

Declaration

Declaration

Ich versichere, dass ich diese Masterarbeit selbstständig und nur unter Verwendung der

angegebenen Quellen und Hilfsmittel angefertigt und die den benutzten Quellen wörtlich oder

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Nürnberg, August 12, 2021 Ashwini Sripathi Rao

-------------------------------------- --------------------------------------

Abstract

Abstract

On the one hand, Model-based Systems and Software Engineering approaches ease the

development of complex software systems. On the other, they introduce the challenge of

managing the multitude of different artifacts created using various tools during the system

lifecycle. For understanding and maintaining these artifacts as they evolve, it is advisable to

establish traceability among them. Traceability is the ability to relate the various artifacts

created and evolved during the project. However, organizations often consider traceability a

burden because it is time-consuming and error-prone when done manually. Hence, the

objective of this thesis is to research and develop pragmatic traceability approaches that can

be followed in the MBSE context. A systematic mapping study was conducted to understand

and compile the various criteria that need to be followed while creating and maintaining trace

links. It also provided insights on the approaches followed to ease the burden on engineers.

Expert interviews with industrial companies were conducted to investigate the real-life

experiences of engineers on traceability, to get an overview of best practices and known

pitfalls. Based on the mapping study and the results of the interviews, various approaches and

tools used to achieve traceability were discussed. A case study was conducted for state-of-the-

practice traceability approaches in a toolchain consisting of Polarion, Enterprise Architect,

and Doxygen. For research, open-source libraries and applications were used for analysis. A

tool prototype was developed to create and maintain trace links between artifacts created in

the toolchain mentioned above. The use cases in which the tool eases achieving traceability

are discussed along with pros and cons.

Acknowledgements

Acknowledgments

I wrote this thesis as part of my distance learning course offered by Technical University of

First and foremost, I would like to express my sincere gratitude to Dr.-Ing. Martin Becker,

from Fraunhofer Institute of Experimental Software Engineering, who supervised and guided

my research work. I am highly thankful to him for sharing his expertise and for valuable

guidance, which steered me in the right direction in my research.

I would also like to thank the experts involved in the expert interviews, which helped me

immensely in my investigation of the challenges and approaches involved in achieving

traceability in real-life industrial scenarios.

I wish to express my sincere gratitude to Dr.-Ing. Peter Liggesmeyer, from Technical

University of Kaiserslautern, my first supervisor, for the valuable feedback on the research

work and presentations, which helped in the improvement of the thesis.

Last but not least, I express my gratitude to my family members, for their constant support

and encouragement throughout my study.

Table of Contents V

Table of Contents

Declaration .. II

Abstract .. III

Acknowledgments .. IV

Table of Contents .. V

Abbreviations ... IX

List of Tables ... X

List of Figures .. XI

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Problem Statement ... 3

1.3 Research Approach .. 4

1.3.1 Research Objectives ... 4

1.3.2 Research Questions .. 4

1.3.3 Research Method ... 6

1.4 Thesis Structure ... 7

2 Related Work .. 8

2.1 Understanding Traceability ... 8

2.2 Systematic Mapping Study .. 9

2.2.1 Research Questions .. 9

Table of Contents VI

2.2.2 Search Strings Used for Online Database Research .. 10

2.2.3 Inclusion and Exclusion Criteria for Search Results ... 11

2.2.4 Classification Scheme .. 11

2.3 Results ... 14

2.3.1 Results of Database Search .. 14

2.3.2 Answering Mapping Study Research Questions .. 17

2.3.3 Concepts of Traceability .. 19

2.3.3.1 Classification of Traceability ... 19

2.3.3.2 Basic Terminologies of Traceability .. 21

2.3.3.3 Prerequisites for Achieving Traceability .. 22

2.3.3.4 Key Criteria for Traceability Approaches .. 24

2.3.3.5 Uses of Traceability ... 25

2.3.4 Traceability in Automotive Domain .. 27

2.3.5 Traceability in Model-Based Systems and Software Engineering 28

2.4 State of the Practice ... 31

2.4.1 Traceability in Requirements Management Tools ... 31

2.4.2 Traceability in Application Lifecycle Management Tools 33

2.4.3 Traceability using General-purpose Tools ... 34

2.4.4 Standalone Traceability Tools ... 35

2.4.5 Traceability in the Issue Tracking Tools ... 37

3 Expert Interviews on Traceability ... 38

Table of Contents VII

3.1 Introduction ... 38

3.2 Procedure and Topics Covered in the Interview ... 38

3.3 Data Collection .. 40

3.4 Analysis ... 41

3.5 Conclusions ... 43

3.5.1 Best Practices to Follow ... 43

3.5.2 Pitfalls to Avoid ... 44

4 Feasibility Study and Investigation ... 46

4.1 Approaches of Traceability across the Toolchain ... 46

4.1.1 Used Toolchain .. 46

4.1.1.1 Managing Traces in Polarion ... 48

4.1.1.2 Managing Traces in Other Tools .. 49

4.1.2 Establishing Traceability between Polarion and Enterprise Architect 50

4.1.2.1 Using Open Services for Lifecycle Collaboration ... 50

4.1.2.2 Using Polarion Connector for Enterprise Architect ... 51

4.1.2.3 Using Requirements Interchange Format ... 53

4.1.2.4 Using CSV Import and Export ... 54

4.1.3 Establishing Traceability between Polarion and Doxygen 55

4.1.4 Establishing Traceability between Enterprise Architect and Doxygen 56

4.2 Proposed Solution .. 56

4.2.1 Traceability Information Model ... 57

Table of Contents VIII

4.2.2 Features of the Solution ... 60

4.2.3 Use Cases ... 61

4.2.4 Traceability Link Creation and Maintenance Process using TraceGen 63

4.2.4.1 Traceability between Polarion and Doxygen using TraceGen 63

4.2.4.2 Traceability between Polarion and Enterprise Architect using TraceGen 66

4.2.4.3 Traceability between Enterprise Architect and Doxygen using TraceGen 68

4.2.5 Traceability Visualization in Power-BI ... 70

4.2.6 Analysis and Results .. 71

5 Conclusions ... 79

5.1 Open Issues and Future work .. 80

6 Bibliography ... 82

7 Appendix ... 87

7.1 Mapping of Research Papers based on Classification Scheme 87

7.2 Expert Interview Questions ... 92

7.3 Information Collected during Expert Interviews ... 94

7.4 Different Visual Reports used for Traceability in Power-BI 97

Abbreviations IX

Abbreviations

ACM Association for Computing Machinery
ALM Application Lifecycle Management
API Application Programming Interface
ASPICE Automotive Software Performance Improvement And Capability dEtermination
AST Abstract syntax tree
CLI Command Line Interface
CRUD Create, Read, Update, Delete
CSV Comma-separated values
DOORS Dynamic Object-Oriented Requirements System
GUI Graphical User Interface
GUID Globally Unique Identifier
HIS Herstellerinitiative Software
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
IBM International Business Machines Corporation
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IIS Internet Information Services
ISO International Organization for Standardization
MBSE Model Based System and Software Engineering
MDA Model Driven Architecture
MDD Model Driven Development
OMG Object Management Group
QA Quality Assurance
RM Requirements Management
RS Requirement Specification
ReqIF Requirements Interchange Format
SIG Softgoal Interdependency Graph
SMS Systematic Mapping Study
SysML System Modeling Language
TIM Traceability Information Model
UML Unified Modeling Language
URI Uniform Resource Identifier
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language

List of Tables X

List of Tables

Table 1: Research Type Facet (Petersen, Feldt, Mujtaba, & Mattsson, 2008) 12

Table 2: Contribution Type Facet (Petersen, Feldt, Mujtaba, & Mattsson, 2008) 13

Table 3: Product Concept Context Facet .. 13

Table 4: Excerpt of mapping of research papers based on the classification schemes 14

Table 5: Categories covered by papers based on the classification ... 16

Table 6: Different Traceability approaches in MBSE .. 29

Table 7: Fields of TracedItem .. 58

Table 8: Fields of Trace Link ... 58

List of Figures XI

List of Figures

Figure 1: Systematic Mapping Study Process (Petersen, Feldt, Mujtaba, & Mattsson, 2008) .. 9

Figure 2: Building classification scheme (Petersen, Feldt, Mujtaba, & Mattsson, 2008) 12

Figure 3: Number of articles published in traceability (trend considering the 30 papers used

for the mapping study) ... 17

Figure 4: Horizontal and Vertical Traceability in V-model (Maro, 2020) 19

Figure 5: Dimensions and directions of trace links (Winkler & von Pilgrim, 2010) 21

Figure 6: Bidirectional Traceability and Consistency (SIG, 2017) .. 28

Figure 7: Traceability in IBM (https://www.ibm.com) .. 32

Figure 8: Link roles in Polarion (https://almdemo.polarion.com) ... 33

Figure 9: Link rules in Polarion (https://almdemo.polarion.com) ... 34

Figure 10: Traceability matrix in Excel ... 35

Figure 11: Traceability visualization filters in Yakindu (https://www.itemis.com) 36

Figure 12: Dashboard in Yakindu (https://www.itemis.com) .. 37

Figure 13: Snippet of expert interview questions ... 39

Figure 14 : Traceability in the toolchain (Polarion<->EnterpriseArchitect<->Doxygen) 47

Figure 15: Trace links in Polarion .. 49

Figure 16: Trace links outside Polarion ... 49

Figure 17: OSLC Provider and Consumer (Kaiser & Herbst, 2015) 50

Figure 18: Export of EA elements to Polarion using EAPO .. 52

List of Figures XII

Figure 19: ReqXchanger for Polarion and Enterprise Architect .. 54

Figure 20: Class diagram of the traced items ... 57

Figure 21: Association of TracedItem and Trace link .. 59

Figure 22: Trace link types between TracedItems ... 59

Figure 23: Features supported in TraceGen ... 60

Figure 24: Use case for the creation of trace links ... 62

Figure 25: Use case for the maintenance of trace links .. 63

Figure 26: Requirement diagram containing traces ... 73

Figure 27: Traces between requirements in Polarion ... 73

Figure 28: Trace link information in the Doxygen web report .. 74

Figure 29: Trace links maintenance in traceability matrix report .. 75

Figure 30: Trace tree report in Power-BI ... 76

Figure 31: Trace matrix with drill features of Power-BI ... 77

Figure 32: Indirect trace link establishment using Power-BI visualization 78

Figure 33: Trace-list representation in Power-BI ... 97

Figure 34: Trace-matrix representation in Power-BI ... 98

Figure 35: Traceability graph representation in Power-BI ... 99

Figure 36: Trace coverage report in Power-BI ... 99

Figure 37: Suspect links report in Power-BI .. 100

Introduction 1

1 Introduction

With the enormous increase in complexity of embedded systems and reduced time to market,

many companies have switched from code-based engineering to Model-based Systems and

Software Engineering (MBSE) approach to develop software systems. In the MBSE

approaches, systems are refined from requirements to architectural design to detailed design,

all with respect to models until a refined model is available with enough details to implement

the system (Galvao & Goknil, 2007). All models represent the same system but with different

levels of detail. Hence, MBSE approaches tend to introduce the challenge of managing the

multitude of artifacts created using various tools during the lifecycle of a system. Actively

supporting traceability between different artifacts helps to understand the system better and

maintain these model-based artifacts as they evolve (Winkler & von Pilgrim, 2010).

1.1 Motivation

During the life cycle of a huge, complex project, a large number of artifacts are created across

the organization between different teams and in many cases across organizations. These

artifacts are often developed in isolation with differen

demands. As a result, information is scattered across teams and organizations with various

documents and repositories being developed and maintained by different resources (Koenigs,

Beier, Figge, & Stark, 2012). If trace links are not created and maintained between various

artifacts, the system's quality, integration, and maintenance will be at stake. Hence achieving

traceability in a pragmatic way is very critical for the quality of the project.

Though MBSE approaches result in an enormous amount of artifacts making it hard to

achieve traceability, in few cases it eases the process. For example, a few MBSE approaches

develop parts of the system automatically using model transformations, and these automatic

transformations from one model to the other can be used to generate traceability between

them without any additional effort (Winkler & von Pilgrim, 2010). Hence following the

MBSE approach during the development of a system might introduce certain benefits as well

as some setbacks for achieving traceability. Hence the challenges faced for achieving

traceability in MBSE projects must be compiled to find feasible solutions.

Introduction 2

Knowing that the traceability process is not trivial but involves a lot of manpower, automation

of the process is crucial. Also, the creation of trace links manually is error-prone and an

arduous task. Hence tools must be used for the automatic creation and maintenance of the

links. However, choosing the right tool is even more difficult in MBSE projects as they use a

wide variety of authoring tools for the creation of artifacts which might result in compatibility

and configurability issues resulting in tool breaks. For example, mid-way a project can change

some of its authoring tools, and hence the tool used for establishing traceability must be

compatible with the new tools too else it might result in tool breaks. Hence various

approaches and tools available for establishing trace links must be explored along with their

benefits and drawbacks to make an informed decision of choosing a tool.

Having a large number of artifacts produced in the Model-based Systems and Software

Engineering approach might result in a large number of trace links between them. Visualizing

all of them in a single report makes it incomprehensible and hence unusable. Therefore,

pragmatic visualization techniques for the generation of trace links reports and navigation are

crucial for the quality analysis of trace links. Also, having trace links between every artifact

may not serve its purpose. Tracing the relationship between all the artifacts results in

alleviating complexity and hampering its benefits as it reduces the understandability of the

report. Hence cautious selection of subjects of interest (traceable artifacts for the creation of

trace links) is also important. Hence having a traceability information model defined helps to

create rules for the selection of artifacts, traceability link-types between the artifacts, and so

on based on the .

Also, many standards like ASPICE and safety guideline documents such as ISO 26262

standard (Road vehicles Functional safety), IEC 62304 (Medical Device Software Lifecycle

Processes) insist on achieving traceability across software artifacts in the projects for

improving the product quality. Traceability when achieved completely and correctly, helps in

various activities of the project lifecycle. Many metrics can be extracted from the trace links,

which helps in enhancing the project process. Hence knowing the various uses encourages

having a traceability process in place in the project.

Hence based on all of the above reasons, the main focus of the thesis is to compile the

challenges faced while achieving traceability in an industrial setting and provide probable

Introduction 3

solutions. The research also focuses on compiling the most effective ways and approaches to

achieve traceability. Also, a new pragmatic approach for achieving traceability is presented.

1.2 Problem Statement

This section covers the problems that are researched in this thesis. The various ways by which

traceability can be achieved pragmatically in MBSE are discussed. Pragmatic traceability is

establishing traceability sensibly and realistically in a way that is based on practical rather

than theoretical considerations. Though the importance of traceability has been well

understood by industrial companies for the success of complex projects, numerous issues

make it difficult to achieve in practice. In theory, traceability when established completely,

only then the project can reap its full benefits. However, practically it may not be possible to

achieve complete traceability because of the various challenges. Hence the problems (P) faced

by industrial companies to achieve traceability are discussed.

 P1- Tool breaks and tool support: In MBSE, the models are developed using a

variety of tools. The tools chosen by a team may not match with other teams due to

differences in expertise, management, project needs, etc. Sometimes it may also

happen that the tools are changed in the mid-way of a project due to organizational

decisions. Hence incompatibility and non-configurability result in tool breaks.

 P2- Consistent trace links: As and when requirements or any other artifacts change

or evolve, the trace links must be reviewed and updated. Not maintaining trace links

results in incorrect information of relationships between artifacts which does not serve

the purpose and hence hinders the usability of models.

 P3- Cost-effective: One of the main challenges of traceability is proving its uses, as

benefits cannot be measured sooner. Most of the engineers might consider traceability

as an overhead task as it is time-consuming and also it does not show immediate

advantages of maintaining it. Also, the time required for establishing traces and for its

analysis is more when the process is not automated.

 P4- Selecting the subjects of interest: A huge number of artifacts are produced in the

Model-based Systems and Software Engineering approach. Having trace links

between every artifact may not serve its purpose. Sometimes even if it does, analyzing

the huge number of trace links is complex.

Introduction 4

As a result of these problems, most projects do not follow the process of traceability from the

beginning and are created only during the assessment stage done at the middle/end of the

project. This results in not deriving all the perks that could benefit the project when

traceability tasks are integrated into the existing work process.

1.3 Research Approach

This section describes the research approach, namely the research objectives, research

questions, and research procedure. The expectation from the research is to tackle the above-

mentioned problems, to provide a clear view on benefits when traceability is closely linked

with system and software development life cycle, and to be able to achieve traceability with

pragmatic approaches in a toolchain. Many existing approaches are researched for the same

with pros and cons. Based on the knowledge gained, a new approach along with a prototype

tool will also be developed to automate the process.

The first step is to identify the research objectives and questions. The objectives and questions

were identified to address the problems captured in the previous sections and also to help in

researching various viable approaches.

1.3.1 Research Objectives

The main objective of the thesis is the identification of the challenges and viable approaches

of tracing in industrial MBSE contexts. Even though the benefits of traceability are hard to

measure, it has been time and again proven that it reduces the overall project time and

improves the quality of the product. Hence identifying the existing challenges after discussing

with industrial companies and compiling the reasonable ways to improve the gaps present in

the existing approaches helps to achieve traceability successfully. The various ways by which

the problems faced are handled by focusing on achieving only necessary traceability and

accepting some of the inevitable shortcomings are researched.

1.3.2 Research Questions

The research objective leads to the following research questions (RQ):

Introduction 5

 RQ1: What are the different criteria to be considered for the creation of traceability

between different artifacts?

Depending on the project needs, the traceability process needs to be tailored. For

example, some project needs feature level granularity and some might need package

level. Similarly, the purpose of link visualization could be different from each other.

Some stakeholders might need a graph to get the project progress and others might

need matrix data to check for the missing links. Hence knowing different criteria is

very important for the creation of a traceability process and for the identification of a

tool based on the project needs.

 RQ2: How and when trace links are used in industrial practice?

Traceability is a necessary system characteristic as it supports software management,

software evolution, and validation (Galvao & Goknil, 2007). Understanding the

purpose and usage helps in guiding and choosing the appropriate tool/approach based

on project needs.

 RQ3: What are the best practices and pitfalls present in the existing approaches/tools

for the creation of trace links and their maintenance?

This aims at compiling all the challenges and relevant approaches which could be used

for traceability with pros and cons. Gaps are identified and viable solutions are

identified based on the knowledge of different approaches.

 RQ4: How does MBSE ease or complicate traceability?

Though MBSE helps to achieve high-quality software, the downside is its byproducts.

Various models with different representations are created with duplicated or

overlapping information between them. Hence generating traces among models at

different levels of abstraction introduces complexities (Galvao & Goknil, 2007).

However, MBSE has various tool supports which facilitate the creation of traces at

various stages with automatic or minimal intervention. Hence understanding both the

advantages and disadvantages of MBSE in achieving traceability helps to decide on

the criteria and approaches to follow and to fill the gaps in existing approaches.

Introduction 6

1.3.3 Research Method

To research the above-mentioned objective and questions, the following research method has

been followed in this thesis.

