈ Sym(d) given in the next Section.

2.2.2.1 Examples on S2

We assume that µ corresponds to the north pole, i.e. µ = (0, 0, 1)T . Otherwise, we rotate the data by a
rotation matrix O ∈ SO(3) with Oµ = (0, 0, 1)T . We choose

Γµ =

1 0
0 1
0 0

 . (2.20)

Then,

ΓµΓ
T
µ = diag(1, 1, 0). (2.21)

We describe the random vector X ∈ Sd−1 by spherical coordinates as given in Equation (1.14). Thus,
the co-latitude Θ equals the angle between X and µ.

Example 2.2.1 (Standardised Kent distribution). Consider A = β(ξ1ξ
T
1 − ξ2ξ

T
2 ), where β ≥ 0 and

(µ, ξ1, ξ2) forms an orthogonal matrix. Choosing µ = (0, 0, 1)T , ξ1 = (1, 0, 0)T and ξ2 = (0, 1, 0)T ,
we have

A = diag(β,−β, 0) (2.22)

and get the so-called standardised Kent distribution [34, Section 4.4.5]. Its density reads [34, Eq.(4.443)]

fK(θ, ϕ) = cd,µ,A exp
(
κ cos (θ) + β sin2 (θ) cos (2ϕ)

)
sin (θ), (2.23)

where β, with 0 ≤ 2β < κ, determines the ellipticity of the contours of equal probability. β is called the
ovalness parameter. The major and minor axis of the elliptical contours are ξ1 and ξ2, respectively. The
normalising constant is given by [34, Section 4.4.5]

cd,µ,A =

[
(2π)

3
2κ−

1
2

∞∑
r=0

(2r)!

(r!)2

(
β

κ

)2r

I2r+ 1
2
(κ)

]−1
κ large
≈ 1

2π
exp(−κ)

√
κ2 − 4β2.

Example 2.2.2 (Standardised von Mises-Fisher distribution). For β = 0, we derive from (2.23) the
density of M3(µ, κ) the von Mises-Fisher distribution in standardised form [34, Eq.(4.28)]

fvMF (θ, ϕ) =
κ

2π(exp (κ)− exp (−κ))
exp (κ cos (θ)) sin (θ). (2.24)
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(a) K(µ, κ,A) (b) M3(µ, κ)

Figure 2.2: (a) 500 realisations of a standardised Kent K(µ, κ,A)-distributed random vector with κ =
12 and β = 5. (b) 500 realisations of a standardised von Mises-Fisher M3(µ, κ)-distributed random
vector with κ = 12. The Z-direction points out of the page.

See Figure 2.2 for an illustration of the standardised Kent and standardised von Mises-Fisher distri-
bution. The marginal densities of M3(µ, κ) can be used to check whether the model fitting of a von
Mises-Fisher distribution to a data set is reasonable.

Remark 2.2.2 (Section 4.4.3 in [34]). The joint density fvMF (θ, ϕ) in (2.24) can be decomposed in its
marginal densities

fϕ(ϕ) =
1

2π
(2.25)

and

fθ(θ) =
κ

exp (κ)− exp (−κ)
exp (κ cos (θ)) sin (θ) (2.26)

with 0 ≤ θ ≤ π. In particular, Θ and Φ are independent.
The distribution of H = 1− cos (Θ) has density

fh(h) =
κ

1− exp (−2κ)
exp(−κh) (2.27)

with 0 ≤ h ≤ 2. Thus, H ∼ Exp(κ) truncated at h = 2 with E(H) = 1
κ . For κ > 2, the truncation is

negligible as 1
1−exp (−2κ) tends towards 1. Thus, H ∼ Exp(κ).

2.2.3 Differential geometry

Differential geometry examines smooth manifolds using differential and integral calculus as well as
linear and multi-linear algebra. It originates in studying spherical geometries related to astronomy and
the geodesy of the earth. For an introduction to differential geometry, see e.g. [50].

We saw in Proposition 2.2.1 that a linear transformation Σ transforms a random vector which is
from a rotationally symmetric distribution into a random vector which is from an elliptically symmetric
distribution in Rd. We want to proceed analogously for distributions on the sphere. However, it is not
clear that such a linear transformation applied to a vector on Sd−1 leads to a vector on Sd−1. A remedy
is provided by linearising the sphere Sd−1 at a base point µ ∈ Sd−1.
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Definition 2.2.6 (Tangent space TµSd−1). The tangent space TµSd−1 to the manifold Sd−1 at a base
point µ ∈ Sd−1 is the collection of all tangent vectors to Sd−1 at µ.

TµSd−1 is a local Euclidean vector space with local origin in µ. Given µ ∈ Sd−1 and a tangent vector
v ∈ TµSd−1, there is a unique geodesic cµ,x as defined in (1.1). In the following, we define mappings
between the tangent space and the sphere.

Definition 2.2.7 (Riemannian exponential map). Let TµSd−1 be the tangent space to Sd−1 at µ ∈ Sd−1

and cµ,x as in (1.1). The Riemannian exponential map,

Expµ : TµSd−1 → Sd−1 (2.28)

maps a vector v ∈ TµSd−1 on Sd−1 along a geodesic such that x = Expµ(v) = cµ,x(1).

The exponential map is locally diffeomorphic onto a neighbourhood V (µ) of µ. For Sd−1, it follows
V (µ) = Sd−1 \ {−µ}, where −µ is called cut point and the set {−µ} is called cut locus. Within V (µ)
the exponential map Expµ has an inverse, the Riemannian logarithmic map.

Definition 2.2.8 (Riemannian logarithmic map). Let Expµ be as in (2.28). The Riemannian logarithmic
map,

Logµ : V (µ) → TµSd−1 (2.29)

maps a vector x ∈ Sd−1 into TµSd−1 with Expµ(Logµ(x)) = x.

The mapping from Sd−1 into TµSd−1 can be seen as a linearisation of Sd−1 onto TµSd−1 at µ along
all geodesics with initial velocity v ∈ TµSd−1.

The distance between µ and a point on the sphere is described by the Riemannian distance function.

Definition 2.2.9 (Riemannian distance function). Let Logµ as in (2.29). For any point x ∈ V (µ), the
Riemannian distance function is given by

dGD(µ, x) = ||Logµ(x)||2 = arccos (xTµ) ∈ [0, π). (2.30)

It holds that Logµ(x) ∈ Bd−1(π) ⊂ TµSd−1.
For calculations in local coordinates, we need a local representation of the Riemannian metric.

Remark 2.2.3 (Local representation of the Riemannian metric). Let

∂

∂x̃
=

(
∂

∂x̃1
, . . . ,

∂

∂x̃n

)
(2.31)

be a basis of TµSd−1. The local representation of the Riemannian metric reads

Gµ =

[(
∂

∂x̃i

)T ( ∂

∂x̃j

)]
i,j

, (2.32)

i.e. each element of Gµ is given by the scalar product of two tangent basis vectors. Gµ is symmetric and
positive definite.
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TµS2

µ

S2

Logµ(x)

x Expµ(v)

v

Figure 2.3: The tangent space TµS2 of the sphere S2 and related operators.

2.2.3.1 Examples on S2

Consider d = 3. The locally diffeomorphic exponential map reads [15, 51]

Expµ : TµS2 → S2 \ {−µ},

v 7→ µ cos (||v||2) +
v

||v||2
sin (||v||2). (2.33)

The locally diffeomorphic logarithmic map reads [15, 51]

Logµ : S2 \ {−µ} → TµS2,

x 7→ ΓµΓ
T
µx

dGD(x, µ)

sin (dGD(x, µ))
(2.34)

with 0
sin (0) = 1. See Figure 2.3 for an illustration. With µ = (0, 0, 1)T the logarithmic map in spherical

coordinates reads

Logµ(x)
(1.14)
=

 cos (ϕ) sin (θ)
sin (ϕ) sin (θ)

0

 θ

sin (θ)
= θ

 cos (ϕ)
sin (ϕ)

0

 ∈ TµS2, (2.35)

with dGD(x, µ) = arccos (cos(θ)) = θ. Thus, the length of any vector Logµ(x) ∈ TµS2, x ∈ Sd−1, is
already given by the (co-latitude) angle θ ∈ [0, π).

Remark 2.2.4. Mapping a random vector X ∼ FX ∈ Rµ (with spherical coordinates Θ and Φ) into a
tangent space Log(X) ∈ TµS2 gives us an interpretation of Theorem 2.2.1: Since Φ ∼ Unif(S1

µ⊥) =

Unif [0, 2π] and Φ,Θ independent, Logµ(X) has circular density contours in TµS2. The radius of a
contour line of equal probability depends on the value of the density of Θ.

Remark 2.2.5 (Local representation of the Riemannian metric in R3). Let d = 3, µ = (0, 0, 1)T and
Expµ(v) given in (2.33). For calculating Gµ, consider

x̃ = R(sin (θ) cos (ϕ), sin (θ) sin (ϕ), cos (θ))T .

The partial derivatives are

∂x̃

∂R
= (sin (θ) cos (ϕ), sin (θ) sin (ϕ), cos (θ))T ,

∂x̃

∂θ
= (cos (θ) cos (ϕ), cos (θ) sin (ϕ),− sin (θ))T ,

∂x̃

∂ϕ
= (− sin (θ) sin (ϕ), sin (θ) cos (ϕ), 0)T .
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For R = 1,

Gµ = diag(1, 1, sin2(θ))

√
|Gµ| = sin (θ). (2.36)

The representation of densities in the tangent space is given in the next section.

2.2.3.2 Relation between densities on Sd−1 and TµSd−1

Following the work of [46], we can transfer densities from Sd−1 into TµSd−1 for some µ ∈ Sd−1:
Let X ∈ Sd−1 be random vector with density f . Furthermore, let v ∈ TµSd−1 and Gµ in (2.32) the
corresponding local representation of the Riemannian metric. The connection between the density f on
Sd−1 and fTµSd−1 in TµSd−1 (defined w.r.t. the Lebesgue measure) reads [46, Equation (9)]

fTµSd−1(v) = f(Expµ(v))
√
|Gµ|. (2.37)

Note that fTµSd−1 depends on the chosen exponential map on the contrary to f [46].

2.2.3.2.1 Examples for the relation between densities on S2 and TµS2

Here, we apply (2.37) on the von Mises-Fisher and Kent density for d = 3.

Remark 2.2.6 (Transferred von Mises-Fisher density). Let v ∈ TµS2 with ||v||2 < π. The transferred
von Mises-Fisher density reads

fvMF,TµS2(v)
(2.37)
= fvMF (Expµ(v))

√
|Gµ|

(2.17)
= cd exp

(
κ (Expµ(v))

T µ
)√

|Gµ|

(2.33)
= cd exp

(
κ

(
µ cos (||v||2) +

v

||v||2
sin (||v||2)

)T

µ

)√
|Gµ|

= cd exp

(
κ(µTµ cos (||v||2) +

vTµ

||v||2
sin (||v||2))

)√
|Gµ|, µTµ = 1, vTµ = 0

= cd exp (κ cos (||v||2))
√

|Gµ|

= cd exp (κ cos (θ)) sin (θ), (2.38)

where the last line follows using polar coordinates

v = θ

 cos (ϕ)
sin (ϕ)

0

 ∈ TµS2, (2.39)

with ||v||2 = θ and (2.36). Note that Equation (2.38) equals Equation (2.24).

Remark 2.2.7 (Transferred Kent density). Let v ∈ TµS2 with ||v||2 < π. With (2.37) and (2.36), the
transferred Kent density reads

fK,TµS2(v)
(2.37)
= fK(Expµ(v))

√
|Gµ|

(2.19)
= cd,K exp

(
κExpµ(v)

Tµ+ Expµ(v)
TAExpµ(v)

)√
|Gµ| (2.40)
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Note that

Expµ(v)
Tµ

(2.33)
= cos(||v||2) (2.41)

and

AExpµ(v)
(2.33)
= A

(
µ cos (||v||2) +

v

||v||2
sin (||v||2)

)
= Aµ cos (||v||2) +

Av

||v||2
sin (||v||2)

Aµ=0
=

Av

||v||2
sin (||v||2). (2.42)

Then,

fK,TµS2(v)
(2.40),(2.41)

= cd,K exp
(
κ cos (||v||2)) + Expµ(v)

TAExpµ(v)
)√

|Gµ|. (2.43)

(2.42)
= cd,K exp

(
κ cos (||v||2) +

(
sin (||v||2)

||v||2

)2

vTAv

)√
|Gµ| (2.44)

The contours are controlled by the quadratic form vTAv.
For A = diag(β,−β, 0), it follows that

vTAv
(2.39)
= βθ2(cos2(ϕ)− sin2 (ϕ))

= βθ2 cos (2ϕ). (2.45)

Thus,

fK,TµS2(v)
(2.44)
= cd,K exp

(
κ cos (||v||2) +

(
sin (||v||2)

||v||2

)2

vTAv

)√
|Gµ|

(2.45),(2.36)
= cd,K exp

(
κ cos (θ) + β sin2 (θ) cos(2ϕ)

)
sin (θ) (2.46)

with cos (||v||2) = θ. Note that Equation (2.46) equals Equation (2.23).

We have seen that densities can be transferred between Sd−1 and TµSd−1. In our examples in Re-
mark 2.2.6 and Remark 2.2.7, the transformation (2.37) corresponds to the density transformation from
Cartesian to spherical coordinates. The tangent space is easier tractable due to its linear structure. Thus,
we examine the contours in TµSd−1 instead of on the curved surface of Sd−1.

2.2.4 The Mahalanobis transformation

2.2.4.1 The Mahalanobis transformation in Rd

The idea of the Mahalanobis transformation is to linearly transform a real-valued data matrix WRd in a
centred, standardised and uncorrelated data matrix VRd , see e.g. [47]. Consider WRd = (w1, . . . , wn)

T ∈
Rn×d with d-dimensional row vectors w1, . . . , wn ∈ Rd. In particular, if the wi, i = 1, . . . , n, are re-
alisations from a E(0,Σ, FR)-distributed random vector, we can use the Mahalanobis transformation to
estimate Σ. The vector w̄ of the sample means

w̄j =
1

n

n∑
i=1

wij , j = 1, . . . , d,

reads

w̄ = (w̄1, . . . , w̄d)
T =

1

n
WT

Rd1n.
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Figure 2.4: The Mahalanobis transformation of y1, . . . , y500 ∈ Sd−1. The realisations are from a random
vector Y which is standardised Kent distributed with κ = 12 and β = 5, see Example 2.2.1. The Z-
direction points out of the page.

The empirical covariance matrix of WRd reads

Σ̂(WRd) =
1

n
WT

RdHWRd

with the centring matrix

H = 1n − 1

n
1n1

T
n . (2.47)

Σ̂(WRd) ∈ Rd×d is symmetric and positive semi-definite.
The Mahalanobis transformation of wi ∈ Rd reads

vi = Σ̂(WRd)−1/2(wi − w̄). (2.48)

2.2.4.2 The Mahalanobis transformation on Sd−1

The Mahalanobis transformation can be generalised to the Riemannian manifold Sd−1, see [46]. Here,
the row vectors y1, . . . , yn ∈ Sd−1 \ {−µ} of a data matrix YSd−1 ∈ Rn × Sd−1 are mapped onto
TµSd−1. The sample mean reads

ȳTµSd−1 =
1

n

n∑
i=1

Logµ(yi) ∈ TµSd−1.

Remark 2.2.8. For realisations yi, i = 1, . . . n, from a random unit vector following a distribution
which is rotationally or elliptically symmetric about µ ∈ Sd−1, it follows that

ȳTµSd−1 =
1

n

n∑
i=1

Logµ(yi) ≈ 0d−1 (2.49)

if the sample size is large.
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The empirical covariance matrix reads

Σ̂TµSd−1 = Σ̂TµSd−1(YSd−1) =
1

n

n∑
i=1

Logµ(yi)Logµ(yi)
T . (2.50)

In analogy to (2.48) and with (2.49), the transformed vector in TµSd−1 reads

vi = Σ̂TµSd−1(YSd−1)−1/2Logµ(yi). (2.51)

Note that it is not clear that we can apply Expµ to map vi ∈ TµSd−1 onto the sphere Sd−1 since
||vi||2 < π is maybe not the case.

We normalise Σ̂TµSd−1(YSd−1)−1/2 to ensure that the Riemannian exponential map Expµ is locally
diffeomorphic. Let

Σ̂∗TµSd−1(YSd−1)−1/2 =
Σ̂TµSd−1(YSd−1)−1/2

||Σ̂TµSd−1(YSd−1)−1/2||2
. (2.52)

Then it holds that

||vi||2
(2.51)
= ||Σ̂∗TµSd−1(YSd−1)−1/2Logµ(yi)||2 ≤ ||Σ̂∗TµSd−1(YSd−1)−1/2||2 · ||Logµ(yi)||2.

(2.30)
< π,

Thus, we can apply the locally diffeomorphic Riemannian exponential map Expµ on vi.

Remark 2.2.9. Note that using (2.52) in (2.51) could increase the concentration of the points around µ.

The Mahalanobis transformation of yi ∈ Sd−1 reads

xi = Expµ(Σ̂
∗
TµSd−1(YSd−1)−1/2Logµ(yi)). (2.53)

For d = 3, the Mahalanobis-transform is illustrated in Figure 2.4.
Let

Σ̂∗TµSd−1(YSd−1)1/2 = ||Σ̂TµSd−1(YSd−1)−1/2||2 · Σ̂TµSd−1(YSd−1)1/2 (2.54)

the inverse of (2.52) such that

Σ̂∗TµSd−1(YSd−1)1/2Σ̂∗TµSd−1(YSd−1)−1/2 = Id−1 (2.55)

Then, we can invert (2.53) by

Expµ(Σ̂
∗
TµSd−1(YSd−1)1/2Logµ(xi))

(2.53)
= Expµ(Σ̂

∗
TµSd−1(YSd−1)1/2Logµ

(
Expµ(Σ̂

∗
TµSd−1(YSd−1)−1/2Logµ(yi))

)
)

∗
= Expµ(Σ̂

∗
TµSd−1(YSd−1)1/2Σ̂∗TµSd−1(YSd−1)−1/2Logµ(yi))

(2.55)
= Expµ(Logµ(yi))
∗
= yi

where ∗ holds with Logµ(Expµ(x)) = x.
We will use (2.53) to Mahalanobis-transform realisations y1, . . . , yn ∈ Sd−1 from a random vector Y

which has elliptical density contours about µ. If the Mahalanobis-transformed vectors result in vectors
which are rotationally symmetric about µ, we treat them as realisations from a random vector X with
rotationally symmetric density contours about µ. Then, we will use the results of Ley at al. [11] which
are canonical in the rotationally symmetric case. Their results are summarised in the following section.
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2.2.5 The angular Mahalanobis depth

As stated in Section 1.2.5.2, the authors in [11] transferred the projection quantile cτ in (1.24) into a
directional depth by assigning the value DF (x) given in (1.28) to each x ∈ Sd−1. DF (x) provides a
centre-outward ordering with DF (µ) = 1, DF (−µ) = 0 and is decreasing on a geodesic from µ to −µ.
The angular Mahalanobis depth (AMHD) is defined by

AMHDF (x) =
1

1 + 1/DF (x)
=

DF (x)

1 +DF (x)
∈ [0, 1/2] , (2.56)

where AMHDF (µ) = 1/2, AMHDF (−µ) = 0. As DF , AMHDF decreases on a geodesic from µ to
−µ. The angular Mahalanobis depth is leaned on the Classical Mahalanobis depth

MHDF =
1

1 + (x− µ(F ))T (Σ(F ))−1(x− µ(F ))
(2.57)

with x ∈ Rd. µ(F ) and Σ(F ) are location and scatter functionals under F , respectively. The spherical
centre µ corresponds to the centre µ(F ). MHDF is suited for elliptically symmetric distributions on
Rd since Σ(F ) contains all necessary information about the principal axes. AMHDF is not suited for
distributions which are elliptically symmetric about µ ∈ Sd−1 since information about the shape of the
distribution is lost due to the projection XTµ in the definition of DF (x) in (1.28).

