Planning and Specification Problems for Multi-Robot
Systems, Powered by Formal Methods

Thesis approved by
the Department of Computer Science
Technische Universitit Kaiserslautern
for the award of the Doctoral Degree
Doctor of Natural Sciences (Dr. rer. nat.)

to

Ivan Gavran

Date of Defense: 24.6.2022.

Dean: Prof. Dr. Jens Schmitt
Reviewer: Prof. Dr. Eva Darulova
Reviewer: Prof. Dr. Nils Jansen
Reviewer: Prof. Dr. Rupak Majumdar
Reviewer: Prof. Dr. Daniel Neider

DE-386

https://www.informatik.uni-kl.de/en/
https://www.uni-kl.de/en/

Summary

Robotic systems are entering the stage. Enabled by advances in both hardware components and
software techniques, robots are increasingly able to operate outside of factories, assist humans,
and work alongside them. The limiting factor of robots’ expansion remains the programming
of robotic systems. Due to the many diverse skills necessary to build a multi-robot system,
only the biggest organizations are able to innovate in the space of services provided by robots.

To make developing new robotic services easier, in this dissertation I propose a program-
ming model in which users (programmers) give a declarative specification of what needs to
be accomplished, and then a backend system makes sure that the specification is safely and
reliably executed. I present Antlab, one such backend system. Antlab accepts Linear
Temporal Logic (LTL) specifications from multiple users and executes them using a set of
robots of different capabilities.

Building on the experience acquired implementing Ant 1ab, I identify problems arising
from the proposed programming model. These problems fall into two broad categories,
specification and planning.

In the category of specification problems, I solve the problem of inferring an LTL formula
from sets of positive and negative example traces, as well as from a set of positive examples
only. Building on top of these solutions, I develop a method to help users transfer their intent
into a formal specification. The approach taken in this dissertation is combining the intent
signals from a single demonstration and a natural language description given by a user. A set
of candidate specifications is inferred by encoding the problem as a satisfiability problem for
propositional logic. This set is narrowed down to a single specification through interaction
with the user; the user approves or declines generated simulations of the robot’s behavior in
different situations.

In the category of planning problems, I first solve the problem of planning for robots that
are currently executing their tasks. In such a situation, it is unclear what to take as the initial
state for planning. I solve the problem by considering multiple, speculative initial states. The
paths from those states are explored based on a quality function that repeatedly estimates
the planning time. The second problem is a problem of reinforcement learning when the
reward function is non-Markovian. The proposed solution consists of iteratively learning an

automaton representing the reward function and using it to guide the exploration.

ii

Zusammenfassung

Robotiksysteme sind auf dem Vormarsch. Fortschritte bei Hardware-Komponenten und
Software-Technologie fithren dazu, dass Roboter zunehmend Menschen bei Aufgaben as-
sistieren und in deren Umfeld eigene Aufgaben bewiltigen konnen. Das Programmieren
und Konfigurieren von Robotiksystemen erfordert viele verschiedenene Fertigkeiten, was
ein groBes Hindernis fiir deren weitere Verbreitung darstellt. Diese Anforderungen fithren
ebenfalls dazu, dass Innovationen im Bereich robotik-gestiitzter Dienstleistungen nur groflen
Unternehmen und Organisationen vorbehalten sind.

In dieser Dissertation stelle ich ein Progammiermodell vor, dass das Entwickeln solcher
Robotiksysteme vereinfachen soll. Das Modell erlaubt es dem/der NutzerIn (Software-
EntwicklerIn) das Ziel des Systems deklarativ zu spezifizieren, wihrend ein Backend-System
garantiert, dass die Spezifikation sicher und zuverlissig ausgefiihrt wird. Als mogliches
Backend-System stelle ich Ant 1ab vor, welches mehrere Roboter mit unterschiedlichen
Fihigkeiten steuern kann, sodass diese Spezifikationen in linearer temporaler Logik (LTL)
erfiillen. Aufbauend auf die Erfahrung die ich durch Implementieren von Antlab erhal-
ten habe, habe ich Probleme in Bezug auf das o.g. Programmiermodell identifiziert. Diese
Probleme lassen sich grob in zwei Kategorien einteilen: Spezifikation und Planung.

Um gewiinschtes Verhalten spezifizieren zu konnen, erldutere ich zuerst, wie eine LTL-
Formel aus einer Menge von positiven und negativen Beispielen sowie ausschlieBlich aus
positiven Beispielen hergeleitet werden kann. Auf dieser Losung aufbauend, entwickle ich
eine Methode um NutzerInnen zu helfen, ihre Intuition als LTL-Formel zu formalisieren.
Hierzu wird in dieser Dissertation eine einzelne Demonstration des beabsichtigten Verhaltens
mit einer Beschreibung in natiirlicher Sprache durch den/die NutzerIn kombiniert. Durch eine
Kodierung des Problemes als Erfiillbarkeitsproblem in propositioneller Logik werden mogliche
Spezifikationen generiert. Diese Menge an Spezifikationen wird durch Interaktion mit dem/der
Nutzerln auf eine einzige eingeschrinkt, indem dieser/diese verschiedene Simulationen als
korrekt oder falsch bewertet.

Zur Planung von Ausfithrungen beschiftige ich mich zuerst damit, wie Plédne fiir Roboter
erstellt werden, die bereits eine Aufgabe erfiillen. Hierbei ist es unklar, in welchem initialen
Zustand die Planung beginnen soll, weshalb wir mehrere spekulative Zustidnde in Betracht
ziehen. Die moglichen Wege von diesen Zustinden werden mithilfe einer Qualitiits-Funktion
erkundet, die die Planungszeit wiederholt evaluiert. Das zweite Problem beschiftigt sich mit
“Reinforcement Learning” (zu deutsch: Bestirkendes Lernen), wobei die Nutzenfunktion von
einer lingeren Historie von Zustinden und Aktionen abhingt (sogenannte “non-Markovian”
Nutzenfunktion). Die vorgeschlagene Losung lernt iterative einen Automaten, der die Nutzen-

funktion darstellt, und nutzt diesen um den Erkundungsprozess zu steuern.

1ii

Acknowledgements

This Ph.D. thesis comes at the end of a wonderful time, in which I encountered great
scientific collaborators and even greater people. I feel a need to convey my appreciation and
gratitude to those who were a part of this journey, privately or scientifically.

I spent five wonderful years in Kaiserslautern. This city (a Grofstadt, indeed) is very often
unfairly described as not exciting and lacking charm. I strongly disagree! In my years spent
here, I got to appreciate its beautiful nature, passionate football fans, and the unlikely mix of
natives, international students, immigrants, and personnel of the nearby military base.

In Kaiserslautern, my wife Mia and I had our first home. It is also the birthplace of our
daughter Klara. I am grateful to Mia for her love, encouragement, and support; we both are
grateful to Klara for helping us see the world anew.

I believe that my interest in science in general stems from the intellectually encouraging
environment in which I grew up. Setting up a beautiful playground of ideas was one of many
great things done by my parents, Marijana Gavran and Petar Gavran. Many thanks also to the
playmates, my sisters Lidija Okrogli¢, Zrinka Bohr, and Kristina Gavran.

Mine and Mia’s family also made it so that we never felt far away from our home country
Croatia: their regular visits and partaking in our new experiences made adapting to a new city
and country a smooth experience. We are also grateful to many friends who came to visit us:
in particular, our quite regular visitors Marija Serti¢ and Filip Lavriv. Thanks for not letting
the distance be an obstacle.

Max Planck Institute for Software Systems (MPI-SWS) was a perfect place for research: it
is largely due to great work by people who made sure we got all the support we needed. Vera
Schreiber, Susanne Girard, Corinna Kopke, Roslyn Stricker, Mouna Litz, Tobias Kaufmann,
Pascal Briehl, Andreas Ries, Mary-Lou Albrecht, Torsten Koch, Frank Zimmer, Geraldine
Andreson, and Christian Mickler made sure that everything non-scientific seemed extremely
easy and thus enabled me to focus fully on research. Their positive attitude towards us students
and willingness to assist even in private matters made us all feel at home.

In my five years here I had the opportunity to meet amazing researchers: they came as
guests, interns, or students; they stayed longer or shorter, but all of them were people to learn
from. Many good people were my friends and colleagues. We shared discussions, laughs,
problems, cakes, runs, travels, coffees, wines, and beers.

I joined MPI-SWS after hearing a great talk given by Filip Niksi¢. There, I was warmly
welcomed by him and Marko Doko, Ori Lahav, Dmitry Chistikov, Marko Horvat, Isabel
Valera, Johannes Kloos, Utkarsh Upadhyay, Sadegh Soudjani, Soham Chakraborty, and my
great first officemate, Rayna Dimitrova. With this group, I started enjoying playing board
games, quizzes, puzzles, and hours-long, free-ranging discussions.

With me and shortly thereafter, many new people joined who were forming a new gen-
eration of people at MPI-SWS. I am thanking all of them for the wonderful days we spent
together. They are Burcu Kulahcioglu Ozkan, Murat Ozkan, Azalea Raad, Samira Farahani,
Heiko Becker, James Robb, Kata Einarsdottir, Rosa Abbasi, Amir Mashaddi, Michalis Kokolo-

giannakis, Aman Mathur, Lovro RoZi¢, Laura Stegner, Hasan Eniser, Ezgi Eniser, Felix Stutz,

v

Tobias Blass, Clothilde Jeangodoux, Anne Kathrin Schmuck, Mehrdad Zareian, Mahmoud
Salamati, Ivan Fedotov, Numair Mansour, Stanly Samuel, Marcus Pirron, Ramanathan Thin-
niyam, Pascal Baumann, Mitra Nasri, Nastaran Okati, Arpan Gujarati, Ralf Jung, Juraj DrZi¢,
Asia Biega, and Manohar Vanga.

Kaushik Malik and I went through the Ph.D. journey together and graduated together, on
the same day: it was great to have him by my side, as a colleague and a friend. I am thankful
to my officemates, Simin Oraee and Rajarshi Roy, for gossips, jokes, and discussions. Damien
Zufferey introduced all of us to bouldering, while Manuel Gomez Rodriguez made sure we
always went a little beyond our limits in running and skiing.

Our institute is split between two locations, Kaiserslautern and Saarbriicken. I am grateful
to colleagues from Saarbriicken for always welcoming me warmly during visit days.

The third generation of students, who joined well after me, showed us how to properly
have fun and create even better research and friendly connections. I was proud to see them
and occasionally take part in the activities they organized. These great people are Stratis
Tsirtsis, Marco Maida, Marco Perronet, Ashwani Anand, Satya Prakash Nayak, Xuan Xie,
Tason Marmanis, Ana Mainhardt, Eiren Vlassi Pandi, Jie An, Jiarui Gan, Jaroslav Bendik,
Julian Haas, Eleni Straitouri, Nina Corvelo Benz, and Irmak Saglam.

I would like to thank Felix Stutz and Heiko Becker for their help with translating the
abstract of this thesis into German. Thanks to reviewers of the thesis, Eva Darulova, Nils
Jansen, Daniel Neider, and Rupak Majumdar: their comments improved the thesis. I would
like to thank the thesis defense committee chair Anthony Lin for presiding over an enjoyable
and lively discussion.

My development as a researcher was greatly influenced by my collaborators. I am grateful
to Damien Zufferey, Eva Darulova, Indranil Saha, Riidiger Ehlers, Bo Wu, Jorg Hoffmann,
Zhe Xu, Vinayak Prabhu, Sadegh Soudjani, Rayna Dimitrova, Ivan Fedotov, Heiko Becker,
Ufuk Topcu, Filip Niksi¢, Brendon Boldt, Viktor Vafeiadis, Richard Peifer, Aditya Kanade,
Jean-Raphael Gaglione, Nathaniel Bos, Wheeler Ruml, Elena Glassman, and Max Fickert. 1
learned from them about different topics of computer science and about being a good scientist.

I interned at Microsoft Resarch with Shaz Qadeer and stayed a couple of weeks at UT
Austin, in the group of Ufuk Topcu: thanks to all people there for joint work and inspiring
discussions. I too had interns, with whom I enjoyed working and who made significant
contributions to the projects in this thesis: Ivan Fedotov, Brendon Boldt, Jan Corazza, Eman
Eman, Chuntong Gao, Akshal Aniche, Basavaraj Hampiholi, and Aaron Miller.

I was lucky to have co-authored many papers with Daniel Neider. With his precision and
attention to detail, he served as a great role model for me, and he never hesitated to spend
hours discussing, until we reached a perfect understanding of a problem.

Finally, I would like to mention my advisor, Rupak Majumdar. He approaches work
lightly but deeply, focusing always on the essence of the problem at hand. I thoroughly
enjoyed working with Rupak and learning from him. I am grateful to him for creating a perfect
environment for my scientific development, opening many opportunities for me, and guiding

me in my research.

There still remain many unmentioned people (and their work) who inspired me, helped
me, and upgraded my understanding. Those are the people that I met at conferences, seminars,
or summer schools; whose talks I attended, or whose papers I discovered by chance. I thank

them, and hope that my work will touch future researchers in a similar way.

Contents

Summary

Zusammenfassung

Acknowledgements

1 Introduction

2 Antlab: a Multi-Robot Task Server

2.1
2.2
2.3
24
2.5
2.6

The Programming Model

Antlab Implementationo

Task Assignment and Path Planning

Evaluation e
Related work e

ConcClusion e e e e

3 Inferring Specifications from Examples

3.1

3.2

3.3

Inferring Specifications from Positive and Negative Examples

3.1.1 Preliminaries
3.1.2 Inferring a Minimal formula with a SAT-based Learning Algorithm

3.1.3 A Decision Tree Based Learning Algorithm
3.1.4 Evaluation
3.1.5 RelatedWork
Inferring Specifications from Positive ExamplesOnly
3.2.1 Preliminarieso e
3.2.2 Learning Universal Very-Weak Automata
323 Evaluation
324 RelatedWork
Interactive Specification Inference for Robotic Systems
3.3.1 Overview and Motivating Example
3.3.2 Formal Models for Tasks and the World
3.3.3 Interactive Specification Synthesis
3.3.4 Grammar-based Generalization of Learnt Specifications
335 Evaluation
33.6 Relatedwork

3.4 Conclusion e e

Vi

iii

vii

15
16
20
25
27

4 Planning with Multiple Speculative Initial States

4.1 Introduction

4.2 Problem Definition

4.3 The Multiple

Initial State Technique (MIST)

4.4 MIST for Recoverable Tasks

4.5 Evaluation .

4.6 Related Work e

4.7 Conclusion

5 Reinforcement Learning with Non-Markovian Rewards

5.1 Introduction
5.2 Preliminaries

5.3 Joint Inferenc

e of Reward Machines and Policies JIRP)

54 JIRPCase Studies v i i e e e e
5.5 RL in non-Markovian Environments with Advice (J IRPAdU)

5.6 Optimal Convergence v v v v v vt i et e

5.7 JIRPAY Case
5.8 Related Work

5.9 Conclusion
6 Conclusion
Bibliography

Curriculum Vitae

Studies e

vii

87
87
88
90
93
95
99
100

101
101
102
105
109
113
117
125
128
129

131

133

153

viii

In memory of my teachers, Senka Sedmak and Tomislav Lipi¢

Chapter 1

Introduction

Robots impress any observer by demonstrations of their abilities. A flawless back-flip by the
Atlas', versatile driving skills by cars participating in the DARPA grand challenge”, or an
efficient coordination by warehouse logistics robots® are some breathtaking examples. We
humans are left in awe by such demonstrations for two reasons: they make us feel closer to
the future as pre-imagined by artists, and we appreciate the unfathomable skill and effort by
the creators of such robotic behaviors.

Indeed, programmers of an autonomous robot that operates in an unknown environment
must take care of diverse challenges: the robot’s dynamics, task planning under uncertainty,
reacting to changes in the environment, and recovering from failures. The problems multiply
for programmers of a multi-robot system. Alongside challenges of robotics come the ones of
concurrent distributed systems: provisioning robots, messaging, or local and global coordina-
tion, to name a few. Underlying all these tasks is a requirement for the perfect safety of the
robots’ behavior, because they physically interact with humans. This complexity makes the
development of each new robotic system a heroic expedition.

Not a hero, but an average person is a typical developer of any mainstream, ubiquitous
technology. In a somewhat self-contradictory way, the day of true success for robot pro-
gramming shall be the day when it does not impress anyone. The question is this: what is a
programming model that can abstract away the shared complexity of robotic programming
and let the developers focus only on the application logic?

The utility of suitable programming abstractions is apparent in many historical examples.
Consider, for instance, the task of storing and accessing data. There, the job of programmers is
made simple by turning them into users of distributed database systems. These systems solve
the common difficult problems (such as indexing or ensuring consistency between replicas
while providing high throughput), freeing the programmers to focus on the application-specific
logic [184]. A more recent example are deep learning frameworks (e.g., TensorFlow [2],
PyCharm [186], or Theano [213]), which take care of efficient multi-dimensional array
operations, allowing the programmer to focus on the conceptual part of a problem at hand.