The first step is to understand state-of-the-art with literature review. Conduct a literature

search on traceability in MBSE and embedded software engineering projects in general. By

conducting a systematic mapping study (SMS), a structure of the type of research reports and

categorized results that have been published will be summarized (Petersen, Feldt, Mujtaba, &

Mattsson, 2008). Visual synthesis and classification of the data research conducted based on

the collected research papers help to understand the research development in the area of

traceability. Besides, the coverage of the search area can be determined, the available research

and results are identified in terms of quantity and type (Petersen, Feldt, Mujtaba, & Mattsson,

2008). A mapping study helps to identify, assess and interpret the set of research works to

gather information on research questions raised. By performing SMS, some of the research

questions will be answered to an extent.

The next step is to understand state-of-the-practice with expert interviews. It is used as a

qualitative research technique to compile challenges and best practices in achieving

traceability in industrial settings. This will help to gain more insight into traceability

management practices, approaches, and tools used in real-time projects. The feedback from

experts will be analyzed and shall be used to decide on important criteria, techniques that

must be applied during the development of the prototype tool.

In the next step, challenges and best practices will be consolidated from the above two

methods. Various state-of-the-art approaches/tools used for achieving traceability in MBSE

will be analyzed by compiling both advantages and disadvantages. These help in noting the

various aspects considered in these tools for the creation, management, and visualization

techniques.

Finally using all the findings from the above-mentioned research methods, the feasibility of

promising traceability approaches with a tool prototype will be explored. A toolchain for a

MBSE system consisting of Polarion, Enterprise Architect, and Doxygen is selected to

explore the viable approaches for achieving traceability. The prototype tool will be developed

Introduction 7

to have trace links created pragmatically between the artifacts created in these three different

tools.

All the above methods work in the direction of bridging gaps in the existing approaches to

establish traceability in a project in a pragmatic way.

1.4 Thesis Structure

This section provides an overview on the organization of the remainder of the thesis. Chapter

2 gives an introduction to the basic concept of traceability and then describes the systematic

mapping study conducted as part of the research. It also presents the results of the mapping

study and gives an overview on the concepts of traceability compiled from the literature

review. The discussion regarding the data collected from experts on traceability practices and

tools in their projects, along with the compilation of best practices and pitfalls are presented in

chapter 3. In chapter 4, the viable approaches for traceability are discussed. It elaborates the

studies conducted during the thesis regarding various tools and approaches with their pros and

cons. The feasibility of various traceability approaches across a selected toolchain is discussed

(Polarion<->Enterprise Architect<->Doxygen). Finally, concluding remarks are presented

along with the opportunities for further investigations in chapter 5.

Related Work 8

2 Related Work

This chapter gives a general overview of traceability and covers the methods and findings of

the literature research conducted. Chapter 2.1 describes the basics of traceability to have an

understanding of the terminology. The adopted method for the literature research is described

in chapter 2.2. And a summary of the SMS results is presented in chapter 2.3. It also gives a

general overview of the concepts of traceability which were compiled during the literature

search. This is followed by elaboration on various approaches and tools used to achieve

traceability in MBSE projects in chapter 2.4.

2.1 Understanding Traceability

According to IEEE standard of software engineering terminology (IEEE, 1990), traceability is

he degree to which a relationship can be established between two or more products of the

development process, especially products having a predecessor-successor or master-

subordinate relationship to one another . For example, it is the degree to which the

requirements and design of a given software component match. Traceability is the ability to

link artifacts created with one another using relationships between them. As the software

development process involves the creation of a lot of unique intermediate artifacts apart from

the final products, traceability helps in keeping track of the artifacts using the links over time.

It helps in understanding the artifacts' relationships and their management as they evolve.

Throughout the project, the artifacts keep getting created and modified either because of new

requirements or changes in requirements, or due to some new insights. To apply these

changes accordingly across all the artifacts, traceability helps. It helps in easing the analysis

of the impact of changes across artifacts which in general is a very time-consuming and

arduous task (Winkler & von Pilgrim, 2010). Traceability also has other benefits like program

comprehension, validation of artifacts, monitoring and tracking project status, identification of

reusable elements, for audits, etc which will be discussed in chapter 2.3.3.5.

Related Work 9

2.2 Systematic Mapping Study

A systematic mapping study was conducted to get a statistical analysis of the research papers

and reports found online on the research topic by categorizing them. It helps to get an

overview of the research topic and how much it has been covered in the research.

systematic mapping study provides a structure of the type of research reports and results that

have been published by categorizing them (Petersen, Feldt, Mujtaba, & Mattsson, 2008). The

following shows the process followed in the study:

Figure 1: Systematic Mapping Study Process (Petersen, Feldt, Mujtaba, & Mattsson, 2008)

The scope of the research is defined by having research questions for the SMS (chapter 2.2.1)

through which the first search for papers was conducted. The research questions for SMS are

to be understood as sub-questions of the research questions listed in chapter 1.3.2, which were

derived from the problem statements and objective of the thesis. Using the knowledge of the

first screening of research papers, search strings were defined in chapter 2.2.2, and a refined

search was conducted. Before looking into the papers to check their relevance for the research

work, the inclusion and exclusion criteria were defined in chapter 2.2.3. Based on the

findings, the papers were classified into the context, research, and contribution facet. The final

step is the data extraction and the actual mapping process, which results in a systematic map

(Petersen, Feldt, Mujtaba, & Mattsson, 2008).

2.2.1 Research Questions

The first research question is regarding the criteria to be considered for the creation of the

purposes of traceability, various ways of creating and maintaining traces, etc will help in

deciding the criteria. Hence research materials focusing on various aspects of traceability

Related Work 10

must be checked. Hence systematic mapping questions should break down the research

questions to be more precise if research questions are not straightforward. Below is the

mapping between research questions and respective systematic mapping questions:

RQ1: What are the different criteria to be considered for the creation of traceability between

different artifacts?

 SMS_Q1: What different areas in traceability are addressed and how many articles

cover each area?

RQ2: How and when the trace links are used in industrial practice?

 SMS_Q2: What are the main objectives of traceability and are any kinds of evidence

presented concerning how traceability helps in project improvement in the industrial setup?

RQ3: What are the best practices and pitfalls present in the existing approaches/tools for the

creation of trace links and their maintenance?

 SMS_Q3: What are the most investigated challenging topics in traceability and what

are the proposed solutions for the same?

RQ4: How does MBSE ease or complicate traceability?

 SMS_Q4: What are the available tools/approaches used to achieve traceability in

MBSE projects with pros and cons?

Based on the above questions, the scope of the systematic mapping study is fixed. The first

question defines the basis of this mapping study and provides an overview on the topics of

traceability that need to be checked before deciding on the process and approaches of

traceability in a project. The second question gives an overview of the purpose and

importance of the application of traceability at the right time in real-life projects. The next

question answers the most challenging aspects of traceability and how they are tackled in the

existing approaches/tools. The fourth question mainly compiles the various approaches/tools

used to capture trace links in MBSE projects and also on the maturity level of the approaches.

2.2.2 Search Strings Used for Online Database Research

The identified keywords along with Boolean logic to either combine alternative terms with an

OR connect terms with an AND are specified. The resulted search strings are:

Related Work 11

- Traceability OR trace link OR tracing) AND (survey OR overview OR "literatur* review")

- (Traceability OR trace link OR tracing) AND ((challenges OR best practice OR lessons

learned) AND (industry or industrial))

- (Traceability OR trace link OR tracing) AND (automotive OR health OR MBSE)

Google Scholar database is mainly used for searches. However, ACM, IEEE, and

ScienceDirect were also used for cross-checking any missing articles.

2.2.3 Inclusion and Exclusion Criteria for Search Results

Before screening the research papers obtained through the above search string, below

inclusion and exclusion criteria are defined.

Inclusion criteria are noted to ensure that only relevant and useful results are put forth.

IC1: Papers matching the search string and papers describing the approaches within the scope

of this thesis.

Papers were considered irrelevant if they meet at least one of the following exclusion criteria:

EC1: Papers not focusing on traceability for software engineering, i.e. Tracing in supply

chain activities, Medical tracing, etc

EC2: Papers not in English

EC3: Papers not accessible through one of the stated databases (IEEE, ACM and Science

Direct)

2.2.4 Classification Scheme

This section describes the followed approach of Bailey (Bailey, et al., 2007) and steps

mentioned in Petersen (Petersen, Feldt, Mujtaba, & Mattsson, 2008) for classifying the

research papers obtained after applying inclusion and exclusion criteria. Figure 2 shows the

steps followed for classification which eventually helps for the mapping. To create the

classification scheme, the abstracts of the research papers were read through and keywords

were identified. Also, the context of the paper is noted. All keywords were put together and a

higher-level view of the research, its nature, and its contribution was obtained. This helps in

Related Work 12

Figure 2: Building classification scheme (Petersen, Feldt, Mujtaba, & Mattsson, 2008)

contain enough information, the introduction and conclusion were also reviewed. This

knowledge helps in classifying the research papers into different categories (Petersen, Feldt,

Mujtaba, & Mattsson, 2008).

Research papers were classified into the following three facets: The research facet, the

contribution facet, and the product concept context facet

content.

The research facet provides the different categories of research types that can be conducted.

Below Table 1 describes the different kinds of research techniques as per (Petersen, Feldt,

Mujtaba, & Mattsson, 2008).

Table 1: Research Type Facet (Petersen, Feldt, Mujtaba, & Mattsson, 2008)

Category Description
Validation
Research

Techniques investigated are novel and have not yet been implemented in
practice.
Techniques used are for example experiments, i.e., work done in the lab.

Evaluation
Research

Techniques are implemented in practice and an evaluation of the technique is
conducted. That means, it is shown how the technique is implemented in
practice (solution implementation) and what are the consequences of the
implementation in terms of benefits and drawbacks (implementation
evaluation). This also includes identifying problems in the industry.

Solution Proposal A solution for a problem is proposed, the solution can be either novel or a
significant extension of an existing technique. The potential benefits and the
applicability of the solution are shown by a small example or a good line of
argumentation.

Philosophical
Papers

These papers sketch a new way of looking at existing things by structuring the
field in form of taxonomy or conceptual framework.

Opinion Papers These papers express the personal opinion of somebody whether a certain
technique is good or bad, or how things should be done. They do not rely on

Related Work 13

related work and research methodologies.
Experience
Papers

Experience papers explain what and how something has been done in practice.
It has to be the personal experience of the author.

Each of the papers researched was classified into the above categories based on the

classification without digging deep into the papers. Also, the papers were classified based on

their contributions as in Table 2 as per (Petersen, Feldt, Mujtaba, & Mattsson, 2008).

Table 2: Contribution Type Facet (Petersen, Feldt, Mujtaba, & Mattsson, 2008)

Contribution
Category

Description

Metric Papers cover mainly the standards of measurement
Tool Papers talks about the tools that could be used to achieve the expected results
Model Papers talk about different example systems that can be used along with

various criteria to be considered.
Method Explains different approaches of how something can be achieved
Process Explains the different steps to be followed
Terminology Explains mainly the concepts

Below Table 3 shows the different types of product concept context facets that were classified

based on the main topic of research i.e., traceability. Hence, each of the papers was also

classified based on the concept described and covered.

Table 3: Product Concept Context Facet

Product Concept Context Facet Description
Traceability concepts Papers cover basic concepts of traceability

along with its purpose
Creation of traceability Papers describe an approach, tool, or steps

to create trace links
Traceability maintenance Papers mainly talk about how traceability

must be maintained with an approach or tool
Requirements traceability Papers cover traceability for requirements

only
End to end traceability Papers describe steps, approaches to apply

traceability to all the artifacts from
requirements to test reports

Challenges of traceability and solutions Papers cover mainly the issues faced for
achieving traceability and probable solutions

Comparison of tools and techniques Papers describe various tools and
approaches followed along with pros and
cons

Traceability visualization Papers describe the various traceability
reports and navigation approaches useful for
the analysis

Related Work 14

2.3 Results

In this section, the result of the performed mapping study is presented. First, a brief overview

of the results of the search is described in chapter 2.3.1. The answers to the mapping study

research questions are explained in detail in the next chapter 2.3.2. Basic traceability concepts

along with tools and approaches found during literature search are described in chapter 2.3.3.

2.3.1 Results of Database Search

In this section, the result of the mapping study based on the classification scheme described in

chapter 2.2.4 is presented. The defined keywords led to a total amount of 714 research papers.

The search was mainly done in Google Scholar and other sites like ACM, IEEE, and

ScienceDirect were rechecked for any missing relevant papers.

From these papers, 684 papers were excluded due to the inclusion and exclusion criteria

(chapter 2.2.3) and also by removing the duplicate copies. Hence, 30 papers have been

considered to be relevant, and thus, added to the list of primary studies. The following Table 4

shows an excerpt of the list of primary studies that are mapped based on the classification

schemes. The classification of all the considered papers can be referred to in Appendix 7.1.

Table 4: Excerpt of mapping of research papers based on the classification schemes

ID Year Title Search
String

Author Research
facet

Contrib
ution
facet

Product Concept
Context Facet

P01 2007 Survey of
Traceability
Approaches in
Model-Driven
Engineering

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Galva
o &
Goknil,
2007)

Solution
proposal

Method End to end
traceability/
Comparison of
tools and
techniques

P02 2009 A survey of
traceability in
requirements
engineering
and model-
driven
development

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Winkl
er &
von
Pilgrim
, 2010)

Solution
proposal

Method/
Model/T
erminolo
gy

Traceability
concepts

Related Work 15

P03 2006 Traceability
Techniques:
A Critical
Study

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Bashir
&
Qadir,
2006)

Evaluation
Research

Method Requirements
traceability/
Comparison of
tools and
techniques

From the mapping information, the frequencies of research papers based on the classification

were analyzed. The following summarizes papers on the research facet. The majority of

papers (around 67%) talked about approaches that can be followed for achieving traceability

and hence can be described as solution proposals. The papers talked about the challenges

faced and also described the probable solutions that can be followed to tackle the problems.

Apart from that, around 20% of the papers described the current techniques that are being

followed in industrial scenarios with pros and cons, and 10% of papers investigated on

experiments that are still novel and not used in real-time projects.

As mentioned in the previous facet, even in the contributions type more than half (around

70%)

various approaches that can be followed to achieve traceability. Also, most of these papers

explored the topic of the main criteria to be followed and major points to be remembered

while applying traceability in a project. Around 37% of the papers described different model

systems that can be used to create and maintain trace links and also talked about the main

criteria to consider while using them. Few papers (28%) explained the different tools used

along with their advantages and disadvantages. It was also noted that many of the papers

covered more than one category resulting in an overlap. Hence overall, researching these

papers gave us a fair idea of the available methods, models, and tools available for

traceability.

The next facet mainly describes the division based on the various topics of traceability that the

paper discusses. The papers were widespread in terms of the topics covered. Majorly papers

described end-to-end traceability concepts (27%), however, few papers also talked

particularly about traceability in requirements (17%). Various tools and methods used for

traceability were compared with pros and cons. The challenges faced while tracing was also

one of the main topics of discussion. In some papers, traceability maintenance was considered

as the major topic and hence approaches that can be followed for the same were explained.

Related Work 16

Also even in this facet, many of the papers covered more than one categories and hence

overlapping of papers covering more than one category were observed. Below, Table 5 shows

the division of papers based on the topics covered and based on the frequencies. As

mentioned earlier, the number includes overlapping of the papers covering different topics.

i.e. Same paper could cover both the Model and Tool category in the contribution facet.

 Table 5: Categories covered by papers based on the classification

Classification
Scheme

Categories Number of articles

Research facet Solution Proposal 20
Evaluation Research 6
Validation Research 3
Philosophical Papers 1

Contribution facet Method 21
Model 11
Tool 8
Process 2
Terminology 2

Product Concept
Context facet

End to end traceability 8
Comparison of tools and
techniques

7

Challenges of traceability and
solutions

6

Creation of traceability 6
Requirements traceability 5
Traceability maintenance 5
Traceability concepts 3
Traceability visualization 1

The next numerical data shows the trend of research in the field of traceability in software

engineering. Below Figure 3 shows the trend of the research.

Related Work 17

Figure 3: Number of articles published in traceability (trend considering the 30 papers used for the mapping
study)

It has been noticed that around the year 2010, more researches on traceability were conducted

and it was highest in the year 2012, considering the papers that have been examined for this

systematic mapping study.

2.3.2 Answering Mapping Study Research Questions

The main goal of mapping study apart from building a classification scheme and structuring

the types of research by providing a visual summary is to combine the results to try to find the

answers to the research questions. Hence, the answers found for the mapping questions during

the mapping study are discussed in this section. As systematic mapping questions are mapped

to research questions, these answers give initial basic information for the research though not

detailed.

SMS_Q1: What different areas in traceability are addressed and how many articles cover

different areas?

This is answered by the Product Concept Context Facet classification mentioned in the

previous chapter. The majority of them gave importance to tracing from requirements till the

testing phase. i.e. end-to-end traceability. The papers also discussed various approaches that

can be followed along with the challenges. Hence, things to consider before selecting an

approach were highlighted. Considerable papers gave importance equally to the traceability

creation and maintenance phase. However, the visualization and navigation aspects were not

explored more.

Related Work 18

SMS_Q2: What are the main objectives of traceability and are any kinds of evidence

presented with respect to how traceability helps in project improvement in the industrial

setup?

Almost all the papers talked about the uses and main purpose of traceability in the context in

which it was described. However, it was observed that none of them provided evidence of

how traceability helps in project improvement as measuring it is almost impossible. As the

understood that it was overall beneficial for the project. Also, less than 30% of the papers

covered traceability considering the industrial setup.

SMS_Q3: What are the most investigated challenging topics in traceability and how have

these changed/improved over time?

Around 50% of the papers talked either directly about the challenges faced and their probable

solutions or indirectly discussing the problems faced in various tools and approaches and

comparing them for the pros and cons. Hence a fair share of the major challenges and advised

solutions were compiled by checking the abstract and conclusion sections of the papers.

SMS_Q4: What are the available tools/approaches used to achieve traceability in MBSE

projects with pros and cons?

In the research papers, many MBSE traceability approaches like modeling approaches,

transformation approaches, requirements-driven approaches, information-retrieval techniques,

etc were discussed. It covered around 60% of the papers. Apart from these approaches, around

27% of the papers also discussed the tools developed. Some of the tools were novel too.

However, almost all of them covered the benefits and drawbacks of the approaches and tools

in the discussion. Hence the mapping study provided an overview of the tools used for

traceability in general.

As the research questions of the mapping study were derived from the research questions of

this thesis, some of them got the basic information regarding the subject of interest at this

point.

Related Work 19

2.3.3 Concepts of Traceability

During the systematic mapping study, research papers were screened to check their relevance

for the research work. Hence, the main concepts of traceability and the various

approaches/tools used were also compiled for future reference while screening the papers.

These collected data were used during expert interviews, to identify the research gaps and for

the development of a prototype tool. Hence, the compiled main concepts of traceability and

various approaches/tools used for achieving traceability are described in this section.

2.3.3.1 Classification of Traceability

In typical V-model process lifecycle projects, traceability can be divided majorly into

horizontal and vertical traceability (Ramesh & Edwards, 1993).

Horizontal traceability: In general, horizontal traceability is the ability to link between the

same abstraction levels. For example, links are created between different requirements. In

terms of the V-model, horizontal traceability is the ability to link between artifacts on the left

side of the V-model to their corresponding verification artifacts present on the right side of the

model (Maro, 2020). For example in Figure 4, System Requirements are linked with

corresponding System Tests. Similarly System Architecture elements are linked with System

Integration Tests etc.