The empirical angular Mahalanobis depth reads

AMHD(x) =
1

1 + 1/D̂(x)
, (2.58)

with
D̂(x) = arg min

τ∈[0,1]
{ĉτ ≥ xT µ̂}, (2.59)

where the empirical projection quantile ĉτ is given in (1.27).

2.2.5.1 Asymptotic properties

Let {Xn}n∈N be a family of random variables. The order in probability notation [52] Xn ∈ oP (1) is
defined as lim

n→∞
P (|Xn| ≥ ε) = 0, for all ε > 0, which corresponds to convergence in probability with

limit X = 0.
The following Bahadur-type representation of ĉτ given in (1.27) is shown in [11] (with slightly differ-

ing notation).

Proposition 2.2.2 (Proposition 3.1 in [11]). Let F ∈ Fµ and fproj stand for the common density of the
projections XT

i µ, i = 1, . . . , n and set ∆cτ := fproj(cτ ). Then there exists a d-vector ∆µ,cτ such that

n1/2(ĉτ − cτ ) =
n1/2

∆cτ

N∑
i=1

(τ − 1[XT
i µ ≤ cτ ])]−

∆T
µ,cτ

∆cτ

n1/2(µ̂− µ) + oP (1) (2.60)

as n → ∞ under the joint distribution of X1, . . . , Xn.

Note that (2.60) gives us that a rather complicated non-linear estimator ĉτ can be represented as a
sum of i.i.d. random variables and the scaled difference between µ to its estimator µ̂. However, the
calculation of ∆µ,cτ = d

dcE
(
(τ − 1[XT

i µ ≤ c])Xi

)
|c=cτ

(see the proof of Proposition 3.1 in [11]) is not
straightforward.

The representation in Equation (2.60) simplifies in the rotationally symmetric case:

55



Proposition 2.2.3 (Proposition 3.2 in [11]). Let F ∈ Rµ. Then

n1/2(ĉτ − cτ ) =
n1/2

∆cτ

N∑
i=1

(τ − 1[XT
i µ ≤ cτ ])] + oP (1) (2.61)

as n → ∞ under the joint distribution of X1, . . . , Xn. Therefore, letting fproj stand for the density of
XT

i µ, we have that n1/2(ĉτ − cτ ) is asymptotically normal with mean zero and variance (1−τ)τ
fproj(cτ )

.

The reason for the simplification in Equation (2.60) is that ∆T
µ,cτn

1/2(µ̂ − µ) ∈ oP (1) for F ∈ Rµ.
The absence of µ̂ in Equation (2.61) means that any root-n consistent estimator (empirical Fisher spher-
ical median µ̂, spherical mean

∑n
i=1Xi/||

∑n
i=1Xi||2, etc.) can substitute µ with no asymptotic effect,

independent of the dimension d. Furthermore, (2.60) is a Bahadur-type representation for univariate
sample quantiles [45]. Hence, the directional quantiles of [11] have similar asymptotic properties as the
quantiles in R. Therefore, the directional quantiles of [11] can be regarded as canonical for F ∈ Rµ.

Remark 2.2.10. Ley et al. [11] derived from Proposition 2.2.3 a goodness-of-fit test which is sum-
marised in Appendix B. For X ∼ M3(µ, κ), the projected density fproj given in (2.14) and a simple
expression of the covariance matrix in the goodness-of-fit test statistic is given Appendix C.

2.3 Quantiles for directional data from elliptically symmetric distribu-
tions and the elliptical Mahalanobis depth

As mentioned, Ley et al. [11] introduced quantiles and a depth which are canonical for directional data
from distributions F ∈ Rµ with rotational symmetric density contours. But their concept suffers from
the disadvantage of producing rotationally symmetric depth contours even if the underlying distribution
F ̸∈ Rµ, for instance, if F has elliptically symmetric depth contours. We solve this problem by trans-
forming the elliptical contours in the tangent space to rotationally symmetric contours, such that we are
again in the canonical case of Ley et. [11].

In the following, we consider random vectors Y, Y1, . . . , Yn ∈ Sd−1 i.i.d. with Logµ(Y ) ∼ E(0d−1,Σ, FR).
With Remark 2.2.1 follows that Σ−1/2Logµ(Y ) ∼ E(0d−1, Id−1, FR). Let

(Σ∗)−1/2 =
Σ−1/2

||Σ−1/2||2
(2.62)

and

(Σ∗)1/2 = ||Σ−1/2||2 · Σ1/2 (2.63)

Then,

||(Σ∗)−1/2Logµ(Y )||2 ≤ ||(Σ∗)−1/2||2 · ||Logµ(Y )||2
(2.30)
< π (2.64)

and, therefore,

G(Y ) = Expµ((Σ
∗)−1/2(Logµ(Y ))) (2.65)

is locally diffeomorphic since Expµ and Logµ are locally diffeomorphic, and (Σ∗)−1/2 is invertible. We
denote the inverse of (2.65) by

G−1(Y ) = Expµ((Σ
∗)1/2(Logµ(Y ))). (2.66)
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2.3.1 Quantiles for directional data from elliptically symmetric distributions

We define the elliptical projection quantile by

cGτ = arg min
c∈[−1,1]

E[ρτ (G(Y )Tµ− c)], (2.67)

where G(Y ) is given in (2.65). The partition of the sphere due to the hyperplane HcGτ µ
= {x ∈ Rd|cGτ =

G(Y )Tµ} defines the τ -th-depth contour CcGτ µ
, an upper and lower quantile cap as in Section 1.2.5.2.

Note that cGτ = cτ if Σ∗ = Id−1 since G(Y ) = Y .
We denote by CE

cGτ µ
the τ -th-depth contour of the random vector Y which we derive from CcGτ µ

as

follows. Map all vectors on the contour line CcGτ µ
into TµSd−1. Then, transform the mapped vectors by

(Σ∗)1/2 given in (2.63) which inverts the transformation in (2.62). Finally, map the transformed vectors
back onto the sphere Sd−1. These vectors build CE

cGτ µ
defined as

CE
cGτ µ

=
{
G−1(Y )|Y ∈ CcGτ µ

}
(2.68)

with G−1(Y ) given in (2.66). Note that CE
cGτ µ

can be elliptically shaped which is not the case for CcGτ µ
.

Let

minor cEτ = max
x∈CE

cGτ µ

xTµ (2.69)

major cEτ = min
x∈CE

cGτ µ

xTµ. (2.70)

The intrinsic small semi-axis of CE
cGτ µ

is arccos
(
minor cEτ

)
and the intrinsic large semi-axis of of CE

cGτ µ

is arccos
(
major cEτ

)
. (2.69) and (2.70) contain the main information about the concentration and shape

of the distribution of Y around µ. A large difference between minor cEτ and major cEτ indicates a strong
deviation from a rotationally symmetric distribution, whereas minor cEτ = major cEτ indicates that we
are in the rotationally symmetric case. Note that major cEτ ≤ cτ ≤ minor cEτ .

The empirical elliptical projection quantile reads

ĉGτ = arg min
c∈[−1,1]

1

N

N∑
i=1

[ρτ (Ĝ(Yi)T µ̂− c)] (2.71)

with

Ĝ(Y ) = Expµ((Σ̂
∗)−1/2(Logµ(Y ))) (2.72)

and (Σ̂∗)−1/2 given in (2.52).
The empirical versions of (2.68), (2.69) and (2.70) are denoted by CE

ĉGτ ,µ
, minor ĉEτ and major ĉEτ ,

respectively.
If G(Y ) results in a random vectors with a distribution which is rotationally symmetric about µ ∈

Sd−1, we can use the findings of Ley et al. [11] from Section 2.2.5.1.

2.3.2 The elliptical Mahalanobis depth

Analogously to Ley et al. [11], we define

DGF (y) = arg min
τ∈[0,1]

{cGτ ≥ G(y)Tµ} (2.73)
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using the elliptical projection quantile cGτ in (2.67). DGF (y) provides a centre-outward ordering with
DGF (µ) = 1, DGF (−µ) = 0 and is decreasing on a geodesic from µ to −µ. Following [11], we rescale
DGF (y) which yields the elliptical Mahalanobis depth (EMHD)

EMHDF (y) =
1

1 + 1/DG
F (y)

=
DGF (y)

1 +DGF (y)
∈ [0, 1/2] , (2.74)

where EMHDF (µ) = 1/2, EMHDF (−µ) = 0. Furthermore, EMHDF decreases on a geodesic
from µ to −µ. As AMHDF , the elliptical Mahalanobis depth is leaned on the Classical Mahalanobis
depth MHDF given in Equation (2.57). EMHDF contains AMHDF as a special case. They are
equal if the depth contours are rotationally symmetric.

The empirical elliptical Mahalanobis depth reads

EMHD(y) =
1

1 + 1/D̂G(y)
, (2.75)

with
D̂G(y) = arg min

τ∈[0,1]
{ĉGτ ≥ Ĝ(y)T µ̂}. (2.76)

2.4 Applications

To confirm our findings, we perform a Monte Carlo simulation study. We generated N = 1500 indepen-
dent replications of four independent samples (with sample size n = 200) of standardised K(µ, κ,A)-
distributed random vectors

Yl,i, l = 1, 2, 3, 4, i = 1, . . . , n,

with κ = 5, β = 2 (Y1,i), κ = 7, β = 3 (Y2,i), κ = 10, β = 4 (Y3,i), κ = 12, β = 5 (Y4,i), respectively.
We denote by Yl,· all Yl,i, i = 1, . . . , n for a fixed l. Furthermore, we denote by yl,i the observation
of Yl,i. Using (2.51), the Mahalanobis-transformed yl,i are denoted by xl,i. Furthermore, we denote by
Φyl,· the longitudes of yl,· and by Φxl,· the longitudes of xl,·.

Figure 2.5 shows histograms of Φyl,· and Φxl,· , l = 1, 2, 3, 4, indicating that the transformation leads
to uniformly distributed longitudes. This supports that Mahalanobis-transformed Yl,i are rotationally
symmetric about µ = (0, 0, 1)T . To confirm this visual impression, we test the hypothesis of uniform
longitudes. We use Watson’s test [54, p. 156] implemented in the R-package Directional [53]. Wat-
son’s test applied on ϕyi gave p-values less than 0.004 for all designs l = 1, 2, 3, 4. The p-values for
the Mahalanobis-transformed angles ϕxi were 0.7086 (l = 1), 0.5132 (l = 2), 0.3436 (l = 3), 0.5268
(l = 4) which supports an assumption of uniform longitudes.

2.4.1 Quantiles for directional data

Directional quantiles extend single value statistics measuring the concentration of unimodal directional
distributions like the mean resultant length R :=

√
E(X)TE(X) [34]. For directional data from F ∈

Rµ, directional quantiles cτ were introduced and investigated in Ley et al. [11]. For distributions with
elliptical contours, we introduced minor cEτ in (2.69) and major cEτ in (2.70) which contain the main
information about the concentration and shape of the distribution around µ. Furthermore, minor cEτ and
major cEτ can be used as a tool to measure the deviation from rotational symmetry around µ, where a
large difference between minor cEτ and major cEτ indicates a strong deviation from rotational symmetry
and a small difference indicates rotational symmetry about µ. For illustration, we provide in Figure 2.6
and Table 2.1 empirical quartiles ĉτ , minor ĉEτ and major ĉEτ of y4,i, i = 1, . . . , n. It becomes clear that
minor cEτ and major cEτ provide more insight into the concentration and shape of the distribution than
cτ .
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(a) ΦY1,· (b) ΦX1,· (c) ΦY2,· (d) ΦX2,·

(e) ΦY3,· (f) ΦX3,· (g) ΦY4,· (h) ΦX4,·

Figure 2.5: Histograms of the longitudes ΦYl,· and ΦXl,· , l = 1, 2, 3, 4. The red line corresponds to the
density of Unif(S1).

τ 0.25 0.5 0.75
ĉτ 0.8110 0.9090 0.9660

minor ĉEτ 0.9370 0.9677 0.9870
major ĉEτ 0.6847 0.8347 0.9245

Table 2.1: The empirical quartiles minor ĉEτ ,major ĉEτ and ĉτ of y4,i, i = 1, . . . , n, illustrated in Figure
2.6.

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 0.75

Figure 2.6: Realisations y4,i, i = 1, . . . , n, are given as points on S2 with empirical τ -depth contours,
τ = 0.25, 0.5, 0.75. The blue circle corresponds to the empirical τ -depth contour Cĉτµ. The green
ellipse corresponds to the empirical τ -depth contour CE

ĉGτ ,µ
. The values minor ĉEτ ,major ĉEτ and ĉτ are

summarised in Table 2.1. The Z-direction points out of the page.
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(a) Ccτ ,µ (b) CE
cGτ ,µ

Figure 2.7: Realisations y4,i, i = 1, . . . , n, are given as points on S2. The blue circle corresponds to
Cĉτ ,µ (left) and the green ellipse corresponds to CE

ĉGτ ,µ
with τ = 0.25 of y4,i, i = 1, . . . , n. Trimmed

points are purple. The Z-direction points out of the page.

2.4.2 Trimming of directional data

The angular Mahalanobis depth AMHDF is canonical for trimming of directional data from F ∈ Rµ.
The trimming corresponds to deleting the points on Sd−1 below the τ -depth contour Ccτ ,µ given in
(1.26) with τ ∈ [0, 1]. If the underlying distribution has elliptical contours trimming results into circular
contours at some τ when using AMHDF . Here, the elliptical Mahalanobis depth EMHDF is the
obvious choice. The trimming deletes points below CE

cGτ ,µ
and preserves the elliptical shape of the

contours. See Figure 2.7 for an illustration.

2.4.3 Empirical illustration: Directional data of short steel fibres in ultra-high perfor-
mance fibre-reinforced concrete

Ultra-high performance fibre-reinforced concrete (UHPFRC) is a relatively new material in civil engi-
neering. If cracks appear in the concrete due to loading, crossing fibres counteract the crack propagation.
Note that straight fibres are without a directional sense. A fibre has an orientation represented as two
opposite points on the unit sphere. However, in the following, we restrict ourselves to the upper hemi-
sphere of S2 to mimic fibre directions. We analyse a data set from [48] which consists of n = 598
measurements of fibre directions. The n fibres crossed a crack in a bended UHPFRC-specimen. The
tension axis corresponds to the Z-axis used in the analysis. The fibre directions are denoted by yi and
the Mahalanobis-transformed fibre directions are denoted by xi, i = 1, . . . , n. Furthermore, we denote
by ϕyi the longitudes of yi and ϕxi the longitudes of xi.

2.4.3.1 Visual inspection, rotational symmetry and quartiles

First, we start by visually inspecting the fibre directions. Figure 2.8 shows a kernel density estimation of
the original (Figure 2.8a) and Mahalanobis-transformed (Figure 2.8b) fibre directions. The distribution
of the yi is uni-modal with empirical Fisher spherical median µ̂ ≈ (0, 0, 1)T . We used mediandir()
from the R-package Directional [53] for calculating the empirical Fisher spherical median [33] given
in (1.22).
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(a) Original fibre directions yi (b) Transformed fibre directions xi

(c) ϕyi
(d) ϕxi

Figure 2.8: Fibre directions yi in UHPFRC before (a) and after (b) Mahalanobis transformation. The
Z-direction points out of the page. Histograms of the longitudes ϕyi (c) and ϕxi (d). The red line
corresponds to the density of Unif(S1).
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(a) τ = 0.25 (b) τ = 0.5 (c) τ = 0.75

Figure 2.9: The empirical projection quartiles of the fibre directions yi. The blue circle corresponds
to the empirical τ -depth contour Cĉτµ. The green ellipse corresponds to the empirical τ -depth contour
CE
ĉGτ ,µ

. The values minor ĉEτ ,major ĉEτ and ĉτ are summarised in Table 2.2. The Z-direction points out
of the page.

Figures 2.8c and 2.8d indicate that the Mahalanobis-transformed fibre directions have uniformly dis-
tributed longitudes. Despite this visual impression, we want to test the hypothesis of uniform longitudes.
We use Watson’s test [54, p. 156] implemented in the R-package Directional [53]. Watson’s test ap-
plied on ϕyi gave a p-value of less than 10−4 such that the null hypothesis is always rejected at any
meaningful nominal level. Applying Watson’s test on ϕxi gave a p-value of 0.2660. Thus, the trans-
formed fibre directions could be compatible with the assumption of rotational symmetry about µ̂.

In Figure 2.9, we illustrate the empirical τ -depth contours Cĉτµ given in (1.26) and CE
ĉGτ ,µ

given in

(2.68) for τ = 0.25, 0.5, 0.75. The values minor ĉEτ ,major ĉEτ and ĉτ are summarised in Table 2.2. It
holds that major ĉEτ ≲ ĉEτ ≲ minor ĉEτ for all τ = 0.25, 0.5, 0.75. Thus, the shape of the underlying
density seems to be slightly better fitted by a distribution which is elliptically symmetric than rotationally
symmetric about µ̂.

τ 0.25 0.5 0.75
ĉτ 0.8489 0.9349 0.9729

minor ĉEτ 0.8785 0.9507 0.9808
major ĉEτ 0.7986 0.9128 0.9629

Table 2.2: The empirical projection quartiles minor ĉEτ ,major ĉEτ and ĉτ of the fibre directions yi illus-
trated in Figure 2.9.

2.4.3.2 Goodness-of-fit test and trimming

We investigate, whether we can fit a specific rotationally symmetric directional distribution, more pre-
cisely a von Mises-Fisher distribution F0 = M3(µ, κ), to the transformed data xi following a unknown
distribution F . First, we estimate κ by the MLE κ̂ = 6.97 using the function vmf.mle() implemented
in the R-package Directional. We fix µ = (0, 0, 1)T and κ = 6, 7, 8 and perform the goodness-
of-fit test given Appendix B based on the projection quartiles (ĉ0.25, ĉ0.5, ĉ0.75). The null hypothesis
H0 : F = F0 against H1 : F ̸= F0 is always rejected at any meaningful nominal asymptotic level α
for all κ = 6, 7, 8. The resulting p-values are less than 10−4. Denote by (Θ,Φ) the spherical coordi-
nates of X and by (θi, ϕi) the spherical coordinates of xi. A closer investigation of the co-latitude angle
θi revealed that 1 − cos (θi) has a heavy tail (see Figure 2.10a). Due to Remark 2.2.2, we know that
1−cos (Θ) ∼ Exp(κ) under H0. Trimming the directions xi below the τ -depth contour Ccτ ,µ, τ = 0.15,
removes the heavy tail as Figure 2.10b shows. We think that the strong directional deviation from the
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(a) Heavy tailed 1− cos (θi) (b) Truncated 1− cos (θi) at approx. 0.5

Figure 2.10: Histograms of 1−cos (θi), i = 1, . . . , n, before (a) and after (b) truncation due to trimming.
The solid line corresponds to the theoretical density of Exp(κ), κ = 7.

tensile axis of almost τ = 15-percent of the fibres favoured the cracking at this position. A possible
modelling approach here would be a mixture: τ · 100-percent of fibre directions extremely deviate from
the tensile axis and (1 − τ) · 100-percent directions are such that 1 − cos(Θ) ∼ Exp(κ). We focus on
the (1 − τ) · 100-percent directions with 1 − cos(Θ) ∼ Exp(κ). Let xtrimi be the trimmed directions.
Again, we performed the goodness-of-fit test with F0 = M3(µ, κ) based on the projection quartiles
(ĉ0.25, ĉ0.5, ĉ0.75) of the trimmed set xtrimi . We chose µ = (0, 0, 1)T and κ = 8, 9, 10 because we expect
a higher concentration parameter needed due to trimming. The asymptotic p-values are 0.0130 (κ = 8),
0.2854 (κ = 9) and 0.1288 (κ = 10). Thus, κ = 9 provides the best fit to the trimmed data.

