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Abstract
With this thesis, I contribute to the research field of uncertainty visualization, con-
sidering parameter dependencies in multi valued fields and the uncertainty of
automated data analysis. Like uncertainty visualization in general, both of these
fields are becoming more and more important due to increasing computational
power, growing importance and availability of complex models and collected data,
and progress in artificial intelligence. I contribute in the following application areas:
Uncertain Topology of Scalar Field Ensembles. The generalization of topology-
based visualizations to multi valued data involves many challenges. An example is
the comparative visualization of multiple contour trees, complicated by the random
nature of prevalent contour tree layout algorithms. I present a novel approach for
the comparative visualization of contour trees –the Fuzzy Contour Tree.
Uncertain Topological Features in Time-Dependent Scalar Fields. Tracking fea-
tures in time-dependent scalar fields is an active field of research, where most
approaches rely on the comparison of consecutive time steps. I created a more holis-
tic visualization for time-varying scalar field topology by adapting Fuzzy Contour
Trees to the time-dependent setting.
Uncertain Trajectories in Vector Field Ensembles. Visitation maps are an intuitive
and well-known visualization of uncertain trajectories in vector field ensembles.
For large ensembles, visitation maps are not applicable, or only with extensive
time requirements. I developed Visitation Graphs, a new representation and data
reduction method for vector field ensembles that can be calculated in situ and is an
optimal basis for the efficient generation of visitation maps. This is accomplished by
bringing forward calculation times to the pre-processing.
Visually Supported Anomaly Detection in Cyber Security. Numerous cyber at-
tacks and the increasing complexity of networks and their protection necessitate
the application of automated data analysis in cyber security. Due to uncertainty in
automated anomaly detection, the results need to be communicated to analysts to
ensure appropriate reactions. I introduce a visualization system combining device
readings and anomaly detection results: the Security in Process System. To further
support analysts I developed an application agnostic framework that supports the
integration of knowledge assistance and applied it to the Security in Process System.
I present this Knowledge Rocks Framework, its application and the results of evalua-
tions for both, the original and the knowledge assisted Security in Process System.
For all presented systems, I provide implementation details, illustrations and appli-
cations.
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Kurzfassung

Mit dieser Dissertation leiste ich einen Beitrag im Forschungsbereich der Unsicher-
heitsvisualisierung, insbesondere bezüglich Parameterabhängigkeiten in Ensembles
und der Unsicherheit von automatischer Datenanalyse. Diese beiden Bereiche sind –
wie Unsicherheitsvisualisierung im Allgemeinen– von zunehmender Bedeutung auf
Grund steigender Rechenleistung, höherer Verfügbarkeit und Bedeutung komplexer
Modelle und gespeicherter Daten und Fortschritten in der künstlichen Intelligenz.
Ich trage in den folgenden Anwendungsbereichen bei:
Unsichere Topologie von Skalarfeld-Ensembles. Die Verallgemeinerung topologie-
basierter Visualisierungen auf Ensembles stellt viele Herausforderungen. Ein Beispiel
ist die vergleichende Visualisierung mehrerer Konturbäume die durch die zufällige
Natur vorherrschender Layout Algorithmen verkompliziert wird. Ich beschreibe
einen neuen Ansatz in diesem Bereich: Fuzzy Konturbäume.
Unsichere topologische Merkmale in zeitabhängigen Skalarfeldern. Das Verfol-
gen von Merkmalen zeitabhängiger Skalarfelder ist ein aktiver Forschungsbereich,
in dem die meisten Ansätze auf den Vergleich aufeinanderfolgender Zeitschritte
setzen. Durch die Anpassung von Fuzzy Konturbäumen an diese Felder habe ich eine
umfassendere Visualisierung von zeitabhängiger Skalarfeldtopologie entwickelt.
Unsichere Trajektorien in Vektorfeld-Ensembles. Visitation Maps sind eine in-
tuitive und verbreitete Visualisierung für unsichere Trajektorien in Vektorfeld-
Ensembles. Im Falle großer Ensembles sind sie allerdings nicht oder nur mit großem
Zeitaufwand anwendbar. Ich habe Visitation Graphs entwickelt, eine neue Darstel-
lung und Datenreduzierungsmethode für Vektorfeld-Ensembles, die in situ berechnet
werden kann und optimale Voraussetzungen für eine effiziente Visitation Map Erstel-
lung bietet, indem Berechnungszeiten in die Vorverarbeitung verschoben werden.
Visuell Unterstützte Anomalieerkennung in der Cybersicherheit. Häufige An-
griffe und die steigende Komplexität von Netzwerken und ihrer Absicherung machen
die Anwendung automatisierter Datenanalyse notwendig. Die Ergebnisse der au-
tomatisierten Anomalieerkennung unterliegen Unsicherheiten und müssen deshalb
an Analysten kommuniziert werden, um angemessene Reaktionen zu garantieren.
Ich stelle ein Visualisierungssystem vor, das Messwerte und Ergebnisse der Anoma-
lieerkennung kombiniert: das Security in Process System. Um Analysten weiterge-
hend zu unterstützen, habe ich ein anwendungsunabhängiges Framework entwickelt,
das die Integration von gespeichertem Wissen unterstützt und es auf das Security in
Process System angewandt. Ich stelle dieses Knowledge Rocks Framework und seine
Anwendung vor, sowie Ergebnisse von Nutzerstudien für das ursprüngliche und das
wissensunterstützte Security in Process System. Für alle vorgestellten Systeme gebe
ich Details bezüglich der Implementierung, Beispiele und Anwendungen.
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Introduction 1
„The universe, they said, depended for its

operation on the balance of four forces which
they identified as charm, persuasion, uncertainty
and bloody-mindedness.

— Sir Terence David John Pratchett
(1986)

Not only on the discworld, but also in our world, uncertainty is omnipresent,
especially when analyzing data. Uncertainty arises for example from multiple
executions of experiments with differing results or inaccuracy of measurements,
models and parameters. While uncertainty can not be prevented, it potentially has
a huge impact. From hurricane warnings to surgery planning, uncertainty in the
data can be a matter of life and death. Hence, the incorporation of uncertainty is an
active field of research in visualization with many challenges [27].

There are Many Different Kinds of Uncertainty. Depending on the source of the
uncertainty, whether it can be diminished or not, and how it can be quantified, there
are different types of uncertainty that might need different treatment in the visual-
ization – if they can be visualized at all. Distinguishing these uncertainty types and
handling uncertainty in the data is a confusing obstacle in uncertainty visualization.
Especially since each kind of uncertainty can be represented in different ways (as
probability distribution function, collection of different results, ...).

Uncertainty Propagates. Figuring out what kind of uncertainty is present in the
data and how to handle it, is –depending on the source of uncertainty and how exact
the visualization should be– only the beginning of an uncertainty propagation chain.
Every pass on the data can change and add uncertainty (Figure 1.1).
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Fig. 1.1.: xkcd: error bars [140].

Uncertainty Visualization Requires Space. As can be seen in Figure 1.1, visualizing
uncertainty variables adds (at least one) dimension to the visualization. Many visu-
alization approaches without incorporated uncertainty already exploit all available
visual properties. Adding uncertainty hence often requires substantial changes in the
visualization, like the generation of additional geometry or changing the encoding
of variables. Also, new communication channels like sound and animation might be
necessary to integrate the additional information. Furthermore, with an increase of
shown information, the risk of obfuscation and visual clutter increases, leading to
the fact that many uncertainty visualization approaches tend to draw the attention
to uncertain areas of the data, while in many approaches the more certain data
should be emphasized [82].

Experts are needed. Finally, for a rigorous representation of uncertainty, expertise
from statistics and potentially social sciences is required, which further complicates
the development of such systems.

In my thesis, I contribute to the research on uncertainty visualization in different
applications around comparative ensemble visualization. The visualized uncertainty
is present in multi valued data or given as scalar value. To provide accessible support
for analysts, I focus on high-level analysis, providing an overview of the data and
its uncertainty. I support intuitive exploration with clear visual metaphors, leaving
detailed uncertainty quantification and propagation to more specialized analysis
approaches.

In addition to their individual applications and strengths, all visualization approaches
I developed support users in comparing, combining and separating ensemble
members and data intervals. The concrete importance of these basic visualization
tasks in the respective applications is highlighted in the following chapters.

2 Chapter 1 Introduction



I describe visualization approaches considering parameter dependency in ensembles
of model realizations (Part I), and a visualization system that communicates the
uncertainty of automated data analysis with its enhancements (Part II).

Fuzzy Contour Trees. Fuzzy Contour Trees allow the combined visual-
ization and comparison of the topology of different ensemble members.
To do so, a mapping between the different topological structures and
a thought-out layout algorithm that considers all members at once are

required. This visualization contributes to the ongoing effort to make topology-based
visualization approaches available for ensembles. I present Fuzzy Contour Trees in
Chapter 3. Their adaption to time-varying scalar fields is introduced in Chapter 4.
There, specific features for the time-varying setting support typical analysis tasks
in time series analysis. As an adaption of an ensemble method, time-varying Fuzzy
Contour Trees provide a higher flexibility in analysis and a more holistic view on the
data than established approaches like for example feature tracking.

Visitation Graphs. I introduce Visitation Graphs to enable the applica-
tion of visitation maps to ensembles and random fields that prohibit
interactive runtimes using their naïve computation. Visitation Graphs
are a representation of a vector field ensemble that can be calculated in

situ and that provides an optimal basis for the interactive exploration of the vector
field using visitation maps. Applying Visitation Graphs provides a tradeoff between
generation time, calculation time for visitation maps, and accuracy. Using Visita-
tion Graphs as a compressed representation of the vector field ensemble, visitation
maps can be generated for ensembles that can not be entirely stored and hence
completely prohibit the application of visitation maps. I present Visitation Graphs in
Chapter 5.

The Security in Process System. Part II contains my work concerning
uncertainty of automated data analysis. Automated data analysis is in-
evitable when facing insufficient resources in terms of time and/or ana-
lysts. Especially in cyber security, the required reaction times often make

automated analysis inevitable. Yet, results of automated data analysis are uncertain
and need to be revised by analysts before triggering a reaction based on the analysis
results. To support this revision, we developed the Security in Process System.
Specialized to the application in operational technology networks, it communicates
sensor and actuator readings and the result of a new anomaly detection algorithm
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combined in spiral plots. I present the Security in Process System in Chapter 6. Since
triage analysis is a challenging task, especially when it is performed under time pres-
sure, further support for cyber security analysts using the Security in Process System
can improve their performance. To offer further support, we include knowledge
assistance in the system. Adding knowledge assistance to an existing visualization
system is a complex task and there are no generally applicable guidelines or frame-
works that support it. To fill this gap, we developed the Knowledge Rocks framework.
It provides a structure that, once implemented in a concrete application, provides
all features that are necessary for knowledge assistance. I present the Knowledge
Rocks Framework in Chapter 7 and its application in the Security in Process System
in Chapter 8. The user studies we performed for the Security in Process System in
its original and enhanced version are presented and compared in Chapter 9.

I conclude my thesis and summarize opportunities for future research in Chapter 10.
With this thesis I make the following contributions together with my collaborators:

The tree alignment of contour trees is a novelty. Using our heuristic al-
gorithm to quickly compute the alignment of multiple contour trees with
a problem-specific similarity metric gives this alignment process flexibility
and enhances it to multiple trees.

I introduce a novel layout algorithm for multiple contour trees, that uses both –
alignment and individual trees– to achieve a simultaneous, easy-to-interpret visu-
alization of differing topological structures. This is further supported by adjusted
interaction possibilities.
We enhance the back-end and front-end of the Fuzzy Contour Trees to adapt our
visualization to time-varying scalar fields. The result is a new, holistic visualization
of topological structures over time that is more flexible than common approaches
like feature tracking.

I define Visitation Graphs, a space saving presentation for large vector
field ensembles that is the optimal basis for visitation map calculation
and provides a trade off between generation time, calculation time and
accuracy. Visitation Graphs allow the interactive exploration of vector

field ensembles where naïvely generated visitation maps have immense generation
times or are not even available due to lacking information.
To ensure practicality, I provide details on the construction of Visitation Graphs and
present an algorithm to quickly approximate visitation maps from our newly defined
data structure.

4 Chapter 1 Introduction



I present the first system for triage analysis in operational technology
networks that combines sensor-data visualization and anomaly detection
visualization to allow the revision of automatically detected anomalies.

To incorporate knowledge in the Security in Process System, we developed the
Knowledge Rocks Framework, providing support for the enhancement of general
visualization systems to be knowledge assisted. This framework is derived from and
verified using an existing model for knowledge assisted visualization.
We enhance the Security in Process System using the Knowledge Rocks Framework
to become knowledge assisted, resulting in further support for triage analysis and
the possibility to compare different incidents and collaborate via the system.
We validate the original and the enhanced Security in Process System in detailed
user studies, and compare the results from both studies.

In addition, I apply every presented visualization system to different examples
(artificial and real-world) and provide details on analysis strategies and usage
scenarios. All systems provide different approaches to compare, combine and
separate results. They are highlighted in the respective Chapters.

5



Background: Uncertainty and
its Visualization

2
Uncertainty. A common classification for uncertainty is the distinction between
aleatory and epistemic uncertainty [104, 179]. From an application point of view,
an uncertainty is epistemic if there is a possibility to reduce them by improved
models or data acquisition; aleatory uncertainties on the other hand can not be
reduced: they are caused by the random nature of physical events and are modeled
by probability theory. In both cases, communicating the uncertainty is crucial to
provide the complete picture of the data, without the misleading impressions of
certainty. Hence, uncertainty visualization is an important topic and an active field
of research.

Uncertainty in data visualization does not only include the visualization of uncer-
tainties that are provided with the data: it can also be introduced in the course of
the visualization pipeline [27]. While these uncertainties are important to note, this
thesis deals with the visualization of uncertainty, not the uncertainty of visualiza-
tion.

Uncertainty information associated to data comes in different forms, corresponding
to its source. Possible forms and sources are:

• the description of the data as a random variate with a given probability
distribution, for example in random fields (see Chapter 5). These frequently
arise from in situ pre-processing when summarizing statistics of properties.

• multi valued data resulting from an ensemble of simulations, multiple mea-
surements or time-varying results (Part I),

• model uncertainty arising from imperfect models, including machine learning
approaches (Part II), and

• a known range of error originating for example from measuring inaccuracies.

An example for the last point is my work on virtual topography measurements with
Andrej Keksel [*101].
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In this work, I supported the matching of time series to be able to model measuring
inaccuracies for specific surface topography measuring instruments. This is possible
since these inaccuracies are aleatory and known. Applying the obtained transfer
functions to a topography, the result resembles the measurements of the correspond-
ing instrument, providing information on the practicality of the specific instrument
for the measurements at hand.

Like in this example, error ranges and data given as random variate typically
represent aleatory uncertainty. Multi valued data can be aleatory or epistemic: if it
results from multiple executions of the same experiment, the uncertainty is aleatory.
As a result of multiple simulation runs, the variety is likely to result from model
uncertainty or epistemic uncertainty of input parameters. Thus, the uncertainty of
the multi valued data is epistemic in this case.

Visualization. The importance of uncertainty communication and thus uncertainty
visualization has been recognized already in the mid 80s in geosciences [127].
Since then, uncertainty visualization has been an active field of research, gaining
importance with the increase of computational power allowing extensive data
generation.

On the one hand, uncertainty communication is important since it influences de-
cisions and confidence in the data [46]. Decisions that are made based on visu-
alizations can reach from simple design decisions to life-or-death decisions, for
example in medicine or concerning evacuations. Especially in fields with such a
crucial influence of uncertainty, supporting the user in reducing the uncertainty in
interplay with the visualization system is an important topic (e.g. [157]).

On the other hand, existing uncertainty visualization approaches need to be com-
pared and evaluated: uncertainty representations that are straight forward for
scientists might be misleading for laymen or create wrong impressions. For example
Padilla et al. found out that common visualizations of possible hurricane tracks lead
to both, overestimating and underestimating, the size of the hurricane depending
on the chosen visual encoding of the uncertainty [151].

Bonneau et al. give an overview of uncertainty visualization techniques [22] and
Potter et al. developed a taxonomy basing on the data and uncertainty dimension
[156]. More result-oriented, Gershon classified uncertainty visualization approaches
in intrinsic and extrinsic [66]; intrinsic uncertainty representations communicate
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the uncertainty via visual properties of the visualized objects, while extrinsic repre-
sentations are “stand alone” visualizations of the uncertainty using auxiliary objects,
for example error bars.

Examples for uncertainty visualization based on ensembles are: showing ensemble
members vanishing over time [45], enabling the user to compare single members
to the whole ensemble using glyphs [165] and summarizing ensemble members
while highlighting outliers and median in Contour/Curve Box Plots [133, 209]. The
topology of ensembles in two and three dimensions was determined by Otto et al. in
[150] and [149]. Hummel et al. gave a comparative visual analysis for ensembles of
time-varying vector fields using a Lagrangian framework [87]. A two dimensional
comparative visual analysis was presented by Jarema et al. in [93].

Uncertainty arising from interpolation and prediction of missing measurements
was treated using tubes of varying size [21], glyphs and parallel coordinates for
MR spectroscopy data [59, 60], flow radar glyphs for time-dependent vector fields
with uncertainty given as an interval [82], and using colormapping and line glyphs
for uncertain isosurfaces in geosciences [219]. Uncertain predicted multivariate
data was visualized by Berger et al. using parallel coordinates and scatter plots
[19]. Random fields were treated using fuzzy set theory and volume rendering on
trapezoidal possibility distribution [62], and by visualizing iso-surfaces in uncertain
scalar fields [153, 155]. An FTLE like method was presented by Schneider et al.
[166].

This thesis is concerned with parameter dependency in multi valued data and uncer-
tainties arising from automated data analysis in cyber security. In the following, I
present visualization systems that communicate uncertainties in different application
backgrounds within these two fields. For each application, specific related work is
discussed in the respective chapter.
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Due to growing computational ability, it has become straightforward to investigate
the effects of model and parameter uncertainty through ensemble simulation. Models
are realized multiple times with varying input parameters or settings; each result
is a member of the ensemble of realizations. An example for this is the weather
forecast: A 10% chance of rain is announced if 10% of the evaluated simulations are
predicting rain. Also non-virtual experiments are carried out multiple times to get
an idea about their uncertainty. An extreme example for this are the experiments
at the LHC at CERN: trying to resolve events that arise from particle collisions
with low probabilities, the uncertainty of the outcome is high. Thus, 1 billion
events per second are recorded over months, producing about one Petabyte of
data every second [64]. Since it is prohibitive to store this amount of data –or
even transmit it to the surface– in situ techniques are employed to analyze and
pre-process the data at generation time and store only reduced-size artifacts for
further inspection. Similarly, in situ techniques are applied in the virtual setting
when the size of the generated ensemble requires it or one wants to have insight
in the data behavior during generation. Instead of the raw data, images, videos,
or other reduced representations are stored. After potential in situ pre-processing,
the resulting ensembles are analyzed as a whole. Analyzing the similarities and
differences between individual ensemble members and sub-ensembles, detection of
outliers, as well as the whole ensemble’s development over time gives insights in
the dependency of the individual results from input parameters and time. All these
analysis tasks can be effectively supported by visualization.
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Uncertain Topology of Scalar
Field Ensembles

3

Fig. 3.1.: Fuzzy Contour Trees: Our new visualization of the uncertain topological struc-
ture of a scalar field ensemble.

Topology-based methods have a long tradition in the visualization of scalar fields.
Founded on mathematical principles, they provide an abstract representation of
scalar field structure. Among a variety of methods, the contour tree serves as the
well-understood basis for a plethora of techniques, ranging from the straightforward
generation of visualization images (e.g. [152]) to clever analysis user interfaces
(e.g. [206]).

As modeling and simulation of uncertainty are becoming increasingly prominent
aspects of computational science, however, it has proven challenging to adapt
topology-based visualization to the resulting novel data modalities. An example
for such a challenge is the contour tree visualization of ensemble data sets: the
randomized nature of prevalent contour tree layout techniques and their large
parameter spaces often result in strongly different representations for very similar
scalar fields. Thus, their direct comparison is not sensible.

On the other hand, the meaningful simultaneous visualization of ensemble con-
tour trees is very promising. The encoded topological features provide profound
information about the ensemble’s behavior. Representing this information in a
comprehensive, sensible manner, users are for example able to:
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Compare ensemble members to identify similarities and differences in their
topological structure. An example is the identification of scalar values
that induce topological changes in contours in some or all of the
ensemble members.

Combine ensemble members with common topological segmentation or thresh-
old values. Examples are the assessment of the ability of iso-contours
to represent the whole ensemble, or the question which critical points
occur in all members.

Separate groups of ensemble members with similar behavior and identify out-
liers. For example members that contain a specific branch can be
determined.

By analyzing the overall ensemble without loosing track of individual members,
parameter settings of the members can be related to their behavior.

In collaboration with Florian Wetzels, Dr. Jonas Lukasczyk, Prof.Dr. Gunther H. Weber
and Prof.Dr. Christoph Garth, I developed Fuzzy Contour Trees, the first visualization
system that allows the joint visualization of many contour trees. It was published
and presented at EuroVis 2020 [*120].

To generate a Fuzzy Contour Tree from multiple member contour trees, a matching
between them is required. Based on the application of tree alignments to contour
trees –developed by Florian Wetzels, Jonas Lukasczyk and Christoph Garth– we
identify common branches across multiple contour trees. Commonality is identified
through a semantically meaningful similarity metric that can be chosen freely,
providing a high flexibility of our approach. This back end of Fuzzy Contour Trees is
presented in the first part of this Chapter (Section 3.2).

Using the resulting alignment, I developed in collaboration with Christoph Garth
and Gunther H. Weber an algorithm to lay out common branches for all member
contour trees identically. Determining the layout of individual contour trees based
on the layout of their alignment (a super tree), we ensure that common branches
are rendered at a common position. Hence, superposition of the different member
contour trees is meaningful. With several additional layout improvements that I
developed together with Frederike Gartzky, the result yields a coherent, easy-to-
interpret representation of multiple contour trees of an ensemble at once. The layout
algorithm with its optimizations, interaction possibilities and challenges is presented
in Section 3.3. Linking between the Fuzzy Contour Tree and individual ensemble
members highlights their dependency
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Fig. 3.2.: In this three-dimensional scalar field rendering, colors indicate different spans
of isovalues. The level sets of specific isovalues are visible at color changes.

3.1 Review of Topology-Based Ensemble Visualization

3.1.1 Contour Trees

Contour lines have been used to visualize scalar fields for almost 500 years [136]
e.g. to depict lines of equal height on maps. The idea to draw lines and surfaces
along areas of constant values is mathematically defined as the visualization of level
sets.

Considering a scalar field s : M→ R defined over a manifold M ⊆ Rd, the level set
of for an isovalue c ∈ s(M) is given as

s−1(c) = {p ∈M|s(p) = c}.

An example for surfaces representing level sets is shown in Figure 3.2. The use of
transparency in this visualization allows to show the structure of the scalar field
inside the cube. However, isosurface visualization often suffers from occlusion since
level sets often include each other or overlap in their two-dimensional projection:
for example the behavior of the scalar field inside the blue ball at the center of
Figure 3.2 is not visible.

Contour trees (for functions on general, potentially non-flat spaces: reeb graphs)
visualize the evolution of connected components of the level sets (“contours”). Two
points x, y ∈ M with s(x) = s(y) are part of the same connected component if
there exists a continuous function p : [0, 1] → M with p[0] = x, p[1] = y and
∀z ∈ [0, 1] : s(p(z)) = s(x). That is x can be reached from y via a continuous path
that does not leave the level set.
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Fig. 3.3.: A contour tree representing the (simplified) topological structure of both given
height fields.

As the isovalue c changes, the connected components can appear, vanish, split or
merge. This evolution of connected components is tracked by the contour tree. As
an abstraction of the topological structure, the field corresponding to a contour
tree is not unique. An example for a contour tree with two corresponding height
fields is given in Figure 3.3. The height value in the contour tree corresponds to the
chosen isovalue. Each edge corresponds to one connected component. So, looking
at a specific isovalue c (corresponding to a certain height in the tree), the number
of edges represents the number of connected components of the level sets s−1(c).
Leaves in the contour tree represent emergence or disappearance of a connected
component and interior vertices represent merging and splitting.

Changes in the connected components of level sets only occur at critical points. This
fact can be used to define and select meaningful level sets [12]. Also, contour trees
have been used to define features of interest [26] or provide user interfaces [31, 102,
207]. By pruning contour trees, topological simplification of the corresponding scalar
field is achieved [31, 43] and two scalar fields can be compared by direct comparison
of their contour trees [167]. Generalizations of contour trees to multidimensional
data have been presented by Carr and Duke [32].

For further reading, especially about the efficient computation of reeb graphs, see for
example the work by Doraiswamy et al., Carr et al. and Hajij et al. [33, 48, 76].

3.1.2 Visualization of Contour Trees

In contrast to general tree visualization, contour tree layouts are required to fulfill
different requirements. Edges in contour trees represent connected components
of level sets and thus depend on isovalues. Hence, in a contour tree visualization,
the y-coordinates of both their ends are fixed. In addition, further prerequisites are
imposed by requirements to consistency and pruning. As a result, common tree or
graph layout algorithms are not applicable to contour trees.
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Fig. 3.4.: Different branch decomposition and layout options for the contour tree in
Figure 3.3 on the facing page. Branches are colored in grey levels.

Heine et al. provide a detailed overview over layout strategies for contour trees and
propose a new layout method [80]. As they point out, the center piece of contour
tree layout strategies is the branch decomposition (Figure 3.4). The unrooted contour
tree is decomposed in branches with parent/child relations using a suitable criterion.
Often times, this criterion is the edge persistence, that is the difference between the
highest and the lowest isovalue reached by the edge; this results in the longest edge
being the main branch of the contour tree.

To minimize edge crossings in the contour tree layout, common layout strategies rely
to a certain extent on randomization since finding an optimal layout is a NP-hard
problem. An example is the orthogonal layout strategy proposed by Heine et al. for
crossing minimization [80]. It consists of four phases:

In the first phase, the layout problem is simplified. After the branch decomposi-
tion, branches that can be drawn without any edge crossing are merged in branch
groups.

In the following permutation phase, the branch groups are randomly permuted and
the algorithm tries to find optimal horizontal positions (in terms of a minimum
weighted number of edge crossings) using a random walk and simulated annealing:
each branch gets assigned a random vertical slot in the layout. In each step, a branch
group is re-inserted at a random slot and the resulting order of branch groups is
rated. If the new order is rated better than the previous ordering, it is kept. Else, if
the rating of the new order deteriorates by ∆, the new order is kept with probability
exp(− i∆

τ ) with i the number of iteration and τ a user defined parameter. The best
ordering is stored and the algorithm terminates if after a given maximum number of
iterations no further improvements have been found.

The order phase extends the ordering of branch groups to an ordering of branches
using the silhouette idea of the Reingold-Tilford layout on a directed acyclic graph
[160], derived from the contour tree. The final horizontal positions are then assigned
in the position phase similar to the position phase of dot [65], considering the vertical
extent of branches and possible overlaps of vertical slots.
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While the randomization of branch positions allows to find good layouts without
calculating all possibilities, it implicates that two layouts of similar contour trees –or
even the same one– are possibly very different. Hence, comparing contour trees is
impossible using such layout strategies.

3.1.3 Topology-Based Ensemble Visualization

Applying topology-based visualization to multiple scalar fields at once has several
major use cases. In ensemble analysis, an understanding of commonalities and
differences between ensemble members is sought [203], while the study of time-
dependent scalar fields mostly aims to identify feature evolution over time [26].
In both cases, an important problem is to establish feature correspondence by
topological means. A common approach is to use branches or sub-trees of contour
trees to characterize regions that are then examined for correspondence using
overlap measures; however, this does not take the contour tree structure into
account. An example is the comparison of two scalar fields based on contours
obtained from the contour tree by Schneider et al. [167]. Similarly, Lukasczyk et al.
uses merge tree segmentations to compute the correlation between features [125].
Space-filling structures in turbulent flows are tracked by Schnorr et al. using the
volume overlap of three-dimensional Morse-Smale cells, which serve as input to a
maximum-weight, maximal matching [170].

Instead of considering the spatial overlap of topologically-characterized regions of
scalar fields, an other class of methods focuses primarily on correspondence directly
from a graph-centric perspective. For example, Saikia et al. [164] compare all
sub-trees of two merge trees against each other to find repeating structures, and
Thomas and Natarajan [193] adopt a similar approach to identify symmetries in
scalar fields.

The visualization of scalar field ensembles using contour trees as visual represen-
tation involves the comparison of trees as well as the visualization of uncertain
tree structure. For example the information in, and differences between, multiple
trees was visualized by Schulz et al. through an edge-bundled visualization of
multiple samples from a probabilistic graph model [171]. Location and sub-tree
structure uncertainty of two different graphs were visualized by Lee et al. [110],
and Shu et al. discuss EnsembleGraphs to visualize hierarchical clustering across an
ensemble [177].

Contour trees of uncertain scalar fields were considered by Kraus [106]. Here,
two contour trees of morphologically filtered versions of an uncertain volume data
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set represent the range of uncertainty, visualized by combining both trees in one
image. Günther et al. [74] also use two realizations of an uncertain scalar field that
represent estimations of the support of the probability density function of the input
data. They characterize mandatory critical points in the given range of realizations
and provide mandatory merge and split trees.

Contour tree-based uncertainty visualization as proposed by Wu et al. [214] includes
a layout algorithm for contour trees. Similar to the idea by Heine et al. [80], they
assign slots to branches. The same authors visualize the mean contour tree obtained
from the pointwise ensemble mean, with uncertainty added from contour differences
between individual members. While this contour tree summarizes information about
the whole ensemble, there is no link between the mean contour tree and the member
contour trees. Their individual information is lost in the ensemble visualization and
outliers are hidden since they are “overruled” by the other members.

To keep the individual information of member contour trees and still be able to
create a single visualization for the ensemble, the identification of nodes reflecting
similar areas in the member fields is necessary. In the following, I describe the
major classes of techniques that are used for distance measurement and merging of
graph-based topological descriptors (e.g. contour trees).

The general problem of finding a distance between (rooted) trees arises in different
fields of computer science, such as computational biology [176], AI [105] and code
compilation [83]. Various types of edit distances, based on defining a cost function
for edit operations in trees, have been applied to solve this problem, with the tree
edit distance [191] being the most general and complex approach. An overview is
given by Bille [20]. Tree alignments, a computationally cheaper alternative, were
introduced by Jiang et al. [96].

Recently, different types of edit distances have been applied to merge trees and other
graph based descriptors representing the topology of a scalar field. Saikia et al. [164]
applied the 1-degree edit distance to branch decomposition trees of merge trees
to find self similarities in scalar fields. Sridharamurthy et al. used the constrained
edit distance [221] on merge trees for feature tracking in time-dependent data
[183]. Beketayev et al. [16] propose a method to compare merge trees based on
the minimum edit distance between all possible branch decompositions of the two
compared trees. Rieck et al. use the edit distance for ordered trees on persistence
hierarchies [161]. Moreover, many metrics other than edit distances have been
proposed for merge trees, often obtained by restricting a metric on the more general
Reeb graph [13, 14, 34, 138, 178]. Yan et al. introduced a metric between labeled
merge trees, allowing the definition of an average of several merge trees [216].
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Contour trees pose more challenges than merge trees when searching distance
metrics or matching algorithms. They are in general more complex data structures
with potentially high variance for small changes in the considered scalar field.
As recently shown by Hristov et al., also branch decomposition poses additional
challenges for contour trees [85]. Applying their method to contour trees, Saikia et
al. [164] describe similar problems.

Our work on Fuzzy Contour Trees is located in this gap concerning the application of
edit distances and general merging of contour trees, and the application of contour
trees to ensembles without loosing the information of individual members. We apply
alignments to contour trees; apart from being easier to compute, they exhibit some
properties which make them a good fit for our purpose: The distance between single
contour trees is not of interest but a matching of their nodes is required to achieve
a common layout. To do so, the resulting matching needs to incorporate all paths
and features of the single contour trees. This makes the edit distance the preferred
approach for our purpose in terms of the tree alignment, resulting in a super-tree
with the required properties. Those properties are explained in Section 3.2 as well
as our method to apply the alignment to an ensemble of more than two unrooted,
unordered contour trees.

3.2 Tree Alignment of Contour Trees

We aim to devise a combined representation of multiple contour trees that respects
and leverages similarities among the trees and the scalar fields they represent, to
facilitate common, topology-based analytical tasks. A central problem of this is the
identification of such similarities. This can be accomplished –on a tree level– by
a matching between the nodes and arcs of all individual contour trees, such that
matched nodes and arcs correspond to similar structures in the scalar fields. A good
way to find such a matching is using tree edit distances, which induce a mapping of
nodes in the compared trees [20]. Like this, the trees become minimally different
w.r.t. edit distance.

In brief, edit distance between two labeled trees (that is the tree nodes have a label
identifying a matching between the nodes of both trees) measures the minimum
number of operations required to transform one tree into the other. Typically these
operations are:

inserting a node in one tree that does exist in the other tree,

deleting a node in one tree that does not exist in the other tree and
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relabeling a node.

Operations can carry arbitrary cost, and a cost-minimal sequence of edit operations
is sought. An edit sequence S for two trees T1 and T2 induces a mapping of a subset
of their vertices MS ⊂ V (T1)× V (T2) where for all (v1, w1), (v2, w2) ∈MS

• v1 = v2 if and only if w1 = w2, and

• v1 is an ancestor of v2 if and only if w1 is an ancestor of w2.

Given two rooted trees T1 and T2 for which an ordering is specified for the children
of each vertex (ordered trees), the edit distance δ(T1, T2) can be computed in time
O(|T1| · |T2| · |L1| · |L2|) using dynamic programming, where L1 and L2 are the depths
of the trees [191]. If the two rooted Trees are unordered, the problem of computing
the value of δ(T1, T2) is known to be NP-hard [20].

Contour trees are unordered, unrooted trees, thus the general edit distance is too
costly for our purpose. However, many restricted variants of the edit distance have
been introduced [20], which can be computed on unrooted trees and at lower
cost. From these, we utilize tree alignments and the corresponding tree alignment
distance.