 Figure 4: Horizontal and Vertical Traceability in V-model (Maro, 2020)

Related Work 20

Vertical traceability: Vertical traceability is the ability to link between different abstraction

levels. For example, links are created between requirements to architecture, architecture to

design elements, etc. For example in Figure 4, vertical trace links are established between

System Requirements and System Architecture. Similarly between Software Requirements

and Software Units etc.

The other classification is with respect to requirements like pre-requirements specification

(pre-RS) traceability and post-requirements specification (post-RS) traceability.

Pre-RS traceability: The links created during elicitation, discussion, and agreement of

requirements with customers until they are included in the requirements specification

document. This includes dealing with informal, conflicting, or overlapping information.

Maintaining these links provides a rationale for every following artifact that will be

developed.

Post-RS traceability: The links created during the stepwise implementation of the

requirements in the design and coding phases (Winkler & von Pilgrim, 2010). Post-RS

traceability is more important to maintain as the links are created to maintain consistency

across artifacts with respect to the agreed requirements from the customer.

The other kind of classification is based on the directionality of trace links as per IEEE Std.

830-1984. It has introduced the terms backward traceability and forward traceability (IEEE,

1984).

Backward traceability: refers to the ability to follow the traceability link from a specific

artifact to the sources from which it has been derived. i.e., from a successor to a predecessor

Forward traceability: refers to the ability to follow the traceability links to the artifacts that

have been derived from the artifact under construction. i.e., from predecessor to successor

Both horizontal and vertical traceability can be unidirectional or bidirectional. Bidirectional

traceability is the ability to trace from a predecessor to a successor or from a successor to a

predecessor. Usually, many standards expect bidirectional traceability as it s important to be

able to trace from one artifact to the other and back again.

Related Work 21

Figure 5: Dimensions and directions of trace links (Winkler & von Pilgrim, 2010)

The above classifications are shown in Figure 5. The Pre-RS traceability is from elicitation till

the creation of Requirement Specification and Post-RS traceability starts after the creation of

Requirement Specification. Also, the direction of the arrows in the figure represents whether

links are created from predecessor to successor or vice-a-versa.

2.3.3.2 Basic Terminologies of Traceability

The other basic terminologies used in traceability are as follows. A trace encompasses trace

artifacts as well as a trace link associating the trace artifacts. And traceability information

model (TIM) defines the permissible trace artifact types and the permissible trace link types,

often utilizing the traceability meta-model (Holtmann, Steghöfer, Rath, & Schmelter, 2020).

Types of trace links:

Trace links can be classified into implicit and explicit trace links based on the specificity of

links. Implicit links are not established directly instead links are formed because of naming

conventions used in artifacts. Explicit links are created using tool support. Based on the

storage of links, trace links are classified as volatile and persisted. Volatile links are not stored

and are used only until an operation using them is completed. Whereas persisted links are

stored for later retrieval. They are further classified as internal, trace links that are stored

within one of the traced artifacts, and external, trace links that are stored separately outside

Related Work 22

the traced artifacts. Based on the creation process, they are further classified as manual and

computed trace links. As the name suggests, they are either manually created or generated

using a tool (Holtmann, Steghöfer, Rath, & Schmelter, 2020).

2.3.3.3 Prerequisites for Achieving Traceability

Creating traceability without knowing the background of why it is required or how it is used

etc may not yield the best results. Hence knowing the background is very important. Below

are some of the core questions to be asked as a pre-requisite for achieving traceability in any

project. Discussing the below questions also answers part of the research questions RQ1 and

RQ2.

 What? - This question mainly answers the scope (boundary) of traceability. The

specific questions to ponder upon are: What are the subjects of interest for the creation

of trace links? What kind of inter-relationships between artifacts are to be considered

based on their later usage in the project context? This helps a project to decide on the

traceability scope before starting the process and hence can be planned accordingly.

For example, some safety-related projects might need a rationale for the decisions that

are taken for non-functional requirements. Hence in such cases, trace links must be

created and maintained considering the non-functional requirements and their

corresponding architecture and design elements. However, most of the projects mainly

are interested in covering functional requirements traceability as it helps in change

impact analysis and change propagation. Hence as per the needs of the project, the

scope for traceability must be decided beforehand for informed planning.

 Why? - Knowing the purpose helps not to consider the traceability process lightly.

Hence the questions to be asked are: Why are the trace links being created? Before

deciding on achieving traceability, the main purpose of traceability must be

understood as in most cases the benefits of traceability are not immediate. Hence

making engineers aware of its purpose will help in achieving high-quality traceability.

The purpose could vary depending on the needs of the projects and on the usage

context of the engineers. For example, some might require it for proving system

adequateness to their customers, some might need it for monitoring progress, and for

Related Work 23

some to understand the system. Hence understanding why traceability is required is

considered as one of the prerequisites in achieving traceability.

 How? - Deciding on tools is critical to avoid manual work. Hence to consider various

aspects of tools, the following questions must be discussed: How can we achieve

traceability? Achieving traceability is not trivial because of the sheer number of

artifacts developed in a project. Creating and maintaining traceability manually is not

only error-prone, it is a too laborious task as well. Hence deciding on the tools to

create and maintain traceability is critical. The decision of choosing traceability tools

depends on various aspects. Such as tools used to create different artifacts, cost-

effectiveness, traceability tool features for navigation, report generation, and

visualization, etc.

tool.

 When? - Defining the process beforehand and making the steps mandatory helps to

achieve traceability on time. Hence to decide on the process, the following questions

are to be discussed: When should the links be created and updated? When should the

links be reviewed? Having a process in place is very important to achieve traceability.

Creation and its maintenance must be part of the software development life cycle and

the task of creating it and maintaining it must be made mandatory. As not doing it

might not create any problem in the short run, many ignore the long-run benefits of

doing it. Hence imposing the activity of maintaining traceability while creating and

updating artifacts is crucial for its quality.

 Who? - Defining the process of who creates is also a very important step to achieve

traceability for the same reasons mentioned above. Hence the responsible person for

the creation and maintenance of trace links must be decided during the planning phase.

As the person creating it may not get immediate results, the task is considered as

overhead. Hence deciding on resources for the creation and maintenance of trace links

and allocating sufficient time is as important as the creation of artifacts itself. Links

must be carefully thought of and hence must not be considered as a low priority task.

Management must ensure to give enough time allocated for this activity to reap

benefits in the long run.

Related Work 24

2.3.3.4 Key Criteria for Traceability Approaches

As discussed having traceability in a project results in long-term benefits and also is used to

measure the quality of the software system. Hence achieving traceability must be regarded as

a crucial part of the project. The success in achieving traceability is mainly dependent on the

intrinsic motivation from all the stakeholders and trust in the process (Koenigs, Beier, Figge,

& Stark, 2012). Hence the approaches/tools to be used for traceability must be carefully

thought of. Below are the few main criteria to be considered while deciding on the approach.

This also provides us the detailed answers for the research question RQ1 (What are the

different criteria to be considered for the creation of traceability between different artifacts?)

Planning criteria: During the planning phase of traceability, the main aspects to be

considered are the traceability schema, link properties, and supported artifacts.

Traceability schema: In order to systematically approach traceability, a set of rules on it must

be decided early on during the planning phase. Traceability schema acts as a rulebook to

follow for all the stakeholders involved in its creation and maintenance. The schema should

give information on traceability type set which defines the types of links and their meaning

for a project, traceability object set which determines the types of objects that can be linked

with a certain type of links, a traceability role set which defines the stakeholders and their

permission to access traces, a minimal links set that determines which links can exist so that

the traceability information is regarded as correct and complete for a specific project. And

also, a schema specification must include a metrics set that defines quality measures for

traceability in the respective project (Winkler & von Pilgrim, 2010).

Traceability link properties: Trace links can be created with various levels of detail. Hence

properties of the links must be decided based on the project needs. Following are some of the

properties and their probable values that must be considered while making the decision.

Traceability link types could be invasive or non-invasive. In invasive types, artifacts are

modified to obtain the trace links however in non-invasive, no drastic changes are made to the

artifacts and are minimally intrusive (Antonino, Keuler, Germann, & Cronauer, 2014). The

variable arity of link types could be binary or n-ary where an artifact can have multiple

sources and multiple targets (Maletic, Munson, Marcus, & Nguyen, 2003). Traceability link

direction can be uni-directional or bi-directional (Winkler & von Pilgrim, 2010). Traceability

link hierarchy could be non-hierarchical or poly-hierarchical. Traceability link granularity

Related Work 25

decides on the level of details that the links capture. For example, a link could be parameter

level tracing(fine-grained), feature level tracing, or model/package level tracing(coarse-

grained) (Koenigs, Beier, Figge, & Stark, 2012).

Traceability recording criteria: This helps in the selection of the creation process of trace

links. The decision on tool types is one of the main criteria which have to be considered based

on the project needs. Various kinds of tools are available for the creation and maintenance of

trace links which are discussed in chapter 2.4. The other criteria to be considered for

recording trace links is the degree of automation, the option could be manual, semi-automatic,

or full-automatic based on the budget and tools chosen. Interoperability of tools must also be

considered as per projects needs to check for the supported formats, supported standards,

, and multi-user tool support.

Usage criteria: The following category addresses the aspired uses of trace links and hence

tools should be selected based on needs. When used for change handling, the tool usually

provides different possible ways of informing users about changes in artifacts. Change

notification like suspect links provides useful information regarding changes based on the

artifacts involved in the link and change propagation triggers a predefined action on affected

artifacts. Traceability could also be used for verification purposes. In that case, a tool

providing visualization in terms of graphs and matrices along with filters fit the purpose.

When used for monitoring purposes, traceability tools must have the ability to create progress

reports. Many other usages will be discussed in chapter 2.3.3.5. Hence purpose is considered

as one of the main criteria to decide on the traceability approach (Koenigs, Beier, Figge, &

Stark, 2012).

2.3.3.5 Uses of Traceability

As discussed above, usage is one of the main criteria that need to be considered. Hence in this

chapter, various uses and applicability of trace links are discussed.

Change management: Changes in complex systems are inevitable and bear a huge risk.

Changes may be caused by changing user requirements and business goals or may be induced

by changes in implementation technologies. There is a need to analyze the impact of

requirement changes to determine possible conflicts and design alternatives influenced by

Related Work 26

these changes (Amar, Leblanc, & Coulette, 2008). As interdependencies between artifacts are

well documented and maintained by traceability, when a change request comes along, the

proposed change propagation across the artifacts can be easily identified. Hence traceability

helps in managing the change requests from customers systematically.

Impact analysis: Before making any changes to the systems, the decision must be well

thought of as changes lead to risks. Traceability helps in generating an impact report by

identifying all the dependent artifacts. This report helps in the analysis of the impact and

decision-making (Amar, Leblanc, & Coulette, 2008).

Coverage analysis: Coverage analysis helps in checking whether every requirement has a

corresponding design, implementation, test record, etc. The same can be analyzed for every

artifact by tracing forward or backward. The coverage analysis report also helps in proving to

customers the system's adequateness.

Reuse of product components: Traceability helps in the reuse of components because the

maintained trace links from the requirements to the corresponding design, implementation,

test reports, etc for that component can be easily obtained. If explicit trace links are not

present, then analysis needs to be done again as information may not be readily available

which calls for extra time and effort (Lago, Muccini, & Van Vliet, 2009). Reusing of

components helps particularly in product line engineering where a new variant of the product

is created by reusing.

Support for audits: In audits, trace links can be used to ensure that a downstream artifact

satisfies the upstream specification. It also helps in special audits like the system being

examined for security audit, where traces help for the identification of critical elements across

the system (Winkler & von Pilgrim, 2010).

For monitoring progress: As traceability maintains links across the system between various

artifacts, monitoring the status of each requirement till its implementation and testing status is

easy. Hence generating reports from trace links can be used for monitoring the status (Winkler

& von Pilgrim, 2010).

For easy understanding: Since traceability maintains trace links across artifacts, it can be

used for gathering different level information of the system. Information with

Related Work 27

links helps for better comprehension. In most cases, resources might join the project in mid-

way and might find it difficult to gain overall knowledge of the project. Traceability when

maintained across artifacts, it helps to connect various artifacts. Hence traceability helps in

knowledge engineering.

For tracking rationale: Traceability helps in understanding the decisions made which is

critical during the maintenance of the project. Maintenance mainly relies on up-to-date

documentation. Trace links help to link back to track the decisions made for a particular

component or module. For example, in which design modules a given requirement is realized

(Lago, Muccini, & Van Vliet, 2009).

The above usage scenarios provide a fair idea on the research question RQ2. (How and when

the trace links are used in industrial practice?)

2.3.4 Traceability in Automotive Domain

In the automotive domain, the development of all safety-critical systems has to comply with

safety standards such as ISO 26262. These standards require the establishment of traceability,

the ability to relate artifacts created during the development of a system, to ensure resulting

systems are well-tested and therefore safe (Maro, 2020). Also, traceability is a key aspect and

a necessary prerequisite for successful Automotive SPICE evaluation. Automotive SPICE is a

quality standard that allows automotive manufacturers to assess the performance of suppliers'

engineering processes.

According to ASPICE, bidirectional traceability must be achieved in both horizontal and

vertical abstraction levels. In the below Figure 6, the relationships demanded by ASPICE

between artifacts in a V-model project are shown. The line with two-sided arrows represents

the expected bidirectional traceability between the two artifacts. According to ASPICE,

bidirectional traceability must be achieved between requirements, architectural elements,

software design, and software units on the left side of the V-model and between the work

products on the left side to the corresponding test cases and test reports on the right side of the

V model. Hence, both vertical and horizontal traceability is expected.

Related Work 28

Figure 6: Bidirectional Traceability and Consistency (SIG, 2017)

2.3.5 Traceability in Model-Based Systems and Software Engineering

In MBSE, software development is done by implementing abstractions of the system with

varied details and precision. The software systems are developed into subsystems and

components and then these models are automatically transformed into source code (Gomaa &

Hussein, 2007). Having traceability between models helps in understandability,

maintainability, and adaptability. Traceability between the models can be achieved during

transformations from one model to the other as a byproduct. Having traceability information

between models helps in the evolution of the system. The different versions of the system

with reusable components/models could be developed with much less effort if trace links

between models are well maintained. However as mentioned earlier, the number of models

generated will be more, and hence having trace links between every model may not be

understandable and maintainable. Also, as information overlaps between models with varied

details based on the stakeholders' viewpoint, generating trace links between every model may

not be optimal because of overlapped information. Hence, through the years many different

approaches have been developed and tried for achieving traceability successfully in MBSE

systems. However, not all approaches are suited for every system. Every approach is unique

Related Work 29

and it mainly depends on the usage criteria. Hence approach has to be selected based on the

needs of the project.

Below Table 6 describes the various approaches followed to achieve traceability in projects

based on MBSE with pros and cons.

Table 6: Different Traceability approaches in MBSE

Approach Summary Advantages Disadvantages
Rule-based
approach
 (Mader, Gotel,
& Philippow,
2009)

This approach defines a set of rules
based on the attributes of the
artifacts. It automatically generates
traceability links between artifacts
based on the rules. The first kind of
rule, Requirement-to-object-model
rules, and a technique based on
information retrieval are used to
automatically establish traceability
relations between requirements and
analysis models. The second kind
of rule analyzes the relations
between requirements and object
models to recognize intra-
requirements dependencies and
establishes these relations
automatically.

The advantage of the
approach is that it
can be used with all
the artifacts such as
requirements, use
cases, object models,
code, etc.

The
disadvantage is
structural
changes are hard
to identify.

Hypertext
approach
 (Maletic,
Munson,
Marcus, &
Nguyen, 2003)

Manage traceability with XML
markup specifications. The
approach uses an XML-based
representation of both the models
and the links. Models are
represented in XML with no
restrictions as to the content,
organization, or schema. This
allows for full interoperability and
flexibility of models in the
approach including document-
oriented models, e.g., DocBook,
XHTML, etc., and data-oriented
models, e.g., UML, ASTs, etc.

Works well with
code and
requirements.

Weekly
supports the
other types of
artifacts.

Event-based
approach
 (Mader, Gotel,
& Philippow,
2009)

Manages traceability using publish-
subscribe links and event-based
subscriptions. Requirements and
other artifacts are linked through a
publish-subscribe relationship
stored in a central database.
Created events are published to an
event server that sends notifications
to subscribers of the changed
requirement. These notifications

Maintains dynamic
links

Scalability
issues in
maintaining the
dynamicity of
the traceability.

Related Work 30

contain detailed information about
a change to facilitate the manual
update process of the subscribing
artifacts.

Constraint-based
approach (Gates
& Mondragon,
2002)

The model provides support for
establishing linkages between
constraints and artifacts.
Constraints are used to
automatically define links. Because
constraints are automatically
inserted into the source code, it is
possible to automate the tracking of
requirements to the source code
that is being monitored. The
approach allows tracing of areas
where constraints are checked and
conflicts may occur.

Views artifact types
as constraints among
them.

Difficult to refer
to all the
traceability links
with the
constraints.

Transformations-
based approach
 (Grammel &
Kastenholz,
2010)

In implicit traceability link
generation, no additional effort is
necessary to obtain trace links
between input and output models,
as they are generated automatically
in parallel to the actual model
transformation. In explicit trace
link generation, traceability is a
regular output model of the
transformation and incorporates
additional transformation rules to
generate it. Uses incremental and
graph transformations-based
methodologies for trace links.

Suited for model-
based software
systems.

Difficult to
apply to artifacts
that are not
generated using
MDD.

Goal-centric
approach
 (Cleland-
Huang, Hayes, &
Domel, 2009)

Models non-functional
requirements and their
dependencies using a SIG. A
probabilistic network model is then
used to dynamically retrieve links
between classes affected by a
functional change and elements
within the SIG. Manages the
change impact of non-functional
requirements.

Ensure quality by
assessing the change
impact of functional
v/s non-functional
aspects.

Lack of
scalability and
tool support.

Model-based
approach
 (Badreddin,
Sturm, &
Lethbridge,
2014)

Manages traceability using
template-based models. Model-
oriented methodologies, which
adopt the Model Driven
Architecture (MDA) or similar
approaches, place the focus on
models, rather than code. Such
models are typically more
concerned with system entities
(e.g., classes) and behavior (e.g.,

Supports different
types of artifacts.

Lack of support
towards non-
MDD.

Related Work 31

goals, use cases, and non-
functional properties. All artifacts
are modeled and trace links are
effectively managed between them.

Scenario-driven
approach
 (Egyed, 2001)

The approach first creates trace
information between the running
system and scenarios followed by
comparing those traces with
hypothesized traces. The approach
then generates new trace
information and validates existing
ones.

The approach works
once an executable
or simulatable
software system
becomes available
which may not
necessarily be the
final release of a
system.

The approach
relies on
monitoring tools
for spying into
software
systems during
their execution
or simulation.
(e.g., Coverage
tool)

2.4 State of the Practice

This section provides an overview of the available tools used for establishing traceability in

MBSE projects. For each of the below approaches uses a tool example will be considered for

the explanation for better understanding.

