Comparative Uncertainty Visualization for High-Level
Analysis of Scalar- and Vector-Valued Ensembles

Vom Fachbereich Informatik der Technischen Universitit Kaiserslautern zur Verleihung des
akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation

von

Anna-Pia Lohfink

Datum der wissenschaftlichen Aussprache: 6.Mai 2022 —
Dekan: Prof. Dr. Jens Schmitt {\
Berichterstatter: Prof. Dr. Christoph Garth

Berichterstatter: Prof. Dr. Gunther H. Weber Scientific Visualization Lab

University of Kaiserslautern

DE-386

Abstract

With this thesis, I contribute to the research field of uncertainty visualization, con-
sidering parameter dependencies in multi valued fields and the uncertainty of
automated data analysis. Like uncertainty visualization in general, both of these
fields are becoming more and more important due to increasing computational
power, growing importance and availability of complex models and collected data,
and progress in artificial intelligence. I contribute in the following application areas:
Uncertain Topology of Scalar Field Ensembles. The generalization of topology-
based visualizations to multi valued data involves many challenges. An example is
the comparative visualization of multiple contour trees, complicated by the random
nature of prevalent contour tree layout algorithms. I present a novel approach for
the comparative visualization of contour trees —the Fuzzy Contour Tree.

Uncertain Topological Features in Time-Dependent Scalar Fields. Tracking fea-
tures in time-dependent scalar fields is an active field of research, where most
approaches rely on the comparison of consecutive time steps. I created a more holis-
tic visualization for time-varying scalar field topology by adapting Fuzzy Contour
Trees to the time-dependent setting.

Uncertain Trajectories in Vector Field Ensembles. Visitation maps are an intuitive
and well-known visualization of uncertain trajectories in vector field ensembles.
For large ensembles, visitation maps are not applicable, or only with extensive
time requirements. I developed Visitation Graphs, a new representation and data
reduction method for vector field ensembles that can be calculated in situ and is an
optimal basis for the efficient generation of visitation maps. This is accomplished by
bringing forward calculation times to the pre-processing.

Visually Supported Anomaly Detection in Cyber Security. Numerous cyber at-
tacks and the increasing complexity of networks and their protection necessitate
the application of automated data analysis in cyber security. Due to uncertainty in
automated anomaly detection, the results need to be communicated to analysts to
ensure appropriate reactions. I introduce a visualization system combining device
readings and anomaly detection results: the Security in Process System. To further
support analysts I developed an application agnostic framework that supports the
integration of knowledge assistance and applied it to the Security in Process System.
I present this Knowledge Rocks Framework, its application and the results of evalua-
tions for both, the original and the knowledge assisted Security in Process System.

For all presented systems, I provide implementation details, illustrations and appli-
cations.

Kurzfassung

Mit dieser Dissertation leiste ich einen Beitrag im Forschungsbereich der Unsicher-
heitsvisualisierung, insbesondere beziiglich Parameterabhingigkeiten in Ensembles
und der Unsicherheit von automatischer Datenanalyse. Diese beiden Bereiche sind —
wie Unsicherheitsvisualisierung im Allgemeinen— von zunehmender Bedeutung auf
Grund steigender Rechenleistung, hoherer Verfiigbarkeit und Bedeutung komplexer
Modelle und gespeicherter Daten und Fortschritten in der kiinstlichen Intelligenz.
Ich trage in den folgenden Anwendungsbereichen bei:

Unsichere Topologie von Skalarfeld-Ensembles. Die Verallgemeinerung topologie-
basierter Visualisierungen auf Ensembles stellt viele Herausforderungen. Ein Beispiel
ist die vergleichende Visualisierung mehrerer Konturbdume die durch die zuféllige
Natur vorherrschender Layout Algorithmen verkompliziert wird. Ich beschreibe
einen neuen Ansatz in diesem Bereich: Fuzzy Konturbdume.

Unsichere topologische Merkmale in zeitabhingigen Skalarfeldern. Das Verfol-
gen von Merkmalen zeitabhédngiger Skalarfelder ist ein aktiver Forschungsbereich,
in dem die meisten Anséatze auf den Vergleich aufeinanderfolgender Zeitschritte
setzen. Durch die Anpassung von Fuzzy Konturbdumen an diese Felder habe ich eine
umfassendere Visualisierung von zeitabhédngiger Skalarfeldtopologie entwickelt.
Unsichere Trajektorien in Vektorfeld-Ensembles. Visitation Maps sind eine in-
tuitive und verbreitete Visualisierung fiir unsichere Trajektorien in Vektorfeld-
Ensembles. Im Falle gro3er Ensembles sind sie allerdings nicht oder nur mit groRem
Zeitaufwand anwendbar. Ich habe Visitation Graphs entwickelt, eine neue Darstel-
lung und Datenreduzierungsmethode fiir Vektorfeld-Ensembles, die in situ berechnet
werden kann und optimale Voraussetzungen fiir eine effiziente Visitation Map Erstel-
lung bietet, indem Berechnungszeiten in die Vorverarbeitung verschoben werden.
Visuell Unterstiitzte Anomalieerkennung in der Cybersicherheit. Haufige An-
griffe und die steigende Komplexitit von Netzwerken und ihrer Absicherung machen
die Anwendung automatisierter Datenanalyse notwendig. Die Ergebnisse der au-
tomatisierten Anomalieerkennung unterliegen Unsicherheiten und miissen deshalb
an Analysten kommuniziert werden, um angemessene Reaktionen zu garantieren.
Ich stelle ein Visualisierungssystem vor, das Messwerte und Ergebnisse der Anoma-
lieerkennung kombiniert: das Security in Process System. Um Analysten weiterge-
hend zu unterstiitzen, habe ich ein anwendungsunabhéngiges Framework entwickelt,
das die Integration von gespeichertem Wissen unterstiitzt und es auf das Security in
Process System angewandt. Ich stelle dieses Knowledge Rocks Framework und seine
Anwendung vor, sowie Ergebnisse von Nutzerstudien fiir das urspriingliche und das
wissensunterstiitzte Security in Process System. Fiir alle vorgestellten Systeme gebe
ich Details beziiglich der Implementierung, Beispiele und Anwendungen.

Acknowledgement

I am deeply grateful to Christoph Garth for being always available and a reliable
source of academic and general advice. You are the only person I know that (literally)
runs across me and instantly turns a lack of motivation into excitement and a huge
bunch of work.

Further, I would like to thank my husband Noél for support in long nights before
paper deadlines where you stayed by my side. Everybody knows that without your
help, my tools wouldn’t have looked half as good.

For all further acknowledgments, I figured that a more abstract view would be a
good choice for clarity and conciseness.

SCENTIFIC pistracTon EMOTIONAL | ove

INPUT SUPPORT
HEIKE LEITTE X
GUNTHER WEBER X
MY KIDS yvyg X X
MY FAMILY X X
CHRISTOPHER KAPPE X X
ALL COAUTHORS X
JINX MONSOON'S MANTRA X

Thank you for influencing my work and my life.

This research was funded by the Deutsche Forschungsgemeinschaft (DFG — German
Research Foundation) under contract 252408385 as part of IRTG 2057 Physical
Modeling for Virtual Manufacturing.

Vi

Contents

1 Introduction

2 Background: Uncertainty and its Visualization

I Parameter Dependency

3 Uncertain Topology of Scalar Field Ensembles
3.1 Review of Topology-Based Ensemble Visualization

3.2

3.3

3.4

3.5

3.1.1
3.1.2
3.1.3

Contour Trees v i i e e e
Visualization of Contour Trees o v v v v v ..
Topology-Based Ensemble Visualization

Tree Alignment of Contour Trees

3.2.1
3.2.2
3.2.3
3.24
3.2.5

Minimal Contour Tree Alignment
Alignment Heuristics
CostMetrics o o e
Algorithm
Properties of the Contour Tree Alignment

Fuzzy Contour Trees v i i v

3.3.1
3.3.2
3.3.3
3.34
3.3.5

Results

3.4.1
3.4.2
3.4.3

Branch Decomposition of the Alignment
Layout Algorithm
Interaction
Layout Parameters
Challenges
Analytical Ensemble with Outlier
Scattered Peaks Ensemble
Convection Simulation

3.4.4 ViscousFingeringo e
DISCUSSION . . . v v v v o e
3.6 Conclusion e

Uncertain Topological Features in Time-Dependent Scalar Fields

4.1 Background: Topology Visualization on Time-Dependent Data
4.2 Tree Alignment of Time-Varying Contour Trees

11

13
15
15
16
18
20
22
23
24
25
26
27
27
29
33
34
35
37
38
41
43
47
48
49

51
53

4.3 Layout of Time-Varying Fuzzy Contour Trees
4.4 Interaction. v v v v v i e e e e e e e e e e e e e e e e
441 TheTime Selector
4.4.2 Interaction with Time-Varying Fuzzy Contour Tree
45 Results e
451 Sealce. e
4.5.2 Convection Simulation
453 CloudTopPressure v v v v v v vttt
4.6 Conclusion

5 Uncertain Trajectories in Vector Field Ensembles

69

5.1 Visualization of Uncertain Vector Fields: Background and Related Work 70

5.2 Visitation Graphs: Interactive Ensemble Visualization with Visitation
Maps o e e e e e e e e e e e e e e
5.2.1 Efficient Computation of Visitation Graphs
5.2.2 Efficient Approximation of Visitation Maps from Visitation

Graphs e
5.2.3 Space Requirements and Data Reduction
5.2.4 Application to Visualization

5.3 Experimentsttt e e e e e e e

54 Results e e
5.4.1 Industrial Stirring Simulation
5.4.2 Convection Simulation
543 CavityFlow

5.5 Discussion and Conclusion,

Il Uncertainty in Automated Data Analysis

6 Visually Supported Anomaly Detection in Cyber Security
6.1 Application Background and Challenges
6.1.1 Automated Anomaly Detection
6.1.2 State-of-the-artanalysis
6.2 System Requirements.o e
6.3 The Security in Process System
6.3.1 UserInterface
6.3.2 OverviewandDetail
6.3.3 Anomaly Highlighting
6.3.4 Interactiont
6.3.5 Implementation and Scalability
6.4 Analysis Strategies and Usage Scenario
6.5 ExpertEvaluation.,
6.6 Discussion and Conclusion

vii

viii

7 Knowledge Assistance for Decision-Making 122

7.1 Review of Knowledge Assistance in Visualization 123
7.1.1 TheKAVAModel 124
7.1.2 Knowledge-Assisted Visualization Systems 126

7.2 The Knowledge Rocks Framework 127
7.2.1 Requirementsttt 128
7.2.2 Architecture Definition 130

7.3 Implementation Steps for KAVA Processes with the Knowledge Rocks
Framework e 134
7.3.1 Application of the Framework 136

7.4 Discussion and Limitations. 139

7.5 Conclusion e 140

The Knowledge Assisted Security in Process System 142

8.1 KnowledgeBase, 143
8.1.1 ActingOntology 145
8.1.2 Suggesting Related Instances 151

8.2 StoringInstances L L e 151

8.3 Visualization 153

8.4 Guidance e e e e 155

8.5 Data Size and Storage AcCESS it e e e e 155

8.6 Usage Scenarios and Expert Evaluation 156

8.7 Conclusion and Future Work 158

Evaluation of the Security in Process System 159

9.1 Experimental Design and Procedure 159

9.2 Tasks o e e e 160

9.3 Evaluation Setup 163

9.4 ResultS o i v it e e e e 165
9.4.1 Effectiveness 165
9.4.2 Satisfaction 167
9.4.3 Efficiency and Cognitive Load 169

9.5 Discussion of the EvaluationResults 170

Conclusion 173
10 Conclusion 174

Introduction

The universe, they said, depended for its
operation on the balance of four forces which
they identified as charm, persuasion, uncertainty
and bloody-mindedness.

— Sir Terence David John Pratchett
(1986)

Not only on the discworld, but also in our world, uncertainty is omnipresent,
especially when analyzing data. Uncertainty arises for example from multiple
executions of experiments with differing results or inaccuracy of measurements,
models and parameters. While uncertainty can not be prevented, it potentially has
a huge impact. From hurricane warnings to surgery planning, uncertainty in the
data can be a matter of life and death. Hence, the incorporation of uncertainty is an
active field of research in visualization with many challenges [27].

There are Many Different Kinds of Uncertainty. Depending on the source of the
uncertainty, whether it can be diminished or not, and how it can be quantified, there
are different types of uncertainty that might need different treatment in the visual-
ization — if they can be visualized at all. Distinguishing these uncertainty types and
handling uncertainty in the data is a confusing obstacle in uncertainty visualization.
Especially since each kind of uncertainty can be represented in different ways (as
probability distribution function, collection of different results, ...).

Uncertainty Propagates. Figuring out what kind of uncertainty is present in the
data and how to handle it, is —depending on the source of uncertainty and how exact
the visualization should be- only the beginning of an uncertainty propagation chain.
Every pass on the data can change and add uncertainty (Figure 1.1).

T DON'T KNOW HoW To PROPAGATE
ERROR CORRECTLY, S0 I JUST PUT
ERROR BARS ON ALL MY ERROR BARS.

Fig. 1.1.: xkcd: error bars [140].

Uncertainty Visualization Requires Space. As can be seen in Figure 1.1, visualizing
uncertainty variables adds (at least one) dimension to the visualization. Many visu-
alization approaches without incorporated uncertainty already exploit all available
visual properties. Adding uncertainty hence often requires substantial changes in the
visualization, like the generation of additional geometry or changing the encoding
of variables. Also, new communication channels like sound and animation might be
necessary to integrate the additional information. Furthermore, with an increase of
shown information, the risk of obfuscation and visual clutter increases, leading to
the fact that many uncertainty visualization approaches tend to draw the attention
to uncertain areas of the data, while in many approaches the more certain data
should be emphasized [82].

Experts are needed. Finally, for a rigorous representation of uncertainty, expertise
from statistics and potentially social sciences is required, which further complicates
the development of such systems.

In my thesis, I contribute to the research on uncertainty visualization in different
applications around comparative ensemble visualization. The visualized uncertainty
is present in multi valued data or given as scalar value. To provide accessible support
for analysts, I focus on high-level analysis, providing an overview of the data and
its uncertainty. I support intuitive exploration with clear visual metaphors, leaving
detailed uncertainty quantification and propagation to more specialized analysis

approaches.

In addition to their individual applications and strengths, all visualization approaches
I developed support users in comparing, combining and separating ensemble
members and data intervals. The concrete importance of these basic visualization
tasks in the respective applications is highlighted in the following chapters.

Chapter 1 Introduction

I describe visualization approaches considering parameter dependency in ensembles
of model realizations (Part I), and a visualization system that communicates the
uncertainty of automated data analysis with its enhancements (Part II).

Fuzzy Contour Trees. Fuzzy Contour Trees allow the combined visual-

i{ ization and comparison of the topology of different ensemble members.

' To do so, a mapping between the different topological structures and

a thought-out layout algorithm that considers all members at once are

required. This visualization contributes to the ongoing effort to make topology-based

visualization approaches available for ensembles. I present Fuzzy Contour Trees in

Chapter 3. Their adaption to time-varying scalar fields is introduced in Chapter 4.

There, specific features for the time-varying setting support typical analysis tasks

in time series analysis. As an adaption of an ensemble method, time-varying Fuzzy

Contour Trees provide a higher flexibility in analysis and a more holistic view on the
data than established approaches like for example feature tracking.