In this thesis, I first describe and implement Ant 1ab (Chapter 2), an end-to-end robotic
backend system that accepts declarative specifications from its users and executes those
specifications on a fleet of robots. The effect of such a programming model is that the

"https://www.bostondynamics.com/atlas
’https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
3https://www.youtube.com/watch?v=ULswQgd73Tc

https://www.bostondynamics.com/atlas
https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
https://www.youtube.com/watch?v=ULswQgd73Tc

Chapter 1. Introduction 2

programmer (the user) does not have to be aware of the internals of the robots’ execution.
How many robots are there and what are their abilities, how to coordinate them and what to
do in case a hardware component fails, or how to handle requests from independent users is
all left to the backend system to deal with.

Antlab is one concrete implementation of the desired system, with particular design
choices and tradeoffs. In the second, main part of the thesis, we isolate the individual problems
that are a prerequisite for building any such multi-robot backend system. Those fall into broad
categories of specification and planning problems. While they are inspired by a multi-robot

backend, they are relevant as standalone problems (and are presented in full generality).

Specification: Making a Formal Specification More Natural

As its specification language, Ant 1ab uses Linear Temporal Logic (LTL) [189]. This logic is
a popular choice in research on correct-by-construction robotic systems [228, 230]. Despite
its many advantages, it has a practical flaw: it is not commonly used among engineers. There
are many reasons for that, but an important one is how easy it is to make a mistake when
creating an LTL specification [114, 71].

We bring LTL closer to non-experts by an interactive algorithm for inferring a temporal
specification. The algorithm uses a natural language description of the command and a single
example by the user, given through a visual interface. As users interact with the system, the
grammar of the formal language is expanded so as to generalize from the natural commands
seen thus far. The language of the system keeps expanding until it converges to the jargon of
the user group, while keeping the advantages of a formal language.

We implement the whole process in the system named LTLTALK. The visual interface
of LTLTALK features a robot in a simulation robotic world. Users interact with the system,
gradually expanding on LTL, the original specification language: each time the user gives an
unparsable command, the LTLTALK asks for an example in the visual interface. Using this
example, LTLTALK derives the desired specification and adds new rules to the underlying
specification grammar.

The key step of our interactive algorithm is deriving a set of LTL specifications consistent
with a sample (where the sample consists of positive and negative examples). We aim to learn
a formula that is satisfied by all positive and none of the negative examples. Additionally,
we require that the formula is minimal in size. We encode the problem as an instance of
satisfiability (SAT) problem for propositional logic, and improve its scalability by using the
decision tree algorithm.

We also study the problem in which only positive examples are available (e.g., the
execution traces of a system). In that case, finding a minimal formula that accepts all positive
examples is insufficient. (Indeed, the formula frue that accepts all examples is a trivial solution.
The same holds if we were looking for a minimal deterministic finite automaton.) Therefore,
we identify a suitable class of automata, universal very weak automata [157], for which a
meaningful definition of learning can be given, and we devise a learning algorithm based on
enumerating simple chains.

These specification problems are described in Chapter 3 of the thesis.

Chapter 1. Introduction 3

Planning: Assigning Tasks to Robots and Choosing the Initial Planning State

Given an LTL specification, the backend system needs to do two things: 1) decide which
robots should execute the task, and 2) provide individual plans for the recruited robots so
that the specification is satisfied. While these two problems (task assignment and planning)
are often considered separately [203, 154], there is a benefit in tackling them simultaneously,
optimizing for the same desired metric. Our approach to the problem is based on translating
the LTL specification into a propositional formula that is satisfiable exactly when there is a
plan of a particular length for the original temporal specification. Using a SAT solver for
propositional formulas associated with different lengths of the action-sequence, we guarantee
to find an optimal plan if one exists.

The main building blocks in our solution are primitive actions available to each individual
robot. Each primitive action is defined by its preconditions and postconditions, and these
conditions are used in the SAT encoding. The generality of this approach enables us to support
a fleet of robots with different capabilities. The joint assignment and planning is implemented
in Antlab and is therefore presented together with the whole system in Chapter 2.

The envisioned multi-robot backend programming model presents another planning chal-
lenge: it is supposed to serve multiple independent users who can send their requests in an
asynchronous manner. What kind of problems can this cause? Imagine that a request 4, was
received, and the system successfully planned and recruited a group of robots to execute it.
As soon as the execution has started, another request, rp, arrives. This is new information that
potentially renders all the previous planning suboptimal.

More generally, if an agent (robot, or any other entity) is executing a plan, and a need for
replanning arises, an engaging problem appears: how to choose the initial state for the new
planning process while the agent’s state is constantly changing? This small detail is often
hidden in formulations of (re-)planning problems [93].

With execution underway, this initial state must be one far enough along the current
plan that the agent will not encounter it until the replanning process has finished, to allow
transitioning to the new plan. But choosing an initial state that is too far along the old plan
risks inefficiency: the agent’s actions will not reflect the new information until the state is
reached, possibly causing it to miss opportunities.

The most common solution in current systems appears to be choosing a transition point
that is a fixed time ahead in the future, either as part of system design [97, 164] or through
an estimate for the replanning time [149, 200]. But this is at odds with the purpose of
domain-independent automated planning (which is to enable an agent to handle a variety of
problems and situations with a single algorithm). In Chapter 4, I present a search algorithm
that simultaneously considers multiple speculative initial states and judges how promising
they are during the search itself.

Planning: Maximizing Total Reward

In some cases, the task specification is given only implicitly, through a reward that needs to be

maximized by an autonomous agent (the fleet of robots, in our case). In such setup, various

Chapter 1. Introduction 4

algorithms for the reinforcement learning (RL) problem can be used to devise the agent’s
policy [210].

Reinforcement learning assumes the agent’s environment to be modeled as a Markov
Decision Process (MDP): the states of the MDP capture the relevant information about the
environment, while state-action pairs are equipped with rewards that either reinforce desired or
penalize undesired behaviors. In many tasks, however, the agent receives its reward sparsely,
for complex actions over a long period. This is also true for the tasks that can be described by
temporal logic specifications. The setting in which the reward depends on the history of the
agent’s actions, and not only on the immediate state of the environment and the chosen action,
does not map naturally to an MDP. In other words, the reward function is non-Markovian.

Clearly, whether a reward function is Markovian or non-Markovian is a modeling question:
one can augment the states of any MDP with (relevant parts of the) history to obtain an
equivalent problem with a Markovian reward function. However, the exact augmentation is
crucial: if done naively, the augmented state space becomes too large to be computationally
tractable.

To overcome this problem, algorithms that use different kinds of automata have been
proposed to concisely capture the temporal nature of non-Markovian reward functions and
make the RL task feasible [19, 127, 122, 40, 46]. All that work assumed that an appropriate
automaton is provided to the algorithm. But this assumption is often unrealistic: reward
functions (and, thus, corresponding automata) may not be fully known.

In Chapter 5, I describe an algorithm that does away with this unrealistic assumption.
The algorithm combines automata learning techniques and standard reinforcement learning
techniques. Furthermore, the user can provide advice to the algorithm. The advice guides the

agent’s exploration. At the same time, the algorithm is robust to incorrect advice.

Prior Publications

The material in the thesis has been published in the following papers:

1. Ivan Gavran, Rupak Majumdar, and Indranil Saha. “Antlab: A Multi-Robot Task
Server”. In: ACM Trans. Embedded Comput. Syst. 16.5s (2017), 190:1-190:19

2. Daniel Neider and Ivan Gavran. “Learning Linear Temporal Properties”. In: FMCAD.
IEEE, 2018, pp. 1-10

3. Riidiger Ehlers, Ivan Gavran, and Daniel Neider. “Learning Properties in LTL N ACTL
from Positive Examples Only”. In: FMCAD. IEEE, 2020, pp. 104-112

4. Ivan Gavran, Eva Darulova, and Rupak Majumdar. “Interactive synthesis of temporal
specifications from examples and natural language”. In: Proc. ACM Program. Lang.
4.00PSLA (2020), 201:1-201:26

5. Maximilian Fickert, Ivan Gavran, Ivan Fedotov, Jorg Hoffmann, Rupak Majumdar, and
Wheeler Ruml. “Choosing the Initial State for Online Replanning”. In: AAAI. AAAI
Press, 2021, pp. 12311-12319

Chapter 1. Introduction 5

6. Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu,
and Bo Wu. “Joint Inference of Reward Machines and Policies for Reinforcement
Learning”. In: ICAPS. AAAI Press, 2020, pp. 590-598

7. Daniel Neider, Jean-Raphaél Gaglione, Ivan Gavran, Ufuk Topcu, Bo Wu, and Zhe Xu.
“Advice-Guided Reinforcement Learning in a non-Markovian Environment”. In: AAAL
AAAI Press, 2021, pp. 9073-9080

These papers are the result of collaborations with many great researchers. This is why I

will often in the text use the first person plural to describe the (indeed, our) results.

Chapter 2

Antlab: a Multi-Robot Task Server

In this chapter, I present Ant 1ab, a system that abstracts away low-level details of multi-robot
programming. As we have seen in the introduction, developing a multi-robot application
successfully takes many diverse skills and the ability to integrate different modules without
introducing subtle errors. Ant 1ab offers a different programming model: developers specify
what needs to be done, and it is the responsibility of Ant 1ab, the backend server, to first
determine how to do it, then do it while monitoring the execution, and finally to provide a
summary of what has been done back to the developer.

Antlab provides an abstract programming model and a declarative task specification
language based on linear temporal logic (LTL). Our abstract model represents the underlying
world as an occupancy map and provides an abstraction for the set of available robots. The
occupancy map is a standard data structure in robotics and represents a discrete abstraction of
physical space using a set of predicates. In the programming abstraction, the user does not
program individual robots or even know how many robots are there; instead, the user knows a
set of action primitives the robots can perform, and declaratively specifies a desired temporal
sequence of actions.

The propositions in a task can range over spatial locations (“reach location £”) as well
as action primitives (“pick up,” “drop”), and the temporal connectives allow expressing
application-level behaviors over time. The quantification over robots allows us to specify a
task without referring to individual robots (just as query languages allow expressing the intent
without specifying specific servers) but also helps express coordinated behaviors (“two robots
follow each other”). Specifically, the user does not need to know about the current states of
the underlying robots; it is Ant 1ab’s responsibility to decide which robots to assign to a task,
how to schedule and plan the task, and how to ensure the system has high throughput.

When implementing Antlab, we had to make some core algorithmic and systems
decisions. First, we describe a constraint-based combined task and path planner which
produces optimal paths for a group of robots and a collection of temporal logic specifications
over the occupancy grid. The planning algorithm can be implemented using an SMT solver
(Z3 [173] in our implementation) or an Al planner (Metric-FF [111] in our implementation)

In practice, one must consider the dynamic and uncertain nature of the robotic environment;
for example, there can be dynamic obstacles from other robots fulfilling other tasks in the
system, or sensor noise and actuator imprecision. Unfortunately, most synthesis algorithms

from specifications do not consider the dynamic nature of the environment [79, 102, 220, 219,

Chapter 2. Antlab: a Multi-Robot Task Server 7

29, 202, 203] or require a complex and a priori specification of all environment events as
assumptions to the synthesis procedure [136, 229, 64]. In our experience, the “ideal world”
assumption leads to unexpected crashes at runtime as the abstract view does not match the
real world, and the “model everything” view does not scale.

Thus, in Ant 1ab, we implement a separation of concerns. We synthesize a path plan for
the robots based on the ideal world assumption ignoring all dynamic obstacles and represent
the strategy as waypoints. Then, we implement the strategy on a real robot using an off-the-
shelf navigation stack [78] that is able to react to dynamic obstacles, and we augment it with a
dynamic communication protocol, used by robots to resolve possible collisions between them.
We track the compatibility between the ideal and the actual path, potentially re-synthesizing a
strategy if possible or triggering an error to the higher layers.

Finally, we implement a distributed systems layer between the task management and the
robots. This layer provides standard systems primitives such as monitoring the robots’ status,
provisioning robots for task execution, and tracking failures (which get increasingly frequent
with growing numbers of robots).

We have evaluated Ant 1ab on a group of TurtleBot2 robots implementing a warehouse
scenario where the system has to respond to a stream of “collection” requests which require
the robots to visit certain positions, gather objects, and deposit them at other positions while
remaining safe and collision-free. Through our experiments, both on actual robots and
in simulations, we show the potential of an end-to-end system like Antlab to scalably
implement distributed robotic systems with many robots without individual reference to robots
by the user.

In summary, in this chapter we will see a programming model and a runtime system for

programming multi-robot applications by integrating the following components.

1. A declarative programming model based on linear temporal logic for multiple mobile

robots serving requests in a workspace.

2. An algorithm for combined task and path planning for multiple robots on top of dynamic

robot motion planners.

3. A runtime system to support planning, robot management, and task execution. Specif-
ically, the runtime system considers real-world deployment issues such as resource

management and provisioning, as well as dynamic task failures or robot failures.

2.1 The Programming Model

We will use a multi-robot warehouse management system scenario [100] as a running example
for Ant 1ab. We consider robots moving on a warehouse floor. Parts of the workspace contain
objects of interest. Other parts may be blocked by obstacles, such as boxes or walls.

A task in this setting consists of a user requesting a set of objects; the task is fulfilled when
a set of robots traverses the workspace to collect the requested set of objects and brings all
the objects to a special part of the workspace called the workstation. The specific formalism

for describing tasks is discussed below; informally, each task requires one or more robots to

Chapter 2. Antlab: a Multi-Robot Task Server 8

traverse a path in the workspace and carry out certain actions so that (a) the robots fulfill the
request (liveness), (b) the robots remain safe, i.e., do not collide with obstacles such as walls,
shelves, or other robots.

The task assignment and planning problem is to assign each task to one or more robots,
and to synthesize and execute trajectories for each of these robots, such that the safety and

liveness goals are met.

The System State

We now provide a formal description of the problem.

Occupancy Grids Robots move in a 2-dimensional or 3-dimensional physical space. How-
ever, the configuration of the robot may require specifying more dimensions, for example, to
provide their velocity and orientation in the space. Thus, in general, we assume that a robot’s
configuration is given as a point in some compact subset of the n-dimensional Euclidean space.
We represent this configuration space in a discrete way, using an n-dimensional occupancy
grid [77]. An occupancy grid partitions the continuous space into discrete blocks using a
uniform grid along each dimension and annotates each block with valuations for a set of
predicates.

We assume a predicate that tells, for each block b, whether it is occupied or free. Each
block is assigned a unique identifier by providing the coordinates of its center in any fixed
coordinate system on IR”. By suitably scaling the distance, we can assume that the unit of
distance is one block of the workspace. Thus, the identifiers for a block’s neighbors can
be obtained by adding or subtracting one distance-unit. Since we are always interested in
compact spaces, we can assume that the identifiers range over a finite set of elements. In what
follows, we fix an occupancy grid X, and a set of predicates I [x, which annotate the blocks of
the grid.

Robots and System Configurations We assume a system of N mobile robots, where each
robot has a unique identifier from a fixed set R of identifiers. Each robot moves in an
occupancy grid in discrete time. That is, we fix a discrete-time unit { and model an individual
robot as a dynamical system evolving in discrete steps of t time units. The state o of a robot
consists of (1) its position in the space, ¢.x (which determines a unique block in the occupancy
grid) and (2) its velocity configuration, ¢.v, which represents current magnitude and direction
of the velocity of the robot. We denote the set of all velocity configurations by V' and assume
it contains a value 0 denoting that the robot is stationary.'

A system with N robots consists of the occupancy grid together with the state of all N
robots, such that a consistency condition holds: for each robot state (x, v), we have that the
corresponding block of the occupancy grid is marked occupied, and no two robot states have

the same positions (i.e., each block of the occupancy grid is occupied by at most one robot).

IIn a lower-level dynamical model of a robot, one would need to specify the exact coordinates of the velocity
configuration. We will work at the level of more abstract actions and, hence, we do not need to specify the exact
representation of the velocity configuration space.

Chapter 2. Antlab: a Multi-Robot Task Server 9

Example 2.1. In the warehouse example, the predicate occupied(b) is true for a block b if the
block is currently occupied by an obstacle, the predicate obj(b)(0) is true if object o is currently
in block b, the predicate at(b)(r) is true if a robot with identifier r is currently occupying block
b. There may be induced constraints on predicates: for example, at(b)(r) — —occupied(b)
and at(b)(r) — —at(b)(r') if r #7'.

Action Primitives Robots traversing a workspace define a dynamic system whose behaviors
are represented as a sequence of configurations and transitions from one configuration to the
next. Following the Al planning literature [84, 147, 92], we use a set of action primitives A,
available to the robot 7, which denote simple actions that a robot can perform at any time step.
An action primitive is an abstraction of a low-level dynamical controller. For our purposes,
the specific details of the control algorithm are not important. In applications where robots’
actions are about traversing the environment (such as the warehouse example), we will refer
to action primitives as motion primitives.

Associated with each action a € A, is a pre-condition pre,, which is a formula over the
state variables specifying under which conditions the action a can be executed. Executing the
action 4 incurs cost (e.g., energy expenditure), denoted by cost(a). The effect of the action,
eff ,» is a propositional formula over the state variables describing how they change after
applying the action. We write post (s) for the state of a robot after the action primitive a is
used in the state s.

We use intermediate,(s) to denote the set of grid blocks through which the robot may
traverse when the action a € A, is applied at state s, including the beginning and end blocks.
A trajectory is a sequence of states sgsq . .. such that for each i > 0, there is an action a € A,
taking the robot from s; to 5;1.