2.4.1 Traceability in Requirements Management Tools

Maintaining requirements in Excel spreadsheets or a Word document would be very

cumbersome as the project evolves. Hence, for maintaining and visualizing the requirements

and for collaboration between users (like reviews, approvals, inputs, etc), requirements

management (RM) tools are used. Some of these tools also provide traceability features like

the creation of trace links between requirements and also between requirements and other

artifacts. They are used for various purposes like impact analysis and for running test cases

based on the impact after any changes in the system. Some of the popular RM tools with

traceability features are Jama software, IBM Engineering Requirements Management

DOORS Next, Visure, and Modern requirements. Traceability in IBM Engineering

Requirements Management DOORS Next is considered as an example tool to list down the

features. Similar features will be present across RM tools for traceability.

Following are some of the key features of the tool to help in the creation and maintenance of

trace links in a project:

 The creation of trace links is simple using the drag and drop feature

Related Work 32

 Grid and tree views are available for the analysis of the relationships between various

artifacts. In below Figure 7, the tree view shows the hierarchical view of the links. The

immediate link to the artifact with ID 152 is artifact 78. However, when expanded, the

other links to artifact 78 are also shown which are indirect links to 152 as well. Hence

the user can decide the level of information that is required and choose the view

accordingly.

Figure 7: Traceability in IBM (https://www.ibm.com)

 Requirement coverage analysis can be done using filters. In Figure 7, a filter was set to

exclude some of the data and focus

on data that is of interest to the user. This helps in managing a huge number of links.

 Different views are available for impact analysis with various impact analysis profiles

and diagrams. In this depth, direction, and kinds of links, as well as kinds of artifacts

that are included in the diagram, can be restricted based on the need.

 Suspect links feature are present which highlights the artifacts that need to be

rechecked after change requests are approved.

 Dynamic reports of end-to-end traceability can also be generated.

Related Work 33

2.4.2 Traceability in Application Lifecycle Management Tools

Application Lifecycle Management (ALM) tools are used for managing all the artifacts from

requirements to test reports. They cover the entire lifecycle of a project. These tools help in

collaboration between different stakeholders and help to manage the artifacts efficiently. Most

of the tools help in estimation, planning, software development, quality management,

configuration management as well as provides features to maintain traceability efficiently.

They provide lifecycle views i.e., views are provided to help to check the relationships across

software development artifacts. They also feature lifecycle queries and filter to focus on

finding gaps and assessing quality. Some of the popular ALM tools are Polarion, System

Weaver, and PTCIntegrity. Polarion is considered as an example tool to list down the features.

Similar features will be present across other ALM tools for traceability.

Below are some of the main features of Polarion for traceability:

 Polarion supports traceability across work items (artifacts) and provides easy

navigation for the analysis. It provides the feature to import artifacts from other

authoring tools in various formats like Excel, Word, CSV, HTML, ReqIF, etc.

 The process can be defined to mandate the linking of work items using link roles in

the day-to-day activities.

 The relationships that can exist between artifacts can be defined based on project

. In Figure 8, new link roles pvRequires and pvConflicts are

created apart from the default tool-provided roles.

Figure 8: Link roles in Polarion (https://almdemo.polarion.com)

Related Work 34

 Polarion provides queries to visualize and analyze the trace links. New queries can as

well be created based on user-specific needs to focus information on only the required

trace links.

 Suspect functionality is present in the tool which is used to highlight suspect links

when work items are modified. This ensures that users look into the changed artifacts

and update the related artifacts and links after analysis.

 Rules can be defined based on the link roles and work items to control the creation of

trace links and to avoid the creation of ambiguous/incorrect relationships. Figure 9

shows the rule creation option in Polarion. i.e., System Requirements can be linked to

only other System Requirements. A task can be linked to artifacts types like Change

Request, Issue, and System Requirement. Similarly, Change Request can be linked to

any other type of artifacts and Issue can be linked to artifacts of type Task only.

Figure 9: Link rules in Polarion (https://almdemo.polarion.com)

2.4.3 Traceability using General-purpose Tools

Traceability can be created with the help of general-purpose tools like Microsoft Excel using

matrix representation. It is a simple and effective tool to have bidirectional traceability for the

project. However, if the process of creation and maintenance is not automated, it is error-

prone. If during project evolution, a matrix is not maintained then it leads to trace links decay

making the traceability matrix unusable. Also, trace links when maintained in excel are not

Related Work 35

scalable. In Figure 10 below, trace links between Requirements and Architectural elements

are maintained in the form of a matrix. Requirements are maintained in the rows and

architectural elements in columns.

like trace link type, cardinality, etc are present. An example trace link is REQ_ID1 is traced to

ARCH_ID1 and ARCH_ID6. Similarly, ARCH_ID4 can be traced to requirements REQ_ID4

and REQ_ID11. Hence the view is bidirectional.

 Figure 10: Traceability matrix in Excel

2.4.4 Standalone Traceability Tools

These are the tools specifically created to manage traceability. It imports artifacts from other

tools using adapters of different tools and establishes trace links in the traceability tool. They

provide a wide range of features like trace queries, visualization, navigation, etc to use and

analyze the trace links efficiently. Some of the standalone traceability tools are Yakindu and

Eclipse Capra. Yakindu is considered as an example tool for compiling some of the main

features present in Standalone traceability tools.

Following are some of the key features supported by YAKINDU, a professional requirement

traceability management tool:

 Yakindu supports a wide range of tool adapters. Hence supports importing of the

software artifacts in various file formats for the creation of trace links.

 It provides full visualization of all the data from different artifacts and how they are

linked. Also, Yakindu supports a wide range of filters and user-defined queries that

help in the analysis of traceability information. Figure 11 shows the possibilities in

Related Work 36

selecting the depth and the filter for visualization (filter to show only suspicious links,

duplicate links, etc). This helps to analyze the traceability information part by part

when the number of artifacts and the links between them is huge.

Figure 11: Traceability visualization filters in Yakindu (https://www.itemis.com)

 The tool provides an overview of the project and enables access to all the relevant

information by just exploring the graph. It can be configured based on project needs

(link type, rules, depth, query, suspicious links, etc)

 It also provides various project metrics and traceability reports in the dashboard.

Figure 12 shows an example dashboard containing two different traceability reports.

In the left window, the percentages of trace links between various linked artifacts are

shown in the form of a pie chart and hence displaying coverage report. In the right

window, traceability links are shown in the tree format from the requirements level to

the test report level. Each artifact level can be differentiated by colors. Here again,

filters or queries have been used to select only two requirements.

Related Work 37

Figure 12: Dashboard in Yakindu (https://www.itemis.com)

2.4.5 Traceability in the Issue Tracking Tools

Some of the issue tracking tools like Jira could be used to manage requirements and tests just

after plug-and-play configuration. The plugins like Requirements & Test management for Jira

help to track the requirements with the development of corresponding test artifacts and hence

indirectly support traceability. Following are the features supported:

 Establishes trace links between requirements and corresponding test artifacts by drag

and drop feature

 Tree-structured folders during the development help to speed up test creation,

execution, and management. Organization of folders by version helps to develop trace

links along with version information.

 Traces help for the easy test execution for any update in requirements

 Helps for tracking the progress of the project using the trace links. Provides various

kinds of reports to analyze the same. For example, traceability matrix and full

requirements coverage

 Provides flexible filters to get different views of the dependencies between artifact

Also, the reports can be exported in various formats.

Expert Interviews on Traceability 38

3 Expert Interviews on Traceability

This section describes the purpose and procedure of data collection done by conducting expert

interviews. The observations made during interviews gave comparable data on the criteria

considered, purpose, challenges, and best practices of traceability process in the industrial

setting. Hence the data collected were used to find and map answers to the research questions.

3.1 Introduction

Structured interviews were conducted with industrial experts about the traceability process

followed in their companies in general and in their projects in particular. This method of

research was chosen because experts will provide valuable insights based on their real-life

industrial experiences which can be very difficult to collect with any other methods. The main

purpose of the interview was to gather data to identify the challenges faced while trying to

achieve traceability. Also, the recommended approaches and best practices followed were

compiled. The interviews involved participants from different companies and working on

different embedded system projects to get a broader perspective of the challenges faced. Also,

the involved participants were from different organizational levels and hence could collect

varied views based on their working context.

3.2 Procedure and Topics Covered in the Interview

The interview was conducted in English. At first, the main goal of the interview was set, i.e.

understanding the traceability process followed in their company. In the next step, the

interview questions that were prepared by using the information collected during the literature

review (chapter 2.3.3) were asked. The interview questions were divided into the following

five sections: introduction, basics of traceability, approaches followed, tools used, and

traceability with respect to MBSE. In the introductory section, the characterization of the

company and projects selected for the interview were understood. To understand an overall

context in which traceability is being applied, the application domain, standards used in the

projects, the software development life-cycle models followed were quizzed. In the next

section, the basics of traceability were discussed. The main purpose of traceability, different

Expert Interviews on Traceability 39

artifacts that are considered for the creation of trace links, and the benefits of trace links in

their projects were understood. The purposes discussed in chapter 2.3.3.5 were mapped to

understand the reason that drives their projects to have traceability. The most benefitted

stakeholder and the difficulties faced while achieving traceability were also discussed. The

next section deals with the approaches followed to achieve traceability. Below Figure 13

shows the snippet of the questionnaire used during expert interviews. This lists the questions

covering -

 Figure 13: Snippet of expert interview questions

The main criteria discussed in chapter 2.3.3.4 were quizzed and the approaches followed were

compiled along with the timeline of the creation of trace links, their usage, and maintenance.

The metrics used for traceability measurement, coverage, and quality of trace links were

discussed. In the next section tools used in their projects for the creation of trace links were

discussed. The different features supported along with visualization and navigation of trace

links were compiled. The different types of reports generated and their usages were

understood. Finally, to understand the process of traceability in MBSE, MBSE specific

questions were asked. The challenges faced and the best practices encountered during the

Expert Interviews on Traceability 40

traceability process along with their experiences were compiled. Their thoughts on how

MBSE eases or complicates traceability were also gathered. The detailed questionnaire used

during expert interviews can be found in Appendix: 7.2.

The interview questions were sent to the interviewee beforehand for a glance to know the goal

and context of the interview. Also before interviewing, an overview of the purpose of the

study was explained. The name of the company was kept anonymous when chosen so by the

participants. Each interview took approximately 40 minutes and was recorded only with the

consent of participants. The answers given by the interviewee for each of the questions were

noted and rechecked later with the audio recording when available. Later after compilation,

the answers were shared with the participants for their review and updated for any comments.

3.3 Data Collection

As per the questionnaire (refer to Appendix 7.2), the interview was conducted and the results

were collected during the interview. The data collected were divided into sections and

subsections based on the topic of discussion. Below is the summary of information compiled

from the expert interviews.

The interview was conducted with three participants from different companies out of which

two were from automotive domain backgrounds. Also, the participants belonged to different

hierarchies of the organization i.e. Project Manager, System Architect, and Software

Developer. Hence traceability with respect to the managerial point of view as well as system

and software developmental point of view was understood. From the discussion, it was noted

that traceability was mainly used for the validation and verification of artifacts. The other

main purposes mentioned were mostly mapped to uses mentioned in chapter 2.3.3.5. It was

mentioned that traceability was also used to maintain a consistent system and to check for the

completeness of the system. According to all of the participants, traceability was mainly

maintained between main artifacts like requirements, design decisions, architectural elements,

design elements, implementation, test cases, and test reports. However, in few cases, deeper

level links were created based on the . For example, links were created

between blocks and parts of SysML diagrams, between operations of blocks and call

operations of activity diagrams, between interface blocks, flow properties, and value

properties, and between blocks and constraints. While discussing the approaches followed for

Expert Interviews on Traceability 41

traceability, the following points were noted. Most of them preferred to create traces close to

the establishment of the work product (time-wise) to avoid rework. However, in some cases, it

was delayed because of the delayed access to work products created by different teams. The

useful representations of trace links mentioned varied from one another because of their

different usage contexts. Following were the most preferred visual representations mentioned

by the participants which they used in their daily activities. Hyperlinks were used for

navigation between artifacts, graphs for impact analysis and to check for completeness, tables

for comparison and maintenance, matrix for quantity checks, and diagrams like cake diagrams

were used for completeness check reports. Traceability across teams was discussed mainly

with respect to requirements. Standard formats like ReqIF, HIS, etc. are used for exchanging

requirements between teams. Apart from that, it was told by one of the interviewees that

OSLC capabilities were also being explored for the import and export of artifacts. In the next

part of the interview, the pros and cons of traceability in MBSE were compiled based on their

feedback. This helped to compile the answer for the research question RQ4 (How does MBSE

ease or complicate traceability?). The mentioned pros of using traceability in MBSE were a

better understanding of the whole system and easy identification of reusable elements. In few

cases, it was told that as trace links were one of the outputs of model transformation, it was

easier to create. Also, it was mentioned that in an ideal scenario, if a single tool was used for

the development of all the artifacts in a MBSE project, then it eases the trace link creation

process. The main drawbacks mentioned were tool breaks and difficulty in deciding on

traceability schema because of the huge number of artifacts. Also tackling a huge number of

trace links posed a challenge for visualization. Complete answers recorded during expert

interviews can be found in Appendix: 7.3.

3.4 Analysis

Based on the discussion during interviews and data collected on traceability practice and

process, analysis was done to list down the challenges faced during the creation and

maintenance of trace links between artifacts. Though criteria and approaches can be followed

as per the theoretical knowledge in a project, the challenges faced will be known only during

the real usage scenario. Hence based on the discussion with the experts, the issues faced were

compiled. After analysis, the challenges were grouped into the following four major

categories:

Expert Interviews on Traceability 42

Understanding of traceability: Unclear information leads to uncertainty on traceability and

makes it difficult for the stakeholders to abide by the process defined. An unclear process on

how, what, and when the trace links must be created and maintained, leads to distrust and

hence a reason to not follow the process. The other issue is deciding on the traceability

schema. It must be well thought of and well documented for the stakeholders to understand.

Lack of knowledge leads to misinterpretation of trace links and hence results in the wrong

analysis.

Organization and process: The next category is based on the organization and process

followed as traceability needs vary from one project to other. Hence tailoring of traceability

process must be done for its effective application. The other challenge is distributed

development environment. When more than one team is involved in a project, artifacts

creation might happen parallel. Hence a process must be defined for their exchange/access

and an approach must be decided for the creation of trace links between them. Hence process

must be defined beforehand.

Human factors: Misuse and distrust are the major challenges. Sometimes documenting all

the information of an artifact along with stakeholder name responsible, can be misused as

uation. This might result in fear of capturing all

information during trace link creations. One should make sure that trace links are used for

constructive purposes only. Also, all stakeholders must have complete trust in the traces so as

to use them to their full potential. As traces are created in advance and used only later,

engineers might even consider it as an overhead. Hence stakeholders must be educated

regarding the traceability process.

Tool support: For traceability to be cost-effective, it must be automated with the help of

tools. These tools must configurable because of the variety of tools involved in the creation of

artifacts and to avoid tool breaks. The framework must be reusable if the tools involved in the

project change. The tool must help in the maintenance to avoid trace decay. Handling a huge

number of links for the analysis is one of the major challenges. Even when the links are

correct, if the report is non-readable because of the sheer number of links, then traceability

cannot be used.

Expert Interviews on Traceability 43

3.5 Conclusions

This section describes the conclusions derived based on the analysis of the data collected and

based on the discussion during expert interviews. It mainly concludes on the best practices to

be followed and pitfalls to be avoided during the traceability process which in turn answers

the research question RQ3 (What are the best practices and pitfalls present in the existing

approaches/tools for the creation of trace links and their maintenance?).

3.5.1 Best Practices to Follow

Below are the best practices that must be applied for easing the traceability process and for its

optimal usage.

Integrate traceability tasks into existing work practices: Traceability tasks must be part of

the development process. Also, traces must be created close to the establishment of the work

product (time-wise) to avoid reanalysis of the work products during the creation of trace links.

Having just enough traces: Having trace links between every artifact to the other artifact

does not serve the purpose. It results in clutter and too much information might not benefit the

project. Also understanding the purpose helps in selecting value-based traces.

Aim for either a holistic solution or a completely separate TM tool: To avoid tool breaks

or to avoid porting issues of the trace information from one tool to the other during a tool

change, tool configurations must be considered before selecting a traceability tool for a

project. Since software development environments usually will be heterogeneous, choosing a

holistic approach that can easily be adapted to various tools or choosing a completely separate

traceability management tool where import/export of artifacts information from various other

tools is possible is the better way to achieve traceability in a project.

Usage of the common standard: Using common standards and formats for exchanging

information between different tools ensures configurability and hence avoids any tool breaks.

Having a meta-model for traceability also helps to have consistent trace links across the

project. Meta-model describes rules like which kinds of artifacts can be linked to each other

and what types of links are allowed.

Expert Interviews on Traceability 44

Artifacts linked must be version controlled: As software keeps evolving due to

requirements changes or due to design changes, having traces between artifacts with version

information is very important. Having configuration management coupled with a traceability

process helps. Traceability reports considering versions of the artifacts give the latest

information on the evolution of the artifacts involved and hence are much more reliable. Also

applying traceability after a freeze and baselined versions ensures that the further artifacts are

being developed on stable versions.

Have explicit trace links: Even though implicit traceability does not require any tools, it is

not the best solution as it does not provide any visual report nor provide immediate trace

information when needed. Hence maintaining explicit trace links must be considered as the

optimal way to achieve traceability.

Trace links should be maintained across life-cycle: If trace links are not maintained across

the life cycle, the traceability information gets decayed. As the software system keeps

updating, not changing the trace link information accordingly will lead to wrong relationship

information between artifacts in trace links. Hence maintaining trace information consistently

is the key to achieve success in traceability. Trace links must be reviewed and enhanced

iteratively to detect wrong links at the early stages.

3.5.2 Pitfalls to Avoid

During the process of the interview, the usual difficulties faced and the probable steps/process

to be avoided while trying to achieve traceability were also discussed. Below are the major

pitfalls to avoid:

Trying to achieve traceability at the middle or end of the project: One of the major

problems in achieving traceability is that it is not thought of as critical as it should be during

the beginning of the project. In many cases, the trace links are tried to be created during the

middle or end of the project to achieve certification which mandates the process. Because of

which the quality of trace links is compromised. This results in no actual use of the trace

links.

Collection of large data: Having traceability links between every artifact without considering

the overlap might result in an unmanageably large number of links. It not only increases the

Expert Interviews on Traceability 45

project cost during creation, but it also demands a huge amount of effort for its analysis and

maintenance.

Not allocating work resources and effort for traceability creation and maintenance: As

we already know that for achieving traceability, a good amount of effort needs to be spent on

its planning, creation, and maintenance. However, mostly traceability is perceived as a low-

priority task due to which dedicated time will not be allocated for this task. Hence the

developer considers it as low priority task and does not give required attention during its

creation leading to incorrect or inadequate traces.

Lack of communication: A clear knowledge of artifact ownership, artifact sharing, security,

trace link creation, and maintenance ownership should be present across all stakeholders.

Regular review meetings between teams must be conducted.

Rigid or toolchain specific: As the project evolves, tools used might also change as per

needs. Hence if the traceability tool/approach used is too rigid, the same cannot be ported and

hence all previous trace link data will be lost. Also, huge effort needs to be spent for its re-

creation as the previous data is not reusable.