2.5 Conclusion

We extended the concept of quantiles and depth for directional data from Ley et. al. [11]. Their concept
provides useful geometric properties of the depth contours (such as convexity and rotational equivari-
ance) and a Bahadur-type representation of the quantiles. However, a disadvantage is that rotationally
symmetric depth contours are always produced, even if the underlying distribution is not rotationally
symmetric. Our extension solves this lack of flexibility for distributions with elliptical depth contours.
The main idea was to transform the elliptical contours in the tangent space to rotationally symmetric
contours, such that we are in the canonical case of Ley et. [11]. In view of similarities with the classical
Mahalanobis depth, our depth was called elliptical Mahalanobis depth (EMHDF ). The usefulness of
our results was confirmed by a Monte Carlo simulation study. Furthermore, we applied our quantiles
and depth to analyse fibre directions in fibre-reinforced concrete.
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Part II

Statistical analysis, stochastic modelling
and prediction of the tensile behaviour of
ultra-high performance fibre-reinforced

concrete (UHPFRC)
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Chapter 3

Introduction

Ultra-high performance concretes (UHPCs) are new types of cementitious materials combining a com-
pressive strength of more than 150 N/mm2 with a high bulk density and a low porosity. The latter are
explained by the packing density and the low water content with a water-binder ratio lower than 0.25.
Maximum grain sizes in UHPC are mostly limited to 0.6 to 1 mm. However, experiments with maximal
grain sizes up to 8 or 16 mm have also been performed [55]. In practice, the optimisation of the packing
density of the cementitious paste is crucial. The optimum concrete can be produced by the combination
of the optimum paste with the optimum aggregates for different maximum grain sizes [55, 56].

Many researchers [55, 57, 58, 59, 60] have shown that the addition of steel fibres to the UHPC is
indispensable to increase the ductility of the material. As standard, micro wire fibres are used in fibre-
reinforced UHPC (UHPFRC). The mechanical behaviour of the UHPFRC under different loading cases
critically depends on the spatial arrangement of the fibres. For an optimal performance, fibres should be
aligned along the tension axis [61].

For analysing the influence of production parameters on the resulting spatial distribution and orien-
tation of the steel fibres (fibre geometry), the fibre system has to be observed and characterised. This
is possible by using photo-optical, magnetic or micro-computed tomography (µCT) methods. The most
accurate characterisation is obtained by quantitative analysis of µCT images which allow for a recon-
struction of the whole fibre system in 3D [62, 63].

UHPCs are typically produced with a very flowable consistency. The continuous development of
PCE-plasticisers allows for a control of the viscosity of the mixture such that concrete with a wide range
of consistencies can be produced. Moreover, rheological adjustments of the binder paste have been
applied to optimise the deaeration behaviour of the mixture [64].

Besides optimisation of the packing density, the rheological properties of the UHPFRC yield an im-
portant parameter that can be varied in concrete production. The fibre geometry is significantly influ-
enced by the rheological properties of the mixture. Fibre orientation in a preferred direction can usually
only be achieved by a very fluid consistency, which, however, enhances the tendency of the fibres to sed-
iment. A homogeneous spatial distribution over the component height may then no longer be ensured
[60]. Wang et al. (2017) [65] studied the dependence of the fibre distribution on the concrete rheol-
ogy which was modified by varying the water-binder ratio and the amount of superplasticiser. Fibre
systems were analysed by using 2D images of sections through the samples. It turned out that moder-
ate rheology parameters yield the most homogeneous fibre systems. Stähli et al. (2008) [66] present a
study analysing the fibre systems in three different concrete mixtures. Concrete samples were imaged
by computed tomography. The analysis, however, was restricted to sectional images.

Various further production parameters may also influence the fibre geometry. Vandewalle et al. (2008)
[67] investigated the influence of the flow distance, the type of concrete, and the fibre length. The latter
was shown to have a negligible influence on the fibre alignment. In the work by Ferrara et al. (2011)
[68], 30 mm thin concrete slabs were produced using different casting directions. Their results indicate
that the casting process is an additional factor influencing the resulting fibre geometry and, hence, the
bending performance. As in Wang et al. (2017) [65] the fibre orientations were determined in 2D cross
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sections of the specimens.
In Section 6, we investigate the influence of production parameters on the fibre geometry and the

elastic flexural strength of UHPFRC. For this purpose, a large number of prismatic UHPFRC specimens
were produced by varying the diameter and volume fraction of the steel fibres, the consistency of the
mixture and the casting point. Subsequently, the specimens were imaged by µCT to characterise the
resulting fibre geometries. Finally, correlations between production parameters, the fibre geometry, and
the load-bearing behaviour observed in four-point bending tests were derived. The results are published
in [48].

If a production parameter configuration is fixed, the influence of specimen size on the fibre geometry
and the mechanical properties are of interest. In particular, whether it is possible to conclude the fibre
geometry and mechanical behaviour from small specimens to larger specimens. Typical specimen sizes
used for compression tests are cubes with an edge length ranging from 40 to 150 mm or cylinders with a
diameter ranging from 50 to 100 mm and a length between 150 and 300 mm. For bending tests, prisms
in the size range 40 x 40 x 160 mm3 to 100 x 100 x 400 mm3 are common while dog bone shapes are
preferred for tensile tests. In most studies, specimen size and shape were constant. As a consequence,
the influence of these parameters, henceforth termed size effect, on the mechanical concrete behaviour
is less well understood [69, 70, 71, 72].

Experimental results investigating the effect of specimen size in compression or bending tests are
reported in [70, 71, 72, 73, 74]. In these studies, a decrease of flexural strength for increasing sample
size is reported. Attempts to explain this finding include both a statistical and a deterministic approach
[71, 73]. The statistical approach according to Weibull’s theory [75] basically states that larger speci-
mens are more likely to contain severe flaws or defects that reduce the strength of the specimen. The
deterministic effect is based on the fact that deformation is concentrated in a localisation band whose
size depends on the maximum aggregate size in concrete. In small specimens, the size of this zone is
significant compared to the specimen size while it is negligible in reasonably large specimens. This ef-
fect is considered in Bažant’s theory which is based on fracture mechanics [76, 77]. An additional effect
that is still poorly acknowledged is that a change of specimen size may also result in local variations
in the fibre geometry. In particular, the degree of edge effects due to the interaction of the fibres with
the edges of the formwork or sedimentation of fibres may differ when producing specimens of different
size.

A first publication investigating this effect is [74]. The authors study the size effect on the flexural
performance of UHPFRC by using three different specimen sizes. Distribution and orientation of fibres
in the specimens were investigated by image analysis of two-dimensional cross-sections at the crack sur-
faces. The investigation revealed that the flexural performance noticeably decreases with an increase in
the specimen size resulting from an inhomogeneous spatial fibre distribution and a poor fibre alignment
along the tension axis. For specimens of different size but with comparable fibre distribution properties,
an insignificant size effect on the flexural strength was observed for UHPC with 2 % steel fibre volume
fraction.

In Section 7, we aim at a characterisation of size effects in the local fibre geometry in UHPFRC
specimens in a fully three-dimensional manner. To this end, specimens of different size are produced
and µCT-scanned. We chose the production parameter combination resulting in the concrete with the
highest flexural strength based on the findings in Section 6. The fibre systems were characterised locally
and the results have been correlated to the tensile strength of the specimens. The results are published
in [78].

The statistical information about the fibre system and the mechanical behaviour of UHPFRC from
Section 6 and 7 can be used for further investigations like predicting the tensile behaviour. The force
contribution of individual fibres can be determined from single-fibre pull-out tests for selected fibre
orientations and embedded lengths [79, 80, 81, 82]. For modelling purposes, the force response of
single fibres is idealised as piecewise linear with cut points equal to the tensile force at the end of the
linear phase and the ultimate force [83, 84, 85].

Several authors [79, 80, 86, 87, 88, 89, 90, 91, 92] proposed prediction models for the tensile be-
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haviour where the pull-out curves for individual fibres form a basic ingredient. Wuest et al. [93] intro-
duced a meso-mechanical model depending on fibre characteristics and mechanical matrix properties.
Choi et al. [86] and Kang et al. [94] proposed analytical models to predict the tensile behaviour depend-
ing on the fibre orientation distribution. Habel et al. [89] and Yoo [91] considered bilinear models for
UHPFRC with short straight steel fibres. Kang et al. [92] and Yoo et al. [88] introduced trilinear models
for various UHPFRC types of varying volume fractions and fibre lengths under the common assumption
of an isotropic fibre orientation, see also [79, 86, 95, 96]. In practice, the fibre orientation distribution
deviates significantly from a uniform (isotropic) distribution [48]. This should be taken into account for
formulating more realistic models.

For the prediction of tensile behaviour, characteristics of fibres intersecting the crack plane are re-
quired. Therefore, 2D images of cross sections of concrete specimens are frequently studied. However,
the fibre orientation can only be roughly determined from such sections [65, 66, 96], and the measure-
ment of the embedded length is not possible at all [86]. A more accurate characterisation is obtained by
quantitative analysis of µCT images which allow for a reconstruction of the whole fibre system in 3D
[62, 63, 97].

In Section 8, we present a tensile prediction model for UHPFRC-specimens based on a stochastic
model for the 3D fibre system and an extensive single-fibre pull-out study. Input parameters for the fibre
model are the distribution of fibre orientations, the fibre volume fraction, and the dimensions (length,
diameter) of the fibres. The fibre orientation distribution is modelled by a one-parametric distribution
family whose parameter β controls the fibre anisotropy, i.e., the scatter of orientations about the preferred
direction. The parameter can be estimated either from a sample of fibres observed in a 3D specimen (3D
case) or from fibres crossing a planar section of the specimen (2D case).

We fitted the fibre model to a reconstructed 3D fibre system of a µCT-scanned UHPFRC-specimen.
This way, embedded length and orientation of the fibres intersecting the crack observed in a mechanical
test of the specimen could be determined. A model for the single fibre contributions to the tensile be-
haviour is obtained by fitting piecewise linear functions to the force-slip curves observed in single-fibre
pull-out tests. Following [95, 98], the predicted tensile curve is the sum of all single-fibre pull-out force
contributions of crack-crossing fibres. In practice, the tensile behaviour of individually embedded fibres
(as used in the pull-out tests) may show deviations from the behaviour of fibres in a larger UHPFRC
sample [96]. To take this effect into account, scaling and shifting parameters are introduced which allow
for a calibration of the prediction model to stress-strain curves recorded in experimental tensile tests.
Randomising some of the model components yields more realistic curve shapes than a deterministic
model.
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Chapter 4

Experimental program

4.1 Production of the UHPFRC-specimens

UHPC mixtures based on the M3Q-mixture with a maximum grain size of 1 mm were used. The mixture
mass fractions for mixture M00 are provided in Table 4.1. To vary the rheology of the concrete, also
specimens with an increased amount of PCE-plasticiser were considered. In the mixtures M02 and M04,
the PCE content was increased by 10 %, resulting in 30.25 g/l, and 20 %, resulting in 33 g/l, respectively,
compared to M00.

An Eirich-Intensiv Vacuum mixer of 5 litre volume capacity was used. Dry components were first
mixed for approximately 2 minutes with a rotation velocity of 250 r/min. After that, both water and PCE
were added after increasing the velocity to 500 r/min. Mixing was continued for 2 minutes, followed by
a break of 2 minutes to scrape off dry particles. Finally, the mixture was mixed at a low velocity of 100
r/min for 7 minutes for deaeration. During the deaeration phase, straight brass coated wire steel fibres
were added to the mixture through the shaft on top of the mixer. The fibre diameters were either df =
0.2 mm (denoted by 02) or df = 0.3 mm (denoted by 03), the fibre length was lf = 12.5 mm (lf/df =
12.5/0.2 [mm/mm] and 12.5/0.3 [mm/mm]), and the fibre volume fraction was chosen as either VV =
1% (denoted by F1) or VV = 2% (denoted by F2). The fibre material has an ultimate tensile strength of
2.800 N/mm2 and an elasticity modulus of 200 GPa.

Spread flow, bulk density and air void content of each configuration were measured for the fresh con-
crete directly after mixing. The spread flow was determined by using a Hagermann cone. As illustrated
in Figure 4.1a, the spread flow increases when increasing the PCE-amount. The spread flow of the
mixtures with 03-fibres was always greater than the mixtures with 02-fibres when fixing the remaining
parameters. This can be explained by the increased specific fibre surface area in the systems with thinner
fibres. The surface will be covered with a water film during the mixing procedure. The water is absorbed
from the pore solution resulting in a lower spread flow.

The air void content (Figure 4.1b) and the bulk density (Figure 4.1c) were measured by using a 1
litre bowl and pressure gauge method. The minimal air void content is observed for F1. Decreasing
the viscosity of the concrete reduces the air void content. The mixture F1-03 shows an exceptional
behaviour.

Table 4.1: Constituents of the UHPC-mixture M00

Material Amount [g/l]
Cement CEM I 52.5 R SR3- NA (Sulfo 5R) 825
Quarz Sand 0.125/0.5 Haltern 975
Quarz Flour-MILLISIL-W12 200
Silica fume: Sika Silicoll P uncompacted 175
Water 179
PCE-plasticiser - Sika Viscocrete 2810 27.5
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Table 4.2: Overview and notation of specimens produced to study the influence of production parameters
on the fibre geometry and the elastic flexural strength of UHPFRC. The specimens were bended as
described in Section 4.3. The specimens were of size 40 × 40 × 160 mm3.

fibre
content

fibre dimension casting
method

consistency

volume
fraction [%]

length lf
[mm]

diameter df
[mm]

s=side,
m=middle

M00 100%
PCE

M02 110%
PCE

M04 120%
PCE

1 12.5 0.2 s M00F1s02 M02F1s02 M04F1s02
1 12.5 0.2 m M00F1m02 M02F1m02 M04F1m02
2 12.5 0.2 s M00F2s02 M02F2s02 M04F1s02
2 12.5 0.2 m M00F2m02 M02F2m02 M04F1m02
1 12.5 0.3 s M00F1s03 M02F1s03 M04F1s03
1 12.5 0.3 m M00F1m03 M02F1m03 M04F1m03
2 12.5 0.3 s M00F2s03 M02F2s03 M04F1s03
2 12.5 0.3 m M00F2m03 M02F2m03 M04F1m03

Table 4.3: Bending and uniaxial tensile strength and compression strength of the mixtures without fibre-
reinforcement

Mixture / Consistency M00 M02 M04
Bending tensile strength [MPa] 11.58 13.77 15.46
Compression strength [MPa] 157.5 150.2 150.7
Strain at uniaxial tensile strength (ϵr) [mm/mm] 0.00087
Uniaxial tensile strength [MPa] 6.4 MPa

The bulk density slightly increases when reducing the viscosity of concrete without fibres. In mixtures
with fibres, bulk densities are nearly independent of the viscosity (with the exception of mixture F1-03).

For every configuration, six specimens of size 40 × 40 × 160 mm3 were produced, three cast from
the side (denoted by s) and three from the middle (denoted by m) of the formwork, see Table 4.2 for a
summary. After production, the specimens were cured in a climate chamber for 28 days. Additionally,
control specimens without fibre-reinforcement were produced and tested to determine the mechanical
properties of the three mixtures. Tensile strengths and compression strengths are given in Table 4.3. The
modulus of elasticity is about 50 GPa for all three mixtures.

Besides the 24 configurations described in Table 4.2, we produced M02F2s02 production equivalent
specimens of five different sizes, see Table 4.4 for a summary. To ensure the uniformity of the concrete
flow over the different widths of the specimens, a chute with an adjustable casting width (Figure 4.2)
was designed and produced at the lab of the Department of Concrete Structures and Structural Design,
University of Kaiserslautern, Germany. The chute enables a variation of the casting width from 4 up to
15 cm with nearly similar flow velocity.

Table 4.4: Overview and notation of specimens produced to study the influence of specimen size on the
fibre geometry and tensile strength of UHPFRC. The specimens are production equivalent to M02F2s02
and were tensioned as described in Section 4.4

specimen specimen dimension
width [mm] height [mm] length [mm]

4x4x16 40 40 160
8x4x16 80 40 160
4x4x32 40 40 320
4x8x32 40 80 320
8x8x32 80 80 320
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(a) Spread flow

(b) Air void content

(c) Bulk density

Figure 4.1: Spread flow, air void content and Bulk density of the fresh UHPFRC mixture of each con-
figuration.
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Figure 4.2: Production of the specimens using a chute with adjustable casting width.

Figure 4.3: The sawed specimens with the notation of the subspecimens according to position: O:
original specimen size, R: right, L: left, F: front, B: back, T: top and B: bottom. Arrows indicate the
casting direction.
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Figure 4.4: 3D coordinate system and fibre system reconstruction of a subvolume of specimen 4x4x16.
The visualised volume corresponds to 100 × 441 × 1766 pixels.

Since the maximal specimen size for computed tomography imaging is 40 × 40 × 160 mm3, the
larger specimens were sawn into subvolumes of this size. Water jet technology with a beam width of
approximately 1 mm was used to cut the specimens. This method causes nearly no microcracks in the
specimens compared to the conventional sawing method. Figure 4.3 shows the specimens after cutting.

4.2 Micro-computed tomography imaging

The specimens were scanned by micro-computed tomography (µCT) at the Fraunhofer Institut für
Techno- und Wirtschaftsmathematik (ITWM) in Kaiserslautern, Germany. To reduce grey value varia-
tions in the images, we placed the prismatic specimens in a cylindrical UHPC shell during the scanning
process. Table 4.5 summarises the CT specifications and imaging parameters. A specimen of size 40 ×
40 × 160 mm3 corresponds to a reconstructed image of 441 × 441 × 1766 pixels. Figure 4.4 shows a
visualisation of one specimen together with the coordinate system used for the analysis: depth, height,
and length of the specimen correspond to the X, Y and Z coordinate axis, respectively. The plane Y = 0
mm represents the bottom of the sample. The casting point is located at Z = 0 mm, X = 20 mm (40 mm)
for depth 40 mm (80 mm), and Y = 40 mm or 80 mm corresponding to the top of the specimens. The
flow direction of the UHPFRC was along the Z-coordinate direction.