Visitation Graphs. I introduce Visitation Graphs to enable the applica-

v tion of visitation maps to ensembles and random fields that prohibit

interactive runtimes using their naive computation. Visitation Graphs

are a representation of a vector field ensemble that can be calculated in

situ and that provides an optimal basis for the interactive exploration of the vector

field using visitation maps. Applying Visitation Graphs provides a tradeoff between

generation time, calculation time for visitation maps, and accuracy. Using Visita-

tion Graphs as a compressed representation of the vector field ensemble, visitation

maps can be generated for ensembles that can not be entirely stored and hence

completely prohibit the application of visitation maps. I present Visitation Graphs in
Chapter 5.

The Security in Process System. Part II contains my work concerning

)) uncertainty of automated data analysis. Automated data analysis is in-
evitable when facing insufficient resources in terms of time and/or ana-

lysts. Especially in cyber security, the required reaction times often make
automated analysis inevitable. Yet, results of automated data analysis are uncertain
and need to be revised by analysts before triggering a reaction based on the analysis
results. To support this revision, we developed the Security in Process System.
Specialized to the application in operational technology networks, it communicates
sensor and actuator readings and the result of a new anomaly detection algorithm

combined in spiral plots. I present the Security in Process System in Chapter 6. Since
triage analysis is a challenging task, especially when it is performed under time pres-
sure, further support for cyber security analysts using the Security in Process System
can improve their performance. To offer further support, we include knowledge
assistance in the system. Adding knowledge assistance to an existing visualization
system is a complex task and there are no generally applicable guidelines or frame-
works that support it. To fill this gap, we developed the Knowledge Rocks framework.
It provides a structure that, once implemented in a concrete application, provides
all features that are necessary for knowledge assistance. I present the Knowledge
Rocks Framework in Chapter 7 and its application in the Security in Process System
in Chapter 8. The user studies we performed for the Security in Process System in
its original and enhanced version are presented and compared in Chapter 9.

I conclude my thesis and summarize opportunities for future research in Chapter 10.
With this thesis I make the following contributions together with my collaborators:

The tree alignment of contour trees is a novelty. Using our heuristic al-
?\{ gorithm to quickly compute the alignment of multiple contour trees with
' . problem-specific similarity metric gives this alignment process flexibility
and enhances it to multiple trees.
I introduce a novel layout algorithm for multiple contour trees, that uses both —
alignment and individual trees— to achieve a simultaneous, easy-to-interpret visu-
alization of differing topological structures. This is further supported by adjusted
interaction possibilities.
We enhance the back-end and front-end of the Fuzzy Contour Trees to adapt our
visualization to time-varying scalar fields. The result is a new, holistic visualization
of topological structures over time that is more flexible than common approaches
like feature tracking.

I define Visitation Graphs, a space saving presentation for large vector
V field ensembles that is the optimal basis for visitation map calculation
and provides a trade off between generation time, calculation time and
accuracy. Visitation Graphs allow the interactive exploration of vector
field ensembles where naively generated visitation maps have immense generation
times or are not even available due to lacking information.
To ensure practicality, I provide details on the construction of Visitation Graphs and
present an algorithm to quickly approximate visitation maps from our newly defined
data structure.

Chapter 1 Introduction

I present the first system for triage analysis in operational technology
,) networks that combines sensor-data visualization and anomaly detection
visualization to allow the revision of automatically detected anomalies.
To incorporate knowledge in the Security in Process System, we developed the
Knowledge Rocks Framework, providing support for the enhancement of general
visualization systems to be knowledge assisted. This framework is derived from and
verified using an existing model for knowledge assisted visualization.
We enhance the Security in Process System using the Knowledge Rocks Framework
to become knowledge assisted, resulting in further support for triage analysis and
the possibility to compare different incidents and collaborate via the system.
We validate the original and the enhanced Security in Process System in detailed
user studies, and compare the results from both studies.

In addition, I apply every presented visualization system to different examples
(artificial and real-world) and provide details on analysis strategies and usage
scenarios. All systems provide different approaches to compare, combine and
separate results. They are highlighted in the respective Chapters.

Background: Uncertainty and
its Visualization

Uncertainty. A common classification for uncertainty is the distinction between
aleatory and epistemic uncertainty [104, 179]. From an application point of view,
an uncertainty is epistemic if there is a possibility to reduce them by improved
models or data acquisition; aleatory uncertainties on the other hand can not be
reduced: they are caused by the random nature of physical events and are modeled
by probability theory. In both cases, communicating the uncertainty is crucial to
provide the complete picture of the data, without the misleading impressions of
certainty. Hence, uncertainty visualization is an important topic and an active field
of research.

Uncertainty in data visualization does not only include the visualization of uncer-
tainties that are provided with the data: it can also be introduced in the course of
the visualization pipeline [27]. While these uncertainties are important to note, this
thesis deals with the visualization of uncertainty, not the uncertainty of visualiza-
tion.

Uncertainty information associated to data comes in different forms, corresponding
to its source. Possible forms and sources are:

* the description of the data as a random variate with a given probability
distribution, for example in random fields (see Chapter 5). These frequently
arise from in situ pre-processing when summarizing statistics of properties.

* multi valued data resulting from an ensemble of simulations, multiple mea-

surements or time-varying results (Part I),

* model uncertainty arising from imperfect models, including machine learning

approaches (Part II), and
* a known range of error originating for example from measuring inaccuracies.

An example for the last point is my work on virtual topography measurements with
Andrej Keksel [*101].

In this work, I supported the matching of time series to be able to model measuring
inaccuracies for specific surface topography measuring instruments. This is possible
since these inaccuracies are aleatory and known. Applying the obtained transfer
functions to a topography, the result resembles the measurements of the correspond-
ing instrument, providing information on the practicality of the specific instrument
for the measurements at hand.

Like in this example, error ranges and data given as random variate typically
represent aleatory uncertainty. Multi valued data can be aleatory or epistemic: if it
results from multiple executions of the same experiment, the uncertainty is aleatory.
As a result of multiple simulation runs, the variety is likely to result from model
uncertainty or epistemic uncertainty of input parameters. Thus, the uncertainty of
the multi valued data is epistemic in this case.

Visualization. The importance of uncertainty communication and thus uncertainty
visualization has been recognized already in the mid 80s in geosciences [127].
Since then, uncertainty visualization has been an active field of research, gaining
importance with the increase of computational power allowing extensive data
generation.

On the one hand, uncertainty communication is important since it influences de-
cisions and confidence in the data [46]. Decisions that are made based on visu-
alizations can reach from simple design decisions to life-or-death decisions, for
example in medicine or concerning evacuations. Especially in fields with such a
crucial influence of uncertainty, supporting the user in reducing the uncertainty in
interplay with the visualization system is an important topic (e.g. [157]).

On the other hand, existing uncertainty visualization approaches need to be com-
pared and evaluated: uncertainty representations that are straight forward for
scientists might be misleading for laymen or create wrong impressions. For example
Padilla et al. found out that common visualizations of possible hurricane tracks lead
to both, overestimating and underestimating, the size of the hurricane depending
on the chosen visual encoding of the uncertainty [151].

Bonneau et al. give an overview of uncertainty visualization techniques [22] and
Potter et al. developed a taxonomy basing on the data and uncertainty dimension
[156]. More result-oriented, Gershon classified uncertainty visualization approaches
in intrinsic and extrinsic [66]; intrinsic uncertainty representations communicate

the uncertainty via visual properties of the visualized objects, while extrinsic repre-
sentations are “stand alone” visualizations of the uncertainty using auxiliary objects,
for example error bars.

Examples for uncertainty visualization based on ensembles are: showing ensemble
members vanishing over time [45], enabling the user to compare single members
to the whole ensemble using glyphs [165] and summarizing ensemble members
while highlighting outliers and median in Contour/Curve Box Plots [133, 209]. The
topology of ensembles in two and three dimensions was determined by Otto et al. in
[150] and [149]. Hummel et al. gave a comparative visual analysis for ensembles of
time-varying vector fields using a Lagrangian framework [87]. A two dimensional
comparative visual analysis was presented by Jarema et al. in [93].

Uncertainty arising from interpolation and prediction of missing measurements
was treated using tubes of varying size [21], glyphs and parallel coordinates for
MR spectroscopy data [59, 60], flow radar glyphs for time-dependent vector fields
with uncertainty given as an interval [82], and using colormapping and line glyphs
for uncertain isosurfaces in geosciences [219]. Uncertain predicted multivariate
data was visualized by Berger et al. using parallel coordinates and scatter plots
[19]. Random fields were treated using fuzzy set theory and volume rendering on
trapezoidal possibility distribution [62], and by visualizing iso-surfaces in uncertain
scalar fields [153, 155]. An FTLE like method was presented by Schneider et al.
[166].

This thesis is concerned with parameter dependency in multi valued data and uncer-
tainties arising from automated data analysis in cyber security. In the following, I
present visualization systems that communicate uncertainties in different application
backgrounds within these two fields. For each application, specific related work is
discussed in the respective chapter.

Chapter 2 Background: Uncertainty and its Visualization

10 Chapter 2 Background: Uncertainty and its Visualization

Part |

Parameter Dependency

14¥

12

Due to growing computational ability, it has become straightforward to investigate
the effects of model and parameter uncertainty through ensemble simulation. Models
are realized multiple times with varying input parameters or settings; each result
is a member of the ensemble of realizations. An example for this is the weather
forecast: A 10% chance of rain is announced if 10% of the evaluated simulations are
predicting rain. Also non-virtual experiments are carried out multiple times to get
an idea about their uncertainty. An extreme example for this are the experiments
at the LHC at CERN: trying to resolve events that arise from particle collisions
with low probabilities, the uncertainty of the outcome is high. Thus, 1 billion
events per second are recorded over months, producing about one Petabyte of
data every second [64]. Since it is prohibitive to store this amount of data —or
even transmit it to the surface— in situ techniques are employed to analyze and
pre-process the data at generation time and store only reduced-size artifacts for
further inspection. Similarly, in situ techniques are applied in the virtual setting
when the size of the generated ensemble requires it or one wants to have insight
in the data behavior during generation. Instead of the raw data, images, videos,
or other reduced representations are stored. After potential in situ pre-processing,
the resulting ensembles are analyzed as a whole. Analyzing the similarities and
differences between individual ensemble members and sub-ensembles, detection of
outliers, as well as the whole ensemble’s development over time gives insights in
the dependency of the individual results from input parameters and time. All these
analysis tasks can be effectively supported by visualization.

Uncertain Topology of Scalar
Field Ensembles

Fig. 3.1.: Fuzzy Contour Trees: Our new visualization of the uncertain topological struc-
ture of a scalar field ensemble.

Topology-based methods have a long tradition in the visualization of scalar fields.
Founded on mathematical principles, they provide an abstract representation of
scalar field structure. Among a variety of methods, the contour tree serves as the
well-understood basis for a plethora of techniques, ranging from the straightforward
generation of visualization images (e.g. [152]) to clever analysis user interfaces
(e.g. [206]).

As modeling and simulation of uncertainty are becoming increasingly prominent
aspects of computational science, however, it has proven challenging to adapt
topology-based visualization to the resulting novel data modalities. An example
for such a challenge is the contour tree visualization of ensemble data sets: the
randomized nature of prevalent contour tree layout techniques and their large
parameter spaces often result in strongly different representations for very similar
scalar fields. Thus, their direct comparison is not sensible.

On the other hand, the meaningful simultaneous visualization of ensemble con-
tour trees is very promising. The encoded topological features provide profound
information about the ensemble’s behavior. Representing this information in a
comprehensive, sensible manner, users are for example able to:

13

14

Compare ensemble members to identify similarities and differences in their
topological structure. An example is the identification of scalar values
that induce topological changes in contours in some or all of the
ensemble members.

Combine ensemble members with common topological segmentation or thresh-
old values. Examples are the assessment of the ability of iso-contours
to represent the whole ensemble, or the question which critical points
occur in all members.

Separate groups of ensemble members with similar behavior and identify out-
liers. For example members that contain a specific branch can be
determined.

By analyzing the overall ensemble without loosing track of individual members,
parameter settings of the members can be related to their behavior.

In collaboration with Florian Wetzels, Dr. Jonas Lukasczyk, Prof.Dr. Gunther H. Weber
and Prof.Dr. Christoph Garth, I developed Fuzzy Contour Trees, the first visualization
system that allows the joint visualization of many contour trees. It was published
and presented at EuroVis 2020 [*120].

To generate a Fuzzy Contour Tree from multiple member contour trees, a matching
between them is required. Based on the application of tree alignments to contour
trees —developed by Florian Wetzels, Jonas Lukasczyk and Christoph Garth— we
identify common branches across multiple contour trees. Commonality is identified
through a semantically meaningful similarity metric that can be chosen freely,
providing a high flexibility of our approach. This back end of Fuzzy Contour Trees is
presented in the first part of this Chapter (Section 3.2).

Using the resulting alignment, I developed in collaboration with Christoph Garth
and Gunther H. Weber an algorithm to lay out common branches for all member
contour trees identically. Determining the layout of individual contour trees based
on the layout of their alignment (a super tree), we ensure that common branches
are rendered at a common position. Hence, superposition of the different member
contour trees is meaningful. With several additional layout improvements that I
developed together with Frederike Gartzky, the result yields a coherent, easy-to-
interpret representation of multiple contour trees of an ensemble at once. The layout
algorithm with its optimizations, interaction possibilities and challenges is presented
in Section 3.3. Linking between the Fuzzy Contour Tree and individual ensemble
members highlights their dependency

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.1

3.1.1

Fig. 3.2.: In this three-dimensional scalar field rendering, colors indicate different spans
of isovalues. The level sets of specific isovalues are visible at color changes.

Review of Topology-Based Ensemble Visualization

Contour Trees

Contour lines have been used to visualize scalar fields for almost 500 years [136]
e.g. to depict lines of equal height on maps. The idea to draw lines and surfaces
along areas of constant values is mathematically defined as the visualization of level

sets.

Considering a scalar field s : M — R defined over a manifold IM C R?, the level set
of for an isovalue ¢ € s(IM) is given as

s7H(c) = {p € Ms(p) = c}.

An example for surfaces representing level sets is shown in Figure 3.2. The use of
transparency in this visualization allows to show the structure of the scalar field
inside the cube. However, isosurface visualization often suffers from occlusion since
level sets often include each other or overlap in their two-dimensional projection:
for example the behavior of the scalar field inside the blue ball at the center of
Figure 3.2 is not visible.

Contour trees (for functions on general, potentially non-flat spaces: reeb graphs)
visualize the evolution of connected components of the level sets (“contours”). Two
points z,y € M with s(z) = s(y) are part of the same connected component if
there exists a continuous function p : [0,1] — M with p[0] = z, p[l] = y and
Vz € 10,1] : s(p(2)) = s(x). That is z can be reached from y via a continuous path

that does not leave the level set.

3.1 Review of Topology-Based Ensemble Visualization

15

3.1.2

16

Fig. 3.3.: A contour tree representing the (simplified) topological structure of both given
height fields.

As the isovalue ¢ changes, the connected components can appear, vanish, split or
merge. This evolution of connected components is tracked by the contour tree. As
an abstraction of the topological structure, the field corresponding to a contour
tree is not unique. An example for a contour tree with two corresponding height
fields is given in Figure 3.3. The height value in the contour tree corresponds to the
chosen isovalue. Each edge corresponds to one connected component. So, looking
at a specific isovalue ¢ (corresponding to a certain height in the tree), the number
of edges represents the number of connected components of the level sets s7(c).
Leaves in the contour tree represent emergence or disappearance of a connected
component and interior vertices represent merging and splitting.