Inconsistent/erroneous links because of automation: Tools must be tested thoroughly

before using. The trace link information created must be reviewed iteratively so that

erroneous or inconsistent trace links are found at the beginning. Even though automation

reduces effort in the traceability process, it might cause erroneous links as well. Hence

reviews and trustworthy tools must be considered for the better quality of trace links.

Feasibility Study and Investigation 46

4 Feasibility Study and Investigation

From the literature review on traceability, it was found that traceability is a critical element of

the system and software development process. Also as mentioned in chapter 2.3.4, ASPICE

demands bidirectional traceability and most of the automotive projects follow ASPICE.

Hence, achieving bidirectional traceability has become a necessity along with the need.

However, based on the findings from the expert interviews, engineers face various kinds of

challenges to achieve traceability successfully. One of the major challenges was tool breaks as

various tools are usually used for the development of artifacts in MBSE. To investigate

further on the tool support, various approaches and tools available for establishing trace links

between artifacts were explored. As there are numerous tools present for the development of

artifacts, a feasibility study was conducted on a particular toolchain consisting of Polarion,

Enterprise Architect, and Doxygen. Investigation on various tools and approaches for

establishing bidirectional traceability between the artifacts created on this toolchain was

performed.

4.1 Approaches of Traceability across the Toolchain

This section describes the various viable approaches for achieving traceability across the

toolchain consisting of Polarion, Enterprise Architect, and Doxygen. The different

approaches/tools present that help in achieving traceability for the above tools are explored.

4.1.1 Used Toolchain

The toolchain consists of Polarion ALM which has a requirements module to work on

requirements specification. In this module, it is possible to manage from stakeholder

requirements to system requirements and to finally software requirements. It also has review,

approval, and traceability functionality. Hence managing tracing between requirements can be

achieved easily in Polarion. Polarion also consists of a QA module that includes test planning,

test execution, and test reports management. In Polarion all the artifacts created are

considered as work items and traceability functionality provided manages the trace

relationships between any two work items. Hence traceability between requirements and

Feasibility Study and Investigation 47

corresponding test cases, test reports can be achieved from the built-in traceability

functionality. The next tool considered is Enterprise Architect, a graphical tool designed to

help build visual models and architectural design elements based on the OMG UML.

Enterprise Architect provides useful tool functionalities for exploring the relationships

between various model elements. The last tool considered in the toolchain is Doxygen.

Doxygen is a document generator tool that extracts information from the comments of the

source code. It provides a cross-reference between design documentation and code.

For the feasibility study, bidirectional traceability must be achieved between artifacts created

in the above tools as per ASPICE requirements. Figure 14 depicts the desirable trace links

expected between various artifacts. The dotted line with arrows represents the bi-directional

trace link between artifacts. For clarity purposes, each line is represented by only one trace

link type. For example, the trace link type between architectural element and requirement is

the architectural element the

corresponding requirement and in the other direction, the requirement is the

corresponding architectural element. Following are the other various trace links between the

Figure 14 : Traceability in the toolchain (Polarion<->EnterpriseArchitect<->Doxygen)

Feasibility Study and Investigation 48

artifacts described in Figure 14. The stakeholder requirements (SHRQ), system requirements

(SYRQ), and software requirements (SWRQ) are created inside Polarion and trace links

between them are also managed in Polarion. The system architectural elements (SYAE) and

software architectural elements (SWAE) developed in Enterprise Architect must trace to

requirements in Polarion using relationship. The implementation and design

elements in Doxygen must trace to requirements in Polarion and architectural elements in

Enterprise Architect using and trace link type respectively. The test

artifacts like System qualification test specification (SYQT), System integration test

specification (SYIT), Software qualification test specification (SWQT), and Software

integration test specification (SWIT) are not considered for the feasibility study. However,

traceability can be achieved easily when all of them are developed in the QA module of

Polarion. The trace link between test specification and other artifacts is of type . All

the work items created in Polarion uses traceability functionality provided by the tool. To

achieve traceability between the requirements, architectural elements, and implementation

elements generated in the toolchain, below two main approaches can be considered.

4.1.1.1 Managing Traces in Polarion

In this approach, all traceable artifacts must be present in Polarion as work items. Artifacts

created in other tools must be represented in Polarion as proxies. i.e. traceable artifacts must

be imported to Polarion. All the artifacts, including imported ones, are considered as work

items in Polarion. Trace links are then created and maintained easily between work items

using the traceability feature in the Polarion. For example, consider the artifacts mentioned in

Figure 15. The architectural elements SYAE_278 and SWAE_593 are exported from

Enterprise Architect to Polarion and implementation element SWUI_849 is also exported

from Doxygen to Polarion. Hence all the artifacts are present in the Polarion as work items

and using tracing functionality trace links can be created easily inside Polarion. Hence in this

approach, Polarion acts as the master and controls the creation and maintenance of trace links.

The benefit of this approach is that all trace links are created and maintained in a single tool.

Various trace reports can be generated as Polarion provides the feature by default. However,

the drawback is the risk of missing the updated traces because of missed synchronization from

other tools. Also, experts must switch between tools and hence must be well-versed with the

Polarion tool as well for the creation and maintenance of trace links.

Feasibility Study and Investigation 49

Figure 15: Trace links in Polarion

4.1.1.2 Managing Traces in Other Tools

In this approach, requirements are represented in the respective tools as proxies. i.e. Polarion

exports the requirements to EA and Doxygen. Traces are established between imported

requirements and respective artifacts in both tools. Trace information is then transformed to

general formats like Microsoft Excel or HTML page. For example, consider the artifacts

mentioned in Figure 16. The system requirement SYRQ_456 is exported from Polarion to

Enterprise Architect. And the software requirement SWRQ_234 is exported from Polarion to

both Enterprise Architect and Doxygen to Polarion. Hence trace links are created separately in

Enterprise Architect and Doxygen. The trace information (for example SYAE_278 satisfies

 Figure 16: Trace links outside Polarion

imported requirement SYRQ_456) can then be transformed into a Microsoft Excel report or

HTML page report for the analysis. These reports can then be exported to Polarion as well.

Feasibility Study and Investigation 50

The main benefit of this approach is that experts define the trace links inside the tool where

artifacts are being developed. Hence no switching to a different tool is required. For trace link

analysis, general-purpose tools can be used.

4.1.2 Establishing Traceability between Polarion and Enterprise Architect

This section describes various tools/approaches present to create links between requirements

in Polarion and architecture model elements in EA.

4.1.2.1 Using Open Services for Lifecycle Collaboration

Open Services for Lifecycle Collaboration (OSLC) is an open community creating

specifications for integrating tools. It is based on the 3C Linked Data. OSLC provides

standardized self-descriptive REST APIs which allow vendors to provide a fully supported

integration with many other OSLC-compliant tools. When using OSLC for trace links

creation between tools, each artifact is described as an HTTP resource, identified using a

Uniform Resource Identifier (URI), accessed and manipulated with the GET, PUT, POST,

and DELETE HTTP methods. Figure 17 depicts integration between two OSLC-compliant

tools. Tool X is the OSLC Provider which uses a web service to store and provide data by

implementing CRUD (Create, Read, Update, Delete) functionality. Tool Y is the Consumer

which can request and manipulate provided data via HTTP requests (HTTP GET, POST,

PUT, and DELETE methods).

Figure 17: OSLC Provider and Consumer (Kaiser & Herbst, 2015)

To use OSLC to link between Polarion and other tools, Polarion acts as a Linked Data

provider. Polarion work items can be linked to objects that reside on external Linked Data

enabled tools using the linked data feature. Polarion exchanges linked data with a friend

server, one that hosts an application that has been configured and mapped to exchange data

Feasibility Study and Investigation 51

with. To exchange linked data between Polarion and Enterprise Architect, Polarion uses

Enterprise Architect Pro Cloud Server (separately purchased and separately licensed edition

of Sparx Systems Cloud Services) that supports OSLC and is configured as its friend server.

Enterprise Architect acts as an OSLC Provider which allows for creating, retrieving, and

querying Enterprise Architect resources (packages, elements, diagrams, and connectors) in a

model via Pro Cloud Server. With OSLC support, resources in an Enterprise Architect model

can be identified and accessed using a unique URL that can be linked to resources in Polarion.

One of the main advantages of using OSLC for traceability is that the artifact information

need not be moved from one tool to the other i.e. no export/import is required. And trace links

can be created across tools. Due to the resource linking approach of OSLC (instead of data

synchronization), the typical integration challenges of traceability, data consistency, and data

interoperability across the whole lifecycle process are appropriately managed and therefore

assist collaboration, reuse, and integration (Kaiser & Herbst, 2015). Also, the links can be

created and scaled easily. However, the major drawback for EA is that Pro Cloud Service

must be purchased and hence may not be economical. The other disadvantage is sometimes

OSLC provides a user interface with a very small amount of information of the accessed

artifacts (like only version number without any other context). Without additional context, it

is difficult to choose the right artifact version while creating or updating the links (Kaiser &

Herbst, 2015).

4.1.2.2 Using Polarion Connector for Enterprise Architect

Polarion Connector for Enterprise Architect (EAPO) tool is used to connect Polarion with

Enterprise Architect. It helps to synchronize EA diagrams and Polarion work items from the

EA interface. It is mainly used to manage the approval life-cycle of EA diagrams and to

generate Polarion Documents with EA diagrams images. As EA diagrams/elements can be

exported and synchronized to Polarion using the EAPO connector, it can as well be used to

generate trace links between EA elements and Polarion work items. Hence links between EA

elements and requirements can be maintained in Polarion.

Once EAPO has been downloaded, Polarion can be connected from EA using Polarion

Integrator. Integrator can be used either to import to Polarion or export from Polarion. A local

database will be created for the mapping of EA elements to Polarion type. And the mapping is

Feasibility Study and Investigation 52

done in the mapping window provided by the connector and the user can decide on the

elements to export and the types to be mapped. One of the main features of EAPO is that it

also provides advanced mapping. In this, EA tagged values are mapped to Polarion custom

fields. Figure 18 shows the exported results. It shows the mapping of EA elements (Use

cases) to Polarion types (workpackage). It can also be noted that users can navigate to open

EA elements in both Enterprise Architect as well as Polarion.

Figure 18: Export of EA elements to Polarion using EAPO

Once exported, EA elements are treated as work items in Polarion. Hence using link

functionality, EA elements are linked to Polarion requirements. Re-import is done for the

synchronization of EA elements in Polarion. When EA tagged values are included during

imports, they can be used to identify the updated EA elements inside Polarion. By using query

filters with custom fields, the updated EA elements can be marked as suspect. Suspect links

are created for these marked EA elements.

One of the main advantages of EAPO is that EAPO is free and fully integrated within EA

installation and hence no third-party server is required. The mapping configuration and

synchronization data are stored in an external database and not within EA or Polarion

Feasibility Study and Investigation 53

projects. Also starting point from where model elements are to be exported can be chosen

which is useful for huge projects. The disadvantage of the tool is creating a mapping of EA

elements to Polarion type is cumbersome and depending on the number of elements selected,

export could take a lot of time. Also, the tool does not support updating the Polarion type of a

mapped EA element in the subsequent imports. The other major drawback is that, when EA

elements are updated and synced, the Polarion does not mark it as a suspect automatically.

The user needs to check and update the element as suspect manually.

4.1.2.3 Using Requirements Interchange Format

Requirements Interchange Format (ReqIF) is an exchange file format for exchanging

requirements, attributes across software tools from different vendors. The format is a

metamodel defined by an XML schema. ReqIF is used for exchanging information between

RM tools and MDD tools (which are based on UML). The following approach is followed to

establish traceability links between RM and MDD tools using ReqIF. As a first step,

requirements are exported from the RM tool to the MDD tool using ReqIF. MDD tool imports

these requirements in ReqIF and architectural models are created. The trace links are then

created between requirements and models in the MDD tool. These trace links are then

exported back to the RM tool using ReqIF representations. Analysis of the links can be done

in the RM tool after importing the link representations in ReqIF.

The above approach can be followed for establishing trace links between Polarion (RM Tool)

and Enterprise Architect (MDD Tool). Polarion supports ReqIF and hence requirements can

be exported in the form of ReqIF files. Whereas for Enterprise Architect, plugin support is

required to transfer representations of requirements in ReqIF to understandable UML format.

A plugin called ReqXChanger is available which enables requirements synchronization

between Polarion and UML models from Enterprise Architect

(https://extensions.polarion.com/extensions/232-reqxchanger-for-polarion). This helps to link

requirements to UML model elements in Enterprise Architect. The link information can be

exported back to Polarion in ReqIF format for trace-links analysis. Figure 19 depicts the

mapping of the approach when ReqXChanger is used for achieving traceability between

Polarion and Enterprise Architect.

Feasibility Study and Investigation 54

Figure 19: ReqXchanger for Polarion and Enterprise Architect

One of the major advantages of using ReqIF is that it contains structured data of requirements

with related elements. This clear information helps to interpret the data in the other tool

easily. When data between the tools are synchronized by re-import, the updated elements,

attributes, and trace links will be shown clearly and automatically. Also, navigation to

Polarion requirements from UML tools is possible. The major disadvantage is that the

ReqXchanger is not available for free. Also, trace link creation in the MDD tool is

cumbersome when a huge number of trace relationships need to be created.

4.1.2.4 Using CSV Import and Export

A comma-separated values (CSV) file is a delimited text file that uses a comma to separate

values. Each line of the file is a data record. Each record consists of one or more fields,

separated by commas. Almost all the RM tools, UML tools can represent their artifacts in

CSV format and they also support the import and export of CSV files. Hence, the CSV format

can be used for the exchange of artifacts between tools. Once the artifacts are exchanged, the

trace links can be established in the RM or UML tools using the

This approach can be used to create trace links between Polarion and EA artifacts inside EA.

Both Polarion and Enterprise Architect support import and export of artifacts in CSV format.

Polarion requirements are exported in CSV format with the requirement s properties like ID,

Name, Status, Version, etc. The requirements CSV file is then imported to the Enterprise

Feasibility Study and Investigation 55

Architect tool. Enterprise Architect provides CSV Import/Export specifications using which

can be s. Trace links are

then created in EA between imported requirements and architectural model elements using

requirements diagrams. Also, unique GUIDs are created in EA for each of the imported

requirements. Hence the requirements when updated can be re-imported to EA without

creating a new copy for each import. Traceability information in the form of a matrix can be

visualized in EA. However, trace matrix can also be exported in CSV or Microsoft Excel

format for further analysis. A prototype tool was created considering this approach and more

details are provided in chapter 4.2.4.2.

The major advantage of this approach is that most of the tools support the CSV format. Hence

can be used easily even if the tool changes. Also, users can decide on the elements of the

 The process of

importing and exporting can also be automated to avoid any manual errors. The major

drawback of the approach is that it is prone to human errors when done manually. Also as the

trace links are created in the UML tools, the creation of trace links requires more effort.

4.1.3 Establishing Traceability between Polarion and Doxygen

This section describes an approach that can be used to create trace links between requirements

and implementation elements using the Doxygen tool. Custom tags in Doxygen comments

can be used to describe trace information .

Using these custom tags, a traceability report in the form of an HTML report is generated by

Doxygen. To add custom tags with trace information, Polarion requirements information is

needed for the Doxygen tool. Hence requirements are exported into the implementation

directory as a file with requirement anchors. Aliases are also added in the Doxygen

configuration file which helps to map these anchors with custom tags in comments. Finally,

when Doxygen is run, trace links are created in the form of a Doxygen web report. A list of

requirements along with traced code elements will be generated as one of the web pages in the

Doxygen report. Using the Doxygen HTML report, a CSV file can also be generated for

further analysis of the traces. Further information on how this approach can be automated is

explained in chapter 4.2.4.1.

Feasibility Study and Investigation 56

4.1.4 Establishing Traceability between Enterprise Architect and Doxygen

This section describes an approach that can be used to create trace links between architectural

and implementation elements using the Doxygen tool. The approach is similar to the one

described above but instead of requirements ID, architectural elements information are

included in custom tags. The Doxygen comments are updated for including the trace

information with corresponding architectural model elements using custom tags. These tags in

Doxygen comments represent the relationship between the elements. To add these tags in

Doxygen comments, architectural elements information from EA is required. Hence these

elements are exported into a code file with the model elements as anchors. Aliases are also

added in the Doxygen configuration file which helps to map these anchors with custom tags

in comments. Finally, when Doxygen is run, trace links are created in the form of a Doxygen

web report. A list of architectural elements along with traced code elements will be generated

as one of the web pages in the Doxygen report. Using the Doxygen report, a CSV file can also

be generated for further analysis of the traces. Further information on how this approach can

be automated is explained in chapter 4.2.4.3.

4.2 Proposed Solution

As already mentioned, it was noted from the expert interviews that one of the main challenges

faced in achieving traceability in projects following MBSE approaches was tool breaks.

Hence, a holistic solution must be aimed at rather than using different tools/approaches for a

toolchain used in a project. Also, common formats supported by most of the authoring tools to

exchange information between them must be used to avoid any rework when one of the tools

is replaced in the future. Hence keeping these in mind, a prototype tool called TraceGen was

built to aid trace link creation and maintenance across the tools of the considered toolchain.

i.e. Polarion, Enterprise Architect, and Doxygen. The CSV and HTML formats are the most

common formats supported by most of the tools and hence, they were chosen to exchange

information between tools. Also for the proposed solution, the second approach of creating

and storing links outside Polarion (refer to chapter 4.1.1.2) was followed because experts can

define trace links within the tool that they are comfortable in without switching to other tools.

For the design and development of TraceGen, the acquired knowledge on research questions

was used. The proposed solution was mainly based on the three main criteria discussed in

Feasibility Study and Investigation 57

chapter 2.3.3.4. Also from the expert interviews, it was noted that one of the other challenges

faced in achieving traceability in MBSE projects is having no clarity on the selection of

subjects of interest (traceable artifacts) during the creation of trace links. Hence to tackle this

issue, a traceability information model was created to define the traceable items properties

and the trace-link properties. The tool was mainly developed using python scripts and batch

scripts were used for automation. As the usage of trace links was one of the main criteria, the

tool was also expanded to prepare inputs for the Power-BI tool for visualization. Power-BI is

a free desktop tool used mainly for data analysis and supports a wide range of report

generation (refer to chapter 4.2.5). Based on the inputs from expert interviews, the various

possibilities of report generation in Power-BI were explored.

4.2.1 Traceability Information Model

A basic traceability information model (TIM) describes main two elements of traceability,

traceable artifacts and trace links between these artifacts. The properties of the above two

elements must be fixed to achieve consistent results across tools. This section describes the

traceability information model created for the TraceGen tool.

Figure 20 represents the class diagram of the traceable artifacts. The main class

represents the traceable artifacts and is the parent class.

Figure 20: Class diagram of the traced items

The different types of traceable artifacts like Requirement, ArchitectureItem, DesignElement,

CodeElement, and TestSpecification are child classes inheriting the member fields of the

parent class. Each of these child artifacts is further classified into their child classes

representing unique artifacts developed in a project. For example, the Requirement class is

Feasibility Study and Investigation 58

further classified to system requirement (SysRequirement) and software requirement

(SWRequirement) which are unique artifacts developed at a different period in a project. The

classes are mapped to the artifacts considered in ASPICE (Refer to Figure 6).

The member fields considered for are listed in Table 7. During

exporting and importing of the artifacts between various tools, the below fields are

considered.