Table 4.5: CT specifications and imaging parameters

CT tube Feinfocus FXE 225.51
Maximum acceleration 225 kV
Maximum power 20 W
Detector Perkin Elmer XRD 1621
Detector size 2048 × 2048 pixel
Tube voltage 190 kV
Target electricity 65 µA
Applied power 12 W
No. of projections 800
Voxel edge length 90.6 µm

4.3 Bending tests

The bending behaviour of specimens given in Table 4.2 was investigated by four point bending tests
on unnotched specimens as shown in Figure 4.5. For testing, specimens were rotated by 90◦ about
the Z-axis such that the concrete surface pointed to the front. The bending tests were carried out in a
displacement-controlled manner. The load rate was chosen very low at 0.1 mm/min to be able to follow
the crack formation. The displacement in the midspan was measured by using an extensometer. The test

75



Figure 4.5: Setup of the four-point bending test (1 = the specimen, 2 = extensometer on both sides to
measure the deflection in the midspan, 3 = force gauge, 4 = load cell)

ended as soon as a deflection of 5 mm in the midspan was reached.
For further comparison of the specimens, the elastic flexural load Fel was considered. It corresponds

to the force value at which the curve enters the non-linear phase. From Fel, the elastic flexural strength
fel can be computed by

fel =
3Fel

a2
(4.1)

where a = 4 cm is the specimens‘ cross section edge length.

4.4 Tensile tests

The specimens given in Table 4.4 had to be cut for the µCT imaging. Thus, testing the tensile strength
of the complete specimens is no longer possible. However, uniaxial tensile tests were performed on the
17 subspecimens to determine the (local) tensile strength.

A challenge was to develop a test setup, which enables to apply an uniaxial tension on specimens of
prism form, the main point being the fixation of the specimens at the ends. The test set up shown in
Figure 4.6 provided a reasonable result regarding fixing rigidity and convenient handing. The specimen
was placed in the gripping jaws with a contact area of 40 × 60 mm2 and fixed by six bolts, which were
pulled by a moment of 110 Nm. This pull moment was determined as the maximum so that no cracks
occur in the clamping area. After fixing both ends, the set was fixed in the pull machine by two nuts. In
this set up, a field of length 40 mm located in the middle of the specimens was tensioned.

The tests were carried out in a displacement-controlled manner. A low load rate of 0.1 mm/min was
chosen. The lengthening of the 40 mm field was measured by using two extensometers. The test was
stopped as soon as the lengthening of the field reached 2 mm. During the uniaxial tensile tests, load-
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lengthening curves were recorded. Since the subspecimens have a small difference in the cross-section,
the uniaxial stress-strain curves were determined to compare the results consistently.

It is known that eccentricity occurs in the internal resisting forces due to non-uniform distribution of
fibres in the cross-section. However, the stress distribution over the cross-section was assumed to remain
uniform during the initial cracking phase and after crack localisation. Thus, the uniaxial equivalent stress
reads

σ =
F

A
, (4.2)

where F is the force value and A is the area of the cross-section. The strain reads

ϵ =
∆L

L
, (4.3)

where the measured lengthening ∆L is divided by the tensioned length L = 40 mm.
Two strength values were computed for every specimen: the elastic post-crack tensile strength (σexp

el ),
which corresponds to the force at the end of the linear phase in the curve (limit of proportionality) in
sense of [99], and the ultimate post-crack tensile strength (σexp

ult ) which corresponds to the maximum
force reached.

Figure 4.6: Setup of the uniaxial tensile test: rotatable hinge (1), specimen (2), extensometer on both
sides to measure the elongation (3), griping jaw (4), and load cell (5).
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Chapter 5

Image analysis

5.1 Image processing

For image processing, we used the software tools MAVI (Modular Algorithms for Volume Images) [100]
and ToolIP (Tool for Image Processing) [101]. The CT images contain illumination gradients from the
edges of the specimen to the centre [102]. Hence, an illumination correction was necessary to reconstruct
the fibre system correctly, see Figure 5.1 for an illustration.

The following chain of image processing steps was applied:

1. Filtering of the initial image by a mean filter [103]. The size of the cubic filter mask is chosen
such that the largest object (typically an air pore) in the initial image is covered.

2. Subtraction of the filtered image from the initial image

3. Division of the image into cylinders whose bases form concentric rings/discs in the XY-plane, see
Figure 5.2.

4. Segmentation of the fibres in the image parts by using Otsu’s method[104].

5. Merging of the image parts.

The choice of subdivision was validated by checking whether the segmented fibres have a constant
diameter throughout the image. This is done by comparing the values of local maxima of the Euclidean
distance transform [105]. The subdivision shown in Figure 5.2 was used for specimens given in Table
4.4. Figure 5.3 shows a sectional image of specimen 4x4x16 obtained by µCT and its binarisation.

5.2 Fibre content

We assessed the homogeneity of the fibre content along the coordinate directions. For this purpose,
we computed area fraction profiles (AFP) which represent the area fraction of the fibres in each slice
orthogonal to a coordinate direction. In macroscopically homogeneous microstructures, the expected
area fraction AA in a 2D slice is equal to the volume fraction VV of the complete specimen [106,
p. 414]. Spatial inhomogeneities such as layer structures or varying fibre density lead to significant
variations of the area fraction. The partial volume effect [107] in CT imaging and the low resolution of
the images (2-3 pixels per fibre diameter) led to deviations between the estimated fibre volume fraction
and the nominal value of 2%. To be able to compare the specimens with each other, the AFPs were
centred. That is, the volume fraction of the complete specimen was subtracted from the area fraction in
the slices. To compare the centred AFPs visually, the curves were smoothed by exponential smoothing
with the parameter α = 0.05 (R-function HoltWinters, R-packet statistics [108]), see Figure 5.4.
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(a) Sectional µCT image. (b) Binarisation without illumina-
tion removal.

(c) Binarisation with illumination
removal.

Figure 5.1: Sectional µCT image of specimen 4x4x16 (a). Binarisation without removal of the illumina-
tion gradients resulting in over-segmentation in the edge areas (b). Binarisation by using the procedure
detailed in the text (c).

Figure 5.2: From left to right: The initial image, the cylindrical subdivision of the image and the single
image parts after cropping.

(a) Sectional µCT image of 4x4x16.

(b) Binarisation.

Figure 5.3: Sectional µCT image of specimen 4x4x16 (a). Fibres are white, concrete matrix is grey, and
air pores are black. Binarisation of the fibre system (b).
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(a) Centred AFP.

(b) Dev.

Figure 5.4: Centred area fraction profile of specimen 4x4x16 before (black) and after (red) smoothing
(a). Deviation (Dev) of the fibre orientation from the Z-axis (in degrees) in each slice of specimen
4x4x16 along the Z-direction (b).
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5.3 Fibre orientation

The local orientation of the fibres in the concrete was estimated based on partial second derivatives [109,
110]. For this purpose, the initial image f is smoothed by applying an isotropic Gaussian convolution
filter with kernel gσ at scale σ to reduce noise in the grey values. The convolution is denoted by ⋆. For
the resulting image, the Hessian matrix

H(f) =

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

 (5.1)

is computed, where

fij =
∂2

∂i∂j
(f ⋆ gσ), i, j ∈ {x, y, z} (5.2)

are the second order derivatives of the smoothed image.
We follow the recommendation of Wirjadi et al. [110] and set σ equal to the fibre radius. For each

fibre pixel p, the eigenvector corresponding to the smallest eigenvalue of H(f) estimates the local fibre
orientation in p. The fibre orientations vi = ±(v

(x)
i , v

(y)
i , v

(z)
i ), i = 1, . . . , N , in a slice of the 3D image

are averaged by using the orientation matrix [34]
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i=1

vi ⊗ vi =
N∑
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 (5.3)

with ⊗ the outer product. The eigenvector of T with the largest eigenvalue represents the main fibre
orientation within the slice. A fibre orientation along the tension axis, here the Z-axis, is desirable.
Therefore, we compute the deviation of the main fibre orientation from the Z-axis (see Figure 5.4). As
for the AFP, we smoothed the curves by exponential smoothing.

The large deviations at the edges of the specimen can be explained by formwork effects. Hence, on
each side an edge area of 2 cm width (220 slices) is neglected in the statistical analysis.

82



Chapter 6

Influence of production parameters on the
fibre geometry and the elastic flexural
strength of UHPFRC

6.1 Results

6.1.1 Image analysis

Figure 6.1 shows a comparison of specimens with different consistencies (controlled by the amount of
PCE-plasticiser) while the other parameters (fibre volume fraction, fibre diameter and casting point) are
fixed. The M02-specimen shows the most homogeneous fibre system w.r.t. the AFP and the fibre orien-
tation. The very fluid consistency of M04 results in fluctuations in the spatial distribution and orientation
of the fibres. The volume rendering also clearly shows the sedimentation of the fibres. The more vis-
cous M00-specimen shows some inhomogeneities close to the casting point and a more homogeneous
structure in the second half of the specimen.

Figure 6.2 shows the centred AFPs along the Y-direction, i.e., from the bottom to the top of the
specimens. All specimens show sedimentation of the fibres which is most pronounced for the M04-
specimens. The M00- and M02-specimens often show a similar behaviour. The sedimentation is most
pronounced for the thicker, hence heavier, fibres (df = 0.3 mm). The casting method does not seem to
have any influence.

AFPs along the X-direction, i.e. from right to left, are shown in Figure 6.3. The specimens generally
show some wall effects close to the boundary of the formwork. Specimens with high volume fraction
(F2) and thin fibres (df = 0.2 mm) are most affected. Consistency and casting method do not seem to
contribute to the wall effect.

Finally, AFPs along the Z-direction are shown in Figure 6.4. The strongest variations are observed for
the M04-specimens. Casting from the middle leads to an almost symmetric AFP with an accumulation
of fibres in the centre of the specimens. M02-specimens cast from the side show less fluctuations except
for F2s02-specimens.

For studying the alignment of the fibres we plot the local deviations of the fibre orientation from the
Z-axis in Figure 6.5. The maximal deviation was approximately 45◦. Casting from the side results
in a more homogeneous fibre orientation distribution than casting from the middle. In the latter case,
the deviation of the fibres from the Z-axis is low just in a narrow region around the casting point and
increases in the flow directions towards the sides. This deviation seems to be stronger for viscous
mixtures with few, thin fibres. For more and/or thicker fibres this effect is reduced. The fibre orientation
of s03-specimens is highly affected by the consistency (independent of the volume fraction). Fluid
mixtures lead to more fluctuations. For 02-specimens, the correlation between fibre orientation and
consistency is not pronounced. The orientation of fibres in s02-specimens deviates least from the Z-axis
for all consistencies and fibre volume fractions.
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M00F1s03 M02F1s03 M04F1s03

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1: Volume rendering (a, b, c), centred AFP along the Z-direction (d, e, f), and deviation of the
fibre orientations from the Z-axis along the Z-direction (g, h, i) of specimens M00F1s03, M02F1s03 and
M04F1s03

To measure the variation in the spatial distribution and orientation of the fibres in a specimen, the sam-
ple standard deviation (SSD) of the centred AFPs and the orientation deviations in Z-direction (Figures
6.4 and 6.5) were calculated. The results are visualised in Figure 6.6. Again, M04-specimens are found
to be most heterogeneous. The SSDs are maximal in this group. Additionally, they show the highest
differences between the four sets of fibre parameters used. In total, fibre systems are more homogeneous
when casting from the side than when casting from the middle. With respect to the fibre orientation,
the s-specimens are clearly more aligned to the Z-axis than the m-specimens. Figure 6.7 showing the
SSDs along the Y-direction confirms the visual impression that the spatial fibre distribution and fibre
orientation of M04-specimens are inhomogeneous compared to M00- and M02-specimens for all fibre
volume fractions, fibre diameters, and casting methods considered.

In summary, M00- and M02-specimens cast from the side are most homogeneous w.r.t. fibre orienta-
tion and spatial distribution.

6.1.2 Bending tests

During the testing of the 72 specimens (three specimens for each of the 24 parameter combinations),
load-midspan deflection curves were recorded (see Figures 6.8 and 6.9). All specimens showed deflection-
hardening performance to different extent.

In the initial phase, the bending behaviour of the specimens is linear elastic. When the load exceeds
the matrix tensile strength, a first crack occurs in the weakest point of the matrix in the middle third of
the specimen. After crack initiation, the fibres crossing the crack get activated and avoid propagation of
the crack opening. The response curve remains in the linear elastic range and the tensile stress increases
at the bottom of the specimen. In the same manner, the specimen may develop three to four visible
cracks. Crack propagation occurs at different scales. The response behaviour of the specimen is still
elastic or elastoplastic but linear. This will be followed by non-linear behaviour, where many cracks
propagate simultaneously until reaching the maximum load. A mean strain constitutive law can be
assumed, because the complete cross sections are strained along the specimen, which concur with the
AFGC-Recommendation (2013) [99].

When reaching the maximum load, the crack which requires a minimum energy to develop break
down dominates the process. That is, crack propagation progresses only in the dominating crack and
the response behaviour is non-linear and plastic. Simultaneously, other cracks reduce in width causing
a stress relief on both sides of the dominating crack. Thus, a rigid body motion of the two parts of the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Centred AFPs along the Y-direction (from bottom to top)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: Centred AFP along the X-direction (from right side to left side)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: Centred AFP along to the Z-direction without edge area. The casting point is marked with a
vertical line and the flow direction is illustrated by arrows.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Deviation of the fibre orientations from the Z-axis along the Z-direction (without edge area).
The casting point is marked with a vertical line and the flow direction is illustrated by arrows.
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(a) (b)

Figure 6.6: SSD of the centred AFP (a) and the deviation of the fibre orientation from the Z-axis (b)
along the Z-direction. The mean value over all specimens with the same casting method is given as solid
horizontal line. Dashed lines describe mean values in subgroups with fixed casting point and plasticiser
content but varying fibre parameters.

(a) (b)

Figure 6.7: SSD of the centred AFP (a) and the deviation of the fibre orientation from the Z-axis (b)
along the Y-direction. Dashed lines describe mean values in subgroups with fixed casting point and
plasticiser content but varying fibre parameters.
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Figure 6.8: Load-midspan deflection curves for the specimens M00F1s03, M02F1s03 and M04F1s03

specimen is the dominant mechanism such that a crack width law can be assumed. This is in line with
Prudencio et al. (2006) [111] and the AFGC-Recommendation (2013) [99]. The residual width of the
other cracks depends on the deformation degree reached before, which could be elastic or elastoplastic.
Figure 6.8 shows the load-midspan deflection curves for different consistencies of F1-specimens. Max-
imal force values are observed for the M02-specimen which has the most homogeneous fibre system. In
contrast, the M04-specimen with strong sedimentation of fibres is least stable. Similar results have been
obtained for F2-specimens cast from the middle.

The load-deflection curves for all specimens are shown in Figure 6.9. Typically, the first crack occurs
at a deflection between 0.06 and 0.08 mm and the maximum linear stress is reached at a deflection
between 0.17 and 0.22 mm. In all cases, specimens with higher fibre volume fraction (F2, dark colours)
turn out to be more stable than those with only 1% volume fraction (F1, bright colours). For fixed volume
fraction, specimens with thin (hence, more) fibres yielded better bending performance than specimens
with thick fibres. M04-specimens clearly show a reduced mechanical stability while M00- and M02-
specimens are comparable. The variation between the curves for the three specimens with the same
parameters is small compared to the overall variability.

In general, the m-specimens show reduced elastic strengths compared to s-specimens. The differ-
ence between m- and s-specimens reduces when increasing the fibre volume fraction. For fixed fibre
volume fraction, the specimens with reduced fibre diameter, hence, containing more fibres, show a bet-
ter performance. Irrespectively of the casting method and the fibre parameters, the maximal elastic
flexural strength is obtained for the M02-specimens. The difference between M00-specimens and M02-
specimens is typically small. M04-specimens show the lowest strength which can be explained by the
inhomogeneities in the fibre system due to sedimentation.

6.1.3 Discussion

The casting process causes a turbulence in the vicinity of the casting point, which produces a heteroge-
neous fibre geometry in this region. The flux seems to get laminar a few centimetres (around 2-6 cm)
after the casting point. The spatial fibre distribution becomes homogeneous and the fibres align in flow

90



(a)

(b)

(c)

Figure 6.9: Flexural stress–deflection curves of all tested specimens grouped by consistencies M00 (a),
M02 (b) and M04 (c) 91



(a) (b)

Figure 6.10: Correlation between the studied parameters and elastic flexural strength. Dots are the means
of the elastic flexural strengths of the three specimens with equal parameters. The error bars represent
the 95% confidence interval of the mean

direction. The degree of alignment depends mainly on the consistency of the mixture.
Fibres in M00-specimens keep their orientation caused by turbulent flux in the vicinity of the casting

point because the viscosity of the matrix is high enough to prevent the realignment of the fibres by
their own weight. This realignment is possible with consistency M02 resulting in homogeneous fibre
systems even close to the casting point. In contrast, the very low viscosity of the M04-mixture leads
to fluctuations and sedimentation. The flexural strength observed during the bending test correlates
well with the observed homogeneity of the specimens. M02-specimens achieved the highest strength
followed by M00-specimens.

6.2 Conclusion

We investigated the influence of production parameters on the fibre geometry and, as a consequence, on
the flexural behaviour of UHPFRC. The fibre geometry in specimens with different production parame-
ters was investigated by means of micro-computed tomography. Subsequently, the flexural behaviour of
the specimens was investigated in four point bending tests. The following conclusions could be drawn:

• Casting from the side results in a more homogeneous fibre geometry than casting from the middle.
This results in a better mechanical performance.

• Increasing the fibre radius from df = 0.2 mm to df = 0.3 mm increases the inhomogeneity in the
fibre systems. In particular, sedimentation is more pronounced for thicker fibres.

• Fibre orientation stabilises after a certain distance from the casting point. This is consistent with
findings by Vandewalle et al. (2008) [67] and Ferrara et al. (2011) [68]. In our experiments, a
unidirectional alignment of the fibres with deviations of a few degrees from the flow direction can
be assumed approx. 2-6 cm after the casting point for not too fluid consistencies (M00 or M02).

• The most homogeneous fibre systems resulting in the highest flexural strength were obtained
using the M02 mixture with a spread flow (Hagermann cone) between 27 and 28 cm. Mixtures
with lower spread flow (25-27 cm) can deliver good results, too. If the spread flow exceeds 28 cm,
significant sedimentation of the fibres is observed which decreases the flexural strength. These
findings are in line with the results by Wang et al. (2017) [65] and Stähli et al. (2008) [66].

• A wall effect could be observed close to the boundary of the formwork (5 -10 mm). Wall effects
are stronger for increasing volume fraction and decreasing fibre diameter. Casting from the middle
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results in reduced wall effects compared to casting from the side. This is probably correlated with
the lower flow distance of the material.

To allow for an investigation of concrete elements (e.g. beams), models and methods from spatial
statistics could be used to predict the concrete geometry at a given position from a limited number of
samples. Numerical flow simulation provides an alternative approach for predicting the fibre geometry
of UHPFRC samples for given production parameters [112, 113]. Simulation based approaches can
reduce the effort of such investigations compared to the production, characterisation and testing of large
amounts of concrete samples. However, the simulations should be validated by experiments. The image
analysis tools presented (AFP, Dev) yield statistical information that can be compared to fibre parameters
observed in simulations.
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Chapter 7

Influence of specimen size on the fibre
geometry and tensile strength of UHPFRC

In the previous section, we investigated the influence of production parameters on fibre geometry and
correlated it with the bending behaviour of the specimens. It remains an open question to which extent
our findings can be generalised to larger specimens, see Herrmann et. al (2019) [114] for a discussion. To
investigate this question in the framework presented here, we produced M02F2s02 production equivalent
specimens of five different sizes. Due to the limited sample size that can be handled by µCT, specimens
have to be cut into smaller cuboids before scanning.