Example 2.2. Consider a ground robot with five motion primitives: {H, I,R, T, D}, where
the primitive H keeps the robot in the same block in the occupancy grid and the primitives L,
R, U and D move the robot to the adjacent left, right, upper, and lower blocks, respectively.
The availability of a motion primitive may depend on the current state of the robot. For
example, if the velocity of the robot in a certain direction is high, the motion primitive to go
in the opposite direction may not be available. This is specified by the pre-condition: e.g.,
pre. may be v(r) = 0, requiring that the robot is at rest. The effect condition, similarly,
states the the changes introduced by the action. For example, eff; specifies the robot is at the
block to the left and its velocity is again zero. Assuming 1. moves exactly one step, we have
intermediate;,(b) = {b, L(b) }, where L(D) is the block immediately to the left of b.

The runtime behavior of the robots in R is described by a discrete-time transition system.
A state of the system is a map from each r € R to a state of . Let ¢; and 0, be two state
vectors, and a1 be a vector containing as elements the motion primitives applied to the robots
in R in state 07. Let a(r) € A, be the motion primitive applied to robot 7 € R in state ¢7. We
define a transition oy A, oy iff

* 01(r) [= prey,) and 02(r) = post () (01) forall r € R.

Chapter 2. Antlab: a Multi-Robot Task Server 10

* Vr € R, intermediate, (o1 (r)) N {b | occupied(b)} = @, which says that the trajec-

tory of r between the states 01 and 0> does not pass through an occupied block.

* Vry,ra € R, intermediate,,,)(o1(r1)) N intermediate,,,)(c1(r2)) = @, which cap-
tures the property that robots do not collide with each other while doing an (atomic)

move from state g7 to state o,

(Note that the complexity of collision avoidance grows quadratically with the number of
robots. We discuss in section 2.2 how this constraint is handled dynamically.) A (multi-robot)
trajectory for R is a sequence 0y0y . .., where for each i > 0 and r € R, the projection
0i(r)oi41(r) ... is a trajectory of robot r. That is, a trajectory for the system is the collection
of trajectories of all the robots.

We make the simplifying assumption that for all robots in the system, each motion
primitive requires the same unit of time for execution. This assumption may not hold for
robots with heterogeneous capabilities. Extending our approach to systems where motion
primitives take different units of time is possible, at the cost of making the planning algorithms
more complex (as was done by Raman et al. [195]).

We continue by introducing propositional logic and linear temporal logic.

Propositional Logic

Let Var be a set of propositional variables, which take Boolean values from B = {0, 1}, with
0 corresponding to false and 1 corresponding to true). Formulas in propositional (Boolean)
logic—which we denote by capital Greek letters—are inductively constructed as follows:

» each x € Var is a propositional formula; and
 if ¥ and ® are propositional formulas, so are =¥ and ¥ Vv ®.

Moreover, we add syntactic sugar and allow the formulas true, false, ¥ A ®, ¥ — @, and

Y < ®, which are defined in the usual way:

true .= xV —x,x € Var

false := —true
YAD:=—=(-FV D)
Y—-d=-YVvo
Yo=Y —->DP)N(P—-Y)

A propositional valuation is a mapping v: Var — B, which maps propositional variables
to Boolean values. The semantics of propositional logic is given by a satisfaction relation =

that is inductively defined as follows:
* v =xifandonlyif v(x) =1

e v = —Yifandonlyifv [~ ¥,

Chapter 2. Antlab: a Multi-Robot Task Server 11

cvEYVoifandonlyifv =Y orv =P

In the case that v |= ®, we say that v satisfies @ and call it a model for ®. A proposi-
tional formula ® is satisfiable if there exists a model v for ®. The satisfiability problem of
propositional logic is deciding whether a given formula is satisfiable. Although this problem
is well-known to be NP-complete [33], modern SAT solvers implement optimized heuristic
decision procedures that can check satisfiability of formulas with millions of variables [23].

Moreover, SAT solvers also return a model if the input formula is satisfiable.

Specifying Tasks: Linear Temporal Logic

We provide task specifications using linear temporal logic (LTL), introduced by Pnueli [189].
Let R be a finite set of indices ranging over identifiers for robots and let Q be a set of
predicates.

Following the Al planning literature, we consider the robot-specific predicates to describe
fluents or action primitives. Fluents specify predicates about the current state of the robot, e.g.,
at(b)(r) states that the robot is at the location b. Action primitives specify the capabilities of
the robot. For instance, a primitive such as pick(o)(r) specifies an action by which the robot

picks up an object o0 in one step.

Syntax LTL is an extension of propositional Boolean logic with modalities that allow
expressing temporal” properties. Starting with a finite, nonempty set Q of atomic propositions,

formulas in LTL—which we denote by small Greek letters—are inductively defined as follows:
* each atomic proposition ¢ € Q is an LTL formula;
* if ¢ and ¢ are LTL formulas, so are =4, P V ¢, X (“next”), and ¢ U ¢ (“until”).

Again, as in the definition of propositional logic, we add syntactic sugar and allow the formulas
true, false, p \ @, — @, <+ ¢. Moreover, we define the additional temporal formulas, F
(“finally”) and G (“globally”) by

Fy:=trueUy
Gyp:=-F-9¢

Semantics LTL formulas are interpreted over infinite words T € (29)%, which in our
context will be called trajectories. For a trajectory T, and i > 0, we write (i) for the ith
element in the sequence, and T[i, co) for the infinite suffix of T starting from the ith element.
We define their interpretation using a valuation function V. This function maps pairs of LTL

formulas and trajectories to Boolean values and is inductively defined as follows:
* V(p,7) =1lifandonly if p € 7(0)

*Vime, 1) =1-V(p 1)

2The word temporal here refers to order properties of a sequence of events, rather than real-time properties.

Chapter 2. Antlab: a Multi-Robot Task Server 12

* VeV, 1) = max{V(g, 1), V($, 1)}
* V(Xg, 1) = V(g t[1,00))
* V(pU 9, 1) = maxizo {min {V (¢, T[i, 00)), ming<;j<; {V (¢, T[j, 0)) } } }.

We call V (¢, T) the valuation of ¢ on T and say that the trace T satisfies ¢ if V(¢p,T) = 1.
The same concept can be expressed by saying that a trace T is a model for the formula ¢,

written T = ¢.

Robot Quantifiers We extend the basic logic by allowing outermost quantifiers over the set
of identifiers. Formally, formulas of quantified LTL are built by existentially or universally

quantifying identifier variables in the unary predicates in the formula:

Y =@ | dry | Vry

Notice that in a model with a fixed set of robots R, the quantifiers correspond to disjunctions
or conjunctions over R.

Similarly, in our formulas, we allow syntactic sugar to quantify over blocks in the occu-
pancy grid. For example, we write Vb.at(b)(r) — free(b) to state that the robot r is at a free
block.

An LTL formula is closed if it does not have any free variables. A rask is a finite set of

closed formulas.

Example 2.3. An example fask in our setting consists of transporting a set of objects {o; | i €
I} to the workstation. We specify the requirement of collecting the object o; at the location b;

as the temporal logic constraint with nested future operators:

F (at(b,')(r) A pick(o;)(r) A

dr. F(at(workstation)(r) A dT’OP(Oi)(7’>)>

2.1

for each i € I, where workstation is a predicate that describes the location of the workstation.
The existential quantification over r specifies that some robot has to fulfill the specification
(go to a location, pick up an object, and, subsequently, deposit it at the workstation).

System and Environment Assumptions Tasks are always fulfilled under certain assump-
tions on the system and the environment. Safety assumptions specify invariants that must
always hold, and are of the form G ¢, where ¢ is a Boolean combination of predicates. Live-
ness assumptions specify conditions that are satisfied infinitely often, and are of the form
GF ¢, where ¢ is a Boolean combination of predicates.

An example of an environment safety assumption is the presence of a static obstacle:

G(~free(b))

Chapter 2. Antlab: a Multi-Robot Task Server 13

An example of a system safety assumption is obstacle freedom:

G(at(b)(r) — free(b))

which states that the robot always avoids the static obstacles given by the predicates —free(b).
An example of an environment liveness assumption is that a location becomes free infinitely
often:

GF free(b)

For example, the liveness assumption can encode that a door is infinitely often open, or that a
blocked cell is eventually free.
The planning problem for a robot asks to compute a trajectory that satisfies the LTL
specification
/\Glp?/\/\GFl[J} —>/\¢;Aq)
]] J
where the antecedent encodes environment safety and liveness assumptions, and the conse-

quent encodes the conjunction of system safety specifications and the task specification.

Dynamic Obstacles A further safety assumption on the system could be collision freedom,

that is, no two robots are in the same location at the same time:

Ve £ 1 — G(\at(b)(r) — —at(b)(r'))
b

or, more generally, freedom from colliding with dynamic obstacles. While in principle all
dynamic obstacles can be modeled as part of the workspace and environment assumptions,
doing this either makes conservative approximations on the moving obstacles, making the
planning problem infeasible for most cases, or makes the planning problem computationally
intractable. For example, in the multi-robot scenario, collision avoidance would require global
knowledge of the objectives and strategies of all other robots in the workspace.

Instead, Ant 1ab makes a design decision: planning is performed under the assumption
that there are no dynamic obstacles, but local motion planning and collision avoidance
protocols are implemented to “patch” the global plan based on the robot’s local sensing and
communication with nearby robots. Rather than generating reactive strategies for the LTL
objectives, we plan at two levels. At the high level, we plan under an optimistic assumption
(no dynamic obstacles), and generate a sequence of waypoints. At the low level, we implement
a local motion planner to find paths between waypoints. The local motion planner avoids
obstacles locally and triggers a re-planning step at the high level if the assumptions made at
the high level are invalidated and cannot be locally patched (e.g., by a local collision avoidance

protocol).

Chapter 2. Antlab: a Multi-Robot Task Server 14

LTL requests

.] L 4
Server
System state . 1 ___i?_:_.n.-l_n:-\[lp_s_gg_r_n.-n .
Configuration ‘ Service Manager
database Robot Task & Path
Manager planner
Occupancy grid

strategy strategy

L& G ey (G + P
Antlab Q Q e‘é%ﬁ% @

FIGURE 2.1: Ant1ab system architecture

2.2 Antlab Implementation

We now describe the implementation of Ant 1ab. The lowest layer of Ant 1ab, at the level
of robots, uses Robot Operating System [193] (ROS). On top of ROS, we build an actor
framework in Python for distributed messaging, based on the XUDD actor framework [227].
The system state is maintained in a database, and the robot manager provides an interface to
the database.

Figure 2.1 presents the overall architecture of the system. A front-end application server
accepts a stream of LTL tasks, possibly initiated concurrently by different users of the system.
The backend consists of two main components: the System State and the Runtime System. The
system state component is a database, which maintains the current state of the world (using an
occupancy grid data structure to represent a map of the world) as well as the current state of
all robots.

The Service manager component constitutes the algorithmic core of the runtime system
and has two main components - Robot Manager and Task & Path planner.

The robot manager keeps track of the current position, availability, and state of all the
robots. The runtime system buffers all incoming task requests and periodically invokes the
task and path planner. The task and path planner assigns the buffered tasks to some of the
available robots (not currently executing any other task) and provides a high-level mission
plan (a trajectory for each of the assigned robots such that all tasks are satisfied, if possible).
We describe the algorithmic core of the planner in Section 2.3.

Once the planning is performed, the runtime system instantiates a task organizer, which
monitors the assigned robots and ensures that the tasks are executed as planned. A robot gets
the “ideal” plan from the task organizer as a sequence of waypoints (coordinates to go to). The
robots themselves run a ROS navigation stack to implement the low-level sensing, actuation,

and motion planning to move from waypoint to waypoint. Using the full navigation stack is

Chapter 2. Antlab: a Multi-Robot Task Server 15

necessary because the strategy implemented by the task planner may not take into account
dynamic obstacles, which can be realized only through dynamic sensing.

The task organizer also communicates with the robots and tracks that the current plan has
not failed. A plan can fail if a robot has deviated from the original ideal plan, for example,
due to dynamic obstacles, sensing or actuation imprecision, or violations of the environment
assumptions. Finally, a robot itself can fail (e.g., by running out of power); hence the tasks
assigned to it fail as well. The task organizer buffers any failed and unfinished tasks for a
future assignment by the task and path planner.

Note that the runtime system is highly concurrent: the server, the system state database,
the task organizer, and each robot are concurrent components (implemented as actors commu-
nicating via message passing). In Figure 2.1, we denote concurrent messages in the system

using dotted arrows.

2.3 Task Assignment and Path Planning

Task assignment and execution in Ant lab happens at two levels. At the static level, the task
and path planner solves a planning problem. It takes an occupancy grid, a set of robots, and
a set of task specifications and generates a trajectory for each robot in the occupancy grid.
The combination of all generated trajectories satisfies all the task specifications under the
assumption that there are no dynamic obstacles (including those induced by other robots in
the system).

To illustrate, for a task specified by (2.1), the output of a successful synthesis problem
would consist of plans for robots (one per each object o0;, not necessarily distinct), which
together gather all the objects 0; and bring them to the workstation.

The output of the planning problem provides a trajectory per robot as a sequence of action
primitives. Note that we assume the world is determined by the occupancy grid and the
environment assumptions, and that there are no extraneous disturbances.

At the dynamic level, each robot runs a navigation stack to execute its trajectory stepwise.
Each robot computes a local trajectory that executes the steps of the trajectory but takes into

account dynamic obstacles.

Problem Definition

We now define the multi-robot task planning problem formally. A planning problem instance
is given by a five tuple P = (R, I, A, Q), ¢), where

¢ R is the set of robots,
e | : R — X maps each robot to a block of the occupancy grid marking its initial state,

* A maps each r € R to a set of action primitives available to robot r (abusing the
notation, we will denote A(r) with A,)

* () is a set of environment assumptions, and

Chapter 2. Antlab: a Multi-Robot Task Server 16

» @ is the LTL specification of the tasks (including all system assumptions).

A multi-robot trajectory is said to be valid if it satisfies A () — A ¢. For example,
if ¢ is {3r.F¢1(r),...,3r.Fpu(r)}, a trajectory opoq ... or will be valid if for all ¢ €
{$1,...,¢m} there existsa 07,0 < | < L, and arobot r € R, such that 0;(r) satisfies ¢.

In general, trajectories can be finite or infinite objects. When they are infinite, we shall
only consider their finite “lasso-shaped” representations given by a prefix and a loop [30]. Let
« be a sequence of motion primitives executed by all the robots in the system. For each robot
r € R, for each time instant t € {0,...L}, a variable a(7)(t) denotes the motion primitive
applied to robot 7 at step ¢.

We define the cost of a trajectory o as

L

cost(op...,o0) = Y Y cost(a(r)(t))
t=1reR
(it can be viewed as the energy consumption by the robots in action). In case the trajectory is
infinite, the cost is defined as the weighted sum of the costs of the prefix part and the loop part.
A valid trajectory o is cost-optimal if cost(c) < cost(c”) for every valid trajectory o’

Note that the preceding definition does not require the robots to move in sync. Using the
“rest” primitive, a robot can wait in its initial state or remain in its final state for an arbitrary
amount of time to stretch its length to match with that of the overall system.

We say that an algorithm to solve the planning problem is sound if its output, on any
problem instance, is a valid trajectory of that instance. We say that the algorithm is complete
if, for any problem instance, whenever a valid trajectory exists, the algorithm outputs one such

valid trajectory.

Constraint-Based Planning

We describe a constraint-based symbolic encoding for cost-optimal trajectories using bounded
synthesis [206]. As mentioned before, we omit to add constraints for collision avoidance and
make the optimistic assumption that trajectories of different robots do not collide. We handle
collision avoidance dynamically.

Given P = (R, 1, A,Q, (p> and a fixed length L of the trajectory, we model behaviors
of the robots as a boolean combination of linear arithmetic constraints. In the system of
constraints, the action primitives of each robot at each state are considered to be the decision
variables. For each robot r € R, for each time instant € {0,... L}, we introduce a variable
0(t) to track the state of the rth robot and, for each time instant € {0,...L — 1}, we
introduce a variable a(r)(t) to track the action primitive applied to robot r at step t. The
objective function is to minimize cost(¢’) over valid trajectories . We add constraints, defined

next, to ensure that a valuation to all variables o, (t) defines a valid trajectory.

Chapter 2. Antlab: a Multi-Robot Task Server 17

Initial State of the Trajectory

At the initial state of the trajectory, the robots will be in their initial locations and stationary.

VreR:0,(0)x=1I(r) Nov(0).v=0 (2.2)

Conformance Between States and Motion Primitives

For each robot v € R, at each time instant #, the state 0;(¢) should satisfy the precondition of
the motion primitive applied to the robot at time instant £. Moreover, the state o, (¢) should be
equal to the postcondition of the motion primitive applied to the robot at time instant — 1.

VreR Vt€{0,...,L =1} 0v(t) = preg i)

VreR Vte{l,...,L} : op(t) = post, 1) (a(r)(t)) (2.3)

Safety Constraints

The following set of constraints (with V again used as a shorthand for conjunctions) ensures
that robots maintain safety constraints when they move from one point to another point.