 Table 7: Fields of TracedItem

Fields Description
GUID A unique identifier for the traced artifact
Name Readable identifier of the traced artifact
NameSpace Type of the artifact (Requirement, ArchitectureItem, DesignElement, etc)
ItemType Requirements can be functional or non-functional, ArchitectureItems can be

Use case diagrams or Class diagrams, etc
URL Hyperlink of the traced artifact for navigation purpose
TracedItemStatus The status of the traced artifact (Status can be added, deleted, updated,

unchanged)

The other element of TIM is TraceLink. It represents the relationship between any two

traceable artifacts. Table 8 lists the member fields considered for the class TraceLink. A trace

link is created between two TracedItems. i.e. source and destination. The field traceType

represents the trace relationship type between the two TracedItems. For example, traceType

artifacts. The other member is status which represents the current status of the trace link. If

either one or both of the artifacts (TracedItems) involved in the trace link is updated, then the

status of the TraceLink will become - .

 Table 8: Fields of Trace Link

Fields Description
source TracedItem from which the trace links are created
destination TracedItem to which trace links are created
traceType The relationship type
status The status of the trace link (Status can be either suspect or non-suspect)

The below Figure 21, depicts the relationship between the two classes of TIM i.e. between

TracedItem and TraceLink. The TracedItem involved in a TraceLink can either be a

destination (represented as is_destination) or source(represented as is_source).

Feasibility Study and Investigation 59

Figure 21: Association of TracedItem and Trace link

Also, each of the TracedItem can have zero or many links to different artifacts. And every

TraceLink has one source and one destination TracedItem.

The next Figure 22, shows the allowed trace relationships (TraceLinkType) between source

and destination TracedItems. The allowed different TraceLinkTypes are as follows:

 Figure 22: Trace link types between TracedItems

Feasibility Study and Investigation 60

relationship.

4.2.2 Features of the Solution

Based on the results of the systematic mapping study and expert interview, the main features

of the tool TraceGen were decided. The prototype tool was developed to have three main

features. Below Figure 23 shows the three main features (Creation, Usage, and Maintenance)

along with the sub-features supported in the tool.

 Figure 23: Features supported in TraceGen

Creation: As the name suggests, this feature helps in creating trace links between artifacts.

The artifacts that must be traced (TracedItem) are exported/imported between different tools

along with the selected fields as per TIM (Table 7) for the creation of trace links. The links

are then created between artifacts in either Enterprise Architect or Doxygen tools. The trace

relationships (TraceLink) are created as per TIM (Table 8) and then exported from the tools to

have the visualization in Microsoft Excel and Power-BI.

Maintenance: The links (TraceLink) created in the tool are updated whenever there are

updates in traced artifacts (TracedItem). The maintenance of the current status of TracedItem

and TraceLink is done by TraceGen. Synchronization of updated artifacts using export/import

ensures the maintenance of trace links. The trace link status will be updated based on the

Feasibility Study and Investigation 61

status(TracedItemStatus) of the traced artifacts. Suspect link functionality is supported to

inform the users about the updated links.

Usage: After creating or updating the relationships between artifacts, the trace link

information must be analyzed in various ways to have optimal usage. This feature handles the

same. TraceGen prepares input (TracedItems and TraceLinks) to Power-BI to have various

kinds of traceability reports. The research answers to question RQ2 helped to consider the

various features supported based on the uses of traceability. TraceGen supports Power-BI for

navigation of artifacts during the analysis of the links, for application of filters, and for the

visualization of suspect links.

4.2.3 Use Cases

Mainly two use cases were considered for the development of the tool based on the features

supported. The two use cases are the Creation use case and the Maintenance use case. The

Usage use case was not considered as the tool Power-Bi was used for the generation and

analysis of various kinds of reports.

Creation use case: The creation use case lists the actions involved in the creation of trace

links from the beginning of the creation of source and destination artifacts until the generation

of traceability reports for analysis. Figure 24 depicts the creation use case. In the diagram,

source artifacts (SrcArtifacts) are the artifacts created at the beginning from which the next

level artifacts (DstArtifacts) are derived. Hence a trace link has to be created between these

two artifacts. Stakeholders can be Manager/Architect/Developer depending on the artifacts

that are being considered and the artifacts could be requirements, architectural elements, and

implementation elements. For example, consider SrcArtifacts as requirements and

DstArtifacts as architectural elements. Then the initial actions involve the creation of

requirements and the creation of trace links between the requirements by the Manager

(Stakeholder1) in the RM tool (i.e. Src Tool in Figure 24). In the subsequent steps, Architect

(Stakeholder2) imports requirements to the Modeling tool (i.e. Dst Tool in Figure 24) and

creates the architectural models (DstArtifacts) based on the requirements in Dst Tool. Once

the models are created, links between the DstArtifacts and corresponding SrcArtifacts, and

links between DstArtifacts are established inside the Dst Tool.

Feasibility Study and Investigation 62

 Figure 24: Use case for the creation of trace links

The trace links are then exported to the TraceGen tool which helps in visualizing and

analyzing the traceability information. TraceGen tool prepares input data (TracedItem) for

Power-BI in CSV format by using the exported source and destination artifacts with the fields

mentioned in Table 7. It also prepares the trace information (TraceLink) along with the

decided fields (Refer Table 8) as input for Power-BI in CSV format. These data will then be

used by Power-BI for the visual analysis by generating various reports.

Maintenance use case: This use case describes the steps when either SrcArtifacts or

DstArtifacts or both are updated. Trace links must be revisited and updated as per the

changes. Below Figure 25 depicts the maintenance use case by showing the actions that

typically happen between stakeholders and the different tools when artifacts get updated. If

we continue the above example of requirements being the SrcArtifacts and model elements

being the DstArtifacts, when either the requirements or model elements or both get updated,

the below actions will take place. When Manager (Stakeholder1) updates requirements in the

RM tool (Src Tool), the RM tool updates the trace links. Architect (Stakeholder2) re-imports

the updated requirements into the Modeling tool (Dst Tool) updates the model elements

(DstArtifacts) if any. The trace links along with SrcArtifacts and DstArtifacts are exported to

the TraceGen tool. The TraceGen tool with the help of previous import information (of both

source and destination artifacts) and newly synced import information (updated artifacts),

generates the trace reports with suspect link information. The status of TracedItems and

TraceLink is updated. TraceGen tool with the help of these updated statuses notifies users

about suspect links.

Feasibility Study and Investigation 63

 Figure 25: Use case for the maintenance of trace links

As in the creation use case, even during maintenance TraceGen tool prepares updated input

data with the fields in Table 7 for Power-BI. The input will be created in CSV format and

TraceGen uses the exported source and destination artifacts from the Src Tool and Dst Tool. It

also prepares the updated trace information, TraceLink (Refer Table 8) as input for Power-BI

in CSV format. These data will then be used by Power-BI for the visual analysis of trace links

by generating various kinds of reports along with suspect links.

4.2.4 Traceability Link Creation and Maintenance Process using TraceGen

In this section, the steps followed to achieve traceability between the artifacts across the tools

Polarion, Enterprise Architect, and Doxygen using the TraceGen tool are described.

4.2.4.1 Traceability between Polarion and Doxygen using TraceGen

This section describes the process and steps followed to achieve traceability between

requirements and implementation elements using TraceGen. Tracelinks are created in

Doxygen and TraceGen tool helps to automate most of the steps to reduce manual work. It

also helps to recognize the suspect links automatically when artifacts are updated. It generates

a traceability matrix in Microsoft Excel and prepares inputs to the Power-BI tool for

visualization purposes which helps to analyze the trace links better.

Below are the steps followed for achieving traceability. The steps and process are described

based on the use case of trace link creation, usage, and maintenance.

Feasibility Study and Investigation 64

Creation:

1. Export Polarion requirements in Excel and CSV format

2. Use TraceGen to transform Polarion Excel-Export into an anchor file which aids in the

creation of traces. This step uses requirement IDs and hyperlinks of requirements to

create the file. Below is the snippet of the anchor file generated. Here, REQID-487 and

its hyperlink are placed along with the D This helps to link

the REQID with its hyperlink and can be referred to from other places in the Doxygen

document.

A snippet of the Anchor file :

/** @page Requirements
* @section Link
* @anchor REQID-487
* REQID-487 */

The anchor file is then placed in the implementation directory where Doxygen is run.

3. The next step is to use custom tags in the Doxygen comments and add Aliases in the

Doxygen configuration file.

Custom tags are used to create trace links between requirements and code elements.

Using implements along with requirement ID in Doxygen comment creates

the trace link between code elements and requirements. Below is the snippet of the

Doxygen comment with the custom tag . It creates trace links of type

and 398.

/** @implements{@req{487}}
* @implements{@req{398}} */
void DisplayTemperature(tId sId, TemperatureUnit temp)

Adding Aliases in the Doxygen configuration file helps Doxygen to understand the

custom tags and to map to the anchor file. Following is the example of aliases that can be

added to the configuration file for the above Doxygen comment snippet. This generates a

separate page called "Requirement Implementation" in the Doxygen report, displaying all

"req{1} = \ref REQID-\1 \"REQID-\1\""
"implements{1} = \xrefitem implement \"Implements requirement\"
\"Requirement Implementation\" \1"

 the code elements with their links to requirements.

Feasibility Study and Investigation 65

4. When Doxygen is run, the trace links are generated as part of the Doxygen report as

mentioned above. TraceGen Tool exports these trace links information into Excel to have

a matrix report.

5. The source and destination TracedItems along with the TraceLinks information (chapter

4.2.1) are also prepared by the TraceGen tool in CSV format for Power-BI visualization.

Maintenance:

When either requirements or code or both changes, traceability reports can be updated by

syncing the artifacts. Following steps are taken for the sync:

1. Export updated Polarion requirements in CSV and Excel format

2. TraceGen tool uses previously exported data (Step 1 of Creation) and newly updated ones

(Step 1 of Maintenance), to update the status of TracedItem (updated, added, deleted, and

unchanged). This status is used to highlight in the traceability report for suspect links.

The same applies to the code elements as well. Hence TraceGen tool supports bi-

directional traceability.

3. When Doxygen is run, the trace links are updated as part of the Doxygen documentation

(HTML report). Updated links are highlighted. TraceGen Tool exports these updated

trace links information into Excel to have the matrix report. Links generated from the

updated artifacts will be shown as a suspect in the report.

4. The updated source and destination TracedItems along with the updated TraceLinks

(chapter 4.2.1) are prepared by the TraceGen tool in CSV format and are used for Power-

BI visualization.

Usage:

The different visualizations supported are as follows: A list in the Doxygen web report,

traceability matrix in Excel report, and various reports like traceability table and matrix with

drill features, change impact report, coverage reports in Power-BI. For navigation of Polarion

requirements from reports, exported hyperlink information is used. And for Doxygen code

elements, TraceGen generates an HTML link to each of the code elements based on the

unique identifier created by Doxygen during document generation. Also, Internet Information

Feasibility Study and Investigation 66

Services (IIS) web server is configured to serve the static Doxygen HTML files. Hence these

static Doxygen HTML files are used for the navigation of the code elements from the reports.

4.2.4.2 Traceability between Polarion and Enterprise Architect using TraceGen

This section describes the process and steps followed to achieve traceability between

requirements and architectural elements using TraceGen. Tracelinks are created in Enterprise

Architect and the TraceGen tool helps to automate most of the steps to reduce manual work. It

also helps to recognize the suspect links automatically when artifacts are updated. It generates

a traceability matrix in Microsoft Excel and prepares inputs to the Power-BI tool for

visualization purposes which helps to analyze the trace links better.

Below are the steps followed for achieving traceability between them. The steps and process

are described based on the use case of trace link creation, usage, and maintenance

Creation:

1. Export Requirements from Polarion in CSV and Excel format. The required fields of

requirements are imported to EA in CSV format. User-defined tag values for

requirements are created in EA. These are used for mapping requirement fields that are

not present in EA by default. In this case, tag values are space holders to store hyperlinks

and the status of requirements. Also, EA assigns a unique GUID for the imported

requirements.

2. Create trace links between EA elements and imported requirements in Enterprise

Architect using Requirement diagram.

3. Generate Relationship matrix in Enterprise Architect

4. Export the matrix in CSV format and this information is used by TraceGen to generate

traceability matrix in Excel and to prepare TraceLink input to Power-BI for other

visualization.

5. Export EA elements in CSV format which is used by TraceGen to support bi-directional

traceability

6. Export EA HTML reports for supporting the navigation to EA elements from traceability

reports

Feasibility Study and Investigation 67

7. TraceGen tool uses the exported CSV files of steps 1 and 5 to prepare source and

destination TracedItems as inputs to Power-BI. It uses the HTML report of step 6 to

generate hyperlink information to architectural elements which are used for navigation.

Maintenance:

When either requirements or code or both changes, traceability reports can be updated by

syncing the artifacts. Following steps are taken for the sync:

1. Requirements and architectural elements are re-exported.

2. As requirements are assigned a unique GUID in EA, subsequent imports in EA update the

existing requirements rather than recreating them. TraceGen tool uses previously

exported requirements data and newly updated ones, to update the status of TracedItem

(updated, added, deleted, and unchanged). The updated requirements are highlighted in

the Requirement diagram (created in step 2 of the Creation use case) using the user-

3. Export the updated matrix of EA in CSV format and this information is used by

TraceGen to update the traceability matrix in Excel. TraceGen tool uses previously

exported architectural elements and newly updated ones, to update the status of

architectural elements in the trace matrix report. The status update of both requirements

and architectural elements by TraceGen the trace

matrix report.

4. The updated source and destination TracedItems (from step 1 of Maintenance) along with

the updated TraceLinks (chapter 4.2.1) are prepared by the TraceGen tool in CSV format

and are used for Power-BI visualization.

Usage:

The different visualizations supported are Requirements diagram in EA, Traceability matrix

in Excel report, and various reports like traceability table and matrix with drill features,

change impact report, and coverage reports in Power-BI. For navigation of Polarion

requirements from reports, exported hyperlink information from step 1 of both creation and

maintenance use cases are used. EA HTML files exported in step 6 of the creation use case

and step 1 of the maintenance use case are used for navigation to EA elements from reports.

Feasibility Study and Investigation 68

They are obtained from the Standard HTML Web report feature of EA. IIS web server can

also be configured to serve these static Enterprise Architect HTML files. EA protocol can also

be used to access EA elements directly from the reports.

4.2.4.3 Traceability between Enterprise Architect and Doxygen using TraceGen

This section describes the process and steps followed to achieve traceability between

architecture elements and code elements using TraceGen. Tracelinks are created in Doxygen

and TraceGen tool helps to automate most of the steps to reduce manual work. It also helps to

recognize the suspect links automatically when artifacts are updated. It generates a traceability

matrix in Microsoft Excel and provides inputs to the Power-BI tool for visualization purposes

which helps to analyze the trace links better.

Below are the steps followed for achieving traceability between EA and Doxygen. The steps

and process are described based on the use case of trace link creation, usage, and

maintenance.

Creation:

1. Export architectural elements from Enterprise Architect using CSV export. Architectural

elements are also exported to Standard HTML Web reports. IIS(Internet Information

Services) web server is configured to serve these static Enterprise Architect HTML files.

Use TraceGen to transform EA CSV and HTML reports information into an anchor file.

This step uses architecture elements name and GUID to create a hyperlink for each of the

elements. This information is used to create an anchor file. Below is the snippet of the

anchor file generated. Here, EA-elementxyz and its hyperlink are placed along with the

D EA-elementxyz to its hyperlink and

can be referred to from other places in the Doxygen document.

Snippet of Anchor file:

 /** @page ArchitecturalElements

* @section Link

* @anchor EA-elementxyz

* EA- elementxyz */

The anchor file is then placed in the implementation directory where Doxygen is run.

Feasibility Study and Investigation 69

The next step is to use custom tags in the Doxygen comments and add Aliases in the

Doxygen configuration file.

Custom tags are used to create trace links between architectural elements and code

elements refines architectural elements name in Doxygen

comment, creates the trace link between code elements and architectural elements. Below

is the snippet of the Doxygen comment with custom tags. It creates a trace link between

ShowHumidity

/** @refines{@ae{ elementxyz }}
* @refines {@ae{ elementabc}} */
void ShowHumidity(tId sensorId, float value, char *unit)

Adding Aliases in the Doxygen configuration file helps to understand the custom tags and

to map to the anchor file. Following is the example of aliases that can be added to the

configuration file for the above Doxygen snippet.

"ae{1} = \ref EA-\1 \"EA-\1\""

"refines{1}=\xrefitem refines \"Refines ArchitecturalModel\" \"AE Refinement\" \1"

This generates a separate page called "AE Refinement" in the Doxygen report, displaying

all the code elements with their links to architectural elements.

2. When Doxygen is run, the trace links are generated as part of the Doxygen report as

mentioned above. TraceGen Tool exports these trace links information into Excel to have

a matrix report.

3. The source and destination TracedItems along with the TraceLinks information (chapter

4.2.1) are also prepared by the TraceGen tool in CSV format for Power-BI visualization.

Maintenance:

When either architectural elements or code or both changes, traceability reports can be

updated by syncing the artifacts. Following steps are taken for the sync:

1. Re-export architectural elements in CSV and HTML format

2. TraceGen tool uses previously exported data and newly updated ones, to update the status

of TracedItem (updated, added, deleted, and unchanged). This status is used to highlight

Feasibility Study and Investigation 70

suspect links in the traceability report. The same applies to the code elements as well.

Hence TraceGen tool supports bi-directional traceability.

3. When Doxygen is run, the trace links are updated as part of the Doxygen documentation

(HTML report). Updated links are highlighted. TraceGen Tool exports the updated trace

links information into Excel to have the matrix report. Links generated from the updated

artifacts will be shown as a suspect in the report.

4. The updated source and destination TracedItems along with the updated TraceLinks

information (chapter 4.2.1) are generated by the TraceGen tool in CSV format and are

used for Power-BI visualization.

Usage:

The different visualizations supported are a list in the Doxygen web report, traceability matrix

in Excel report, and various reports like traceability table and matrix with drill features,

change impact report, coverage reports in Power-BI. For navigation of architectural elements

from reports, EA HTML files are obtained from the exported Standard HTML Web report

(step 1 of both creation and maintenance use case). IIS web server is configured to serve these

static Enterprise Architect HTML files. Navigation to a page for a specific diagram or element

can be achieved by specifying the appropriate GUID (which is obtained from CSV export).

TraceGen tool maps each architectural element with corresponding HTML pages. TraceGen

also generates an HTML link to each of the code elements based on the unique identifier

created by Doxygen during document generation. IIS web server is also configured to serve

the static Doxygen HTML files. Hence these static Doxygen HTML files are used to navigate

to the code elements from the reports.

4.2.5 Traceability Visualization in Power-BI

Based on the findings for research question R2 (How and when the trace links are used in

industrial practice?), various possibilities of representing the traceability information were

explored. The matrix way or list way of representing links may not be useful for every

stakeholder. Hence Power-BI, a business analytics service by Microsoft is used to generate

various reports. Power-BI is used for the analysis of TraceLink data and TracedItem data

(refer to chapter 4.2.1) prepared from the TraceGen tool. Power-BI pulls the data together and

processes it to turn into intelligible insights by generating charts and graphs.