7.1 Results

Recall that the Z-axis of the coordinate system corresponds to the flow direction during casting and to
the tensile axis in the tensile tests.

Stress-strain curves are shown in Figure 7.1. In general, the tensile behaviour of all subspecimens
looks similar and the initial stiffness is almost identical. However, there are obvious differences in tensile
strength of the different subspecimens. In the following, each specimen will be discussed separately.

7.1.1 Specimen 4x4x16

This specimen is of the same size as the specimens investigated in Chapter 6. It mainly serves as a
baseline and to ensure reproducibility of the production and the analysis protocols. Indeed, the plots for
the AFP and the fibre orientation deviation shown in Figure 7.2 are similar for 4x4x16 and specimen
M02F2s02 used in Chapter 6. The stress strain curve shown in Figure 7.1a cannot be compared to
M02F2s02 since 4x4x16 was tensioned and M02F2s02 was bended.
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(a) (b)

(c) (d)

(e)

Figure 7.1: Stress-strain curves for all specimens.
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4x4x16

(a)

(b)

(c)

Figure 7.2: Specimen 4x4x16: Subvolume rendering (a), centred AFP (b), and deviation of the fibre
orientations from the Z-axis (c) along the Z-direction. The curves obtained for specimen M02F2s02 in
Chapter 6 are shown as dashed blue lines. The casting point is marked with a vertical line and the flow
direction is illustrated by an arrow.

7.1.2 Specimen 8x4x16

The stress strain curves of specimen 8x4x16 are shown in Figure 7.1b. Based on the production process,
similar results for the left and the right specimen are expected. The observation that the left specimen
is weaker than the right one can be explained by the presence of a large agglomeration of silica fume in
the left part of the specimen, see Figure 7.3.

Both specimen parts are slightly weaker than specimen 4x4x16 which may be explained by a larger
variability of the local fibre geometry. In particular, we observe slightly stronger fibre misalignment than
in specimen 4x4x16, see Figure 7.4. Additionally, fibre misalignment is observed in the bottom part of
the specimen, see Figure 7.5. Due to the increased specimen width, flow lines to the side are observed
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(a)

(b)

Figure 7.3: Silica agglomeration (dark grey) located in the upper left part of specimen 8x4x16. View
from the side (a). View from the top (b).

resulting in fibres pointing towards the outer edge of the samples in X-direction. The fibre content is
reduced in the left specimen part which may partially be explained by a displacement of the fibres to the
right due to the silica agglomeration (Figure 7.5c). It seems that this displacement also leads to the fibre
misalignment towards the right edge of the specimen (Figure 7.5d).

This could mean that the increasing fibre fraction at the bottom (Figure 7.5a) should not be interpreted
as fibre sedimentation. The consistency of the mixture is very stable and the fibre geometry shown
in Figure 7.3 does not indicate fibre sedimentation. In contrast, the fibre geometry looks integrated,
coherent and harmonious as expected for the given flow direction and casting point. The large deviation
of the fibres from the Z-direction in the bottom part is probably caused by the interaction between the
first concrete layers during the casting process, when the fibre concrete of the new layer flows over the
previous one. This also applies to all following specimens.

7.1.3 Specimen 4x4x32

The stress strain curves shown in Figure 7.1c show a similar tensile behaviour in the front and the back
part with the back being slightly stronger. The back part shows a lower fibre content than the front part,
but a better alignment of the fibres in the tensile direction, see Figure 7.6. Additionally, fibres are more
homogeneously distributed over the sample height in the back part, see Figure 7.7.

Both specimens show a reduced fibre density in the upper part. The effect is more pronounced in the
front part than in the back part. Orientations are very homogeneous over the complete height with no
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(a)

(b)

Figure 7.4: Specimen 8x4x16: Centred AFP along the Z-direction (a), and deviation of the fibre orienta-
tions from the Z-axis (b) along the Z-direction. The position of the silica fume agglomeration is shown
in dark grey. The casting point is marked with a vertical line and the flow direction is illustrated by an
arrow.
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(a) (b)

(c) (d)

Figure 7.5: Specimen 8x4x16: Centred AFP (a,c) and deviation of the fibre orientations from the Z-axis
(b,d) along Y-direction (a,b) and along the X-direction (c,d). The position of the silica agglomeration is
shown in dark grey.

significant differences between front and back part. The profiles in X-direction show a symmetric and
very homogeneous structure both regarding fibre content and fibre orientation, see Figure 7.7.

7.1.4 Specimen 4x8x32

According to the stress strain curves, see Figure 7.1d, the two lower subspecimens are more tensile
than the two upper ones. This observation can be explained by a reduced fibre density and poorer fibre
alignment in the top part compared to the bottom, see Figures 7.8 and 7.9. There is no significant
deviation between front and back parts. The fibre geometry is symmetric along its width.

7.1.5 Specimen 8x8x32

The stress strain curves for the eight subsamples of this specimen are shown in Figure 7.1e. In general,
there are no significant differences between subsamples on the left and their counterparts on the right.
In the remaining directions, the order from weakest to strongest is front top, back top, front bottom,
and back bottom. Hence, the subvolumes from the bottom are stronger than those from the top of the
specimen. This can be explained by the lower fibre density and larger deviation from Z-axis in the top
parts compared to the bottom, see Figures 7.10 and 7.11. Additionally, the back part is stronger than the
front. The reason for this is less obvious. The volume rendering in the side view shown in Figure 7.10
shows a wavelike pattern with strong orientational deviations in the front and in the upper back part. The
trends in the curves are similar to those obtained for the 4x8x32 specimen.

7.1.6 Comparison of specimens

The calculated elastic and ultimate tensile strengths of the subspecimens and the corresponding strains
are plotted in Figure 7.12. The elastic tensile strain ranges between 0.85 ‰ and 1.9 ‰ (mean value
approx.1.3 ‰) and the ultimate tensile strain ranges between 2.6 ‰ and 10.65 ‰ (mean value approx.
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4x4x32

(a)

(b)

(c)

Figure 7.6: Specimen 4x4x32: Subvolume rendering (a), centred AFP (b) and deviation of the fibre
orientations from the Z-axis (c) along the Z-direction. The casting point is marked with a vertical line
and the flow direction is illustrated by an arrow.
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(a) (b)

(c) (d)

Figure 7.7: Specimen 4x4x32: Centred AFP (a,c) and deviation of the fibre orientations from the Z-axis
(b,d) along Y-direction (a,b) and along the X-direction (c,d).
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4x8x32

(a)

(b)

(c)

Figure 7.8: Specimen 4x8x32: Subvolume rendering (a), centred AFP (b) and deviation of the fibre
orientations from the Z-axis (c) along the Z-direction. The casting point is marked with a vertical line
and the flow direction is illustrated by an arrow. The subvolume rendering shows less fibres in the top
front part of the specimen than in the bottom front part.
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(a) (b)

(c) (d)

Figure 7.9: Specimen 4x8x32: Centred AFP (a,c) and deviation of the fibre orientations from the Z-axis
(b,d) along Y-direction (a,b) and along the X-direction (c,d).

6.5 ‰). As mentioned, the results cannot be used to evaluate the size effect on the original specimens.
They rather illustrate the influence of the specimen size on the local strength due to local variations in
the fibre geometry. Figure 7.12 shows that the subspecimens in the top tend to have reduced elastic and
ultimate strength compared to those in the bottom. In the same way, subspecimens from the front show a
smaller strength than those from the back. The difference between the left and right subspecimens seems
to be negligible. Subspecimens of specimen 4x8x32 are stronger than the corresponding subspecimens
of the enlarged specimen 8x8x32. Subspecimens of the smaller specimens 4x4x16 and 4x4x32 show a
higher strength than those from the large specimens.

7.2 Conclusion

We investigated the influence of the specimen size on the fibre geometry in fine-grained UHPFRC
blended with 2 Vol.-% straight micro-fibres. Specimens were produced in five sizes and cut into subspec-
imens of equal size. The subspecimens were imaged by micro-computed tomography. The fibre system
was characterised slice-wise by computing the local fibre content (AFP) and fibre alignment (deviation
from the Z-axis). Correlations between the fibre geometry and the tensile strength of the subspecimens
were investigated. The general finding is that the fibre geometry changes locally when increasing the
specimen size. This change depends on the direction in which the sample is enlarged, i.e., increasing
the width has a different effect than increasing the length or depth. The following conclusions can be
drawn:

• Up to reflection, the fibre geometries in the left and the right subspecimen show the same be-
haviour. Hence, also the results of the tensile tests are similar for left and right subspecimens.
An exception was specimen 8x4x16 which contained an abnormally large silica fume agglomera-
tion. In absence of such anomalies, increasing the width of the specimen will most likely have a
negligible influence, if the casting is performed over the whole specimen width.

• Wavelike patterns induced by the flow lines close to the casting point are more pronounced in
higher and longer specimens. This resulted in a reduced tensile strength of the front subspecimens
in specimens 4x8x32 and 8x8x32.
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8x8x32

(a)

(b)

(c)

Figure 7.10: Specimen 8x8x32: Subvolume rendering (a), centred AFP (b) and deviation of the fibre
orientations from the Z-axis (c) along the Z-direction. The casting point is marked by a vertical line and
the flow direction is illustrated by an arrow.
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(a) (b)

(c) (d)

Figure 7.11: Specimen 8x8x32: Centred AFP (a,c) and deviation of the fibre orientations from the Z-
axis (b,d) along Y-direction (a,b) and along the X-direction (c,d).

(a) (b)

Figure 7.12: Correlations between elastic stress σexp
el (a) and ultimate stress σexp

ult (b) as well as the
corresponding strain values. Note that 4x4x16 belongs to the black square without content (see the sign
for (bottom-)front in the legend below).
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• For fixed cross-section size, increasing the specimen length gradually decreases the fibre content
along the Z-axis. However, the alignment to the Z-axis improves.

• Edge effects of different magnitude were observed close to the sides and the bottom in all speci-
mens.

• Local changes in the fibre geometry resulted in varying tensile strength of the subspecimens.
Subspecimens showed an increased tensile strength in the bottom and back parts and a decreased
tensile strength in the top and front parts. This is consistent with findings in [114, 115].

• Compared to the smallest specimen 4x4x16, subspecimens of the larger specimens showed a slight
reduction in the tensile strength.

In conclusion, changing the specimen size causes local changes in the fibre geometry which influ-
ences the tensile strength. Specimen height appears to be the most determining parameter followed by
specimen length. Specimen width seems to be less important. For further investigation of the size effect
on the flexural behaviour of UHPFRC, mechanical tests could be performed on a series of specimens of
different sizes. Such tests may also reveal to which extent the mechanical strength of a large specimen
can be inferred from information on the subspecimens.
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Chapter 8

Predicting the tensile behaviour of
UHPFRC from single fibre pull-out tests

The results from Chapter 6 and 7 gave us a deeper understanding of the influence of production param-
eters and specimen size on fibre geometry and mechanical properties. This knowledge can be used to
fit a stochastic geometry model to the observed microstructures, e.g. a system of cylinders of random
orientation and position, see Redenbach and Vecchio (2011) [116]. Such models allow for the genera-
tion of virtual concrete samples with a large range of geometric characteristics. From these, mechanical
properties of the concrete can be predicted.

8.1 Methods

8.1.1 Single fibre segmentation

For calculating the tensile force contribution of single 02-fibres in a loaded composite, the individual
02-fibres have to be separated in the segmentation. Due to the coarse image resolution, the space be-
tween touching fibres is not sufficiently resolved. Hence, labelling the connected components of the
fibre system leads to the formation of fibre clusters. For separating fibres in the clusters, a particle sepa-
ration based on the watershed transform was applied [117]. During this procedure, fibres were split into
segments which were merged manually to reconstruct the single fibres.

After CT scanning, a four point bending test (see Section 4.3) was performed on the sample M02F2s02.
During this test, the specimen developed an approximately planar crack parallel to the XY-plane in the
CT image. The location of this crack was identified in the CT scan. Due to the complexity of the single
fibre segmentation, the analysis was restricted to the vicinity of the crack plane such that orientation and
embedded length of fibres crossing the crack could be determined.

8.1.2 Modelling single-fibre pull-out curves

For performing single-fibre pull-out tests, individual fibres were embedded in a concrete slab. The same
M02 concrete mixture and 02-fibres as described in Section 4.1 were used. The length le of the fibre part
embedded in the concrete and the inclination angle θ of the fibres with respect to the pull-out direction
were varied. The embedded length le was chosen as one half, one third or one sixth of the fibre length,
i.e. le is lf/2 = 6.25 mm, lf/3 ≈ 4.17 mm or lf/6 ≈ 2.08 mm. The inclination angle θ was varied
from 0◦ to 80◦ in steps of 10◦. For testing, the free end of the fibre was clamped between two metal
jaws of the testing machine and pulled out while rigidly fixing the concrete slab. During the procedure,
force-slip curves reporting the force P applied and the slip s were recorded. At least six fibres were
tested for each combination (θ, le) resulting in more than 162 single-fibre pull-out curves.

Figure 8.1 shows the force-slip curves Pi(s, θ, le), i = 1, . . . , 6, of the six tested fibres with θ = 10◦

and le = lf/2. We denote by Ṗ (s, θ, le) the median curve which is the point-wise median of the six
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Figure 8.1: Median curve (red solid) of the single-fibre pull-out force curves (black dotted) with angle
θ = 10◦ and le = lf/2.

single-fibre pull-out curves for a fixed combination (θ, le), i.e.

Ṗ (s, θ, le) = med (P1(s, θ, le), . . . , P6(s, θ, le)) , s ∈ [0, le]. (8.1)

In the next step, we fit a piecewise linear model to the observed force-slip curves. In the literature, sev-
eral approaches (bilinear, trilinear, exponentially decreasing) for modelling single-fibre pull-out curves
have been suggested, see [96]. Based on the results of our single fibre pull-out tests, we decided to use
a three-phase model. Phase I represents the linear elastic part of the curve up to the yield strength Pel

that is reached at slip sel. Phase II is the nonlinear part up to the ultimate force Pult at slip sult. For
simplicity, this part is also described by a linear model. Phase III is a linear descending branch up to
complete fibre pullout at slip stot, i.e., the last recorded slip value. See Figure 8.2 for an illustration of
the model.

For fitting the model, the force and slip values derived from the six fibre-pullout tests per combination
(θ, le) are averaged. We use the median values

Pel,med(θ, le) = med(Pel,1(θ, le), . . . , Pel,6(θ, le))

Pult,med(θ, le) = med(Pult,1(θ, le), . . . , Pult,6(θ, le))

sel,med(θ, le) = med(sel,1(θ, le), . . . , sel,6(θ, le))

sult,med(θ, le) = med(sult,1(θ, le), . . . , sult,6(θ, le))

stot,med(θ, le) = med(stot,1(θ, le), . . . , stot,6(θ, le)).

The numerical values are given in Appendix D Table D.1.
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Ptri(s, θ, le)

s
sel(θ, le) sult(θ, le) stot(θ, le)

Pel(θ, le)

Pult(θ, le)
I II III

Figure 8.2: Simplified single-fibre pull-out force. Phase I and II given as linear increasing branches and
phase III given as linear descending branch.

In summary, the model reads

Ptri(s, θ, le) =



p1 · s 0 ≤ s ≤ sel,med(θ, le)

(phase I)
p2 · s+ r1 sel,med(θ, le) ≤ s ≤ sult,med(θ, le)

(phase II)
p3 · s+ r2 sult,med(θ, le) ≤ s ≤ stot,med(θ, le)

(phase III).

(8.2)

Formulas and estimates of the parameters p1, p2 > 0, p3 < 0, and r1, r2 ∈ R are summarised in
Appendix D Table D.2. Figure 8.3 illustrates the model for θ = 10◦ and le = lf/2, lf/3, lf/6.

8.1.3 Prediction model for tensile stress

We assume the following (see also [98, 118]):

• The UHPC matrix is a statistically homogeneous material [119, p.28].

• Fibres are straight with cylindrical geometry. The fibres have fixed length lf and diameter df .

• The spatial distribution of the fibre positions in the UHPC is statistically homogeneous [119, p.28].

• The fibre orientation is random following a given probability density function (p.d.f.) p.

• The specimen is uniaxially strained.

• During loading, the specimen develops a planar crack C of width w and area AC orthogonal to the
tension axis, see Figure 8.4.

• With growing crack width, the shorter fibre end is pulled out of the concrete matrix. The longer end
is not affected.

• The fibres behave linearly elastic.

• The matrix deformation and the Poisson effect of the fibres during pull-out are neglected. The
fibre-matrix bond is frictional.
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Figure 8.3: Trilinear curves (solid) of the single-fibre pull-out force curves (dotted) with angle θ = 10◦

and embedded lengths le = lf/2, le = lf/3, le = lf/6.

If the strain ϵ exceeds ϵr, the strain at the uniaxial tensile strength of the UHPC, a crack starts to form.
The crack width w is given by

w =

{
0, ϵ ≤ ϵr

(ϵ− ϵr) · L, ϵ > ϵr

with L = 40 mm and ϵr = 0.00087 (see Table 4.3). Fibres crossing the crack are divided into the two
segments to the left and to the right of the crack plane. We denote the length of the shorter segment by
le, see Figure 8.4, such that le ∈ [0, lf/2]. With increasing crack width w, the shorter fibre end is pulled
out of the concrete until the fibre gets detached at w > le.

For predicting the stress evolution for increasing crack width w, the single pull-out forces P (s, θ, le)
of the fibres crossing the crack have to be taken into account. Due to the assumption that only the shorter
fibre end is pulled out of the concrete, the slip s corresponds to the crack width w. Furthermore, le in
the single-fibre pull-out tests corresponds to the embedded length le. Thus, we use s = w and le = le in
(8.2).

Assume that the planar crack C is crossed by N fibres with given inclination angles and embedded
lengths (θ1, le,1), . . . , (θN , le,N ). As experimental single-fibre pull-out curves are only available for a
discrete set of θ and le values, the forces P (w, θ, le) of fibres in C are binned into classes as given in
Table 8.1.
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UHPC-matrix

planar crack C

fibre

embedded length le

tension axisθ

Z

Y

X

Figure 8.4: UHPC-matrix with one fibre intersecting a planar crack C (assumed to be embedded in the
XY-plane) at crack width w = 0. The crack divides the fibre in two parts. The embedded length le is
the length of the shorter (green) fibre part. The angle between fibre and tension axis (assumed to be the
Z-axis) is denoted by θ.

Table 8.1: Binning of embedded length le and inclination angle θ.

class interval P (w, θ, le)

T1 θ ∈ [ 0◦; 5◦) P (w, 0◦, le)
T2 θ ∈ [5◦; 15◦) P (w, 10◦, le)
...

...
...