Changes in the connected components of level sets only occur at critical points. This
fact can be used to define and select meaningful level sets [12]. Also, contour trees
have been used to define features of interest [26] or provide user interfaces [31, 102,
207]. By pruning contour trees, topological simplification of the corresponding scalar
field is achieved [31, 43] and two scalar fields can be compared by direct comparison
of their contour trees [167]. Generalizations of contour trees to multidimensional
data have been presented by Carr and Duke [32].

For further reading, especially about the efficient computation of reeb graphs, see for
example the work by Doraiswamy et al., Carr et al. and Hajij et al. [33, 48, 76].

Visualization of Contour Trees

In contrast to general tree visualization, contour tree layouts are required to fulfill
different requirements. Edges in contour trees represent connected components
of level sets and thus depend on isovalues. Hence, in a contour tree visualization,
the y-coordinates of both their ends are fixed. In addition, further prerequisites are
imposed by requirements to consistency and pruning. As a result, common tree or
graph layout algorithms are not applicable to contour trees.

Chapter 3 Uncertain Topology of Scalar Field Ensembles

Fig. 3.4.: Different branch decomposition and layout options for the contour tree in
Figure 3.3 on the facing page. Branches are colored in grey levels.

Heine et al. provide a detailed overview over layout strategies for contour trees and
propose a new layout method [80]. As they point out, the center piece of contour
tree layout strategies is the branch decomposition (Figure 3.4). The unrooted contour
tree is decomposed in branches with parent/child relations using a suitable criterion.
Often times, this criterion is the edge persistence, that is the difference between the
highest and the lowest isovalue reached by the edge; this results in the longest edge
being the main branch of the contour tree.

To minimize edge crossings in the contour tree layout, common layout strategies rely
to a certain extent on randomization since finding an optimal layout is a NP-hard
problem. An example is the orthogonal layout strategy proposed by Heine et al. for
crossing minimization [80]. It consists of four phases:

In the first phase, the layout problem is simplified. After the branch decomposi-
tion, branches that can be drawn without any edge crossing are merged in branch
groups.

In the following permutation phase, the branch groups are randomly permuted and
the algorithm tries to find optimal horizontal positions (in terms of a minimum
weighted number of edge crossings) using a random walk and simulated annealing:
each branch gets assigned a random vertical slot in the layout. In each step, a branch
group is re-inserted at a random slot and the resulting order of branch groups is
rated. If the new order is rated better than the previous ordering, it is kept. Else, if
the rating of the new order deteriorates by A, the new order is kept with probability
exp(—%) with ¢ the number of iteration and T a user defined parameter. The best
ordering is stored and the algorithm terminates if after a given maximum number of

iterations no further improvements have been found.

The order phase extends the ordering of branch groups to an ordering of branches
using the silhouette idea of the Reingold-Tilford layout on a directed acyclic graph
[160], derived from the contour tree. The final horizontal positions are then assigned
in the position phase similar to the position phase of dot [65], considering the vertical
extent of branches and possible overlaps of vertical slots.

3.1 Review of Topology-Based Ensemble Visualization

17

3.1.3

18

While the randomization of branch positions allows to find good layouts without
calculating all possibilities, it implicates that two layouts of similar contour trees —or
even the same one- are possibly very different. Hence, comparing contour trees is
impossible using such layout strategies.

Topology-Based Ensemble Visualization

Applying topology-based visualization to multiple scalar fields at once has several
major use cases. In ensemble analysis, an understanding of commonalities and
differences between ensemble members is sought [203], while the study of time-
dependent scalar fields mostly aims to identify feature evolution over time [26].
In both cases, an important problem is to establish feature correspondence by
topological means. A common approach is to use branches or sub-trees of contour
trees to characterize regions that are then examined for correspondence using
overlap measures; however, this does not take the contour tree structure into
account. An example is the comparison of two scalar fields based on contours
obtained from the contour tree by Schneider et al. [167]. Similarly, Lukasczyk et al.
uses merge tree segmentations to compute the correlation between features [125].
Space-filling structures in turbulent flows are tracked by Schnorr et al. using the
volume overlap of three-dimensional Morse-Smale cells, which serve as input to a
maximum-weight, maximal matching [170].

Instead of considering the spatial overlap of topologically-characterized regions of
scalar fields, an other class of methods focuses primarily on correspondence directly
from a graph-centric perspective. For example, Saikia et al. [164] compare all
sub-trees of two merge trees against each other to find repeating structures, and
Thomas and Natarajan [193] adopt a similar approach to identify symmetries in
scalar fields.

The visualization of scalar field ensembles using contour trees as visual represen-
tation involves the comparison of trees as well as the visualization of uncertain
tree structure. For example the information in, and differences between, multiple
trees was visualized by Schulz et al. through an edge-bundled visualization of
multiple samples from a probabilistic graph model [171]. Location and sub-tree
structure uncertainty of two different graphs were visualized by Lee et al. [110],
and Shu et al. discuss EnsembleGraphs to visualize hierarchical clustering across an
ensemble [177].

Contour trees of uncertain scalar fields were considered by Kraus [106]. Here,
two contour trees of morphologically filtered versions of an uncertain volume data

Chapter 3 Uncertain Topology of Scalar Field Ensembles

set represent the range of uncertainty, visualized by combining both trees in one
image. Giinther et al. [74] also use two realizations of an uncertain scalar field that
represent estimations of the support of the probability density function of the input
data. They characterize mandatory critical points in the given range of realizations
and provide mandatory merge and split trees.

Contour tree-based uncertainty visualization as proposed by Wu et al. [214] includes
a layout algorithm for contour trees. Similar to the idea by Heine et al. [80], they
assign slots to branches. The same authors visualize the mean contour tree obtained
from the pointwise ensemble mean, with uncertainty added from contour differences
between individual members. While this contour tree summarizes information about
the whole ensemble, there is no link between the mean contour tree and the member
contour trees. Their individual information is lost in the ensemble visualization and
outliers are hidden since they are “overruled” by the other members.

To keep the individual information of member contour trees and still be able to
create a single visualization for the ensemble, the identification of nodes reflecting
similar areas in the member fields is necessary. In the following, I describe the
major classes of techniques that are used for distance measurement and merging of
graph-based topological descriptors (e.g. contour trees).

The general problem of finding a distance between (rooted) trees arises in different
fields of computer science, such as computational biology [176], AI [105] and code
compilation [83]. Various types of edit distances, based on defining a cost function
for edit operations in trees, have been applied to solve this problem, with the tree
edit distance [191] being the most general and complex approach. An overview is
given by Bille [20]. Tree alignments, a computationally cheaper alternative, were
introduced by Jiang et al. [96].

Recently, different types of edit distances have been applied to merge trees and other
graph based descriptors representing the topology of a scalar field. Saikia et al. [164]
applied the 1-degree edit distance to branch decomposition trees of merge trees
to find self similarities in scalar fields. Sridharamurthy et al. used the constrained
edit distance [221] on merge trees for feature tracking in time-dependent data
[183]. Beketayev et al. [16] propose a method to compare merge trees based on
the minimum edit distance between all possible branch decompositions of the two
compared trees. Rieck et al. use the edit distance for ordered trees on persistence
hierarchies [161]. Moreover, many metrics other than edit distances have been
proposed for merge trees, often obtained by restricting a metric on the more general
Reeb graph [13, 14, 34, 138, 178]. Yan et al. introduced a metric between labeled
merge trees, allowing the definition of an average of several merge trees [216].

3.1 Review of Topology-Based Ensemble Visualization

19

3.2

20

Contour trees pose more challenges than merge trees when searching distance
metrics or matching algorithms. They are in general more complex data structures
with potentially high variance for small changes in the considered scalar field.
As recently shown by Hristov et al., also branch decomposition poses additional
challenges for contour trees [85]. Applying their method to contour trees, Saikia et
al. [164] describe similar problems.

Our work on Fuzzy Contour Trees is located in this gap concerning the application of
edit distances and general merging of contour trees, and the application of contour
trees to ensembles without loosing the information of individual members. We apply
alignments to contour trees; apart from being easier to compute, they exhibit some
properties which make them a good fit for our purpose: The distance between single
contour trees is not of interest but a matching of their nodes is required to achieve
a common layout. To do so, the resulting matching needs to incorporate all paths
and features of the single contour trees. This makes the edit distance the preferred
approach for our purpose in terms of the tree alignment, resulting in a super-tree
with the required properties. Those properties are explained in Section 3.2 as well
as our method to apply the alignment to an ensemble of more than two unrooted,
unordered contour trees.

Tree Alignment of Contour Trees

We aim to devise a combined representation of multiple contour trees that respects
and leverages similarities among the trees and the scalar fields they represent, to
facilitate common, topology-based analytical tasks. A central problem of this is the
identification of such similarities. This can be accomplished —on a tree level- by
a matching between the nodes and arcs of all individual contour trees, such that
matched nodes and arcs correspond to similar structures in the scalar fields. A good
way to find such a matching is using tree edit distances, which induce a mapping of
nodes in the compared trees [20]. Like this, the trees become minimally different
w.r.t. edit distance.

In brief, edit distance between two labeled trees (that is the tree nodes have a label
identifying a matching between the nodes of both trees) measures the minimum
number of operations required to transform one tree into the other. Typically these
operations are:

inserting a node in one tree that does exist in the other tree,

deleting a node in one tree that does not exist in the other tree and

Chapter 3 Uncertain Topology of Scalar Field Ensembles

relabeling a node.

Operations can carry arbitrary cost, and a cost-minimal sequence of edit operations
is sought. An edit sequence S for two trees T} and 75 induces a mapping of a subset
of their vertices Mg C V(T1) x V(1) where for all (vy,w;), (v2, w2) € Mg

* y1 = vy if and only if wl = w2, and
* v is an ancestor of v, if and only if w; is an ancestor of ws.

Given two rooted trees 77 and 75 for which an ordering is specified for the children
of each vertex (ordered trees), the edit distance (7}, 7%) can be computed in time
O(|T1|-|T2|-|L1]-|L2|) using dynamic programming, where L; and L are the depths
of the trees [191]. If the two rooted Trees are unordered, the problem of computing
the value of 6(7},75) is known to be NP-hard [20].

Contour trees are unordered, unrooted trees, thus the general edit distance is too
costly for our purpose. However, many restricted variants of the edit distance have
been introduced [20], which can be computed on unrooted trees and at lower
cost. From these, we utilize tree alignments and the corresponding tree alignment
distance.

A tree alignment A of trees T1,...,T), is a super-tree of the aligned trees, i.e. it
contains each aligned tree as a sub-tree. In general, A is not unique and can be
computed from each individual tree through sequences of insert operations and
node relabelings. A minimal tree alignment minimizes a cost function over the edit
sequences that yield .4 from each 7;, thus intuitively providing a “small” alignment
that captures the similarity between the individual trees.

In comparison to general edit mappings, whose computation is NP-hard, minimal
alignments can be found in quadratic time in the number of nodes for (arbitrarily
rooted) contour trees. Furthermore, an important property towards a joint layout
of contour trees is the path property: all paths in the individual trees map to paths
in the super-tree. A detailed description and comparison of these concepts can be
found in the survey by Bille [20].

AN AN N

Fig. 3.5.: Differences between alignment and edit distance: the intuitive mapping (left)
can not be achieved by the alignment but it requires an edit distance mapping.
The minimal alignment (center) induces the mapping on the right.

3.2 Tree Alignment of Contour Trees

21

3.2.1

22

Minimal Contour Tree Alignment

An alignment of two trees 7} and 75 is obtained by first inserting nodes labeled
with a blank symbol \ into 77 and 75, making them isomorphic. Let 77, Ty be the
resulting trees and Tj;g, be the unlabeled tree isomorphic to both. Labeling a node
v € V(A) with I(v) := (I(v1),l(v2)), where v; and vy are the nodes in 77 and T}
corresponding to v, and [is the labeling, gives the alignment A.

The alignment label [(v) represents an edit operation, and is associated with a cost
v(l(v1),1(v2)), where ~ is an arbitrary metric. The overall cost of A is then

A= D (),

veV (A)

allowing to define the alignment distance as the minimal cost
Salign(T1, To) = min{~y(A) | A is alignment for T, T>}.

Each A minimizing +(.A) is a minimal tree alignment for the chosen metric.

The minimal alignment of trees corresponds to a restricted edit distance, where all
insertions are performed before all deletions. This yields the super-tree property,
and nodes labeled without \ represent the induced matching.

Differences between Alignment and Edit Distance. To illustrate the behavior of tree
alignments, I highlight a number of differences between tree alignments and edit
mappings. From an edit distance mapping between 77 and 7%, one can construct a
tree of the mapped nodes in a natural way (following from the mapping properties).
This tree will always be a sub-tree of 77 and T5.

Given the cost function
YD) =~ A) =1,

0ifl; =15
7<llﬂl2) = {

2 otherwise

the minimal alignment from 73 to 75 will be the smallest common super-tree, and
the sub-tree induced by the minimal edit sequence will be the largest common
sub-tree [20]. Therefore, alignment mappings are not able to match certain corre-
sponding structures; consider e.g. the alignment and edit mapping in Figure 3.5
on the previous page: on the left, an intuitive mapping is given that requires an

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.2.2

edit distance mapping, as the lower gray node must be deleted as a parent of the
blue node and a new gray node must be inserted as parent of the red node. In an
alignment though, insertions must occur before deletions. Hence, the alignment
procedure will never result in this matching on the left. The less intuitive result of
the alignment is given at the center and on the right; matching the blue nodes is
impossible since it would result in a cycle.

However, the super-tree property provides substantial advantages. First, it allows
the construction of a heuristic for aligning more than two trees (cf. Section 3.2.2).
Furthermore, a super-tree of all contour trees contains all features (critical points)
of the original fields. In contrast, an edit mapping only induces a sub-tree. A further
important advantage of alignments is reduced computational complexity: for two
unordered trees with bounded degree, the alignment can be computed in time
O(|T1| - |T»|) in contrast to the NP-hard edit distance problem [20]. This assumption
is fulfilled for contour trees in most practical settings (e.g. in the strongly prevalent
piecewise linear case).

Alignment Heuristics

We extend the minimal alignments introduced above from two trees to n trees as
follows. Given n scalar fields, the alignment of the corresponding contour trees can
be used as a representation of the topology of the ensemble. In general, the problem
of aligning n trees is again known to be NP-hard, even for bounded degree or ordered
trees, since it is a generalization of the multiple sequence alignment [204]. Thus,
direct computation is not feasible. Furthermore, the alignment procedure requires
rooted trees, whereas contour trees are unrooted. To address both problems, we
adopt the following interlocking heuristics:

Sequential Alignment of Multiple Trees. Let A, be the minimal alignment of 77 and
T5, and define Ay as the minimal alignment of T}, and A;. The final matching
is the one induced by A,,.

In this manner, we construct an alignment of n trees sequentially. This alignment
will in general not be a minimal alignment. However, A, contains all features of
Ty and Ts. Aligning a third tree 73 which has features similar to 77 but not to 75,
with A,, the resulting alignment A3 will still match them, since the features are
present in A5 and T3. For example, consider the two trees in Figure 3.5 on page 21.
The blue and red nodes are swapped. If further trees with this swap are aligned,

3.2 Tree Alignment of Contour Trees

23

3.2.3

24

there will likely be two blue and two red nodes in the alignment. Our experiments
(cf. Section 3.4 on page 37) indicate that this heuristic works well in practice and is
cheap to compute.