VreR,Vte{0,...,L—1}:

2.4
Vb € intermediate, ;1) (0r(t)) : free(b) 4

We encode environment liveness assumptions G F free(b) conservatively by specifying the
cost of moving to the location b as a cost T incurred by waiting while —free(b) holds, before
moving from the neighboring location to b when it becomes free. By setting T much higher in
comparison with the costs of all action primitives, we ensure that a cost-optimal trajectory

uses the assumption only when no other options are available.

Encoding the LTL specification Finally, we provide constraints that ensure the trajectory
satisfies the formula. We illustrate our approach on a simple but important special case:
reaching a set of goal blocks from a set G. The following constraints ensure that the trajectory
satisfies such a specification:

Vge G, IreR,3te{0,...,.L—1}.o(t)x € gA o (t).v=0. (2.5)

For general LTL specifications, we first replace the quantifiers with disjunctions or con-
junctions to generate a pure LTL formula and then generate the constraints capturing the
flattened LTL formula using the eventuality encoding of Biere et al. [30]. Though a trace that
satisfies an LTL formula is given as an infinite execution path of the system, such a trace can
be represented by a finite path in two ways: (i) the finite path is a valid prefix of all its infinite
extensions (in case the specification is co-safe), (ii) a portion of the finite path can loop to
generate a valid infinite path.

The planning procedure searches over the values L € [Lmin, Lmax], Which represent the

length of a trajectory. For the current choice L, it generates the set of constraints with the

3We omit the full description of the encoding here and refer the reader to the original work [30]. Furthermore,
in Chapter 3, we discuss the encoding of a reverse problem: given a set of model and non-model traces, infer a
formula of minimal size. The two encodings share many conceptual similarities.

Chapter 2. Antlab: a Multi-Robot Task Server 18

following property: if a solution to the set of constraints exists, the trajectories for the robots
can be extracted from the solution; otherwise, there is no trajectory of length L satisfying the
specification. In the latter case (if no solution exists), we repeat the procedure with a larger
value of L.

If all primitives have the same cost, the optimality of the solution is guaranteed by the fact
that the solution is found using the minimal number of steps and by elimination of unnecessary
moves of robots that do not participate in fulfilling the specification. If, on the other hand,
primitives have different cost, an additional optimization process is needed in order to get an
optimal solution. The optimization adds additional constraint on final cost to the formula and
iterates until it finds the minimal cost for which the formula is still satisfiable.

Note that we do not plan non-colliding paths for the robots; the rationale is that the
planning cost is high, but the gains are poor as the uncertainty of the real world often causes
imperfect executions of plans anyway. Potential collisions are handled locally. While there is
no guarantee that a generated trajectory is collision-free, we do get the following completeness
guarantee [202].

Theorem 2.1. Given an input motion planning problem P with action primitives A and a
trajectory length L, if the system of constraints is not satisfiable, there does not exist a valid
trajectory of length L that can be synthesized using the primitives in A.

Solving Constraints We have implemented two solvers: a symbolic approach based on the
SMT solver Z3 [173] and an enumerative search approach based on domain-independent Al
planners (e.g., Metric-FF [111]). For Al planning, we encode the constraints into PDDL, the
standard planning language. We compare the two methods in Section 2.4. The choice of the
solver is transparent to the rest of the implementation.

We note that the SMT approach supports all LTL specifications “off-the-shelf’. However,
while in principle extensions of PDDL support almost all LTL constraints, in our experience,
very few planners stably support full LTL. Thus, we pre-process the LTL formulas to provide
a sequence of reachability constraints to Metric-FF. (In that way, we are able to support a

relevant subset of LTL specifications.)

Dynamic Implementation of Trajectories

The trajectories of the robots found by the planner are implemented on the individual robots
using a motion planner of the ROS navigation stack. The motion planner handles dynamic
obstacles as well as potential collisions with other robots. Upon sensing an obstacle, the
navigation stack adds it to the local cost map and tries to find a local motion plan to avoid the
obstacle and continue with the planned trajectory. In cases where local motion planning and
obstacle avoidance cannot find a feasible plan, the navigation stack starts recovery behaviors
and restarts global planning for the current robot.

We handle potential inter-robot collisions with a local collision avoidance protocol. As
noted by Hennes et al. [109], robots are active agents, and treating them as pure dynamic

obstacles leads to inefficient trajectories and —in rare cases— collisions. Furthermore, treating

Chapter 2. Antlab: a Multi-Robot Task Server 19

& "
i] A g
B :
arena: artificial floor m .
‘ ‘ Ty ey L arena: tight space
1 . 4
B am re
I \ EI
L | L o
N R
arena: maze arena: two offices arena: shoreline

FIGURE 2.2: Workspaces used in the experiments

robots as passive obstacles often causes robots to approach too close to each other, which
leads to long-lasting recoveries of their local planners and oscillations in the trajectories. Thus,
in our implementation, we additionally add local communication capability to robots and
implement local collision avoidance strategies. By broadcasting its position and velocity to
robots in their neighborhood, and by listening to their messages, a robot can determine its

local strategy to avoid collisions.

2.4 Evaluation

We evaluate Ant 1ab’s behavior on maps of different sizes and shapes and with the different
number of robots in the system. We test how well Ant1lab can handle robot (hardware)
failure and dynamic collision situations between the agents. Furthermore, we try to identify
situations for which multi-robot planning and assignment is meaningful (where the advantage
over a simple heuristic is significant). Finally, we examine how the increase in the number of
concurrent requests influences the overall performance.

In order to examine different properties, we use different arenas (shown in Figure 2.2).
The arena: two offices was obtained by mapping two offices in our building with TurtleBots
using the ROS SLAM (Simultaneous Localization and Mapping) gmapping package [91]. All
the other arenas are artificially created for simulation. We also tested Ant 1ab in the empty
arena: arectangular space with no obstacles in it (this is justified by a scenario in which robots
can go under all the obstacles, as is the case for warehouse pods). The proof of concept is
done with 3 TurtleBots in the environment mapped in arena: two offices. The testing is done
in the Stage simulation environment [4], which enabled us to test on different arenas and vary
the number of robots in the arena, hence varying the coverage of the area by robots.

LTL Planning Time and Execution Cost

First, we evaluate Ant 1ab’s task assignment and planning on a number of LTL specifications
on maps of different sizes and with the different number of robots in the system. We consider
the following LTL specifications in our experiments:

Chapter 2. Antlab: a Multi-Robot Task Server 20

TABLE 2.1: Planning and optimization time (in seconds) and trajectory cost
for ¢ with increasing number of robots and increasing map size

Small-Size Map Medium-Size Map Large-Size Map
Robots average average cost # Robots average average cost # Robots average average cost
planning optimization planning optimization planning optimization
time time time time time time
2 4.10 1.92 40.14 2 9.12 171.29 47.72 2 19.89 218.00 85.65
4 0.92 1.75 15.78 4 2.89 164.73 39.16 4 6.90 111.18 44.94
6 0.87 0.87 12.93 6 1.64 6.64 20.72 6 5.57 110.91 42.01
8 0.70 0.86 11.28 8 1.21 1.74 14.55 8 5.56 54.96 34.85
TABLE 2.2: Planning and optimization time (in seconds) and trajectory cost
for LTL properties for 8 robots and increasing map size
Small-Size Map Medium-Size Map Large-Size Map
Property average average cost average average cost average average cost
planning optimization planning optimization planning optimization
time time time time time time
Repetitive Pick and Drop 0.20 0.50 4.50 1.08 1.92 8.44 2.84 71.47 11.35
Selective Action 0.37 0.62 11.05 1.66 7.57 19.38 6.87 165.92 28.15
Pick and Drop Ordered 0.70 0.86 11.29 1.21 1.74 14.55 5.56 54.96 34.85
Regions Coverage 0.42 0.48 4.44 1.03 1.46 5.44 2.60 0.91 13.75
Sensor measurement 0.58 0.62 13.61 2.40 56.48 224 6.97 105.95 3535
(¢1) Pick and drop repetitively: Repeatedly pick an object from the location ¢ and drop

(¢2)

(¢3)

(¢s)

(¢5)

it to the location ¢’ (provided that the object would be infinitely often placed at /):
GFput(?) = Jr. GF(pick(€)(r) A Fdrop(L)(r))

Picking and dropping with enforced order: Pick pl and p2, but once
picked, drop the object at dl or d2 respectively, before picking anything
else: 3Jry,rp : (Fpick(pl)(r1) A G(pick(pl)(r1) — ((—pick(p2)(r2) A
—drop(d2)(r2)) Udrop(d1)(r1)))) A (Fpick(p2)(r2) N G(pick(p2)(r2) —
((—pick(p1)(r1) A —drop(d1)(r1)) Udrop(d2)(r2))))

Selective action and measurement with safety restrictions: The propositions al and
a2 denote the operation of acting on the certain place; m1, m2 denote the subsequent
measurement at a different place; s1 and s2 denote locations that should be occupied at
each moment, for safety reasons: 3rq,72,73,74 : F(((al(r1) AFml(r)) V (a2(r2) A
Fm2(ry)) A G(s1(r3) As2(ry)))

Regions coverage: From some point onwards, ensure that one of the regions denoted by
s1, s2, s3, and s4 is always covered by a robot and then eventually point /1 is visited:
ry, 72,73, 74,15 : F(Fat(ly)(r1) A G(s1(rp) V s2(r3) V s3(rq) V s4(rs5)))

Simultaneous sensor measurement: Measure sensor values at locations m1, m2, and
m3 simultaneously, and report the result at one of the report locations g1, g2, ¢3:
3ry,rp, r3 F((m1(r1) Am2(r2) Am3(r3)) A (Fgl(r1) VFg2(r2) V Fg3(r3))

We created 10 different instances of each of those formulas by picking locations randomly.
We used the map artificial floor with grid sizes 550 (small, 22 x 25), 864 (medium, 27 X 32),
and 2250 (large, 45 x 50). Planning times depend on the map size in grid units. Depending

on the motion primitives available, these can be of different size. We used a grid unit of 0.4m

(corresponding to the size of the Turtlebot base station).

[

IG: make these tables bigger]

Chapter 2. Antlab: a Multi-Robot Task Server 21

50 |- 8 30 [e T
g 40 | z I
g g ¢ 2
S 30 7 s 200 I
S ow {27
: 1o |
8 10| N 3 ‘
0 L | 1 1 1 B O 7+ | | 1 1 \7
0 2 4 6 8 0 50 100 150 200 250
Time budget for optimization (seconds) Time budget for optimization (seconds)
‘ —e— trajectory cost —s— lower bound ‘ —e— trajectory cost ——lower bound
(a) For a 3 robots instance (b) For a 6 robots instance
FIGURE 2.3: Cost improvement over time
TABLE 2.3: Comparing SMT and Al planning for reachability
Avg Planning Time (sec) Avg Plan Cost
Arena name | shoreline | floor | maze | shoreline | floor | maze
SMT-based 11.56 44.63 20 37 31.37 58
Metric-FF 5.44 6.3 15 22 24.25 54
SMT-based Planning Table 2.1 shows times for the SMT-based planner on the different

maps as the number of robots increase. Planning (resp., optimization) time is the average time
(over ten instances) to get the first plan (resp., optimal plan). Cost is the optimal value to
execute the plan. Increasing the coverage of the arena with robots reduces the cost and makes
the planning time shorter (first satisfying instance is reached sooner), as each robot’s plan is
shorter. Table 2.2 shows the same data for ¢1-¢5 for 8 robots.

Anytime Optimization The time to find a feasible plan is often significantly shorter than
finding the optimal plan for large maps. Once the first satisfying assignment is found, the
optimization process iteratively improves the cost: it keeps the number of steps fixed, and
invokes the planner with an upper bound on the cost. Figure 2.3 shows how the plans approach
the optimal (one with 3 robots, and the other with 6 robots on the map). As expected, the
biggest improvements are achieved at the very beginning of the process. Thus, the planning
can be run in “anytime” mode and stopped once a cost budget is met or a time budget is

exceeded.

Al Planning To compare with an Al planner, we used Temporal Fast Downward (TFD) [80],
a planner with temporal logic support. Unfortunately, TFD did not finish on any of these
examples. Even on a small empty map (17 X 19) and a simple reachability objective, TFD
was two orders of magnitude slower (103s vs. 0.8s); the time was mostly spent in constructing
the state space in memory.

Most classical Al planners optimize for reachability. Thus, we compare the performance
of the SMT planner with Metric-FF [111], a state-of-the-art planner, on reachability objectives

n
A F pi, where predicates p; are locations. Each experiment fixed one of three different arenas
i=1

Chapter 2. Antlab: a Multi-Robot Task Server 22

TABLE 2.4: Effect of joint task assignment and planning

Planning Time (sec) Plan Cost
Arena name shoreline | floor | maze | shoreline | floor | maze
Heuristic assignment 0 0 0 92 25 91
SMT-based assignment and planning 11.56 44.63 20 37 31.37 58

and averaged over 10 different specifications constructed by picking locations randomly.
In order to get faster planning for SMT, we relax the optimality requirement and stop the
optimization process once it is within 15 step-units (around 6 meters) of the optimal plan
and set a timeout of 240s for a request. Metric-FF does not provide any optimality guaran-
tees. Nonetheless, it outperforms SMT-planner both in planning time and in cost (due to
suboptimality tolerance), as can be seen in Table 2.3 Both planners time out on two planning
tasks.

Our conclusion is that classical Al planners are a better choice for simple reachability

goals. However, going beyond reachability objectives requires the SMT planner.

Is Joint Task and Path Planning Necessary? Finally, we evaluate the costs and benefits
of using the joint task assignment and planning presented in Section 2.3 in comparison to a
naive heuristic that picks the “closest” robot. For general LTL objectives, it is not clear how
to define closeness, so we fix reachability objectives and pick the robot closest to the goal
in Euclidean metric, ignoring obstacles. The heuristic task assignment is “zero cost”, but
clearly suboptimal as it does not account for obstacles. The task-to-robot assignment of the
algorithms presented in Section 2.3 comes at a cost of the time required for path planning. We
use the same setup as when comparing Al planning and SMT-based planning: three arenas,
ten reachability specifications.

Table 2.4 shows the summary. For maps for which Euclidean distance is far from the
actual traveling distance (such as Shoreline or Maze), joint planning and task assignment
can yield significantly better plans. If Euclidean distance is a good approximation (as in the
arena artificial floor), then the costs are approximately the same (in this experiment, heuristic
assignment has a smaller cost due to premature ending of the optimization process in the

planner).

Response Time with Concurrency

Next, we measure the effect of concurrent scheduling of tasks —what are the benefits of
parallelization and what is the cost of synchronization of robots executing their task at the
same time. The experiment is set so that n requests are scheduled concurrently, where each
request is a set of tasks, and as soon as a request finishes, the next one is scheduled (thus, there
are always n requests executing concurrently). We run 10 requests, each with 3 to 6 tasks, on
Artificial floor with 8 robots and let n grow up to 5.

As the results (Figure 2.4) suggest, response time improves until we reach 4 simultaneous
requests. The delays come from two sources: robot synchronization (which is especially
significant if two robots get stuck in a deadlock situation) and sub-optimality due to robots

Chapter 2. Antlab: a Multi-Robot Task Server 23

2z 201 :

=

]

2 18| |

g 16f .

g

=14 |

Q

[=9

o - -

g P

& 100 |

5

> 87 .

< | | | | |
1 2 3 4 5

Number of concurrent requests

FIGURE 2.4: Execution time vs number of concurrent batches

being busy with a different batch. That is, if the robots in one part of the arena are busy, and
a new request to that part arrives, the planner assigns this request to robots that may be far
away. A possible solution is to plan based on a partitioning of the arena and only assign robots
nearby, even if there is a delay until finishing the current task or to interrupt an active robot to
give it a new local task. We address this problem in a more principled way in Chapter 4 by

developing a method to plan for already active robots.

Failure Resilience

In this experiment, we measure the effect of Ant 1ab’s fault tolerance and task re-assignment
on performance. When a robot crashes, it becomes a static obstacle and the system has to
reassign its task. Crashed robots can prevent others from finishing the task (e.g., by blocking a
path). We explore how often that might happen.

We model crashes probabilistically: a crash can occur in each second with probability p.
The probability of a robot not crashing in k seconds is (1 — p)k. We fix the number of tasks to
10, and randomly generate the number of locations per task (the locations are generated so
that they are, considering static obstacles, achievable). We run experiments for the coverage
of 28 square meters (175 square grid units) per robot and vary the probability p. We measure
the average time of task completion, as well as the number of locations that Ant 1ab did not
manage to reach.

We run 60 trials of each experiment. The parameter p is tested for values
{0,0.003,0.005,0.006,0.01} which is equivalent to the following probabilities of staying
crash-free for a minute: {1,0.83,0.74,0.69,0.55}. The initial setting consists of an obstacle-
free arena with 9 robots, and robots are given altogether 24 locations to visit in 10 tasks. For
higher values of p, we could not obtain meaningful results because often, all the robots would
crash before completing the tasks.

Table 2.5 summarizes the results. The baseline is the execution without crashes, which
takes about two and half minutes to complete. The execution time increases with the probability
of failure. For p = 0.01, the average number of locations that the system was unable to visit

is tolerable 2.23. However, the execution time almost doubles compared to the baseline.