A tree alignment A of trees T1, . . . , Tn is a super-tree of the aligned trees, i.e. it
contains each aligned tree as a sub-tree. In general, A is not unique and can be
computed from each individual tree through sequences of insert operations and
node relabelings. A minimal tree alignment minimizes a cost function over the edit
sequences that yield A from each Ti, thus intuitively providing a “small” alignment
that captures the similarity between the individual trees.

In comparison to general edit mappings, whose computation is NP-hard, minimal
alignments can be found in quadratic time in the number of nodes for (arbitrarily
rooted) contour trees. Furthermore, an important property towards a joint layout
of contour trees is the path property: all paths in the individual trees map to paths
in the super-tree. A detailed description and comparison of these concepts can be
found in the survey by Bille [20].

Fig. 3.5.: Differences between alignment and edit distance: the intuitive mapping (left)
can not be achieved by the alignment but it requires an edit distance mapping.
The minimal alignment (center) induces the mapping on the right.
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3.2.1 Minimal Contour Tree Alignment

An alignment of two trees T1 and T2 is obtained by first inserting nodes labeled
with a blank symbol λ into T1 and T2, making them isomorphic. Let T ′1, T

′
2 be the

resulting trees and Talign be the unlabeled tree isomorphic to both. Labeling a node
v ∈ V (A) with l(v) := (l(v1), l(v2)), where v1 and v2 are the nodes in T ′1 and T ′2
corresponding to v, and l is the labeling, gives the alignment A.

The alignment label l(v) represents an edit operation, and is associated with a cost
γ(l(v1), l(v2)), where γ is an arbitrary metric. The overall cost of A is then

γ(A) =
∑

v∈V (A)
γ(l(v)),

allowing to define the alignment distance as the minimal cost

δalign(T1, T2) = min{γ(A) | A is alignment for T1, T2}.

Each A minimizing γ(A) is a minimal tree alignment for the chosen metric.

The minimal alignment of trees corresponds to a restricted edit distance, where all
insertions are performed before all deletions. This yields the super-tree property,
and nodes labeled without λ represent the induced matching.

Differences between Alignment and Edit Distance. To illustrate the behavior of tree
alignments, I highlight a number of differences between tree alignments and edit
mappings. From an edit distance mapping between T1 and T2, one can construct a
tree of the mapped nodes in a natural way (following from the mapping properties).
This tree will always be a sub-tree of T1 and T2.

Given the cost function

γ(λ, l) = γ(l, λ) = 1,

γ(l1, l2) =

0 if l1 = l2

2 otherwise

the minimal alignment from T1 to T2 will be the smallest common super-tree, and
the sub-tree induced by the minimal edit sequence will be the largest common
sub-tree [20]. Therefore, alignment mappings are not able to match certain corre-
sponding structures; consider e.g. the alignment and edit mapping in Figure 3.5
on the previous page: on the left, an intuitive mapping is given that requires an
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edit distance mapping, as the lower gray node must be deleted as a parent of the
blue node and a new gray node must be inserted as parent of the red node. In an
alignment though, insertions must occur before deletions. Hence, the alignment
procedure will never result in this matching on the left. The less intuitive result of
the alignment is given at the center and on the right; matching the blue nodes is
impossible since it would result in a cycle.

However, the super-tree property provides substantial advantages. First, it allows
the construction of a heuristic for aligning more than two trees (cf. Section 3.2.2).
Furthermore, a super-tree of all contour trees contains all features (critical points)
of the original fields. In contrast, an edit mapping only induces a sub-tree. A further
important advantage of alignments is reduced computational complexity: for two
unordered trees with bounded degree, the alignment can be computed in time
O(|T1| · |T2|) in contrast to the NP-hard edit distance problem [20]. This assumption
is fulfilled for contour trees in most practical settings (e.g. in the strongly prevalent
piecewise linear case).

3.2.2 Alignment Heuristics

We extend the minimal alignments introduced above from two trees to n trees as
follows. Given n scalar fields, the alignment of the corresponding contour trees can
be used as a representation of the topology of the ensemble. In general, the problem
of aligning n trees is again known to be NP-hard, even for bounded degree or ordered
trees, since it is a generalization of the multiple sequence alignment [204]. Thus,
direct computation is not feasible. Furthermore, the alignment procedure requires
rooted trees, whereas contour trees are unrooted. To address both problems, we
adopt the following interlocking heuristics:

Sequential Alignment of Multiple Trees. Let A2 be the minimal alignment of T1 and
T2, and define Ak+1 as the minimal alignment of Tk+1 and Ak. The final matching
is the one induced by An.

In this manner, we construct an alignment of n trees sequentially. This alignment
will in general not be a minimal alignment. However, A2 contains all features of
T1 and T2. Aligning a third tree T3 which has features similar to T1 but not to T2,
with A2, the resulting alignment A3 will still match them, since the features are
present in A2 and T3. For example, consider the two trees in Figure 3.5 on page 21.
The blue and red nodes are swapped. If further trees with this swap are aligned,
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there will likely be two blue and two red nodes in the alignment. Our experiments
(cf. Section 3.4 on page 37) indicate that this heuristic works well in practice and is
cheap to compute.

v

v v w

w

v

Fig. 3.6.: Consistent root and path properties: (left to right) for a given alignment, a
different root is chosen and another tree is added to the alignment. This alignment
results in violation of the ancestor property for node v if the the root is switched
back.

Rooting Contour Trees. To align two unrooted contour trees, it appears possible to
minimize alignment over all possible choices of roots. For the sequential alignment,
this can however lead to problems; in Figure 3.6, the edit mapping property is
violated after aligning with respect to different roots. This problem does not arise
if the root of the alignment is kept consistent. Thus, in each step of the sequential
alignment, the alignment node corresponding to the previously chosen roots has to
be chosen as the root of the new alignment as well. In contrast, the root of Tk+1 can
be chosen freely to obtain an optimal result.

3.2.3 Cost Metrics

The cost of edit operations that induce the minimal alignment can be chosen as
an arbitrary metric, providing flexibility in steering minimal alignments towards
matching nodes that are semantically related. For example, nodes can be labeled
by scalar value, and the difference between the values of two nodes can be chosen
as cost. A similar construction, independent of the absolute scalar value, can be
obtained by labeling nodes in a rooted tree with the difference in scalar value to
their origin, i.e. with the persistence of the unique edge pointed to this node. Again,
the metric is the difference of the two matched leaves. One could also use the area
corresponding to this edge in the field, or the sum or product of several of these
quantities, depending on application needs. Following Sakia et al. [164], we call
the size of the edge segmentation volume, independent of the dimension, and the
product of volume and persistence metric the combined metric. In their use case,
the combined metric performed best. A purely combinatorial matching is possible
by defining fixed costs per edit operation type, but this appears less useful in the
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application scenarios we envision here, since we are aiming on topological similarity
of matched features and proper labeling of the resulting Fuzzy Contour Tree.

To be able to use an alignment as an input tree for the next alignment, a meaningful
way to combine labels of the form (l(v1), l(v2)) into a single label after each align-
ment step needs to be chosen. For example, for scalar value labels, the average of
l(v1) and l(v2) can be chosen as the new label. Similar constructions can be used for
the other examples discussed above.

Importantly, to preserve the semantics of the individual contour trees in an align-
ment, we penalize the matching of nodes of different critical point type (minimum,
maximum, saddle) by choosing prohibitively large cost for such relabelings. Hence,
we ensure that it is always cheaper to insert a new node than to match critical points
of different types.

3.2.4 Algorithm

Algorithm 1: Heuristic for minimal alignment of n contour trees
Let Amin be some alignment tree with infinite cost

foreach leaf r1 of T1 do
Let T r1

1 be T1 rooted in r1

A = T r1
1

for i = 2...n do
Let A′min be some alignment tree with infinite cost

foreach leaf ri of Ti do
Let T ri

i be Ti rooted in ri

A′ = align(A, T ri
i )

if c(A′) < c(A′min) then
A′min = A′

if c(A′min) < c(A) then
A = A′min

if c(A) < c(Amin) then
Amin = A

The overall algorithm to approximate the minimal alignment for n contour trees
T1, . . . , Tn with cost metric c is shown in Algorithm 1. Allowing arbitrary choices for
the cost metric, it is very flexible and can be adapted to the needs of a particular
application domain.
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The runtime of the above algorithm is in O(n2 · |Vmax|4) for n trees, where |Vmax|
is the number of nodes of the largest tree. Because this is still expensive for large
trees, and it is not sensible to lay out contour trees with hundreds of nodes, we apply
contour tree simplification (e.g [31]) before alignment. This results in very good
computation times for trees with several hundreds of nodes, as given in Table 3.1 on
page 38 for the examples discussed in Section 3.4.

The given algorithm is at heart a randomized algorithm; finding an ordering of trees
to ensure optimal alignment is a NP-hard problem. Thus, we randomly permute the
input ordering of trees, as is done in many other algorithms that would otherwise
have to employ exhaustive combinatorial search. In practice, to increase repeatability,
the random ordering is computed using a fixed chosen seed. In our experiments, we
have found that while alignments differ, the quality of the resulting layouts is largely
independent of the chosen seed. Figure 3.13 on page 35 shows layouts resulting
from two different seeds for the same set of contour trees.

3.2.5 Properties of the Contour Tree Alignment

!

Fig. 3.7.: The red inner node representing an extremum is turned into a leaf.

The output of our algorithm is an alignment of the n contour trees, where each Ti is
rooted in a chosen leaf, and all roots are matched to the root of the alignment. A
fulfills a set of properties that are important for the layout algorithm:

• A is a super-tree, therefore all inner nodes of the individual trees are matched
to inner nodes of the alignment and all leaves of the alignment represent
leaves of the individual trees.

• The alignment preserves the node type, i.e. the alignment nodes also have a
specific type (minimum, maximum or saddle).

• All paths in individual contour trees which start at the chosen root are matched
to sub-paths in the alignment (path property).

Some properties of the alignment complicate laying out the Fuzzy Contour Tree:

• In contrast to contour trees, an inner node of the alignment can be a minimum
or maximum. For visualization purposes, these inner extrema nodes can
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be turned into leaf nodes by attaching their children to their parent node.
(cf. Figure 3.7 on the preceding page and Section 3.3.1).

• Matched leaves from different contour trees are not necessarily connected to
a single matched saddle. However, the path property ensures that different
saddles will be either on the parent branch of the leaf in the alignment or in
its sub-tree.

• For a saddle node in the alignment, that matches saddle nodes from the
member trees, there is not necessarily a single leaf node matching leaves from
exactly the same member trees.

3.3 Fuzzy Contour Trees

Based on the alignment described in the previous section, we defined a layout
algorithm that allows an intuitive joint depiction of multiple contour trees in a
sensible manner –the Fuzzy Contour Tree.

In order to achieve a high recognition factor for the Fuzzy Contour Tree, we use the
well-established and often-used orthogonal layout [80] as a basis for our algorithm.
In this layout, branches are drawn as vertical lines. They are connected by saddles,
which are drawn as horizontal lines rather than points. Finding an orthogonal
layout for the alignment (and thus for all aligned contour trees) is done in analogy
to finding a layout for (single) contour trees. First, a branch decomposition is
recursively established, then the resulting branches are assigned horizontal positions,
with the vertical positions of the nodes given by their isovalues. Matched nodes in
the individual contour (sub-)trees of the alignment are assigned equal positions.
They are then combined, and further layout improvements for the resulting Fuzzy
Contour Tree are performed to further increase visual clarity. In the following, I
contrast our approach to the layout for single contour trees and present the layout
improvements in detail.

3.3.1 Branch Decomposition of the Alignment

A key ingredient in contour tree layout is the branch decomposition. To identify a
branch decomposition of a contour tree, first, a root and a main branch are selected.
From saddles in this main branch, further branches can be identified recursively until
the entire contour tree is decomposed. In case of a single contour tree, the leaf with
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minimum isovalue is chosen as root, and the main branch is chosen as the monotone
increasing path with maximal persistence starting in this root. Considering multiple
contour trees at a time, these properties may vary between individual contour trees.
Thus, the choice of root and main branch is more complicated.

The alignment provides a dedicated root node. This root is guaranteed to exist in
all individual contour trees and ensures the path property of the alignment (see
Section 3.2.2 on page 23 and Figure 3.6 on page 24). In the process of branch
decomposition, this root might turn out as the the leaf with maximal instead of
minimal isovalue in the main branch of individual contour trees. In this case, the
minimum of the main branch is considered as root.

Starting in the chosen root node, a main branch is chosen by considering both –
alignment and individual contour trees– as follows: paths in the alignment from the
root node to each leaf are initially considered as candidates for the main branch. Note
that paths that are monotone in one or more individual trees are not necessarily
monotone in the alignment, due to insertion of nodes and averaging of labels
(isovalues). Separately for increasing and decreasing directions, each candidate path
in the alignment is then considered in each individual tree, and counted if it exists
in this tree and is monotone, which gives its path frequency F . This frequency and
the path persistence P are then used to obtain a rating R for candidate paths.

R := P% · wpers + F% · wfreq where

P% := P · 100
Imax − Imin

and F% := F · 100
n

Here, P% is the percentage of the path persistence relative to the isovalue range
[Imin, Imax] of the alignment, F% is the percentage of the n contour trees that contain
the considered path, and wpers + wfreq = 1 are user-chosen weights for persistence
and frequency. These weights are further discussed in Section 3.3.4 on page 34.

Choosing the path with the highest rating R as the main branch and proceeding
recursively for each sub-branch (i.e. saddle) of the main branch yields a branch
decomposition of the alignment. A corner case occurs if no contour tree contains a
path from the currently considered saddle to any leaf. The frequency of the branch
is then considered zero, and the rating is based only on the path persistence in the
alignment.
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Separate layout Grouped layout

Bundled layout Bundled layout with optimized branch spacing

Fig. 3.8.: An illustration of the Fuzzy Contour Tree layout: Separate layout of multiple
contour trees yields a cluttered representation, while grouped and bundled layout
position aligned branches jointly. To better leverage vertical space, saddles can
be shifted using optimized branch spacing. All steps are treated in detail in the
following.

3.3.2 Layout Algorithm

After a branch decomposition for the alignment is established, many known layout
algorithms for contour trees could be employed. To obtain a suitable layout for the
Fuzzy Contour Tree representing the combination of all individual contour trees,
additional information from the individual trees needs to be taken into account when
optimizing layout clarity, e.g. by minimizing crossings. To do so, we incorporate
the isovalues of nodes from individual contour trees into the layout, resulting in
value ranges (as opposed to individual isovalues) for leaves and saddles. Further
influences of individual contour trees on the bundled layout are described after its
introduction.

As a basic layout strategy, we adapt the (partly randomized) method proposed by
Heine et al. in their permutation phase [80]: we attempt to find an ordering of
branch groups that minimizes a weighted number of edge crossings. Instead of
branch persistence, we weight crossing by the rating R obtained during branch
decomposition. Thus, branches that have been chosen as main branches for the
entire alignment or sub-trees are less likely to be crossed in the resulting ordering.
The optimum ordering is sought as proposed by Heine et al. using a combination
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of random walk and simulated annealing. While this approach does not ensure an
optimal layout, it gives very good results in practice (cf. Section 3.4 on page 37).
Furthermore, the algorithm’s non-deterministic nature may yield different layouts
given similar or identical input; Yet, since it is applied to the alignment, a super-tree
of all member contour trees, the derived layouts for the individual contour trees
always match. Calculating randomized layouts of the individual contour trees, this
is not the case.

In our setting, all branches are considered as individual branch groups. This is a
natural choice, since the decomposition of the alignment into branch groups, taking
multiple isovalues per node into account, tends to result in small branch groups,
often containing only a single branch. The resulting order of branches is translated
directly into horizontal coordinates for the layout, such that each branch occupies
one vertical slice of the overall layout.

Grouped Layout. The horizontal coordinates
obtained in the alignment layout can be propa-
gated to the individual contour trees via the node
matching from the alignment. Thus, across all
contour trees, matched nodes are assigned iden-
tical horizontal positions and keep the vertical
position according to the isovalue. Superimpos-
ing all individual contour trees with the assigned

mutual layout results in the grouped layout.

While this layout presents a significant improvement over separate layout of individ-
ual trees with superposition (“separate layout” in Figure 3.8 on the previous page),
visual clutter is still an issue and can be disruptive.

Bundled Layout. To reduce visual clutter, we
further abstract the grouped layout through edge
bundling. On the basis of the grouped layout,
the bundled layout bundles all edges of a branch
group and assigns an opacity to edges and nodes
based on the rating R of the branch. Branch
edges are bundled close to their origin to the
mean vertical position of the group’s saddles. To

further simplify the representation, we only draw the edges of a branch group origi-
nating at the respective maximum and minimum saddle isovalues. The inbetween
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area is filled with appropriate opacity to accentuate its affiliation. Challenges arising
in this visualization are discussed in Section 3.3.5 on page 35.

Optimized Vertical Branch Spacing. In many
cases, ensemble members will have a similar
topological structure, resulting in a strong re-
semblance of their contour trees in the common
layout. This may result in clustered branch ori-
gins in the Fuzzy Contour Tree. To disambiguate
in these cases, we propose to shift branches ver-
tically to better leverage available vertical space.
Although in this case, the vertical node position

no longer indicates the isovalue, we preserve the vertical ordering of branches.
Furthermore, the saddle isovalue ranges of two branches left and right of the parent
branch overlap only if they do so in the original tree and, given sufficient vertical
space, the vertical distribution of branches on each parent branch adhere to the
original distribution as much as possible.

adapt to 
original layout

bundled layout

stack branches

saddle

add 
space

bounding

optimized branch spacing

Step 1

Step 2 Step 3

Fig. 3.9.: Branch spacing optimization: (bottom left to right) Step 1 all saddles are
stacked. Step 2 Spaces based on bounding boxes are added. Step 3 The branch
distribution is adapted to the original layout.

The shifting procedure is performed across all sub-trees of the Fuzzy Contour Tree
in a bottom-up manner, beginning with the branches farthest from the chosen main
branch. Available space on a sub-tree’s main branch is filled in three steps, with
different types of spaces considered in each step (cf. Figure 3.9 for an illustration):
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Step 1 All saddles are stacked in correct order without space in between.
Overlaps of saddles left and right of the main branch are maintained.
The occupied vertical space is marked as “saddle”.

Step 2 Based on the bounding box of the sub-tree’s main branch, “bounding”
spaces are added above and below every “saddle” space, if the current
space on the respective side of the main branch is smaller than the
bounding box (plus a user defined threshold).

Step 3 The original space above and below every child branch on the sub-
tree’s main branch is compared to the current spacing. Space is added
to obtain a distribution of the child branches similar to the original
layout.

After each step, the amount of occupied vertical space relative to the available height
is checked. If it exceeds the available height, the spaces added in the previous
step are “compressed” by scaling all vertical heights down such that the maximum
available height kept; all further steps are omitted. If this occurs after the first step,
this means that an overlap of the isovalue ranges cannot be avoided. After step 2, it
implies the possibility of overlaps between main branches of sub-trees.

This shifting can be applied to the grouped layout and the bundled layout alike and
significantly disambiguates overlapping structures and reduces clutter, as can be
seen for example in Figure 3.8 on page 29.

a

b

c

d

Fig. 3.10.: The Fuzzy Contour Tree user interface: a the Fuzzy Contour Tree combines
all member contour trees in one visualization. b The member grid reflects
all members via their number. c The component viewer highlights selected
components in the fuzzy contour tree in the individual member fields, and d the
weights slider allows to choose the weights for persistence and frequency that
are used during the layout procedure.
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3.3.3 Interaction

I implemented the interactive visualization (including the layout algorithm discussed
above) in a lightweight JavaScript prototype based on the d3.js library [24]. An
overview of the resulting user interface is given in Figure 3.10 on the preceding page.
It allows fully fluid interaction for all data sets we consider in Section 3.4. The Fuzzy
Contour Tree (a) is the main part of the visualization. The ensemble members whose
contour trees are shown in the Fuzzy Contour Tree are represented by numbered
boxes on top in the member grid (b). This grid provides the link from the Fuzzy
Contour Trees to individual members. The component viewer (c) provides the link
between arcs in the Fuzzy Contour Tree and corresponding regions in the member
fields. Using the weights slider (d), users can adapt the weights of persistence and
frequency that are used in the layout procedure.

contains
saddle 1

contains 
saddle 2

Fig. 3.11.: Branch highlighting (left): the selected branch and all ancestors are high-
lighted with all connected saddles. Member highlighting (right): each member
containing an edge in the selected bundle is highlighted in the associated color.

We developed branch highlighting (left in Figure 3.11): hovering a branch in the
Fuzzy Contour Tree (a in Figure 3.10 on the preceding page) highlights this branch
and all its bundled edges and ancestors while all other branches are grayed out. The
selection can be fixed and released by clicking. For a fixed selection, the ancestors
of selected branches are not highlighted to clarify which branches are selected
(see Figure 3.12b on the following page).

At the top of the UI, the member grid (b in Figure 3.10 on the preceding page)
provides information on individual contour trees. Figure 3.12a on the following
page shows tree highlighting: selecting the index of an individual contour tree
in the member grid highlights this particular contour tree. To clarify membership
of each branch, highlighting a branch in the Fuzzy Contour Tree also triggers
member highlighting in the member grid (on the right in Figure 3.11). All members
that contain one of the highlighted edges are colored correspondingly in the member
grid. The right part of Figure 3.11 shows member highlighting for a branch with two
associated saddles. In this case, each saddle is assigned a different color to clarify
the structure of the member contour trees. The highlighted branch is colored in pink,
and so is the saddle it is most frequently connected to in the member contour trees.
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This saddle is present in members 2 and 4. The second saddle is colored orange and
present only in member 3.

(a) Tree highlighting of a member contour tree in
the three-dimensional convection simulation.

(b) Component highlighting: Marked branches
are highlighted in the ensemble fields.

Fig. 3.12.: Tree and component highlighting in the convection simulation in bundled lay-
out (left: three dimensions, right: two dimensions, optimized branch spacing).

It is furthermore sensible to link the Fuzzy Contour Tree to a spatial representation
of each of the individual analyzed scalar fields. Like this, a better understanding
of the contour tree components is offered, and users are able to check the quality
of the matching; if one component from the Fuzzy Contour Tree represents very
different areas in the individual members, the alignment might be of poor quality.
This link is implemented in the component viewer (c in Figure 3.10 on page 32) as
component highlighting for the two-dimensional case, as shown in Figure 3.12b.
While there is no similar functionality implemented for three-dimensional data sets,
volume rendering or isosurface visualization can be applied in these cases.

The weights slider (d in Figure 3.10 on page 32) reflects the ratio between weights
for persistence wpers and frequency wfreq summing up to 1.

3.3.4 Layout Parameters

Several parameters influence the layout process. The temperature function of the
simulated annealing and its parameters are adopted from the layout algorithm by
Heine et al. [80] and are discussed there. Additional parameters in our approach
are the branch rating R, used to obtain the alignment branch decomposition by
using it to weight crossings during the simulated annealing. As described above, this
rating depends on the weights wpers and wfreq, weighting the influence of the path
persistence P% and the frequency F%.
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Fig. 3.13.: Different layouts and weights: (from left to right) layout with wfreq = 1,
another randomization with wfreq = 1, the same randomization as in the center,
with wpers = 1. In all trees, the same two nodes are highlighted. Ranking
branches in the branch decomposition based on frequency, the main branch
is contained in all ensemble members and does not span the whole isovalue
range of the Fuzzy Contour Tree. The high frequency is visible in the branch
opacity. Ranking based on persistence on the other hand, the main branch is
the one with highest persistence, spanning the whole isorange, but it is only
contained in a single member contour tree (visible via its low opacity in the left
two layouts, where it is not the main branch). This makes the layouts resulting
from persistence weight difficult to interpret and predict. In the right picture
the opacity is chosen due to persistence since it reflects the branch rating.

While it appears natural to consider persistence of branches in the rating, our
experiments showed that the most intuitive results are obtained with wpers = 0.
Node values in the alignment differ from those in the individual contour trees,
hence the persistence in the alignment cannot be considered an intuitive stability
measure, making its impact difficult to interpret. An example for this effect is given
in Figure 3.13.

3.3.5 Challenges

Several specific challenges arise when visualizing a Fuzzy Contour Tree that are not
present in the visualization of individual contour trees.

?

Fig. 3.14.: Challenge in the bundled layout: in the grouped layout (left), the pink branch
is connected to its parent. In the bundled layout (middle), this connection
becomes lost; the branch needs to be extended (right).

Bundling edges, children that connect to a saddle at an isovalue that is not covered
by the bundled branch need to be connected to their parent’s bracket. An example
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is given in Figure 3.14 on the previous page: in grouped layout, the pink child is
connected to its parent branch. Multiple saddles of the parent branch are at higher
isovalues than the parent branch this child is connected to. Hence, in bundled layout
with the bundled edge at the mean value of all saddle isovalues, the child is no
longer connected to its parent (center of Figure 3.14 on the preceding page). On
the right, this missing connection was fixed by an extended edge.

(a) Partial extension of an edge to connect
it to its parent.

(b) Maximum below the bundled edge: the
marked maximum on the left would be
drawn outside the bundled edge. Hence,
the edge is shifted and the corner is not
rounded.

(c) Bundled edges: To avoid ambiguity, the
bracket has a user defined minimum
plateau width (red) and a bundle-width
(blue) that determines the width of the
junction.

(d) Parents at different sides of their child:
this is avoided in the layout procedure by
putting both parents on the same side.

Fig. 3.15.: Different challenges and their solutions in the bundled layout.

A special case of extended edges occurs, when only a part of the child’s bracket
is not connected to the parent. If this case can not be avoided by shifting the
parent’s bundled edge, only some of the bundled edges are extended, as shown in
Figure 3.15a. In this case, the filling of the bracket is omitted.

In case of children that are connected to the parent’s bracket instead of the edge, it
needs to be assured that these children are not perceived as being connected to the
parent branch of their parent. For example in Figure 3.14 on the preceding page the
pink branch needs to be clearly visualized as child of the purple branch, not of the
blue branch. This is achieved using the bracket of a minimum thickness. The distance
of the bundling point to the origin consists of plateau width and a bundle width.
Both are illustrated in Figure 3.15c and can be customized. In addition, branch
highlighting not only highlights the hovered branch, but all its parent branches. This
further clarifies the parent-child relation.

In the alignment, it can occur that multiple different saddles appear as the origin
of a single branch. In this case, the opacity of branches is determined by the path
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occurring in the largest number of individual contour trees, and for each origin
minimum and maximum branch are visible. Furthermore, every origin is assigned
an individual color for connecting edges. Hence, the existence of multiple origins is
emphasized when the affected edge is highlighted, and also in member highlighting,
cf. Figure 3.11 on page 33 for an example. When highlighting individual trees, only
the edge to the origin occurring in the tree is highlighted. Using the information
of individual contour trees, it is ensured in the layout process that all parents are
located at the same side of the child branch to avoid far stretched connections to
parents like in Figure 3.15d on the preceding page.

To obtain a more pleasing visualization, corners of edges are rounded. In some cases
however, this is not feasible: If the isovalues of leaves are too close to the saddle’s
isovalue, the corner needs to be sharp to ensure that no leaf needs to be drawn on
a rounded edge; see the purple branch in Figure 3.15c on the facing page for an
example. The same situation occurs if the isovalue of a child’s saddle is too close to
the isovalue of its parent’s saddle.

The metric used in the alignment process ensures that extrema are only matched to
extrema of the same type. Nevertheless, the range of aligned extrema can be large,
such that individual extrema might lie above or below the mean value of the edge’s
saddle values, resulting in extrema that would be drawn outside the bundled edge.
See Figure 3.15b on the preceding page for an example of this situation. Since the
type of matched extrema is unique, the lowest respectively highest matched saddle
is always below (for maxima) or above (for minima) the lowest maximum or highest
minimum. Hence, the bundled edge can always be shifted towards extrema that
would be drawn outside the edge, to avoid this situation.

3.4 Results

Using our approach, visualizing contour trees of scalar field ensembles is straight
forward: from each ensemble member, the contour tree is extracted. This allows
optional pre-processing of the data to obtain meaningful contour trees such as noise
removal or contour tree simplification for each individual member tree – all available
research on contour tree creation can be used to improve the Fuzzy Contour Tree.
Afterwards, the alignment is computed and the Fuzzy Contour Tree is visualized
using the layout strategies and interactions discussed in the previous section are
applied.
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The application to several analytical and real-world examples in two and three
dimensions are illustrated in this section together with the exemplary solution of the
visualization tasks to compare, combine and separate ensemble members. Running
times for a sequential implementation of the alignment algorithm, formulated as a
C++ TTK [194] filter, and general data set properties, are given in Table 3.1. All
times were obtained on a standard workstation with an Intel Core i7-7700 and 16GB
of RAM. Contour trees were computed and –if sensible– persistence-simplified using
TTK.

Data set Size n |Vmax| |A| talign [s]

outlier/scattered peaks 128×128 16 20 28 0.06
convection 2D 128×256 23 32 62 0.15
convection 3D 642×128 10 60 144 1.10
viscous fingers 642×45 15 48 128 0.83

Tab. 3.1.: Properties and runtimes of the example data sets: the ensembles contain n
members; |Vmax| and |A| denote maximal contour tree size (after simplification)
and alignment size. talign denotes the alignment computation time in seconds.

3.4.1 Analytical Ensemble with Outlier

Fig. 3.16.: Ensemble members of the outlier ensemble: the highlighted outlier has two
minima and maxima instead of three maxima and one minimum.

To demonstrate the usefulness of Fuzzy Contour Trees and give a straightforward
example that illustrates both alignment and layout, we created an analytical two-
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3 maxima

1 minimum

2nd minimum 
in the outlier

Fig. 3.17.: Fuzzy Contour Tree of the outlier ensemble: structures with high frequency
are clearly visible as well as the structure of the outlier.

dimensional data set with simple structure shown in Figure 3.16 on the preceding
page: Each of the 16 ensemble members contains a small local maximum in the
center and 4 local extrema of varying height around the center peak. In 15 members
these extrema are three maxima and one minimum, in one further (outlier) member
there are two minima and two maxima. Figure 3.17 shows the Fuzzy Contour
Tree for this data set, computed using the persistence metric from Section 3.2 on
page 20.

Comparing the different ensemble members using the Fuzzy Contour Tree is straight-
forward: using the bundled layout, the branches with high frequency are easily
determined by their high opacity. Also, the existence of three maxima and one mini-
mum in most ensemble members is clearly apparent, as are the isovalues inducing
topological changes.

Fig. 3.18.: The differing structure of the outlier in the outlier ensemble is emphasized us-
ing tree highlighting: (Left) A typical member is highlighted. Its branches follow
branches with maximal frequency. (Right) The dissimilarity of the structure of
the outlier is clearly visible.
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Fig. 3.19.: Member highlighting in the outlier ensemble of a branch with low frequency
(top) and a branch with high frequency (bottom) clearly shows which ensemble
member is the outlier. The colors correspond to the chosen minimum and
maximum in Figures 3.17 and 3.18 on the preceding page.

Fig. 3.20.: Component highlighting: selected branches shared by the members in Fig-
ure 3.18 on the previous page are highlighted in the ensemble members. Repro-
duced from [*120].

Combining and identifying the members that share the structure with three maxima
and one minimum is possible: Topological structures contained in every member of
the ensemble are given by the branches that are contained in the typical member and
the outlier in Figure 3.18 on the preceding page; this can be seen by their opacity
in Figure 3.17 on the previous page and using member highlighting (Figure 3.19).
As expected, two maxima and one minimum are part of the common structure of
the whole ensemble, as well as four small, linked branches at the vertical center of
the tree, that correspond to the four corners of the domain. This can be seen using
component highlighting (Figure 3.20). Note that the small maximum in the center
of each ensemble member is not visible as a common structure in this case, but as
multiple (nearly) horizontal branches. This results from the super-tree property
and a chosen metric for the alignment creation that favors high persistence (cf.
Section 3.2.1 on page 22 and Figure 3.5 on page 21).

Separation of the outlier can be accomplished using member highlighting on the
single minimum with low frequency on the left of the tree (Figure 3.19). The
structure of the outlier in comparison to the other ensemble members is even more
apparent when using tree highlighting on the corresponding trees (Figure 3.18
on the previous page). To further investigate the branches that the outlier shares
with the rest of the ensemble, these edges can be investigated using component
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highlighting: In Figure 3.20 on the facing page, the components corresponding to
the shared branches (including the main branch) are highlighted for the outlier and
the individual contour tree shown in Figure 3.18 on page 39. Both scalar fields
behave similarly in the domain corners. In addition, the maximum of the outlier is
matched to different local maxima in the other members, thus explaining the high
variance in leaf isovalues in the main branch.

3.4.2 Scattered Peaks Ensemble

Fig. 3.21.: Ensemble members of the scattered peaks ensemble.

The scattered peaks ensemble shown in Figure 3.21 is of a similar structure as the
analytical example: all 16 members contain two maxima and two minima in addition
to a small peak at the center. The Fuzzy Contour Tree in Figure 3.22 on the next
page illustrates the behavior and limitations of the alignment.

As described above, other approaches typically use some sort of overlap measure to
map features defined by the contour tree segmentation onto each other. In contrast,
our method is independent of the position and area of matched arcs and nodes
(unless they are explicitly incorporated in the used metric). If multiple fields share
the same main features in a similar topological structure (i.e. their positions and
connections in the contour tree), but they are scattered differently over the domain,
our method can still find and match them. Naturally, this is only possible as long as
the overall topological structure provides a sufficient amount of similarity.
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Fig. 3.22.: The Fuzzy Contour Tree of the scattered peaks ensemble: the small peak in
the center of the domain is present in multiple, unmatched branches to allow
matching of the four main peaks.

In this example, the four extrema around the center are identified as the main
structure of the ensemble. Due to topological variance the small peaks in the center
can not be matched as long as the four main structures are matched. The alignment
thus contains multiple different branches representing the small peak. This can be
seen in Figure 3.22: the small peak occurs multiple times with a low frequency. This
allows the mapping of the two main maxima and the two main minima, even though
they are located in completely different areas in their corresponding fields.