®
4
é 0 ‘®
Fig. 3.6.: Consistent root and path properties: (left to right) for a given alignment, a
different root is chosen and another tree is added to the alignment. This alignment

results in violation of the ancestor property for node v if the the root is switched
back.

B @

Rooting Contour Trees. To align two unrooted contour trees, it appears possible to
minimize alignment over all possible choices of roots. For the sequential alignment,
this can however lead to problems; in Figure 3.6, the edit mapping property is
violated after aligning with respect to different roots. This problem does not arise
if the root of the alignment is kept consistent. Thus, in each step of the sequential
alignment, the alignment node corresponding to the previously chosen roots has to
be chosen as the root of the new alignment as well. In contrast, the root of T}, can
be chosen freely to obtain an optimal result.

Cost Metrics

The cost of edit operations that induce the minimal alignment can be chosen as
an arbitrary metric, providing flexibility in steering minimal alignments towards
matching nodes that are semantically related. For example, nodes can be labeled
by scalar value, and the difference between the values of two nodes can be chosen
as cost. A similar construction, independent of the absolute scalar value, can be
obtained by labeling nodes in a rooted tree with the difference in scalar value to
their origin, i.e. with the persistence of the unique edge pointed to this node. Again,
the metric is the difference of the two matched leaves. One could also use the area
corresponding to this edge in the field, or the sum or product of several of these
quantities, depending on application needs. Following Sakia et al. [164], we call
the size of the edge segmentation volume, independent of the dimension, and the
product of volume and persistence metric the combined metric. In their use case,
the combined metric performed best. A purely combinatorial matching is possible
by defining fixed costs per edit operation type, but this appears less useful in the

Chapter 3 Uncertain Topology of Scalar Field Ensembles

application scenarios we envision here, since we are aiming on topological similarity
of matched features and proper labeling of the resulting Fuzzy Contour Tree.

To be able to use an alignment as an input tree for the next alignment, a meaningful
way to combine labels of the form (I/(v;),(v2)) into a single label after each align-
ment step needs to be chosen. For example, for scalar value labels, the average of
l(v1) and I(v2) can be chosen as the new label. Similar constructions can be used for
the other examples discussed above.

Importantly, to preserve the semantics of the individual contour trees in an align-
ment, we penalize the matching of nodes of different critical point type (minimum,
maximum, saddle) by choosing prohibitively large cost for such relabelings. Hence,
we ensure that it is always cheaper to insert a new node than to match critical points
of different types.

3.2.4 Algorithm

Algorithm 1: Heuristic for minimal alignment of n contour trees
Let A,,;, be some alignment tree with infinite cost

foreach leaf 1 of T1 do

Let 77" be T rooted in rq

A=T"

fori=2..ndo
Let A/ ;. be some alignment tree with infinite cost
foreach leaf r; of T; do

Let T/ be T; rooted in r;

A’ = align(A,T}")
if c(A") < (Al ..) then

min

‘ / R A/
if ¢(A] ;) < c(A) then
if ¢(A) < ¢(Amin) then

The overall algorithm to approximate the minimal alignment for n contour trees
T1,...,T, with cost metric ¢ is shown in Algorithm 1. Allowing arbitrary choices for
the cost metric, it is very flexible and can be adapted to the needs of a particular
application domain.

3.2 Tree Alignment of Contour Trees

3.2.5

26

The runtime of the above algorithm is in O(n? - |V,,4.|*) for n trees, where V0.
is the number of nodes of the largest tree. Because this is still expensive for large
trees, and it is not sensible to lay out contour trees with hundreds of nodes, we apply
contour tree simplification (e.g [31]) before alignment. This results in very good
computation times for trees with several hundreds of nodes, as given in Table 3.1 on
page 38 for the examples discussed in Section 3.4.

The given algorithm is at heart a randomized algorithm; finding an ordering of trees
to ensure optimal alignment is a NP-hard problem. Thus, we randomly permute the
input ordering of trees, as is done in many other algorithms that would otherwise
have to employ exhaustive combinatorial search. In practice, to increase repeatability,
the random ordering is computed using a fixed chosen seed. In our experiments, we
have found that while alignments differ, the quality of the resulting layouts is largely
independent of the chosen seed. Figure 3.13 on page 35 shows layouts resulting
from two different seeds for the same set of contour trees.

Properties of the Contour Tree Alignment

.
=
.
g - .
Q Cy
D .
»
.

- »
Q
.

Fig. 3.7.: The red inner node representing an extremum is turned into a leaf.

The output of our algorithm is an alignment of the n contour trees, where each 7; is
rooted in a chosen leaf, and all roots are matched to the root of the alignment. A
fulfills a set of properties that are important for the layout algorithm:

* A is a super-tree, therefore all inner nodes of the individual trees are matched
to inner nodes of the alignment and all leaves of the alignment represent
leaves of the individual trees.

* The alignment preserves the node type, i.e. the alignment nodes also have a
specific type (minimum, maximum or saddle).

 All paths in individual contour trees which start at the chosen root are matched
to sub-paths in the alignment (path property).

Some properties of the alignment complicate laying out the Fuzzy Contour Tree:

* In contrast to contour trees, an inner node of the alignment can be a minimum

or maximum. For visualization purposes, these inner extrema nodes can

Chapter 3 Uncertain Topology of Scalar Field Ensembles

be turned into leaf nodes by attaching their children to their parent node.

(cf. Figure 3.7 on the preceding page and Section 3.3.1).

* Matched leaves from different contour trees are not necessarily connected to
a single matched saddle. However, the path property ensures that different
saddles will be either on the parent branch of the leaf in the alignment or in
its sub-tree.

* For a saddle node in the alignment, that matches saddle nodes from the
member trees, there is not necessarily a single leaf node matching leaves from
exactly the same member trees.

3.3 Fuzzy Contour Trees

3.3.1

Based on the alignment described in the previous section, we defined a layout
algorithm that allows an intuitive joint depiction of multiple contour trees in a
sensible manner —the Fuzzy Contour Tree.

In order to achieve a high recognition factor for the Fuzzy Contour Tree, we use the
well-established and often-used orthogonal layout [80] as a basis for our algorithm.
In this layout, branches are drawn as vertical lines. They are connected by saddles,
which are drawn as horizontal lines rather than points. Finding an orthogonal
layout for the alignment (and thus for all aligned contour trees) is done in analogy
to finding a layout for (single) contour trees. First, a branch decomposition is
recursively established, then the resulting branches are assigned horizontal positions,
with the vertical positions of the nodes given by their isovalues. Matched nodes in
the individual contour (sub-)trees of the alignment are assigned equal positions.
They are then combined, and further layout improvements for the resulting Fuzzy
Contour Tree are performed to further increase visual clarity. In the following, I
contrast our approach to the layout for single contour trees and present the layout
improvements in detail.

Branch Decomposition of the Alignment

A key ingredient in contour tree layout is the branch decomposition. To identify a
branch decomposition of a contour tree, first, a root and a main branch are selected.
From saddles in this main branch, further branches can be identified recursively until
the entire contour tree is decomposed. In case of a single contour tree, the leaf with

3.3 Fuzzy Contour Trees

27

28

minimum isovalue is chosen as root, and the main branch is chosen as the monotone
increasing path with maximal persistence starting in this root. Considering multiple
contour trees at a time, these properties may vary between individual contour trees.
Thus, the choice of root and main branch is more complicated.

The alignment provides a dedicated root node. This root is guaranteed to exist in
all individual contour trees and ensures the path property of the alignment (see
Section 3.2.2 on page 23 and Figure 3.6 on page 24). In the process of branch
decomposition, this root might turn out as the the leaf with maximal instead of
minimal isovalue in the main branch of individual contour trees. In this case, the
minimum of the main branch is considered as root.

Starting in the chosen root node, a main branch is chosen by considering both —
alignment and individual contour trees— as follows: paths in the alignment from the
root node to each leaf are initially considered as candidates for the main branch. Note
that paths that are monotone in one or more individual trees are not necessarily
monotone in the alignment, due to insertion of nodes and averaging of labels
(isovalues). Separately for increasing and decreasing directions, each candidate path
in the alignment is then considered in each individual tree, and counted if it exists
in this tree and is monotone, which gives its path frequency F'. This frequency and
the path persistence P are then used to obtain a rating R for candidate paths.

R = P% * Wpers + F% * Wereq where
P -100 F-100
Py = ————and Fy := ———
% Imax - Imm % n

Here, Py, is the percentage of the path persistence relative to the isovalue range
[Imin, Imax| of the alignment, Fy, is the percentage of the n contour trees that contain
the considered path, and wpers + wireq = 1 are user-chosen weights for persistence
and frequency. These weights are further discussed in Section 3.3.4 on page 34.

Choosing the path with the highest rating R as the main branch and proceeding
recursively for each sub-branch (i.e. saddle) of the main branch yields a branch
decomposition of the alignment. A corner case occurs if no contour tree contains a
path from the currently considered saddle to any leaf. The frequency of the branch
is then considered zero, and the rating is based only on the path persistence in the
alignment.

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.3.2

Separate layout Grouped layout
tresmine . S N XL

i T I ‘ A

' o L =

Bundled layout Bundled layout with optimized branch spacing
Fig. 3.8.: An illustration of the Fuzzy Contour Tree layout: Separate layout of multiple
contour trees yields a cluttered representation, while grouped and bundled layout

position aligned branches jointly. To better leverage vertical space, saddles can

be shifted using optimized branch spacing. All steps are treated in detail in the
following.

Layout Algorithm

After a branch decomposition for the alignment is established, many known layout
algorithms for contour trees could be employed. To obtain a suitable layout for the
Fuzzy Contour Tree representing the combination of all individual contour trees,
additional information from the individual trees needs to be taken into account when
optimizing layout clarity, e.g. by minimizing crossings. To do so, we incorporate
the isovalues of nodes from individual contour trees into the layout, resulting in
value ranges (as opposed to individual isovalues) for leaves and saddles. Further
influences of individual contour trees on the bundled layout are described after its
introduction.

As a basic layout strategy, we adapt the (partly randomized) method proposed by
Heine et al. in their permutation phase [80]: we attempt to find an ordering of
branch groups that minimizes a weighted number of edge crossings. Instead of
branch persistence, we weight crossing by the rating R obtained during branch
decomposition. Thus, branches that have been chosen as main branches for the
entire alignment or sub-trees are less likely to be crossed in the resulting ordering.
The optimum ordering is sought as proposed by Heine et al. using a combination

3.3 Fuzzy Contour Trees

29

30

of random walk and simulated annealing. While this approach does not ensure an
optimal layout, it gives very good results in practice (cf. Section 3.4 on page 37).
Furthermore, the algorithm’s non-deterministic nature may yield different layouts
given similar or identical input; Yet, since it is applied to the alignment, a super-tree
of all member contour trees, the derived layouts for the individual contour trees
always match. Calculating randomized layouts of the individual contour trees, this
is not the case.

In our setting, all branches are considered as individual branch groups. This is a
natural choice, since the decomposition of the alignment into branch groups, taking
multiple isovalues per node into account, tends to result in small branch groups,
often containing only a single branch. The resulting order of branches is translated
directly into horizontal coordinates for the layout, such that each branch occupies
one vertical slice of the overall layout.

Grouped Layout. The horizontal coordinates
obtained in the alignment layout can be propa-
| gated to the individual contour trees via the node

matching from the alignment. Thus, across all

==
contour trees, matched nodes are assigned iden-
||_ tical horizontal positions and keep the vertical

| | position according to the isovalue. Superimpos-
| rrils [. T . .
ing all individual contour trees with the assigned

mutual layout results in the grouped layout.

While this layout presents a significant improvement over separate layout of individ-
ual trees with superposition (“separate layout” in Figure 3.8 on the previous page),
visual clutter is still an issue and can be disruptive.

Bundled Layout. To reduce visual clutter, we

further abstract the grouped layout through edge
! .l . bundling. On the basis of the grouped layout,
% the bundled layout bundles all edges of a branch
‘ group and assigns an opacity to edges and nodes
E_— based on the rating R of the branch. Branch
edges are bundled close to their origin to the

' T e mean vertical position of the group’s saddles. To

further simplify the representation, we only draw the edges of a branch group origi-
nating at the respective maximum and minimum saddle isovalues. The inbetween

Chapter 3 Uncertain Topology of Scalar Field Ensembles

area is filled with appropriate opacity to accentuate its affiliation. Challenges arising
in this visualization are discussed in Section 3.3.5 on page 35.

Optimized Vertical Branch Spacing. In many
cases, ensemble members will have a similar
topological structure, resulting in a strong re-
! I ’ semblance of their contour trees in the common
| layout. This may result in clustered branch ori-

gins in the Fuzzy Contour Tree. To disambiguate

in these cases, we propose to shift branches ver-
T] tically to better leverage available vertical space.

Although in this case, the vertical node position
no longer indicates the isovalue, we preserve the vertical ordering of branches.
Furthermore, the saddle isovalue ranges of two branches left and right of the parent
branch overlap only if they do so in the original tree and, given sufficient vertical
space, the vertical distribution of branches on each parent branch adhere to the
original distribution as much as possible.

bundled layout “ optimized branch spacing

Step 1

saddle

— —

Step 2 Step 3

Fig. 3.9.: Branch spacing optimization: (bottom left to right) Step 1 all saddles are
stacked. Step 2 Spaces based on bounding boxes are added. Step 3 The branch
distribution is adapted to the original layout.

The shifting procedure is performed across all sub-trees of the Fuzzy Contour Tree
in a bottom-up manner, beginning with the branches farthest from the chosen main
branch. Available space on a sub-tree’s main branch is filled in three steps, with
different types of spaces considered in each step (cf. Figure 3.9 for an illustration):

3.3 Fuzzy Contour Trees

31

32

Step 1 All saddles are stacked in correct order without space in between.
Overlaps of saddles left and right of the main branch are maintained.
The occupied vertical space is marked as “saddle”.

Step 2 Based on the bounding box of the sub-tree’s main branch, “bounding”
spaces are added above and below every “saddle” space, if the current
space on the respective side of the main branch is smaller than the
bounding box (plus a user defined threshold).

Step 3 The original space above and below every child branch on the sub-
tree’s main branch is compared to the current spacing. Space is added
to obtain a distribution of the child branches similar to the original
layout.

After each step, the amount of occupied vertical space relative to the available height
is checked. If it exceeds the available height, the spaces added in the previous
step are “compressed” by scaling all vertical heights down such that the maximum
available height kept; all further steps are omitted. If this occurs after the first step,
this means that an overlap of the isovalue ranges cannot be avoided. After step 2, it
implies the possibility of overlaps between main branches of sub-trees.

This shifting can be applied to the grouped layout and the bundled layout alike and
significantly disambiguates overlapping structures and reduces clutter, as can be
seen for example in Figure 3.8 on page 29.

Member 1
Member 2
! .
|
a- Member 3 C

Member 4

] Member 5
l I ' 4 [] ' ' Member 6

Member 7

Fig. 3.10.: The Fuzzy Contour Tree user interface: a the Fuzzy Contour Tree combines
all member contour trees in one visualization. b The member grid reflects
all members via their number. ¢ The component viewer highlights selected
components in the fuzzy contour tree in the individual member fields, and d the
weights slider allows to choose the weights for persistence and frequency that
are used during the layout procedure.