Chapter 2. Antlab: a Multi-Robot Task Server 24

p Average execution time (sec) | Average number of locations not visited
0 156.36 0

0.003 220.84 0.42

0.005 241.28 1.13

0.006 244.72 1.12

0.01 290 2.23

TABLE 2.5: Failure resilience test results

Number of Execution time with Execution time with
patrolling robots | collision avoidance turned on (sec) | collision avoidance turned off (sec)
0 365
1 498 563
2 493 551
3 459 667
4 479 596

TABLE 2.6: Navigation in crammed environments

Tight Space Manoeuvring

Finally, we explore the effect of the dynamic collision avoidance mechanism on the overall
performance. Due to its assignment mechanisms, Ant 1ab avoids having more robots than
necessary in one place (by assigning multiple tasks to a single robot, minimizing the energy
spent). Thus, we construct a specific configuration where many robots are located in the same
area and therefore collisions are common. We use arena: tight space (Figure 2.2). Four robots
are set to patrolling from side to side (A <> B and C <+ D). An additional robot that starts in
the middle (task robot) gets 10 tasks chosen from A, B, C, and D, in a round-robin fashion. It
is also forced to visit the central location between each task, causing congestion in the middle.
We run this experiment with O to 4 other patrolling robots, and set the priority of the task
robot as the highest. We run with both collision avoidance turned on and turned off. Note that
even with the collision avoidance turned off, robots will not collide all the time as the lower
level navigation stack implements dynamic obstacle avoidance. However, turning collision
avoidance on allows robots to communicate their position and goals.

Table 2.6 shows execution times. We note that without the collision avoidance mechanism
turned on, robots run into deadlock situations, where none of their recovery behaviors manages
to find the way out and the navigation stack gets stuck. Collision avoidance manages to lower
the number of deadlocks, though not to eliminate them completely. The results also show that
the execution time does not increase with increasing number of patrolling robots. A possible
explanation would be that more robots approaching each other might cause earlier stopping

and therefore prevent deadlock-like configurations from happening.

2.5 Related work

ROS [193] is a standard software framework for individual robots. Ant 1ab uses ROS at the
single robot level. A continuation project, ROS2 [192] was in a nascent phase at the time

Chapter 2. Antlab: a Multi-Robot Task Server 25

of developing Ant 1ab. Now it matured and it can handle some of the aspects of Antlab
(regarding support for multiple robots), but does not provide synthesis from higher level
declarative specifications. The StarL [150] framework unifies programming, specification,
and verification of distributed robotic systems. It does not, however, address the specific
challenges of a robot service: managing robots, dealing with incoming task requests, dynamic
obstacle avoidance, and fault-tolerance.

Planning is a classical problem in Al and robotics [201, 55, 84, 92, 143]. As our work’s
primary focus is on multiple robots, we discuss that setting in planning. We compare the
performance of domain-independent planners to the custom SMT-based planner for LTL tasks.
SMT-based synthesis of motion plans was applied to a single robot moving in a workspace
containing rectangular obstacles [119] and in synthesizing integrated task and motion plans
from partially specified tasks [174, 224]. In multi-robot motion planning, a SMT solver was
employed to synthesize a plan for a group of robots from a safe-LTL formula [202] and from
a specification that requires a group of robots to reach their preassigned goals while avoiding
obstacles and collision with other robots [203]. Unlike these works, Ant 1alb supports the
stream of incoming tasks and it does not require that the assignment of robots to tasks is
provided to the planning algorithm.

Several prior papers address the problem of generating trajectories for multi-robot systems
where the robots are preassigned a set of tasks, whereas Ant 1ab simultaneously assigns
robots to tasks and generates trajectories. A subset of these works (e.g. [79, 29, 202, 203])
adopts a centralized approach where a central server is used to synthesize trajectories for a
set of robots to reach a set of pre-specified goal locations. The others employ decentralized
prioritized planning (e.g. [102, 220, 219]) where, given a fixed set of tasks, the robots in the
system coordinate with each other asynchronously to compute the trajectories. Similarly to
our work, Turpin et al. [215] assign goals and plan a trajectory simultaneously, but only for
simple reachability tasks and requiring that no robot is left idle, rather than optimizing the
total cost. Drona [65], a framework for distributed mobile robotics, introduces a multi-robot
decentralized motion planner but—unlike Ant 1 ab—assumes that robots are preassigned their
tasks and that there are no uncertainties in the environment.

In the aforementioned work, as well as in Antlab, the robots are coupled by a no-
collision requirement or by some light synchronization requirements. A much tighter coupling,
where the actions and states of multiple agents are mutually dependent, is studied in the work
of Banusic et al. [24]. The agents there can be seen as components of a larger assembly.

There is an increased interest in using LTL for synthesizing reactive motion plans auto-
matically [136, 229, 64]. However, automated synthesis algorithms scale poorly both with the
number of robots and the size of the workspace, and have not proven suitable for multi-robot
applications. In order to tackle the scalability issue, several papers synthesize motion plans
compositionally (considering conjunctive LTL formulas and synthesizing each conjunct sepa-
rately) [6, 85]. Even though the compositional approach sometimes outperforms centralized
ones, the largest examples so synthesized are still far from real-world test cases. LTLMoP [86]
is a modular toolkit that covers different aspects of creating controllers synthesized from LTL

or structured English specifications. The main difference from our work is that LTLMoP

Chapter 2. Antlab: a Multi-Robot Task Server 26

still resides in a “clean” world assumption, not taking into account robot crashes, imperfect
executions of plans, etc.

Our work starts from given motion primitives for the robots of the system. There is
orthogonal work that synthesizes motion primitives in a smart way, to achieve just the right
level of abstraction coarseness [117, 118], or to be resilient to occasional disturbances [205].

2.6 Conclusion

We have described the design and the implementation of Ant 1ab, an infrastructure system
for “robots as a service” programming model. We consider Antlab to be a successful
proof-of-concept for an end-to-end systems for managing and using robot teams. There are,
however, many open questions on the way to a production-ready system.

Scalability in Ant 1ab can be reached only by performing careful tradeoffs when choosing
which assignment or planning algorithm to use and how many robots to have in the workspace:
the planning procedure is worst-case exponential in the size of the workspace and the number
of robots.

Antlab is built on top of existing infrastructure for single robots (ROS). It is, thus,
vulnerable to all potential problems at that layer (such as noise and imprecision in sensing
and actuation, limited collision-avoidance protocols, etc.). Therefore, we cannot give strong
end-to-end real-time guarantees about the execution.

LTL, the task language of Ant 1ab, does not support some typical “swarm” actions, such
as coordinated work by many robots (‘“follow the leader”). It would be interesting to extend
the declarative task language to tasks of this nature. Further, LTL is still too low-level to
describe complex workflows such as industrial processing.

Another pressing problem with LTL as a specification language is that, although succinct, it
is a language difficult to master. Aiming to democratize the multi-robot systems development,
we ought to help users work with LTL in a more intuitive and reliable manner. We present
one way to do so in Chapter 3, based on learning specifications from examples and natural
language.

The implementation of Ant 1ab features a preliminary version of handling concurrent
requests: only the non-busy robots are taken into consideration for executing a newly arrived
task. In Chapter 4, we will see how to plan in a principled way also for the robots that are
already executing a task.

27

Chapter 3

Inferring Specifications from
Examples

Good specifications are a cornerstone of our efforts to engineer better systems. In Chapter 2,
I have proposed Antlab, the system that makes programming of multi-robots applications
easier by allowing its users to only provide an LTL specification. And while a specification is
less detailed than a corresponding implementation, the problem remains: how to translate the
intuition of what the system should do into a formal specification?

Specifications are necessary in many other contexts as well. For instance, a model checking
algorithm [21] can prove a system design to be correct. But this proof is only meaningful if
the specification correctly captures the requirements of the application. Similarly, while the
process of synthesizing reactive systems from their specifications is well researched [206, 196,
158, 169, 96], the success of the synthesized behavior depends on having correct specifications,
both of the task and of the environment in which the system operates. The same is true for our
efforts to tame learning systems, future or present [125, 48].

Despite the critical role they play, specifications are often taken for granted, assumed to
be given by the user. For most users, however, writing correct and complete specifications
is hard [114]. Crucial properties of the application are easy to miss, and translating one’s
intuition into formal representation such as automata or Linear Temporal Logic (LTL) formulas
is not straightforward.

A solution to this problem is to allow the users to express their intent in a simpler way
and give them automated tools for inferring the full specification. An easy way for users
to express their intent is by providing some examples of desired and undesired system’s
behavior [191]. Other than from users, such examples can also be obtained by examining
an existing system [170, 135, 26]. Because a set of examples constitutes only a partial
specification, it is often useful to additionally consider any other available modalities that can
help resolve ambiguity, such as natural language [197, 145] or interaction with the user [70].

In this chapter, we will consider the problems of synthesizing temporal specifications. We
will gradually build towards a multi-modal specification synthesis for a robotic system. As a
first step towards it, in Section 3.1, we will consider a problem of inferring a shortest LTL
specification that separates two sets of ultimately periodic fraces, one consisting of positive

examples and the other of negative examples.

Chapter 3. Inferring Specifications from Examples 28

Unfortunately, both positive and negative example traces are not always available in
practice. (For instance, when inferring specifications of a system that can only be observed, it
is easy to extract the set of positive traces, but very difficult to prove that some examples can
never occur.) Absent some domain-specific knowledge on how to derive negative examples,
we are left with the problem of learning a specification from positive examples only. This,
however, is an ill-defined problem: the shortest specification that accepts the given example
traces is true, which accepts all possible traces, providing us with no useful information. On
the other end of the spectrum is a formula that accepts only the given examples and no other
trace. Both extremes make little sense.

Thinking metaphorically, the all-encompassing formula true is very loose ,whereas the
formula that accepts only the given example is very tight To make this learning problem
well-posed, we need to parameterize the problem with a tightness parameter [18, 126]. The
intuitive idea of tightness must be concretized so that it enables an efficient learning procedure
and that the learned specifications empirically capture relevant properties of the system. We
recognize universally very weak automata (UVWs) over infinite words as a suitable formalism.
For a UVW, the tightness parameter can be concretized syntactically, making the learning
procedure efficient. In Section 3.2, we will see a chain-enumeration algorithm for inferring
n-tight UVWs from positive examples only.

Finally, in Section 3.3, I will present LTLTALK, the robotic system that helps its users
formalize their intent into a correct LTL specification. LTLTALK synthesizes a set of candidate
LTL specifications from a single example trace and a natural language description of the
command. In order to choose the correct specification among the set of candidates, LTLTALK
interacts with the user by showing different robotic worlds and the robot’s actions in them,
and asking the user to say whether they match the original intent. Additionally, we use a
grammar extension mechanism and a semantic parser to generalize synthesized specifications
to parametric task descriptions for subsequent use. Thus, the overall system functions as a
way for non-expert users to mold the original formal language (LTL) into a language that

comes naturally to them.

3.1 Inferring Specifications from Positive and Negative Examples

In this section, we consider the problem of inferring a formula from both positive and negative
examples. This problem arises when formalizing our intuition about the desired behavior
or when attempting to make sense of the observed behavior of complex systems (e.g., for
debugging, specification mining, or modernization of legacy systems). We focus on learning
LTL formulas that distinguish desirable from undesirable executions of a system.

The precise problem we are solving is the following: given a sample S consisting of two
finite sets, one with positive and the other with negative examples, learn an LTL formula ¢
that is consistent with S in the sense that all positive examples satisfy ¢, whereas all negative

Chapter 3. Inferring Specifications from Examples 29

examples violate @.! To be as general and as succinct as possible, we here consider examples
to be infinite, ultimately periodic words (e.g., traces of a non-terminating system) and assume
the standard syntax of LTL. However, our techniques can easily be adapted to the case of finite
words and extend smoothly to arbitrary future-time temporal operators, such as “release”,
“weak until”, and so on. We fix all necessary definitions and notations in Section 3.1.1.

We will see two novel learning algorithms for LTL formulas from data in this section. The
first one is based on SAT solving. The second one leverages learning decision trees as a way

to overcome the scalability issues of the first one.

SAT-Based Learning Algorithm

The idea of our first algorithm, presented in Section 3.1.2, is to reduce the problem of learning
an LTL formula to a series of satisfiability problems in propositional Boolean logic. With
that reduction, we can take advantage of many optimized off-the-shelf SAT solvers to find
the solution. Inspired by ideas from bounded model checking [31], our learning algorithm
produces a series of propositional formulas @, for increasing values of n € IN'\ {0} that
depend on the sample S. These propositional formulas are so constructed that from a satisfying
assignment for them, we can reconstruct an LTL formula consistent with the given sample.
By increasing the value of n until CD;f becomes satisfiable, we obtain an effective algorithm
that learns an LTL formula that is guaranteed to classify the examples correctly (given that the
sample is non-contradictory).

By design, our SAT-based learning algorithm has three crucial features. First, our algorithm
learns LTL formulas of minimal size (i.e., with the minimal number of subformulas). Smaller
formulas are generally easier to comprehend by humans than larger ones. Second, once an
LTL formula has been learned, our algorithm can be queried for further, distinct formulas
consistent with the sample. We believe that this feature is important in practice as it allows
generating multiple explanations for the observed data. Third, our algorithm does not rely
on an a priori given set of templates. To the best of our knowledge, our SAT-based algorithm
was in fact the first learning algorithm not restricted to a fixed class of templates. However,
restrictions to the shape of LTL formulas (e.g., the popular GR(1)-fragment of LTL [35]) can
easily be encoded if desired.

Learning Algorithm Based on Decision Trees

Our second learning algorithm, which we present in Section 3.1.3, trades in the guarantee of
finding minimal solutions for better scalability. The key idea is to perform the learning in
two phases. In the first phase, we run the SAT-based learning algorithm described above on
various subsets of the examples. This results in a (small) number of LTL formulas, named
“LTL primitives”, that classify at least these subsets correctly. In the second phase, we use a
standard learning algorithm for decision trees [194] to learn a Boolean combination of these

LTL primitives that classifies the whole set of examples correctly, though it might not be

INote that, in contrast to classical computational learning theory [217] and modern statistical machine
learning [36, 168], we seek to learn a formula that does not make mistakes on the examples. In other words, it
does not assume any noise present in the sample.

Chapter 3. Inferring Specifications from Examples 30

minimal. Even though the minimality guarantee is lost, the resulting formulas are still readable
for humans (which was the original motivation to look for small formulas): a well-known
advantage of decision trees is that they are simple to comprehend due to their rule-based
structure.

When learning LTL primitives, we need to carefully choose the subsets of examples so

that the learned primitives
1. separate all pairs of positive and negative examples, and
2. are general enough to permit “small” decision trees.

While the first requirement is precise, it allows for a large number of subset selections (some
of which may be meaningless, e.g., a full set of provided examples). The second requirement
is of a more descriptive nature, and we use it to empirically select the best strategies for

choosing subsets.

3.1.1 Preliminaries

Let us begin by setting up basic definitions and notation used throughout.

Finite and Infinite Words

An alphabet ¥ is a nonempty, finite set. The elements of this set are called symbols.
A finite word over an alphabet X is a sequence u = ag...a, of symbols a; € X,

i € {0,...,n}. The empty sequence is called empty word, and is denoted by e. The length of

a finite word u is denoted by |u|, where |e| = 0. Moreover, £* denotes the set of all finite
words over the alphabet ¥, while £ = X* \ {¢} is the set of all finite, non-empty words
over 2.

An infinite word over X is an infinite sequence T = agpa; ... of symbols a; € £, € IN.
(We use the symbol T to stand for trace, a common name for infinite words created by a
system’s execution.) The ith symbol of an infinite word T is denoted by 7(i), and the infinite
suffix starting at position j by T[j, o). Given u € 7, the infinite word % = uu... € £ is
the infinite repetition of u. An infinite word T is called ultimately periodic if it is of the form
T = uv® foraword u € £* and a word v € L. Finally, £¢ denotes the set of all infinite

words over the alphabet .

Propositional Boolean Logic and Linear Temporal Logic

Here we remind ourselves of the definitions from Section 2.1. For Var, a set of propositional

variables, we defined formulas in propositional (Boolean) logic by:
* each x € Var is a propositional formula; and
* if ¥ and ® are propositional formulas, so are =¥ and ¥ Vv ®.

Moreover, we added syntactic sugar to allow the formulas true, false, ¥ A @, and ¥ — P.
Linear Temporal Logic (LTL) was defined over a finite, nonempty set Q of atomic propo-

sitions by

Chapter 3. Inferring Specifications from Examples 31

* each atomic proposition g € Q is an LTL formula;
* if ¢ and ¢ are LTL formulas, so are =4, P V ¢, X (“next”), and ¢ U ¢ (“until”).

By this inductive definition, every formula consists of its main operator and zero, one, or
two child subformulas. Again, as in the definition of propositional logic, we added syntactic
sugar for the formulas true, false, p A\ ¢, — ¢, and for the additional temporal formulas,
F ¢ (“finally”) and G ¢ (““globally™).

While defining F and G is commonly done for reasons of practicality, in the context of our
problem it plays a more important role. Since we are interested in finding a formula of the
smallest size, and such derived operators reduce the size of the formula, they directly influence
what will be considered a correct solution. Such bias is only meaningful insofar as the derived
operators are understandable for humans.