Feasibility Study and Investigation 71

A template for the report can be created by defining the relationship between the TracedItems

and TraceLinks and by having various graphs, charts depending on the project needs. This

report template can then be reused again by refreshing the data as and when the TraceLinks

and TracedItems are updated. Refer to Appendix 7.4 for various kinds of visual reports

generated in Power-BI with the help of provided data (TracedItems and TraceLinks).

Key benefits of using Power-BI: Power BI Desktop is free of cost and a huge amount of data

can be processed by Power-BI with no limits. Power BI compresses each data set effectively

before loading it into memory, hence occupies less space. Personalized reports can be created

based on project/stakeholders' needs. Using features like drill down and drill up, data can be

filtered and reports of only the required data can be viewed. Hence it helps in managing a

huge number of traces. Drill through feature helps to navigate from one report to another

report using the relationship created between them. Hence can be used for indirect tracing.

4.2.6 Analysis and Results

For the demonstration of feasibility, a practical example is used. BCON, the virtual company

 (Zurbuchen, 2014), is utilized for this purpose.

BCON is characterized as a company with a long-lasting competence in building control.

About two dozens of engineers engage in several teams in the development and maintenance

of the products. The company offers a product line engineering project called weather station

and the same is used for establishing traceability. For this project, the system and software

requirements were created and maintained in Polarion and the corresponding system and

software architecture models were developed in Enterprise Architect. The code for this project

was implemented as a VC++ project and the tool Doxygen was used for generating design

documentation from the source code. Hence the tools used in the BCON project matches with

the toolchain supported by TraceGen. Also as per chapter 2.3.4, to comply with ASPICE, bi-

directional vertical traceability must be achieved between the requirements, architectural

models, design, and implementation artifacts present on the left side of the V model. And

horizontal bidirectional traceability must be established between the test artifacts on the right

side of the V model and the corresponding artifacts on the left side. The latter was not

considered for the feasibility study analysis. However, to demonstrate vertical traceability

using TraceGen, the BCON project was selected.

Feasibility Study and Investigation 72

For the creation and maintenance of trace links between the artifacts, the TraceGen tool

consisting of Python scripts and batch scripts is placed in parallel to the system engineering

and software engineering artifacts. The artifacts are exported from the respective authoring

tools and placed in the system or software folders by following the steps mentioned in chapter

4.2.4. The main batch file placed in the TraceGen folder is executed with arguments based on

the selection of artifacts. For example, to generate trace links between system requirements

and system architectural models, the script to be used is: REQ_ARCH

generate and to create trace links between software requirements and implementation

elements, the script to be used is: TraceGen.bat SW REQ_IMPL generate. Similarly, trace

links are generated across the artifacts that are present on the left side of the V-model of the

ASPICE as per Figure 6. To update the trace links when artifacts are modified, the same script

 .bat SYS REQ_ARCH

update . This updates the previously created trace links between system requirements and

system architectural models.

The first step is to establish trace links between system requirements maintained in Polarion

and system architecture models present in Enterprise Architect (Refer to chapter 4.2.4.2).

Requirement diagrams are used to link between imported requirements and model elements.

Because of the number of requirements and the presence of various types of model elements,

more than one requirement diagram is created. Each diagram consisted of model elements that

are of the same type. For example, all the use cases are traced to respective requirements in

one requirement diagram. For the next requirement diagram, trace links between requirements

and the block diagrams (used to describe the sensor component of the weather station) are

created. Figure 26, shows the requirements with ID 398, 403, 409, and 405 that are imported

from the Polarion project of

project in the folder 01_requirements. The 4 sensor block diagrams (temperature sensor, air

humidity sensor, airpressure sensor, and wind sensor) present in the model are traced to

corresponding requi

Also, it can be noticed that each requirement in the requirement diagram has tag values

helps to navigate to Polarion requirements with a single click.

Feasibility Study and Investigation 73

 Figure 26: Requirement diagram containing traces

Finally, all the requirements diagrams created in EA are exported in CSV format to create a

traceability matrix and to provide input to Power-BI for other visualization.

In the next step trace, links between system requirements and software requirements are

created in the Polarion project of BCON using traceability link functionality. Below Figure 27

shows the traceability matrix generated in the Polarion BCON Demo Weather Station project.

System requirements are depicted in the rows and software requirements in columns. For

example system requirement BCON-409 is linked to software requirement WS-54.

Figure 27: Traces between requirements in Polarion

Feasibility Study and Investigation 74

For the next step, traces between software requirements and software architecture are

developed using requirement diagrams in the same process as mentioned above (Figure 26).

However, traces between software requirements and system architecture are not established

directly. As links are already created between system requirements and software

requirements, and between system requirements and system architecture, indirect links can be

established between software requirements and system architecture. Power- -report

drill through feature can be used for the same.

The next step is to establish trace links between software architecture and software detailed

design. The detailed design is created using Doxygen. As mentioned in chapter 4.2.4.3, the

trace links are created using the custom Doxygen comments. The Doxygen report is created

along with the trace link information as shown below.

 Figure 28: Trace link information in the Doxygen web report

Feasibility Study and Investigation 75

In Figure 28, the trace list showing the traces between design elements and software

architecture models. For example, DisplayHumidy function refines the architecture models

EA-measure-air-humidity and EA-air-humidity-sensor.

As Doxygen comments generate design documentation with a one-to-one mapping between

code elements and corresponding design units, trace link creation between them is not needed.

As the design elements and code elements have the same name, implicit traceability is

achieved. And the tracing requirement between software requirements and code elements is

established by tracing software requirements and design elements (chapter 4.2.4.1) as there is

a one-to-one mapping between design elements and code elements. Hence with all the above-

mentioned steps, bi-directional traceability was established between all the artifacts of the

BCON project as specified by ASPICE (vertical traceability) with the help of TraceGen.

The next step to analyze is the maintenance of trace links. The trace links maintenance is done

as mentioned by sub- 4.2.4 depending on the artifacts in

consideration. In Figure 29 below, the matrix represents the trace links between the software

architecture model and design elements with the

represent that the trace links have been updated due to updates in artifacts. As the architecture

model, EA-measure-air-humidity is updated, its corresponding trace links with the design

 Figure 29: Trace links maintenance in traceability matrix report

Feasibility Study and Investigation 76

elements DisplayHumidity, weather_station_trendline, and ShowHumidity are marked as

suspects. Similarly, suspect links are highlighted in Doxygen web reports as well.

To have a complete traceability picture, Power-BI visualization reports were used. The below

Figure 30 represents the snapshot of the trace tree established for the BCON project.

 Figure 30: Trace tree report in Power-BI

The report has 4 sub-sections. The upper-left corner represents the trace tree for system

requirements and software requirements. The upper-right corner is the trace tree for system

requirements and system architecture. Similarly, the trace tree in the left-lower corner

represents the traces between software requirements and software architectural elements and

the right-lower one represents the trace links between software architectural elements and

design/implementation elements. Each of the trace trees can be focused to have a complete list

of traces using the focus button. Clicking each of the artifacts shows the linked destination

artifacts. For example, the selected system requirement BCON-417 was linked to software

requirement BCON-552 in the upper-left report. Similarly, on the right-lower report, the

software architectural element Sensors can be seen linked to 15 design elements. Clicking on

focus mode and the up and down arrows helps for the navigation of all the traced elements.

The other type of visualization helpful for analysis is the trace matrix report in Power-BI. The

visualization is more helpful for analysis than the normal matrix generated in Microsoft Excel

Feasibility Study and Investigation 77

because of drill-down, drill-up, and expand hierarchy features provided by Power-BI. In

Figure 31, a trace matrix was formed using trace links between software architecture model

elements and implementation elements. Using the drill-down and drill-up features insights to

the next-level hierarchies of data can be obtained. For example, the rows and columns

represent the TracedItems with fields mentioned in Table 7. The rows have been drill down

up to three levels of hierarchies and hence three levels of fields have been represented. i.e. the

type of the architectural model, the status of the model, and model element names. For

example, the model elements like Comperator, Display, etc are of type Package and the status

of these model elements is . Similarly in the column, implementation elements

have also been represented in three levels. i.e. All the code elements shown in the below

diagram are of type function and the first 8 functions have not been updated, but the next

functions from the function DisplayIndoorTemperature have been updated. Hence it is easy to

 Figure 31: Trace matrix with drill features of Power-BI

 Even the hyperlink to

elements was made part in the next hierarchical level, hence expanding down to the next level

helps for the navigation of elements.

Indirect trace link establishment between system architecture and software requirements is

explained with the below Figure 32 representing the trace links in the table (list) format. The

left table represents the trace list between system requirements and system architecture

elements and the right table represents the trace list between system and software

requirements. To find the trace links between system architecture model elements and

software requirements (which is one of the compulsory links to be established as per

Feasibility Study and Investigation 78

ASPICE), an indirect tracing method can be used. Selecting the interested system

architectural elements in the left table results in highlighting the corresponding traced system

requirements. This in turn selects the same highlighted system requirements in the right table

which in turn results in highlighting the corresponding traced software requirements. Hence

with this indirect trace links between system architecture elements and software requirements

are established.

Figure 32: Indirect trace link establishment using Power-BI visualization

For example in Figure 32, the system architecture elements PowerSupply and WeatherDisplay

Basic were selected. The corresponding highlighted traced system requirements are BCON-

451, BCON-477, and BCON-486. The right trace list report selects the same system

requirements (that were highlighted in the left table) and highlights corresponding traced

software requirements. i.e, BCON-451 are traced to software requirements BCON-573 and

WS-58. Similarly, BCON-477 traces to BCON-558 and BCON-486 traces to BCON-571.

Hence the system architectural model element PowerSupply is indirectly related to software

requirements BCON-573 and WS-58. Similarly, the model element WeatherDisplay Basic is

indirectly traced to software requirements BCON-558 and BCON-571.

Refer to Appendix 7.4 for various visualization report types used for the analysis of trace

links in Power-BI.

Conclusions 79

5 Conclusions

This thesis focuses on the real-life experiences of traceability in the industrial context.

Though most of the industries have adapted their processes to include traceability, there are

still many challenges that are being encountered to establish it successfully. A literature

review conducted during the systematic mapping study (in chapter 2) revealed that different

elements need to be considered for achieving traceability successfully and they vary from

project to project. Elements like traceability criteria, purposes, approaches, tools used are

different for different projects, and hence the challenges faced are also different. It was

understood that knowing the reasons for the issues faced by knowing the project context and

usage context helps in tackling the issues better. For this, different criteria and approaches

followed for achieving traceability were compiled along with all possible use cases.

Corresponding benefits and drawbacks of the approaches were listed too. Exploring different

tools also helped in analyzing their features along with pros and cons. Hence, different

methods were used to compile the challenges faced, and parallelly different ways to mitigate

them were also explored.

Though the literature review and mapping study provided the basis to understand the problem

and probable solutions, it did not provide real insights into the actual problems faced. Hence

conducting expert interviews gave a user perspective on the issues faced. Conducting expert

interviews also helped in compiling the best practices to follow and pitfalls to avoid during

the traceability process (chapter 3).

From both of the above approaches, it was noted that one of the crucial challenges in

achieving traceability in MBSE projects is tool support. As traceability is time-consuming and

error-prone, tools must be used for automation. However, it must also be cost-effective as not

all projects can invest in exclusive traceability tools due to budget constraints. As MBSE

projects can use different kinds of authoring tools, the traceability tool must also be

configurable to avoid tool breaks. Hence various viable approaches were explored considering

a toolchain consisting of Polarion, Enterprise Architect, and Doxygen (chapter 4.1).

Knowing the list of challenges faced and various approaches and tools available with their

pros and cons, a solution approach was developed that would aid the traceability process

Conclusions 80

(chapter 4.2). The developed prototype tool kept the crucial challenge of tool breaks in mind.

The tool is configurable as the used exchanging formats (CSV, and HTML) are standard

formats supported by most of the tools. The knowledge shared by interviewees on best

practices and pit-falls was also considered to approach the features supported by the tool

pragmatically. The maintenance of trace links was also considered as one of the main criteria

during the tool development to avoid trace decays. Navigation and handling of a large number

of links were tackled by using the tool Power-BI.

To evaluate the results of the proposed solution, a feasibility study was conducted by using

the prototype tool on the BCON project (Chapter 4.2.6). The project considered was a

prototype developed at Fraunhofer IESE using the same toolchain that was considered for the

proposed solution. The results of the case study showed that the tool developed can be used

for achieving traceability across the toolchain requirements.

5.1 Open Issues and Future work

Based on the results of the case study, future work has been identified.

Currently, the tool developed is purely CLI (command line interpreters) based and does not

have a GUI (graphical user interface). Hence, developing it into a GUI-based tool can

significantly improve the user-time as using commands is very laborious. A graphical user

interface makes the tool more reliable as user mistakes can be avoided. This will also improve

user satisfaction.

Achieving traceability using the prototype tool is not automated fully. Some of the non-

automated steps like exporting artifacts from tools are cumbersome and users can also miss

the steps or perform them differently. This results in erroneous output. Hence, the tool can be

improved for automation to reduce manual work.

The complete tree of traces from a high-level artifact to multiple low-level artifacts and vice-

a-versa helps to get the complete picture of dependencies for a selected artifact. Currently,

this is not fully supported. Power-BI reports can be navigated from one level to the other

using the cross-report drill through feature. However, a single report showing a complete tree

Conclusions 81

of traces (direct and indirect, with multiple levels) when an artifact is selected without the

user navigating from one report to the other would be much easier for analysis.

Overall, the thesis demonstrates that it is recommended to continue research in the direction

of automation of the traceability process and configuration of the tool keeping the varying

needs of projects in mind.

Bibliography

6 Bibliography

Albinet, A., Boulanger, J.-L., Dubois, H., Peraldi-Frati, M.-A., Sorel, Y., & Van, Q.-D.

(2007). Model-based methodology for requirements traceability in embedded systems.

Proceedings of 3rd European Conference on Model Driven Architecture®

Foundations and Applications, ECMDA'07.

Amar, B., Leblanc, H., & Coulette, B. (2008). A traceability engine dedicated to model

transformation for software engineering. ECMDA Traceability Workshop (ECMDA-

TW), (pp. 7 16).

Antonino, P. O., Keuler, T., Germann, N., & Cronauer, B. (2014). A non-invasive approach to

trace architecture design, requirements specification and agile artifacts. 2014 23rd

Australian Software Engineering Conference, (pp. 220 229).

Asuncion, H. U., Asuncion, A. U., & Taylor, R. N. (2010). Software traceability with topic

modeling. 2010 ACM/IEEE 32nd International Conference on Software Engineering,

1, pp. 95 104.

Badreddin, O., Sturm, A., & Lethbridge, T. C. (2014). Requirement traceability: A model-

based approach. 2014 IEEE 4th International Model-Driven Requirements

Engineering Workshop (MoDRE), (pp. 87 91).

Bailey, J., Budgen, D., Turner, M., Kitchenham, B., Brereton, P., & Linkman, S. (2007).

Evidence relating to Object-Oriented software design: A survey. First International

Symposium on Empirical Software Engineering and Measurement (ESEM 2007), (pp.

482 484).

Bashir, M. F., & Qadir, M. A. (2006). Traceability techniques: A critical study. 2006 IEEE

International Multitopic Conference, (pp. 265 268).

Chen, X., Hosking, J., & Grundy, J. (2012). Visualizing traceability links between source

code and documentation. 2012 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), (pp. 119 126).

Bibliography

Cleland-Huang, J., Hayes, J. H., & Domel, J. M. (2009). Model-based traceability. 2009 ICSE

Workshop on Traceability in Emerging Forms of Software Engineering, (pp. 6 10).

Dubois, H., Peraldi-Frati, M.-A., & Lakhal, F. (2010). A model for requirements traceability

in a heterogeneous model-based design process: Application to automotive embedded

systems. 2010 15th IEEE International Conference on Engineering of Complex

Computer Systems, (pp. 233 242).

Egyed, A. (2001). A scenario-driven approach to traceability. Proceedings of the 23rd

International Conference on Software Engineering. ICSE 2001, (pp. 123 132).

Galvao, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven

engineering. 11th IEEE International Enterprise Distributed Object Computing

Conference (EDOC 2007), (pp. 313 313).

Gates, A. Q., & Mondragon, O. (2002). FasTLInC: a constraint-based tracing approach.

Journal of systems and software, 63, 241 258.

Gayer, S., Herrmann, A., Keuler, T., Riebisch, M., & Antonino, P. O. (2016). Lightweight

traceability for the agile architect. Computer, 49, 64 71.

Gomaa, H., & Hussein, M. (2007). Model-based software design and adaptation.

International Workshop on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS'07), (pp. 7 7).

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Greunbacher, P., &

Antoniol, G. (2012). The quest for ubiquity: A roadmap for software and systems

traceability research. 2012 20th IEEE international requirements engineering

conference (RE), (pp. 71 80).

Grammel, B., & Kastenholz, S. (2010). A generic traceability framework for facet-based

traceability data extraction in model-driven software development. Proceedings of the

6th ECMFA Traceability Workshop, (pp. 7 14).

Bibliography

Guo, J., Cheng, J., & Cleland-Huang, J. (2017). Semantically enhanced software traceability

using deep learning techniques. 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE), (pp. 3 14).

Holtmann, J., Steghöfer, J.-P., Rath, M., & Schmelter, D. (2020). Cutting through the Jungle:

Disambiguating Model-based Traceability Terminology. 2020 IEEE 28th

International Requirements Engineering Conference (RE), (pp. 8 19).

IEEE. (1984). Guide to Software Requirements Specification Piscataway: IEEE Press.

IEEE. (1990). 610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology.

Jaber, K., Sharif, B., & Liu, C. (2013). A study on the effect of traceability links in software

maintenance. IEEE Access, 1, 726 741.

Jiang, H.-Y., Nguyen, T. N., Chen, X., Jaygarl, H., & Chang, C. K. (2008). Incremental latent

semantic indexing for automatic traceability link evolution management. 2008 23rd

IEEE/ACM International Conference on Automated Software Engineering, (pp. 59

68).

Kagdi, H., Maletic, J. I., & Sharif, B. (2007). Mining software repositories for traceability

links. 15th IEEE International Conference on Program Comprehension (ICPC'07),

(pp. 145 154).

Kaiser, C., & Herbst, B. (2015). Smart Engineering for Smart Factories: How OSLC Could

Enable Plug & Play Tool Integration. In Mensch und Computer 2015 Workshopband

(pp. 269 280). De Gruyter.

Koenigs, S. F., Beier, G., Figge, A., & Stark, R. (2012). Traceability in Systems Engineering

Review of industrial practices, state-of-the-art technologies and new research

solutions. Advanced Engineering Informatics, 26, 924 940.

Lago, P., Muccini, H., & Van Vliet, H. (2009). A scoped approach to traceability

management. Journal of Systems and Software, 82, 168 182.

Bibliography

Mader, P., Gotel, O., & Philippow, I. (2009). Motivation matters in the traceability trenches.

2009 17th IEEE International Requirements Engineering Conference, (pp. 143 148).

Maletic, J. I., Munson, E. V., Marcus, A., & Nguyen, T. N. (2003). Using a hypertext model

for traceability link conformance analysis. Proc. of the Int. Workshop on Traceability

in Emerging Forms of Software Engineering, (pp. 47 54).

Marcus, A., & Maletic, J. I. (2003). Recovering documentation-to-source-code traceability

links using latent semantic indexing. 25th International Conference on Software

Engineering, 2003. Proceedings., (pp. 125 135).