The matched minima show some limits of our matching method: as explained in
Section 3.2.1 on page 22, there are limits to the matching possibilities based on
where certain features are positioned in the tree. If the intuitive match is not possible,
the alignment either splits the two features, resulting in two copies of the branch
in the resulting alignment, or it matches them to a completely different part of the
tree, with the latter typically being the less intuitive or desired option.

Both cases can be observed in Figure 3.22: big and small maxima in the ensemble are
matched according to their size, whereas the two sizes of minima are not seperated.
The small peak at the center can not be matched over the ensemble members either.
Here, the feature is split into several copies in the Fuzzy Contour Tree, each having
a low frequency.

In the Fuzzy Contour Tree, it is easy to find the four extrema that are matched by
all members in the alignment and the four corners of the domain when choosing
the branch opacity according to the number of occurrences of branches in member
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Fig. 3.23.: Member highlighting shows the presence of one small peak in every member.

contour trees (Figure 3.22 on the preceding page). The lower opacity and identical
height of the branches representing the small peak indicate the “splitting” of this
peak for different members. Using member highlighting, it is easy to see that such a
small peak is present in every ensemble member (Figure 3.23).

3.4.3 Convection Simulation

Fig. 3.24.: Exemplary members of the convection simulation in two (screenshot from
[121]) and three dimensions.

The convection simulation ensemble describes the flow around a heated pole in two
and three-dimensional domains; exemplary members are shown in Figure 3.24. The
ensemble was obtained by simulating the corresponding model with stochastically
perturbed initial and boundary conditions for velocity. Fluid that is initially at rest is
heated around the pole, begins to rise, and forms a plume. Scalar values describe
flow vorticity, and topological segmentation identifies vortices as the attracting basins
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Fig. 3.25.: Component highlighting shows the high quality of the matching of components
in the alignment of the two-dimensional convection simulation. In the Fuzzy
Contour Tree, branch spacing is optimized.

of maxima. The contour trees for both data sets were simplified using persistence,
with the same threshold for all members.

Two-Dimensional Ensemble. Using the combined cost metric (cf. Section 3.2 on
page 20) for the alignment of the ensemble contour trees results in a highly intuitive
matching, as can be verified in the component view: several highlighted components
across the ensemble members are shown in Figure 3.25. For example, the global
maxima at the center are matched onto each other over (almost) all members.
They are represented by the marked orange branch in the Fuzzy Contour Tree with
small variance in the matched saddles and leaves. Based on the intuitive matching,
it is easy to compare all ensemble members and identify common topological
structures.

Looking at the Fuzzy Contour Tree without optimized branch spacing in Figure 3.26
on the facing page, above the branching of the orange global maxima, several smaller
peaks occur on the left hand side of the Fuzzy Contour Tree (see Figure 3.26 on the
next page). In each member contour tree, zero to three of them occur. This can be
verified using tree highlighting, allowing to combine or separate members based
on the occurrences. Other examples for intuitively matched features are the (green)
minima left and right of the main maximum and the two maxima surrounding the
cylinder on the bottom. All of them are highlighted in the Figure.
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Fig. 3.26.: Tree highlighting: (left) tree number 3 only contains one maximum on top of
the Fuzzy Contour Tree while tree 8 contains three of them.

Three-Dimensional Ensemble. Also in the three-dimensional case, using the com-
bined cost metric for the alignment provides intuitive results (Figure 3.27 on the
following page). Comparison of the topological structure hence provides a clear
insight in common topological structures of the ensemble members: at the bottom,
only minima exist, then a layer of maxima occurs, followed by another area with
mainly maxima; these extrema indicate vortices of different rotational direction.
Whether this structure is present in all members can be checked using tree highlight-
ing, providing a common segmentation for the relevant members to combine them.
The single blue minimum (vortex) between the two layers of maxima separates one
ensemble member from all others. The number of this member can be determined
easily using member highlighting for the branch (Figure 3.28 on the next page).
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Fig. 3.27.: Common topological structures of the three-dimensional convection simu-
lation ensemble are clearly shown in the Fuzzy Contour Tree. All branches
occurring in at least 8 out of 10 members are highlighted.

Fig. 3.28.: Separation of members that contain singular structures is possible by member
highlighting in the Fuzzy Contour Tree of the three-dimesional convection
simulation.
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3.4.4 Viscous Fingering

Fig. 3.29.: Large differences between saddles and leaves in a single branch indicate the
matching of semantically unrelated branches for the viscous fingers ensemble.
Ranges for the orange branch are marked. Despite the low topological similarity
and the resulting high number of branches in the Fuzzy Contour Tree, bundling
and optimized branch spacing allows a comprehensible visualization.

To illustrate the behavior of our method in a setting where searching for topological
similarities in the member’s level sets is not meaningful, we consider the Fuzzy
Contour Tree for 15 members of the viscous fingering ensemble [172].

The viscous fingering ensemble was provided for the 2016 Scientific Visualization
Contest and contains 50 simulations of a viscous fingering process, where scalar
values represent salt concentration and topological segmentation identifies individual
fingers [123]. From the time-varying ensemble, three members and five consecutive
time steps are chosen, resulting in an ensemble of 15 contour trees. We follow
the approach of Lukasczyk et al. [123] to derive three-dimensional piecewise
linear scalar fields from the given point clouds. Because it is not clear when and
where viscous fingers appear and how they evolve, the variance between ensemble
members is very high in this data set. Hence, searching for topological similarities is
not meaningful.

As Figure 3.29 illustrates, the Fuzzy Contour Tree for the viscous fingering ensemble
is highly complex. The large variance in the scalar values of matched critical points
and the distinct overlap of the value ranges indicates that the matching is not
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semantically meaningful. While this example is beyond the limits of the Fuzzy
Contour Trees, it shows that an identification of non-meaningful alignments is
possible using only the Fuzzy Contour Tree.

3.5 Discussion

As shown in the previous section, Fuzzy Contour Trees are useful to visualize
topological structures across ensembles. Fundamentally, tree alignment, i.e. the
matching of individual contour tree nodes and arcs into a super-tree enables the
joint layout of all contour trees as a Fuzzy Contour Tree. However, it also imposes
some limits w.r.t. possible applications: often, overlap measures are used to map
features defined by the contour tree segmentation onto each other. In contrast,
our method can be independent of position and area. If the same major features
are shared among multiple members in a similar topological structure (regarding
relative positioning and connectivity in the contour tree), our approach is able to
find and match them, even if they are scattered differently over the domain without
overlap. Naturally, this is only possible as long as the overall topological structure
provides a sufficient amount of similarity for a meaningful matching.

If the structure of the different contour trees shows only small or no topological sim-
ilarity –as discussed in the viscous fingers example above– a minimal alignment will
exist (and is computed by our algorithm), but the matching will not be meaningful,
resulting in a non-meaningful visualization.

Up to now, the automatic identification of semantically meaningless alignments is not
possible with our method. While it would appear intuitive to consider the alignment
cost as a criterion and declare the alignment as unsuccessful if the cost is too high,
this cost is a heuristic that does not allow an absolute comparison. Especially it
can not be generalized across different data sets. However, identifying alignments
containing matchings of unrelated topological components can be achieved by a
user when comparing matched segments via component highlighting, and by finding
indications in the Fuzzy Contour Tree such as large differences in vertical coordinates
of saddles and leaves with large overlap.

Comparison to Similar Techniques. Compared to the combined visualization of
the Fuzzy Contour Tree, displaying multiple contour or merge trees side-by-side
provides much less support for the basic visualization tasks to combine, compare
and separate members. Independent visualization of individual contour trees results
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in different layout and scaling; thus, a sensible comparison of the contour trees,
especially of value ranges, is not feasible. Even if identical layout and scaling
could be obtained, there are strong limits on the visual scalability of a side-by-side
approach, and manual or “visual” matching of subtrees has to be performed by a
viewer, making the approach non-practical overall.

Favelier et al. [56] cluster ensemble members based on an embedding of their
persistence maps in Euclidean space. Using the notion of mandatory critical points,
confidence regions for each cluster are calculated and visualized. Athawale et al.
process a given two-dimensional Morse complex ensemble to obtain a probabilistic
map and a survival map, called summary maps for two-dimensional Morse complex
ensembles [10]. The probabilistic map shows the probabilistic classification of all
points in the plane based on the mandatory maximum their integral curve ascends to
over all ensemble members, while the survival map traces the behavior of gradient
flows under persistence simplification, where unchanged gradient flow direction
after a simplification step is counted as a survived step.

Both techniques are suited for ensembles of arbitrary size, but do not consider or
present single or combined contour trees. Furthermore, a Fuzzy Contour Tree incor-
porates information from individual contour trees into a single overall visualization,
and links this combined visualization back to the individual contour trees; this
possibility fundamentally enables separation and is not available in either summary
maps or the persistence atlas. While the persistence atlas provides combination of
the ensemble members, users are not provided sufficient information on individual
members to identify those with common segmentations, unless they are part of the
ensemble’s common topological denominator.

A further limitation of the two approaches is the fixed comparison metric. While the
persistence atlas relies on trend and location of critical points, and the approach by
Athawale et al. is based on the gradient field, our approach can incorporate these
parameters when matching nodes in the alignment, but it also can be based on the
topological structure or any other parameters. This flexibility makes Fuzzy Contour
Trees highly adaptable to domain-specific needs.

3.6 Conclusion

By combining tree alignments with a novel layout algorithm, we are able to combine
multiple contour trees of ensemble members in one Fuzzy Contour Tree. The
resulting visualization is semantically meaningful with minimal clutter. Together with
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its interaction possibilities, it allows the comparison, combination and separation
of ensemble members based on topological features. For future research, there are
several opportunities:

While the current algorithm works well in practice, the deterministic computation
of minimal tree alignments would enhance the stability of our approach. Also, the
automated identification of non-meaningful alignments would improve the confi-
dence in our technique in real-world use.

To further reduce clutter, different options could be considered: hiding nondescript
branches, additional abstraction, and detail on demand to name but a few. In
addition, instead of a purely additive comparison of contour trees, a subtractive
comparison just showing branches that are not contained in a set of members could
improve the overview.

Combining our approach with image databases [2] for in situ visualization is an
interesting opportunity. In addition, our progress in simultaneous layout of multiple
contour trees can be beneficial in other scenarios involving several contour trees; for
example regarding time-dependent scalar fields. This scenario is considered further
in the following Chapter 4.
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Uncertain Topological
Features in Time-Dependent
Scalar Fields

4

Simulations and recordings of physical events often result in series of records over
time. Analyzing this data is usually done feature based, by identifying regions with
specific patterns, which are then tracked between time steps. While these approaches
are helpful for specialized tasks, they are not suited to provide a general overview of
the complete data set due to their focus on specific features and the chronology.

Viewing time-dependent scalar fields as ensembles that depend on the parameter
“time”, their visualization using Fuzzy Contour Trees is straight forward. The result
provides a holistic view of the data set, giving a simultaneous overview of the
topological structure of the time-dependent data set.

Similar to the original Fuzzy Contour Tree, the time-varying Fuzzy Contour Tree gives
insight in the topological structure of multiple fields by simultaneous visualization
of the corresponding contour trees. In cooperation with Frederike Gartzky, Florian
Wetzels, Luisa Vollmer and Prof.Dr. Christoph Garth, I enhanced the Fuzzy Contour
Tree back- and front-end to adapt it to the specific needs of time-dependent data
analysis. Together with Frederike Gartzky and Luisa Vollmer, I treated the enhanced
Fuzzy Contour Tree layout and the improved member grid in their masters project.
Adaptions in the backend –the alignment procedure– were made by Florian Wetzels
and Christoph Garth. Time-varying Fuzzy Contour Trees were published at IEEE Vis
2021 [*118].
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Fig. 4.1.: The time-varying Fuzzy Contour Tree interface: Time selector on top and the
Fuzzy Contour Tree of the selected time steps.

In addition to the tasks that can be solved using Fuzzy Contour Trees, time-varying
Fuzzy Contour Trees allow the solution of tasks that are specific to the analysis of
time-dependent data. It is for example possible to

compare ensemble members to identify which topological features appear
periodically,

combine time steps with similar contours and track down where they change,
and to

separate time steps that contain a specific branch from others.

By defining sub-alignments that originate from the overall alignment —-that is the
alignment containing all time steps– the analysis of arbitrary sub sets is possible.
Hence, the time-dependent data set can be analyzed, and the basic visualization
tasks can be solved independent of the chronology.

Figure 4.1 shows the time-varying Fuzzy Contour Tree interface. Both, the time
selector on top and the Fuzzy Contour Tree below are enhanced versions of interface
components of the original Fuzzy Contour Tree interface, providing specialized
interaction with time-dependent data and ensuring a consistent visualization.

In the following, I describe the theoretical background of this visualization and
how to generate it. Changes in the back-end of Fuzzy Contour Trees are described
in Section 4.2, enhancements of the front-end in Sections 4.3 and 4.4. I imple-
mented the time-varying Fuzzy Contour Tree interface using D3, python and jupyter
notebook.

52 Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields



4.1 Background: Topology Visualization on
Time-Dependent Data

Like the generalization of topology-based methods to uncertainty, their generaliza-
tion to time varying data is a challenging task. An overview was given by Heine
et al. [79]. Recently, most contributions visualize the topology of time-dependent
two-dimensional vector fields using feature tracking for singularities and closed
streamlines [84, 192, 196]. But also for scalar fields there are considerable contribu-
tions:

Time-Dependent Contour Trees. A theoretical consideration of time-varying reeb
graphs for continuous space-time data was given by Edelsbrunner et al. [54]. Szym-
czak describes sub-domain aware contour trees and uses them to track accumulated
topological changes between slices of the data set. While the evolution of iso-surfaces
is plotted, the contour trees are not visualized [189].

Also different interactive tools for the analysis of time varying contour trees and
iso-contours have been developed: An interactive exploration tool for split/merge
and contour trees for different time steps was developed by Sohn et al. [182]; they
define a topology change graph and use it to navigate trees of individual time steps.
Bajaj et al. provide multiple calculated signature graphs on time-varying scalar fields.
With different interaction possibilities and the additional visualization of single
contour trees, they provide real-time exact quantification in the visualization of iso-
contours [11]. Kettner et al. take this idea further to non-decomposable topological
properties and higher dimensions in the Safari interface [102]. Lukasczyk et al.
define and visualize spatio-temporal Reeb graphs to extract and visualize trajectories
and relationships of hotspots [124]. Oesterling et al. show the evolution of extrema
in high-dimensional data by plotting a one-dimensional landscape profile for each
time step and connecting peaks to indicate critical events [148]. These events are
determined as structural changes in time-varying merge trees.

In contrast to time-varying Fuzzy Contour Trees, none of these approaches visualize
contour trees for more than a single time step or show the evolution of contour
trees.

Feature Tracking in Time-Dependent Data. Depending on the application, different
features are of interest. Their definition can be application driven, an example
are specific fingerprints of global climate patterns [99] or vortex definitions in
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flow visualization. Feature definitions can also be application agnostic, like the
topological structure that is visualized in time-varying Fuzzy Contour Trees.

Features have been identified and tracked over time in many different ways. The
components of interest can be superlevel sets [124, 182] or sub-domains with special
geometric and topological properties [25, 111, 169]. Tracking of the features is
often achieved using spatial overlap in time [18, 123, 169, 182]. Other approaches
base on topology by tracking critical points and using the persistence of topological
properties [25, 211]. Multiple features on different levels of interest are often
tracked in tracking graphs [124, 125, 182, 211]. These tracking graphs visualize the
evolution of features by keeping track of split and join events, as well as birth and
death of components.

In all these cases, determined features are tracked between subsequent time steps,
tracing these features over time. Our approach on the other hand does not aim to
track individual features, but provides an overview over topological features of the
complete data. Considering the topological structure of the complete time-dependent
data set and matching it, we provide a more holistic view on the data. Similarities
and differences of time steps can be determined flexibly and independent of their
adjacency.

4.2 Tree Alignment of Time-Varying Contour Trees

= mean value

(a) Previously, the scalar values of the align-
ment were calculated as mean value of all
aligned nodes.

=
(b) Now, they are set to the value of the lastly

aligned contour tree. Thus, this tree is
contained as a sub-tree in the alignment.

Fig. 4.2.: Different scalar value choices in the alignment.

Considering time-dependent scalar fields, the main focus lies on a consistent align-
ment over time. Hence, matching of nodes in consecutive time steps needs to be
consistent, prohibiting a randomized order of the input contour trees as it was
described for the original Fuzzy Contour Trees in Section 3.2.4 on page 25. Instead,
the contour trees are aligned sequentially. Furthermore, the matching of nodes in
consecutive time steps is prioritized by adapting the choice of values assigned to
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the alignment nodes. In the non-time-dependent setting, the values of the align-
ment are calculated as mean value of the aligned nodes (Section 3.2.3 on page 24).
Handling time-dependent fields, the values are set to the value of the lastly aligned
contour tree as illustrated in Figure 4.2 on the facing page. Thus, this contour
tree is effectively contained in the alignment as a sub-tree with its original scalar
values. Aligning consecutive time steps hence takes place in a similar setting to
matching adjacent trees and consistent matching of nodes in consecutive time steps
is enforced.

The alignment process is very flexible in its application due to the opportunity to
use different metrics. For time-varying Fuzzy Contour Trees, we implemented an
overlap metric in addition to the existing volume, persistence and combined metrics.
The overlap metric is defined as 1− J(A,B) where the Jaccard index of sample sets
A and B is defined as

J(A,B) = |A ∩B|
|A ∪B|

.

The contour tree alignment algorithm with overlap metric and optional matching
over time is available in the TTK development branch [194].

Considering the Fuzzy Contour Tree based on the overall alignment provides in-
formation on the frequency of topological structures over all time steps. With this
information, the tasks to compare, combine and separate records based on their
topological structure can be addressed regarding the structure of the complete data
set. However, analysis of time-dependent data often takes place on the level of indi-
vidual time steps instead of the whole data set. Comparing the topological structure
of arbitrary sub-sets is rendered possible by the calculation of the corresponding
sub-alignment.

Sub-alignments are calculated based on an existing overall alignment. To obtain
a sub-alignment, contour trees of time steps that are not selected are one by one
subtracted from the overall alignment by decrementing the frequency of all contained
nodes. For all nodes that are assigned frequency 0 in this process, all edges and
neighboring nodes are considered and connectivity of the result is restored. For less
than three edges that are connected to the deleted node, this is straight forward. To
connect the neighboring nodes in the case of three and more edges, we determine
parent - child relations of the neighboring nodes by determining paths from these
neighbors to the fixed alignment root (described in Section 3.2.2 on page 23) and
connect the nodes accordingly. The overall alignment as mutual base for all sub-
alignments ensures the consistent matching of nodes in different sub-alignments,
avoids problems with node identification between sub-alignments and guarantees a
consistent layout.
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The resulting sub-alignments are alignments of the chosen sub-set of contour trees.
They are likely to perform worse with respect to the chosen metric than the result of
the alignment algorithm heuristic. However, all we need sub-alignments to be is a
sub-tree of the overall alignment to which we can transfer the layout. Edges in the
alignment are treated as paths in the Fuzzy Contour Tree layout and actual edges
are always verified in the individual contour trees.

Employing the resulting time-varying Fuzzy Contour Tree, arbitrarily selected sub-
sets of the time steps can be compared, combined or separated.

4.3 Layout of Time-Varying Fuzzy Contour Trees

I

II

III

Fig. 4.3.: The trickle-down-layout of the time-varying Fuzzy Contour Tree: the layout
of the overall alignment (Level I) is applied to sub-alignments (Level II). Their
layout is propagated to the individual contour trees (Level III). The extent of the
sub-alignments in the alignment are marked with brackets. Sub-alignments and
trees are exemplary. (Reproduced from [*118])

As a basis for the time-varying Fuzzy Contour Trees, the layout of the overall
alignment is computed as described in Section 3.3.2 on page 29. As an alteration
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to this approach, the used cost function of the simulated annealing not only takes
scalar values of leaves and the persistence of branches into account, but also their
existence in time: only contemporary branches with overlapping bounding boxes
are treated as overlapping.

Similar to the layout of individual contour trees being based on the layout of
their alignment, the sub-alignments’ layout is based on the layout of the overall
alignment. This is possible since the sub-alignment is always a sub-graph of the
overall alignment. An illustration for this “trickle-down layout” is given in Figure 4.3
on the preceding page.

To obtain the layout of a sub-alignment from the overall alignment, first the branch
decomposition of the sub-alignment is computed. After that, the order of its branches
is set according to the horizontal order in the overall alignment.

The main branch is treated as a special case, since it contains two leaf nodes: the
designated root node, which is consistent in all sub-alignments, and a leaf node,
which can be different for different sub-alignments. Hence, the position of the main
branch could either be linked to the root node or the leaf node. To account for the
possible changes in its composition, we link the position of the main branch to the
leaf node, meaning the main branch will change position according to the position
of the leaf node. This not only facilitates spotting changes in the main branch, but
also keeping track of its composition.

(a) Optimized horizontal positions.
(b) Original horizontal positions with gaps,

the biggest one is highlighted.

Fig. 4.4.: Options for the horizontal positioning.

With the horizontal order of the branches set, there are two options as to how the
horizontal position of a branch is determined (Figure 4.4): the first option is to keep
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the horizontal position of a branch the same as it is in the overall alignment. This
supports keeping track of the individual branches over different sub-alignments,
since corresponding branches in the Fuzzy Contour Tree are always drawn at the
same position, which is particularly beneficial for animation. However, gaps can
occur if branches from the overall alignment are not present in the sub-alignment,
resulting in empty positions in the layout. The other option is to allow the horizontal
position of a branch to change to have a more uniform layout of the individual
Fuzzy Contour Tree while keeping the horizontal ordering of branches. In this
case, the distance between two neighboring branches in the Fuzzy Contour Tree of
every sub-alignment is constant. For each branch it is checked, if its vertical extent
overlaps any of the vertical extents of its direct left neighbors. If there is no overlap,
the branch is shifted left to the same position as these neighbors.

Fig. 4.5.: Two-colored main branch: To highlight changes in the main branch and support
tracking the development of branches, the extrema in the main branch are colored
differently and consistently.

After the layout for the sub-alignment is determined, leaves, saddles and branches are
transferred from the individual contour trees following paths in the sub-alignment,
as described for Fuzzy Contour Trees in Section 3.3.2 on page 29. In contrast to the
approach described there, coloring is now based on the overall alignment, not on the
alignment that is presented in the Fuzzy Contour Tree: we keep the coloring of the
leaf nodes consistent by assigning colors to every node id, independent of the node’s
occurrence in the current sub-alignment. As a further change in coloring, this is also
done for both leaves contained in the main branch independently, resulting in two
different leaf colors. The coloring stays consistent even if the main branch changes
between Fuzzy Contour Trees for different sub-alignments, making it possible to
trace the membership of different leaves in the main branch (see Figure 4.5).

Grouped and bundled layout with and without optimized branch spacing carry
their benefits over to the time-varying application of Fuzzy Contour Trees and are
available as described in Section 3.3.2 on page 29.
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4.4 Interaction

time stepsselected window

playpauseleft right

82 83 84 85 86

Fig. 4.6.: The time selector: The complete data set is shown with the selected time steps
highlighted. Coloring of the time steps is determined by different measures on the
sub-alignments to guide the data analyst to patterns or regions of interest. Left,
right, play and pause buttons allow the manipulation of the current selection.

Interaction possibilities with the Fuzzy Contour Tree aim on linking information
concerning individual contour trees with information on the overall behavior of the
considered ensemble (Section 3.3.3 on page 33). While branch and component
highlighting remain untouched from the specialization to time-dependent fields, the
member grid –enabling tree and member highlighting– was completely revised and
turned into the time selector (Figure 4.6). Focusing on enhancements of interactions,
component highlighting is not implemented in our prototype.

4.4.1 The Time Selector

The time selector is the enhanced version of the member grid for Fuzzy Contour
Trees, providing information on individual contour trees (compare b in Figure 3.10
on page 32). Instead of showing only time steps that are contained in the current
Fuzzy Contour Tree, every time step from the data set is represented by a colored
slice of the selector. Selected time steps are highlighted as boxes with the number of
the time step.

colored time step

members of sub-alignment

82 83 84 85 86

w/2w/2

Fig. 4.7.: Coloring based on sub-alignments: the color of time point 84 is determined
based on the sub-alignment of the window with 84 at the center. The window
size w is user defined.

Coloring Measures. To indicate areas of interest in the time selector, we colored
its time steps based on the sub-alignment containing the considered time step as
the center of a time window of given width (Figure 4.7). There are two options
for this coloring based on centrality measures that are calculated per node of a
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sub-alignment:
Showing measure values, the averaged sum of the chosen measure over all nodes of
the considered sub-alignment determines the color. Hence, the coloring of a time
step gives only information about this single time step and its surrounding window.
Showing sub-alignment distances, besides the sub-alignment of the window centered
at the current time step, the sub-alignment of the window centered at the subsequent
time step is considered. The chosen measure is determined for all nodes of both
sub-alignments. The color is determined via the averaged sum of the node-wise
difference, where the nodes are paired by the overall alignment. This coloring of a
time step provides information about the similarity or dissimilarity of the considered
sub-alignment and the subsequent one.

82 83 84 85 86

(a) Betweenness distance with window selection.

0 1 2 12 13 14 24 25 26 36 37 38 48 49 50 60 61 62 72 73 74 8584 86
(b) Betweenness values with periodic selection of length 12 active, cropped.

21 30 31 32 45 46 52

(c) Degree distance with multi selection.

25 26 27 28 29

(d) Degree values with window selection.

Fig. 4.8.: Time selector options: Selection modes and different coloring measures on the
convection simulation data set.

Showing the measure values is helpful to discover structures in the data, while
showing differences emphasizes changes between consecutive sub-alignments, high-
lighting time steps with potentially crucial changes. As possible measures, we
implemented two centrality measures: the degree centrality and the betweenness
centrality. In contrast to the graph edit distance, the centrality distance is based
on the node centrality and therefore takes a weighting of each node into account.
It was introduced by Roy et al. [163]. Application specific measures can be easily
incorporated to further specialize time-varying Fuzzy Contour Trees.

The degree centrality of a node is defined as the degree of the node, that is the
number of connected edges. It hence records edge insertions and deletions in the
sub-alignments.

The betweenness centrality of a node is the number of shortest paths going trough
it. Hence, using the betweenness centrality measure, the focus lies on structural
changes in the sub-alignments.

Examples for the different coloring options are given in Figure 4.8.
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Choosing Time Steps. Time steps can be selected via mouse click on the time
selector in three different modes: window selection, multi-selection and periodic
selection as a special case of multi-selection. See Figure 4.8 on the preceding page
for examples. Toggling window and multi-selection is done via double click on a
time step. Pressing control in multi-selection mode enters periodic selection.

In window selection (Figure 4.8a on the facing page), clicking on a time step selects
this time step as the center of a time window of user-defined size. These windows are
identical to the windows that are used by the coloring measures and pre-computed
results from the measure calculation are re-used. The window selection is beneficial
when a connected sub-interval of time steps is analyzed. Multiple adjacent selections
of “sliding windows” provide insight in the development of the topological structure
over time. New branches emerge with a low opacity, become more opaque as they
become established and eventually fade (or stay). See Figure 4.14 on page 67 for an
example.

The multi-selection (Figure 4.8c) is intended to provide deeper insight in individual
members and their differences and similarities. By clicking on different time steps,
they are added to the selection. The sub-alignment for the selected time steps is
calculated and the time-varying Fuzzy Contour Tree is generated. There are no
requirements to the selection, between one and all time steps can be selected.

As a special case of the multi-selection, the periodic selection (Figure 4.8b) assists
the selection of periodic time steps. By providing the period, each selection is
repeated for all cells with the given period. To easier detect periodic occurrences
of branches in the data, markers that indicate the selected period are shown above
the time selector while the periodic selection is activated. Periodic selection allows
for example to select results for a single month over all available years as shown in
Figure 4.12a on page 64.

Manipulating the Selection. In addition to the different selection modes, a given
selection of time steps can be manipulated using the buttons under the time selector
(Figure 4.6 on page 59). The left and right buttons shift the selection one time step
to the left and right respectively. The spacing between multiple selected time steps
remains the same if the overall time interval allows it. If however a selected time
step would be shifted before the start or after the end of the data set, the selection
remains untouched while other selected time steps are still manipulated, resulting
in changed spacing.
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The play button triggers an automated shifting of the selection to the right every
second until either a selected time step reaches the end of the data set or the pause
button is clicked.

4.4.2 Interaction with Time-Varying Fuzzy Contour Tree

Branch highlighting in the Fuzzy Contour Tree is unchanged. Hovering a branch
highlights this branch and all its bundled edges and ancestors while all other
branches are grayed out. At the same time, member highlighting is triggered. Here,
time steps in the time selector that contain the highlighted branch are highlighted in
the branch color, all others are grayed out. In contrast to the previous version, this
highlighting not only takes place for time steps that are contained in the presented
Fuzzy Contour Tree, but for all available time steps. Like this, navigating the data
set and finding patterns in branch occurrences is facilitated. See Figure 4.12a on
page 64 for an example.

49 50 51 52 53

Fig. 4.9.: Tree highlighting: Left: hovering selected time steps highlights the complete
individual contour tree. Right: for time steps that are not part of the current
Fuzzy Contour Tree, only contained branches are highlighted without indication
of specific nodes and saddles.

Hovering a time step in the time selector triggers tree highlighting of the corre-
sponding individual contour tree in the Fuzzy Contour Tree. For selected time steps,
the complete contour tree is contained in the shown Fuzzy Contour Tree and the
individual contour tree with its nodes and saddles is indicated with thin lines. If the
hovered time step is not selected and thus not part of the current sub-alignment, it
is likely that some branches of the corresponding contour tree are missing in the
current Fuzzy Contour Tree. Nonetheless, branches that are present are highlighted
without marking specific saddles and leaves. See Figure 4.9 for both cases. The
introduction of tree highlighting for time steps that are not selected allows relating
these time steps to the current Fuzzy Contour Tree.
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4.5 Results

To illustrate possible applications and the usefulness of our approach, we applied
time-varying Fuzzy Contour Trees to different real world examples.

4.5.1 Sea Ice
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Fig. 4.10.: Annual mean sea ice extent in the arctic with indication of the analyzed time
span [174].
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Fig. 4.11.: Arctic sea ice extent in January (left) and August 1994 (right).

The sea ice data set describes arctic sea ice concentrations and is provided by the
National Snow and Ice Data Center [39]. The concentrations are given as tenths
of grid square area covered by ice. In addition, we set the value -1 for grid cells
that are not over sea. We applied time-varying Fuzzy Contour Trees to sea ice
concentrations from 1980 to 1995 and applied a mild smoothing filter to the data to
avoid non-binary contour trees. See Figure 4.10 for the mean arctic sea ice extent
per year between 1979 and 2020. Plots of the sea ice extent in January and August
1994 are given in Figure 4.11.

Containing only discrete values between -1 and 10, this data set poses the following
challenges:

1. Large plateaus with constant values result in contour trees with branches of
vanishing persistence. In this case, the alignment can not be executed using a
metric that relies on persistence: creating a new node in the alignment instead
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of matching two nodes is always the cheapest option with zero cost. Hence,
no matching is performed.

2. With saddles and extrema on discrete levels, finding a suitable layout for a
contour tree is a challenge since leaves tend to be at the same height as saddles
of other branches. This challenge aggravates for layouts of whole alignments.

Due to the flexibility of our system in back-end and front-end, the time-varying
contour tree framework can still deal with this data set: the volume metric and the
added overlap metric are possible choices that do not incorporate the persistence of
branches. Both provide good matching results despite the branches with vanishing
persistence. Optimized branch spacing tackles the challenge of discrete levels for
saddles and extrema by shifting the branches to obtain a clearly laid out Fuzzy
Contour Tree.

An exemplary application of time-varying contour trees is the analysis of the ongoing
decline of the arctic sea ice extent.

13 14 15 16 17

Missing data

Jan

Feb

Mar

Jul

Aug

Sep

(a) Periodic behavior in the sea ice data set. The marked branch is present only during winter
months.

0 1 2 3 4

19941986

(b) Vanishing branches over time show the yearly decreasing extent of the sea ice. Around 1994 the
sea ice extent peaked, which can be seen by the re-occurrence of the highlighted branch.

Fig. 4.12.: Insights using periodic selection: the periodic marker is set to 12 and the
volume metric was used.

64 Chapter 4 Uncertain Topological Features in Time-Dependent Scalar Fields



Figures 4.12a on the facing page and 4.12b on the preceding page show the time-
varying Fuzzy Contour Tree for the sea ice data set with branches of typical behavior
highlighted. Comparing the winter months of every selected year, the highlighted
branch in Figure 4.12a can be found and it is easy to separate months where it
occurs from months where it vanishes, and combine the respective branches in
groups. In Figure 4.12b, the selected branch also occurs only during winter months.
However, it vanishes in 1986, to re-occur in early 1994. Both of these behaviors,
periodical occurrence over the whole data set and periodical occurrence only in about
the first half of the considered time frame with potential re-occurrence between
1992 and 1994 can be seen in multiple branches.

The behavior in Figure 4.12a reflects the periodical increase of the sea ice during
winter months over the whole considered period. The highlighted minimum (ocean)
is only matched if it is surrounded by sufficiently large maxima (sea ice). Similarly,
branches sharing the behavior of the highlighted branch in Figure 4.12b represent
areas of the arctic sea that were frequently surrounded by sea ice during winters
around 1985 but not any more.

(a) March with optimized branch spacing (b) September with optimized branch spacing

(c) October with optimized branch spacing (d) March without optimized branch spacing

Fig. 4.13.: Sea ice extent during individual months. Similar structures are highlighted.
For March, the comparison between the Fuzzy Contour Tree with (a) and without
optimized branch spacing (d) is given.

Periodic selection allows the selection of individual months over all years. An
example for the comparison of individual months from 1980 to 84 is given in
Figure 4.13. Here, we used the overlap metric for the alignment and illustrate
the usefulness of optimized branch spacing in discrete data sets. The much higher
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complexity of the main structures in the Fuzzy Contour Tree during winter months
indicates the larger extent of sea ice in different ice floes. Although these floes are
interrupted by islands and potentially even free to move, complicating a matching
between time steps, similar structures are visible between the months, indicating
areas of the arctic ocean that are covered by ice around the whole year.