To define the notion of size of an LTL formula ¢, we introduce a set of its subformulas

subf (¢). The set subf (¢) is defined inductively over the structure of the formula ¢.

* if p =q € Q, then subf(¢) = {9}

o if p = P @ X, then subf(¢) = {@} Usubf(yp) Usubf(x), for an operator & €
{\,V,—,U}

o if p = O, then subf (@) = {@} Usubf (), for an operator © € {—,F,G, X}

The size of an LTL formula ¢, which we denote by |¢|, is the size of its set of subformulas,
subf (¢). In other words, a size of an LTL formula is a number of its unique subformulas. One
could put forward a different notion of size, one which counts the total number of subformulas.
We believe that considering unique subformulas captures in a better way a connection between
the size of a formula and how difficult it would be for humans to interpret it.

Finally, let U = {—,F, G, X} be a set of all unary operators and B = {A, V, —, U} a set
of all binary operators. Considering atomic propositions as nullary operators, we define the
set of all operators as O = QU U U B.

Our SAT-based learning algorithm relies on a canonical syntactic representation of LTL
formulas as directed acyclic graphs (we call them syntax DAGs of a formula). A syntax
DAG is similar to a syntax tree (i.e., the unique tree labeled with atomic propositions as well
as Boolean and temporal operators that is derived from the inductive definition of an LTL
formula), the only difference being that same subformulas share a node. The number of nodes
in a syntax DAG corresponds to the number of unique subformulas of the represented LTL

formula, and thus with the size of the formula.

Definition 3.1. A syntax DAG of an LTL formula ¢ is a graph whose nodes are the elements of
a set of subformulas subf (¢) and there is an edge from every formula to its child subformulas.

Each node is labeled by the main operator of the corresponding subformula.

As an example, Figure 3.1b depicts the (unique) syntax DAG of the formula (pU Ggq) V
(F Gg), in which the subformula G g is shared; the corresponding syntax tree is depicted in

Figure 3.1a. Note that syntactically distinct formulas have different syntax DAGs.

Chapter 3. Inferring Specifications from Examples 32

Samples and Consistency

Throughout this section, we assume that the data we learn from is given as two finite, disjoint
sets P, N C (29)% of ultimately periodic words. The words in P are interpreted as positive
examples, while the words in N are interpreted as negative examples. We call the pair
S = (P, N) asample. Since we want to work with the ultimately periodic words in a sample
algorithmically, we assume that they are stored as pairs (1,) of finite words u € (29)* and
vE (ZQ)Jr, which can be accessed individually. To measure the complexity of a sample, we
define its size to be |S| = ¥, wcpun 1| + |0].

Given an LTL formula ¢ and a sample S = (P,), both over a set Q of atomic
propositions, we call ¢ consistent with S if uv“ |= ¢ for each uv®” € P (i.e., all positive
examples satisfy @) and uv® [~ ¢ for each uv® € N (i.e., all negative examples do not
satisfy ¢); in this case, we also say that ¢ separates P and N'. We will say that formula ¢ is
minimal consistent with the sample S if ¢ is consistent with S and no consistent LTL formula

of smaller size exists.

3.1.2 Inferring a Minimal formula with a SAT-based Learning Algorithm

The fundamental task we solve in this section is:
“compute a minimal LTL formula consistent with a given sample S”.

We call this task passive learning of LTL formulas—as opposed to active learning [10],
where the learning algorithm is permitted to actively query for additional data. Note that this
problem can have more than one solution as there can be multiple, non-equivalent minimal
LTL formulas consistent with a given sample.

Before we explain our learning algorithm in detail, let us comment on the importance
of the minimality requirement in the definition above. From one side, we believe that small
formulas are easier for humans to comprehend than large ones, which justifies spending effort
on learning a smallest formula. However, we do not impose any preference amongst minimal
consistent formulas (which is an interesting topic in itself, addressed in Section 3.3). From the
other side, we observe that the problem becomes trivial if no restriction on the size is imposed.

Remark 3.1. For« € P and B € N, construct a formula ¢, g with V(@,p,a) = 1 and
V(@a,p,B) = O that describes the first symbol where « and f differ using a sequence of X-
operators and an appropriate propositional formula; then, \/,cp A BeN Pa,p 1s consistent with
S since we assume P and N to be disjoint. However, simply characterizing all differences
between positive and negative examples is clearly overfitting the sample and, hence, arguably

of little help in practice.

Let us now turn to describing our learning algorithm. Its underlying idea is to reduce the
construction of a minimal consistent LTL formula to a satisfiability problem in propositional
logic and take advantages of existing SAT solvers to find a solution. More precisely, given a
sample S and a natural number n € IN'\ {0}, we construct a propositional formula & of

size polynomial in 7 and |S| that has the following two properties:

Chapter 3. Inferring Specifications from Examples 33

vV V 6
VRN VRN VRN
U F U - F 5 / 4
/ A\ [/ A\ / A\
P G G P G 2 3
| | | |
q q q 1
(a) Syntax tree (b) Syntax DAG (c) Identifiers

FIGURE 3.1: Syntax tree, syntax DAG, and identifiers of the syntax DAG for
the LTL formula (pUGq) vV (FGgq)

1. @¢ is satisfiable if and only if there exists an LTL formula of size 7 that is consistent
with §; and

2. if v is a model of @, then v contains sufficient information to construct an LTL formula

1, of size n that is consistent with S.

By increasing the value of n by one and extracting an LTL formula 1, from a model v of
q)‘ng as soon as it becomes satisfiable (indeed, any model is sufficient), we obtain an effective
algorithm that learns an LTL formula of minimal size that is consistent with S. This idea is
shown in pseudo code as Algorithm 1. The algorithm will surely terminate because of the
existence of a trivial solution from Remark 3.1. The size of this solution provides an upper
bound on the value of 7.

The key idea of the formula CIJf is to encode the syntax DAG of an (unknown) LTL
formula ¢* with unique subformulas and then constrain the variables of ®% so that ¢* is
consistent with the sample S. To simplify our encoding, we assign to each node of this syntax
DAG a unique identifier i € {1,...,n} so that

a) the identifier of the root is # and
b) if the identifier of an inner node is i, then the identifiers of its children are smaller than i.

Note that such a numbering scheme is not unique for a given syntax DAG, but it entails that
the root always has identifier n and the node with identifier 1 is always labeled with an atomic
proposition. One assignment of identifiers for the syntax DAG from Figure 3.1b is given in
Figure 3.1c.

We encode a syntax DAG using three types of propositional variables:

e xjywherei € {1,...,n}and A € O;

Algorithm 1 SAT-based learning algorithm
Input: a sample S
:n<+0
2: repeat
3 n<n+1
4: Construct and solve &%
5
6

. until ®¢ is satisfiable, with a model v
: Construct and return ¢,

Chapter 3. Inferring Specifications from Examples 34

TABLE 3.1: Constraints enforcing that the variables x; , encode a syntax

DAG
[A Vx| AL A A xia Vo (3.1)
1<i<n AeO 1<i<n A#£M €0

[AV li,j] A [=iV =l (3.2)
2<i<n 1<j<i 2<i<n 1<]<] <i i
[/\ \/ Ti,]'] N [—\7’1',]'\/—\7’,‘,]'/ (3.3)
2<i<n 1<j<i <i n1<]<] <i
\ x1,p (3.4)
peQ

* lijwherei € {2,...,n}andj € {1,...,i—1};and
> Tij where i € {2,...,n} and j € {1,...,i—1}.

Intuitively, the variables x;) encode labeling of the syntax DAG in the sense that if a variable
x; A is set to true, then node i is labeled with A (recall that each node is labeled with an
operator from the set O, which can be either a binary operator, a unary operator or a nullary
operator—an atomic proposition). The variables /; ; and r; j, on the other hand, encode the
structure of the syntax DAG (i.e., the left and the right child of inner nodes): if variable [; ;
(r; ;) is set to true, then j is the identifier of the left (right) child of node i. By convention, we
ignore the variables 7; ; if node 7 of the syntax DAG is labeled with a unary operator; similarly,
we ignore both [; ; and 7; ; if the node i is labeled with an atomic proposition. Note that in the
case of [; ; and r; j, the identifier 7 ranges from 2 to 7 because node 1 is always labeled with an
atomic proposition and, hence, cannot have children. Moreover, j ranges from 1 toi — 1 to
reflect the fact that identifiers of children have to be smaller than the identifier of the current
node.

To enforce that the variables x;), li,j, and r; ; in fact encode a syntax DAG, we impose the
constraints listed in Table 3.1. Formula (3.1) ensures that each node is labeled with exactly
one label. Similarly, Formulas (3.2) and (3.3) enforce that each node (except for node 1)
has exactly one left and exactly one right child (when deriving the LTL formula from a
given model, though, we ignore certain children if the node represents a unary operator or an
atomic proposition). Finally, Formula (3.4) makes sure that node 1 is labeled with an atomic
proposition.

Let CDEAG now be the conjunction of Formulas (3.1) to (3.4). Then, one can construct
a syntax DAG from a model v of @EAG in a straightforward manner: simply label node i
with the unique label A such that v(x;) = true, designate node 7 as the root, and arrange
the nodes of the DAG as uniquely described by v(l; ;) and v(r; ;). Moreover, we can easily
derive an LTL formula from this syntax DAG, which we denote by 1. Note, however, that ¥,
describes one LTL formula, but is not yet in any way related to the sample S.

Chapter 3. Inferring Specifications from Examples 35

To enforce that 1, is indeed consistent with S, we now constrain the variables x; 5, li,]-, and
r;,j further. More precisely, we add for each ultimately periodic word v in S a propositional
formula ®}° that tracks the valuation of the LTL formula encoded by CIDI;?AG (and all its

subformulas) on uv®. The observation that enables us to do this is the following.

Remark 3.2. Let uv® € (29)“, ¢ be an LTL formula over Q, and k € IN. Then, uo®[|u| +
k,00) = uv®”||u| + m,00) with m = k mod |v|. In addition, V (¢, uv“[|u| +k, c0)) =
V (@, uv“[|u| + m, o)) holds for every LTL formula ¢.

Intuitively, Remark 3.2 states that the suffixes of a word uv“ eventually repeat periodically.
As a consequence, the valuation of an LTL formula on a word uv“ can be determined based
only on the finite prefix uv (recall that the semantics of temporal operators only depend on the
suffixes of a word).

To illustrate this claim, consider the LTL formula X ¢ and assume that we want to deter-
mine the valuation V(X ¢, uv“[|uv| — 1,00)) (i.e., X ¢ is evaluated at the end of the prefix
uv). Then, Remark 3.2 permits us to compute this valuation based on V (¢, uv“[|u|, o)), as
opposed to the original semantics of the X-operator, which refers to V (¢, uv“[|uv|, o)) (i.e.,
the valuation at the next position).

Note that similar ideas can be applied to all other temporal operators as well. Rather
than observing only one future timestep, operators U, F and G determine their valuation from
the full suffix of a trace. As an example, assume ethat we want to determine the valuation
V(G ¢, uv®[|u| + k, o)), where k < |v|. By Remark 3.2, it is enough to make sure that ¢
holds for each element of the sequence uv®[|u| + k, |uv| + k).

For n € IN, the formula ®;;°, which requires that our syntax DAG is consistent with the
sample, is built over an auxiliary set of propositional variables yfff]. Here,i € {1,...,n}
is a node in the syntax DAG and t € {0,...,|uv| — 1} is a position in the finite word
uv. The meaning of these variables is that the value of y;ff corresponds to the valuation
V (@i, uv®“[t,c0)) of the LTL subformula ¢; that is rooted at node i. Note that the set of
variables for two distinct words from the sample must be disjoint.

To obtain this desired meaning of the variables y?f;v, we impose the constraints listed in
Table 3.2, which are inspired by bounded model checking [31]. Formula (3.5) implements
the LTL semantics of atomic propositions and ensures that if node i is labeled with g € Q,
then y;ff is set to true if and only if g € uv(t). Next, Formulas (3.6) and (3.7) implement the
semantics of negation and disjunction, respectively: if node i is labeled with — and node j is
its left child, then yff;v is the negation of y}‘/’tv; on the other hand, if node i is labeled with V,
node j is its left child, and node j" is its right child, then ;'}’ is the disjunction of y}" and y;’,?
Moreover, Formula (3.8) implements the semantics of the X-operator, following the idea of
“returning to the beginning of the periodic part v” as sketched above. Finally, Formula (3.9)
implements the semantics of the U-operator. Let us analyze it: the first conjunction in the
consequent covers the positions £ € {0,...,|u| — 1} in the initial part u, while the second

conjunct covers the positions t € {|u/,..., |uv| — 1} in the periodic part v. Thereby, the

Chapter 3. Inferring Specifications from Examples 36

TABLE 3.2: Constraints enforcing that the variables y Y track the valuation
of the prospective LTL formula on ultimately penodlc words

WO ifg e uo(t)
A /\Xi,q—>[A {yl,tu,v ,fq () (3.5)
1<i<n geQ o<t<luo] (Wi 14 ¢ ”U(t)_
/\ (Xi,ﬂ/\li,]') — /\ [yzt PR y]u,U (3.6)
1<i<n 0<t<|uv| J
1<j<i
N iy Alijarp) = N\ [y}f; iy \/y]“,zt’) (3.7)
1<i<n 0<t<|uv|]
1<j,j/<i
/\ (xl'lx/\li/]‘) —
1<i<n
1<j<i
(3.8)
IR A |
0<t<|uv|—1
/\ (x,-,U VAN li,]' /\7’1',]-/) —
1<i<n
1<j,j/<i
” N vii e N s Ny t” (3.9)
0<t<]u| <t <|uv| <t <t!

[A viie [y}f:% A y””m

|u|<t<|uv| |u| <t <|uv) €ty ot!

second conjunct relies on an auxiliary set f %, , ' defined by

{t,...,t' =1} ift <t

tq_)u,z] t/ =
{lul,...,.t' =1,t,..., |uv| =1} ift>"¢,

which contains all positions in v “between t and .

Semantics of the derived operators, A, —, F, G can be encoded analogously, as shown in
Table 3.3. Moreover, our SAT encoding is extensible, and additional LTL operators such as
weak until or weak and strong release can easily be added. To avoid cluttering the presentation,
in the rest of the section we will assume only the encoding for the basic operators (Table 3.2).

For each uv®” € P UN, let ®;° now be the conjunction of Formulas (3.5) to (3.9). Then,

we define

@5 = PPAC A

 azens|a | A ovna]

uow eP uv?eN

Note that the subformula ®};° A yn o makes sure that uv® € P satisfies the prospective LTL
formula (more concretely, uv“ starting from position 0 satisfies the LTL formula at the root

Chapter 3. Inferring Specifications from Examples 37

of the syntax DAG), while ®;"* A —y;’; ensures that uv® € N does not satisfy it.
To prove the correctness of our learning algorithm, we first establish that the formula <I>‘nS

has in fact the desired properties.

Lemma 3.1. Let S = (P, N) be asample, n € IN'\ {0}, and @ the propositional formula
defined above. Then, the following holds:

1. If an LTL formula of size n that is consistent with S exists, then the propositional
formula @ is satisfiable.

2. If v |= @, then 5, the LTL formula derived from the model v, is an LTL formula of
size n that is consistent with S.

The proof is a direct consequence of how we defined the propositional formula CID;f .

Therefore, it will require a careful application of the definitions from Table 3.2 and Remark 3.2.

Proof. To prove the first statement of Lemma 3.1, assume that ¢ is an LTL formula of size
n that is consistent with S = (P,) and fix identifiers i € {1,...,n} for the nodes of the
unique syntax DAG corresponding to ¢. Moreover, for each node i, let ¢; be the formula of ¢
rooted at i.

Based on the LTL formula ¢ and its subformulas ¢;, we now construct a valuation v for

the propositional formula <I>f as follows:
» we set v(x;) = true if and only if the node i of the syntax DAG of ¢ is labeled with /;

* we set v(l; ;) and v(r; ;) according to the formula structure and the chosen identifiers of
the syntax DAG; and

e for each infinite word uv® € P U N, for each node i, and each timestep position
t€{0,...,|uv| — 1}, wesetv(y;") = V(¢;, uv“[t,00)).

It is not hard to verify that v = ®PAG 35 the value of the variables Xi ¢, li j, and r; ; have
been derived from the syntax DAG of 1. Moreover, v |= @} holds for each uv®” € PUN
because the values of the variables y;f’t” correspond exactly to the valuation of each formula
1; on the finite prefix uv. Finally, the fact that ¢ is consistent with S implies v |= y%’ for
each uv® € P (since V(¢,uv”) = 1if uv” € P)and v = —y,; for each uv”’ € N (since
V(p,uv®) = 0if uv” € N). Thus, v |= 5, which proves that @ is satisfiable.

To prove the second statement, assume that v = ®¢ and let ¢v be the LTL formula obtained
from v. In particular, v = CIDEAG, and the variables x; ¢, ll-,]-, and rij encode a syntax DAG.
For each node i, let now ¢; be the subformula of ¢, rooted at i.

We show by induction over the structure of ¢, that v(y;;") = V(¢;, uv®[t,)) holds for
each subformula ¢; of ¢,, each ultimately periodic word uv* € P U N, and each timestep

position t € {0, ..., |uv| —1}:

* Let ¢; = g for some atomic proposition g € Q. Then, v(x;,) = true, and Formula (3.5)
immediately ensures that v(y;}") = V(q, uv®“[t,0)) holds foreach t € {0,..., |uv| —

1.