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.3.3

Interaction

I implemented the interactive visualization (including the layout algorithm discussed
above) in a lightweight JavaScript prototype based on the d3.js library [24]. An
overview of the resulting user interface is given in Figure 3.10 on the preceding page.
It allows fully fluid interaction for all data sets we consider in Section 3.4. The Fuzzy
Contour Tree (a) is the main part of the visualization. The ensemble members whose
contour trees are shown in the Fuzzy Contour Tree are represented by numbered
boxes on top in the member grid (b). This grid provides the link from the Fuzzy
Contour Trees to individual members. The component viewer (c) provides the link
between arcs in the Fuzzy Contour Tree and corresponding regions in the member
fields. Using the weights slider (d), users can adapt the weights of persistence and
frequency that are used in the layout procedure.

contains
saddle 1

H:-H
A

| RS

Fig. 3.11.: Branch highlighting (left): the selected branch and all ancestors are high-
lighted with all connected saddles. Member highlighting (right): each member
containing an edge in the selected bundle is highlighted in the associated color.

We developed branch highlighting (left in Figure 3.11): hovering a branch in the
Fuzzy Contour Tree (a in Figure 3.10 on the preceding page) highlights this branch
and all its bundled edges and ancestors while all other branches are grayed out. The
selection can be fixed and released by clicking. For a fixed selection, the ancestors
of selected branches are not highlighted to clarify which branches are selected
(see Figure 3.12b on the following page).

At the top of the Ul, the member grid (b in Figure 3.10 on the preceding page)
provides information on individual contour trees. Figure 3.12a on the following
page shows tree highlighting: selecting the index of an individual contour tree
in the member grid highlights this particular contour tree. To clarify membership
of each branch, highlighting a branch in the Fuzzy Contour Tree also triggers
member highlighting in the member grid (on the right in Figure 3.11). All members
that contain one of the highlighted edges are colored correspondingly in the member
grid. The right part of Figure 3.11 shows member highlighting for a branch with two
associated saddles. In this case, each saddle is assigned a different color to clarify
the structure of the member contour trees. The highlighted branch is colored in pink,
and so is the saddle it is most frequently connected to in the member contour trees.

3.3 Fuzzy Contour Trees

33

3.3.4

34

This saddle is present in members 2 and 4. The second saddle is colored orange and

present only in member 3.

‘ J J -

')
BinEn

— . I

i } l—(
I I | \ ‘
] — I I
= 7
(a) Tree highlighting of a member contour tree in (b) Component highlighting: Marked branches
the three-dimensional convection simulation. are highlighted in the ensemble fields.

Fig. 3.12.: Tree and component highlighting in the convection simulation in bundled lay-
out (left: three dimensions, right: two dimensions, optimized branch spacing).

It is furthermore sensible to link the Fuzzy Contour Tree to a spatial representation
of each of the individual analyzed scalar fields. Like this, a better understanding
of the contour tree components is offered, and users are able to check the quality
of the matching; if one component from the Fuzzy Contour Tree represents very
different areas in the individual members, the alignment might be of poor quality.
This link is implemented in the component viewer (c in Figure 3.10 on page 32) as
component highlighting for the two-dimensional case, as shown in Figure 3.12b.
While there is no similar functionality implemented for three-dimensional data sets,
volume rendering or isosurface visualization can be applied in these cases.

The weights slider (d in Figure 3.10 on page 32) reflects the ratio between weights
for persistence wpers and frequency wyreq summing up to 1.

Layout Parameters

Several parameters influence the layout process. The temperature function of the
simulated annealing and its parameters are adopted from the layout algorithm by
Heine et al. [80] and are discussed there. Additional parameters in our approach
are the branch rating R, used to obtain the alignment branch decomposition by
using it to weight crossings during the simulated annealing. As described above, this
rating depends on the weights wpers and wgreq, Weighting the influence of the path
persistence Py and the frequency Fu;.

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.3.5

 SENE S { T 1 :

Fig. 3.13.: Different layouts and weights: (from left to right) layout with wgeq = 1,
another randomization with wgeq = 1, the same randomization as in the center,
with wpers = 1. In all trees, the same two nodes are highlighted. Ranking
branches in the branch decomposition based on frequency, the main branch
is contained in all ensemble members and does not span the whole isovalue
range of the Fuzzy Contour Tree. The high frequency is visible in the branch
opacity. Ranking based on persistence on the other hand, the main branch is
the one with highest persistence, spanning the whole isorange, but it is only
contained in a single member contour tree (visible via its low opacity in the left
two layouts, where it is not the main branch). This makes the layouts resulting
from persistence weight difficult to interpret and predict. In the right picture
the opacity is chosen due to persistence since it reflects the branch rating.

While it appears natural to consider persistence of branches in the rating, our
experiments showed that the most intuitive results are obtained with wpers = 0.
Node values in the alignment differ from those in the individual contour trees,
hence the persistence in the alignment cannot be considered an intuitive stability
measure, making its impact difficult to interpret. An example for this effect is given
in Figure 3.13.

Challenges

Several specific challenges arise when visualizing a Fuzzy Contour Tree that are not
present in the visualization of individual contour trees.

Fig. 3.14.: Challenge in the bundled layout: in the grouped layout (left), the pink branch
is connected to its parent. In the bundled layout (middle), this connection
becomes lost; the branch needs to be extended (right).

Bundling edges, children that connect to a saddle at an isovalue that is not covered
by the bundled branch need to be connected to their parent’s bracket. An example

3.3 Fuzzy Contour Trees

35

36

is given in Figure 3.14 on the previous page: in grouped layout, the pink child is
connected to its parent branch. Multiple saddles of the parent branch are at higher
isovalues than the parent branch this child is connected to. Hence, in bundled layout
with the bundled edge at the mean value of all saddle isovalues, the child is no
longer connected to its parent (center of Figure 3.14 on the preceding page). On
the right, this missing connection was fixed by an extended edge.

» \
(a) Partial extension of an edge to connect (b) Maximum below the bundled edge: the
it to its parent. marked maximum on the left would be

drawn outside the bundled edge. Hence,
the edge is shifted and the corner is not

0
(S — PR

rounded.
|
(c) Bundled edges: To avoid ambiguity, the (d) Parents at different sides of their child:
bracket has a user defined minimum this is avoided in the layout procedure by
plateau width (red) and a bundle-width putting both parents on the same side.
(blue) that determines the width of the
junction.

Fig. 3.15.: Different challenges and their solutions in the bundled layout.

A special case of extended edges occurs, when only a part of the child’s bracket
is not connected to the parent. If this case can not be avoided by shifting the
parent’s bundled edge, only some of the bundled edges are extended, as shown in
Figure 3.15a. In this case, the filling of the bracket is omitted.

In case of children that are connected to the parent’s bracket instead of the edge, it
needs to be assured that these children are not perceived as being connected to the
parent branch of their parent. For example in Figure 3.14 on the preceding page the
pink branch needs to be clearly visualized as child of the purple branch, not of the
blue branch. This is achieved using the bracket of a minimum thickness. The distance
of the bundling point to the origin consists of plateau width and a bundle width.
Both are illustrated in Figure 3.15c and can be customized. In addition, branch
highlighting not only highlights the hovered branch, but all its parent branches. This
further clarifies the parent-child relation.

In the alignment, it can occur that multiple different saddles appear as the origin
of a single branch. In this case, the opacity of branches is determined by the path

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.4

occurring in the largest number of individual contour trees, and for each origin
minimum and maximum branch are visible. Furthermore, every origin is assigned
an individual color for connecting edges. Hence, the existence of multiple origins is
emphasized when the affected edge is highlighted, and also in member highlighting,
cf. Figure 3.11 on page 33 for an example. When highlighting individual trees, only
the edge to the origin occurring in the tree is highlighted. Using the information
of individual contour trees, it is ensured in the layout process that all parents are
located at the same side of the child branch to avoid far stretched connections to
parents like in Figure 3.15d on the preceding page.

To obtain a more pleasing visualization, corners of edges are rounded. In some cases
however, this is not feasible: If the isovalues of leaves are too close to the saddle’s
isovalue, the corner needs to be sharp to ensure that no leaf needs to be drawn on
a rounded edge; see the purple branch in Figure 3.15c on the facing page for an
example. The same situation occurs if the isovalue of a child’s saddle is too close to
the isovalue of its parent’s saddle.

The metric used in the alignment process ensures that extrema are only matched to
extrema of the same type. Nevertheless, the range of aligned extrema can be large,
such that individual extrema might lie above or below the mean value of the edge’s
saddle values, resulting in extrema that would be drawn outside the bundled edge.
See Figure 3.15b on the preceding page for an example of this situation. Since the
type of matched extrema is unique, the lowest respectively highest matched saddle
is always below (for maxima) or above (for minima) the lowest maximum or highest
minimum. Hence, the bundled edge can always be shifted towards extrema that
would be drawn outside the edge, to avoid this situation.

Results

Using our approach, visualizing contour trees of scalar field ensembles is straight
forward: from each ensemble member, the contour tree is extracted. This allows
optional pre-processing of the data to obtain meaningful contour trees such as noise
removal or contour tree simplification for each individual member tree — all available
research on contour tree creation can be used to improve the Fuzzy Contour Tree.
Afterwards, the alignment is computed and the Fuzzy Contour Tree is visualized
using the layout strategies and interactions discussed in the previous section are
applied.

3.4 Results

37

3.4.1

38

The application to several analytical and real-world examples in two and three
dimensions are illustrated in this section together with the exemplary solution of the
visualization tasks to compare, combine and separate ensemble members. Running
times for a sequential implementation of the alignment algorithm, formulated as a
C++ TTK [194] filter, and general data set properties, are given in Table 3.1. All
times were obtained on a standard workstation with an Intel Core i7-7700 and 16GB

of RAM. Contour trees were computed and —if sensible- persistence-simplified using
TTK.

Data set | Size n |Viaxl Al taiign []
outlier/scattered peaks | 128x128 16 20 28 0.06
convection 2D 128x256 23 32 62 0.15
convection 3D 64°x128 10 60 144 1.10
viscous fingers 64°x45 15 48 128 0.83

Tab. 3.1.: Properties and runtimes of the example data sets: the ensembles contain n
members; |Viax| and |.A| denote maximal contour tree size (after simplification)
and alignment size. 45, denotes the alignment computation time in seconds.

Analytical Ensemble with Outlier

‘ 3.8

» » t" - 3.5

o L . 4 :S

o b L. :

2 , ® Oo‘ s
» o - L1

p :1.5
“ 2.5

3
3.5
3.8

Fig. 3.16.: Ensemble members of the outlier ensemble: the highlighted outlier has two
minima and maxima instead of three maxima and one minimum.

To demonstrate the usefulness of Fuzzy Contour Trees and give a straightforward

example that illustrates both alignment and layout, we created an analytical two-

Chapter 3 Uncertain Topology of Scalar Field Ensembles

2nd minimum
in the outlier

_4—1 minimum

Fig. 3.17.: Fuzzy Contour Tree of the outlier ensemble: structures with high frequency
are clearly visible as well as the structure of the outlier.

dimensional data set with simple structure shown in Figure 3.16 on the preceding
page: Each of the 16 ensemble members contains a small local maximum in the
center and 4 local extrema of varying height around the center peak. In 15 members
these extrema are three maxima and one minimum, in one further (outlier) member
there are two minima and two maxima. Figure 3.17 shows the Fuzzy Contour
Tree for this data set, computed using the persistence metric from Section 3.2 on
page 20.

Comparing the different ensemble members using the Fuzzy Contour Tree is straight-
forward: using the bundled layout, the branches with high frequency are easily
determined by their high opacity. Also, the existence of three maxima and one mini-
mum in most ensemble members is clearly apparent, as are the isovalues inducing
topological changes.

Fig. 3.18.: The differing structure of the outlier in the outlier ensemble is emphasized us-
ing tree highlighting: (Left) A typical member is highlighted. Its branches follow
branches with maximal frequency. (Right) The dissimilarity of the structure of
the outlier is clearly visible.

3.4 Results

39

40

2

Fig. 3.19.: Member highlighting in the outlier ensemble of a branch with low frequency
(top) and a branch with high frequency (bottom) clearly shows which ensemble
member is the outlier. The colors correspond to the chosen minimum and
maximum in Figures 3.17 and 3.18 on the preceding page.

Fig. 3.20.: Component highlighting: selected branches shared by the members in Fig-
ure 3.18 on the previous page are highlighted in the ensemble members. Repro-
duced from [*120].

Combining and identifying the members that share the structure with three maxima
and one minimum is possible: Topological structures contained in every member of
the ensemble are given by the branches that are contained in the typical member and
the outlier in Figure 3.18 on the preceding page; this can be seen by their opacity
in Figure 3.17 on the previous page and using member highlighting (Figure 3.19).
As expected, two maxima and one minimum are part of the common structure of
the whole ensemble, as well as four small, linked branches at the vertical center of
the tree, that correspond to the four corners of the domain. This can be seen using
component highlighting (Figure 3.20). Note that the small maximum in the center
of each ensemble member is not visible as a common structure in this case, but as
multiple (nearly) horizontal branches. This results from the super-tree property
and a chosen metric for the alignment creation that favors high persistence (cf.
Section 3.2.1 on page 22 and Figure 3.5 on page 21).

Separation of the outlier can be accomplished using member highlighting on the
single minimum with low frequency on the left of the tree (Figure 3.19). The
structure of the outlier in comparison to the other ensemble members is even more
apparent when using tree highlighting on the corresponding trees (Figure 3.18
on the previous page). To further investigate the branches that the outlier shares
with the rest of the ensemble, these edges can be investigated using component

Chapter 3 Uncertain Topology of Scalar Field Ensembles

highlighting: In Figure 3.20 on the facing page, the components corresponding to
the shared branches (including the main branch) are highlighted for the outlier and
the individual contour tree shown in Figure 3.18 on page 39. Both scalar fields
behave similarly in the domain corners. In addition, the maximum of the outlier is
matched to different local maxima in the other members, thus explaining the high
variance in leaf isovalues in the main branch.

3.4.2 Scattered Peaks Ensemble

— 0.5

oy ¥

" a1
o ‘ 1.5

4 :
-2.5
-3.5
-3.8

Fig. 3.21.: Ensemble members of the scattered peaks ensemble.

The scattered peaks ensemble shown in Figure 3.21 is of a similar structure as the
analytical example: all 16 members contain two maxima and two minima in addition
to a small peak at the center. The Fuzzy Contour Tree in Figure 3.22 on the next
page illustrates the behavior and limitations of the alignment.

As described above, other approaches typically use some sort of overlap measure to
map features defined by the contour tree segmentation onto each other. In contrast,
our method is independent of the position and area of matched arcs and nodes
(unless they are explicitly incorporated in the used metric). If multiple fields share
the same main features in a similar topological structure (i.e. their positions and
connections in the contour tree), but they are scattered differently over the domain,
our method can still find and match them. Naturally, this is only possible as long as
the overall topological structure provides a sufficient amount of similarity.

3.4 Results 41

42

NN\ L]

Fig. 3.22.: The Fuzzy Contour Tree of the scattered peaks ensemble: the small peak in
the center of the domain is present in multiple, unmatched branches to allow
matching of the four main peaks.