4.5.2 Convection Simulation

Ensemble members of the two-dimensional convection simulation described in Sec-
tion 3.4.3 on page 43 are also simulated over time. Material at rest is heated around
the pole, begins to rise, and forms a plume. This behavior is clearly reflected in the
time-varying Fuzzy Contour Trees in Figure 4.14a on the facing page. Advancing
the selected window step by step through the data provides an overview of the topo-
logical structure at individual time steps but also their connection and development:
Until time step 74, the pole is heating up. Then, the plume forms and more and
more temperature minima are enclosed by the formed plume. The time selector
color shows the degree values, reflecting the dynamic behavior of the plume towards
the end. I chose representative time steps and scaled them to highlight the raising
temperature; screenshots of a sliding window for the time steps between 5 and 12
are given in Figure 4.14b on the next page, showing appearance and vanishing of
branches when advancing the selected window time step by time step.

4.5.3 Cloud Top Pressure

While time-varying Fuzzy Contour Trees proved to be beneficial to analyze the
topological behavior of climate related time-dependent scalar fields, they inherit the
limitations of Fuzzy Contour Trees and contour trees. I previously gave an example
for the necessity of similar topological structures in Section 3.4.4 on page 47. By
implementing the overlap metric, this requirement was weakened. However, by
its nature as an augmented contour tree, the Fuzzy Contour Tree tends to become
cluttered with a large number of branches and leaves. As an example for this, I
apply time-varying Fuzzy Contour Trees to the cloud top pressure field of simulation
results for the weather over central Europe in Figure 4.15 on page 68 (subset of
the HD(CP)2 data set [173]). Already contour trees for individual time steps of
this data set pose a visualization challenge because of their complexity. Although
the matching of different extrema over time works reliably, the resulting Fuzzy
Contour Tree is difficult to analyze, especially in a static image. Branch and member
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(a) An expressive subset of time steps; the step number is given above the Fuzzy Contour Trees.

(b) Advancing time step by time step, the evolution of branches gets visible between time steps 5 and
12. An example is the marked branch: it starts with a low frequency, over time more and more
members accrue and the frequency rises, then it declines again.

Fig. 4.14.: Sliding window: advancing through the convection simulation result provides
a clear understanding of the ongoing processes. The given step numbers refer to
the center of the selected window of width 5.
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Fig. 4.15.: Limitations of time-varying Fuzzy Contour Trees: The time-varying Fuzzy
Contour Tree for the first 5 time steps of the cloud top pressure in the HD(CP)2

data set and an example for matched extrema. The branch corresponding to the
shown components is highlighted in the Fuzzy Contour Tree.

highlighting as well as optimized branch spacing prove beneficial also in this case
and structures are visible despite the high amount of nodes and branches.

4.6 Conclusion

Applying Fuzzy Contour Trees in the time-varying setting, we are able to provide a
holistic view on time-dependent scalar fields. We adapted back- and front-end to the
specific challenges of time-dependent data visualization, resulting in the time-varying
Fuzzy Contour Tree interface. This interface allows comparison, combination and
separation of arbitrary subsets of time steps based on their topological structure,
without requiring them to be consecutive.

In addition to further research opportunities on Fuzzy Contour Trees (Section 3.6 on
page 49), existing approaches to automatically detect application specific patterns or
features could be used to augment the time-varying Fuzzy Contour Tree. Including
this information could for example allow to highlight specific time steps in the time
slider or to propose subsets for comparison.

In summary, extending and applying Fuzzy Contour Trees to time-varying climate
data results in useful, coherent visualizations, providing a more general overview of
the data than common analysis approaches.
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Uncertain Trajectories in
Vector Field Ensembles

5

(a) A specific streamline is integrated in all members. Center: superposition of all member streamlines.

´

(b) Detail of (a): counting the member streamlines that pass by each cell, the visitation map is created.

Fig. 5.1.: Visitation Maps show the transport behavior in two dimensional vector field
ensembles.

Moving from scalar to vector fields, field lines are an effective approach to visualize
the flow of fluid particles. A straight forward and easy to use generalization of these
techniques to ensembles are visitation maps, used to elucidate the transport behavior
that is described by an ensemble of two-dimensional vector fields (Figure 5.1). Using
this visualization technique, it is possible to compare the behavior of the whole
ensemble to the desired outcome and more likely paths to unlikely paths. It is
furthermore possible to identify common paths of ensemble members, combine
them and identify areas with similar flow behavior. Also, it is possible to separate
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areas of possible impact from ones where impact is likely and ones where it is
impossible. Furthermore, outlier and areas with different flow behavior can be
separated.

The computation of visitation maps is in practice simple and, given an initial distribu-
tion, utilizes Monte Carlo sampling of trajectories across a vector field ensemble. For
large (or even medium sized) vector field ensembles, however, the naïve approach
becomes prohibitively costly: every time the initial distribution is changed, the
computation restarts from scratch with high running times. Moreover, all ensemble
members are required for sampling. For large ensembles, storing all members is
often impossible and in situ analysis is required, forcing the user to fix the initial
distribution at data creation time, without the possibility to change it afterwards.
Hence, the straightforward approach is not adequate for interactive exploration of
uncertain vector fields.

Together with Prof.Dr. Christoph Garth, I developed Visitation Graphs as a novel
intermediate representation of the flow behavior in an ensemble of two-dimensional
vector fields and published it at iPMVM 2020 [*117]. Representing flow fields
as Visitation Graphs (treated in Section 5.2.1), the stored data is tailored to fast
generation of visitation maps from arbitrary initial distributions as explained in
Section 5.2.2. This enables the interactive exploration of vector field ensembles
where the naïve approach fails. Furthermore, Visitation Graphs are a data reduction
method that outperforms downsampling in terms of information loss and that can
be calculated in situ (Section 5.2.3).

5.1 Visualization of Uncertain Vector Fields:
Background and Related Work

Originating in experimental visualization techniques and observations from nature,
field lines are an intuitive method to visualize fluid flow.

Streamlines are at every point tangential to the vector field, showing the direction
a massless particle will follow at any point in time. Mathematically,
they are defined by dx

dt = ~v(t, x) with x(t0) = x0. An example for
streamlines is the visualization of a member in the two-dimensional
convection simulation in Figure 5.1 on the preceding page. Stream-
lines in the three-dimensional convection simulation are shown on
the right in Figure 3.24 on page 43.
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Streaklines can be observed experimentally by steadily injecting dye at a fixed
point in the fluid. Hence, they follow the locations of particles that
are seeded at a fixed point and then further influenced by the flow
over time. An example is given on the left in Figure 3.24 on page 43.

Pathlines are trajectories of individual fluid particles over time. For a static
vector field, they conform to streamlines.

Timelines are the lines formed by simultaneously moving particles that are
seeded in a seed curve at a previous instant in time.

All these field lines can be calculated forward or backward in time. Being the funda-
mental visualization tool for flow fields, a plethora of applications and variations of
field lines exist [131].

exact solution 

v(x) x0

x1

x2

x3 euler approximation

t v(x0) 

t v(x1) 

t v(x2) 

Fig. 5.2.: The Euler method is a simple approach to approximate streamlines.

As results of differential equations, an exact calculation of field lines is impossible in
general. Thus, they are approximated using appropriate integration schemes, for ex-
ample from the family of Runge-Kutta methods for streamlines. The simplest method
in this family of iterative methods is the Euler method, illustrated in Figure 5.2. Step
by step, the vector at the current position is evaluated and traced for a user defined
time ∆t. In the attained position, the vector is again evaluated and traced. This is
repeated until the streamline becomes local or reaches a maximum length. Thus, in
step n of the Euler scheme, the position xn+1 in the (time-dependent) vector field
v(t, x) is obtained as

xn+1 := xn + ∆t v(tn, xn).

Higher order Runge-Kutta methods improve the encountered approximation error of
O(∆t2) via insertion of additional sampling points compared to the Euler scheme.
Furthermore, adaptive methods vary ∆t based on the underlying field.

Different approaches for the approximation of a longer particle trajectory by a
sequence of (certain) flow maps have been examined. Agranovsky et al. give a

5.1 Visualization of Uncertain Vector Fields: Background and Related
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two phase approach extracting a basis of known pathlines in situ and calculating
arbitrary integral curves post hoc from the extracted results [1]. I introduce two
similar phases, carrying the idea to approximate longer curves using smaller ones
over to visitation maps.

Uncertain Flow Visualization. Dealing with uncertain vector fields, and thus with
varying field lines for every member, many visualization approaches have been
proposed. Examples in vector field ensembles are: showing ensemble members
vanishing over time [45], enabling the user to compare single members to the
whole ensemble using glyphs [165] and summarizing ensemble members while
highlighting outliers and median in Contour/Curve Box Plots [133, 209]. The
topology of ensembles in two and three dimensions was determined by Otto et al.
[149, 150]. Hummel et al. gave a comparative visual analysis for ensembles of
time-varying vector fields using a Lagrangian framework [87]. A two dimensional
comparative visual analysis was presented by Jarema et al. [93].

Uncertainty arising from interpolation and prediction of missing measurements was
treated using tubes of varying size [21], glyphs, and parallel coordinates for magnetic
resonance spectroscopy data [59, 60], and flow radar glyphs for time-dependent
vector fields with uncertainty given as an interval [82].

Random fields are a stochastic uncertainty model. Following the approach of in
situ data reduction by summarizing statistics of certain properties, random fields
frequently arise. While in mathematics, the generalization of stochastic processes
to higher dimensions is called random field, different names have been used in the
visualization community up to now. Otto et al. speak of uncertain vector fields [150],
Ferstl et al. use the term ensemble of vector fields [61], Sevilla-Lara et al. speak of
distribution fields in computer vision [175] and Love et al. use the more general
term spatial multivalue data [122].

Visitation Maps. A highly intuitive and established generalization of streamlines to
vector field ensembles and random fields are visitation maps. Previous authors have
defined visitation maps in an ad hoc manner as the empirical distribution within
each cell in the domain obtained as the percentage of generated trajectories of a
given length and with a given start point passing through the cell (Figure 5.1 on
page 69)[28, 97, 98].

However, the resulting ad hoc calculation renders the use of visitation maps challeng-
ing due to computational effort inherent in their numerical approximation. Given
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an initial condition (i.e. starting location or initial distribution), the visitation map
is typically estimated through direct sampling. For a faithful approximation, a high
number of samples is required. For small data sets, parallel computation using
for example GPUs can be leveraged to achieve interactive re-computation upon
modification of the initial condition. For example, Bürger et al. demonstrated an
interactive visualization of ensemble vector fields with visitation maps using GPU-
based Monte-Carlo particle tracing [28]. However, for larger data sets, trajectory
computation is a difficult problem and has to be handled through non-interactive
out-of-core techniques [145] or parallel algorithms [158]. Following the naïve ap-
proach of visitation map calculation, the expensive calculations need to be re-done
from scratch, every time the initial condition is changed. Also, the complete data is
required for sampling.

A recent variation of visitation maps was proposed by Ferstl et al. as streamline
variability plots [61]. In contrast to visitation maps, variability plots are generated
by projecting confidence ellipses for obtained streamline clusters in PCA space to
domain space. This yields an envelope for most obtained streamlines, together with
a calculated mean streamline. For large data sets, the challenge to integrate large
numbers of streamlines remains the same.

Representing Vector Fields as Graphs and Webs. To make interactive visitation
maps available for larger ensembles, we developed a graph representation for flow
field ensembles that provides the ideal starting point for visitation map generation –
the Visitation Graph.

Representing information on a given vector field in a graph structure was earlier
considered in the forms of Flow Graphs by Nouanesengsy et al.[145] and as Flow
Webs by Xu et al. [215]. The Flow Graph contains a node for each block in an
underlying grid, and each two neighboring blocks are connected via a weighted
edge. The weight of the edge connecting two blocks is determined as the probability
that a seeded particle in one of the blocks is transported to the other one by the flow.
Afterwards, this flow graph can be used to estimate the workload for each block in
parallel streamline calculation.

While Flow Graphs are an efficient approach to estimate workload, they are not
suitable for visitation map approximation, as visitation maps calculated from such
graphs suffer from the lack of variety in possible directions in the graph. In a Flow
Graph each cell is connected only to its four direct neighbors, which results in an
extremely coarse approximation of the visitation map. An example for a visitation
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Fig. 5.3.: Visitation map generated from a flow graph recording connections from each
cell to its 8 neighbors, weighted with the corresponding probability that a stream-
line will continue in the cell. Comparing to the mean vectors of the underlying
vector field, the result is a very coarse approximation to the actual visitation map.

map based on a graph where each cell is connected to its eight neighbors can be
found in Figure 5.3.

In Flow Webs, regular axis-aligned sub-regions of the given domain represent nodes
in the graph. By sampling streamlines backwards through the regions, links and
weights between different sub-regions are determined. While Xu et al. do not
consider uncertainty, our approach can be viewed as an adaptation of the Flow Web
concept to ensembles to create visitation maps, based on a generalization of the
Flow Connection Matrix (adjacency matrix of the Flow Web).

As opposed to the Flow Graphs by Nouanesengsy et al., Flow Graphs by Ma et
al. [126] are a tool for streamline and pathline exploration of three-dimensional
flow fields. Here, nodes in the graph do not only represent spatial regions but also
streamlines in the field. Edges between nodes are assigned various interpretations
depending on the kind of nodes they interconnect.

Adaptive transition graphs for vector fields have been employed by Szymczak to
calculate Morse connection graphs for piece wise constant vector fields on surfaces
[190]. His method of refining transition graphs in an adaptive manner according to
strongly connected components can be interpreted as perturbing the vector field near
trivial Morse sets to remove recurrent features in the resulting Morse connection
graph.

Multiple approaches employing graphs to track and visualize states and state transi-
tions in time-varying vector fields have been proposed, for example by Gu and Wang
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[73] and by Jänicke and Scheuermann [92]. A recent survey on the utilization of
graphs in visualization was given by Wang et al. [201].

In Situ Analysis and Visualization. In situ analysis, i.e. data analysis taking place at
creation time while the data is still in memory, is an attractive possibility to handle
data sets that are too large to store. In addition, slow data output is avoided and
data can be pre-processed at creation time. As computational power increases and
thus simulations of massive ensembles become common, the need for effective in
situ processing is ever more pressing.

Haimes, forced by (in 1994) huge data sets of “10s to 100s of Gigabytes” developed
an early in situ visualization for large unsteady data sets [75]. Interfaces for leading
visualization libraries like Paraview [55] and VisIt [114, 210] were developed,
allowing in situ analysis and visualization of simulations. Yu et al. developed
parallel in situ visualization of volumes and particles resulting from the simulation
of combustion engines [218].

While in situ visualization provides crucial insights in the simulation behavior at
runtime, interactivity and thus exploration of the data is rarely possible. Pre-
processing simulation data in situ and benefiting from reduced data in flexible and
scalable post hoc analysis is a possibility to combine the advantages of in situ and
post-processing. This new paradigm was for example illustrated by Childs [44].
Several approaches were already presented that follow this paradigm. For example
Lakshminarasimhan et al. proposed ISABELA for in situ sorting and error bounded
compression [107].

ISABELA was developed further by Lehmann et al. for the specific task of visual
exploration of scientific simulations [112]. Wang et al. base their in situ reduction
and following rendering of largescale time-varying, multivariate data sets on expert
knowledge [202]. Sampling was used for in situ reduction by Woodring et al. to
provide an interactive visualization of cosmology data [213]. An in situ image based
approach with post analysis of features was proposed by Ahrens et al. [2].

An other approach to reduce data in situ is to summarize statistics of properties of
interest during the simulation. Afterwards, suitable visualization approaches are
used for data exploration. This was done recently by Dutta et al. [53]. A survey was
given by Li et al. grouping current research on in situ data reduction in a spectrum
between lossless and very lossy techniques [113].

Following the in situ, post-processing combination by Childs [44], our approach
processes steady two-dimensional vector field ensembles in situ to construct a
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Fig. 5.4.: Comparison of a visitation map creation in the ad hoc way and using Visita-
tion Graphs: the former requires costly ad hoc streamline computations for every
new start point. After pre-processing, the latter is able to generate visitation maps
interactively requiring only simple matrix operations.

Visitation Graph. With an upper bound for storage requirements that does not
depend on the number of ensemble members, this Visitation Graph is an ideal
structure to summarize ensembles. Furthermore, the Visitation Graph resolution can
be chosen freely and does not have to mirror the resolution of ensemble members.
This provides a means for data reduction, tailored to the task of creating visitation
maps for interactive exploration of ensembles potentially too large to store. Based
on the Visitation Graph, an interactive post hoc exploration of the ensemble using
visitation maps is possible once the simulation and pre-processing are complete.

5.2 Visitation Graphs: Interactive Ensemble
Visualization with Visitation Maps

Our research considers two-dimensional vector field ensembles or random vector
fields. These are partitioned into cells of their domain of definition C = {c1, . . . , cM}.
A visitation map V represents for each cj the distribution of streamline samples of
integration length T > 0 that “hit” the cell cj , i.e.

V(cj) := P (S(X,T ) ∩ cj 6= ∅),

where S(X,T ) is the set of all points of the streamline sample, and its seed point X
is a random variable with a fixed initial distribution (in traditional visitation maps
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X is a uniform distribution in a single cell). In practice, this probability is computed
through Monte Carlo sampling as an average over a set of streamline samples.

To speed up visitation map generation, our approach performs the sampling calcula-
tions in a pre-processing step that can be executed in situ, and stores the result as
a compact Visitation Graph from which visitation maps can be derived quickly in a
later state. Thus, we avoid the problem of ensembles being too large to handle inter-
actively. In addition, a tradeoff between pre-processing time, storage requirements,
and visitation map accuracy can be made.

We define the Visitation Graph as a directed graph G(V,E) whose nodes V are the
cells of the partition, i.e. V = C, and E contains an edge between ci and cj if and
only if a streamline sample of length T ′ starting in ci hits cj during integration. For
each edge (ci, cj), streamlines starting in cell ci are considered. Their (re-)entry and
exit in cell cj are recorded.

Streamline samples are approximated as a polyline with k points, originating in
every cell ci. In practice, we (re-)use the computational grid of the ensemble as the
partition C, and approximate streamlines using a second-order Runge-Kutta scheme
with fixed step size (hence k steps of step size ∆t). Both of these aspects of the
technique are easily modified.

Information is collected similar to the Flow Connection Matrix [215]. However, the
Visitation Graph keeps track of more information than just the number of passing
streamlines, namely the events and time points.

From the Visitation Graph, visitation maps can be assembled. This eschews several
problems inherent in the ad hoc calculation. A comparison of the two approaches
can be found in Figure 5.4 on the facing page. To approximate a visitation map of
length T , it is not required that k∆t := T ′ = T holds; in practice, streamline samples
can be much shorter than the desired visitation map length, at the cost of accuracy.
This allows to trade off accuracy and speed in visitation map creation for speed
in Visitation Graph creation and storage size of the Visitation Graph, since shorter
streamlines yield less events that need to be stored in the graph. Furthermore, the
Visitation Graph resolution is not necessarily the same as the resolution of ensemble
members. This provides a method for data reduction tailored to the task of creating
visitation maps for interactive exploration of ensembles potentially too big to store.
See Section 5.2.3 on page 84 for more details on data reduction using Visitation
Graphs.

5.2 Visitation Graphs: Interactive Ensemble Visualization with
Visitation Maps
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Fig. 5.5.: Visitation Graph Creation

5.2.1 Efficient Computation of Visitation Graphs

During creation each cell is considered once as start cell of stream lines. Cells ci and
cj are connected in the Visitation Graph if a streamline of a given length starting in
cell ci passes by cell cj . For each cell cj that is connected to the considered start cell
ci in the Visitation Graph, the following events of interest are recorded for each step
during creation:

(+) how many streamlines starting in cell ci enter cell cj ,

(-) how many streamlines starting in cell ci leave cell cj , and

(	) how many streamlines starting in cell ci re-visit cell cj

The last entry is obtained by keeping track for each cell whether the considered
streamline has already entered cj or not. An illustration of Visitation Graph genera-
tion can be found in Figure 5.5.

During Visitation Graph creation, the number of randomly seeded streamlines started
in each cell can be determined either based on the size of the cell ([215]) or on
the estimated contribution to the final Visitation Graph. While the first option is
straight forward, the latter is achieved as follows: the number of cells nh that have
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been hit by any streamline that was integrated from the considered start cell is
determined and a size for streamline bunches is set as parameter sb. Every time the
integration of a bunch of streamlines is completed, it is decided whether one more
will be started or not using

nh

s
<

1.0
sb
. (5.1)

Where s is the total number of integrated streamlines from the considered start cell.
If expression 5.1 evaluates to false, the next bunch of streamlines is integrated, else
the Visitation Graph creation for the considered cell stops. This stop criterion can be
interpreted as follows: it is unlikely that a streamline from the upcoming bunch of
streamlines passes by a cell that was not passed before since the number of passed
cells per integrated streamline is smaller than one out of a bunch of streamlines.

Doing these calculations for different ensemble members is independent. Hence, it
can be done in situ. For every ensemble member, entries in the Visitation Graph are
updated or added. While the Visitation Graph can be built completely in situ, it does
not have to. In case of ensemble members occupying most of the available memory
storage, it might be impossible to create the whole Visitation Graph simultaneously.
In this case, single members or even single cells can be processed in situ and then be
stored. In a post processing step all partial results are combined to the final Visitation
Graph. Depending on the available memory, every possible storing frequency in
between “storing for each cell or member” and “storing once at the end” can be used
providing a tradeoff between postprocessing time and memory requirements.

5.2.2 Efficient Approximation of Visitation Maps from Visitation
Graphs

Given an initial distribution of cells or a single start cell, Visitation Graphs are an
optimal base to calculate visitation maps.

Using the Visitation Graph consisting of M nodes with tracked events of interest,
two different matrices can be generated for every time point t ≤ T ′ (integration
length): The Flow Connection Matrix FC(t) as described by Xu et al. [215] and
the snapshot S(t). The Flow Connection Matrix is an M ×M matrix given by the
adjacency matrix of the Visitation Graph where the weight of edge (ci, cj) is given by
the probability that a streamline starting in cell ci passes by cell cj before time point
t. The entries are calculated as the sum of the differences of first and third entry of
the stored 3-tuples until t, divided by the total number of integrated streamlines
starting in ci. While the first entry provides the information how many streamlines

5.2 Visitation Graphs: Interactive Ensemble Visualization with
Visitation Maps
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from ci have entered cj , the third entry ensures that re-entering streamlines are not
counted twice. Note that Xu et al. generated the Flow Connection Matrix focusing
on infinitely many streamline steps, thus our approach constitutes a generalization
of their graph structure.

Entry (ci, cj) of the M×M dimensional snapshot matrix S(t) specifies the probability
that particles starting in ci are in cj after integration time t. It is calculated as the
sum of the difference of first and second entry of the stored 3-tuples until t, divided
by the total number of streamlines starting in cj . Thus every time a streamline enters
cj , the snapshot entry increases by one and as the streamline leaves cj , the snapshot
entry decreases by one. This is done regardless of re-visiting. Examples for the
calculation can be found in Figure 5.5b on page 78.

The total number of streamlines is required to generate Flow Connection or snapshot
matrices from the Visitation Graph. This number varies between cells since it
depends either on their estimated contribution or the cell size, as described in
Section 5.2.1 on page 78. However, it is not necessary to store the total number of
streamlines separately, since every streamline is recorded as entering in the start
cell at the initial time point. Thus the total number of streamlines per start cell is
available in the Visitation Graph.

Having an integration length T ′ that is independent of the final visitation map
length T , the desired visitation map might have more or less steps than have been
integrated while pre-processing. Being able to generate a visitation map based on
streamlines that are shorter than the final map provides a tradeoff between accuracy
on one side and shorter pre-processing time and storage savings on the other side.

Two scenarios for visitation map creation exist: Either T ≤ T ′, that is the final
visitation maps has less steps than have been integrated in pre-processing or T > T ′,
that is the desired visitation map has more steps than have been calculated for the
Visitation Graph.

If T ≤ T′, the visitation map starting in cell ci is given by the row representing ci in
the Flow Connection Matrix: the exact visitation map value V(cj) is given in entry
(ci, cj) of FC(T ). Considering possibly multiple start cells with a start distribution, a
M -dimensional start vector v0 is created holding the start probability for each start
cell. This vector is then multiplied with FC(T ). Each entry of the resulting vector
represents one cell in the grid and holds the visitation map values. The resulting
visitation map gives the identical result as a traditional visitation map based on ad
hoc created streamlines advancing for time T .
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If, on the other hand T > T′, the desired visitation map length exceeds the number
of pre-processing steps, the visitation map is not given in the Flow Connection Matrix
but needs to be “assembled” from multiple FC(ti) where

∑
i ti = T .

The law of total probability states that if ∪Bi = Ω is a countable partition of the
entire sample space, then for any event A it holds:

P (A) =
∑
i

P (A | Bi)P (Bi) (5.2)

Cs

Ci

Cj

Fig. 5.6.: Probability approximation: the probability of a streamline path cs � ci � cj in
time T while in ci after T ′ is approximated by the probability of the streamline
path ci � cj in T − T ′. This leads in general to overestimation since every
streamline path cs � ci � cj is also a path ci � cj , but not all streamlines
from ci to cj pass by (or start in) cs before entering ci (for example the dashed
streamline).

For clarity of notation let in the following S, A, and B be arbitrary cells in C.
Considering the partition consisting of events

ASt := After time t, the considered streamline starting in cell S ends in cell A,

for the fixed integration time in pre-processing T ′, the law of total probability gives

P (BS
T ) =

∑
A∈C

P (BS
T | AST ′)P (AST ′) (5.3)

Where the event BS
T is an event considering streamlines after time T > T ′, thus no

calculations for this event have been performed during pre-processing. To estimate
P (BS

T ), the conditional probability P (BS
T | AST ′) is approximated using P (BA

T−T ′)
in equation 5.3. So the probability that the considered streamline that starts in S
ends in B after time T while ending in A after time T ′ < T is approximated by the
probability that a considered streamline starting in A ends in B after T − T ′ steps.
See Figure 5.6 for further explanation. This gives

P (BS
T ) ≈

∑
A∈C

P (BA
T−T ′)P (AST ′). (5.4)

5.2 Visitation Graphs: Interactive Ensemble Visualization with
Visitation Maps
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Since P (BA
T−T ′) considers an integration time strictly smaller than T , the considered

number of steps is potentially smaller than the number of pre-processing steps until
time T ′ such that pre-processed results are available. If however T − T ′ > T ′, the
same approximation is repeated until the integration time is smaller or equal to
T ′.

-0.05 0.05

a b

b

seed

higher values inhigher values in a

Fig. 5.7.: Comparison of traditional visitation map a, the approximation based on
Visitation Graphs b and the difference between both. T ′ = 50, T = 160. Nonzero
entries of the start vectors vi are marked from black to light grey for increasing i.
Before the first approximation step, the results are identical.

This approximation in general overestimates P (BS
T | AST ′). Equality is only given

if P (AST ′) = 1 since then P (BA
T−T ′) is independent of the point in cell A reached

by the streamline from S in time T ′. Thus every approximation step will induce an
error in the resulting visitation map (cf. Figure 5.7).

We implemented this theoretical result as follows: the exact visitation map after
time T ′ is calculated as described above using the start vector v0. Having reached
the maximal calculated step, a new start vector v1 = v0 · S(T ′) is calculated. Using
this new start vector holding the positions and probabilities for particles starting in
the considered start cell S under the considered start distribution after T ′ steps, the
proceeding visitation map is calculated using FC(T − T ′). The results are combined
ensuring to not have doubled results in nonzero entries of v1. This is repeated m
times until T −mT ′ ≤ T ′.

Illustratively, the visitation map is followed as far as it was pre-computed, then new
visitation maps are started at the end incrementally until the desired number of
steps is reached (Figure 5.8 on the next page).

While a smaller number of pre-processing steps induces errors in calculated visitation
maps, pre-processing time becomes shorter and storage requirements of the resulting
Visitation Graph become smaller. This tradeoff is illustrated by experiments in
Section 5.3 on page 88. Visitation map creation on the other hand becomes more
expensive the more snapshots and Flow Connection Matrices are evaluated, thus

82 Chapter 5 Uncertain Trajectories in Vector Field Ensembles



exact visitation map

approximation steps
start point

end points of first visitation 
map, start points for the 
first approximation step

end points of the first 
approximation step, start 
points for the second 
approximation step higher probability since 

visitation maps overlap

Fig. 5.8.: Illustration of our visitation map approximation: the first part of the generated
visitation map is the exact visitation map generated from the data up to the
streamline length T ′ in the Visitation Graph. Using snapshot and Flow Connection
Matrix, the cells holding the particles after T ′ steps are determined. Using
the resulting distribution as start distribution, again the exact visitation map
is determined and attached to the first one and so on, until T steps have been
reached.

the calculation time for visitation maps from the Visitation Graph decreases with
increasing pre-processing integration time T ′. In general, calculation times can be
reduced using parallelization: Integrating streamlines from every cell to determine
edges in the Visitation Graph can be heavily parallelized, since considering different
cells is completely independent. If the ensemble members reside on different nodes
of a cluster, these members can be processed independently on their nodes. The
final Visitation Graph can then be assembled using the parallel reduction approach
resulting in logarithmic time savings.

In an informal experiment, we observed nearly ideal speedup (7.96x for 8 CPUs)
for streamline integration. The assembly of 10 partial results was executed on 2
CPUs with a speedup of 1.2. In addition, the calculation of Flow Connection and
snapshot matrices for visitation map creation can be naturally parallelized for every
entry in the resulting matrix. While these matrices are potentially of very high rank,
the fact that entries of FC(t) and S(t) can be calculated independently can be used
to generate only rows that are required for the computation (that is the rows whose
entries in the start vector are nonzero) and save them in a sparse format. Especially
for the first steps in visitation map creation, where the start vector contains only the
chosen start cells, the number of needed rows is very small compared to the total
number of rows.

5.2 Visitation Graphs: Interactive Ensemble Visualization with
Visitation Maps
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5.2.3 Space Requirements and Data Reduction

Visitation Graphs are an optimal way to store, and potentially reduce, data in order
to explore the data with visitation maps later on. The maximal storage requirements
of the Visitation Graph representation are determined by the ensemble resolution
m × n and the integration time T ′. As such, they are independent of the number
of ensemble members. An upper bound for the number of outgoing edges is m · n,
which is far from being tight. In reality, the number of outgoing edges is much
smaller since it is impossible that every cell in the grid is passed by streamlines from
every other cell. Also, edges are only possible between cells that can reach one
another with a streamline of set length, thus only cells in a given, field dependent
radius around each cell can be connected. At most T ′ · 4 numbers need to be stored
per edge. This upper bound will not be reached in realistic examples and most of
the information stored for edges will contain far less than T ′ tuples (see Section 5.4
on page 91 for actual numbers in application examples). Thus, facing ensembles
with a high number of members compared to the number of cells per ensemble, the
Visitation Graph will save space without any additional data reduction. For other
ensembles, multiple options leading to data reduction are available:

Visitation Graph Resolution. The Visitation Graph resolution is independent of
the original resolution of the ensemble. Thus, a coarser resolution can be chosen
to achieve data reduction. While a coarse Visitation Graph contains only nodes
corresponding to a coarser grid, it is based on streamlines that are created based on
the ensemble in its original resolution. Carrying over the information from the fine
grid to the coarse one, coarse Visitation Graphs are superior to simple downsampling
of the grid. See experimental results in Section 5.3 on page 88 for a comparison.

Timestep Selection. Depending on the application, it is often not necessary to have
access to visitation maps for every possible time step. To exploit this, the temporal
resolution of available visitation maps can be restricted. Defining a frequency F at
which visitation maps should be available, events don’t need to be stored for every
time step but for every frequency cycle. All events occurring between two cycles
are summed up in one entry, reducing storage requirements since only every F -th
entry is stored. This reduction approach does not affect accuracy of visitation maps
at available time steps.
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Streamline Length. Shorter streamline length at creation time of the Visitation
Graph results in a lower number of events and thus reduces the storage requirements
of the Visitation Graph. While it is still possible to generate longer visitation maps
from the resulting Visitation Graph, the accuracy is reduced after every integration
time of T ′.

Experiments on data reduction using Visitation Graphs as well as experiments on
storage requirements and their dependency on the number of ensemble members
can be found in Section 5.3 on page 88. An application of data reduction can be
found in Section 5.4 on page 91.

5.2.4 Application to Visualization

As outcome of the previous results, we are able to effectively generate visitation maps
from arbitrary start points with arbitrary initial distributions based on Visitation
Graphs. This heavily contrasts with traditional visitation maps generated in ad hoc
manner from integrated streamlines. They trigger a complete re-computation every
time the start point is changed and considering multiple start cells with a given
distribution results in vast computational effort. In addition, traditional streamline
computation is always based on the whole ensemble, making this visualization
approach unfeasible for ensembles with too many members to store. In our approach,
to interactively create visitation maps from arbitrary start points, only the Visitation
Graph needs to be stored. There is no need to store single ensemble members.
Providing a tradeoff between storage requirement and accuracy, the Visitation Graph
renders the exploration of ensembles possible that are prohibitive to store due to
their size. Provided a Visitation Graph, different modes for visitation map creation
are available.

Standard Mode. A single start point is selected. The visitation map of the desired
length is calculated or approximated depending on T ′.

Brush Mode. Multiple start points following an initial distribution are given. The
visitation map is calculated for all start points at once. Different kernel functions are
available as possible start distributions, they are scaled such that the integral over
all initial cells is one.

5.2 Visitation Graphs: Interactive Ensemble Visualization with
Visitation Maps
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Fig. 5.9.: The probabilities to be hit per time step are shown after selecting a cell in a
calculated visitation map: probabilities for individual time step and accumulated
probability are shown in a separate window; this illustrates when heated fluid
will reach the selected cell in the 2D convection ensemble (see Section 5.4 on
page 91 for more examples).