T9 θ ∈ [75◦; 90◦] P (w, 80◦, le)

L1 le ∈ [0 mm; 2.5mm) P (w, θ, 2.08)
L2 le ∈ [2.5 mm; 5mm) P (w, θ, 4.17)
L3 le ∈ [5 mm; 6.25mm) P (w, θ, 6.25)

Fibres crossing the crack counteract the opening of the crack. According to [95, 98], the composite
stress (or mean resistance force per unit area) at crack width w is obtained by

σct(w) = λc

lf
2∫

0

π
2∫

0

P (w, θ, le)pc(θ, le) dθ dle, (8.3)

where pc(θ, le) denotes the joint probability density of inclination angle and embedded length of crack-
crossing fibres. λc is the mean number of fibres per unit area in C.

We approximate σct(w) by first replacing the integral in (8.3) by a sum over all fibres observed in the
crack. In the second step, angles and embedded lengths are binned such that model (8.2) can be applied.

σct(w) ≈ 1

AC

N∑
k=1

P (w, θk, le,k) (8.4)

≈ 1

AC

9∑
i=1

3∑
j=1

NTi,Lj P̃ (w, θi, le,j). (8.5)

Here, NTi,Lj denotes the number of fibres in C with θk ∈ Ti and le,k ∈ Lj , k ∈ {1, . . . , N}, i ∈
{1, . . . , 9}, j ∈ {1, 2, 3}. P̃ is a prediction of P by the median curve or by the trilinear model. We will
denote the prediction based on P̃ = Ṗ by σmed

ct (w) and the prediction based on P̃ = Ptri by σtri
ct (w).
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(a) β = 1 (isotropic) (b) β = 0.5 (c) β = 0.01

Figure 8.5: Realisations of the fibre model for different anisotropy parameters β.

8.1.4 Stochastic fibre model

In the following, we introduce a stochastic fibre model to generate 3D fibre systems of virtual specimens.
Their tensile behaviour can then be predicted with our stress prediction model.

The fibre system is modelled by a Boolean model [106] as follows: The positions of fibres are in-
dicated by their midpoints which are modelled by a Poisson point process. That is, the number N
of fibre midpoints (x, y, z) in a given volume V follows a Poisson distribution with parameter λ · V ,
where λ > 0 is the mean number of fibres per unit volume. Locations of fibre midpoints are drawn
independently from a uniform distribution on the volume of interest.

The orientation of a fibre is independent of its location and can be described in spherical coordinates
with co-latitude angle θ ∈ [0, π/2) and longitude angle φ ∈ [0, 2π). Assuming the Z-axis to be the
tension axis, θ corresponds to the inclination angle of the fibre with respect to the tension axis. The
longitude angle φ does not influence the force contribution of a fibre. Hence, we consider φ to be
uniformly distributed on [0, 2π) such that the probability density function of the fibre orientation is a
function p(θ) depending only on θ.

We assume that θ follows a one-parametric orientation distribution described by the p.d.f

p(θ) =
β sin(θ)

(1 + (β2 − 1) cos2(θ))
3
2

, θ ∈
[
0,

π

2

]
, β > 0, (8.6)

see [116, 117, 120, 121] for details and applications. The anisotropy parameter β1 controls the alignment
of the fibres. For β = 1, the fibres are isotropically oriented. For decreasing β, the fibres tend to be
aligned along the Z-axis, see Figure 8.5. For β > 1, the fibre orientations are concentrated in a plane.
This case is not considered here.

For fitting the model to a given concrete sample, the characteristics λ and β can be obtained from
µCT images, see [116, 117, 122]. Due to the low fibre volume fraction, we assume that overlap of fibres
in the model is negligible. Hence, the fibre intensity λ can be computed from the fibre volume fraction
VV , the fibre length lf and cross-sectional area Af via

λ =
VV

lfAf
.

If a single fibre segmentation is available, an estimate of the anisotropy parameter β can be determined
from the sample θ1, . . . , θN of inclination angles by using the maximum likelihood method as described
in [120]. An estimate of β based on the method of moments is given by (see Section 8.1.5.2)

β̂mom =
N∑N

i=1 cos(θi)
− 1. (8.7)

1Note that the anisotropy parameter has nothing to do with the ovalness parameter from the standardised Kent distribution
in Example 2.2.1.
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The Boolean model described so far yields a stochastic fibre system in 3D. The prediction model
outlined in Section 8.1.3 requires only inclination angles θ and embedded lengths le of the fibres in-
tersecting the crack plane C. Due to the spatial homogeneity of the model, C can be assumed to be
contained in the XY-plane.

In the Boolean model, fibre position and orientation are independent. Hence, le and θ are independent.
Thus, the joint p.d.f. of θ and le for crack-crossing fibres fulfils pc(θ, l) = pc(θ)ple(l) where pc(θ) is
the p.d.f. of inclination angles θ of fibres crossing the crack and ple(l) is the p.d.f. of le. The spatial
homogeneity of the Boolean model implies that le is uniformly distributed on [0, lf/2]. The planar
characteristics are related to the spatial characteristics as follows [98, 106, 117]

ple(l) =
2

lf
, l ∈ [0, lf/2] (8.8)

pc(θ) = (1 + β)p(θ) cos(θ) (8.9)

λc =
λlf
1 + β

(8.10)

where λc is the expected number of fibres per unit area in C.
Note that the difference between (8.6) and (8.9) can be explained as follows [98, 123]: The p.d.f.

p(θ) takes every fibre in the reinforced concrete into account whereas pc(θ) accounts only for fibres
intersecting the crack plane. A fibre is more likely to hit the crack plane if its inclination angle θ is
small. The assumption that the distribution pc(θ) is equal to p(θ) is a common misunderstanding that
leads to incorrect interpretations of measurement results (see [86, 96, 124]).

If a single fibre segmentation of fibres in a crack is available, an estimate of the anisotropy parameter
β can be determined from the sample θc,1, . . . , θc,N of inclination angles of crack-crossing fibres by
using a modified version of the maximum likelihood estimator given in [120]. An estimator of β based
on the method of moments is given by

β̂c,mom =
N∑N

i=1 cos
2(θc,i)

− 1, (8.11)

see Section 8.1.5.2 for details.
The fibre orientation coefficient ηθ is a widely established characteristic for the distribution of fibre

orientation in a crack [86, 88, 96, 117, 125, 126, 127]. ηθ is the second moment of the angular deviation
of the crack-crossing fibre from the tension axis. Here, it is possible to calculate ηθ in closed form

ηθ =

π
2∫

0

pc(θ) cos
2(θ) dθ =

1

1 + β
=

λc

λlf
.

For an isotropic fibre orientation (β = 1), which is assumed in several studies [79, 86, 95, 96], it
follows that λc = 1

2λlf , pc(θ) = 2 sin(θ) cos(θ) = sin(2θ) and ηθ = 1
2 . In the extreme case that all

fibres are aligned along the tension axis (β = 0), it follows that λc = λlf , and ηθ = 1.

8.1.5 Parameter estimation for anisotropy parameter β

We consider a fibre system as described in Section 8.1.4. The random angular deviation between a fibre
and the Z-axis is described by its inclination angle. A random inclination angle in space is denoted by
Θ and a random inclination angle of a fibre intersecting the XY-plane by Θc.
Θ follows a distribution with density (8.6) and Θc follows a distribution with density (8.9). For a

fibre system of N fibres, we denote a sample of spatial inclination angles by θ1, . . . , θN and a sample of
inclination angles of fibres intersecting the XY-plane by θc,1, . . . , θc,M , M ≤ N .
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8.1.5.1 Maximum likelihood estimator β̂c,mle for β

The maximum likelihood estimator (mle) estimates the parameters of a probability distribution by max-
imising its likelihood function for observed data. The maximiser of the likelihood function is called the
maximum likelihood estimator (β̂mle). The following is based on the findings in [120]. The maximum
likelihood estimator β̂mle given in [120] considers the spatial inclination angles.

We introduce a mle β̂c,mle for fibres intersecting the XY-plane: Consider Θc,1, . . . ,Θc,M independent
and identically distributed (i.i.d.) with density pc(θ). The log-likelihood function reads

l(β|Θc,1, . . . ,Θc,M ) = log
M∏
i=1

pc(Θc,i)

= log
M∏
i=1

(1 + β)p(Θc,i) cos(Θc,i)

= M log(1 + β) +

M∑
i=1

log(p(Θc,i)) +

M∑
i=1

log(cos(Θc,i))

= M log(1 + β) +
M∑
i=1

log(cos(Θc,i))

+M log(β) +
M∑
i=1

(
log(sin(Θc,i)) +

3

2
log(1 + (β2 − 1) cos2(Θc,i))

)
To compute the maximum of l(β|Θc,1, . . . ,Θc,M ), we compute its derivative w.r.t. β

∂l(β|Θc,1, . . . ,Θc,M )

∂β
=

M

1 + β
+

M

β
− 3β

M∑
i=1

cos2(Θc,i)

1 + (β2 − 1) cos2(Θc,i)
. (8.12)

In the following, we use a numerical procedure based on Newton’s method because we are not able to
compute the roots of (8.12) analytically. For β > 0, define h(β) = −β ∂l

∂β such that the root of (8.12)
can be calculated by solving h(β) = 0. Now, h(0) = −M and h(β) = M for β → ∞. Hence, h has at
least one root. In contrast to [120], there exists β > 0 such that h′(β) = ∂

∂βh ̸> 0. Thus, local extrema

of the likelihood function can exist, and candidates for the maximum likelihood estimator β̂c,mle of β
have to be checked, e.g. via the second derivative. Using Newton’s method, we can approximate the
root of (8.12) iteratively by

βt+1 = βt −
h(βt)

h′(βt)
.

Because h can have several roots, the solution obtained by Newton’s method could depend on the choice
of the initial value βinit for β. We, therefore, recommend the choice of different initial values and
repeated runs of the Newton method. A simulation study of β̂c,mle for M = 10, 100, 600, 1000 and
β = 0.1, 0.3, 0.5, 0.9, 1, is given in Section 8.1.5.3.

8.1.5.2 Method of moments estimators β̂mom, β̂c,mom for β

The method of moments (mom) is based on the approximation of sample moments with theoretical
moments (via the law of large numbers (LLN)). If the theoretical moments are functions of a param-
eter, the sample moments are functions of the parameter’s estimate. Here, the parameter of interest
is the anisotropy parameter β. Assume that Θ1, . . . ,ΘN i.i.d. with density p(θ) such that for suit-
able function g we have E(Θk

i ) = gk(β) < ∞. Then an estimator β̂mom can be obtained as solu-
tion of Θk

N = 1
N

∑N
i=1Θ

k
i = gk(β̂mom). We apply the cosine to the angles in the following. Thus,
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cos(Θ1), . . . , cos(ΘN ) are i.i.d. with

E(cos(Θi)) =

π
2∫

0

cos(θ)p(θ) dθ =
1

1 + β
(8.13)

and g(β) = 1
1+β , β > 0. Therefore,

β̂mom =
1

cos(Θ)N
− 1 (8.14)

with cos(Θ)N = 1
N

∑N
i=1 cos(Θi). For Θc,1, . . . ,Θc,M i.i.d. it follows analogously

E(cos2(Θc,i)) =

π
2∫

0

cos2(θ)pc(θ) dθ = (1 + β)

π
2∫

0

cos3(θ)p(θ) dθ =
1

1 + β
(8.15)

Therefore,

β̂c,mom =
1

cos2(Θc)M
− 1. (8.16)

8.1.5.3 Comparison of the maximum likelihood estimator β̂c,mle with the method of moments
estimator β̂c,mom for β based on fibres intersecting the XY-plane

We simulated K = 100 samples θ
(k)
c,1 , . . . , θ

(k)
c,M , k = 1, . . . ,K, for each combination of β = 0.1,

0.22, 0.3, 0.5, 0.9 and M = 10, 100, 1000. For each sample we calculate β̂
(k)
c,mle and β̂

(k)
c,mom (with

βinit = 0.1, 0.5, 1), k = 1, . . . ,K. To compare the accuracy of β̂c,mle and β̂c,mom, we compute the
mean value and standard deviation (SD) of K = 100 estimates for each parameter combination. The
mean values and SDs are given in Table 8.2 and Table 8.3. The results indicate that both methods work
well for large sample sizes M and anisotropic samples but β̂c,mle has a lower SD and is closer to the true
value than β̂c,mom. For a small sample size or especially an isotropic sample, β̂c,mom has a lower SD
and is closer to the true β than β̂c,mle. The initial value βinit has little influence on the result of β̂c,mle.
Apart from that, β̂c,mom needs neither an initial value nor a numerical method. Therefore, we would
recommend β̂c,mom due to its simplicity and sufficient accuracy.
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Table 8.2: Mean and standard deviation (SD) of β̂c,mle for various β, βinit and M

β 0.1 0.22 0.3 0.5 0.9 1

(M,βinit) = (1000, 0.1) Mean 0.0999 0.2183 0.3011 0.5008 0.9004 0.9939
SD 0.0036 0.0075 0.0120 0.0188 0.0327 0.0371

(M,βinit) = (1000, 0.5) Mean 0.0999 0.2204 0.3008 0.4985 0.8926 0.9934
SD 0.0034 0.0086 0.0117 0.0208 0.0310 0.0328

(M,βinit) = (1000, 1) Mean 0.0999 0.2177 0.3004 0.5003 0.9001 0.9981
SD 0.0037 0.0073 0.0104 0.0190 0.0305 0.0457

(M,βinit) = (600, 0.1) Mean 0.1009 0.2203 0.2973 0.5000 0.8892 0.9984
SD 0.0046 0.0092 0.0147 0.0228 0.0439 0.0417

(M,βinit) = (600, 0.5) Mean 0.1001 0.2200 0.3011 0.4991 0.8957 0.9929
SD 0.0046 0.0100 0.0128 0.0260 0.0431 0.0437

(M,βinit) = (600, 1) Mean 0.1000 0.2191 0.3004 0.5034 0.9014 1.0009
SD 0.0050 0.0108 0.0141 0.0264 0.0385 0.0447

(M,βinit) = (100, 0.1) Mean 0.1017 0.2191 0.2998 0.4924 0.8579 1.0006
SD 0.0117 0.0239 0.0337 0.0519 0.1005 0.1288

(M,βinit) = (100, 0.5) Mean 0.1027 0.2209 0.2988 0.4940 0.8878 1.0103
SD 0.0107 0.0224 0.0401 0.0568 0.1172 0.1213

(M,βinit) = (100, 1) Mean 0.1017 0.2217 0.3020 0.4928 0.8781 0.9790
SD 0.0125 0.0245 0.0315 0.0570 0.1069 0.1168

(M,βinit) = (10, 0.1) Mean 0.1104 0.2382 0.2982 0.4334 0.7446 0.7903
SD 0.0396 0.0849 0.1072 0.1269 0.2742 0.2899

(M,βinit) = (10, 0.5) Mean 0.1265 0.2418 0.3198 0.4822 0.7215 0.7846
SD 0.0474 0.0845 0.1160 0.1781 0.2698 0.4023

(M,βinit) = (10, 1) Mean 0.1218 0.2358 0.3121 0.4749 0.7646 0.7915
SD 0.0441 0.0856 0.1338 0.1684 0.2539 0.3242

Table 8.3: Mean and standard deviation (SD) of β̂c,mom for various β and M

β 0.1 0.22 0.3 0.5 0.9 1

M = 1000 Mean 0.0998 0.2206 0.3020 0.4973 0.8999 1.0039
SD 0.0057 0.0122 0.0138 0.0195 0.0353 0.0372

M = 600 Mean 0.1007 0.2205 0.2981 0.5021 0.8986 0.9992
SD 0.0078 0.0127 0.0174 0.0245 0.0391 0.0494

M = 100 Mean 0.1037 0.2214 0.3017 0.5029 0.9029 1.0179
SD 0.0183 0.0308 0.0459 0.0543 0.0995 0.1090

M = 10 Mean 0.1012 0.2490 0.3023 0.5351 1.0203 1.0421
SD 0.0610 0.1390 0.1169 0.1776 0.3401 0.4120

8.2 Results

8.2.1 Image analysis

The crack observed in the imaged sample is approximated by a plane whose position is identified in the
CT scan, see Figure 8.6a. Among the segmented fibres, N = 598 cross the crack plane. Inclination
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(a) (b)

Figure 8.6: Volume rendering of fibres in the crack area (a) and a fitted fibre system (b). The subvolume
is of dimension 3.6 cm2×0.45 cm. The position of C in (a) is indicated by a solid white line.

angles of the individual fibres are determined as described in Section 5.3. Fibre lengths can be measured
by the maximal Feret diameter2 [128]. By intersection with the crack plane, each fibre is split into two
segments. The embedded length le is the maximal Feret diameter of the shorter one of these segments.
From the inclination angles θc,i, we obtain β̂c,mom = 0.22.

By Equation (8.10) with β = 0.22 the expected number of fibres in the cross section is AC ·λc = 834.
The observed number N = 598 is well below that value. There are several possible explanations. In
[48], the fibre content at the crack location was observed to be about 5% lower than the theoretical value
of VV =0.02 (see Figure 6.4g at the approximate crack position in Slice 641). Additionally, according to
the master datasheet of the fibres used, both, the diameter df mm and the fibre length lf can deviate by
10%.

In Figure 8.7, the distributions of observed inclination angles and embedded lengths are compared
with the fitted p.d.f.s pc(θ) (with β = 0.22) and ple(l) given in (8.9) and (8.8), respectively. The
inclination angles are well fitted. The distribution of the embedded length has an unexpected peak
around 4.5 mm. A possible explanation is that short fibre segments (whose diameter in the µCT image
corresponds to only 2 to 3 voxels) were missed. It should be noted that we are not aware of any practical
way of estimating le from a 2D slice as was also mentioned in [86]. A fibre system simulated as a
realisation of the Boolean model with β = 0.22, lf = 12.5 mm, df = 0.2 mm, VV = 0.02 is shown in
Figure 8.6b.

8.2.2 Prediction of tensile stress

To predict the composite stress σct using Equation (8.5), we need NTi,Lj , the number of crack-crossing
fibres with (θ, le) in class (Ti, Lj), i = 1, . . . , 9, j = 1, 2, 3. Based on the single fibre segmentation,
we derive NTi,Lj as given in Table 8.4.

Experimental tensile tests were carried out on three specimens as described in Section 4.4. The
ultimate tensile stress and the corresponding strain of the experimental tensile curves are given in Table
8.5.

The observed tensile curves are used to calibrate our prediction.

2Note that the Feret diameter is defined as the distance between two parallel tangents of a particle where the tangents are
orthogonal to a specified direction and the maximal Feret diameter is the largest distance between two parallel tangents in any
direction.
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(a) (b)

Figure 8.7: Observed inclination angle (a) and embedded length (b) of the fibres intersecting the crack
(solid lines) and the corresponding fitted p.d.f. pc(θ) with β = 0.22 and ple(l) (dotted lines).

Table 8.4: Number of fibres in the (θ, le) bins as obtained from the single fibre segmentation of the µCT
image.

Lj

Ti 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

lf/2 10 52 39 14 6 6 3 1 0
lf/3 20 92 91 35 20 9 6 1 1
lf/6 14 48 44 34 16 14 8 6 8

Table 8.5: Ultimate tensile stress of three uniaxial loaded specimens.