In this example, the four extrema around the center are identified as the main
structure of the ensemble. Due to topological variance the small peaks in the center
can not be matched as long as the four main structures are matched. The alignment
thus contains multiple different branches representing the small peak. This can be
seen in Figure 3.22: the small peak occurs multiple times with a low frequency. This
allows the mapping of the two main maxima and the two main minima, even though
they are located in completely different areas in their corresponding fields.

The matched minima show some limits of our matching method: as explained in
Section 3.2.1 on page 22, there are limits to the matching possibilities based on
where certain features are positioned in the tree. If the intuitive match is not possible,
the alignment either splits the two features, resulting in two copies of the branch
in the resulting alignment, or it matches them to a completely different part of the
tree, with the latter typically being the less intuitive or desired option.

Both cases can be observed in Figure 3.22: big and small maxima in the ensemble are
matched according to their size, whereas the two sizes of minima are not seperated.
The small peak at the center can not be matched over the ensemble members either.
Here, the feature is split into several copies in the Fuzzy Contour Tree, each having
a low frequency.

In the Fuzzy Contour Tree, it is easy to find the four extrema that are matched by
all members in the alignment and the four corners of the domain when choosing
the branch opacity according to the number of occurrences of branches in member

Chapter 3 Uncertain Topology of Scalar Field Ensembles

Fig. 3.23.: Member highlighting shows the presence of one small peak in every member.

contour trees (Figure 3.22 on the preceding page). The lower opacity and identical
height of the branches representing the small peak indicate the “splitting” of this
peak for different members. Using member highlighting, it is easy to see that such a
small peak is present in every ensemble member (Figure 3.23).

3.4.3 Convection Simulation

—0.25

0.15

Fig. 3.24.: Exemplary members of the convection simulation in two (screenshot from
[121]) and three dimensions.

The convection simulation ensemble describes the flow around a heated pole in two
and three-dimensional domains; exemplary members are shown in Figure 3.24. The
ensemble was obtained by simulating the corresponding model with stochastically
perturbed initial and boundary conditions for velocity. Fluid that is initially at rest is
heated around the pole, begins to rise, and forms a plume. Scalar values describe
flow vorticity, and topological segmentation identifies vortices as the attracting basins

3.4 Results

43

44

. | o ' | ']]))
| e,/l S N N
| kAR A A

— "t T [1]

Fig. 3.25.: Component highlighting shows the high quality of the matching of components
in the alignment of the two-dimensional convection simulation. In the Fuzzy
Contour Tree, branch spacing is optimized.

' o

of maxima. The contour trees for both data sets were simplified using persistence,
with the same threshold for all members.

Two-Dimensional Ensemble. Using the combined cost metric (cf. Section 3.2 on
page 20) for the alignment of the ensemble contour trees results in a highly intuitive
matching, as can be verified in the component view: several highlighted components
across the ensemble members are shown in Figure 3.25. For example, the global
maxima at the center are matched onto each other over (almost) all members.
They are represented by the marked orange branch in the Fuzzy Contour Tree with
small variance in the matched saddles and leaves. Based on the intuitive matching,
it is easy to compare all ensemble members and identify common topological
structures.

Looking at the Fuzzy Contour Tree without optimized branch spacing in Figure 3.26
on the facing page, above the branching of the orange global maxima, several smaller
peaks occur on the left hand side of the Fuzzy Contour Tree (see Figure 3.26 on the
next page). In each member contour tree, zero to three of them occur. This can be
verified using tree highlighting, allowing to combine or separate members based
on the occurrences. Other examples for intuitively matched features are the (green)
minima left and right of the main maximum and the two maxima surrounding the
cylinder on the bottom. All of them are highlighted in the Figure.

Chapter 3 Uncertain Topology of Scalar Field Ensembles

1) B T FR S R VR

Fig. 3.26.: Tree highlighting: (left) tree number 3 only contains one maximum on top of
the Fuzzy Contour Tree while tree 8 contains three of them.

Three-Dimensional Ensemble. Also in the three-dimensional case, using the com-
bined cost metric for the alignment provides intuitive results (Figure 3.27 on the
following page). Comparison of the topological structure hence provides a clear
insight in common topological structures of the ensemble members: at the bottom,
only minima exist, then a layer of maxima occurs, followed by another area with
mainly maxima; these extrema indicate vortices of different rotational direction.
Whether this structure is present in all members can be checked using tree highlight-
ing, providing a common segmentation for the relevant members to combine them.
The single blue minimum (vortex) between the two layers of maxima separates one
ensemble member from all others. The number of this member can be determined
easily using member highlighting for the branch (Figure 3.28 on the next page).

3.4 Results

45

‘. i . \al'

Fig. 3.27.: Common topological structures of the three-dimensional convection simu-
lation ensemble are clearly shown in the Fuzzy Contour Tree. All branches
occurring in at least 8 out of 10 members are highlighted.

Fig. 3.28.: Separation of members that contain singular structures is possible by member
highlighting in the Fuzzy Contour Tree of the three-dimesional convection
simulation.

46 Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.4.4 Viscous Fingering

Fig. 3.29.: Large differences between saddles and leaves in a single branch indicate the
matching of semantically unrelated branches for the viscous fingers ensemble.
Ranges for the orange branch are marked. Despite the low topological similarity
and the resulting high number of branches in the Fuzzy Contour Tree, bundling
and optimized branch spacing allows a comprehensible visualization.

To illustrate the behavior of our method in a setting where searching for topological
similarities in the member’s level sets is not meaningful, we consider the Fuzzy
Contour Tree for 15 members of the viscous fingering ensemble [172].

The viscous fingering ensemble was provided for the 2016 Scientific Visualization
Contest and contains 50 simulations of a viscous fingering process, where scalar
values represent salt concentration and topological segmentation identifies individual
fingers [123]. From the time-varying ensemble, three members and five consecutive
time steps are chosen, resulting in an ensemble of 15 contour trees. We follow
the approach of Lukasczyk et al. [123] to derive three-dimensional piecewise
linear scalar fields from the given point clouds. Because it is not clear when and
where viscous fingers appear and how they evolve, the variance between ensemble
members is very high in this data set. Hence, searching for topological similarities is
not meaningful.

As Figure 3.29 illustrates, the Fuzzy Contour Tree for the viscous fingering ensemble
is highly complex. The large variance in the scalar values of matched critical points
and the distinct overlap of the value ranges indicates that the matching is not

3.4 Results 47

3.5

48

semantically meaningful. While this example is beyond the limits of the Fuzzy
Contour Trees, it shows that an identification of non-meaningful alignments is
possible using only the Fuzzy Contour Tree.

Discussion

As shown in the previous section, Fuzzy Contour Trees are useful to visualize
topological structures across ensembles. Fundamentally, tree alignment, i.e. the
matching of individual contour tree nodes and arcs into a super-tree enables the
joint layout of all contour trees as a Fuzzy Contour Tree. However, it also imposes
some limits w.r.t. possible applications: often, overlap measures are used to map
features defined by the contour tree segmentation onto each other. In contrast,
our method can be independent of position and area. If the same major features
are shared among multiple members in a similar topological structure (regarding
relative positioning and connectivity in the contour tree), our approach is able to
find and match them, even if they are scattered differently over the domain without
overlap. Naturally, this is only possible as long as the overall topological structure
provides a sufficient amount of similarity for a meaningful matching.

If the structure of the different contour trees shows only small or no topological sim-
ilarity —as discussed in the viscous fingers example above— a minimal alignment will
exist (and is computed by our algorithm), but the matching will not be meaningful,
resulting in a non-meaningful visualization.

Up to now, the automatic identification of semantically meaningless alignments is not
possible with our method. While it would appear intuitive to consider the alignment
cost as a criterion and declare the alignment as unsuccessful if the cost is too high,
this cost is a heuristic that does not allow an absolute comparison. Especially it
can not be generalized across different data sets. However, identifying alignments
containing matchings of unrelated topological components can be achieved by a
user when comparing matched segments via component highlighting, and by finding
indications in the Fuzzy Contour Tree such as large differences in vertical coordinates
of saddles and leaves with large overlap.

Comparison to Similar Techniques. Compared to the combined visualization of
the Fuzzy Contour Tree, displaying multiple contour or merge trees side-by-side
provides much less support for the basic visualization tasks to combine, compare
and separate members. Independent visualization of individual contour trees results

Chapter 3 Uncertain Topology of Scalar Field Ensembles

3.6

in different layout and scaling; thus, a sensible comparison of the contour trees,
especially of value ranges, is not feasible. Even if identical layout and scaling
could be obtained, there are strong limits on the visual scalability of a side-by-side
approach, and manual or “visual” matching of subtrees has to be performed by a
viewer, making the approach non-practical overall.

Favelier et al. [56] cluster ensemble members based on an embedding of their
persistence maps in Euclidean space. Using the notion of mandatory critical points,
confidence regions for each cluster are calculated and visualized. Athawale et al.
process a given two-dimensional Morse complex ensemble to obtain a probabilistic
map and a survival map, called summary maps for two-dimensional Morse complex
ensembles [10]. The probabilistic map shows the probabilistic classification of all
points in the plane based on the mandatory maximum their integral curve ascends to
over all ensemble members, while the survival map traces the behavior of gradient
flows under persistence simplification, where unchanged gradient flow direction
after a simplification step is counted as a survived step.

Both techniques are suited for ensembles of arbitrary size, but do not consider or
present single or combined contour trees. Furthermore, a Fuzzy Contour Tree incor-
porates information from individual contour trees into a single overall visualization,
and links this combined visualization back to the individual contour trees; this
possibility fundamentally enables separation and is not available in either summary
maps or the persistence atlas. While the persistence atlas provides combination of
the ensemble members, users are not provided sufficient information on individual
members to identify those with common segmentations, unless they are part of the
ensemble’s common topological denominator.

A further limitation of the two approaches is the fixed comparison metric. While the
persistence atlas relies on trend and location of critical points, and the approach by
Athawale et al. is based on the gradient field, our approach can incorporate these
parameters when matching nodes in the alignment, but it also can be based on the
topological structure or any other parameters. This flexibility makes Fuzzy Contour
Trees highly adaptable to domain-specific needs.

Conclusion

By combining tree alignments with a novel layout algorithm, we are able to combine
multiple contour trees of ensemble members in one Fuzzy Contour Tree. The
resulting visualization is semantically meaningful with minimal clutter. Together with

3.6 Conclusion

49

50

its interaction possibilities, it allows the comparison, combination and separation
of ensemble members based on topological features. For future research, there are
several opportunities:

While the current algorithm works well in practice, the deterministic computation
of minimal tree alignments would enhance the stability of our approach. Also, the
automated identification of non-meaningful alignments would improve the confi-
dence in our technique in real-world use.

To further reduce clutter, different options could be considered: hiding nondescript
branches, additional abstraction, and detail on demand to name but a few. In
addition, instead of a purely additive comparison of contour trees, a subtractive
comparison just showing branches that are not contained in a set of members could
improve the overview.

Combining our approach with image databases [2] for in situ visualization is an
interesting opportunity. In addition, our progress in simultaneous layout of multiple
contour trees can be beneficial in other scenarios involving several contour trees; for
example regarding time-dependent scalar fields. This scenario is considered further
in the following Chapter 4.

Chapter 3 Uncertain Topology of Scalar Field Ensembles

Uncertain Topological
Features in Time-Dependent
Scalar Fields

Simulations and recordings of physical events often result in series of records over

time. Analyzing this data is usually done feature based, by identifying regions with
specific patterns, which are then tracked between time steps. While these approaches
are helpful for specialized tasks, they are not suited to provide a general overview of
the complete data set due to their focus on specific features and the chronology.

Viewing time-dependent scalar fields as ensembles that depend on the parameter
“time”, their visualization using Fuzzy Contour Trees is straight forward. The result
provides a holistic view of the data set, giving a simultaneous overview of the
topological structure of the time-dependent data set.

Similar to the original Fuzzy Contour Tree, the time-varying Fuzzy Contour Tree gives
insight in the topological structure of multiple fields by simultaneous visualization
of the corresponding contour trees. In cooperation with Frederike Gartzky, Florian
Wetzels, Luisa Vollmer and Prof.Dr. Christoph Garth, I enhanced the Fuzzy Contour
Tree back- and front-end to adapt it to the specific needs of time-dependent data
analysis. Together with Frederike Gartzky and Luisa Vollmer, I treated the enhanced

Fuzzy Contour Tree layout and the improved member grid in their masters project.

Adaptions in the backend —the alignment procedure— were made by Florian Wetzels
and Christoph Garth. Time-varying Fuzzy Contour Trees were published at IEEE Vis
2021 [*118].

51

52

82 83 84 85 86
[@] B 2 [>]

—

Fig. 4.1.: The time-varying Fuzzy Contour Tree interface: Time selector on top and the
Fuzzy Contour Tree of the selected time steps.

In addition to the tasks that can be solved using Fuzzy Contour Trees, time-varying
Fuzzy Contour Trees allow the solution of tasks that are specific to the analysis of
time-dependent data. It is for example possible to

compare ensemble members to identify which topological features appear

periodically,

combine time steps with similar contours and track down where they change,
and to

separate time steps that contain a specific branch from others.

By defining sub-alignments that originate from the overall alignment —-that is the
alignment containing all time steps— the analysis of arbitrary sub sets is possible.
Hence, the time-dependent data set can be analyzed, and the basic visualization
tasks can be solved independent of the chronology.

Figure 4.1 shows the time-varying Fuzzy Contour Tree interface. Both, the time
selector on top and the Fuzzy Contour Tree below are enhanced versions of interface
components of the original Fuzzy Contour Tree interface, providing specialized
interaction with time-dependent data and ensuring a consistent visualization.

In the following, I describe the theoretical background of this visualization and
how to generate it. Changes in the back-end of Fuzzy Contour Trees are described
in Section 4.2, enhancements of the front-end in Sections 4.3 and 4.4. I imple-
mented the time-varying Fuzzy Contour Tree interface using D3, python and jupyter
notebook.

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

4.1 Background: Topology Visualization on
Time-Dependent Data

Like the generalization of topology-based methods to uncertainty, their generaliza-
tion to time varying data is a challenging task. An overview was given by Heine
et al. [79]. Recently, most contributions visualize the topology of time-dependent
two-dimensional vector fields using feature tracking for singularities and closed
streamlines [84, 192, 196]. But also for scalar fields there are considerable contribu-
tions:

Time-Dependent Contour Trees. A theoretical consideration of time-varying reeb
graphs for continuous space-time data was given by Edelsbrunner et al. [54]. Szym-
czak describes sub-domain aware contour trees and uses them to track accumulated
topological changes between slices of the data set. While the evolution of iso-surfaces
is plotted, the contour trees are not visualized [189].

Also different interactive tools for the analysis of time varying contour trees and
iso-contours have been developed: An interactive exploration tool for split/merge
and contour trees for different time steps was developed by Sohn et al. [182]; they
define a topology change graph and use it to navigate trees of individual time steps.
Bajaj et al. provide multiple calculated signature graphs on time-varying scalar fields.
With different interaction possibilities and the additional visualization of single
contour trees, they provide real-time exact quantification in the visualization of iso-
contours [11]. Kettner et al. take this idea further to non-decomposable topological
properties and higher dimensions in the Safari interface [102]. Lukasczyk et al.
define and visualize spatio-temporal Reeb graphs to extract and visualize trajectories
and relationships of hotspots [124]. Oesterling et al. show the evolution of extrema
in high-dimensional data by plotting a one-dimensional landscape profile for each
time step and connecting peaks to indicate critical events [148]. These events are
determined as structural changes in time-varying merge trees.