Start-End Mode. Start points, a single end point and a probability p are defined. In
each step of the visitation map calculation it is checked, if the given end point was
reached with probability greater or equal to p. Calculation stops as soon as p or the
maximal amount of time-steps is reached. For the end point the probability to be
reached in every time-step is plotted.

When an end cell is selected, a plot showing the probabilities to be hit per time-step
is shown in a separate window. It contains probabilities per time-step as well as the
accumulated probability to be hit for the selected start distribution and end node
(Figure 5.9). In addition, an animated, incremental visualization of the visitation
map –time-step by time-step– emphasizes development over time in the given vector
ensemble.

While for regular grids, the visualization of visitation maps (ad hoc or Visitation
Graph based) is a straight forward mapping of scalars to colors, additional challenges
arise when considering grids containing differing cell sizes or the same grid is
evaluated in different resolutions.

Fig. 5.10.: Appearance of the same area considering different grid resolutions: Left:
coarse resolution, middle: no color compensation, right: color compensation. In
every case the sum of the probabilities over all cells is one and the distribution
is equal (Reproduced from [*117]).

The probability that a streamline passes by a grid cell depends on the cell’s size. Since
the sum of the probabilities over all cells in an area remains constant independent of
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the resolution, small cells obtain smaller probability values in the visitation map than
bigger cells. While from the mathematical point of view, this result is correct and
intuitive, the resulting visualization might be misleading. Areas with smaller cells
might appear less likely to be visited than coarser areas with the same probability.
To handle this effect when plotting the visitation map, a compensation for the cell
size can be used. The probability value assigned to each cell is multiplied by the size
of the largest cell in the grid divided by the size of considered cell. This yields an
intuitive visualization, see Figure 5.10 on the preceding page. However the plotted
values no longer represent the actual probabilities, so both visualization options are
accessible in our implementation.

To give an orientation in the explored vector field ensemble, visitation maps can be
combined with any suitable static visualization in the background. The suitability
of different visualization approaches has been reviewed by Iannis Albert under my
supervision in his Master Thesis [*4]. He identified streamline approaches with
selection strategies and clustering algorithms as the most promising approaches.
However, in the case of not having stored single ensemble members, common
techniques like streamlines can hardly be applied. To be still able to give an
impression of the underlying field, we developed visualization techniques based on
the Visitation Graph, intended to support the visitation map visualization:

Fig. 5.11.: Glyph visualization indicates the average direction of connected cells in the
Visitation Graph. Reproduced from [*117].

Glyph Visualization. Glyphs pointing towards the average direction of connected
cells in the Flow Connection Matrix weighted with their probability can be drawn.
That is, for every nonzero entry (ci, cj) in the Flow Connection Matrix, the midpoint
of cell cj contributes with weight FC(t)(ci, cj) to the direction the glyph in cell ci
will point to. See Figure 5.11 for an example.

Degree Visualization. In- and out- degree of each cell in the Visitation Graph is
plotted using different colors. Like this, areas with large variance and areas that are
passed by many different streamlines are visible, giving an orientation of potentially
interesting areas. See Figure 5.18 on page 95 for an example.

5.2 Visitation Graphs: Interactive Ensemble Visualization with
Visitation Maps
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While exploration of vector field ensembles is the main purpose of our approach,
it can be employed to visualize random fields as well: given a probability space
(Ω,F , P ), a random field of dimension d ∈ N is a family of random variables
{Y (x, ·)}x∈Rd . A trajectory in a random field can be defined analogously to the
certain case by an ordinary differential equation with a random field on the right
hand side, which makes the equation a random ordinary differential equation
(RODE).

dXi(t, ω)
dt

= Yi(X(t, ω), t, ω) with t ≥ t0, ω ∈ Ω, i = 1 . . . d.

RODEs can be solved using standard numerical approaches such as Runge-Kutta
methods or multi-step methods. Thus, instead of integrating streamlines in every en-
semble member, multiple streamlines are integrated using samples of the underlying
random field.

5.3 Experiments

To evaluate the behavior of the system, we conducted different tests on a standard
workstation PC and an implementation in Python. Unless otherwise noted, a 50× 50
testing ensemble containing 50 members created from normal distributions with
constant µ = (1, 1) and varying correlation between -0.5 and 0.5 was considered for
all tests. The cell size was uniform and the integration time T ′ was chosen as 60,
while visitation maps of length T = 100 were calculated. All runtimes are measured
on a purely serial execution of the code.
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Fig. 5.12.: Visitation Graph tradeoffs: With increasing integration time T ′, accuracy,
storage requirements, and pre-processing time increase while the required time
to create visitation maps decreases. The median of nonzero errors is shown
since low errors are far more common than high errors.

Figure 5.12 illustrates the tradeoffs resulting in the generation of the Visitation
Graph: a smaller number of streamline steps in pre-processing results in lower
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Fig. 5.13.: Dependency on member count: the more members are considered, the more
beneficial is our method. The difference in runtime increases and already for
very few ensemble members it outperforms the traditional ad hoc creation.
Storage requirements for Visitation Graphs converge towards a fix maximal
size. Visitation Graph creation grows linearly with the number of processed
ensembles.

accuracy of the resulting visitation maps while time for Visitation Graph creation and
storage requirements drop. Conversely, the longer the pre-processing integration
time, the more accurate is the result while pre-processing runtime and storage
requirements increase. The runtime for visitation map generation depends on the
integration time T ′: With fewer time steps stored in the graph, more calculations
have to be executed to obtain the visitation map approximation (cf. Section 5.2.2 on
page 79). Thus, time needed for visitation map creation decreases with increasing
accuracy. As ground truth, we considered the Visitation Graph with infinite T ′ and
corresponding visitation maps; every generated streamline is pursued until it either
ends in a critical point, becomes local, or leaves the grid. For less streamline steps,
the ground truth Visitation Graph is pruned at the desired step to avoid differences
resulting from randomized streamline seeding. The mean squared error is calculated
per cell as the difference between traditional visitation map starting in this cell
and the visitation map generated from the Visitation Graph. As the number of pre-
processing steps reaches the number of steps taken in the visitation map, the error
drops to zero. No assembly is required and the exact visitation map is calculated.

In addition to the advantage of in situ pre-processing obviating the need to store
every ensemble member to be able to calculate visitation maps, Figure 5.13 illus-
trates that already for a small number of ensemble members, the visitation map
creation from the Visitation Graph is faster than the ad hoc creation. The larger
the ensemble, the more beneficial is our method. This observation is strengthened
when considering multiple start cells (cf. Figure 5.14 on the next page). To obtain
accurate results for traditional visitation maps with multiple start cells under a delo-
calized start distribution, even more realizations are necessary to achieve adequate
sampling.

5.3 Experiments 89



Runtime visitation map creation
from visitation graph, 60 steps
Runtime traditional visitation map creation, 
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Fig. 5.14.: The creation time of visitation maps starting in multiple cells: visitation
maps are faster generated from Visitation Graphs. The difference becomes larger
with increasing number of start cells. In pre-processing, streamlines of 60 steps
were calculated. Thus to calculate visitation maps with 100 and 140 steps, two
resp. three calculation steps are needed. Intervals requiring the same number of
steps result in similar generation times.

To examine Visitation Graphs as an alternative to downsampling, we executed
the following experiment: our approach using coarse Visitation Graphs to obtain
visitation maps was compared with the traditional approach to first sample down the
data, then store it and create visitation maps in the traditional way. All approaches
result in visitation maps of the same output resolution. A real-world and an analytical
example were tested. The resolution was reduced from 168 × 168 to 80 × 80 and
336× 168 to 160× 80 respectively. We compared:

OurMethod. A Visitation Graph of output resolution is calculated on high resolution
input data. Using the Visitation Graph visitation maps are created.

Traditional. High resolution input data is downsampled to output resolution. Visi-
tation maps are calculated in the traditional way.

Ground Truth (Test on Analytical Data). Exact streamlines in the analytical field are
used to create exact visitation maps of the given output resolution.

Ground Truth (Test on Real-World Data). Visitation maps are calculated in the tra-
ditional way on high resolution input data, the final visitation map is sampled in the
given output resolution.

Figure 5.15 on the facing page holds the results for the real-world example. Because
of the exact ground truth, errors of our method in the analytical example were higher.
While they reside in the same range as the errors of the traditional approach, the
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Fig. 5.15.: Visitation Graphs as an alternative to downsampling: Visitation Graphs are
an optimal way to reduce data resolution and generate visitation maps after-
wards: here, the integration time is set to T ′ = 100. Thus, for a visitation map
length of 100, our method equals the ground truth. Also for higher T > T ′,
our method outperforms the traditional approach. The increase in the error of
our method at a visitation map length of 220 is to be expected every time T is
increased by T ′. The error of the traditional method is higher and varies more.

maximal deviation only exceeds the one of the traditional approach after T = 160.
For T = 100 again the error is much smaller than the one generated by traditional
approximation. For T ∈ [110, 160] our method gives a similar mean deviation and
a smaller maximal deviation. So again our method outperforms the traditional
approach not even for T = T ′ but also for additionally approximated visitation maps
for T > T ′ up to a limit.

5.4 Results

While our contribution is a new calculation method for visitation maps, using
visitation maps for visualization is well-established. Hence, this section aims more
for giving details on applications of our method than on illustrating usefulness of
visitation maps in general. We used the following data sets:

Industrial Stirring. Mixing in a stirring apparatus was simulated for 20 slightly
differing viscosities resulting in a 2D flow field ensemble of size 168 × 168. The
device consists of two counter-rotating pairs of mixing rods that stir a medium in a
cylindrical tank.

Convection Simulation. Simulating the flow around a hot pole as described in
Section 3.4.3 on page 43. The 2D flow field ensemble is of size 128× 256.
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Cavity Flow. Laminar, in-compressible flow in a two-dimensional square domain
where one border is moving with 1 m s−1 was simulated. The Reynolds number of
the simulated liquid is increased by one between each member generation, resulting
in 1990 ensemble members with Reynolds numbers between 10 and 2000. The
resolution is 1000× 1000.

In all ensembles, a fixed time point was investigated using visitation maps based on
a Visitation Graph.

5.4.1 Industrial Stirring Simulation

0.89
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0.67

0.56

0.44

0.33

0.22

0.11

0

(a) Overview of the stirring simulation using multiple start points and different background visualiza-
tions: glyphs based on the Visitation Graph and streamlines of two ensemble members. T ′ = 50,
T = 100.

0.89 0.78 0.67 0.56 0.44 0.33 0.22 0.11 0

Ground truth T'=25 T'=50

(b) Results for T ′ = 25 (center) and T ′ = 50 (right) are compared with the ground truth (left). The
first approximation after 25 and 50 steps respectively is visible.

Fig. 5.16.: Industrial Stirring: overview in (a) and detail for different integration lengths
T ′ in (b).

This example illustrates the approximation of visitation maps using Visitation Graphs
based on shorter streamlines and different choices for T ′. Two pre-processing
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integration times were used. Serial runtime for T ′ = 50 with about 40 minutes per
member is significantly higher than runtime for T ′ = 25 (about 20 minutes). The
number of realizations was estimated for the latter execution. Based on a bunch
size of 10, cells with very small vectors, especially the ones where no data exists,
were start point for much less streamlines than in the non-automated calculation
with 100 realizations for every cell. An exploratory visualization of the stirring
simulation is shown in Figure 5.16a on the facing page. Combining multiple start
points with glyph visualization or streamline visualization of multiple members gives
an overall impression. Additional initial points can be selected interactively. Like
this, interesting regions, for example the flow behavior around the mixing rods can
be examined easily by starting visitation maps close to them. The resulting visitation
maps provide the opportunity to compare the behavior of the ensemble members
and separate possible outliers, for example the marked members in Figure 5.16b on
the preceding page. With a pre-processing streamline length of 50, visitation maps
of length 100 were generated.

In Figure 5.16b on the facing page, visitation maps for T ′ = 25 and T ′ = 50 are
compared. The error induced after the first approximation step is clear to see. Still,
the tradeoff between pre-processing time and accuracy is profitable for exploration.
The early approximated visitation maps are as useful as the ones based on T ′ = 50.
In addition, the storage requirement of the Visitation Graph drops from 380MB to
118MB. Compared to the original ensemble size is 4.5MB, this is an increase. Yet,
this example does not aim on reduction of the data size. With 20 members of size
168× 168, the number of ensemble members is not large compared to the number of
cells. The average numbers of edges are 163.4 and 72.0 for T ′ = 25, 50 respectively,
confirming that in real world examples the upper bound of m × n = 28, 224 is
vastly overestimating the number of outgoing edges. The average number of stored
4-tuples per edge is 10.3 and 7.3 respectively which is again much smaller than the
upper bound of T ′ in both cases.

5.4.2 Convection Simulation

Using the convection simulation, we illustrate interactive exploration possibilities
using visitation maps that are based on Visitation Graphs. A Visitation Graph
with T ′ = 100 was generated for a single time step of the convection simulation
(Figure 5.17 on the next page). First, the area of turbulent behavior is detected by
seeding around the pole and combining the resulting visitation maps (5.17a). This
area can then be explored by interactively adding multiple start points, allowing to
compare and separate areas with different flow behavior. Figures 5.17b to 5.17d
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(a) Seeding multiple start cells around the pole to
get a first impression.

(b) Further exploration with visitation map length
300.

(c) Further exploration with visitation map length
200.

(d) Further exploration with visitation map length
100.

1 0.89 0.78 0.67 0.56 0.44 0.33 0.22 0.11 0

Fig. 5.17.: Convection simulation: A first impression in (a) and further exploration with
decreasing visitation map length (b-d). On the right, traditional visitation maps
generated from 10,000 streamlines are given. For T = T ′, differences result
from the different number of streamlines. For T > T , the visitation maps are
approximated.

show this process using different visitation map lengths; for orientation the average
velocity over all ensemble members is given in the background. Processing one
member took 145 minutes. Again, the upper bound of m × n = 32, 768 outgoing
edges per cell is much higher than the real number which is 18.8 on average. 14.8
time steps are stored per edge on average which is again much less than the upper
bound T ′ = 100. This results in raw data of 72.8MB compared to original data size
of 5.9MB. While our approach is not able to reduce the data in this case with a
relatively low number of ensemble members, the speedup in visitation map creation
is still given.

5.4.3 Cavity Flow

Using the cavity flow example, we illustrate the data reduction abilities of Visitation
Graphs. On the cavity flow data set with a high number of members, a data-
reducing Visitation Graph of resolution 100 × 100 was created with a time step-
storing frequency of 10 and T ′=20. While creating visitation maps based on the
original resolution might be impossible, the resulting Visitation Graph is able to
retain information from the original resolution and still reduce the data. With 8
cores and a speedup factor close to 8, the calculation time of the Visitation Graph is
about 140sec per member for T ′ = 20 and 100 streamlines per cell. Instead of the
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(a) Interactive exploration of the ensemble is possible despite its
high number of members. In the background, in- and out-
degree of the cells is plotted in red and green respectively.
Seeding multiple start cells, the swirl in the data can be easily
discovered and isolated.

(b) Our approach (0.06 sec).

(c) Traditional approach (ground
truth) (129.21 sec).

(d) Traditional approach with high
resolution (19,322.96 sec).

Fig. 5.18.: The cavity flow simulation: Interactive exploration example and approach
comparison.

30.2GB large ensemble, the Visitation Graph with 43.7MB can be stored and used to
create visitation maps. On average, 131.67 outgoing edges were stored per cell and
on each edge on average 1.15 time steps (this number is reduced due to the chosen
storing frequency). In Figure 5.18, an example for incremental exploration of the
field with degree visualization background is given. Visitation maps generated from
Visitation Graphs and in the traditional way are compared and a visitation map for
the fine resolution is given.

5.5 Discussion and Conclusion

Vector field ensembles can be explored in an intuitive way using visitation maps.
Traditional ad hoc calculation of visitation maps requires every ensemble member
to be stored and sampled. Thus, it can not be applied to ensembles that have a
large number of members. In addition, every change of the seed point (or initial
distribution) requires a full re-computation of the visitation map. And an initial
distribution that is not strongly localized, results in even more time expensive
computation. Visitation Graphs provide solutions to these problems by isolating
the sampling in in situ pre-processing while allowing the computation of visitation
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maps in an interactive fashion, also for large ensembles and delocalized initial
distributions. Costly calculation time is shifted to in situ pre-processing.

While the speed up of visitation map generation is present already for small en-
sembles, our method provides substantial advantages for ensembles with many
members. For these ensembles, storage savings can be accomplished and visitation
map generation speed up is quite significant. Multiple additional storage saving
techniques are available for Visitation Graphs, allowing in situ data reduction that is
superior to other approaches with respect to visitation map creation.

The Visitation Graph stores information about all events of all generated stream-
line samples. Depending on spatial resolution, storage requirements can still be
significant. A possible aggregation of the data in addition to a set storing frequency
is a topic for further research. Furthermore, parallelization (potentially on GPUs)
can provide dramatically better runtimes for Visitation Graph generation. Further
potential for runtime reduction lies in re-using of generated streamlines during
Visitation Graph generation.

Representing vector field ensembles as their corresponding Visitation Graphs offers a
plethora of opportunities for further research: graph algorithms and clustering could
be applied (e.g. in similarity to [190]), to exploit all strengths of this representation.
Considering multiple time-steps of time-dependent fields, results could be compared
by comparing the Visitation Graphs, and missing time-steps could be interpolated on
the graph level. Concerning visualization, different techniques could be applied to
present the calculated visitation map such as isocontours or using transparency.

Finally, generalization of Visitation Graphs to three-dimensional random fields is
another research direction. While the basic technique of Visitation Graphs can be
transferred quite naturally to three dimensions, the increasing number of grid cells
will be the main challenge. The data reduction techniques presented in this paper
seem to be promising to deal with this challenge. In addition, a link between Visita-
tion Graphs and graphs used for three dimensional space partitioning is an exciting
research topic. Furthermore, the generalization of visitation maps to three dimen-
sions requires an evaluation of existing three dimensional scalar field visualization
techniques for this special purpose.
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Part II

Uncertainty in Automated Data Analysis



Automated data analysis is a crucial approach when dealing with large data sets
and/or insufficient time for analysis. With increasing amounts of generated data
and decreasing expected reaction times, automated analysis is now a widely ap-
plied approach, supported and fueled by research progress in artificial intelligence.
Examples span from tracking pixels that automatically analyze user behavior, to
automated profiling and in situ analysis. In many cases, only the processed data is
stored and further used. In some cases however, results of the automated analysis
trigger reactions. For example automated monitoring of stock prices trigger purchase
or disposition. In case of important decisions, these are not left to the system, but
analysis results and induced reaction are verified by humans. This requires precise,
easy and fast to interpret visualizations.
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Visually Supported Anomaly
Detection in Cyber Security

6

Fig. 6.1.: Overview of the Security in Process System supporting triage analysis in op-
erational technology networks by presenting device readings and results from
automated anomaly detection to the analyst.

In cyber security, reaction times are crucial. Scripts and tools lower the effort that is
necessary to attack systems, while the amount of sensitive data that is stored online
and the effort to secure distributed systems increases. Hence, automated anomaly
detection is essential and even automated emergency responses are thinkable. Yet,
current anomaly detection algorithms often lack certainty of their results, requiring
the additional verification by analysts. To allow analysts to take part in the anomaly
detection process, a visualization providing a quick overview but a sufficient amount
of details about the current data is required. Developing time series visualizations for
different purposes is an active field of research. A thorough summary on visualization
of periodic and aperiodic time series data was given by Aigner et al. [3].

Cyber security not only has to be ensured in information technology networks, but
also in operational technology networks (OT networks). In contrast to IT networks,
OT networks consist of devices and infrastructure that monitor and control physical
industrial processes. An example is a water treatment plant. All devices –sensors,
pumps, and other actuators, that control for example the dosage of added chemicals–
are part of the OT network, connected by programmable logic controllers (PLCs).
Because of the underlying industrial processes, device readings in OT networks
oftentimes develop periodic patterns; tanks are filled and run empty until they are
filled again, the concentration of added chemicals decreases during the purification
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process until a threshold is reached and additional chemicals are added again. Hence,
missing periodicity represents an anomaly in OT networks. This is a strong contrast
to IT networks, where periodic behavior is a signal for malware activity [88].

Examples for malware detection based on periodical behavior are the application of
the discrete Fourier transform by Gove et al. [72] and the Fourier transform based
periodicity detector for network traffic by Huynh et al. [5]. They use circular plots
to compare periodic behavior of different alerts.

Over the last two decades, automation, and thus the use of OT networks in industry
have increased rapidly, as have attacks on such networks [51]. Network environ-
ments that are difficult to update and the use of communication protocols that do
not contain authentication or encryption lead to high vulnerability once an intruder
has successfully breached the communication network [134, 135]. In addition,
historical reasons caused these networks to be less secured against attacks than
deemed appropriate for home and office IT [89]: first, OT and IT networks are
supposed to be physically separated. Second, attacking OT networks is expected to
be difficult due to their highly application specific implementation. However, both of
these aspects have become obsolete nowadays: commercial off-the-shelf products in
the industrial area (for example PLCs) facilitate set up, maintenance and operation
of industrial applications by using common interfaces and programming libraries.
This also decreases the difficulties for attackers. Furthermore, new use and business
cases introduced as part of Industry 4.0 efforts break the physical separation of
networks [187]. Relying on the communication and computation capabilities of
(industrial) internet of things devices, access routes to OT networks are created.
Even if no such access is possible, attackers have successfully managed to move
laterally to the OT networks in the past after breaking the IT network perimeter
[52].

During the Covid-19 pandemic starting in 2019, cyber attacks further increased due
to new possibilities to attack (hard and software in home office, but also anxiety of
people). Lallie et al. give a detailed timeline of attacks during the pandemic [108].
Especially the healthcare industry and its OT networks were attacked, capitalizing
their vulnerability during the pandemic or aiming on stealing intellectual property
such as data relating to COVID-19 vaccine development, and treatment options
[141]. Hence, additional actions to secure OT networks are required, but outdated
structures and difficulties to update the components are problematic. This has lead
to recent research in cyber security with the aim to detect attacks in already available
information.
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Industrial intrusion detection based on device data is a widely regarded topic in cyber
security research. Anomalies in the data are detected with a plethora of different
approaches. Schneider et al. use autoencoders to detect anomalies in cyber-physical
system networks [168], Goh et al. and Feng et al. use neural networks for the
detection [58, 71]. One class support vector machines are presented by Maglaras et
al. as a machine learning algorithm to detect novel and unknown attacks [128].

Results from different anomaly detection approaches have been visualized in differ-
ent ways: Stoffel et al. provide a visualization combining multiple data sources that
monitor a computer network [185]. Their visualization relies on well-known time
series visualizations. Combining these visualizations and highlighting of detected
anomalies facilitate shape, correlation and pattern recognition. Karapistoli et al.
detect selective forwarding and jamming attacks in wireless sensor networks [100].
Findings are then incorporated in graph visualization and crossed views, providing
an efficient and fast overview of the network status. Boschetti et al. refrain from
incorporating information on detected anomalies directly in visualization [23], they
use plots, histograms, graphs and matrix visualization to provide information on
network traffic. Timesteps with a potential attack can be selected from a list and are
linked to the different visualizations.

Although many visualizations for anomaly and periodicity detection exist, to our
knowledge none consider detection of anomalies in device data of industrial pro-
cesses. Visualizations designed for anomaly detection in network activity are not
suitable for this task since the typical periodic behavior is not taken into account or
is even classified as an indicator for malware activity. In OT networks, the periodic
nature can be exploited using spiral plots as proposed by Weber et al. [208]. A
three-dimensional adaption of spiral plots was given by Tominski et al. [195]. Hu et
al. use spiral plots to visualize alarm floods and their patterns in complex industrial
facility monitoring [86].

Using this idea, I developed a spiral plot based time-series visualization in collabo-
ration with Dr. Simon D. Duque Anton (DFKI Kaiserslautern), Heike Leitte (Visual
Information Analysis Group) and Christoph Garth, published and best paper at
VizSec 2019 [*116]. Besides our presentation at VizSec, we also presented our work
in an invited key-note at BKA Praxisforum 2019, titled “Detektion und Ermittlung
von Angriffen auf OT-Netzwerke und IoT-Netze” (“detection and determination of
attacks on OT-networks and IoT networks”). Together with Dr. Simon D. Duque
Anton, I developed an anomaly detection approach [*6, *7]. Its results provided the
basis for my work with Prof.Dr. Heike Leitte and Prof.Dr. Christoph Garth, resulting
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in a supporting visualization system for triage analysis in OT networks – the Security
in Process System.

In this System, the spiral plots combine device data with the anomaly detection
results. Like this, it provides a simultaneous overview of measurements and anomaly
detection results. The intuitive visualization allows the supervision of the system
behavior in normal operation and fast detection of attacks not only for cyber security
trained personnel, but also for laymen. Hence, an improvement of security by
supervision of the data is also possible in factories without dedicated cyber security
personnel. The visualization was designed and evaluated to support triage analysis;
it is presented in Section 6.3. Possible analysis strategies that can be used to verify
attacks, analyze their causes, and to detect false alarms are described in Section 6.4;
an expert evaluation is provided in Section 6.5 and user studies for our system
and a further developed version incorporating knowledge assistance are given in
Chapter 9.

Again, the general visualization tasks can be addressed with the system: using
the Security in Process System, it is possible to compare time series and their
development, identify and combine similar behavior within the readings of a single
device (f.ex. detecting periodicity) and between devices, and separate intervals
with abnormal behavior from normal behavior.

6.1 Application Background and Challenges

In our application, the data sources used to detect anomalies are PLCs monitoring
a modern six-stage process of water treatment. The data set contains a real-world
underlying process with introduced attacks and is provided by the iTrust, Centre
for Research in cyber security, Singapore University of Technology and Design [91,
129]. All attacks are documented, so a ground truth comparison of the results is
possible.

To provide an overview of our visualization system and its strengths, I track the
development of two components with illustrative results, namely sensor DPIT301
and actuator LIT401. For purpose and location of these components in the considered
water treatment process see Section 6.4 on page 113.
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6.1.1 Automated Anomaly Detection

The setting of monitored device data in industrial processes differs fundamentally
from monitored network activity in IT networks. While in the latter, periodic
patterns indicate attacks, in the former the absence of frequent patterns or periodicity
indicates anomalies. Thus, three different approaches for anomaly detection based
on prediction and comparison of the measurements were implemented and evaluated
by Duque Anton et al. [*6], namely one-class support vector machines, isolation
forests and matrix profiles. I contributed in development and implementation of
matrix profile approaches. While one-class support vector machines and isolation
forests are one-class classifiers that analyze the data on a packet basis, i.e. step by
step, matrix profiles are used to perform a time series analysis of a given complete
time frame. One-class classifiers require extensive training with a large amount of
data. This is time consuming and the data might not be easy to acquire. Even though
the detection capabilities of matrix profiles are increased with a larger data base for
comparison, they do not require formal training. Furthermore, compared to tuning
on hyper-parameters of the used one-class classifiers, matrix profiles require very
little tuning. This makes the detection easy to set up and robust to different kinds
of data. Based on these facts and the obtained results for the considered data set,
matrix profiles turned out to be most suitable for the task of anomaly detection. The
results shown in this part all base on anomaly detection using this approach.

Matrix profiles were developed by Yeh et al. as an algorithm for motif discovery
[217]. An interactive application can be found on their web page [130]. Matrix
profiles are based on the comparison of intervals of the analyzed data with the
remainder of the data. A distance (e.g. z-normalized distance) between the sub-
series of a given length m and all other sub-series of the same length is calculated in
a sliding window fashion. The u-normalized distance is calculated as follows:

d(x, y) =

√√√√ m∑
i=1

(x̄i − ȳi)2 with x̄i = xi − µx
σx

, ȳi = yi − µy
σy

Where σx and µx are standard deviation and mean value respectively.
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After applying Pearson’s Correlation Coefficient as described by Benesty et al. [17]

corr(x, y) = E((x− µx)(y − µy))
σxσy

=
∑m
i=1 xiyi −mµxµy

mσxσy
,

the Euclidean distance relates as described by Mueen et al. [139],

d(x, y) =
√

2m(1− corr(x, y)).

The resulting metric for distance calculation is then given by

d(x, y) =
√

2m
(

1−
∑m
i=1 xiyi −mµxµy

mσxσy

)
.

The minimal found distance is then used as measurement for the anomaly of the
current interval, the anomaly score. Thus, the algorithm checks if the considered
development re-occurs at other time points. To avoid missing attacks that are
executed multiple times, we implemented a counter for similar intervals and took
it into account when rating the anomaly probability. If an event is found more
infrequent than other events, it is likely to be an anomaly.

The final result of the anomaly detection algorithm is a score for every time step
and every device that indicates the probability of an anomaly in the readings. These
scores are divided into three categories, based on the height of the anomaly rating:

I values where an anomaly is unlikely,

II values that are extraordinarily high but are not high enough to clearly indicate
malicious activity and

III values where an anomaly is very likely.

The thresholds used for this categorization can be adapted to the used anomaly
detection approach. If not meaningful in a given context, category II can be omitted
from analysis by setting the thresholds accordingly. The thresholds in the presented
application have been chosen based on the values obtained from anomaly detection
on normal data. Having a small range in which values are classified as category II
directly above the range obtained when considering normal data provides a buffer for
possible normal values with slightly higher results and thus increases the credibility
of category III. While abnormal behavior might arise from sources different than
malicious activity, it should always be noticed and investigated. Furthermore, the
basic idea of using anomaly detection to detect attacks is that attacking the system
will lead to abnormal values.
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6.1.2 State-of-the-art analysis
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Fig. 6.2.: Anomaly detection results: (top to bottom) readings of two devices, anomaly
detection results for DPIT301 with chosen thresholds for categories II and III, and
the corresponding time slider.

Up to now, verification of detected anomalies was performed using basic time series
visualizations as in Figure 6.2. Five anomalies are detected in the given time frame
using matrix profiles. While the matrix profiles detect anomalies with a sufficiently
high probability, they do not indicate why an anomaly was detected. Identifying
the reason for the anomaly detection is challenging in this setting, as well as the
assessment of detected anomalies as true or false positives. For example, moderate
changes in the periodical behavior of the data are missed easily. Hence, a more
elaborate visualization is needed to support triage analysis, making use of the
periodic behavior of devices and supporting the understanding of anomaly detection
results.

6.2 System Requirements

While anomaly detection is a first step towards an early and fast detection of
attacks on the industrial process, its results need to be visualized for verification.
The following requirements for our visualization system have been identified in
cooperation with cyber security experts:

�R1 System monitoring and triage analysis should be supported simultaneously.

�R2 Detected anomalies should be clearly highlighted in the data.

�R3 Classification of values in category II as abnormal or normal, and

�R4 identification of false positives should be possible.
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a

Fig. 6.3.: The Security in Process GUI: a Time slider, b spiral chart and c options menu.
The time slider gives an overview on the complete available data and contained
anomalies. In the spiral chart, every device is represented by a spiral plot winding
from the center to the border. It encodes the measured data in color and the
anomaly score as line thickness.

�R5 The displayed information and the interaction possibilities should allow identi-
fication of false negatives.

�R6 The visualization system should render triage analysis by experts as well as by
laymen (in terms of cyber security) possible.

Depending on the algorithm used for anomaly detection, data for live monitoring
of the system is available: whiel Matrix Profiles only allow analysis of a fixed time
frame, the other algorithms work on packet basis and can be applied in real time.
Hence, live monitoring of the system should be possible where new values are added
to the data set at a given frequency.

6.3 The Security in Process System

We designed the Security in Process System according to our defined system require-
ments.
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(a) Period adjustment: automatically detected
(left) and manually adjusted period (right).

(b) Anomaly score visualization as line thickness
can be switched on (left) or off (right).

(c) Spotlights: Highlighting the hovered time step
in every spiral simplifies linking of concurrent
features.

(d) Anomaly highlighting: Hovering the alert sign
in the center of a spiral (left), areas of cate-
gories II and III are colored accordingly and
line thickness is animated (right).

Fig. 6.4.: Spiral plot features: period adjustment, anomaly score visualization, spotlights
and anomaly highlighting.

6.3.1 User Interface

The user interface consists of three main parts that are shown in Figure 6.3 on
the preceding page. The time slider (a) represents the complete data set and
provides an overview and the temporal navigation for the spiral chart (b). This
chart represents the main area of the visualization system. It provides a detailed
view on the time interval chosen in the time slider using one spiral plot per selected
device. Figures 6.4a to 6.4d illustrate the introduction of this component’s features.
The options menu (c) is hidden by default. Here, all visualization options can be
chosen and devices can be included or excluded from visualization. Also, the theme
of the whole visualization system can be switched between light and dark mode.
Requirements leading to decisions in the design process of single features are named
in parentheses.
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6.3.2 Overview and Detail

As shown in Figure 6.2 on page 107, the time slider represents the entire data set
and highlights detected intervals of categories II as warning and III as alert .

This is done across all available devices, providing an overview of the process status
(�R1, �R2). From the complete available data, a time frame can be selected
interactively to obtain detailed information in the spiral chart. The maximum size of
the selected time frame is set to four hours, covering 14,400 values at one data point
per second. This size was chosen based on the experience of the involved security
experts. The size of the spiral plots was chosen accordingly. If needed, spiral plot
size and the maximum visualized length can be adapted easily.

The spiral chart b in Figure 6.3 on page 108 visually encodes device data and
anomaly detection for the selected time frame. To fully exploit the periodicity
of the data and the possibility to detect anomalies visually, we chose spiral plots
for this visualization (�R1, ����R3-6). Our configuration of spiral plots is the
following:

The time axis is winding from the center of the spiral to the circumference. That
is, the most recent time point is always shown in the largest, outermost circle
at the top, highlighted by a small circular marker in corresponding color (�R1).
This is especially helpful when using the system in live mode, where new data
is streamed continuously in the visualization. New data points are added on the
largest, outermost circle of the spiral, providing most details for the most recent time
interval. Changes in the streamed measurements are accentuated by the change of
the marker’s color. As the endpoint of the spiral is fixed, widening the visualized
time frame results in growing of the spiral towards the center. The earliest visualized
time point is represented by the end of the spiral closest to its center.