Chapter 3. Inferring Specifications from Examples 38

* Let ¢; = —¢@;. Then, v(x;-) = true, and applying the induction hypothesis for
@;j yields v(y;;") = V(gj,uv’[t,00)) for each t € {0,..., |uv| —1}. In this sit-
uation, Formula (3.6) enforces that v(y;}") = V(=¢;, uv“[t,)) holds for each
teA0,...,|uv| —1}.

* Let ¢; = ¢; V ¢y. Then, as in the case of negation, the induction hypotheses to-
gether with Formula (3.7) imply that v(y;;") = V(¢; V ¢j, uv“[t,c0)) for each
teA0,...,|uv| —1}.

* Let ¢; = X @;. Then, v(x;x) = true, and applying the induction hypothesis for ¢;
yields v(y]t) = V(¢j, uv®[t,00)) foreacht € {0,..., [uv| —1}. In this situation, the
left conjunct in the consequent of Formula (3.8) enforces that v(y;;") = v(y;-‘”tzjrl) =
V(X ¢, uv®|[t,00)) holds for each t € {0,...,|uv| —2}. Moreover, by choosing
k = |v| in Remark 3.2, we obtain V (¢@;, uv“[|uv|,00)) = V(¢;, uv*||u|,)). Thus,

the right conjunct in the consequent of Formula (3.8) ensures that v(yZ o] 1) =

o(y!fh) = V(X gj,uv®[|uv| —1,00)) holds.

* Let ¢; = ¢; U @ and, thus, v(x;y) = true. We split the proof for this operator into

four distinct cases.

1. Lett € {0,..., |uv| — 1}, and assume V(¢;, uv®[t, 00)) = 0, with the reason for
evaluating to zero being that V (¢, uv®“[t’,00)) = 0 forall t' > t (i.e., ¢y never
holds after position f). By induction hypothesis, this means that U() = false
for t <+ < |uv| — 1. Hence, Formula (3.9) enforces v(y;;’) = 0.

2. Lett € {0,...,|uv| — 1}, and assume V(¢;, uv®[t,00)) = 0 because for all
t' > t with V(@j, uv“[t',00)) = 1 there exists a t” € {t,...,t' — 1} such
that V(¢;, uv®[t",0)) = 0. By induction hypothesis, we obtain that for all
t' e {t,..., |uv| — 1} with v(yj) = true there exists a t" € {t,..., t' =1}
with o(y;7) = false. In this situation, Formula (3.9) enforces o(y;;’) false

3. Lett € {0,...,|u| — 1}, and assume V(¢;, uv®“[t,00)) = 1. Then, there
exists a t' € {t,...,|uv| — 1} such that V(¢ uv®[t/,e0)) = 1 and
V(gpj,uv“[t",00)) = 1fort < t" < t' (if the smallest position t* with
V(¢j, uv”[t*,00)) = 1is greater than [uv| — 1, then Remark 3.2 guarantees that
there exists an earlier position t' € {t,..., |uv| — 1} with V (¢, uv“[t’,00)) =1
and V(¢;, uv®[t",00)) = 1fort < t” < t'). By applying the induction hypothe-
sis, we then obtain v(y; ») = true and v(y;) = true forall t < t" < t'. In this

case, the first conjunct of the consequent of Formula (3.9) enforces v(y:}") = 1.

4. Let t € {|u|,...,|uv| — 1}, and assume V(¢;, uv“[t,00)) = 1. Then,
there exists a position t* > t such that V(¢;,uv“[t*,c0)) = 1 and
V(gj, uv® [F*,00)) = 1forall t < ** < t*. By Remark 3.2, this means that
there exists a position t' € {|u/, ..., |uv| — 1} such that V (¢, uv“[t,00)) =1
and V(@;uv?[t",00)) = 1forall ' € T = {lu|4+m | m = (t**
mod |v|),t** € {¢t,...,t* —1}}. Applying the induction hypothesis now yields

Chapter 3. Inferring Specifications from Examples 39

TABLE 3.3: Constraints enforcing that the variables y;” track the valuation of
the prospective LTL formula on ultimately periodic words: derived operators

N GinAlijArip) = N\ [yﬂv < vy Ay
1<i<n 0<t<|uv|
1<),/ <i

N i Aljjnrgp) = N [yff’f < vy = vih)
1<i<n 0<t<|uv|
1<j,j'<i

/\ (xi,F A lw’) —

1<i<n
1<j<i
u,o u,o u,v u,0
” /\ Yir & \/ yj,t'] /\[/\ Yir & \/ yj,t'”
0<t<|u| t<t' <|uv| |u|<t<|uv| [u| <t <|uv|
N (xigAlij) —
1<i<n
1<j<i
u,0 u,0 u,v u,v
[[/\ Yir & /\ y]',t’] /\[/\ Yiy & /\ yj,t’]]
0<t<|u| <t <|uv| |u|<t<|uv| |u| <t <|uv|

v(yy/y) = true and v(y;y) = true for all t” € T. Since t Gy t' C T, the

second conjunct of the consequent of Formula (3.9) enforces v(y:;") = true.

We have shown that v(y;}’) = V(@i uv®[t,c0)) holds for timestep positions t €
{0,...,|uv| —1}. But valuations on those timestep positions determine valuations for all
t € N, as discussed in Remark 3.2.

Having established that the variables correctly track the valuation of the formula ¢, on the
sample, it is now straightforward to see that ¢y is in fact consistent with S. First, we observe
that ¢, = @, because node 7 is the root of the syntax DAG. Second, since ®% enforces
0(y,9) = true for each uv” € P and v(yn0) = V(¢o) holds by the induction above, we
obtain V (o, uv®) = 1. Similarly, we obtain V(¢,, uv®) = 0 for each uv” € N because
@3 enforces v(y,) = 0if uv” € N. Thus, ¢, is consistent with S, which proves the

second statement. O
A direct consequence of Lemma 3.1 are termination and correctness of Algorithm 1.

Theorem 3.1. Given a sample S, Algorithm 1 terminates eventually and outputs an LTL

formula of minimal size that is consistent with S.

Proof. Since there exists a consistent LTL formula for every non-contradictory sample, Part 1
of Lemma 3.1 guarantees that Algorithm 1 terminates. Moreover, Part 2 ensures that the
output is indeed an LTL formula that is consistent with S. Since 7 is increased by one in every
iteration of the loop until <1>‘n§ becomes satisfiable, the output of Algorithm 1 is a consistent

LTL formula of minimal size. O

Chapter 3. Inferring Specifications from Examples 40

Algorithm 2 Learning algorithm based on decision trees
Input: a sample S
1: Run Algorithm 1 on small subsets of P and AV to construct a set [T = {¢1,..., ¢, } of
LTL formulas such that for each pair u1v{’ € P and uyv§ € N there exists a ¢; € T1
with V(¢;, u10{’) = 1 and V(¢;, u20§) =0
2: Learn a decision tree T with LTL primitives from IT as features
3: return ¢, the resulting Boolean combination of LTL primitives (which is consistent with

S)

It is important to emphasize that the size of CID‘HS and, hence, the performance of Algorithm 1

depends on the size of a sample S = (P, \), as summarized next.

Remark 3.3. The formula &S ranges over O (n? + n|S|) variables and is of size O (n* +
1> Lupoepun [uvf?).

Remark 3.4. The hardness question for the problem of learning a minimal LTL formula
consistent with the sample remains open. For a similar problem, learning a minimal automaton
consistent with the sample, Angluin [12] has shown NP-hardness. I believe that learning
LTL formulas is NP-hard as well, but was not able to prove so. There are results showing
that some fragments of LTL are NP-hard [83], in particular LTL(X, A), LTL(F, A), and
LTL(F,X, A, V).

We have described an algorithm that infers a minimal LTL formula from a non-
contradicting sample of example traces. It is doing so by iterative SAT solving. The main
difference to existing work on the same topic is the fact that our algorithm does not depend
on any fixed syntactic templates for the formula. Nonetheless, if the expert knowledge is
available, it can be incorporated into our algorithm by constraining the variables x; 5, [; j, and

1’1‘,]‘.

3.1.3 A Decision Tree Based Learning Algorithm

The SAT-based algorithm described in Section 3.1.2 is an elegant, out-of-the-box way to
discover minimal LTL formulas describing a sample. Even though it scales well beyond
toy examples, its running time seems too prohibitive for real-world examples (as discussed
in Section 3.1.4). That is why we now present a second learning algorithm, based on a
combination of SAT solving and decision tree learning.

Our second algorithm proceeds in two phases, as outlined in Algorithm 2. In the first
phase, we run Algorithm 1 on small subsets of P and . This is repeated until we obtain a
set I'T of LTL formulas (we call them LTL primitives) that separate all pairs of words from P
and V. In the second phase, formulas from IT are used as features for a standard decision
tree learning algorithm [194]. The resulting decision tree is a Boolean combination of LTL
formulas ¢; € IT that is consistent with the sample.

Note that this relaxes the problem addressed in Section 3.1.2: we can no longer guarantee
to find a formula of minimal size. However, decision trees are among the structures that
are the easiest to interpret by end-users. That makes them suitable for our use-case, and the

minimality of formulas is replaced by the structural simplicity of decision trees.

Chapter 3. Inferring Specifications from Examples 41

Sunny? ‘ Hot? ‘ Windy? H Play golf or not sunny?
false true true don’t play sl
true | false | true don’t play /hm 2 don’t play
false | false false don’t play play w;in dy?
true false false play SN
true true true play don’t play play
(a) Training data (b) learned decision tree

FIGURE 3.2: An example of the features of training data and the learned
decision tree

/\

true false

FIGURE 3.3: An example LTL decision tree

Learning Decision Trees

Consider a problem of classifying examples characterized by a number of features into a
pre-defined set of classes. A (classification) decision tree is a tree-shaped structure whose leaf
nodes represent different classes, and internal nodes represent tests on the features. It is easy
then to classify any given example by following a path dictated by the feature tests at internal
nodes and landing in one of the leaf-node classes.

Decision trees can be learned from data. Iterating over internal nodes in a top-down
fashion, a learning algorithm picks a decision feature for the node based on a measure of
the purity of the split it introduces. (We prefer the feature which separates different classes
from the training example, over the one in which classes are kept together.) Different learning
algorithms differ by the purity measure they use. The learning process will not attempt to
separate the examples from the training set perfectly, as insisting on it might lead to overfitting
to the training set.

A simplified, commonly used illustrative example is given in Figure 3.2 . In that example,
the data consists of the daily weather information, and the classification is whether people
played golf on that day or not (Figure 3.2a). The learned tree (Figure 3.2b) contains feature
tests in its internal nodes. Full edges represent that the test is satisfied and dashed edges that
it is not. In our example, on a hot and sunny day, the decision tree predicts that people will
play golf (left-most branch), whereas on a day that is not sunny, it predicts they won’t play
golf, regardless of how windy or hot it is. Further details about decision trees and learning
algorithms can be found in standard textbooks, such as [168].

The decision trees we seek to learn have their inner nodes labeled with LTL formulas

Chapter 3. Inferring Specifications from Examples 42

Algorithm 3 Obtaining predictor functions under strategy a

Input: sample S = (P,), parameters k, probDecreaseRate, numRepetitions
1: I = {}
2: while not all pairs separated do

3 probp[t] < ﬁ,w € P; prob[t] < ﬁ,w eN

4 for numRepetitions do

5 P’ < choose(P, probp, k)

6: N’ < choose(N, prob,, k)

7 ¢ = SAT _separate(P’, N’)

8 IT.add(¢)

9: M<+—{teP:tEptU{teN T ¢}

10: probp[T] < probp[t] - probDecreaseRate, VT € P N M
11: prob - [T] < prob/[T] - probDecreaseRate, VT € N N M
12: normalize probp and prob

13: if formulas in IT separate all pairs from P x A then

14: break

15: return I'1

from IT and their leaves are labeled with either frue or false, as illustrated in Figure 3.3. The
LTL formula represented by such a tree T is given by ¢ :=\/ pep A pep @ Where P is the
set of all paths from the root to a leaf labeled with true and ¢ € p denotes that ¢ occurs on
p (negated if the path follows a dashed edge). In the example from Figure 3.3, the tree is
equivalent to the LTL formula [Gp A (gUGr)]V [GpA—(qUGr) AFs].

To learn a decision tree over LTL primitives, we perform a preprocessing step and modify
the sample as follows. For each word uv” € P U N, we use the LTL primitives as features
and create a Boolean vector of size |I1| with the i-th entry set to V(¢;, uv®); this vector
is then labeled with true if uv” € P or with false if uv® € N. In the second step, we
apply a standard learning algorithm for decision trees to this modified sample (we used Gini
impurity [41] as split heuristic in our experiments). Unlike in the common scenario for using
decision tree learning, we are interested in a tree that classifies our sample perfectly. (We let
algorithm run until the perfect classification is achieved.)

Obtaining LTL Primitives

Meaningful features are essential for a successful classification using decision trees. In our
algorithm, features are generated from the set of LTL primitives 1. We used two different
strategies, called Strategy « and Strategy 3, for obtaining I1.

Strategy a (Algorithm 3) iteratively chooses subsets P’ C P and N’ C N of size k
according to probability distributions probp and prob, on P and N, respectively. After a
formula ¢ separating P’ and N is found using Algorithm 1 and added to I, probp and prob s
are updated to increase the likelihood of any word that is not yet classified correctly by any
of the ¢ € I to be selected. This process is repeated until all pairs of positive and negative
examples are separated by some LTL primitive or restarted after a user-given number of
iterations (numRepetitions). Although this strategy is, in general, not guaranteed to terminate

due to its probabilistic nature, it always did terminate in our experiments.

Chapter 3. Inferring Specifications from Examples 43

Algorithm 4 Obtaining predictor functions under strategy

Input: sample (P, '), parameter k

IT={}

S*—PxN

while S* # @ do
(P, N") « choose(S*, uniform, k)
¢ = SAT _separate(P’, N')
TTadd(¢b)
5 S\ {(pm) €55 p = g An I g}

return I'1

Strategy B (Algorithm 4) computes LTL primitives in a more aggressive way. Starting
with the set S = P x N, it uniformly at random selects k pairs from S and uses Algorithm 1
to compute an LTL primitive ¢ that separates those pairs. Then, it removes all pairs separated
by ¢ from S and repeats the process until S becomes empty (i.e., all pairs of examples are

separated).

3.1.4 Evaluation

In this section, we answer questions that arise naturally: how performant is the SAT learner
(Algorithm 1), and what is the performance gain of using decision tree learning (Algorithm 2).
Furthermore, what is the complexity of the learned decision trees in terms of the number
of decision nodes, and, finally, how do different parameters influence the performance of
Algorithm 2. After answering these questions with experiments performed on synthetic data,
we will see the usefulness of our algorithms for understanding executions on a use-case of a
leader-election algorithm.

We implemented both learning algorithms in a Python tool” using Microsoft Z3 [63] as a
SAT solver. All experiments were conducted on Debian machines with Intel Xeon E7-8857
CPUs at 3 GHz, using up to 5 GB of RAM.

Performance on Synthetic Data

To simulate real-world use-cases, we generated samples based on common LTL patterns [73],
which are shown in Table 3.4. Starting from a pattern formula 1, we generated sets of random

words and separated them into P and N depending on whether they are a model of ¢ or not.

2The source code is publicly available at https://github.com/gergia/samples2LTL and the pub-
lic interface for the tools is at https://flie.mpi-sws.org/. Motivated by our work, a C++ implementa-
tion of the same encoding is available at https://github.com/blickens/flie

TABLE 3.4: Common LTL patterns used in practice [73]

Absence Existence Universality
G(=po) F(po) G(po)
F(p1) = (=poUp1) G(=po V F(po AF(p1))) F(p1) = (poUp1)

G(p1 — G(=po)) G(poA(=p1 = (mp1U(p2A—p1)))) G(pr — G(po))

https://github.com/gergia/samples2LTL
https://flie.mpi-sws.org/
https://github.com/blickens/flie

Chapter 3. Inferring Specifications from Examples 44

- F(p1) = (=poUp1) —®— G(p1 = G(po))
—— G(po A (=p1 = (mp1U(p2 A —p1)))) G(=po)
Algorithm 1 Algorithm 2
600 \ \ 600 \ \ T
E
,Qé) 400 |- 400 |- :
0
= f
2 200 200 - :
E
[
0 7 - \—A——A—i | 0 4 A A
500 1,000 1,500 2,000 2,500 3,000 500 1,000 1,500 2,000 2,500 3,000
Size of sample Size of sample

FIGURE 3.4: Comparison of Algorithm | and Algorithm 2

F(p1 — po)
—p1 UG(po) false
true —F(p1)

/

true false

FIGURE 3.5: A decision tree obtained from a sample generated from the LTL
pattern G(p1 — G(po))

Thereby, we fixed |u| + |v| = 10 for all words in the sample and added noise in the form of
one additional atomic proposition that is not constrained by the pattern formula. The size of
the generated samples ranges between 50 and 5000. In total, we generated 192 samples.