In contrast to time-varying Fuzzy Contour Trees, none of these approaches visualize
contour trees for more than a single time step or show the evolution of contour
trees.

Feature Tracking in Time-Dependent Data. Depending on the application, different
features are of interest. Their definition can be application driven, an example
are specific fingerprints of global climate patterns [99] or vortex definitions in

4.1 Background: Topology Visualization on Time-Dependent Data 53

4.2

54

flow visualization. Feature definitions can also be application agnostic, like the
topological structure that is visualized in time-varying Fuzzy Contour Trees.

Features have been identified and tracked over time in many different ways. The
components of interest can be superlevel sets [124, 182] or sub-domains with special
geometric and topological properties [25, 111, 169]. Tracking of the features is
often achieved using spatial overlap in time [18, 123, 169, 182]. Other approaches
base on topology by tracking critical points and using the persistence of topological
properties [25, 211]. Multiple features on different levels of interest are often
tracked in tracking graphs [124, 125, 182, 211]. These tracking graphs visualize the
evolution of features by keeping track of split and join events, as well as birth and
death of components.

In all these cases, determined features are tracked between subsequent time steps,
tracing these features over time. Our approach on the other hand does not aim to
track individual features, but provides an overview over topological features of the
complete data. Considering the topological structure of the complete time-dependent
data set and matching it, we provide a more holistic view on the data. Similarities
and differences of time steps can be determined flexibly and independent of their
adjacency.

Tree Alignment of Time-Varying Contour Trees

!

(a) Previously, the scalar values of the align- (b) Now, they are set to the value of the lastly
ment were calculated as mean value of all aligned contour tree. Thus, this tree is
aligned nodes. contained as a sub-tree in the alignment.

Fig. 4.2.: Different scalar value choices in the alignment.

Considering time-dependent scalar fields, the main focus lies on a consistent align-
ment over time. Hence, matching of nodes in consecutive time steps needs to be
consistent, prohibiting a randomized order of the input contour trees as it was
described for the original Fuzzy Contour Trees in Section 3.2.4 on page 25. Instead,
the contour trees are aligned sequentially. Furthermore, the matching of nodes in
consecutive time steps is prioritized by adapting the choice of values assigned to

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

the alignment nodes. In the non-time-dependent setting, the values of the align-
ment are calculated as mean value of the aligned nodes (Section 3.2.3 on page 24).
Handling time-dependent fields, the values are set to the value of the lastly aligned
contour tree as illustrated in Figure 4.2 on the facing page. Thus, this contour
tree is effectively contained in the alignment as a sub-tree with its original scalar
values. Aligning consecutive time steps hence takes place in a similar setting to
matching adjacent trees and consistent matching of nodes in consecutive time steps
is enforced.

The alignment process is very flexible in its application due to the opportunity to
use different metrics. For time-varying Fuzzy Contour Trees, we implemented an
overlap metric in addition to the existing volume, persistence and combined metrics.
The overlap metric is defined as 1 — J(A, B) where the Jaccard index of sample sets

A and B is defined as AN B
J(A,B)= ——.
The contour tree alignment algorithm with overlap metric and optional matching

over time is available in the TTK development branch [194].

Considering the Fuzzy Contour Tree based on the overall alignment provides in-
formation on the frequency of topological structures over all time steps. With this
information, the tasks to compare, combine and separate records based on their
topological structure can be addressed regarding the structure of the complete data
set. However, analysis of time-dependent data often takes place on the level of indi-
vidual time steps instead of the whole data set. Comparing the topological structure
of arbitrary sub-sets is rendered possible by the calculation of the corresponding
sub-alignment.

Sub-alignments are calculated based on an existing overall alignment. To obtain
a sub-alignment, contour trees of time steps that are not selected are one by one
subtracted from the overall alignment by decrementing the frequency of all contained
nodes. For all nodes that are assigned frequency O in this process, all edges and
neighboring nodes are considered and connectivity of the result is restored. For less
than three edges that are connected to the deleted node, this is straight forward. To
connect the neighboring nodes in the case of three and more edges, we determine
parent - child relations of the neighboring nodes by determining paths from these
neighbors to the fixed alignment root (described in Section 3.2.2 on page 23) and
connect the nodes accordingly. The overall alignment as mutual base for all sub-
alignments ensures the consistent matching of nodes in different sub-alignments,
avoids problems with node identification between sub-alignments and guarantees a
consistent layout.

4.2 Tree Alignment of Time-Varying Contour Trees

55

The resulting sub-alignments are alignments of the chosen sub-set of contour trees.
They are likely to perform worse with respect to the chosen metric than the result of
the alignment algorithm heuristic. However, all we need sub-alignments to be is a
sub-tree of the overall alignment to which we can transfer the layout. Edges in the
alignment are treated as paths in the Fuzzy Contour Tree layout and actual edges
are always verified in the individual contour trees.

Employing the resulting time-varying Fuzzy Contour Tree, arbitrarily selected sub-
sets of the time steps can be compared, combined or separated.

4.3 Layout of Time-Varying Fuzzy Contour Trees

L

T 1

Fig. 4.3.: The trickle-down-layout of the time-varying Fuzzy Contour Tree: the layout
of the overall alignment (Level I) is applied to sub-alignments (Level II). Their
layout is propagated to the individual contour trees (Level III). The extent of the
sub-alignments in the alignment are marked with brackets. Sub-alignments and
trees are exemplary. (Reproduced from [*118])

As a basis for the time-varying Fuzzy Contour Trees, the layout of the overall
alignment is computed as described in Section 3.3.2 on page 29. As an alteration

56 Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

to this approach, the used cost function of the simulated annealing not only takes
scalar values of leaves and the persistence of branches into account, but also their
existence in time: only contemporary branches with overlapping bounding boxes
are treated as overlapping.

Similar to the layout of individual contour trees being based on the layout of
their alignment, the sub-alignments’ layout is based on the layout of the overall
alignment. This is possible since the sub-alignment is always a sub-graph of the
overall alignment. An illustration for this “trickle-down layout” is given in Figure 4.3
on the preceding page.

To obtain the layout of a sub-alignment from the overall alignment, first the branch
decomposition of the sub-alignment is computed. After that, the order of its branches
is set according to the horizontal order in the overall alignment.

The main branch is treated as a special case, since it contains two leaf nodes: the
designated root node, which is consistent in all sub-alignments, and a leaf node,
which can be different for different sub-alignments. Hence, the position of the main
branch could either be linked to the root node or the leaf node. To account for the
possible changes in its composition, we link the position of the main branch to the
leaf node, meaning the main branch will change position according to the position
of the leaf node. This not only facilitates spotting changes in the main branch, but
also keeping track of its composition.

(b) Original horizontal positions with gaps,

(a) Optimized horizontal positions. the biggest one is highlighted.

Fig. 4.4.: Options for the horizontal positioning.

With the horizontal order of the branches set, there are two options as to how the
horizontal position of a branch is determined (Figure 4.4): the first option is to keep

4.3 Layout of Time-Varying Fuzzy Contour Trees 57

58

the horizontal position of a branch the same as it is in the overall alignment. This
supports keeping track of the individual branches over different sub-alignments,
since corresponding branches in the Fuzzy Contour Tree are always drawn at the
same position, which is particularly beneficial for animation. However, gaps can
occur if branches from the overall alignment are not present in the sub-alignment,
resulting in empty positions in the layout. The other option is to allow the horizontal
position of a branch to change to have a more uniform layout of the individual
Fuzzy Contour Tree while keeping the horizontal ordering of branches. In this
case, the distance between two neighboring branches in the Fuzzy Contour Tree of
every sub-alignment is constant. For each branch it is checked, if its vertical extent
overlaps any of the vertical extents of its direct left neighbors. If there is no overlap,
the branch is shifted left to the same position as these neighbors.

N
.

i . F‘

.
|
_

110

(

Fig. 4.5.: Two-colored main branch: To highlight changes in the main branch and support
tracking the development of branches, the extrema in the main branch are colored
differently and consistently.

After the layout for the sub-alignment is determined, leaves, saddles and branches are
transferred from the individual contour trees following paths in the sub-alignment,
as described for Fuzzy Contour Trees in Section 3.3.2 on page 29. In contrast to the
approach described there, coloring is now based on the overall alignment, not on the
alignment that is presented in the Fuzzy Contour Tree: we keep the coloring of the
leaf nodes consistent by assigning colors to every node id, independent of the node’s
occurrence in the current sub-alignment. As a further change in coloring, this is also
done for both leaves contained in the main branch independently, resulting in two
different leaf colors. The coloring stays consistent even if the main branch changes
between Fuzzy Contour Trees for different sub-alignments, making it possible to
trace the membership of different leaves in the main branch (see Figure 4.5).

Grouped and bundled layout with and without optimized branch spacing carry
their benefits over to the time-varying application of Fuzzy Contour Trees and are
available as described in Section 3.3.2 on page 29.

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

4.4 |nteraction

4.41

selected window
82 8384 85 86

left pause play right

time steps
S

Fig. 4.6.: The time selector: The complete data set is shown with the selected time steps
highlighted. Coloring of the time steps is determined by different measures on the
sub-alignments to guide the data analyst to patterns or regions of interest. Left,
right, play and pause buttons allow the manipulation of the current selection.

Interaction possibilities with the Fuzzy Contour Tree aim on linking information
concerning individual contour trees with information on the overall behavior of the
considered ensemble (Section 3.3.3 on page 33). While branch and component
highlighting remain untouched from the specialization to time-dependent fields, the
member grid —enabling tree and member highlighting— was completely revised and
turned into the time selector (Figure 4.6). Focusing on enhancements of interactions,
component highlighting is not implemented in our prototype.

The Time Selector

The time selector is the enhanced version of the member grid for Fuzzy Contour
Trees, providing information on individual contour trees (compare b in Figure 3.10
on page 32). Instead of showing only time steps that are contained in the current
Fuzzy Contour Tree, every time step from the data set is represented by a colored
slice of the selector. Selected time steps are highlighted as boxes with the number of
the time step.

members of sub-alignment
82 83 84 85 86

(w21 T Tw/2]
colored time step

Fig. 4.7.: Coloring based on sub-alignments: the color of time point 84 is determined
based on the sub-alignment of the window with 84 at the center. The window
size w is user defined.

Coloring Measures. To indicate areas of interest in the time selector, we colored
its time steps based on the sub-alignment containing the considered time step as
the center of a time window of given width (Figure 4.7). There are two options
for this coloring based on centrality measures that are calculated per node of a

4.4 |Interaction

59

60

sub-alignment:

Showing measure values, the averaged sum of the chosen measure over all nodes of
the considered sub-alignment determines the color. Hence, the coloring of a time
step gives only information about this single time step and its surrounding window.
Showing sub-alignment distances, besides the sub-alignment of the window centered
at the current time step, the sub-alignment of the window centered at the subsequent
time step is considered. The chosen measure is determined for all nodes of both
sub-alignments. The color is determined via the averaged sum of the node-wise
difference, where the nodes are paired by the overall alignment. This coloring of a
time step provides information about the similarity or dissimilarity of the considered
sub-alignment and the subsequent one.

(3283848586 DA LNNEL [HERERE B

(a) Betweenness distance with window selection.

(b) Betweenness values with periodic selection of length 12 active, cropped.

30 31 32 45 46__ 52 (0 LRI N |

(c) Degree distance with multi selection.

25 26 27 28 29

(d) Degree values with window selection.

Fig. 4.8.: Time selector options: Selection modes and different coloring measures on the
convection simulation data set.

Showing the measure values is helpful to discover structures in the data, while
showing differences emphasizes changes between consecutive sub-alignments, high-
lighting time steps with potentially crucial changes. As possible measures, we
implemented two centrality measures: the degree centrality and the betweenness
centrality. In contrast to the graph edit distance, the centrality distance is based
on the node centrality and therefore takes a weighting of each node into account.
It was introduced by Roy et al. [163]. Application specific measures can be easily
incorporated to further specialize time-varying Fuzzy Contour Trees.

The degree centrality of a node is defined as the degree of the node, that is the
number of connected edges. It hence records edge insertions and deletions in the
sub-alignments.

The betweenness centrality of a node is the number of shortest paths going trough
it. Hence, using the betweenness centrality measure, the focus lies on structural

changes in the sub-alignments.

Examples for the different coloring options are given in Figure 4.8.

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

Choosing Time Steps. Time steps can be selected via mouse click on the time
selector in three different modes: window selection, multi-selection and periodic
selection as a special case of multi-selection. See Figure 4.8 on the preceding page
for examples. Toggling window and multi-selection is done via double click on a
time step. Pressing control in multi-selection mode enters periodic selection.

In window selection (Figure 4.8a on the facing page), clicking on a time step selects
this time step as the center of a time window of user-defined size. These windows are
identical to the windows that are used by the coloring measures and pre-computed
results from the measure calculation are re-used. The window selection is beneficial
when a connected sub-interval of time steps is analyzed. Multiple adjacent selections
of “sliding windows” provide insight in the development of the topological structure
over time. New branches emerge with a low opacity, become more opaque as they
become established and eventually fade (or stay). See Figure 4.14 on page 67 for an
example.

The multi-selection (Figure 4.8c) is intended to provide deeper insight in individual
members and their differences and similarities. By clicking on different time steps,
they are added to the selection. The sub-alignment for the selected time steps is
calculated and the time-varying Fuzzy Contour Tree is generated. There are no
requirements to the selection, between one and all time steps can be selected.

As a special case of the multi-selection, the periodic selection (Figure 4.8b) assists
the selection of periodic time steps. By providing the period, each selection is
repeated for all cells with the given period. To easier detect periodic occurrences
of branches in the data, markers that indicate the selected period are shown above
the time selector while the periodic selection is activated. Periodic selection allows
for example to select results for a single month over all available years as shown in
Figure 4.12a on page 64.

Manipulating the Selection. In addition to the different selection modes, a given
selection of time steps can be manipulated using the buttons under the time selector
(Figure 4.6 on page 59). The left and right buttons shift the selection one time step
to the left and right respectively. The spacing between multiple selected time steps
remains the same if the overall time interval allows it. If however a selected time
step would be shifted before the start or after the end of the data set, the selection
remains untouched while other selected time steps are still manipulated, resulting
in changed spacing.

4.4 |Interaction

61

442

62

The play button triggers an automated shifting of the selection to the right every
second until either a selected time step reaches the end of the data set or the pause
button is clicked.

Interaction with Time-Varying Fuzzy Contour Tree

Branch highlighting in the Fuzzy Contour Tree is unchanged. Hovering a branch
highlights this branch and all its bundled edges and ancestors while all other
branches are grayed out. At the same time, member highlighting is triggered. Here,
time steps in the time selector that contain the highlighted branch are highlighted in
the branch color, all others are grayed out. In contrast to the previous version, this
highlighting not only takes place for time steps that are contained in the presented
Fuzzy Contour Tree, but for all available time steps. Like this, navigating the data
set and finding patterns in branch occurrences is facilitated. See Figure 4.12a on
page 64 for an example.

——
Ad

Fig. 4.9.: Tree highlighting: Left: hovering selected time steps highlights the complete
individual contour tree. Right: for time steps that are not part of the current
Fuzzy Contour Tree, only contained branches are highlighted without indication
of specific nodes and saddles.