The initial cycle length of each spiral is estimated using the zero-crossing method
on the corresponding device readings. As suggested by Weber et al. [208], the
cycle length of each spiral can be manipulated interactively, thus taking advantage
of the user’s pattern recognition abilities to combine similar patterns and increase
the accuracy of the presented period length (see Figure 6.4a on the previous page).
It also allows an adaption of the cycle length to a change in the data’s periodical
behavior during analysis (�R1, ����R3-6). Such a change could for example be
provoked by operator interventions as explained by Caselli et al. [35]. An example
is given in Section 6.4 on page 113. Increasing the cycle length, more time steps
are visualized per cycle and the overall spiral becomes shorter, with less revolutions.
Decreasing the cycle length results in fewer time steps per cycle and thus in a
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longer overall spiral with more revolutions that ends closer to the center. Since the
periodical behaviors of different device readings are a priori independent, the period
for each spiral plot is treated individually.

Colors in the spiral represent the different device readings either relative to all
available measurements obtained by the considered device or relative to the currently
visualized time frame. The first option is suitable to compare values of the currently
selected time frame to the overall values while the second one gives more detail on
behavior of the data in the current time frame. Among others, the Parula colormap
is available which is suitable for people with color blindness.

The pre-attentive attribute of line thickness [9] is used to provide information on
the calculated anomaly score at each time point, i.e. the probability for an anomaly
calculated by the employed anomaly detection algorithm (�R2, �R6): the thicker a
line is, the more likely an anomaly occurred. Values of category III are of a given
maximal thickness, values of category I of a given minimal thickness and values in
between (category II) interpolate between maximal and minimal thickness. To focus
on device readings and be able to compare them, the spiral plot can optionally be
drawn with a constant line thickness (�R1) as shown in Figure 6.4b on page 109.

As soon as the cursor hovers over any spiral on screen, the corresponding colormap
and value range are shown, and a spotlight follows the cursor to facilitate linking
between time points on spirals, their comparison and the combination of similar
patterns across devices. This spotlight will always highlight the point on the spiral
that is closest to the cursor. Simultaneously, spotlights in all other spirals highlight
the corresponding time point according to their cycle length in linked views. Due to
the fact that every spiral shows the same number of time steps but with different
cycle length, outermost and innermost points of all spirals coincide. In between,
the speeds of the spotlights differ. Keeping the spotlight behind the actual spiral
visualization enables the user to easily compare single data points at each visualized
time point (�R1, ����R3-6) (see Figure 6.4c on page 109).

6.3.3 Anomaly Highlighting

Detected (potential) anomalies are highlighted in the time slider as well as in
the spiral chart (�R2) to separate them from normal readings. Across the entire
visualization system, categories II and III are marked consistently with colored areas
and symbols: and . If both categories II and III are present, the highlighting for
the more problematic category III is chosen.
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In the time slider, time frames with suspicious readings in any device are highlighted.
The slider bar is colored accordingly in these areas. Centered above the colored area,
the corresponding symbol is shown. Clicking on this symbol, the selected time frame
is fitted to the corresponding area. In addition, all devices where the (potential)
anomaly was detected are selected for visualization, ensuring that the users are
able to identify all affected devices. After a time frame including data points from
categories II or III was selected, further highlighting is provided in the spiral chart.

In this detailed view, to emphasize the occurrence of (potential) anomalies in the
data, the corresponding symbol is displayed in the center of spirals that contain data
categorized as II or III. See for example devices LIT101 and DPIT301 in Figure 6.3
on page 108. Especially if the anomaly score visualization is deactivated and the line
thickness of the spiral plots is constant, these symbols ensure that attacks are still
clearly visible. Hovering over the symbol in a spiral’s center, data points contained in
the spiral plot of categories II and III are highlighted in the corresponding colors. To
further draw attention to the highlighted areas and to ensure that the highlighting
colors are not mistaken as part of the used colormap, line thickness is animated (see
Figure 6.4d on page 109) (�R3, �R4, �R6).

6.3.4 Interaction

Multiple interaction opportunities are provided to support monitoring of the process
and triage analysis of detected anomalies (�R1, �R6):

Navigating the overall data by manipulating the time slider is possible in multiple
ways: The borders of the selected time frame can be adjusted by dragging the border
markers or clicking on the slider. If the maximum size of the selection is exceeded,
the border that is currently not dragged is adjusted to obtain a valid interval. To
shift the entire selected time frame while keeping its current size, the arrow buttons
next to the slider can be clicked. If available, precisely known time points can be
entered directly below the slider in the time frame information. Clicking on symbols
indicating potential anomalies adjusts the time frame to include all corresponding
time points and selects all affected devices for visualization.

After the time frame is fixed, the updated plots on the spiral chart can be adjusted
individually. Clicking on a spiral, a slider to interactively manipulate the spirals
cycle length is shown. Options applying to all shown spiral plots are available in
the options menu. The colormap and its borders can be changed and visualizing
results from anomaly detection as line width can be toggled. To be able to focus on
individual device readings, the visualization can be limited to a subset of devices.
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6.3.5 Implementation and Scalability

The visualization system was implemented using web technologies (HTML, CSS,
and JavaScript) in the interest of portability and maintainability. The controls are
chosen to permit usage of the visualization system on touch screens. Significant
speedups compared to a naïve implementation were gained by rendering the spirals
using a given threshold ε and a maximal line length k. A line is started at the first
drawn time step and traced step by step with step size defined by the spiral’s cycle
length. As long as the first encountered data point of the line does not differ more
than ε from the following data points, a single line with a single color is drawn. The
line either ends when a higher difference occurs or the maximal length k is reached.
Hence, there are less lines drawn than time steps are contained in the spiral, leading
to a speedup in rendering time. This precludes a highlighting of single time steps
in the spiral, therefore the spotlight calculation does not rely on drawn elements
but is purely analytical. Spirals were implemented using the HTML SVG element,
re-calculation and re-drawing were minimized. In our tests, 51 different devices
were shown at a time and smooth real time-interaction was possible. This holds also
true when settings are changed.

Showing significantly more than the 51 devices would result in longer loading times,
and scrolling a long page full of devices would not be optimal. Having different
sub-pages with a meaningful division of the devices would facilitate the navigation,
provide a better overview and allow the system to asynchronously load additional
device data. Thus interactivity on single pages is assured. To mark potential threats
on different sub-pages, the established icons and colors could be used.

6.4 Analysis Strategies and Usage Scenario

To evaluate results from the anomaly detection in Figure 6.5 on the following page,
our visualization system was employed. The considered data set contains device
readings from a modern six-stage process of water treatment. The monitored sub-

processes are:

P1 Raw water storage

P2 Pre-treatment

P3 Membrane Ultra Filtration (UF)

P4 Dechlorination by Ultraviolet (UV) lamps

P5 Reverse Osmosis (RO)

P6 Disposal
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Fig. 6.5.: Anomaly detection results (extended Figure 6.2 on page 107): Ground truth is
provided and detected anomalies are highlighted.

Connections between the sub-processes are shown in Figure 6.6.
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Fig. 6.6.: Sub-processes of the used data set and their interplay: Attacked components
and the sensor and actuator considered in the usage scenario are highlighted.

The digital part of the system consists of a layered OT-network, PLCs, human machine
interfaces and a Supervisory Control And Data Acquisition (SCADA) workstation.
PLCs are industrial digital computers that are tailored to controlling manufacturing
processes and can be connected to devices. In total, 51 devices are controlled by the
PLCs. A detailed list including a description was given by Goh et al. [70]. Here, also
the attacks contained in the data set and their occurrences are described.

The differential pressure indicating transmitter controlling the back-wash process in
stage P3 (sensor DPIT301), and the actuator LIT401 reporting the water tank level
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of the tank in stage P4 are considered in this usage scenario. See Figure 6.6 on the
facing page for the location of these components in the overall process. The analyzed
data consists of 10,000 samples of normal behavior as a “base line” to compare
occurring patterns to, and 28,000 samples containing five attacks. Five anomalies
have been detected in the readings of sensor DPIT301. For actuator LIT401, just one
anomaly, coinciding with the first anomaly in DPIT301, was detected (not shown
here). This first detection is an artifact at the edge between normal data and data
containing attacks. Furthermore, the 4th detection in the readings of DPIT301 is
a false positive. In Figure 6.5 on the preceding page, the detected anomalies and
corresponding areas in the device readings are highlighted. In addition, the ground
truth is given, where value 1 stands for an attack. For every anomaly, a different
analysis strategy that is supported by our visualization tool is applied. The five
exemplary situations are:

• Period disruption: a sudden change in the period of the measurements occurs.

• Abnormal occurrence of values: values that are in the normal range occur
at an abnormal time point or for an abnormal length.

• Phase shift: the period of the measurement changes.

• False positive

• Abnormal values: values outside the normal range occur.

The illustrations in this section are reproduced from [*116].

Detected Anomaly #1, Period Disruption. This detection is caused by the edge
between normal data and data containing attacks. The combination of two data sets
caused a period disruption and a sudden change in values.
In our visualization system both effects are visible: The period of DPIT301 in the
normal data previous to any attacks was perfectly identified by the period estimation
(Figure 6.7a on the following page). Widening the considered time interval to
include the detected anomaly provides insight in the reasons for the detection
(Figure 6.7b on the next page): Clearly, the period of DPIT301 is disrupted in the
area that was detected as abnormal (left). In addition, the small, abrupt increase
in the values of LIT401 is visible, especially if the jet colormap is chosen (right).
Both abnormalities are easily separated from normal readings by comparing the
readings.

Detected Anomaly #2, Abnormal Occurrence of Values. Three short attacks in rapid
succession lead to this abnormal behavior. Two attacks were executed on permeate
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(a) The period of DPIT301 before the
first anomaly.

(b) The anomaly occurs: (left) Disrupted period,
(right) abrupt increase.

Fig. 6.7.: Anomaly #1.

conductivity analyser AIT504 measuring the NaCl level in sub-process 5 at the
reverse osmosis system. The expected outcome was missed and the attacks did
not lead to much change in the data. The third attack was on the motorized valve
MV101 that controls the water flow to the raw water tank at the beginning of the
process and level transmitter LIT101 controlling the raw water tank level. The valve
is kept on, while the transmitter is kept on a constant level, avoiding a shutdown of
the valve. This leads to an overflow of the raw water tank and propagates further
through the system, causing lagging.

This lagging is clearly visible using our system: After anomaly #1, the readings of
DPIT301 re-start their periodical behavior with a phase shift. After one cycle, the
next anomaly is detected, resulting in an extraordinarily long phase with low values
that can be separated from the periodical behavior. Although the new period is not
yet well established, this phase clearly stands out from the data and is obviously the
reason for the detected anomaly (Figure 6.8). Hence the visualization leads to the
correct classification of the detected anomaly as an attack.

anormal long phase 
with minimal values
at anomaly two

New period, established 
after first anomaly

Fig. 6.8.: Anomaly #2: An extraordinarily long phase with minimal values for DPIT301.

Detected Anomaly #3, Phase Shift. Here, the abnormal behavior was triggered by
an attack on the dechlorinator UV401 in sub-process 4, used to remove the chlorine
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from the water. It was stopped and the value of oxidation-reduction potential
analyser AIT502 monitoring the NaOCl level in the reverse osmosis feed was fixed
to prevent an alert. In addition, the pump P501 pumping dechlorinated water to the
reverse osmosis system was kept on. During the attack it was not possible to force
P501 to stay on; so a possible damage was avoided and the chlorine loaded water
was rejected at sub-process 6. This leads to higher input in the ultrafiltration process
which is visible in the readings of DPIT301 and LIT401 using our system after an
adaption of the period:
After anomaly #2, the period of DPIT301 from the second data set containing the
attacks is fully established. The estimated cycle length is no longer valid and the
periodicity is not easy to spot. The cycle length of the visualization can be easily
adapted by combining similar readings, so that a further analysis of the period is
possible (Figure 6.9).

Fig. 6.9.: Cycle length adjustment: (left) Automatically detected period length, (right)
after manual adjustment.

At detected anomaly #3, periods of DPIT301 and LIT401 change the phase shift.
Although in LIT401 no anomaly was detected, this shift is clearly visible in our
visualization system after adapting the cycle length (Figure 6.10). This identifies
the detected anomaly as an attack (which is confirmed by the ground truth). The
phase shift of LIT401 is also difficult to spot in Figure 6.5 on page 114, leading us to
the impression that our visualization system is indeed superior to naïve time series
visualizations, supporting a more detailed comparison of device readings.

Fig. 6.10.: Anomaly #3: Period shift.
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Detected Anomaly #4, False Positive. Around detected anomaly #4, no changes in
values or periods are visible. Hence, an attack at this time point is doubtable. In
fact, this detected anomaly is a false positive that can be identified fairly easy using
our visualization system (Figure 6.11), comparing the readings in the interval to
normal behavior.

Fig. 6.11.: Anomaly #4 is a false positive. No abnormal behavior can be spotted visually.

Detected Anomaly #5, Abnormal Values. The triggering attack for this anomaly
detection involved keeping the backwash pump P602 in sub-process 6 closed, setting
the value of DPIT301 to a high value and keeping the motorized valve MV302 that
controls the flow from the ultrafiltration process to the de-chlorination unit open.
This leads to a system freeze since no water from the backwash pump is available
while water transport from sub-process 3 to 4 is kept active. The reverse osmosis
feed tank runs dry.

Again, this attack is clearly visible in our system. Even tracing the origin of the
attack is possible: At the time frame of detected anomaly #5, the values of both
devices change tremendously and fast, indicating an attack. Choosing the colormap
relative to the current time frame, this is easy to see for both devices making it easy
to combine both as affected by the attack, and separate the anomaly from normal
behavior (Figure 6.12 on the next page).

The direct attack on DPIT301 and also the drop in values in LIT401 caused by the
dry running tank are clearly visible. In addition, the succession of visible effects
can be traced using the spotlights to compare and combine sensors. It indicates
that the attack first affected DPIT301 and propagated to LIT401 afterwards. This
provides a hint on the origin of the attack. At the beginning of the manipulation of
values in DPIT301, the anomaly detection provides values from category II, as the
value remains unusually high, category III is detected. This increase in values (and
thus line thickness) is clearly shown and separated from normal behavior. Hovering
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Fig. 6.12.: Anomaly #5: (left) sudden increase in DPIT301, (right) rapid decrease in
LIT401.

the alert icon at the spiral center, the segment of category II will be highlighted in
yellow, the segment of category III in red.

Overall, our visualization system proved useful in supporting cyber security experts
in their triage analysis tasks. Feedback of the experts is given in Section 6.5. User
studies for this system and a further developed version described in Chapter 8 are
given and discussed in Chapter 9.

6.5 Expert Evaluation

To evaluate usability and usefulness of our visualization system for cyber security
experts, an expert evaluation was performed. We interviewed an expert in the
context of a presentation and application of our system. Considering usability and
visual presentation of the application, the expert’s opinion was very positive. In
his judgement, identification of correctly and incorrectly detected anomalies was
easy to accomplish using our system. Especially the different employed highlighting
techniques for anomalies and potential anomalies were convincing. Also the overall
data representation in his opinion provided a good overview and the maximal length
of the visualized time frame is well chosen. The expert stated that our system
could be beneficial not only in an industrial cyber security context, but also for
process-level monitoring in industrial applications when used to augment existing
monitoring systems.

As an enhancement of our system, the expert suggested the possibility to not only
visualize continuous time frames, but to allow comparison of discrete time frames.
An application example would be periodic behavior of a process that is not on
an hourly scale but develops within several days. Furthermore, recurring attacks
performed by staff or external employees are conceivable. These would occur only
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during certain times of the day, or even at certain days of the week. Hence, providing
the possibility to show spiral plots not only per device but also per selected time
frame is an option for further development.

6.6 Discussion and Conclusion

Our Security in Process System supports triage analysis and monitoring of OT
networks. It exploits typical patterns that are often inherent in device readings from
industrial processes to enable cyber security experts and laymen to perform triage
analysis and monitoring of the system simultaneously. The main characteristic of our
visualization system are manipulable spiral graphs that combine the visualization of
device readings in their coloring with the results from anomaly detection in their
line thickness. Anomalies are highlighted using further pre-attentive properties like
form, movement and dedicated colors.

In the example usage scenario, we found that triage analysis using our tool was
effective, comfortable and superior to naïve time series visualizations. It also
supports the previously defined basic visualization tasks. Each correct anomaly
detection could be explained by different, clearly visualized features in the data.
Missing these features for the false positive easily leads to rejecting the detected
anomaly. Being able to switch the colormap boundaries from “relative to the whole
data set” to “relative to the current time frame” turned out to be helpful when
considering either long-term development in the data or local behavior, respectively.
Clear accentuation of anomalies using icons, line thickness and highlighting with
determined colors leads to an easy to understand overview of the data and potential
anomalies.

Options for further development of the system are the the automated proposition
of meaningful time frames based on the results from anomaly detection. Also, a
referenced visualization of physical device locations in the machines to support
orientation and consequently the meaningful division of the devices in groups
could increase the overview, especially when many devices are considered at once.
Moreover, embedding operational constraints in the visualization could be possible,
e.g. by putting device visualizations into context of an annotated layout plan
containing these constraints. Also, the enhanced analysis of inter-device relations is
currently only supported by the spotlight feature and could be more in focus of the
system.
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Based on user and expert feedback, we furthermore identified collaboration via the
system as an important addition to user support. Consequential, we developed the
enhanced Security in Process System that incorporates knowledge from a common
knowledge base in the visualization to allow collaboration and support between
users. The enhancement of the spiral plots also provides the opportunity to compare
multiple separate anomalies from separate time windows, as encouraged in the
expert interview. To enhance our system, we developed and used the Knowledge
Rocks Framework described in the following Chapter 7. Its application to the Security
in Process System is described in Chapter 8. Both, the Security in Process System
and its enhanced version are evaluated in user studies in Chapter 9.
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Fig. 7.1.: The Knowledge Rocks Framework provides all components that are required to
make a visualization system knowledge-assisted according to the KAVA model.

Knowledge-assisted visualization systems use stored knowledge to support analysis
tasks. The stored knowledge can range from different visualization strategies over
best practices in a single visualization system to specific application knowledge. The
provided support can be implemented as guidance regarding visualization settings or
choices, automated analysis and pre-processing of the input, generation of examples
and much more. For example comparing data not only to other readings in the same
data set, but to stored readings from the knowledge base, combining previously
analyzed results with current ones and separating behavior that is not part of the
knowledge base allows a deeper understanding of the data.

The utility of knowledge-assisted visualization systems is well understood: already
in the late 90’s, Fujishiro et al. developed the GADGET system that supports users
in choosing suitable visualization systems for their goals under given constraints
(e.g. data properties) [63]. Since then, the idea of knowledge assistance was
further augmented and formalized. Pike et al. declare knowledge-based interfaces
as an important research challenge [154], and knowledge-assisted visualization was
discussed in an issue of the IEEE Computer Graphics and Applications journal [42].

Also in the collaborative setting, knowledge-assisted visualization systems exhibit
their strength: users are able to share their knowledge between each other, even if
they are not using the system concurrently. Collaborative and cloud based visualiza-
tion systems both have access to the knowledge of multiple users and are able to
spread it among their users with a single, central knowledge base.
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Despite the usefulness and increasing necessity of knowledge assistance in visualiza-
tion systems, to our knowledge there are no general frameworks for its realization.
Specific implementations pursue different approaches and are not generally applica-
ble. Theoretical approaches, on the other hand, provide impulses concerning the
development of new knowledge-assisted systems, but significant transfer must be
performed on an ad hoc basis to translate theory into concrete implementations.
Finally, fully implemented frameworks that add knowledge-assistance to visualiza-
tion systems limit the possibilities of knowledge integration and interaction with the
knowledge base.

Hence, while incorporating knowledge assistance is a helpful enhancement for many
visualization systems, there is only few support for the enhancement of an arbi-
trary system. To not only enhance the Security in Process System to be knowledge
assisted, but also facilitate the enhancement of other visualization systems, I devel-
oped the Knowledge Rocks Framework together with Dr. Simon D. Duque Anton,
Prof.Dr. Christoph Garth and Prof.Dr. Heike Leitte. Christoph Garth and Heike Leitte
supported me in developing the framework, Simon D. Duque Anton provided useful
information on machine learning approaches for the application of the framework
to the Security in Process System (Chapter 8). With the Knowledge Rocks Frame-
work, we aim to bridge theory and practice of knowledge-assisted visualization by
simplifying the extension of existing visualization systems to become knowledge-
assisted, allowing an effective reactivation of software resources in the visualization
community. We published the framework at IEEE Vis 2021 [*115].

I present our Knowledge Rocks Framework in Section 7.2, with the derivation of
its requirements (7.2.1) and definition (7.2.2). Validation of its generality and
applicability is provided in Section 7.3, and its application to several examples is
outlined in Section 7.3.1. Chapter 8 then describes in detail its implementation in
the enhanced Security in Process System.

7.1 Review of Knowledge Assistance in Visualization

Knowledge-assisted visualization aims to incorporate knowledge into the visualiza-
tion process to support users [132]. Chen et al. provided a solid theoretical basis [40,
41, 132] and Federico et al. developed a conceptual model of knowledge-assisted
visual analytics – the KAVA model [57].

Around this basis, a particular taxonomy evolved. We give a short overview of
important terms.
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Tacit knowledge contains a user’s personal knowledge about data and insights gained
during the perception of the visualization [57]. Knowledge that is available to assist
the visualization forms the knowledge base. To incorporate tacit knowledge into the
knowledge base, it needs to be “written down” and become explicit knowledge. This
process is referred to as externalization[144, 205]. Besides direct externalization
where a user is explicitly writing down their knowledge, automated externalization
methods can be used that continuously extract knowledge in the background, for
example from user interactions (interaction mining). Different types of knowledge
provide different support when they are leveraged in knowledge-assisted visualiza-
tion: Operational knowledge is about handling the visualization system and supports
users in interacting with the visualization. Domain knowledge contains knowledge
about the analyzed data and helps users to interpret the content of the visualization.
Domain knowledge splits further in declarative knowledge explaining what can be
seen in the visualization and procedural knowledge about how to react to the data
and how to make decisions and take action in the application domain.

7.1.1 The KAVA Model

machine human

Kε D Kτ

A

P

E

X

S

V I

Fig. 7.2.: The KAVA model of knowledge-assisted visual analytics by Federico et al. [57].
The processes: Analysis A , visualization V , externalization X , perception/cog-
nition P and exploration E ; the containers: Explicit knowledge Kε , data
D , specification S , tacit knowledge Kτ , and a non-persistent artifact: im-
age I. Edges describe potential influences of data or knowledge stores and pro-
cesses. Components and influences that distinguish a visualization system from a
knowledge-assisted one are highlighted in red.

The KAVA model by Federico et al. (Figure 7.2) incorporates an explicit knowledge
store and several knowledge-related processes in van Wijk’s operational model
of visualization [212]. The basic knowledge assistance-related processes that are
represented by their model are:
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Knowledge Visualization Kε→ V . Visualization V of explicit knowledge Kε to
present e.g. automatically extracted knowledge.

Simulation Kε→ A→D. External knowledge Kε is analyzed A and applied to
generate new data sets D that provide users with supporting scenarios.

Automated/Intelligent Data Analysis (D, S / Kε )→ A→Kε . The application of
automated analysis A to data D to generate explicit knowledge Kε , given a
certain specification S or using explicit knowledge Kε respectively.

Direct Externalization Kτ→ X→Kε . The system supports users in actively formu-
lating tacit knowledge Kτ through an appropriate direct externalization interface
X to obtain explicit knowledge Kε .

Interaction Mining Kτ→ E→S→ A→Kε . Using their tacit knowledge Kτ , a
user explores E the data. The interaction with the system results in different
specifications S over time. These specifications are “mined”, that is they are
automatically analyzed A and contribute to the knowledge base Kε .

Guidance Kε→ A→S. Explicit knowledge Kε is analysed A and used to guide
the user’s choice of settings S . As described by Ceneda et al. [36], there are different
degrees of guidance: visual cues, providing alternative options, and prescribing
specifications. An example for visual cues is the marking of abnormal high values in
our exemplary implementation in Chapter 8.

The KAVA model aims to inspire innovative design approaches for knowledge-assisted
visualization systems. Yet, creating such a system based on the model requires
substantial transfer from the theoretical model to a practical implementation. With
the Knowledge Rocks Framework, we lower this hurdle. To do so, we propose an
application-agnostic architecture built around an ontology definition that, integrated
in a visualization system, adds all functionality to the system to become knowledge-
assisted in terms of the KAVA model.
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7.1.2 Knowledge-Assisted Visualization Systems

There is a large variety in knowledge-assisted visualization systems that have been
developed so far and are described by the KAVA model. In the following, we present
a representative selection of recent systems to illustrate the wide range of applica-
tions. We furthermore use the presented systems as running examples to illustrate
requirement analysis and application of the Knowledge Rocks Framework.

�VUMO: Towards an Ontology of Urban Mobility Events for Supporting Semi-Automatic
Visualization Tools [181] – Sobral et al. describe two ontologies that formalize the
knowledge related to urban mobility events and visualizations respectively. They use
this knowledge base to propose appropriate visualization techniques. Furthermore,
they provide a pipeline for a user-centered design process of visualization tools.

�Knowledge-Assisted Comparative Assessment of Breast Cancer using Dynamic Contrast-
Enhanced Magnetic Resonance Imaging [143] – Nie et al. support physicians in
exploration and classification of breast lesions. Lesions get scored based on their
cluster structure and a knowledge base containing previously classified lesions using
a fuzzy inference system.

�Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible
Models in Draco [137] – Moritz et al. implement a knowledge base containing
visualization systems as well as hard constraints and weighted soft constraints
concerning their application. Aiming on the acceleration of the transfer of research
knowledge into practical tools, Draco guides users concerning visualization settings
and choices.

�KnowledgePearls: Provenance-Based Visualization Retrieval [184] – Stitz et al. pro-
pose a system to build and visually access a provenance graph that stores visualiza-
tion states and actions that occur during data analysis. They support direct access to
the provenance graph based on queries (by selecting properties, and formulating
statements in system or natural language) or based on created examples.

All of these systems support data analysis: By proposing an adequate visualization
(�,�), by proposing visualization parameters (�) and by intelligent data analysis
(�). A survey of 32 additional systems was given by Federico et al. [57].

Ontologies. In computer science, ontologies are a form of knowledge representation.
Drawn as graphs, nodes of ontologies with degree one represent instances and nodes
with higher degree represent classes or concepts. Edges represent the relationships
among the classes with the most common relationship being “is a”. Ontologies are
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ideal to store knowledge about whole classes (class-based knowledge) as opposed
to case-based knowledge about specific instances. They make stored knowledge
accessible for both –humans and computers– because of their hierarchical structure.
In addition, they have the ability to mutate as additional knowledge gets available.

According to Carpendale et al. ontologies will be indispensable in developing infras-
tructures for knowledge-assisted visualization [30]. This application is discussed for
example by Miksch et al. [132]; examples are the ontologies defined by Sobra et
al. to support integration and visualization of data from intelligent transportation
systems [181] and the three ontologies used by Gilson et al. to determine an ap-
propriate visualization for web data (domain, visual representation and semantic
bridging ontology) [67].

In our Knowledge Rocks Framework, the ontology is the starting point for an existing
visualization system to become knowledge-assisted. It is used for structured storing,
processing and retrieving of knowledge.

We anticipate that knowledge-supported visual analysis will play a seminal role in
future visualization systems and provide with the Knowledge Rocks Framework sup-
port for the effective reactivation of existing visualization systems. To demonstrate
the high flexibility and generality of the proposed ontology-centered architecture, we
motivate our design choices based on the running examples in Section 7.2.1 on the
following page, and sketch their possible implementation based on the Knowledge
Rocks Framework in Section 7.3.1 on page 136.

7.2 The Knowledge Rocks Framework

The Knowledge Rocks Framework provides a process to incorporate knowledge-
assistance in a visualization system. It centers around an application-agnostic
architecture that includes the existing visualization system as one of three compo-
nents. Thus, the abstract process of knowledge incorporation boils down to the
concrete implementation of components and establishing their interaction. Within
this implementation, all processes of a knowledge-assisted visualization system –as
described by the KAVA model– can be reproduced. To become a component in
an implementation that bases on the Knowledge Rocks Framework, an existing
visualization system is only required to provide extensibility for the integration of
the knowledge-assistance and interfaces for component interaction.
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7.2.1 Requirements

The KAVA model is a general model for knowledge-assisted visual analytics. Hence,
it determines components that need to be added to a visualization system to make
it knowledge-assisted. These components are: explicit knowledge stored in a
knowledge base Kε and automated analysis A using this knowledge base. An
optional addition is support for direct externalization X . Required and optional
components are colored in red in Figure 7.2 on page 124.

We examined several knowledge-assisted visualization systems with respect to their
specific implementation of these components to obtain an application-agnostic
architecture with a wide application range. In the following, we exemplary discuss
the running examples given in Section 7.1.2 on page 126:

�VUMO’s knowledge base consists of two ontologies –a characterization of data and
a characterization of visualizations– and all integrated visualization systems and
data sets. New data sets or queries are automatically analyzed by classifying them
using the data ontology. The assigned perception factors are then used to link and
suggest visualizations from the knowledge base. VUMO supports direct externaliza-
tion by domain experts via the data ontology, and by visualization experts via the
visualization ontology and the proposed visualization development pipeline.

�The knowledge base proposed by Nie et al. contains scored lesions with their
linked clusters of time intensity curves, and linguistic rules that are created for
each stored lesion. The main focus of this system lies on the automated analysis
of dynamic contrast-enhanced magnetic resonance imaging data sets consisting of
time intensity curve extraction, clustering, and scoring of lesions. Externalization
of expert knowledge is supported by direct access to the knowledge base: scored
data is presented together with stored results to support a possible correction of the
scoring. Also, the human-readable linguistic rules for the scoring are available to
users.

�Draco’s knowledge base consists of specifications of visualization systems and
constraints. Its scope can be adapted depending on the application: Different
visualization types or different specifications for a single visualization type can be
stored. The input data –data properties and an incomplete specification of the
visualization– is used to automatically suggest an optimal visualization from the
knowledge base using cost functions with (optionally learned) weights. Hence,
the automated analysis of the data is the optimal completion of the specification.
Direct externalization by visualization experts is supported by providing a syntax to
describe visualizations and constraints.
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�The knowledge base of KnowledgePearls consists of a provenance graph together
with stored properties. These properties are currently considered as independent;
however, the authors state that additional knowledge concerning their dependencies
could be integrated, which is part of their future work. The focus of KnowledgePearls
lies on the direct access to the knowledge base, which is implemented with different
query options. Thus, automated analysis of user interactions is kept simple: they are
added to the provenance graph. The authors state that the size of the provenance
graph is a limiting factor for externalization support.

We extracted the following common patterns with respect to the required KAVA
processes:

In all systems, the knowledge base consists of two parts: A “passive” part with concrete
instances (visualization systems in � and �, lesions in �, provenance in �) and an
“active” part consisting of rules or constraints acting on these instances (ontologies
in �, linguistic rules in �, constraints and cost functions in �, stored properties
and their dependencies in �). This active part contains general relationships and
reasoning used to classify input data. It corresponds to the “concepts” component in
the structure defined by Rind et al. [162].

In the first three examples, automated analysis is implemented as the action of rules
or constraints on the analyzed data and the knowledge base: � – linking to stored
visualization systems using the ontology, � – automated lesion scoring based on
stored lesions and linguistic rules, and � – completion of the incomplete specification
using constraints, cost functions and stored specifications.

In �KnowledgePearls, the stored properties are currently not subject to constraints.
Thus, the automated analysis process does not rely on any rules or constraints. On
the other hand, KnowledgePearls is the only system among the considered examples
that focuses on direct access to the database. This access –via query, by definition or
example– follows the same pattern as the automated analysis in the other systems:
given (and potentially stored) rules and constraints are applied to the knowledge
base.

These observations –the knowledge base consisting of a passive and an active part
where the active part acts on the passive instances to provide automated analysis
or direct access– together with the structural definition of required and optional
components in the KAVA model lead us to the following architecture definition.
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Fig. 7.3.: Data flow between the three parts of the Knowledge Rocks Framework. Two
components are integrated in the visualization system (V): the acting ontology
(O) that automatically classifies the analyzed data and the database (DB) that
stores ontology instances and related structures.

7.2.2 Architecture Definition

The proposed architecture consists of two parts that are integrated into the existing
visualization system: an acting ontology and a supporting database to store the ontol-
ogy’s instances and related data structures. See Figure 7.3 for their interaction.

This structure implements the proposed structure by Rind et al. for domain knowl-
edge in visual analytics [162]. Concepts are stored in the acting ontology and data
sets in the database. The fulfillment of the desiderata they identified for structural
models of domain knowledge are either inherent in our system (knowledge should
be machine interpretable, pre-existing taxonomies can be used, implementation of
the knowledge sources proposed in [57], human readable knowledge, facilitating
the exchange between different systems) or depend on the specific implementation
(focussing on domain knowledge, compatibility with heterogeneous data, standard-
ized form to include provenance information e.g. using triggers in the database) and
the chosen language or tool for this implementation (software library support).

In the following we present the different parts of our framework, give implementa-
tion and integration details, and discuss advantages and design choices.

Acting Ontology. As the centerpiece of the resulting Knowledge Rocks Framework,
we define an acting ontology (O in Figure 7.3) as an ontology with callback func-
tions. These callback functions are defined for every class of the ontology and
allow automatic traversal by deciding based on input data to which neighbor of
the corresponding class the traversal proceeds. Hence, an acting ontology allows
automatic analysis and classification of input data.

Callback functions are formulated by domain experts and can include procedural
reasoning, machine learning and other structures that decide which path of an
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Fig. 7.4.: The acting ontology: The input data is classified as Class 2 if the callback function
returns A. right: In case of a callback function that classifies more in-depth than
the direct children, a list of possible results that is stored in a child’s properties
determines further traversal.

ontology to follow, and which thereby establish parent-child relations between the
nodes. By traversing the acting ontology to an instance, the input data is classified
as belonging to this instance.