1 2 3 mean

σexp
ult [MPa] 10.97 11.21 12.34 σult,exp = 11.51

ϵexpult [mm/mm] 0.01064 0.0010 0.0095 ϵult,exp = 0.0070

8.2.2.1 Prediction of tensile stress based on median curve

Here, we use the median curve to predict σct by σmed
ct . Figure 8.8a shows the prediction as well as the

three experimental tensile curves. We see that the prediction overestimates the stress. The predicted
ultimate tensile stress is 18.56 MPa which is reached at strain ϵmed

ult = 0.0230 [mm/mm].
To calibrate the curves, we follow [79, 86, 96, 129] and introduce suitable rescaling factors to match

characteristic stress-strain points (i.e., ultimate tensile stress σct,ult or yield stress σct,el) of experiments
and predictions.

In the first step, we scale σmed
ct by a stress scaling factor Sσ

ult such that the predicted and mean exper-
imental ultimate stress coincide, i.e. Sσ

ultσ
med
ct,ult = σult,exp. This is achieved for Sσ

ult = 0.61, see Figure
8.8b. In the next step, the locations of the maxima have to be matched. To this end, we additionally
scale the strain-axis by a strain scaling factor Sϵ

ult. The choice Sϵ
ult = 0.42 yields Sϵ

ultϵ
med
ult = ϵult,exp

such that the maxima are closer together (see Figure 8.8c). However, the slope of the curve after the
maximum does not fit the experimental curves. A remedy is to restrict scaling of the strain-axis to the
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(a) Prediction of σct(ϵ) by σmed
ct (ϵ). (b) Scaled stress Sσ

ultσ
med
ct (ϵ) .

(c) Scaled stress and strain Sσ
ultσ

med
ct (Sϵ

ultϵ). (d) Prediction based on Equation (8.17).

Figure 8.8: Prediction of composite stress σct(ϵ) by σmed
ct (ϵ) (a) compared with three experimental

tensile curves. Scaled σmed
ct (ϵ) by stress scaling factor Sσ

ult = 0.61 (b) and additionally scaled strain by
strain scaling factor Sϵ

ult = 0.42 (c).
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Figure 8.9: Prediction of composite stress σct(ϵ) by σtri
ct (ϵ) based on the trilinear model.

region prior to the maximum, that is,

σmed,scale
c (ϵ) =

σmed
ct

(
ϵ
Sϵult

)
, ϵ ∈ [0, ϵult,exp]

σmed
ct

(
ϵmed
ult +

ϵmed
tot −ϵmed

ult

ϵmed
tot −ϵult,exp

· (ϵ− ϵult,exp)
)

, ϵ ∈
(
ϵult,exp, ϵ

med
tot

]
,

(8.17)

where ϵmed
tot is the last available strain value in the median curve. This way, both, the maximum location

and the stress at the final point ϵmed
tot are matched. The result shown in Figure 8.8d indicates that the drop

after the ultimate tensile stress is flatter due to the fixation of ϵmed
tot .

8.2.2.2 Prediction of tensile stress based on the trilinear model

Here, we use model (8.2) to predict σct by σtri
ct . As for the median curve we need to modify the predic-

tion. Instead of piecewise scaling equivalent to Equation (8.17), we recompute (8.2) with new values for
slip and force given by

s◦el,med(θ, le) = 0.072 · sel,med(θ, le)

s◦ult,med(θ, le) = 0.36 · sult,med(θ, le)

s◦tot,med(θ, le) = stot,med(θ, le)

P ◦el,med(θ, le) = 0.66 · Pel,med(θ, le)

P ◦ult,med(θ, le) = 0.66 · Pult,med(θ, le)

where sel,med(θ, le), sult,med(θ, le), stot,med(θ, le), Pel,med(θ, le), Pult,med(θ, le) are given in Table D.1.
The new parameters (p◦1, p

◦
2, p
◦
3, r
◦
1, r
◦
2) are calculated as in Appendix D.2. The prediction is given in

Figure 8.9. The factors are chosen such that σtri
ct,ult = σult,exp and ϵtrict,ult = ϵult,exp.

In the interval between yield and ultimate stress, the predicted curve is straighter than the experimental
stress curves which can be explained by the use of a linear model. Furthermore, the maximal peak is
more pronounced than in the experimental tests. This may be due to the replacement of the individual
single-fibre pull-out forces Pi by average forces Ptri obtained from the trilinear model. To overcome this
problem, we propose a model based on randomised single fibre contributions in the following section.

8.2.2.3 Prediction of tensile curves based on randomised trilinear model

In order to model the random variations in the tensile curves, we consider sult,med as random following
a uniform distribution and add normally distributed residuals to the yield and the ultimate force. This
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way, individual functions Ṗ are simulated for each fibre in the crack. The range of values of the required
random variables is inferred from the single fibre pull-out experiments.

Prediction study part 1: Stress prediction with randomised strain shifts

We define the interval

Iult(θ, le) =

[
min

i=1,...,6
(sult,i(θ, le)) ; max

i=1,...,6
(sult,i(θ, le))

]
and choose

s∗ult,med(θ, le) ∼ U(Iult(θ, le))
rPel,med

(θ, le) ∼ N (0, sd2Pel,med
(θ, le))

rPult,med
(θ, le) ∼ N (0, sd2Pult,med

(θ, le)),

where the minimum and maximum values of sult,i and the sample standard deviations sdPel,med
and

sdPult,med
for each combination (θ, le) are given in the Appendix D Table D.1. Then, we recompute the

trilinear curve with

s◦el,med(θ, le) = 0.072 · sel,med(θ, le)

s◦ult,med(θ, le) = 0.36 · s∗ult,med(θ, le)

s◦tot,med(θ, le) = stot,med(θ, le)

P ◦el,med(θ, le) = 0.68 · Pel,med(θ, le) + rPel,med
(θ, le)

P ◦ult,med(θ, le) = 0.68 · Pult,med(θ, le) + rPult,med
(θ, le).

M = 10 predictions based on the fibre system observed in the CT image are shown in Figure 8.10a. The
predictions reproduce the stress profile better than the deterministic predictions.

Prediction study part 2: Stress prediction of virtual specimens with varying production parame-
ters

We use the prediction regime from Prediction study part 1 and the stochastic fibre model from Section
8.1.4 to generate a fibre systems of virtual specimens. From the virtual fibre systems, we derive (θ, le)
of fibres in some cross-section. These simulate the crack-crossing fibres. Figure 8.10b shows a tensile
prediction of ten virtual fibre systems. The input parameters are determined from the crack-crossing
fibres of the scanned specimen.

Predictions for virtual samples with modified orientation distribution and volume fraction VV are
shown in Figure 8.10. Note that the fibre parameters df and lf were not varied since the single-fibre
pull-out tests were restricted to fibres with df = 0.2 mm and lf = 12.5 mm. Figure 8.10c shows
that a fibre orientation along the tensile axis increases the tensile stress compared to an isotropic fibre
orientation. This is in accordance with [86, 96]. Figure 8.10d reveals that the influence of the volume
fraction also behaves as expected: Fewer fibres decrease and more fibres increase the tensile stress.

8.3 Conclusion

We presented a tensile behaviour prediction model of UHPFRC-specimens based on statistical informa-
tion on the fibre system (obtained by quantitative analysis of a µCT image) and extensive single fibre
pull-out tests. The model is calibrated by comparing the prediction to the results of experimental uni-
axial tensile tests. The introduced stochastic fibre model generates fibre systems of virtual specimens
which can be used for the prediction of the tensile behaviour. Through experimental and theoretical
investigations, the following conclusions are drawn:
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(a) Based on fibre system from CT scan. (b) Based on stochastic fibre systems.

(c) β = 0.01, 0.22, 1 (d) VV = 0.01, 0.02, 0.03

Figure 8.10: Prediction of M = 10 tensile curves (a) based on the scanned fibre system summarised in
Table 8.4, (b) tensile prediction of 10 virtual specimens with fibre system generated by the stochastic
fibre model from Section 8.1.4 with input parameters determined from the scanned fibre system. The
predictions are compared with the three experimental tensile curves. (c) and (d) Tensile prediction of 10
virtual specimens with varied parameters. (c) β is varied and VV is fixed. (d) β is fixed and VV is varied.
The mean of the tensile predictions per varied parameter is given as a dotted line.
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• The fibre system in the concrete is modelled by a Boolean model of straight cylinders. The fibre
orientation distribution is represented by a one-parametric distribution family. Its parameter β
controls the anisotropy of the fibre orientation. Both, the case of total alignment and isotropy
are included in the model as special cases. The widely used reference value ηθ (fibre orientation
factor) can be calculated directly from β. In particular, the relationship of fibre orientation of the
full 3D fibre system and of crack-crossing fibres is examined. Furthermore, we emphasised the
difference between the p.d.f. for the fibre orientation of all fibres in the reinforced concrete and the
p.d.f. for the fibre orientation of fibres intersecting a crack plane. The assumption that the p.d.f.s
are equal is a common misunderstanding that leads to incorrect interpretations of measurement
results (see [86, 96, 124]).

• Estimators for β are presented and analysed. We recommend the estimator β̂c,mom. It estimates
accurately, no numerical method is required (like a gradient descent algorithm in [116]) and only
the fibre angles in 2D cross-sections are needed. The latter means that fibre orientations observed
in a crack are sufficient to estimate the anisotropy parameter β for the stochastic fibre model and
no µCT imaging is needed.

• In contrast to 2D imaging methods, µCT allows for a determination of the embedded length of
fibres in cracks since the whole 3D fibre system is observable. In particular, this allows for the
validation of the fundamental assumption of a uniformly distributed embedded length le for the
widespread tension-softening model in [118]. Furthermore, using µCT overcomes the accuracy
disadvantage of fibre orientation estimation in 2D sections as discussed in [86].

• The presented prediction model uses the stochastic fibre model combined with a statistical analysis
and modelling of the single fibre pull-out tests. Predictions are calibrated by using experimental
tensile curves. Furthermore, running the prediction on virtual specimens with varied production
parameters led to reasonable stress-strain curves.
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Conclusion

In this work, we introduced mathematical morphology and statistical methods for the analysis of di-
rectional data. Directional data are sets of unit vectors that we encounter in many applications such as
engineering.

In part I, we introduced mathematical morphology for directional images and an extension of direc-
tional quantiles from Ley et al. [11]. The definition of morphological operators and filters required an
ordering structure between unit vectors. An ordering was determined via the theory of statistical depth
functionals and related to h-ordering. The h-ordering ensures that the defined morphological operators
are h-adjunctions and, therefore, well-defined. Furthermore, we introduced a background/foreground
representation for directional images and other grey-scale image counterparts. We extended the mor-
phological operators to multi-scale morphological operators via a redefined structuring function. The
structuring function applied on a vector corresponds to a vector rotation where the scale parameter de-
termines the rotation angle. Relations of introduced morphological operators to their grey-scale counter-
parts are emphasised. We used the operators to enhance regions of significant changes in a displacement
field of a compressed glass foam.

The concept of quantiles and depth for directional data from Ley et. al. [11] was extended. These
concepts provide useful geometric properties of the depth contours such as convexity and rotational
equivariance, a Bahadur representation of the quantiles and are canonical for rotationally symmetric
depth contours. However, it also produces rotationally symmetric depth contours even if the underlying
distribution is not rotationally symmetric. Our extension solves this lack of flexibility for distributions
with elliptical depth contours. Because of the similarities with the classical Mahalanobis depth, the in-
troduced depth is called elliptical Mahalanobis depth. The basic idea is to deform the elliptical contours
by a diffeomorphic mapping to rotationally symmetric contours, thus reverting to the canonical case in
Ley et al. [11]. Furthermore, trimming of directional data is introduced. A Monte Carlo simulation study
confirmed the results. The extension is used to analyse fibre directions in fibre-reinforced concrete.

In Part II, we elaborated interdisciplinary results in civil engineering which are partly published in
[48, 78]. Our statistical analysis of the correlation between production parameters (fibre length, fibre
diameter, fibre volume fraction as well as casting method, superplasticiser and specimen size) of ultra-
high performance fibre reinforced concrete, and the fibre system (position and orientation) provides
users with a better understanding of this relatively new composite material. Subsequently, the mechani-
cal behaviour of the specimens was investigated and correlated with the fibre system. µCT imaging the
specimens allowed a reconstruction of the fibre system. The fibre system was characterised slice-wise
by computing the local fibre content (AFP) and fibre alignment (deviation from the Z-axis). The find-
ings are in line with other work such as that fibre orientations stabilise after a certain distance from the
casting point (see findings by Vandewalle et al. (2008) [67] and Ferrara et al. (2011) [68]). Further-
more, specimens of five different sizes were produced and cut into subspecimens of equal size (due to
CT requirements). The general finding is that the fibre geometry changes locally when increasing the
specimen size. This change depends on the direction in which the sample is enlarged, i.e., increasing
the width has a different effect than increasing the length or depth. Local changes in the fibre geometry
resulted in varying tensile strength of the subspecimens. These showed increased tensile strength in the
bottom and back parts and a decreased tensile strength in the top and front parts. This is consistent
with findings in [114, 115]. Specimen height appears to be the most determining parameter followed by
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specimen length. Specimen width seems to be less important. Such tests may also reveal to what extent
the mechanical strength of a large specimen can be inferred from information on the subspecimens.

Furthermore, we presented a tensile behaviour prediction model of UHPFRC-specimens and a stochas-
tic fibre model. The prediction model is based on statistical information about the fibre system and
extensive single fibre pull-out tests. We calibrated the model on the results of experimental uniaxial
tensile tests. The stochastic fibre model generates fibre systems (Boolean model of straight cylinders)
of virtual specimens. The fibre orientation distribution is represented by a one-parametric distribution
family. Its parameter β controls the anisotropy of the fibre orientation. Estimators for β are presented
and compared. For users in civil engineering the method of moments estimator β̂c,mom is a good choice
since it estimates accurately, no numerical method is required (like a gradient descent algorithm in [116])
and only the fibre angles in 2D cross-sections are needed. The latter means that fibre orientations ob-
served in a crack are sufficient to estimate the anisotropy parameter β for the stochastic fibre model. The
presented prediction model uses the stochastic fibre model combined with a statistical analysis and mod-
elling of the single fibre pull-out tests. Predictions are calibrated by using experimental tensile curves.
Furthermore, performing the prediction on virtual specimens with varied production parameters resulted
in reasonable stress-strain curves.

128



Bibliography

[1] Matheron G. Random sets and integral geometry. Wiley New York, 1974.

[2] Serra J. Image Analysis and Mathematical Morphology. Academic Press, Inc., USA, 1983.

[3] Serra J. Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Aca-
demic Press, Inc., 1988.

[4] Soille P. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin,
Heidelberg, 2 edition, 2003.

[5] Sternberg S. Grayscale morphology. Computer Vision, Graphics, and Image Processing,
35(3):333–355, 1986.

[6] Ronse C. Why mathematical morphology needs complete lattices. Signal Processing, 21(2):129–
154, 1990.

[7] Goutsias J., Heijmans H., and Sivakumar K. Morphological operators for image sequences. Com-
put. Vis. Image Underst., 62:326–346, 1995.

[8] Velasco-Forero S. and Angulo J. Random projection depth for multivariate mathematical mor-
phology. IEEE Journal of Selected Topics in Signal Processing, 6(7):753–763, 2012.

[9] Liu R. Y. and Singh K. Ordering Directional Data: Concepts of Data Depth on Circles and
Spheres. The Annals of Statistics, 20(3):1468 – 1484, 1992.

[10] Pandolfo G., Paindaveine D., and Porzio G. Distance-based depths for directional data. Canadian
Journal of Statistics, 46, 09 2017.

[11] Ley C., Sabbah C., and Verdebout T. A new concept of quantiles for directional data and the
angular Mahalanobis depth. Electronic Journal of Statistics, 8(1):795 – 816, 2014.

[12] Roerdink J.B.T.M. Mathematical morphology on the sphere. In Murat Kunt, editor, Visual Com-
munications and Image Processing ’90: Fifth in a Series, volume 1360, pages 263 – 271. Inter-
national Society for Optics and Photonics, SPIE, 1990.

[13] Peters II R. A. Mathematical morphology for angle-valued images. In Edward R. Dougherty
and Jaakko T. Astola, editors, Nonlinear Image Processing VIII, volume 3026, pages 84 – 94.
International Society for Optics and Photonics, SPIE, 1997.

[14] Hanbury A.G. and Serra J. Morphological operators on the unit circle. IEEE Transactions on
Image Processing, 10(12):1842–1850, 2001.

[15] Frontera-Pons J. and Angulo J. Morphological operators for images valued on the sphere. In
2012 19th IEEE International Conference on Image Processing, pages 113–116, 09 2012.

[16] Andrew P. Witkin. Scale-space filtering. In International Joint Conferences on Artificial Intelli-
gence, 1983.

129



[17] Jackway P. Morphological scale-spaces. In Peter W. Hawkes, editor, Morphological Scale-
Spaces, volume 99 of Advances in Imaging and Electron Physics, pages 1–64. Elsevier, 1997.

[18] Jackway P. Morphological scale-space. In Proceedings., 11th IAPR International Conference on
Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,, pages 252–255,
1992.

[19] Heijmans H.J.A.M. and van den Boomgaard R. Algebraic framework for linear and morpholog-
ical scale-spaces. Journal of Visual Communication and Image Representation, 13(1):269–301,
2002.

[20] Vachier C. Morphological scale-space analysis and feature extraction. In Proceedings 2001
International Conference on Image Processing (Cat. No.01CH37205), volume 3, pages 676–679
vol.3, 2001.

[21] Welk M. Families of generalised morphological scale spaces. In Lewis D. Griffin and Martin
Lillholm, editors, Scale Space Methods in Computer Vision, pages 770–784, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[22] Angulo J. Morphological Scale-Space Operators for Images Supported on Point Clouds. In
Springer-Verlag Berlin Heidelberg, editor, 5th International Conference on Scale Space and Vari-
ational Methods in Computer Vision, volume LNCS 9087 of Proc. of SSVM’15 (5th Interna-
tional Conference on Scale Space and Variational Methods in Computer Vision), Lège-Cap Ferret,
France, June 2015.

[23] Fletcher P., Venkatasubramanian S., and Joshi S. Robust statistics on riemannian manifolds via the
geometric median. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
pages 1–8, 06 2008.

[24] Heijmans H.J.A.M. Morphological Image Operators. Advances in electronics and electron
physics: Supplement. Academic Press, 1994.

[25] Blumenson L. E. A derivation of n-dimensional spherical coordinates. The American Mathemat-
ical Monthly, 67(1):63–66, 1960.

[26] Mardia K. V. and P. E. Jupp. Directional Statistics. Wiley, New York, 1999.

[27] García-Portugués E., Paindaveine D., and Verdebout T. On optimal tests for rotational symmetry
against new classes of hyperspherical distributions. Journal of the American Statistical Associa-
tion, 115(532):1873–1887, 2020.

[28] Zuo Y. and Serfling R. General notions of statistical depth function. The Annals of Statistics,
28(2):461 – 482, 2000.

[29] Tukey J. W. Mathematics and the picturing of data. In Proceedings of the International Congress
of Mathematicians (Vancouver, B. C., 1974), volume 2, page 523–531, 1975.

[30] Liu R. On a Notion of Data Depth Based on Random Simplices. The Annals of Statistics,
18(1):405 – 414, 1990.

[31] Donoho D. and Gasko M. Breakdown properties of location estimates based on halfspace depth
and projected outlyingness. Ann. Stat., 20, 12 1992.

[32] Vardi Y. and Zhang C. The multivariate l1-median and associated data depth. Proceedings of the
National Academy of Sciences of the United States of America, 97:1423–6, 03 2000.