Maro, S. (2020). Improving software traceability tools and processes.

McMillan, C., Poshyvanyk, D., & Revelle, M. (2009). Combining textual and structural

analysis of software artifacts for traceability link recovery. 2009 ICSE Workshop on

Traceability in Emerging Forms of Software Engineering, (pp. 41 48).

Meedeniya, D. A., Rubasinghe, I. D., & Perera, I. (2019). Traceability establishment and

visualization of software artefacts in devops practice: a survey. International Journal

of Advanced Computer Science and Applications, 10, 66 76.

Nair, S., De La Vara, J. L., & Sen, S. (2013). A review of traceability research at the

requirements engineering conference re@ 21. 2013 21st IEEE International

Requirements Engineering Conference (RE), (pp. 222 229).

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in

software engineering. 12th International Conference on Evaluation and Assessment in

Software Engineering (EASE) 12, (pp. 1 10).

Ramesh, B., & Edwards, M. (1993). Issues in the development of a requirements traceability

model (pp. 256-259). IEEE.

Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements traceability.

IEEE transactions on software engineering, 27, 58 93.

Bibliography

Ramesh, B., Stubbs, C., Powers, T., & Edwards, M. (1997). Requirements traceability:

Theory and practice. Annals of software engineering, 3, 397 415.

Regan, G., Mc Caffery, F., Mc Daid, K., & Flood, D. (2013). Medical device standards'

requirements for traceability during the software development lifecycle and

implementation of a traceability assessment model. Computer Standards & Interfaces,

36, 3 9.

Regan, G., McCaffery, F., McDaid, K., & Flood, D. (2012). The barriers to traceability and

their potential solutions: Towards a reference framework. 2012 38th Euromicro

Conference on Software Engineering and Advanced Applications, (pp. 319 322).

SIG, V. Q. (2017). Automotive SPICE Process Assessment / Reference Model.

Sundaram, S. K., Hayes, J. H., Dekhtyar, A., & Holbrook, E. A. (2010). Assessing traceability

of software engineering artifacts. Requirements engineering, 15, 313 335.

Tang, A., Jin, Y., & Han, J. (2007). A rationale-based architecture model for design

traceability and reasoning. Journal of Systems and Software, 80, 918 934.

Winkler, S., & von Pilgrim, J. (2010). A survey of traceability in requirements engineering

and model-driven development. Software & Systems Modeling, 9, 529 565.

Zurbuchen, G. (2014). A Case Study for Integrated Lifecycle and Variant Management in a

SME Context. Kaiserslautern.

Appendix

7 Appendix

7.1 Mapping of Research Papers based on Classification Scheme

ID Year Title Search
String

Author Research
facet

Contrib
ution
facet

Product
Concept
Context
Facet

P01 2007 Survey of
Traceability
Approaches in
Model-Driven
Engineering

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Galvao
&
Goknil,
2007)

Solution
proposal

Method End to end
traceability/
Comparison
of tools and
techniques

P02 2009 A survey of
traceability in
requirements
engineering
and model-
driven
development

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Winkle
r & von
Pilgrim,
2010)

Solution
proposal

Method/
Model/T
erminolo
gy

Traceability
concepts

P03 2006 Traceability
Techniques:
A Critical
Study

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

 (Bashir
&
Qadir,
2006)

Evaluation
Research

Method Requirements
traceability/
Comparison
of tools and
techniques

P04 2012 Traceability
in Systems
Engineering
Review of
industrial
practices,
state-of-the-
art
technologies
and new
research
solutions

(Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and
(industry or
industrial))

(Koenig
s, Beier,
Figge,
&
Stark,
2012)

Solution
proposal

Tool Challenges of
traceability
and solutions

P05 2012 The Barriers
to
Traceability
and their
Potential
Solutions:
Towards a
Reference
Framework

(Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and

(Regan,
McCaff
ery,
McDaid
, &
Flood,
2012)

Evaluation
Research

Method Challenges of
traceability
and solutions

Appendix

(industry or
industrial))

P06 2012 Medical
device
standards'
requirements
for
traceability
during the
software
development
lifecycle and
implementatio
n of a
traceability
assessment
model

(Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and
(industry or
industrial))

(Regan,
Mc
Caffery,
Mc
Daid, &
Flood,
2013)

Solution
proposal

Method End to end
traceability/
Traceability
in medical
systems

P07 2012 The Quest for
Ubiquity:
A Roadmap
for Software
and Systems
Traceability
Research

(Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and
(industry or
industrial))

 (Gotel,
et al.,
2012)

Solution
proposal

Method/
Model/T
ool

Challenges of
traceability
and solutions

P08 2010 Software
Traceability
with Topic
Modeling

(Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and
(industry or
industrial))

(Asunci
on,
Asunci
on, &
Taylor,
2010)

Evaluation
Research

Method/
Model/T
ool

End to end
traceability/
Comparison
of tools and
techniques

P09 2010 A model for
requirements
traceability in
a
heterogeneous
model-based
design
process

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

(Dubois
,
Peraldi-
Frati, &
Lakhal,
2010)

Validation
Research

Method/
Model

Requirements
traceability

P10 2009 Model-Based
Traceability

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

(Clelan
d-
Huang,
Hayes,
&
Domel,
2009)

Validation
Research

Method End to end
traceability

Appendix

P11 2010 Assessing
traceability of
software
engineering
artifacts

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

(Sundar
am,
Hayes,
Dekhty
ar, &
Holbro
ok,
2010)

Evaluation
Research

Method Requirements
traceability/C
omparison of
tools and
techniques

P12 2008 A scoped
approach to
traceability
management

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

 (Lago,
Muccin
i, &
Van
Vliet,
2009)

Validation
Research

Process/
Model

End to end
traceability/C
hallenges of
traceability
and solutions

P13 2020 Cutting
through the
Jungle:
Disambiguati
ng
Model-based
Traceability
Terminology

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

(Holtm
ann,
Steghöf
er,
Rath, &
Schmelt
er,
2020)

Philosophi
cal Papers

Terminol
ogy

Traceability
concepts

P14 2003 Using a
Hypertext
Model for
Traceability
Link
Conformance
Analysis

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

(Maleti
c,
Munson
,
Marcus,
&
Nguyen
, 2003)

Solution
Proposal

Model Traceability
maintenance

P15 2016 Lightweight
Traceability
for the Agile
Architect

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

 (Gayer,
Herrma
nn,
Keuler,
Riebisc
h, &
Antonin
o,
2016)

Solution
Proposal

Method Creation of
traceability/T
raceability
maintenance

P16 2008 A Traceability
Engine
Dedicated to
Model
Transformatio
n for Software
Engineering

(Traceability
OR trace link
OR tracing)
AND
(automotive
OR health)

 (Amar,
Leblanc
, &
Coulett
e, 2008)

Solution
Proposal

Model/T
ool

Creation of
traceability

P17 2013 A study on
the effect of
traceability
links in
software
maintenance

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

 (Jaber,
Sharif,
& Liu,
2013)

Solution
Proposal

Model End to end
traceability/C
omparison of
tools and
techniques

Appendix

P18 2019 Traceability
Establishment
and
Visualization
of Software
Artefacts in
DevOps
Practice: A
Survey

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Meede
niya,
Rubasin
ghe, &
Perera,
2019)

Solution
Proposal

Method/
Tool

Comparison
of tools and
techniques

P19 2013 A Review of
Traceability
Research at
the
Requirements
Engineering
Conference

 (Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and
(industry or
industrial))

 (Nair,
De La
Vara, &
Sen,
2013)

Solution
Proposal

Method/
Tool

End to end
traceability/C
hallenges of
traceability
and
solutions/Co
mparison of
tools and
techniques

P20 2012 Visualizing
Traceability
Links
between
Source Code
and
Documentatio
n

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

 (Chen,
Hoskin
g, &
Grundy,
2012)

Solution
Proposal

Method Traceability
visualization

P21 2001 Toward
Reference
Models for
Requirements
Traceability

 (Traceability
OR trace link
OR tracing)
AND
((challenges
OR best
practice OR
lessons
learned) and
(industry or
industrial))

(Rames
h &
Jarke,
Toward
referenc
e
models
for
require
ments
traceabi
lity,
2001)

Solution
Proposal

Model Requirements
traceability

P22 2003 Recovering
Documentatio
n-to-Source-
Code
Traceability
Links using
Latent
Semantic
Indexing

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Marcu
s &
Maletic,
2003)

Solution
proposal

Method Creation of
traceability

P23 1997 Requirements
traceability:
Theory and
practice

(Traceability
OR trace link
OR tracing)
AND (model
based
software
engineering

(Rames
h,
Stubbs,
Powers,
&
Edward

Evaluation
Research

Model/M
ethod

Traceability
concepts

Appendix

OR MBSE) s, 1997)

P24 2017 Semantically
Enhanced
Software
Traceability
Using Deep
Learning
Techniques

(Traceability
OR trace link
OR tracing)
AND (model
based
software
engineering
OR MBSE)

 (Guo,
Cheng,
&
Cleland
-Huang,
2017)

Solution
proposal

Method Creation of
traceability

P25 2006 A rationale-
based
architecture
model for
design
traceability
and reasoning

(Traceability
OR trace link
OR tracing)
AND (model
based
software
engineering
OR MBSE)

 (Tang,
Jin, &
Han,
2007)

Solution
proposal

Model/T
ool

Creation of
traceability

P26 2007 Model-based
methodology
for
requirements
traceability in
embedded
systems

(Traceability
OR trace link
OR tracing)
AND (model
based
software
engineering
OR MBSE)

(Albine
t, et al.,
2007)

Solution
proposal

Method/
Tool

Requirements
traceability/
End to end
traceability

P27 2009 Combining
Textual and
Structural
Analysis of
Software
Artifacts for
Traceability
Link
Recovery

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(McMil
lan,
Poshyv
anyk, &
Revelle,
2009)

Solution
proposal

Method Traceability
maintenance

P28 2008 Incremental
Latent
Semantic
Indexing for
Automatic
Traceability
Link
Evolution
Management

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

 (Jiang,
Nguyen
, Chen,
Jaygarl,
&
Chang,
2008)

Solution
proposal

Method Traceability
maintenance

P29 2009 Motivation
Matters in the
Traceability
Trenches

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

(Mader,
Gotel,
&
Philipp
ow,
2009)

Evaluation
Research

Process Challenges of
traceability
and solutions

Appendix

P30 2007 Mining
Software
Repositories
for
Traceability
Links

(Traceability
OR trace link
OR tracing)
AND (survey
OR overview
OR
"literatur*
review")

 (Kagdi,
Maletic,
&
Sharif,
2007)

Solution
proposal

Method Creation of
traceability/
Traceability
maintenance

7.2 Expert Interview Questions

Introduction - Open questions about the background of your company/projects

1. Please provide a brief characterization of your company/projects. #application
domain, #standards used, #Software development life-cycle model followed

-

2. May we mention the name of your company in the study?

-

3. What is your organizational role and what part of the organization do you
represent?

-

Traceability Basics

4. What is the purpose of tracing in your project?

-

5. Which artifacts/items do you trace (features, requirements, architecture
elements, implementation, test, etc.)?

-

6. When and how do you use the traces?

-

7. Are you facing challenges with traceability?

-

8. Approximately how much effort do you spend in tracing (% of the overall
engineering effort)?

Appendix

-

Traceability - Approach

9. When do you create trace links? Is it requirements-driven or captured during the
transformation from one artifact to the other?

-

10. How do you represent the trace links? (e.g. matrix, hyperlinks, graph)

-

11. What happens on the change or deletion of artifact and trace link? Is automatic
change propagation expected as per trace links creation/deletion?

-

12. Is traceability also created and maintained between artifacts developed in
different companies? If so, what are specific challenges/approaches to this
end?

-

13. Any metrics used for measuring the quality of traceability? What does correct
traceability mean according to your knowledge?

-

Traceability - Tools

14. What are the tools used for the creation and management of the artifacts?

-

15. Is a separate tool used to create trace links between artifacts?

-

16. Depending on the tools used for the artifacts and trace links, where are the
trace links stored? (distributed or central)

-

17. Which tool features do you rely on to manage traces?

-

18. Do you visualize trace links? How should the trace links be represented to be
useful and understandable?

Appendix

-

19. How do you analyze the trace links?

-

Traceability MBSE specific

20. Do you apply model-based systems engineering?

-

21. Where does MBSE ease traceability?

-

22. Where does MBSE complicate traceability?

-

23. Which specific challenges / best practices do you see here?

-

Wrap Up

24. Which improvement potential do you see wrt. traceability within your
organization?

-

25. Which promising initiatives, approaches, etc. do you see wrt. traceability?

-

26. Which other question would you have asked in this context?

-

7.3 Information Collected during Expert Interviews

Sections Sub-Sections Data collected
Introduction Company System services company

An automotive supplier
The automotive first-tier supplier company

Projects Consulting services for systems engineering (includes
consultation for processes, methods, and tools) and
Consultation services in providing project support for
systems engineering (toolchain support for requirements
engineering and model-based system engineering)

Appendix

Development of components/complete power train
systems, Engineering service for prototype/software
development of hybrid/electric vehicles
Automated and Autonomous driving systems, projects
on sensors, cameras, radar, LIDAR, main ECU part with
computation power, vehicle motion control
systems(braking, steering), transmission control

Standards
followed

ISO 15288
ISO 26262 for functional safety
ISO 15288 for systems engineering
ASPICE, ISO 26262(safety standard), ISO
27001(security standard)

Life cycle models Agile
V-model
Both Agile and V-model

Interviewee role Project Manager
Software Engineer
System architect

Traceability-
Basics

Purpose Validation of requirements
Verification of requirements and implementation
Lifecycle coverage analysis
Tracking rationale
Change impact analysis
Validation of artifacts
To comply with the standard
To maintain a consistent system
To check for completeness
For reusability

Subject of interest Between system requirements and software requirements
Requirements and Architecture models
Requirements and work packages
Requirements and design elements
Requirements and implementation
Requirements and test cases
Requirements and test reports
Group of requirements to features
Between architectural elements
Design decisions to requirements
Design decisions to architectural elements

Usage of traces To check for completeness(quantitative check)
To check for correctness (qualitative check)
For change impact analysis
For estimation based on changes
For review and validation
For monitoring the progress of the project

Traceability
Approach

Creation of trace
links

After the creation of artifacts
If dependent on other teams artifacts, after its access

Representation of
trace links and
usage

Traceability matrix - to check missing links, for
coverage report and maintainability

Appendix

Hyperlinks - to navigate between artifacts
Graphs - for impact analysis, to check for completeness
Tables - for comparison, for maintainability
Diagrams(Ex., cake diagram) - for reports to check the
completeness

Maintenance
during
change/deletion

Suspect functionality to navigate and check the other
linked artifacts
A gateway between Rhapsody-DOORS highlights
updated, deleted, and newly added artifacts

Traceability
across teams

Using import/export functionality in ReqIF format
HIS standard is used for exchanging requirements
Miro or baselining approach is used for exchanging the
requirements

Metrics for
traceability

Traceability matrix is used for quantity checks
A table view is used for quality checks (for correctness)
Quality is measured through completeness by counting
the links. Can be automated
Quality is also measured through correctness (reviews
are done to verify the contents of traceability)

Traceability
tools

Tools used for
artifacts
development and
maintenance

DOORS and PTCIntegrity (For requirements
engineering)
Enterprise Architect and Rational Rhapsody (for
architecture modeling and model-based systems
engineering)
Matlab Simulink (For implementation)
TPT (Testing tool)
Polarion (for requirements and test cases)
Cameo systems modeler for architecture models
DOORS for test specification

Tools/features
used for
traceability

ReqIF format is used for import/export of artifacts and
links
OSLC capabilities are being explored for the
import/export of artifacts
In DOORS
In Rhapsody
In PTCIntegrity

Trace link storage Centrally stored in DOORS/PTC integrity
A major part in Polarion and fewer links in Cameo
In DOORS the trace link information is stored in link
modules
In Rhapsody traces between architectural elements are
stored as model elements as part of the diagram

Management of
trace links

Creation of traces uses link functionality
Report functionality is used to create a matrix, bar
graphs, etc
Navigation of traces bi-directionally
Link modules in DOORS manage links
Gateway is used to manage bidirectional traces between
DOORS and Rhapsody
Scripts are used to pull and push artifacts between
DOORS and Rhapsody

Appendix

Traceability-
MBSE specific

Application of
traceability in
MBSE

Applied at different maturity levels
Level 1: In the easy level, tracing is done from
requirements to components and then to interfaces
Level 2: Between architectural models

Pros of
traceability in
MBSE

A better understanding of the whole system architecture
Easy analysis and navigation of design rationale using
different views
Identification of reusable elements
Trace links could be an output of the model
transformation
If a single tool is used for the development of all the
artifacts in an MBSE project, then traceability can be
created with ease

Cons of
traceability in
MBSE

Decision on traceability schema is difficult. Should be
well thought
Granularity level must be carefully considered (not all
models should be traced)
Tool-breaks

7.4 Different Visual Reports used for Traceability in Power-BI

 Trace-list: Lists represent traceability links for every source TracedItem with linked

destination TracedItems in one entry. In Figure 33, two lists are shown. The left list

shows the Architectural elements with their traced requirements along with the

TracedItemStatus. Similarly, the right list shows the requirements with their traced

architectural elements along with their status. For example, the updated architectural

 Figure 33: Trace-list representation in Power-BI

Appendix

elements in the left list are Humidity processing system, standard protocol host, and

WeatherDisplay Basic. And the requirements to which standard protocol host is

mapped are BCON-422 and BCON-484.

 Trace-matrix: Table-like representation that maps source TracedItem depicted in

columns to destination TracedItem depicted in rows or vice-a-versa. In Figure 34,

architectural elements are listed in rows and code elements in the columns. The cells

with the mark resent the traceability links between the elements present

in the corresponding row and column. For example, the architectural element Display

is traced to code elements DisplayIndoorTemperature, DisplayLoggedTemperature,

and DisplayTemperature, and so on.

 Figure 34: Trace-matrix representation in Power-BI

Traceability-graph: It is also called a trace tree report. TracedItems are represented

as nodes. Nodes are connected by edges if a TraceLink between the source and

destination TracedItems exists. Figure 35 represents the graph representation of trace

links between architectural elements and implementation elements. For example, the

architectural element Logger is linked to five implementation elements highlighted.

Similarly, when another architectural element like Sensors is selected, the linked 15

implementation elements will be highlighted in the report.

Appendix

 Figure 35: Traceability graph representation in Power-BI

 TraceCoverage report: This report helps to visualize the total number of artifacts

that are traced. Figure 36 below, depicts the coverage report in the form of Donut

charts. It provides the visual representation of the percentage of the TracedItems. For

example, the first chart represents 84.16% of unlinked architectural elements, and the

remaining 15.84% of it is linked to the code elements.

Figure 36: Trace coverage report in Power-BI

Appendix

 SuspectLinks report: This report helps to visualize how many of the TraceLinks

have suspect links because of some updates in the TracedItems.

Figure 37 below, represents the suspect links report in the form of Pie chart. For

example, the middle Pie chart depicts that 38.1% of trace links between requirements

and architectural elements are suspects, and the remaining 61.9% of trace links are not

suspects.

 Figure 37: Suspect links report in Power-BI