Concerning the concrete implementation of the acting ontology, we suggest the fol-
lowing: the ontology must to be interpretable by a computer; hence we implemented
it in the web ontology language OWL [15]. Paths in the ontology are coupled to
results of the callback functions using ontology properties (cf. Figure 7.4): a class of
the acting ontology has a callback function as property. Every child of this class has
a property listing one possible output of its parent’s callback function, determining
which child is the next class on the path. In some cases, a callback function is able
to classify more in-depth than its direct children. In this case, a child class might
not contain a callback function but a list of its children’s properties. A concrete
implementation is discussed in Chapter 8.

We chose the ontology based approach for the following reasons: ontologies are a
useful tool to capture and externalize knowledge. Furthermore, their structure allows
them to capture the active part of the stored knowledge. They are able to capture
both, quantitative and nonquantitative knowledge, which is for example useful in
Biology which is “notoriously nonquantitative” as pointed out by Carpendale et al.
[30]. Also, they impose minimal boundaries to the designer who is able to choose
classes, instances and their relations freely and still make the stored knowledge
machine readable. The ability of ontologies to support knowledge externalization
can be derived from their proximity to learning and brain storming techniques
like mind maps [29] and –even closer– concept maps [146]. There is an active
research field treating knowledge externalization techniques including ontologies:
for example Ishikawa et al. propose an ontology based approach for knowledge
externalization in companies [90], and Aranda-Corral et al. developed a tool that
allows the collaborative development and improvement of an ontology [8]. All
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results from this area can be applied to design the ontology of the Knowledge Rocks
Framework and develop it further.

Our choice to couple the ontology with callback functions to make it an acting
ontology bases on several aspects: to allow automated analysis and direct access to
the knowledge base by applying the “active” part of the knowledge (stored in the
ontology) to the stored instances, an acting part with executable rules and constraints
is required. By incorporating this acting part directly in the ontology, we avoid a
gap between concept and implementation. Knowledge by domain experts that is
captured in the ontology is directly part of the knowledge-assisted visualization
system. The most common relation between two classes in ontologies –“is a”– is in
most cases easily translated in a callback function that tests if the given input “is
an” instance of the different descendant classes. Designing more elaborate callback
functions on the other hand requires the identification of logical flow between the
defined classes and thus provides additional support for knowledge externalization.
Finally, the acting ontology is machine and human readable and thus presents a
piece of self-documenting code that can further support knowledge externalization
(for example the user classification of instances that fail traversing the ontology)
and the understanding of the visualization system.

Database. The database (DB in Figure 7.3 on page 130) stores the “passive” in-
stances and is tightly coupled to the acting ontology by the classification of instances
as classes that are contained in the ontology. The nature of these instances is defined
in the specific implementation, but we suggest to focus on domain knowledge as
proposed by Rind et al. [162]. Whether the visualized data and the knowledge base
reside in the same database is a design choice – depending on the stored knowledge,
having both in the same database can avoid data amplification. Instances are stored
automatically with all required additional information, after their classification by
traversing the acting ontology. Hence, analyzed data that has been classified can be
linked to data examples of the same class from the database. Stored data examples
can contain operational data to support the visualization e.g. “All instances of the
class ‘Contains Vortex’ are visualized using streamlines”. They also can represent
domain knowledge, e.g. typical patterns in the analyzed data. See our enhancement
of the Security in Process System in Chapter 8 for examples.

The database is required since our system is intended to potentially store numerous
instances. Storing them (and related data) in the acting ontology would make them
difficult to access. In addition, a lot of background information and data points might
be stored for an individual instance, blowing up the acting ontology. Databases are
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the intended tool for such applications, providing easy access to customizable data
structures. The link to the acting ontology is given by the stored classification, that
is the parent class in the ontology structure.

Visualization System. Finally, both entities –acting ontology and database– need
to be coupled to the given visualization system (V in Figure 7.3 on page 130).
Besides automatic analysis that takes place in the background, there are two main
types of interaction between users and the knowledge base in a knowledge-assisted
visualization system: receiving guidance from the system and direct access to the
knowledge base via knowledge visualization (as described in the KAVA model,
Section 7.1.1 on page 124). In our framework, both types rely on the acting
ontology.

Guidance can help to narrow a user’s knowledge gap by building upon various inputs
like data, interaction history, stored domain knowledge and more [36]. The different
guidance approaches –visual cues, providing alternative options, and prescribing of
specifications– can either depend on a whole class of instances (for example a visual
cue: “All instances of the class ‘Abnormal high values’ are visualized with a cue in
the respective area”), or depend on individual instances (for example prescribing of
specifications: “This specific example is visualized with a period of 3.5”). In the first
case, they are triggered directly by the classification via the acting ontology: as soon
as the provided data is classified as a class with a property that triggers guidance,
this trigger is passed to the visualization system and processed. In the latter case,
guidance is offered if the instance that triggers the guidance is selected. An example
for this is the optional prescription of stored specifications in our implementation in
Chapter 8.

Visual cues and alternative options require enhancements of the existing visualization
system. While visual cues are incorporated directly in the visualization, alternative
options are visualized stand alone, in a similar fashion as the analyzed data to allow
a comparison. A straightforward possibility is to use the existing visualization not
only for the analyzed data but also for related instances. Then, both visualizations
can be combined using for example juxtaposition or superposition. Of course, more
elaborate or application specific techniques can be applied and are in many cases
preferable. A survey on comparative techniques in information visualization was
given by Gleicher et al. [69]. They also provide a design strategy for comparative
visualization [68]. In Scientific Visualization, comparative visualization of three-
dimensional ensembles was addressed by Demir et al. [47], Zhang et al. address
tensor fields [220] and Verma et al. present comparative flow visualization [198].
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Direct access to the knowledge base requires structures that allow filtering and query-
ing of the stored data. Allowing to choose classes and paths in the acting ontology
provides these structures. Using an interactive ontology visualization, users are
able to browse different instances in the database by choosing classes until only
currently helpful instances remain. The user’s decision which path to take in the
acting ontology can be supported by comments in the callback functions describing
the reasoning behind the functions. These comments can be made accessible using a
documentation generator. Furthermore, browsing the acting ontology can support
users in manually classifying instances if the automated classification fails for some
reason. There are multiple ontology browsers with different visualizations available:
for example jambalaya [186] and OntoViz [180]. A recent survey on this topic was
given by Dudas et al. [50].

An example for an acting ontology with callback functions, a database structure and
the integration in a visualization system is given in Chapter 8.

7.3 Implementation Steps for KAVA Processes with the
Knowledge Rocks Framework

Via the step-by-step implementation of the Knowledge Rocks Framework in a con-
crete application, knowledge-assistance is added to the embedded visualization
system.

1. Specify the knowledge that builds the knowledge base, identify classes and
instances and build the ontology and the database structure.

2. Add the active part of the knowledge base: implement callback functions
that allow a traversal of the ontology and hence automated classification and
analysis.

3. Integrate the knowledge base into the visualization system.

There are many possible interactions and processes that are typical for knowledge-
assisted visualization systems and that can be implemented with the Knowledge
Rocks Framework. In the following, we sketch the implementation of knowledge-
assistance-related processes as described in the KAVA model (Section 7.1.1 on
page 124):

Knowledge visualization requires structures to browse the knowledge base. In the
Knowledge Rocks Framework, the database can be queried by an interactive visu-
alization of the acting ontology. Selecting specific classes, a user is able to restrict
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the obtained results and search for useful instances that are classified as one of
the selected classes. Besides automatically offered guidance by the system, this
visualized acting ontology allows users to get an overview of the available data in
the knowledge base. The visualization of the result is provided by the visualization
system, either stand alone or illustrative, in addition to the visualization of currently
analyzed data.

Automated and intelligent data analysis is performed by the acting ontology in
form of automated classification. Processing and analysis steps are incorporated
in the callback functions. To implement intelligent data analysis, the analysis and
classification can be automatically improved by either changing the ontology or the
callback functions, for example by training contained machine learning systems.

Direct externalization of tacit knowledge is supported during the implementation
of the system by requiring the definition of the ontology and its callback functions.
During operation of the knowledge-assisted visualization system, the ontology’s
structure, the documentation of its callback functions and the provided classifications
further support knowledge externalization.

Interaction mining and other automated knowledge generation processes are possible
by automating the collection of specification data. After the collection was triggered,
the collected data is automatically classified by the acting ontology and stored in the
knowledge base.

Guidance can be implemented as described in Section 7.2.2 on page 130, based on
the classification of the currently analyzed data by the acting ontology. It can either
be triggered by the class in the acting ontology directly, or by instances of the same
class that are stored in the database.

Simulation is a priori not a purpose of the Knowledge Rocks Framework. We focus on
the analysis of existing data, not on creating new data. Nevertheless, an extension
of the acting ontology-idea could be able to provide this, for example by linking
functions that are able to generate data.

Thus, embedded in the KAVA model (Figure 7.1 on page 122), the Knowledge Rocks
Framework keeps nearly the same connections as the knowledge-assisted specific
components Kε and A in the original model (Figure 7.2 on page 124). The edge
A→D is missing since the Knowledge Rocks Framework does a priori not support
simulation. A symbolic edge from the acting ontology to the externalization process
X is added, emphasizing support for users in externalizing their tacit knowledge.
This support is provided via visualization KR → V , but also by providing a common
taxonomy for all users. The proposed architecture provides the structure to build

7.3 Implementation Steps for KAVA Processes with the Knowledge
Rocks Framework
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the knowledge-assisted visualization on. Possible interactions with the knowledge
base in a concrete implementation strongly depend on the integration of the added
components in the system and may differ substantially. Rind et al. give some typical
approaches for the integration of knowledge in visualization systems [162] and
discuss an example for knowledge assistance with direct knowledge access [200].
Ceneda et al. developed a framework to guide the development of knowledge-
assisted visualization systems [37].

7.3.1 Application of the Framework

DCE-MRI Data Set
initialAnalysis()

No Lesion
"no lesion found"

contains

Lesion
"found lesion"
evaluateRS()

Small Lesion
"small"
FIS()

Benign
0 ≤ score ≤ 2

is

... Malignant
6 ≤ score ≤ 8

Medium Lesion
"medium"

FIS()

...

Large Lesion
"large"

FIS()

...

Fig. 7.5.: Sketch of a possible acting ontology for �: The classes correspond to the lin-
guistic variables. The analysis of DCE-MRI data sets is represented in this acting
ontology: after initial analysis –determining if there is a lesion detected or not–
the lesion size is determined based on the relative size (RS). The lesion score is
then based on the Fuzzy Inference System FIS. The visualization of this ontology
has no correspondence in the original paper. Nonetheless, this would provide
users a better understanding of classification options and boundaries in the system
and a common terminology.

We briefly discuss possible implementations of the running examples using the
Knowledge Rocks Framework, reproducing the functionality of the examples based
on an acting ontology with attached database. The various natures of these examples
demonstrate the wide range of results that can be achieved with the framework. A
detailed case study of our application to the Security in Process System is given in
Chapter 8.

�In VUMO, Sobral et al. define ontologies and discuss functions for automated
classification, providing the callback functions in the acting ontology. The input data
(a data set or the result of an analyzer) is classified by the data ontology resulting in
a mobility event class, and spatial and temporal domains. With this classification set,
the knowledge base can be queried to find an appropriate visualization based on the
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defined human perception factors. Integration of visualization systems is done using
the visualization ontology.

�The linguistic variables defined by Nie et al. provide the classes for an ontology
definition (Figure 7.5 on the facing page). After the initial analysis of the data using
clusters from the database, the classification of a lesion’s size is done via evaluation
of the relative size (RS). To further classify the result in terms of lesion scores, the
linguistic rules are evaluated. The storage structure of lesions and clusters is easily
implemented in a database. Using the classification by the acting ontology, the
database can be queried for similar lesions with the same clusters and classification.
The visual integration of the system is as described in the paper.

�With the knowledge base consisting of visualization specifications in Vega Lite
syntax, a possible ontology for Draco is similar to a semantic tree of this syntax. An
example for this and for possible hard and soft constraints is given in Figure 7.6.
The callback functions deciding which soft constraints to follow or violate evaluate
the cost functions. The ranked SVM discussed in [137] can be incorporated as such
a callback function. Thus, the search implemented in Draco can be interpreted as
depth first search in the tree structure of the ontology.

Visualization
determineMark()

Line Plot
"Line"

...

...

Point Plot
"Point"

determineShape()

Square Plot
"Square"

...

... Cross Plot
"Cross"

shouldBeBlue()

Area Plot
"Area"

...

...

Fig. 7.6.: Extract of a possible acting ontology for �, following the semantic tree of the
Vega Lite syntax. A hard constraint is that only point plots can have a shape.
shouldBeBlue() is an example for a soft constraints for point plots with cross
shape. This callback allows different paths, potentially generating costs when the
constraint is violated. A depth first search in the complete ontology corresponds
to Draco’s search. Although it is not implemented in Draco, showing this ontology
to the user would provide an overview of possible options.

�For KnowledgePearls, the interaction provenance graph represents the knowledge
base and is already stored in a database. While structuring the properties in an
ontology is still under research, a simple tree structure representing one property per
level can be used instead of an ontology. With this tree structure, the classification
and querying of mined interactions is possible. Querying using natural language
or SQL syntax can be implemented on top of the ontology. Fuzzy search is a priori
not implementable using our system since searching by classification gives absolute
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1 def callbackfunction_left(data):
2 #based on data it is decided which neighbor of class A is the next class in the traversal
3 if data > 0.5:
4 return "A" #traversal proceeds with class 2
5 elif data > 0.8:
6 return "B" #traversal proceeds with class 3
7 else:
8 return "C" #traversal proceeds with class 4
9

10

11 def callbackfunction_right(data):
12 #based on data it is decided which neighbor of class A is the next class in the traversal
13 if data > 0.5:
14 return "A" #traversal proceeds with class 5, then further to class 2
15 elif data > 0.8:
16 return "B" #traversal proceeds with class 5, then further to class 3
17 else:
18 return "C" #traversal proceeds with class 4
19

20 #defining this dict, calling the defined functions is easily possible based on their name
21 callbacks = {}
22 callbacks["callbackfunction_left"] = callbackfunction_left
23 callbacks["callbackfunction_right"] = callbackfunction_right

Fig. 7.7.: Exemplary callback function implementations for the acting ontologies in Fig-
ure 7.4 on page 131.

results. The process can be mimiced by selecting multiple classes and rank the
resulting instances based on the number of their ancestors that are selected. More
details on this are given in the discussion of limitations (Section 7.5 on page 140).
Query by example on the other hand is built in our framework: the user generated
example is classified by the acting ontology and appropriate results from the database
are presented.

The following tools can be used to implement the Knowledge Rocks Framework:
The acting ontology can be created using Protégé [147] in Web Ontology Language
(OWL). Software packages for loading OWL representations are readily available for
a variety of environments. For example it can be loaded into Python using Owlready2
[109] and into javaScript using owlreasoner [94]. To keep the acting ontology easy
to read and to support the implementation and debugging of the functions, only
the references to callback functions are given in the ontology properties. Hence, an
additional file with callback implementations needs to be provided. An exemplary
structure of such a file for the acting ontologies in Figure 7.4 on page 131 is given in
the code in Figure 7.7.
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7.4 Discussion and Limitations.

While the Knowledge Rocks Framework provides an uncomplicated starting point
for the extension of visualization systems to be knowledge-assisted, there are still
some hurdles that need to be cleared for such an extension and some limits in the
framework itself.

The Ontology Structure. As the centerpiece of the Knowledge Rocks Framework,
the ontology needs to be designed by experts and possibly with some effort. In some
applications the structure of the knowledge to be stored is easy to find, but in other
applications it might be a challenge to create an ontology structure. As a fallback,
one can always use the tree structure representing one property per level instead
of an ontology. Many callback functions need to be implemented in this case and
browsing the tree to access the knowledge base is not as efficient as it could be
with a carefully designed ontology. In addition, the design and implementation of
callback functions potentially requires further expertise; however, we did not en-
counter substantially higher implementation complexity when using our framework
compared to implementing the knowledge assistance from scratch. On the contrary,
by directly incorporating results by domain experts, the implementation effort for
developers can decrease.

Query Limitations. Since the Knowledge Rocks Framework bases on the classi-
fication of analyzed data and instances, fuzzy search with different keywords is
not possible. Nonetheless, searching for multiple properties at once is possible by
allowing the selection of multiple classes in the ontology. Ranking of the results
based on the number of selected parent classes can provide similar results to a fuzzy
search.

Since the classification is performed based on the ontology structure, it might be
necessary to split especially real valued properties based on different value ranges.
This prohibits searching for an exact value in the knowledge base. A solution for this
is a second search in the search results of the ontology-query, searching for specific
property values in the returned instances.

Required Extension of the Visualization. To be as general as possible, the Knowl-
edge Rocks Framework gives a basic structure and leaves the integration in the
visualization to the users. The visualization needs to be extended for example to
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incorporate selected instances and to show instances from the knowledge base. Even
the most simple approach using juxtaposition requires some implementation effort,
especially if linking of the different visualizations is implemented. However, this
effort is required also without using the Knowledge Rocks Framework.

Misleading Knowledge. Misleading knowledge is one of the biggest issues in
knowledge-assisted systems; if wrong information is added to the knowledge base,
assistance can lead to wrong assumptions. While preventing this is only possible
on user-side, one can still try to make the system more robust against such cases,
for example by sanity checks or by proposing multiple options from the knowledge
base to the user such that outlier can be identified. In case of the ontology, different
evaluation methods are available [159].

7.5 Conclusion

Knowledge-assisted visualization systems are playing an important role due to
increasing complexity of both, data and visualization systems. With the Knowledge
Rocks Framework, we support the extension of existing visualization systems to
incorporate knowledge assistance.

Based on the KAVA model, we determined components that are required to make
a visualization system knowledge-assisted; then, we isolated these components in
several knowledge-assisted systems and derived an application-agnostic architecture
to provide them. After the validation of the Knowledge Rocks Framework using the
KAVA model and giving implementation pointers, we applied it to several knowledge-
assisted systems to demonstrate the wide range of possible results.

As future research opportunities, more applications of our framework and possi-
bilities to support the creation of an acting ontology on the structural and the
implementation side can be investigated. Also, limitations of the Knowledge Rocks
Framework with respect to the size and structure of the acting ontology can be
researched. In addition, possibilities to allow editing of the acting ontology by users,
guided by ontology validation and possibly frameworks that support the creation of
callback functions is promising in many applications and could be supported by the
framework.

Depending on the implementation of the callback functions, the classification via
the acting ontology bases on causality or correlation; this can even differ between
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classes. Support to distinguish these in the Knowledge Rocks Framework are an
interesting research topic for the future. Also handling misleading information that
got into the knowledge base is an interesting research topic for KAVA systems in
general, the Knowledge Rocks Framework, and concrete implementations.
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The Knowledge Assisted
Security in Process System

8

Visual Cue for abnormal values

cba
LIT301

d

Fig. 8.1.: The knowledge-assisted Security in Process System bases on the Knowledge
Rocks Framework. a Readings without detected anomaly. In case of anomalies,
visual cues for abnormal values b and instances from the knowledge base are
added to the spiral plot of the analyzed data using a stream graph c. The time
slider is augmented to show related instances from the knowledge base d.

Together with Dr. Simon D. Duque Anton I applied the Knowledge Rocks Framework
to the Security in Process System presented in Chapter 6. This application was
published as detailed user study in the Knowledge Rocks paper at IEEE Vis 2021
[*115]. As a short recall, the requirements for the system design were:

�R1 System monitoring and triage analysis should be supported simultaneously.

�R2 Detected anomalies should be clearly highlighted in the data.

�R3 Classification of values in category II as abnormal or normal,

�R4 identification of false positives should be possible.

�R5 The displayed information and the interaction possibilities should allow identi-
fication of false negatives.

�R6 The visualization system should render triage analysis by experts as well as by
laymen (in terms of cyber security) possible.

Knowledge assistance in the enhanced Security in Process System aims on additional
support for

�R3 by providing the classification of similar cases from the knowledge base,
allowing comparison and combination with previous results,
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�R4 by comparing detected anomalies to false positives in the knowledge base to
separate them from correct alerts, and overall,

�R6 by allowing collaboration and knowledge transfer between users.

In addition, enhancements of the system that are independent of the knowledge
base support �R5 by giving a detailed overview of the complete data set in the time
slider.

In this chapter, I follow the implementation steps of the Knowledge Rocks Frame-
work, outlined in Section 7.3: first, I define the knowledge base in Section 8.1.
Then, I define structure and classes of the acting ontology and implement callback
functions that allow an automatic traversal (Section 8.1.1). After the definition
and implementation of the knowledge base’s input and (automated) output in Sec-
tions 8.1.2 and 8.2, I describe how to integrate the knowledge in the Security in
Process System in Section 8.3. I provide an expert evaluation and usage scenarios
in Section 8.6 and discuss the results. In Chapter 9, I present user studies for the
original Security in Process System and our enhancement.

8.1 Knowledge Base

The Security in Process System is used by multiple analysts concurrently and/or
asynchronous in a shift work schedule. Building a knowledge base can significantly
improve the usefulness of the system, providing support for understanding and
decisions, especially since the system addresses both, experts and laymen (�R6).

As an anomaly detection system, the Security in Process System focuses on incidents
that are defined as periods of the analyzed time series with a high abnormality
rating. Shared knowledge can for example incorporate exemplary instances of
proven attacks, instances of falsely detected anomalies, visualization settings for
individual devices, and visual cues for specific classes of incidents. Thus, the active
knowledge stored in the acting ontology is based on incidents, and it is used to
classify readings of devices with high abnormality rating. It is active in the sense that
stored incidents from the database are described and classified by the knowledge in
the acting ontology.

The instances stored in the database represent the passive knowledge. They consist
of readings of possibly multiple devices within a fixed time frame and represent
interesting values and patterns of different devices regarding one specific incident.
Since different devices often correspond to different incident classes during a single
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incident, an instance in the database is identified by a set of classification labels.
Additional information, like for example periods of the spiral plots and chosen color
maps can be stored with a link to instances and individual devices. Based on this
information, guidance is provided. The database schema is shown in Figure 8.2.

instance_id int NOT NULL

FK1

FK2

FK3

sensor_id int NOT NULL

class_id int NOT NULL

Classes

PK class_id int

classification_name text

description text

annotation text

Sensors

PK sensor_id int

sensor_name text

normal_min real

normal_max real

Instances

PK

description text

duration real

normal_max real

annotation text

title text

Instance_Data Sensors_Instances

FK1

FK2

sensor_id int NOT NULL

timestamp text

value real

anomaly_rating real

settings text

annotation text

instance_id int

instance_id int NOT NULL

Fig. 8.2.: Database schema designed as part of the implementation of the Knowledge
Rocks Framework based on the Security in Process visualization System.
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8.1.1 Acting Ontology

Incident
callbackFalsePositiveCheck()

False Positive
True

Anomaly
False

callbackAnomalyType()

Abnormal Values
"abnormal values"

Type: {High,Low}

Abnormal Occurrence
"abnormal occurrence"
callbackPeriodicTest()

Periodic
1 ,2

Phase
Shift

1

Frequency
Change

2

Not Periodic
3

callbackDisruptType()

Pattern
Disrupt

"pattern"

Period
Disrupt

"period"

Fig. 8.3.: The incident based acting ontology for the Security in Process System: callback
functions (blue) and properties (yellow) that are required for the traversal. The
OWL code for this ontology is given in Figure 8.4 on page 147.

To classify incidents, we define the acting ontology as shown in Figure 8.3 with the
following classes:

Incident. A series of readings that have been assigned a high abnormality rating;
either an anomaly or false alert.

False Positive and Anomaly. As direct children of the incident class, these classes
represent a false alert and the parent class for all anomaly types. An anomaly is
either the occurrence of abnormal high or low values or the occurrence of values
within the normal range at an unexpected time step ("Abnormal Occurrence").

Abnormal Values and Abnormal Occurrence. Normal ranges for the individual
devices can be determined using readings during incident-free operation. They are
stored as sensor properties in the database. Anomalies are classified as abnormal
values if they contain readings outside the normal range; if applicable, they are
assigned the type High or Low. Abnormal occurrence of values refers to values that
are within the normal range but do not follow the normal pattern of the considered
time series (for example they disrupt an established period). Depending on the
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behavior of the system before and after the incident, we distinguish between periodic
and not periodic abnormal occurrences.

Periodic and Not Periodic. An abnormal occurrence of values is periodic if the
considered time series is periodic before and after the incident with a possible
transition at a constant value between two periods. The "Not Periodic" class describes
all remaining abnormal occurrences of values.

Phase Shift and Frequency Change. A periodic abnormal occurrence is a phase
shift if the phase of the period is shifted and the frequency remains the same. If the
frequency changes, it is a frequency change.

Pattern and Period Disrupt. A non-periodic abnormal occurrence is a period disrupt
if an existing period is disrupted and does not re-occur. If there was no existing
period, it is a pattern disrupt.

Note that to keep Figure 8.3 on the preceding page comprehensible, additional
properties are omitted. Especially for the anomaly instances (e.g. phase shift,
frequency change, pattern disrupt and period disrupt), class-based remarks, actions
to be taken and visualization settings such as visual cues can be added.
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1 <rdf:RDF>
2 <owl:Ontology rdf:about="http://www.co−ode.org/ontologies/ont.owl"/>
3 <owl:Class rdf:about="#Abnormal_High">
4 <rdfs:subClassOf rdf:resource="#Abnormal_Values"/>
5 <rdfs:isDefinedBy>5</rdfs:isDefinedBy>
6 </owl:Class>
7 <owl:Class rdf:about="#Abnormal_Low">
8 <rdfs:subClassOf rdf:resource="#Abnormal_Values"/>
9 <rdfs:isDefinedBy>6</rdfs:isDefinedBy>

10 </owl:Class>
11 <owl:Class rdf:about="#Abnormal_Occurrence">
12 <rdfs:subClassOf rdf:resource="#Anomaly"/>
13 <rdfs:comment>callback_periodic_test</rdfs:comment>
14 <rdfs:isDefinedBy>abnormal_occurrence</rdfs:isDefinedBy>
15 </owl:Class>
16 <owl:Class rdf:about="#Abnormal_Values">
17 <rdfs:subClassOf rdf:resource="#Anomaly"/>
18 <rdfs:isDefinedBy>abnormal_values</rdfs:isDefinedBy>
19 <rdfs:comment>Type: High/Low</rdfs:comment>
20 </owl:Class>
21 <owl:Class rdf:about="#Anomaly">
22 <rdfs:subClassOf rdf:resource="#Incident"/>
23 <rdfs:comment>callback_anomaly_type</rdfs:comment>
24 <rdfs:isDefinedBy>False</rdfs:isDefinedBy>
25 </owl:Class>
26 <owl:Class rdf:about="#False_Positive">
27 <rdfs:subClassOf rdf:resource="#Incident"/>
28 <rdfs:isDefinedBy>True</rdfs:isDefinedBy>
29 </owl:Class>
30 <owl:Class rdf:about="#Frequency_Change">
31 <rdfs:subClassOf rdf:resource="#Periodic"/>
32 <rdfs:isDefinedBy>2</rdfs:isDefinedBy>
33 </owl:Class>
34 <owl:Class rdf:about="#Incident">
35 <rdfs:comment>callback_false_positive_check</rdfs:comment>
36 </owl:Class>
37 <owl:Class rdf:about="#Not_Periodic">
38 <rdfs:subClassOf rdf:resource="#Abnormal_Occurrence"/>
39 <rdfs:comment>callback_disrupt_type</rdfs:comment>
40 <rdfs:isDefinedBy>3</rdfs:isDefinedBy>
41 </owl:Class>
42 <owl:Class rdf:about="#Pattern_Disrupt">
43 <rdfs:subClassOf rdf:resource="#Not_Periodic"/>
44 <rdfs:isDefinedBy rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">pattern</rdfs:

isDefinedBy>
45 </owl:Class>
46

47 <owl:Class rdf:about="#Period_Disrupt">
48 <rdfs:subClassOf rdf:resource="#Not_Periodic"/>
49 <rdfs:isDefinedBy>period</rdfs:isDefinedBy>
50 </owl:Class>
51

52 <owl:Class rdf:about="#Periodic">
53 <rdfs:subClassOf rdf:resource="#Abnormal_Occurrence"/>
54 <rdfs:isDefinedBy>1,2</rdfs:isDefinedBy>
55 </owl:Class>
56 <owl:Class rdf:about="#Phase_Shift">
57 <rdfs:subClassOf rdf:resource="#Periodic"/>
58 <rdfs:isDefinedBy>1</rdfs:isDefinedBy>
59 </owl:Class>
60 </rdf:RDF>

Fig. 8.4.: The OWL code for the incident based acting ontology in Figure 8.3 on page 145.
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Our implementation of the callback functions includes pattern matching, machine
learning components, and procedural reasoning to illustrate the variability of the
Knowledge Rocks Framework.

callbackFalsePositiveCheck decides if an incident is a false positive. This can only
be decided by experts concerning individual instances. Hence, this callback function
is implemented as a pattern matching for existing instances in the database of type
“False Positive” with a small threshold. False positives can hence only be detected if
a similar example is already contained in the database. In detail, the matrix profile
method by Chin-Chia et al. was used [217]. It returns True if the incident was
recognized as a false positive and else False. These return values are linked to the
classes “False Positive” and “Anomaly” via their properties.

The matrix profile method provides the minimum distance between two time series
when moving the first series over the second. It also provides the offset in time for
one of the time series that results in this minimum distance. Hence, the results of
the matrix profile method are not only used to determine the similarity to existing
instances of false positives in the database; they are further used to determine the
optimal position (offset) for stored instances from the database with respect to the
analyzed time series. That is, the method determines at which position (in time)
stored instances fit best to the given data.

callbackAnomalyType determines the high-level anomaly type. Since determining
whether or not values are in their normal range is straight forward, this callback
function tests for abnormal values. If there are any, abnormal values is returned
and the incident is classified with the appropriate type if applicable. Else, abnormal
occurrence is returned and the traversal proceeds with the class “Abnormal Occur-
rence”. The return values can be chosen arbitrarily, they just need to be stored in
the properties of the classes accordingly.

callbackPeriodicTest decides whether or not periodicity is present before and after
the anomaly. This is done by testing if the anomaly can be classified as a child of
the periodic class (that is as phase shift or frequency change) using two isolation
forests trained for novelty detection. If one of the forests recognizes the given time
series as known, the according value (1 for phase shift, 2 for frequency change) is
returned. If both forests recognize the data, the value with the highest probability is
returned. If both forests classify the data as novelty, 3 for “Not Periodic” is returned.
Since this approach classifies more in depth than the next level in the ontology, the
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class “Periodic” has a list of possible return values as property and does not have a
callback function attached.

Isolation forests, as used in this callback function, are one-class classifiers. In contrast
to binary or multi-class classifiers, they are trained on one class of events, which
is used to generate the classification model. After this, in the testing or operating
phase, new events are classified to either match or not match the classification model.
Hence, their application in the acting ontology is straight forward for the binary
decision whether or not the input data belongs to a certain class. This approach is
often used since novelties or outliers are by default sparse and occur significantly less
frequent than normal events. While common classifiers assume an even distribution
of classes, one-class classifiers handle the sparsity of outliers well.

Dynamic environments often show a drift of events, meaning that over time, the
values and frequencies change. If a trained classification model is used to detect
outliers, the performance degrades as a consequence of this value drift. This
degradation of performance can be circumvented by re-training a classification
model. This approach goes well together with the mutant nature of the acting
ontology.

Since the occurrence of specific classes of anomalies in the data set are limited, we
used synthetic training data. Examples for the training data and the generation
approach are given in Figure 8.5 on the following page. Exploiting explicit domain
knowledge to improve results of machine learning processes is an active field of
research [77, 199]. Machine learning techniques like isolation forests enable the
acting ontology to act on the knowledge base via simulated cognitive processing
[41]. Chen et al. describe knowledge-assisted visualization with simulated cognitive
processing as an opportunity to overcome the shortcomings of knowledge-assisted
visualization with acquired knowledge representations.

callbackDisruptType decides whether previous to the disruption a periodical pat-
tern was present in the data. There are several ways to detect periodical behavior.
We used auto-correlation as an input for a one-class classifier returning pattern if
no period could be found and period disrupt if it recognized the input as periodic
previous to the incident.
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Fig. 8.5.: Training data examples for phase shift and frequency change detection. The
first row of each plot contains the original device readings that were used to
create training data. The following rows contain generated data with the settings
provided in the plot header.
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8.1.2 Suggesting Related Instances

After classification of incidents in the analyzed data using the acting ontology, related
instances from the database are automatically presented to users to compare them
as decision support (�R3, �R4, �R6). The selection process works as follows: the
classification of incidents results in the classification label set for all devices reporting
an incident Clcur = {(c, cl)|c device, cl classification}. In addition, the matrix profiles
for every instance in the database and analyzed data have been calculated by
callbackFalsePositiveCheck. For each device c of each stored instance I, the
best matching position is stored together with the calculated distances dmin(c, I).
Based on the set of classification labels and the best matching position for every
case, the instances are ranked:

rank(I) =
∑

(c, cl)∈Clcur
⋂

Cldb(I)

dmin(c, I).

With Cldb(I) being the set of classification labels of the currently ranked stored
instance I. The five instances with the highest ranking are then suggested in the
enhanced time slider.

8.2 Storing Instances

Figure 8.6 on the next page shows possible workflows in the enhanced Security in
Process System. In case an analyst wants to store a new instance to the database,
that was separated from existing ones, the storing mode can be entered by pressing
a GUI button. The devices contained in the instance can be selected via mouse click.
Their classification by the acting ontology is presented and users can change it using
a drop down list containing all classes from the acting ontology. To get support for
the classification, users can access the ontology visualization with the given class
hierarchy and annotations from the callback functions.

In addition to the classification, annotations can be added for each device and for
the whole instance. After entering a name for the instance, it is saved with a second
click on the storing button. The stored properties are the selected devices and time
frame with the corresponding data and anomaly ratings, annotations, and current
visualization properties: period, selected color map and color map reference. After
instances are annotated by experts and added to the knowledge base, laymen are
able to benefit from the stored knowledge (�R6).
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The enhanced Security in Process System

Analysis

Choose timeframe

check marked sensors change period

browse proposed incidents

select/deselect/move incidents

create a new incident in the 
knowledge base

Select contained sensors

Check the
classification

Annotate

Fig. 8.6.: Workflow in the enhanced Security in Process System.
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8.3 Visualization

a
b

periods with potentially abnormal behaviorselected time frame,

selected instance instances with 3 and 2 components
stored annotation

components that are 
contained in the 
hovered instance

analyzed
data

related
instances

Fig. 8.7.: Original a and enhanced time slider b: The line graph now gives an overview
of the readings of all devices and related instances from the knowledge base.
Clustering ensures that devices with similar readings are adjacent.