[33] Fisher N.I. Spherical medians. Journal of the Royal Statistical Society. Series B (Methodological),
47(2):342–348, 1985.

130



[34] Fisher N.I., Lewis T., and Embleton B.J.J. Statistical Analysis of Spherical Data. Cambridge
University Press, 1987.

[35] Koenker R. Quantile Regression. Cambridge University Press, 2005.

[36] Linglong Kong and Ivan Mizera. Quantile tomography: Using quantiles with multivariate data.
Statistica Sinica, 22(4):1589–1610, 2012.

[37] Najman L. and Talbot H. Mathematical Morphology: from theory to applications. ISTE-Wiley,
June 2010.

[38] Strömberg T. The operation of infimal convolution. Instytut Matematyczny Polskiej Akademi
Nauk, 1996.

[39] Nogatz T., Redenbach C., and Schladitz K. 3d optical flow for large ct data of materials mi-
crostructures. Strain, page e12412, 2021.

[40] Kelker D. Distribution theory of spherical distributions and a location-scale parameter general-
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Appendix A

Complement operator based on DF

Here, we give another approach of a complement operator which is based on DF . Let i ∈ E and
x = I(i) ∈ Sd−1. We want to remind the reader on

DF (x) = arg min
τ∈[0,1]

{cτ ≥ xTµ}, (A.1)

given in (1.28) and the tangent-normal decomposition of a vector x ∈ Sd−1 w.r.t. µ ∈ Sd−1 given in
(1.17)

x = (xTµ)µ+ (Id − µµT )x = (xTµ)µ+ z (A.2)

with

z = (I − µµT )x (A.3)

and

||z||2 =
√
1− (xTµ)2. (A.4)

We define the complement of a pixel value x as

Cx := c1−DF (x)µ+ zC (A.5)

with tangential part

zC := −z

√
1− c2DF (Cx)

||z||2
. (A.6)

Then,

||zC||2
(A.6)
=
√

1− c2DF (Cx) (A.7)

It holds that
zC

||zC||2
(A.6),(A.7)

= − z

||z||2
. (A.8)

The depth value of Cx reads

DF (Cx) = DF (c1−DF (x)µ+ zC) (A.9)
(A.1)
= arg min

τ∈[0,1]
{cτ ≥

(
c1−DF (x)µ+ zC

)T
µ}, µTµ = 1, µT z = 0 (A.10)

= arg min
τ∈[0,1]

{cτ ≥ c1−DF (x)} (A.11)

= 1−DF (x) (A.12)
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Figure A.1: Construction of complement Cx of a unit vector x ∈ Sd−1 using DF . The angles θ =
arccos (xTµ) and αC = arccos ((Cx)Tµ) = θ + arccos (c1−DF (x)). The tangential parts are z =

(I − µµT )x and zC = (I − µµT ) Cx. By construction Cx lies on the great circle GCµ,x.

where we see an analogy to (1.4) since maxDF = 1. The interpretation of the complement is as follows:
Reverse the sign of the tangential vector z and determine the angle between x and Cx by the depth of x.
Note that a vector x which is central w.r.t. µ has a complement Cx which is less central and vice versa.
Figure A.1 illustrates Cx and its relation to x for d = 3.

Further properties are:

• The complement of x ∈ Sd−1 is again a unit vector Cx ∈ Sd−1:

||Cx||2
(A.5),(A.6)

=

∥∥∥∥c1−DF (x)µ− z
||zC||2
||z||2

∥∥∥∥
2

=

(
c21−DF (x)µ

Tµ+ 0 + 0 + zT z
||zC||22
||z||22

) 1
2

(A.6)
=
(
c21−DF (x) + 1− c21−DF (x)

) 1
2

=1

with µTµ = 1, µT z = 0 and zT z = ||z||22.

• The (natural) complement of µ is −µ:

Cµ
(A.5),(A.6)

= c1−DF (µ)µ− z
||zC||2
||z||2

=(−1) · µ+ 0d

=− µ

with DF (µ) = 1, c0 = −1, ||zC||2
(A.7)
=
√

1− c2DF (Cµ)

(A.12)
= 0 and z

||z||2 a unit vector.

• Note that the complement of the complement of x is not necessarily x. This is due to the inequality
sign in the definition of DF . If, however,

cDF (x) = xTµ, (A.13)
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it follows that

C (Cx)
(A.5),(A.6)

= c1−DF (Cx)µ− zC

√
1− c2DF (C(Cx))

||zC||2

(A.12)
= c1−(1−DF (x))µ− zC

√
1− c21−DF (Cx)

||zC||2

(A.12)
= cDF (x)µ− zC

√
1− c2DF (x)

||zC||2

(A.8)
= cDF (x)µ+ z

√
1− c2DF (x)

||z||2
(A.13)
= (xTµ)µ+ z

√
1− (xTµ)2

||z||2
(A.4)
= (xTµ)µ+ z

(A.2)
= x.

The equality cDF (x) = xTµ holds if we assume that XTµ (with realisation xTµ) follows a con-
tinuous distribution. For a large number of pixel values, the equality is approximately fulfilled.

• The complement C can also be defined via a rotation matrix. Let Rµ,x ∈ SO(d) be a rotation
matrix which rotates a vector x about µ × x with Rµ,x(θ)x = µ, θ = arccos (xTµ). Then,
Cx = Rµ,x(αC)x with αC = θ + arccos (c1−DF (x)) as illustrated in Figure A.1 for d = 3. Note
that x is rotated along the great circle GCµ,x.

We want to examine the effect of this complement operator. For this purpose, we generate a 2-
dimensional S2-valued image with a unit vector in each pixel. Figure A.2a shows such an image I
mimicking direction vectors obtained from one fibre on a homogeneous background.. The image con-
tains one object in the middle consisting of vectors with a small angular deviation from µ. This object
is part of the image foreground. Vectors aligned more in a plane perpendicular to µ are part of the
background. Thus, the image part above and below the object is image background. Figure A.2b shows
the application of the complement operator C on I . The vectors of the object are rotated away from µ
according to their depth value. The vectors in the two background areas from Figure A.2b are rotated
towards µ. As expected, foreground becomes background and vice versa. Figure A.2c shows the ap-
plication of the complement operator to A.2b. Figure A.2c corresponds nearly to the original image I
(except for a few vectors). The reason for the difference lies in the definition of DF as described in Sec-
tion 1.3.2. Furthermore, the vectors that differ from the original image do not result in any new objects.
No "holes" in the object occur and the shape of the object is not changed. The number of foreground
and background vectors in Figure A.2b and Figure A.2c are the same.
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(a) I ∈ S2 (b) C I (c) CC I

Figure A.2: Original S2-valued image I (a), complement C I (b), and CC I (c). The object vectors in
I are rotationally symmetric around µ (large red vector). Their angular deviation from µ is uniformly
drawn from (0, π/8). Background vectors are also rotationally symmetric around µ. Their angular
deviation from µ is uniformly drawn from [π/8, 7π/10].
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Appendix B

Goodness-of-fit test for F0 ∈ Rµ

The goodness-of-fit test proposed in [11] considers the testing problem

H0 : F = F0 for some F0 ∈ Rµ against H1 : F ̸= F0.

Consider τ = (τ1, . . . , τm) ∈ (0, 1)m and the statistic

T (n)
τ =

√
n((ĉτ1 − c0τ1), . . . , (ĉτm − c0τm))

T ,

where c0τi is the projection quantile of order τi. It follows from in Proposition 2.2.3 [11, Proposition 3.2]

that, under H0, T (n)
τ is asymptotically normal with mean zero and covariance matrix Σ

T
(n)
τ

= (Σi,j) ∈
Rm×m, with

Σi,j =
min(τi, τj)− τiτj

f0,proj(c0τi)f0,proj(c
0
τj )

, (B.1)

where f0,proj(c0τi) stands for the density of the projections under F0 evaluated at c0τi . Note that the covari-
ance matrix Σ

T
(n)
τ

does not need to be estimated under the null hypothesis. Based on this joint asymptotic
normality result which directly follows from the multivariate central limit theorem, a goodness-of-fit test
is obtained by rejecting the null (at the nominal asymptotic level α) when

Q(n)
τ = (T (n)

τ )TΣ−1
T

(n)
τ

T (n)
τ

exceeds the α-upper quantile of the chi-square distribution with m degrees of freedom.
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Appendix C

Projected density and covariance matrix
for von Mises-Fisher distributed random
vectors

For F0 = M3(µ, κ) ∈ Rµ, a simple expression for the projected density fproj and the covariance matrix
Σ
T

(n)
τ

is given in the following.

C.1 Projected density for von Mises-Fisher distributed random vectors

For X ∼ M3(µ, κ) von Mises-Fisher and with Equation (2.14), y = XTµ has the projected density

fproj(y)
(2.14)
= ω2c3,fµfµ(y)

(2.16)
= ω2c3,fµ · exp (κy)

(2.15),(2.18)
=

2π2/2

Γ(2/2)
· κ3/2−1

(2π)3/2I3/2−1(κ)
· exp (κy)

=

√
κ√

2πI0.5(κ)
exp (κy). (C.1)

Furthermore, the projection quantile cτ with P (XTµ ≤ cτ ) = τ is given by

τ = P (XTµ ≤ cτ )
(C.1)
=

∫ cτ

−1

√
κ√

2πI0.5(κ)
exp (κy)dy

=

√
κ√

2πI0.5(κ)

exp (κcτ )− exp (−κ)

κ

⇒ cτ =
1

κ
log
(
τ
√
2πκI0.5(κ) + exp (−κ)

)
(C.2)
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Thus,

fproj(cτ )
(C.1)
=

√
κ√

2πI0.5(κ)
exp (κcτ )

(C.2)
=

√
κ√

2πI0.5(κ)
exp

(
κ
1

κ
log
(
τ
√
2πκI0.5(κ) + exp (−κ)

))
=

√
κ√

2πI0.5(κ)

(
τ
√
2πκI0.5(κ) + exp (−κ)

)
= τκ+

√
κ√

2π exp (κ)I0.5(κ)

∗
= τκ+

κ exp (−κ)

exp (κ)− exp (−κ)

= κ

(
τ +

1

exp (2κ)− 1

)
(C.3)

κ≥3
≈ κτ.

Line ∗ holds by symbolic calculation (e.g. WolframAlpha). For κ ≥ 3, it follows that 1
exp (2κ)−1 <

0.0025.

C.2 Covariance matrix for von Mises-Fisher distributed random vectors

For F0 = M3(µ, κ) ∈ Rµ, c0τi is given in (C.2) and f0,proj(c
0
τi) in (C.3). For large κ, we got a simple

expression for the covariance matrix Σ
T

(n)
τ

= (Σi,j) in (B.1)

Σi,j
κ≥3
≈ min(τi, τj)− τiτj

κ2τiτj
(C.4)

=
1

κ2

(
1

max(τi, τj)
− 1

)
. (C.5)

Consider w.l.o.g. that 0 < τi < τj < 1 for 1 ≤ i < j ≤ m such that

Σ
T

(n)
τ

C.5
=

1

κ2




1/τ1 1/τ2 . . . 1/τm
1/τ2 1/τ2 . . . 1/τm

...
...

. . .
...

1/τm 1/τm . . . 1/τm

− 1m1Tm

 .

Since x 7→ 1/x tends to +∞ for x → 0 the matrix entries with small indices dominate the others in
magnitude. Furthermore, κ → ∞ would lead to a singular covariance matrix Σ

T
(n)
τ

if max(τi, τj) ̸→ 0.
Due to the special form of Σ

T
(n)
τ

its determinant reads

det
(
Σ
T

(n)
τ

)
=

1

κ2
1− τm

τ1

m−1∏
i=1

τi − τi+1

τ2i+1

.

With Cramer’s rule it follows that

Σ−1
T

(n)
τ

=
1

det
(
Σ
T

(n)
τ

)CT ,
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where C = (C)i,j is the matrix of cofactors with Ci,j = (−1)i+jMi,j , Mi,j the (i, j)-minor with

Mi,j = det

((
Σ
T

(n)
τ ,p,q

)
p ̸=i,q ̸=j

)
. Due to the special form of Σ

T
(n)
τ

its (i, j)-minor is given by

Mij =
1− τmax(I)

τmin(I)

m−1∏
k=1

i+1,i ̸=max(i,j)

τk − τk+1

τ2k+1

,

where I = {1, . . . ,m} \ {max(i, j)}.
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Appendix D

Single fibre pull-out test results

Table D.1: Median values sel,med(θ, le), Pel,med(θ, le) (standard deviations given in brackets),
sult,med(θ, le) (minimum and maximum values given in brackets), Pult,med(θ, le) (standard deviations
given in brackets), stot,med(θ, le). No values for sdPel,med

and sdPult,med
were determined for the com-

bination (θ, le) = (80◦, lf/6), as only one single fibre pull-out curve could be observed.

(θ, le) sel,med Pel,med sult,med Pult,med stot,med

[mm] [N] [mm] [N] [mm]

(0◦, lf/2) 0.50 39.67 (32.73) 0.97 (0.76, 1.77) 47.52 (27.82) 5.68
(0◦, lf/3) 0.03 7.21 (18.80) 0.89 (0.69, 1.04) 53.30 ( 9.80) 4.82
(0◦, lf/6) 0.08 6.50 (13.70) 0.94 (0.46, 1.09) 23.82 (12.95) 1.82

(10◦, lf/2) 0.37 56.56 (15.69) 1.12 (0.42, 3.17) 87.52 (19.04) 5.15
(10◦, lf/3) 0.51 43.16 (10.30) 1.08 (0.93, 2.13) 52.85 (15.24) 3.82
(10◦, lf/6) 0.14 13.95 (15.16) 0.90 (0.60, 1.38) 27.62 (12.53) 2.02

(20◦, lf/2) 0.43 44.70 ( 8.59) 1.12 (0.65, 1.26) 66.68 (12.66) 5.77
(20◦, lf/3) 0.06 13.30 ( 5.93) 0.91 (0.77, 1.00) 39.86 (10.06) 3.46
(20◦, lf/6) 0.25 21.00 ( 4.49) 1.10 (0.73, 1.23) 24.10 (14.07) 1.67

(30◦, lf/2) 0.23 30.80 ( 5.62) 0.99 (0.66, 1.43) 56.90 (10.71) 4.91
(30◦, lf/3) 0.37 40.00 (18.23) 1.18 (0.63, 1.42) 52.74 (10.53) 2.61
(30◦, lf/6) 0.20 23.74 ( 9.09) 0.93 (0.83, 1.06) 44.70 ( 8.77) 1.70

(40◦, lf/2) 0.52 50.75 (14.04) 1.13 (0.73, 2.72) 71.35 (14.51) 4.99
(40◦, lf/3) 0.03 11.14 ( 6.63) 1.07 (0.66, 4.13) 63.52 (22.80) 3.45
(40◦, lf/6) 0.04 6.20 ( 8.70) 0.65 (0.28, 1.01) 23.78 (11.54) 1.42

(50◦, lf/2) 0.04 11.09 (14.00) 1.57 (1.38, 1.74) 53.34 (16.30) 4.59
(50◦, lf/3) 0.07 10.00 ( 7.70) 1.30 (0.97, 1.92) 44.85 (15.97) 2.48
(50◦, lf/6) 0.06 10.00 (27.88) 0.48 (0.35, 0.76) 25.41 ( 6.46) 0.88

(60◦, lf/2) 0.10 14.20 ( 6.18) 1.40 (1.17, 1.60) 68.25 (13.00) 4.96
(60◦, lf/3) 0.06 13.50 (44.59) 1.39 (1.33, 2.96) 56.71 (50.63) 2.60
(60◦, lf/6) 0.11 14.80 ( 5.22) 0.96 (0.63, 1.01) 36.79 ( 7.57) 1.23

(70◦, lf/2) 0.07 11.90 (18.93) 1.77 (1.64, 2.07) 59.29 (10.08) 4.16
(70◦, lf/3) 0.11 8.90 ( 3.87) 1.65 (0.84, 2.19) 44.99 (12.17) 2.51
(70◦, lf/6) 0.08 8.52 ( 3.52) 0.67 (0.38, 1.50) 20.73 ( 5.80) 1.11

(80◦, lf/2) 0.06 9.50 ( 5.24) 2.39 (1.17, 3.13) 54.94 (22.78) 3.77
(80◦, lf/3) 0.53 6.50 ( 2.81) 0.54 (0.02, 1.31) 7.27 ( 7.05) 0.69
(80◦, lf/6) 0.00 4.54 (-) 0.13 (0.13, 0.13) 4.55 (-) 0.37
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Table D.2: Parameter values for Ptri(w, θ, le). No value for p1 was determined for the combination
(θ, le) = (80◦, lf/6), as no phase I could be observed.

(θ, le) p1 p2 p3 r1 r2

(0◦, lf/2) 79.34 16.30 -26.83 31.78 46.58
(0◦, lf/3) 250.41 53.42 -31.58 5.67 49.68
(0◦, lf/6) 80.25 20.15 -35.99 4.87 21.61
(10◦, lf/2) 152.59 41.31 -57.37 41.25 94.03
(10◦, lf/3) 84.04 17.14 -41.81 34.35 56.04
(10◦, lf/6) 103.13 17.84 -34.24 11.54 24.07
(20◦, lf/2) 105.09 31.73 -40.63 31.20 71.22
(20◦, lf/3) 207.58 31.36 -29.84 11.29 37.08
(20◦, lf/6) 85.4 3.61 -58.37 20.11 29.89
(30◦, lf/2) 131.09 34.77 -35.44 22.63 56.39
(30◦, lf/3) 107.83 15.81 -66.17 34.13 63.52
(30◦, lf/6) 119.58 28.52 -74.70 18.08 39.54
(40◦, lf/2) 98.36 33.39 -48.13 33.52 77.35
(40◦, lf/3) 404.92 50.37 -54.20 9.75 67.05
(40◦, lf/6) 139.23 29.15 -30.17 4.90 10.66
(50◦, lf/2) 282.54 27.68 -49.61 10.00 75.59
(50◦, lf/3) 151.83 28.24 -69.47 8.14 63.08
(50◦, lf/6) 181.48 36.50 -41.19 7.99 -5.04
(60◦, lf/2) 136.65 41.59 -54.03 9.88 86.58
(60◦, lf/3) 242.58 32.42 -90.14 11.70 86.3
(60◦, lf/6) 133.94 25.89 -150.39 11.94 30.63
(70◦, lf/2) 175.64 27.91 -69.22 10.01 98.67
(70◦, lf/3) 83.08 23.36 -107.43 6.40 98.92
(70◦, lf/6) 109.05 20.72 -40.51 6.90 4.34
(80◦, lf/2) 152.08 19.49 -121.31 8.28 160.83
(80◦, lf/3) 12.28 122.75 -29.50 -58.49 -11.14
(80◦, lf/6) - 0.08 -4.29 4.55 -4.27

The parameters where determined as follows

p1 =
Pel,med(θ, le)

sel,med(θ, le)
(D.1)

p2 =
Pult,med(θ, le)− Pel,med(θ, le)

sult,med(θ, le)− sel,med(θ, le)
(D.2)

p3 =
Pult,med(θ, le)

sult,med(θ, le)− stot,med(θ, le)
, (D.3)

r1 = Pel,med(θ, le)− p2 · sel,med(θ, le), (D.4)

r2 = Pult,med(θ, le)− p3 · sult,med(θ, le). (D.5)
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