Hovering a time step in the time selector triggers tree highlighting of the corre-
sponding individual contour tree in the Fuzzy Contour Tree. For selected time steps,
the complete contour tree is contained in the shown Fuzzy Contour Tree and the
individual contour tree with its nodes and saddles is indicated with thin lines. If the
hovered time step is not selected and thus not part of the current sub-alignment, it
is likely that some branches of the corresponding contour tree are missing in the
current Fuzzy Contour Tree. Nonetheless, branches that are present are highlighted
without marking specific saddles and leaves. See Figure 4.9 for both cases. The
introduction of tree highlighting for time steps that are not selected allows relating
these time steps to the current Fuzzy Contour Tree.

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

4.5 Results

To illustrate possible applications and the usefulness of our approach, we applied
time-varying Fuzzy Contour Trees to different real world examples.

451 Sealce

12.5 x10%km?
12
11,5
1
10,5
10

VAL XL DS PSP 3 &
FEFEEFS T

P FL I D
P A RN
Fig. 4.10.: Annual mean sea ice extent in the arctic with indication of the analyzed time

span [174].

ground ll

Fig. 4.11.: Arctic sea ice extent in January (left) and August 1994 (right).

The sea ice data set describes arctic sea ice concentrations and is provided by the
National Snow and Ice Data Center [39]. The concentrations are given as tenths
of grid square area covered by ice. In addition, we set the value -1 for grid cells
that are not over sea. We applied time-varying Fuzzy Contour Trees to sea ice
concentrations from 1980 to 1995 and applied a mild smoothing filter to the data to
avoid non-binary contour trees. See Figure 4.10 for the mean arctic sea ice extent
per year between 1979 and 2020. Plots of the sea ice extent in January and August
1994 are given in Figure 4.11.

Containing only discrete values between -1 and 10, this data set poses the following
challenges:
1. Large plateaus with constant values result in contour trees with branches of
vanishing persistence. In this case, the alignment can not be executed using a
metric that relies on persistence: creating a new node in the alignment instead

4.5 Results 63

of matching two nodes is always the cheapest option with zero cost. Hence,
no matching is performed.

2. With saddles and extrema on discrete levels, finding a suitable layout for a
contour tree is a challenge since leaves tend to be at the same height as saddles
of other branches. This challenge aggravates for layouts of whole alignments.

Due to the flexibility of our system in back-end and front-end, the time-varying
contour tree framework can still deal with this data set: the volume metric and the
added overlap metric are possible choices that do not incorporate the persistence of
branches. Both provide good matching results despite the branches with vanishing
persistence. Optimized branch spacing tackles the challenge of discrete levels for
saddles and extrema by shifting the branches to obtain a clearly laid out Fuzzy
Contour Tree.

An exemplary application of time-varying contour trees is the analysis of the ongoing
decline of the arctic sea ice extent.

nmm BEE bR EYERERELER

Missing data

' H

(a) Periodic behavior in the sea ice data set. The marked branch is present only during winter
months.

(b) Vanishing branches over time show the yearly decreasing extent of the sea ice. Around 1994 the
sea ice extent peaked, which can be seen by the re-occurrence of the highlighted branch.

Fig. 4.12.: Insights using periodic selection: the periodic marker is set to 12 and the
volume metric was used.

64 Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

Figures 4.12a on the facing page and 4.12b on the preceding page show the time-
varying Fuzzy Contour Tree for the sea ice data set with branches of typical behavior
highlighted. Comparing the winter months of every selected year, the highlighted
branch in Figure 4.12a can be found and it is easy to separate months where it
occurs from months where it vanishes, and combine the respective branches in
groups. In Figure 4.12b, the selected branch also occurs only during winter months.
However, it vanishes in 1986, to re-occur in early 1994. Both of these behaviors,
periodical occurrence over the whole data set and periodical occurrence only in about
the first half of the considered time frame with potential re-occurrence between
1992 and 1994 can be seen in multiple branches.

The behavior in Figure 4.12a reflects the periodical increase of the sea ice during
winter months over the whole considered period. The highlighted minimum (ocean)
is only matched if it is surrounded by sufficiently large maxima (sea ice). Similarly,
branches sharing the behavior of the highlighted branch in Figure 4.12b represent
areas of the arctic sea that were frequently surrounded by sea ice during winters

around 1985 but not any more.

il

(a) March with optimized branch spacing (b) September with optimized branch spacing

N J1]
| |
=

i

b

(c) October with optimized branch spacing (d) March without optimized branch spacing

Fig. 4.13.: Sea ice extent during individual months. Similar structures are highlighted.
For March, the comparison between the Fuzzy Contour Tree with (a) and without
optimized branch spacing (d) is given.

Periodic selection allows the selection of individual months over all years. An
example for the comparison of individual months from 1980 to 84 is given in
Figure 4.13. Here, we used the overlap metric for the alignment and illustrate
the usefulness of optimized branch spacing in discrete data sets. The much higher

4.5 Results

65

45.2

4.5.3

66

complexity of the main structures in the Fuzzy Contour Tree during winter months
indicates the larger extent of sea ice in different ice floes. Although these floes are
interrupted by islands and potentially even free to move, complicating a matching
between time steps, similar structures are visible between the months, indicating
areas of the arctic ocean that are covered by ice around the whole year.

Convection Simulation

Ensemble members of the two-dimensional convection simulation described in Sec-
tion 3.4.3 on page 43 are also simulated over time. Material at rest is heated around
the pole, begins to rise, and forms a plume. This behavior is clearly reflected in the
time-varying Fuzzy Contour Trees in Figure 4.14a on the facing page. Advancing
the selected window step by step through the data provides an overview of the topo-
logical structure at individual time steps but also their connection and development:
Until time step 74, the pole is heating up. Then, the plume forms and more and
more temperature minima are enclosed by the formed plume. The time selector
color shows the degree values, reflecting the dynamic behavior of the plume towards
the end. I chose representative time steps and scaled them to highlight the raising
temperature; screenshots of a sliding window for the time steps between 5 and 12
are given in Figure 4.14b on the next page, showing appearance and vanishing of
branches when advancing the selected window time step by time step.

Cloud Top Pressure

While time-varying Fuzzy Contour Trees proved to be beneficial to analyze the
topological behavior of climate related time-dependent scalar fields, they inherit the
limitations of Fuzzy Contour Trees and contour trees. I previously gave an example
for the necessity of similar topological structures in Section 3.4.4 on page 47. By
implementing the overlap metric, this requirement was weakened. However, by
its nature as an augmented contour tree, the Fuzzy Contour Tree tends to become
cluttered with a large number of branches and leaves. As an example for this, I
apply time-varying Fuzzy Contour Trees to the cloud top pressure field of simulation
results for the weather over central Europe in Figure 4.15 on page 68 (subset of
the HD(CP)? data set [173]). Already contour trees for individual time steps of
this data set pose a visualization challenge because of their complexity. Although
the matching of different extrema over time works reliably, the resulting Fuzzy
Contour Tree is difficult to analyze, especially in a static image. Branch and member

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

13 25 32 37

45 74 |98

' R e =

(a) An expressive subset of time steps; the step number is given above the Fuzzy Contour Trees.

. L v

(b) Advancing time step by time step, the evolution of branches gets visible between time steps 5 and
12. An example is the marked branch: it starts with a low frequency, over time more and more
members accrue and the frequency rises, then it declines again.

Fig. 4.14.: Sliding window: advancing through the convection simulation result provides
a clear understanding of the ongoing processes. The given step numbers refer to
the center of the selected window of width 5.

4.5 Results

67

4.6

68

Fig. 4.15.: Limitations of time-varying Fuzzy Contour Trees: The time-varying Fuzzy
Contour Tree for the first 5 time steps of the cloud top pressure in the HD(CP)?
data set and an example for matched extrema. The branch corresponding to the
shown components is highlighted in the Fuzzy Contour Tree.

highlighting as well as optimized branch spacing prove beneficial also in this case
and structures are visible despite the high amount of nodes and branches.

Conclusion

Applying Fuzzy Contour Trees in the time-varying setting, we are able to provide a
holistic view on time-dependent scalar fields. We adapted back- and front-end to the
specific challenges of time-dependent data visualization, resulting in the time-varying
Fuzzy Contour Tree interface. This interface allows comparison, combination and
separation of arbitrary subsets of time steps based on their topological structure,
without requiring them to be consecutive.

In addition to further research opportunities on Fuzzy Contour Trees (Section 3.6 on
page 49), existing approaches to automatically detect application specific patterns or
features could be used to augment the time-varying Fuzzy Contour Tree. Including
this information could for example allow to highlight specific time steps in the time
slider or to propose subsets for comparison.

In summary, extending and applying Fuzzy Contour Trees to time-varying climate
data results in useful, coherent visualizations, providing a more general overview of
the data than common analysis approaches.

Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields

Uncertain Trajectories in
Vector Field Ensembles

(b) Detail of (a): counting the member streamlines that pass by each cell, the visitation map is created.

Fig. 5.1.: Visitation Maps show the transport behavior in two dimensional vector field
ensembles.

Moving from scalar to vector fields, field lines are an effective approach to visualize
the flow of fluid particles. A straight forward and easy to use generalization of these
techniques to ensembles are visitation maps, used to elucidate the transport behavior
that is described by an ensemble of two-dimensional vector fields (Figure 5.1). Using
this visualization technique, it is possible to compare the behavior of the whole
ensemble to the desired outcome and more likely paths to unlikely paths. It is
furthermore possible to identify common paths of ensemble members, combine
them and identify areas with similar flow behavior. Also, it is possible to separate

69

5.1

70

areas of possible impact from ones where impact is likely and ones where it is
impossible. Furthermore, outlier and areas with different flow behavior can be
separated.

The computation of visitation maps is in practice simple and, given an initial distribu-
tion, utilizes Monte Carlo sampling of trajectories across a vector field ensemble. For
large (or even medium sized) vector field ensembles, however, the naive approach
becomes prohibitively costly: every time the initial distribution is changed, the
computation restarts from scratch with high running times. Moreover, all ensemble
members are required for sampling. For large ensembles, storing all members is
often impossible and in situ analysis is required, forcing the user to fix the initial
distribution at data creation time, without the possibility to change it afterwards.
Hence, the straightforward approach is not adequate for interactive exploration of
uncertain vector fields.

Together with Prof.Dr. Christoph Garth, I developed Visitation Graphs as a novel
intermediate representation of the flow behavior in an ensemble of two-dimensional
vector fields and published it at iPMVM 2020 [*117]. Representing flow fields
as Visitation Graphs (treated in Section 5.2.1), the stored data is tailored to fast
generation of visitation maps from arbitrary initial distributions as explained in
Section 5.2.2. This enables the interactive exploration of vector field ensembles
where the naive approach fails. Furthermore, Visitation Graphs are a data reduction
method that outperforms downsampling in terms of information loss and that can
be calculated in situ (Section 5.2.3).

Visualization of Uncertain Vector Fields:
Background and Related Work

Originating in experimental visualization techniques and observations from nature,
field lines are an intuitive method to visualize fluid flow.

Streamlines are at every point tangential to the vector field, showing the direction
a massless particle will follow at any point in time. Mathematically,
they are defined by ‘é—f = ¥(t,x) with z(tgp) = z¢. An example for
streamlines is the visualization of a member in the two-dimensional
convection simulation in Figure 5.1 on the preceding page. Stream-
lines in the three-dimensional convection simulation are shown on
the right in Figure 3.24 on page 43.

Chapter 5 Uncertain Trajectories in Vector Field Ensembles

Streaklines can be observed experimentally by steadily injecting dye at a fixed
point in the fluid. Hence, they follow the locations of particles that
are seeded at a fixed point and then further influenced by the flow
over time. An example is given on the left in Figure 3.24 on page 43.

Pathlines are trajectories of individual fluid particles over time. For a static
vector field, they conform to streamlines.

Timelines are the lines formed by simultaneously moving particles that are
seeded in a seed curve at a previous instant in time.

All these field lines can be calculated forward or backward in time. Being the funda-
mental visualization tool for flow fields, a plethora of applications and variations of
field lines exist [131].

NNNN NN~

NNNN NN ——
AN NN .
NANNNN NSNS~
NNNNNNSNSN SN~~~
NANANNNNNSNSSN SN~
NAN N NN NN NN~ —
e

!

|
\
\
\
\
\
\
N\
AN

i
I
A
VA
A
A\
A\
A\
AN
A
AN
AN

~ SN N T
NN,
>
<
e

NN N NN NN NSNS N ———

LN Y

P NN

SRSy LY

ution

R

N T N
N N N

NNNNNNN

NANNNNN
B

A N O N O
N N N
B

Fig. 5.2.: The Euler method is a simple approach to approximate streamlines.

As results of differential equations, an exact calculation of field lines is impossible in
general. Thus, they are approximated using appropriate integration schemes, for ex-
ample from the family of Runge-Kutta methods for streamlines. The simplest method
in this family of iterative methods is the Euler method, illustrated in Figure 5.2. Step
by step, the vector at the current position is evaluated and traced for a user defined
time At. In the attained position, the vector is again evaluated and traced. This is
repeated until the streamline becomes local or reaches a maximum length. Thus, in
step n of the Euler scheme, the position z,, ;1 in the (time-dependent) vector field
v(t, z) is obtained as
Tt := T + At v(tn, xy).

Higher order Runge-Kutta methods improve the encountered approximation error of
O(At?) via insertion of additional sampling points compared to the Euler scheme.
Furthermore, adaptive methods vary At based on the underlying field.

Different approaches for the approximation of a longer particle trajectory by a
sequence of (certain) flow maps have been examined. Agranovsky et al. give a

5.1 Visualization of Uncertain Vector Fields: Background and Related
Work

71

72

two phase approach extracting a basis of known pathlines in situ and calculating
arbitrary integral curves post hoc from the extracted results [1]. I introduce two
similar phases, carrying the idea to approximate longer curves using smaller ones
over to visitation maps.

Uncertain Flow Visualization. Dealing with uncertain vector fields, and thus with
varying field lines for every member, many visualization approaches have been
proposed. Examples in vector field ensembles are: showing ensemble members
vanishing over time [45], enabling the user to compare single members to the
whole ensemble using glyphs [165] and summarizing ensemble members while
highlighting outliers and median in Contour/Curve Box Plots [133, 209]. The
topology of ensembles in two and three dimensions was determined by Otto et al.
[149, 150]. Hummel et al. gave a comparative visual analysis for ensembles of
time-varying vector fields using a Lagrangian framework [87]. A two dimensional
comparative visual analysis was presented by Jarema et al. [93].

Uncertainty arising from interpolation and prediction of missing measurements was
treated using tubes of varying size [21], glyphs, and parallel coordinates for magnetic
resonance spectroscopy data [59, 60], and flow radar glyphs for time-dependent
vector fields with uncertainty given as an interval [82].

Random fields are a stochastic uncertainty model. Following the approach of in
situ data reduction by summarizing statistics of certain properties, random fields
frequently arise. While in mathematics, the generalization of stochastic processes
to higher dimensions is called random field, different names have been used in the
visualization community up to now. Otto et al. speak of uncertain vector fields [150],
Ferstl et al. use the term ensemble of vector fields [61], Sevilla-Lara et al. speak of
distribution fields in computer vision [175] and Love et al. use the more general
term spatial multivalue data [122].

Visitation Maps. A highly intuitive and established generalization of streamlines to
vector field ensembles and random fields are visitation