As described in Section 7.2.2 on page 130, the visualization of the Security in Process
System needs to be extended to incorporate knowledge assistance. In contrast to
the original system, we implemented the extended Security in Process System using
D3.js [24] and python 3, framed by bottle [81].

The Enhanced Time Slider. The time slider now includes information on the sensor
readings and presents related instances from the knowledge base (Figure 8.7). To
render this possible, we used a line graph following ideas by Kincaid et al. [103]. The
analyzed data is shown on top, in a strand of device readings. Potentially abnormal
behavior is highlighted as in the previous version with symbols and colored bars
above the slider. Below the analyzed data, related instances from the database
are suggested with the same visual encoding and ordering to support comparison
and combination. Using the mouse, they can be selected, de-selected, and moved
relative to the analyzed data. The initial position of an instance is chosen according
to the minimum distance as described in Section 8.1.2 on page 151. When an
instance is hovered with the mouse, contained devices are highlighted in the time
slider and the spiral chart; in addition, stored annotations for the hovered instance
are shown as tool tip.

We optionally cluster the devices’ readings to ensure that devices with similar
patterns in their readings are adjacent in the time slider, supporting the comparison
and combination of devices with similar behavior. The spiral plots in the spiral
chart (b in Figure 6.3 on page 108) are re-ordered accordingly. Forming flat clusters
is achieved using the inconsistency method in SciPy [197]. Similar to the previous
version of the time slider, the selection frame can be re-positioned via drag and drop
and its width can be changed with handles on the borders.
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The enhancements of the time slider give an overview of the complete data set that
was missing in the original Security in Process System. Providing this overview
supports the identification of areas with abnormal behavior, even if the anomaly
rating is low (�R5) and supports comparison of readings across the whole data
set.

a b
analyzed 

data

handle at start
of selected instance

Annotations for 
the selected instances

High anomaly ratings
are contained in 

the shown readings 

Fig. 8.8.: Original a and enhanced spiral plot b: Readings can be compared and annota-
tions provide decision support.

The Enhanced Spiral Plot. Selected instances are shown in the spiral chart: we
extend the spiral plot by combining it with a stream graph similar to the approach
by Jiang et al. [95] (c in Figure 8.1 on page 142 and Figure 8.8). Using a stream
graph that is centered at the spiral’s center line, the thickness of the analyzed data
and compared and combined instances accumulates. The analyzed data is always
the innermost spiral. Handles at the beginning of a selected instance allow moving
the instance with respect to the analyzed data; this is in addition to dragging the
instance under the line graph. Annotations of the instance or its devices are shown
on top of the spiral chart or below the according spiral plots respectively. Since not
only the sequence of events but also their duration is important when searching for
anomalies in industrial process data, selected instances are always shown with the
same period as the analyzed data. Otherwise it would for example be possible to
hide or create differences in the period.

Since spacing between spiral twists is an issue if multiple instances are selected or
the anomaly rating is high, the maximum thickness for each strand is limited. If
necessary, this limit is automatically reduced. In addition, it would be possible to
change the selected period of the spiral to one of its integral multiples. Doing so,
less twists are rendered but patterns are still recognizable.

Ontology Visualization. Direct access to the knowledge base is only required to
support the manual classification of instances. To implement this, we implement
a basic ontology visualization in a browsable tree layout similar to Figure 8.3 on
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page 145. Having access to the different classes of the ontology supports users
(especially laymen) in collaborating and identifying anomalies (�R3, �R4, �R6).
This is because having a taxonomy and dependencies between classes provides a
framework to classify incidents and thus rate them appropriately.

8.4 Guidance

Proposed incidents below the time slider can be chosen freely by the user, providing
annotated examples to compare the current data with. Prescribing specifications can
optionally be invoked by pressing the Alt-Key when selecting a related instance below
the time slider. Then, linked visualization settings from the database are prescribed.
A classification of an incident as “Abnormal Values” triggers highlighting of the
period containing the abnormal values (b in Figure 8.1 on page 142), supporting
�R3 and �R6. Additional visual cues supporting the identification of patterns could
be implemented following the ideas by Ceneda et al. for spiral plots [38].

The provided guidance is an optional addition to the Security in Process System. If
none of the proposed incidents fits a situation where a user requires guidance (or
there is no incident proposed), the browsable ontology and automated classifica-
tion still provide support. In addition, users are urged to add the incident to the
knowledge base in such a case.

8.5 Data Size and Storage Access

The considered data set consists of readings and anomaly ratings for 28 sensors
at 467,919 time points. To create the enhanced time slider, every time step of all
selected sensors needs to be loaded from the server. If static data is analyzed, this
means that there is some seconds of loading time at system start. To keep this
loading times small, the resolution of the transferred readings outside the selected
time frame can be reduced. Changing the selected time frame, high resolution data
for this frame is loaded dynamically. Streaming data, only added time steps need
to be added to the right of the slider and cropped from the left, allowing fluent
streaming.

The knowledge base we created during the creation of the system consists of 26
incidents containing 23 different sensors over 615,844 time steps in total. Currently,
at system start all incidents are loaded to ensure fast access times. With a growing
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knowledge base, more elaborate storage management is required, for example
keeping incidents in memory based on their access frequency. During system use,
stored incidents are accessed every time a new sensor is selected or the selected
time frame is changed. Queries on the knowledge base during system use can be
performed asynchronous in the background via ajax. By running a local server,
access times are negligible. Remote access to the system might result in longer
loading times. Classification of sensor readings via the acting ontology is done in
milliseconds. Of course this runtime depends on the implementation of the callback
functions.

8.6 Usage Scenarios and Expert Evaluation

I interviewed an it-security expert in the context of exemplary usage scenarios of the
knowledge-assisted Security in Process System.

Abnormal High Values. In the time slider in Figure 8.9 an anomaly is indicated
around 3h 10’. While the frequency change in the readings of several devices is quite
obvious (combine), the sensor at the bottom of the time slider faces an incident
classified as “Abnormal Values” of type “High”. The linked visual cue highlights and
separates the period with abnormal high values in the spiral plot (b in Figure 8.1 on
page 142). While the frequency changes are much more striking than the high values,
the recorded attack actually originates on this device. The sensor was attacked, and
the value was raised to provoke the recorded reaction in different actuators.

The interviewed expert found it useful to be able to spot severe anomalies already
in the time slider and independent of the results of the anomaly detection (�R5).
According to him, the visual accentuation of different classified anomalies is a way
to directly share knowledge with domain experts; visual cues are immediately visible
and helpful (�R3). Especially values outside the normal range usually indicate
severe incidents, be it a damage in the machine or an intrusion. Adding annotations

Fig. 8.9.: Overview using the time slider: Significant pattern changes can be spotted in
the enhanced time slider.
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to the stored incidents made sense to the expert because they enable laymen to react
appropriately and support experts in troubleshooting (�R6).

False Positive Identification. In spiral a in Figure 8.8 on page 154, the high abnor-
mality rating for sensor DPIT301 triggers an alert, but there is no anomaly visible in
the readings. The decision to disagree with the anomaly detection process is now
supported by a related instance classified as “False Positive”. Matching the analyzed
data with the stored incidents in the database results in a very close match with
this instance. Thus, it is suggested as related and selecting it, the incident is added
to the spiral plot at the calculated optimal position. Comparing the readings, the
similarity becomes clearly visible (Figure 8.8b). With this support, we expect it to be
easier to identify false alerts by the anomaly detection system (�R4) and separate
them from actual incidents.

The intuitive incorporation of this very specific expert knowledge appeared fruitful to
the interviewed expert. In his opinion, expanding the database with both, common
and specific cases, to form a big knowledge base will be a huge support in triage
analysis.

Creating and Using the Acting Ontology. The interviewed expert was enthusiastic
to build a crucial part of the extended system as an ontology. In general, he finds
it helpful to categorize and classify incidents, and comparatively easy to build
the ontology. According to him, conducting research regarding the cause of an
anomaly is facilitated by its classification. In his opinion, also the externalized expert
knowledge on different anomaly types is helpful to get an overview, an idea of
anomaly sources, and to manually classify anomalies.

The expert highlighted positively that the ontology inherently introduces fundamen-
tal concepts that facilitate communication between experts and laymen using the
system (�R6). Also, he saw great potential in the flexibility of the Knowledge Rocks
Framework architecture, allowing for example one-class classifiers in the callback
functions.

Further Development. As possible further development of the system, the expert
recommended an automated prompt to add instances to the knowledge base where
closely related instances are missing in the knowledge base, and to make the
knowledge base (that is ontology and stored instances) accessible independently of
the system for training purposes.
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8.7 Conclusion and Future Work

The Knowledge Rocks Framework proved successful in its application to the Security
in Process System. By following the required implementation steps, we added
knowledge support, allowing collaboration and providing assistance in crucial and
basic analysis tasks.

There are several opportunities for further enhancements of the system. To simplify
access to the stored knowledge, additional visual cues for more anomaly classes are
an interesting option. Also, making the knowledge base accessible independently of
the system for training purposes is an additional option to benefit from the stored
knowledge.

To support the growth of the knowledge base, an automated prompt to add instances
to the knowledge base where closely related instances are missing can be helpful.
Also, the possibility to add unknown incidents with a “request” for annotations,
that are then classified and annotated by experts will improve the knowledge
base and boost collaboration between experts and laymen. Finally, mechanisms to
prevent misleading knowledge in the knowledge base need to be researched and
implemented.

We evaluated the Security in Process System in its original and enhanced version in
user studies and give the results in the next Chapter 9.
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Evaluation of the Security in
Process System

9
To evaluate our design of the Security in Process System (the original system) pre-
sented in Chapter 6 and of the knowledge-assisted, enhanced Security in Process
System (the enhanced system) presented in Chapter 8, I performed two detailed user
studies in cooperation with the HCI Group at the Technische Universität Kaisers-
lautern.

While the first evaluation was part of the Security in Process paper [*116], the
evaluation of the knowledge assisted Security in Process System was published stand
alone as a short paper at the TrEx Workshop taking place at IEEE Vis 2021 [*119]
in collaboration with Vera Memmesheimer, Frederike Gartzky and Christoph Garth.
Together with Vera Memmesheimer of the HCI Group, I developed the questionnaire
which was then implemented in an online tool by Frederike Gartzky. The results
were evaluated and interpreted by Vera Memmesheimer with my support.

The overall result of both evaluations show that triage analysis using the Security
in Process System is effective, comfortable and superior to naïve time series visu-
alizations. In both systems, a learning effect in terms of task completion time for
correct responses was observable. Using the enhanced system, more anomalies and
false positives were identified correctly. Overall, the Security in Process System with
assistance turned out to be the preferred system.

After giving details on the experimental design, performed tasks and the study
set up in Sections 9.1, 9.2 and 9.3, I present the the study results concerning
effectiveness, satisfaction, efficiency and cognitive load in Section 9.4 and discuss
them in Section 9.5.

9.1 Experimental Design and Procedure

To assess requirement �R6, the ability of laymen (in terms of cyber security) to verify
results of the anomaly detection using our system was evaluated by 15 participants
without background in cyber security in both studies.
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In the evaluation of the original system, 11 participants had a technical background
in IT or electrical engineering. After a short introduction to the system, the users
performed several tasks (see Section 9.2) and filled the questionnaire on effectiveness
along the way. Afterwards, they were asked to fill a questionnaire on usability of the
system.

The participants evaluating the enhanced system consisted of 6 women and 9 men
aged 24 - 44 where 13 participants had a technical background. Furthermore, some
participants had experience in visual analytics (7), with spiral plots (5) and with
the original system (3). A within-subject design was used to compare the usability
of the original and the enhanced system: the participants were asked to complete
several tasks (see Section 9.2), either once with the original and once with the
enhanced system, or only with the enhanced system if the task related to a novelty
without counterpart in the original system. To avoid learning effects, the order of
the systems was assigned randomly. In total, 9 participants started with the original
and 6 with the enhanced system. Because of the Covid-19 pandemic, this evaluation
was executed online with the evaluation tool presented in Section 9.3 on page 163.
Prior to each task, we provided an explanatory video to introduce the system and
establish a common knowledge basis. Each video had to be watched at least once
and could be replayed throughout the completion of the task.

In line with ISO 9241 - 10 and 11, we assessed the system usability for both systems.
For the enhanced system, we measured success rates and task completion times
throughout the experiment. Furthermore, we posed questionnaires about satisfaction
and cognitive load after the completion of the tasks with original and enhanced
system respectively. At the end of the experiment, we asked for the preferred
system.

9.2 Tasks

Overall, 7 different tasks where completed during the evaluations. The evaluation
of the original system was conducted to investigate the usability and the fulfillment
of the defined system requirements. The evaluation of the enhanced system on the
other hand does not consider all features that are present in the original system,
but focused on the comparison of original and enhanced system, and the impact of
knowledge assistance. Hence, some tasks were only completed during the evaluation
of the original system, and some tasks are only applicable to the enhanced system.
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Fig. 9.1.: The original time slider with warning and alert labels.

NT0 Thread Identification. The participants determined if the system is currently
under attack, and the time point where a thread occurs for the first time in the
considered data set. This task was only performed in the evaluation of the original
system, based on the warning and alert labels in the original time slider
(Figure 9.1).

NT1 Risk Evaluation. In this task, we presented readings rated as warnings by the
automated anomaly detection. The participants were asked to decide whether the
readings are abnormal or normal. For the evaluation of the original system, one
warning that was an actual anomaly and one warning on readings with normal be-
havior was presented. Evaluating the enhanced system, the participants considered
three cases of abnormal behavior and one with normal behavior. In the enhanced
system, proposed incidents from the knowledge base supported the user’s decision
similar to Figure 9.2.

Fig. 9.2.: This spiral plot contains readings rated as alert. Hovering or selecting a sug-
gested instance from the knowledge base, contained devices are highlighted in
the time slider and the spiral chart. Annotations are shown for contained devices
and the instance.

NT2 Alert Revision. The participants were asked to check readings that were rated
as attacks for abnormal behavior, and identify each example as true or false positive.
In the evaluation of the original system, each case was considered once. Evaluating
the enhanced system, two true positives and two false positives were identified
by the participants using once the original and once the enhanced system. Again,
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stored incidents from the database could be selected using the enhanced system,
supporting the decision (Figure 9.2 on the preceding page).

Fig. 9.3.: Periods with one (left) and two peaks (right).

NT3 Determining Periods. The participants were asked to use the period slider to
find the period of the shown sensor readings. In the evaluation of the original system,
one period with one peak and one with two peaks had to be determined (Figure 9.3).
Evaluating the enhanced system, two examples with two peaks per period and one
example with one peak were treated using the original and the enhanced system. In
the enhanced system, participants could apply stored periods from the knowledge
base to the spiral plots.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Fig. 9.4.: Irregularities in the enhanced time slider.

NT4 Spotting Irregularities. The original and the enhanced system provide different
support to spot suspicious measurements in an area detected as normal. In the
original system, participants were directed to a time frame with an undetected
anomaly and decided based on the spiral plots whether there is a false negative in
the anomaly detection or not. Furthermore, they were asked to determine the device
with abnormal behavior to capture their reasoning. In the enhanced system, the
enhanced time slider provides an overview of the complete data, such that a direction
to a specific time frame is not necessary any more. To evaluate this, we presented a
time slider containing an anomaly (Figure 9.4) and asked the participants to enter
the start time of a suspicious pattern.
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(a) Abnormal values. (b) Frequency change.

(c) Pattern disruption. (d) Phase shift.

Fig. 9.5.: Examples for different incident types.

NT5 Incident Classification. In this task, incidents in the sensor readings had to
be classified according to the ontology part of the knowledge base in the enhanced
system. To this end, we provided four out of five spiral plots representing a pattern
disrupt, period disrupt, phase shift, frequency shift, and abnormal high values along
with a picture of the ontology and background information on frequency and phase
of signals. See Figure 9.5 for the used examples.

NT6 Determining Affected Devices. To evaluate the warning and alert indications
in the spiral plots, participants of the evaluation of the original system were asked
to determine devices that are affected by a specific anomaly.

Table 9.1 on the following page gives an overview of the requirements that are
evaluated with the different tasks and in which evaluation the tasks were executed.

9.3 Evaluation Setup

Evaluating the Original System. All participants used the same workstation. After
a short introduction by me, based on a hand out with explanations of the system,
they went through a questionnaire that guided them through the different tasks.

9.3 Evaluation Setup 163



Task Evaluated System

NT0
�R1 Support of monitoring and analysis,
�R2 Highlight anomalies

original

NT1 �R3 Classification of warnings both
NT2 �R4 Identification of false positives both
NT3 �R1 Support of monitoring and analysis both
NT4 �R5 Identification of false negatives both
NT5 �R6 Support for laymen and experts enhanced
NT6 �R2 Highlight anomalies original

Tab. 9.1.: Evaluated requirements and the system that was evaluated with the respective
task.

The answers were written directly in the questionnaire and were either yes/no (NT0,
NT1, NT2, NT6), or numbers (NT3, NT4). In some tasks, devices that are affected
by an attack needed to be identified (NT0). There, the participants were asked to
provide a list of all affected devices.

Evaluating the Enhanced System Online. To be able to carry out an evaluation
of the enhanced system while respecting social distancing, the evaluation took
place purely remote. Participants independently navigated through our web-based
evaluation tool that guided them through different tasks that were solved using
both, the original or the enhanced system, whereby the the order of the systems
was chosen randomly. In the beginning, participants were asked to give personal
information and watch a video explaining the purpose of the system. Afterwards,
they navigated via buttons through the different tasks and sub-tasks, where each
main task was again explained by a video. Depending on the task, the participants
had to provide their answer via single choice (NT1, NT2, NT5) or via entering a
number (NT3, NT4). We tracked the answers and task completion times.

To ensure that all participants are able to execute all tasks although we were not
able to supervise the behavior of the system, we narrowed the available functionality
of the system down to specific examples. This was not the case for the evaluation
of the original system where users were free to use all available features, and we
were able to intervene if necessary. Because of this different setting, the focus of
the evaluation of the enhanced system lies on the comparison of single features in
original and enhanced system, instead of a general usability study. Furthermore,
the restricted functionality lead to different ratings and user satisfaction in both
user studies. Nonetheless, we are confident that the results of the evaluation of the
original system concerning features that exist in both, original and enhanced system,
also apply to the enhanced system.
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9.4 Results

With the execution of both user studies, we gained the following results on effective-
ness, satisfaction, cognitive load and efficiency.

9.4.1 Effectiveness
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Fig. 9.6.: Evaluation results for effectiveness assessed via success rates.

We assessed effectiveness in terms of success rates. To this end, we measured
whether participants selected the correct response option in tasks NT1, NT2, and
NT5. For NT3 we accepted answers in a range of 500s; for NT4 the frame for correct
responses was 960s wide. Both ranges were determined example based. The results
of both user studies are given in Figure 9.6.

Effectiveness of the Original System. In the evaluation of the original system, all
participants were able to identify a current potential thread in the system and 79%
were able to determine correctly the first time point a thread occurs in the overall
data (NT0). The period of device data at a given time interval was determined
correctly by 64% in case of a period with a single peak and by 50% in case of a period
with multiple peaks per period (NT3). While these numbers are comparably low, 93%
of the participants were able to detect some kind of pattern for a chosen spiral in the
spiral plot. Hence, the advantage of spiral plot visualization concerning the detection
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of disrupted or shifted periods is still present, even though the correct period was not
found. These results and the fact that 93% of the participants were able to correctly
determine the devices that were affected by a detected anomaly (NT6) lead us to
towards opinion that requirements �R1 (support of monitoring and analysis) and
�R2 (highlight anomalies) were implemented successfully in our original system.
Considering the classification of values with warnings in abnormal and normal
behavior (NT1), 100% of all participants were able to determine abnormal behavior.
The decision that an area of category II is actually normal was made correctly by
93%. With these results, we consider requirement �R3 (classification of warnings)
as met. 93% of all participants were able to identify a detected anomaly as a
true positive (NT2) and the detection of false positives was performed with 85%
success rate by the participants. Hence, also requirement �R4 (identification of
false positives) is met by our original system. Requirement �R5 (support of the
system in finding false negatives) was assessed by having the participants navigate
to an area marked as normal by the system that actually contained an attack. 100%
of all participants were able to identify this attack (NT4) and 93% were able to
determine the device with abnormal behavior correctly. Since this question was
last in our questionnaire, we see this perfect result as a hint to an existing training
effect, that was already present in a 10 minute survey. Also we consider requirement
�R5 as met. Requirement �R6, rendering verification by laymen (in terms of cyber
security) possible, was obviously met since all participants were able to understand
their tasks and perform most of them correctly. Overall, the participants navigated
confidently through the data in our visualization system and were able to make use
of the provided features to perform the tasks even after a short introduction to the
system. The visualization was described as pleasant, the dark visualization mode
was a clear favorite.

Effectiveness of the Enhanced System. Comparing the enhanced and the original
system, higher success rates were found for the enhanced system in NT1 and
NT2. As shown in Figure 9.6 on the preceding page, we found that the implemented
knowledge assistance especially supports the correct detection of anomalies and false
positives. Using the enhanced system, the participants identified more presented
anomalies (64%) than with the original system (47%). In NT2, the false positive
example was identified by 67% of the participants using the enhanced, but only by
13% using the original system. Concerning NT3, both systems performed equally
well in terms of success rates. In total, 89% of the periods were determined correctly,
affirming again the suitability of spiral plots for periodic behavior.
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NT4 and NT5 were only performed with the enhanced system. We found a par-
ticularly high success rate (93%) in NT4, showing that anomalies can be detected
effectively with the additional information provided by the enhanced time slider.
Using our ontology, 31% of the pattern and 38% of the period disruptions were
classified correctly. Phase shifts (55%) and frequency changes (77%) were identified
more often. 100% of the examples representing abnormal high values were classified
correctly, demonstrating the high effectiveness of the visual cue in the enhanced
spiral plot.

Comparing Both User Studies. Although both user studies were executed in differ-
ent settings and foci, a comparison of their results provides further insights. Overall,
NT1, NT2, NT3 and NT4 were performed in both user studies. To obtain conclusive
results in the evaluation of the enhanced system, our choices of presented examples
in NT1 and NT2 were more difficult than in the evaluation of the original system;
having success rates around 100% already for the original system would not allow a
significant increase for the enhanced system. Thus, the success rate of the enhanced
system for the risk evaluation of abnormal values and the detection of false positives
is even more encouraging. In NT3, the results for the enhanced and original system
in the evaluation of original vs. enhanced system outperform the results for the
original system. This could be caused by training effects and on the fact that in the
evaluation of the enhanced system, more participants had a technical background.
Although task NT4 was carried out in differing settings –in the original setting the
participants spotted irregularities in the spiral plots for a provided time frame while
in the enhanced system, only the enhanced time slider was available to spot them
and no time frame was provided– the results are surprisingly similar. Hence, we
think that having access not only to the enhanced time slider but also to the spiral
chart, the results for the enhanced system could even improve further.

9.4.2 Satisfaction

To assess and compare the user satisfaction with the original and the enhance system,
the participants filled a questionnaire in both user studies and select their preferred
system. They indicated their agreement with 9 respectively 11 statements on a
five-level Likert scale (predominantly disagree (1) - predominantly agree (5)) about
the systems suitability for the tasks (Q1-Q5), controllability (Q6), conformity with
user expectations (Q7), learnability (Q8, Q9), and overall satisfaction (Q10, Q11).
The last two questions were only answered in the evaluation of the enhanced system.
Answers of both evaluations are aggregated in Figure 9.7 on the next page.
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Fig. 9.7.: Evaluation results for satisfaction assessed via questionnaire.

Satisfaction with the Original System. Suitability of the visualization system for the
performed tasks was evaluated as very good by the participants. In their opinion, the
well-suited (Q3) and supportive commands (Q1) are relatively easy to find (Q4) and
not too many steps are necessary to achieve results (Q2). Controllability was rated
as very good (Q6) as well as conformity with user expectations (Q7). Several users
suggested to improve the navigation in the time slider by providing a possibility to
enter timestamps directly. This feature was added after the evaluation. Our previous
hypothesis that handling the visualization system is easy to learn is confirmed by
the participants impressions (Q8, Q9).

The effectiveness and satisfaction / usability assessment results shown are positive.
We interpret these results to indicate that the metaphors of our visualization system
are well chosen and that it is able to effectively support triage analysis in the
industrial context.

Comparing Satisfaction with Original and Enhanced System. As presented in Fig-
ure 9.7, the functions offered by the enhanced system were rated to be more
supportive (Q1) and the software to be more suited for task performance (Q3).
Similarly, the navigation in the enhanced system was rated better than in the original
system (Q6). Both systems received relatively low scores in (Q2), indicating that the
number of steps to perform a task is adequate. We believe that the slightly higher
score assigned to the enhanced system reflects the available knowledge assistance
functions. Both systems received especially high scores concerning the predictability
of results (Q7). It is easier for the participants to relearn the enhanced system (Q9)
and the overall interaction with it was rated more satisfying (Q11). In total, 80%
of the participants preferred the enhanced over the original system, affirming that
knowledge assistance is indeed helpful.
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Comparing Both User Studies. In the first user study evaluating the original sys-
tem, the implemented functions were rated as more supportive than in the second
evaluation (Q1). This reflects the restricted access to system features in the second
user study – participants were not able to use the implemented functions to full
capacity. The same holds true for Q3 and Q4 where the suitability of the system and
the accessibility of helpful commands was rated. Also the presentation on the screen
was restricted in the online evaluation, leading to lower ratings for Q5 and Q6. Es-
pecially Q6 is barely expressive for the evaluation of the enhanced system, since the
navigation possibilities within the system were almost none. Most navigation took
place via the evaluation website from task to task. Q8 is difficult to compare because
of differently posed questions. The difference in the rating of re-learnability (Q9)
could be explained by a lacking overview of the system in the second evaluation,
since only limited functions in different settings were available, without connection
between the examples as it was done in the evaluation of the original system.

9.4.3 Efficiency and Cognitive Load

Throughout the evaluation of the enhanced system, we recorded task completion
times to assess the efficiency. We measured a median task completion time of 45s
for NT4 and of 173s for completing the four examples in NT5. To compare the
original and enhanced system, we considered the task completion time of the fastest
correct response for NT1, NT2, and NT3. However, we did not find that one of
the two systems generally lead to a faster completion of the tasks when comparing
the respective task completion times for each participant. Instead, we found that
most participants were able to complete NT1 (80%) and NT3 (93%) faster with the
second system independent of the order of the systems. For these participants, we
measured an average task completion time decrease of 52% in NT1 and of 43% in
NT3 when comparing the fastest correct responses using the first to using the second
system.

Since cognitive overload could impede the fast and correct identification of attacks
during extended periods of usage, we measured cognitive load via the NASA-task
load index [78] during the evaluation of the enhanced system. To compute the
weighted rating (0 – 100), we followed the procedure described by the NASA [142]:
the participants were asked to rate mental, physical, and temporal demand as well
as performance, effort, and frustration after task completion with each system, and
to weight the sources of workload at the end of the study.
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While the average weighted workload rating measured for the enhanced system
(65) was slightly higher compared to the original (59), we observed the overall
weighted workload and ratings for the single workload scales to differ highly among
participants and systems. In total, 6 out of 15 participants experienced lower
workload with enhanced than with the original system.

9.5 Discussion of the Evaluation Results

Our Security in Process System exploits typical patterns that are often inherent
in sensor and actuator readings from industrial processes. This enables cyber
security experts and laymen to perform triage analysis and monitoring of the system
simultaneously. The main characteristic of our system are manipulable spiral plots,
that combine the visualization of sensor readings in their coloring with the results
from anomaly detection in their line thickness. Anomalies are highlighted using
further pre-attentive properties like form, movement, and dedicated colors.

We improve the support for triage analysis in OT networks in the enhanced Security
in Process System. Based on the Knowledge Rocks Framework, we integrated a
knowledge base; automatically suggested incidents from this knowledge base are
then incorporated in the visualization, providing direct support without additional
hurdles.

Based on the evaluation results, we believe our visualization systems are a useful
tool to make available not only for incident response or cyber threat hunting teams
working in the operational technology environment, but also for industrial compa-
nies without dedicated cyber security staff. In general, industrial control systems
providing anomaly scores on periodical data could profit from our visualization
approach.

In both evaluations, we found that periodicity could be monitored effectively and
users were able to spot changes in the periodic behavior of a device. Enabling
users to change the period of the spiral plots not only increases accuracy of the
shown period but also allows the user to react to changes in the period during the
process.

The evaluation with laymen w.r.t. cyber security clearly indicates that basic triage
analysis tasks can indeed be performed by them using our visualization systems.
Also, monitoring the readings of available devices in order to gain an overview of the
current process was possible. We are convinced that staff that is trained to work with
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the according machine performs even better in monitoring and detecting anomalies
in the behavior and could benefit considerably from our visualization tool. Based on
the learning effects we encountered in both evaluations, we also expect performance
to further increase after additional training, and rate our design as appropriate
for supporting triage analysis. This is also supported by the observed decrease in
task completion time sfrom the first to the second system in the evaluation of the
enhanced system. We believe that in addition, appropriate training will support
collaboration via the knowledge base and thus help leveraging the benefits of the
knowledge assistance provided in the enhanced system.

All requirements ������R1-6 were met successfully. The enhanced system added
knowledge assistance and collaboration possibilities. The majority of participants
selected the enhanced system as preferred and rated it to be more satisfying to
interact with, easier to relearn, and its additional functions to be more supportive.
Hence, we rate our design as successful. Especially the enhanced spiral plot turned
out to be particularly supporting for the detection of anomalies and false positives –
crucial tasks in triage analysis. Supporting visual cues resulted in an optimal
recognition rate for abnormal high values. With the additional information provided
in the enhanced time slider, the participants were able to spot irregularities in the
sensor readings directly from the time slider, which is not supported in the original
system.

In line with Sweller [188], we believe that extraneous load, that is the amount of
cognitive load evoked by system design, depends strongly on the user’s previously
established knowledge. In order to adjust the system design accordingly, further
insights regarding the variation of cognitive load across different tasks are needed.
This could also bring further insights regarding tasks that require “too many different
steps” (Q2) in the enhanced system. Thus, continuously assessing cognitive load is a
research opportunity, e.g., via changes in pupil diameter as described by Duchowski
et al. [49]. In addition, gaze patterns could be tracked, to analyze how system
features influence and support the user’s solution strategies. In particular, the impact
of the currently implemented and further visual cues and other guidance options
are interesting directions.
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Conclusion 10
Uncertainty is omnipresent when analyzing data, and sometimes difficult to handle
and incorporate in visualizations. With this thesis, I contribute to this active field of
research in different settings.

I presented new visualization approaches for the topological structure
of scalar field ensembles and time-varying scalar fields. Relying on
an adaptable, topology-based matching, these approaches provide high
flexibility and a novel simultaneous layout for multiple contour trees.
Linking to individual ensemble members reveals parameter dependencies.

With a new data structure for vector field ensembles, the fast generation
of visitation maps is now possible for ensembles whose size until now
prohibited interactive exploration with visitation maps. In addition,
the data structure can be used as compression with optimal results in
visitation map generation.

Triage analysis in operational technology networks is now supported by
a knowledge assisted system combining anomaly detection results with
monitoring of device readings. For the first time, a general framework
provides guidelines for the incorporation of knowledge assistance in
visualization systems.

I presented different applications for all introduced methods; still, there is a wide
range of applications in science, engineering and cyber security where my research
is applicable and contributes to future development and research.

Both application areas of Fuzzy Contour Trees –scalar field ensembles and
time-varying scalar fields– can be found in climate or geology related data.
In this case, adapting the metric in the alignment process to application
specific metrics, or even change the tracked features to application specific

features is possible. In general, our progress on simultaneous layouts of multiple
contour trees is beneficial in all scenarios involving several contour trees. While we
already considered time-dependent scalar fields, also the comparison of topological
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patterns in different locations or the comparison of the characteristics of different
samples is possible. Also in situ visualization, allowing an overview of the topological
structure of results during their creation is an area of research that becomes available
now.

Visitation maps are used in medicine and biology for fibre tracking; en-
countering data sets that limit the application of visitation maps, Visitation
Graphs can provide support and improvements. In addition, the represen-
tation of vector field ensembles as their corresponding Visitation Graphs

provides a new data structure with many opportunities. Further processing and
analysis is possible using graph algorithms. Clustering, comparison and interpolation
is possible from a whole new perspective and with different instruments. Also the
generalization of Visitation Graphs to three dimensions is a promising research
opportunity including research in space partitioning and visualization of visitation
maps in three dimensions.

The Knowledge Rocks Framework can be applied to general visualization
systems to support the effective reactivation of software resource in the vi-
sualization community. Even an application to other systems presented in
this thesis is possible, for example to the Fuzzy Contour Trees. In general,

knowledge assistance is an active field of research with challenging questions whose
future solutions can be implemented and made accessible via the Knowledge Rocks
Framework, boosting the prompt and frequent application of current research.

While the Security in Process System is designed for its specific application in
operational technology networks, anomaly detection in general device readings is an
active area of research whose results can be coupled with the presented visualization
and used to develop it further. Additional research opportunities lie in the field of
Human Computer Interaction: besides more elaborate evaluation strategies and
research on solution strategies using the system, a fundamental link between the
visualization of readings and anomaly detection results on one side, and reality (e.g.
machine locations, inter-device relations) on the other side is promising. Solving this
using augmented or virtual reality in a collaborative setting creates many research
questions, challenges and opportunities, also concerning knowledge integration in
the system.

In face of their wide range of applications in differing areas, all visualization systems I
developed during my research provide unique and sensible solutions for comparison,
combination and separation of data and provide a high-level overview of the data
and uncertainty structures. I published my work in different journals and presented
it in conference and invited talks.
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