Figure 3.4 compares the running times of Algorithm 1 and Algorithm 2 (using Strategy «
and k = 3) on samples of varying sizes. Overall, Algorithm 1 produces minimal formulas
consistent with the sample. It does so even for samples of considerable size, but if the sample
size grows beyond 2000 (varies over samples), the SAT-based learner (Algorithm 1) frequently
times out (at 600 seconds). When Algorithm 2 (using decision tree learning) is applied to
these samples—as shown on the right-hand side of Figure 3.4—none of the computations
timed out and the running times significantly improved.

What kind of trees does Algorithm 2 produce? An example output of the algorithm is
shown in Figure 3.5. On the figure, if a node evaluates to true, the outgoing full edge should
be followed (and the dashed edge otherwise). This example is produced by Algorithm 2 from
samples generated by the formula G(p1 — G(po)). The obtained tree represents the formula
¥r = [G(p1 = po) A (mp1UG(po)] V [G(p1 — po) A =(=p1UG(po)) A = F(p1)]. This
is, indeed, one of the largest formulas produced. As Table 3.5 illustrates, Algorithm 2 learns
small trees, often with less than five inner nodes. Upon closer inspection, we noticed that it

often happens that one of the LTL primitives was the specified formula itself. This suggests

Chapter 3. Inferring Specifications from Examples 45

TABLE 3.5: Different parameters used for Algorithm 2

Sampling strategy ~ Subset size k Number of timeouts ~Avg. running time ins Avg. number of nodes in a tree

x 3 0/192 21.00 3.05
4 6 4/192 35.28 1.47
x 10 8/192 42.72 1.2

B 3 4/192 30.92 1.37
B 6 12/192 48.46 1.19
B 10 21/192 48.11 1.06

that small subsets already characterize our samples completely.

To be able to compare decision trees to the formulas learned by Algorithm 2, we measure
the size of a tree T in terms of the size of the formula ¢ this tree encodes. In our experiments,
the formulas learned by Algorithm 2 were on average 1.41 times larger than those learned
by Algorithm 1. However, there are outlier trees that are four times bigger than the one
learned by Algorithm 1. Nonetheless, about 70 % are of the same size. Even for the outliers,
as emphasized previously, readability does not degrade completely because the rule-based
structure of decision trees is known to be easily understandable by humans. Note that the
runtime and size of decision trees depend on the parameters of Algorithm 2, which we discuss

next.

Tuning the Decision Tree-Based Algorithm

As described in Section 3.1.3, Algorithm 2 can be tuned by various parameters (sampling
strategy for obtaining LTL primitives, size of sample subsets, probability increase rate, and
the number of repetitions inside a single sampling). In this subsection, we explore how those
parameters affect the performance of the algorithm.

Table 3.5 shows the performance of Algorithm 2 for different parameters, averaged over
all 192 benchmarks. As the table indicates, the less aggressive method of separating sets,
Strategy «, performs better. It seems that if the subset sizes are increased, or Strategy S is used,
the sampled subsets already describe the specified formula completely. Finally, we chose
Strategy « and k = 3 to be our default parameters. Varying the probability decrease rate and

the number of repetitions inside a single sampling did not influence the performance much.

Explaining Executions of a Leader Election Protocol

Several methods exist for finding errors or reproducing certain behavior in distributed systems
through systematic testing [42, 159]. However, finding an execution and a corresponding
schedule is only a first step towards understanding the issue at hand. In the following, we
demonstrate how to apply our technique for obtaining a minimal LTL description of a specific
inconsistency in a leader election protocol.

The leader election protocol we consider is the Fast Leader Election algorithm [128, 165]
used by Apache Zookeeper. In this protocol, every node has a unique ID and initially tries to
become the leader. To this end, every node sends messages to all other nodes proclaiming its
leadership. Upon receiving a message by an aspirant leader with a higher ID, a node gives up

Chapter 3. Inferring Specifications from Examples 46

its claim and acknowledges its support for the aspirant. If a node learns that an aspirant node
has a support of a majority of all nodes, it commits (after waiting for a constant time for new
messages) to the aspirant as the leader. Once committed, the node never again changes its
decision and informs any other node of its commitment (one example is the message depicted
by the dotted arrow in Figure 3.6b). If a node has not committed and learns about another

node that has committed, it commits to the same leader.

node 0 node 1 node 2 node 0 node 1 node 2
aspirant \ aspirant aspirant aspirant aspirant aspirant
2 2
supporting (11 supporting 1]
X] 47 majorit /
majority ¢ majorty \Z
secured Q,’
secured | K
‘t') committed 1, -
) 7‘suppor ing %> ‘. L .
— ~ committed 1 aspirant
. majority .
supporting 2 supporting 2 -
secured P2
committed 2 \\/ IsI::iJuor :(tiy
42 |
committed 2 committed 2 committed 2 committed 2

(a) Consistent schedule for an execution of the leader (b) Inconsistent schedule for an execution of the leader
election protocol election protocol

FIGURE 3.6: Two example executions of the leader election protocol

Figure 3.6a shows an example of a successful leader election with three nodes in an
UML-style message sequence chart. The messages exchanged between nodes are proposing
the leader i (P;) and node j acknowledging the claim of a leader (A]-). The arrows indicate
exchanged messages and imply precedence of events. Note that not all messages are shown in
the figures, but only the ones important for understanding the protocol.

In Figure 3.6a all the nodes have committed to the same leader. On the other hand,
Figure 3.6b shows a schedule that ends up in an inconsistent state where nodes are committed
to different leaders. This schedule was discovered by the PCTCP algorithm [183], which
systematically explores the space of possible executions of distributed algorithms. The
situation in Figure 3.6b is caused by asynchronous communication: for performance reasons,
nodes commit as quickly as possible and then discard any messages, which otherwise would
have changed their commitment (indicated as a dashed line in Figure 3.6b). Note, however,
that this is not a bug in Zookeeper’s broadcast algorithm, as a leader without a quorum will
not be allowed to perform any action in a later phase of the protocol.

To better understand how this inconsistent state arises, our goal is to generate an LTL
formula that describes the difference between the schedules in figures 3.6a and 3.6b. To this
end, we constructed a sample by generating 20 linearizations of the schedule from Figure 3.6a
and 20 linearizations of the schedule from Figure 3.6b. Since we seek an explanation for the

inconsistent behavior, the former (with consistent outcomes) correspond to negative examples

Chapter 3. Inferring Specifications from Examples 47

(set V), and the latter (with inconsistent outcomes) correspond to positive examples (set
P). The set of atomic propositions used to construct the examples contains twelve elements:
recv(i,j) for i,j € {1,2,3} (meaning that node j received a message from node i) and
comm(i) fori € {1,2,3} (meaning that node i committed to a leader).’

Finally, we ran Algorithm 1 on this sample. The resulting formula is
—recv(2,1) U comm(1). Intuitively, node 1 did not receive a message from node 2 before it
committed to a leader. That is exactly the difference between the schedules in figures 3.6a
and 3.6b. Also, it hints at a specific reason for the inconsistency in Figure 3.6b, thus potentially
helping the engineers improve the system.

This example illustrates potential uses for the developed learning technique. Note, however,
that this experiment still required a significant amount of manual effort, in particular when
choosing atomic propositions. In order to apply the technique in practice, more work is needed

to automate the process.

3.1.5 Related Work

Learning temporal properties from examples has recently attracted increasing interest, espe-
cially in the area of Signal Temporal Logic (STL) [160] and parametric STL [17]. Examples
include the work by Asarin et al. [17], Kong et al. [134, 135], Vaidyanathan et al. [216],
and Bartocci, Bortolussi, and Sanguinetti [26]. In contrast to our SAT-based learning al-
gorithm, however, all of these techniques either rely on user-given templates or can only
learn formulas from very restricted syntactic fragments. Various techniques for mining LTL
specifications [146, 141] and CTL specifications [225] exist, but these also rely on templates
or severely restrict the class of formulas. To the best of our knowledge, our SAT-based
algorithm was the first that was capable of learning unrestricted LTL formulas without relying
on user-given templates. Nonetheless, expert knowledge in the form of constraints on the
syntax can easily be encoded if desired.

Camacho et al. [47] use a similar encoding to SAT as the one presented in Section 3.1.2.
While they focus on finite traces, the main techniques remain the same. If a perfect separa-
tion requirement is relaxed, a Bayesian approach yields significant performance gains [131].
Improving performance is also possible by splitting the learning into two phases: first de-
termining the formula structure and then filling it in to fit the sample [198]. The SYSLITE
system [14] improves the scalability of the work presented in this section by encoding the
learning of past LTL using bitvectors inside the CVC solver [25].

Our SAT-based learning algorithm is inspired by bounded model checking [31] and the
work on learning (minimal) automata over finite words [176, 179]. However, since regular
languages are strictly more expressive than LTL (the former being equivalent to monadic
second-order logic [45], while the latter being equivalent to first-order logic [129]), automata
learning techniques—including active learning algorithms [81, 13] that operate in Angluin’s

active learning framework [10]—are not immediately applicable.

3While we could have included more information into propositions, we had to obscure some in order to avoid
solutions which state the obvious, of the form “node 1 committed to node 1 as a leader, while node 2 committed to
node 2”.

Chapter 3. Inferring Specifications from Examples 48

Using decision trees to learn Signal Temporal Logic (STL) formulas has been explored
by Bombara et al. [39], whose main contribution is an adaptation of the classical impurity
measure to account for STL formulas. However, this work still requires user-defined STL
primitives to be provided, which serve as the features for the decision tree learning algorithm.
By contrast, our technique uses the SAT-based learning algorithm to infer LTL primitives fully
automatically.

Learning of logical formulas has also been studied in the context of probably approximately
correct learning (PAC) [217]. Grohe et al. [99], for instance, considered learning of first-order
definable concepts over structures of small degree. Subsequently, Grohe et al. [98] studied
the learning of hypotheses definable using monadic second-order logic on strings. Due to the
fundamental differences between PAC learning and the learning model considered here (one
being approximate and the other being exact), their techniques cannot easily be applied to our

setting.

3.2 Inferring Specifications from Positive Examples Only

In the previous section, we were solving the problem of inferring specifications from a sample
consisting of both positive and negative example traces. Unfortunately, both negative and
positive examples are not always available. For instance, when inferring the specification
of a system that is too big to be fully analyzed but whose implementation is given, we can
extract traces representing possible executions of the system. Proving that a certain trace is
not a possible execution of the system is, however, a model checking problem, which can be
infeasible to solve for complex designs. Similarly, we may want to deduce an environment
specification from observing the environment, to be used as input to synthesis. For a black-box
environment, we can never know that some behavior observation sequence cannot occur.
These observations give rise to the question: Is there some way to learn from positive example
traces only?

As we discussed in the introduction to this chapter, this problem is not well-posed. To
define it properly, we need to introduce a measure of how tight the desired specification should
be. There is a spectrum of possible specification solutions ranging from true all the way to
the specification that only allows exactly the set of traces in the example set. None of the
extremes is satisfactory, so we aim to define a problem parameterized by a tightness value
n. At the same time, we want to concretize the notion of tightness value in such a way that
an efficient learning procedure to learn n-tight specifications can be given. Furthermore, the
learned specifications should capture some relevant specification parts of systems (determined
empirically) while being easy enough to understand by an engineer.

In this section, we give one such learning procedure. We identified universal very-weak
word automata (UVWs) over infinite words as an easily readable specification representation
with a natural definition of tightness, that lends itself to an efficient learning procedure. This
automaton class has been identified as characterizing the class of properties representable
both in linear temporal logic (LTL) and in the universal fragment of computation tree logic

(ACTL) [157]. While this implies that there are some w-regular properties that cannot be

Chapter 3. Inferring Specifications from Examples 49

learned by our framework, the intersection of LTL and ACTL includes the vast majority of
specifications found in case studies on specification shapes [3].

By trading away the full w-regular expressivity, we get multiple advantages that make
learning from only positive examples feasible: UVWs can be decomposed into simple
chains [74], each representing one scenario and how the system satisfying the specifica-
tion is required to react. Thus, they are easy to examine by a specification engineer. We
will demonstrate that the maximum length of such a chain is also a natural notion of the
complexity of a specification part, making it a good candidate for the concretization of the
desired concept of tightness. Most importantly, simple chains have a natural approximation
of language inclusion that enables us to efficiently learn a specification by enumerating all
strictest chains that are not in contradiction with any example trace.

As in the previous section, the example traces are given as ultimately periodic words, i.e.,
words of the form uv® for some finite words u and v. We remark that there is nothing specific
about our example traces being positive: the same approached could be used to learn from
negative examples only.

We will demonstrate our approach on benchmarks from a case study on the AMBA AHB
protocol [94]. Starting from LTL formulas describing the allowed behavior of the AMBA
bus clients, we randomly generate sets of positive examples. We run our algorithm on the
generated sets of different sizes and note how big the learned UVW is and how long it takes
to compute it with our prototype implementation. Our experiments show that if the set of
positive examples to learn from is big enough, the algorithm computes a UVW representation
of the correct LTL formula. If, on the other hand, only a few positive examples are available,

the UVWs grow quite large and are difficult to interpret.

3.2.1 Preliminaries

The basic notions defined in Section 3.1.1, such as alphabet, ultimately periodic infinite words,
and syntax and semantics of LTL play a major role in this section, too. On top of them,
we here define additional concepts, necessary for presenting the solution to the problem of

learning from the set of positive examples only.

Co-Pareto Front

Let B = {1,0} denote the set of Boolean values, with 1 representing true and O representing
false. Moreover, let Sq,...,S,, be sets and C; for i € {1,...,m} be a partial order over
the set S;. Then, we call a function f: S; X --- x 5, — B monotone if s; C; sg for
alli € {1,...,m} implies f(s1,...,5m) < f(s},...,s),). Adopting terminology from
multicriterial optimization, we say that some tuple (s1,...,5y) is a Pareto optimum for f if
f(s1,...,5m) = 1l and forno (s},...,s),) # (s1,...,5u) with componentwise inequality
(s1,---,Sm) T (51,...,5m), we have f(s,...,s),) = 1. The set of Pareto optima is called
the Pareto front. Likewise, we say that some tuple (s1,...,S,) is an element of the co-
Fareto front if f(s1,...,5,) = Oand forall (s},...,s;,) # (s1,...,5m) with (s},...,s},) 3
(S1,...,5m), we have f(s},...,s;,) = 1.

Chapter 3. Inferring Specifications from Examples 50

Automata over Infinite Words

Given an alphabet X, an automaton over infinite words is a tuple A = (Q, %, 5, Qy, F), where
Q is a finite set of states, § C Q x X X Q is a transition relation, Q1 C (Q is a set of initial
states, and F is a set of final states.

Given an infinite word w = agpa; ... € £, we say that A induces a run 7w = o7y ... €
QY if 7ty € Qj and for every i € IN, we have that (71;,4;, 77;11) € 6. An automaton defines
a language L(A), i.e., a subset of X% that it accepts. Universal Biichi automata accept all
words w for which all (infinite) runs 7t = 77g777 . . . induced by the word w visit (some) states
from F infinitely often. On the other side, universal co-Biichi automata accept all words w for
which all (infinite) runs 7t = 7771y . . . induced by the word w visit (all) states from F only
finitely often, i.e., there exists an i € IN such that for every j € IN with i < j we have 71; ¢ F.
The final states are also called rejecting states in this case.

We say that an automaton is one-weak or very weak if there exists a ranking function
r: Q — IN such that for every (q,4,q") € 6, we have that either r(q") < r(q) or g and g are
identical. More intuitively, this means that all loops in the automaton are self-loops.

Universal Very Weak Automata

Universal very-weak automata (UVW) are universal co-Biichi automata that are also very-
weak. While universal co-Biichi automata are as expressive as Linear Temporal Logic [140],
universal very-weak automata are less expressive. They only capture the properties from the
intersection of computational tree logic with only universal path quantifiers (ACTL) and linear
temporal logic [37, 157].

The language represented by a finite w-automaton (such as a UVW) is uniquely determined
by the set of ultimately periodic words uv® with u,v € L in the language of the automaton.

An important property of a universal very-weak automaton is that it can be decomposed
into simple chains [74]. This decomposition enumerates words outside of the language of the

automaton in a simple, linear form.

Definition 3.2. A simple chain is a sequence of different states g, . .., g, such that for all
i€{l,...,n— 1}, there exists some a € X with (g;,4,q;+1) € J. A simple chain is called
longest (or maximal) in an automaton if it cannot be extended by an additional state at the
beginning or the end of the sequence without losing the property that it is contained in the
automaton. We say that a UVW is in its decomposed form if a) there are no transitions between
the maximal simple chains of the UVW, and b) for every such simple chain gy, ..., gy, there
are no “jumping transitions”, i.e., forno7,j € IN and a € X, do we have (g;,4,4;) € 6 with
j>i+1

Without loss of generality, we can assume that in a decomposed UVW, every chain has
an initial state and the last state is rejecting, as otherwise the whole chain or the last state,
respectively, can be removed.

Chapter 3. Inferring Specifications from Examples 51

3.2.2 Learning Universal Very-Weak Automata

After introducing the necessary notation, we now describe our approach to learn universal very
weak automata (UVW) from positive examples alone. We first define the notion of n-tightness
of a UVW, which specifies what languages we want to learn from positive examples alone.
We prove that the languages of n-tight automata are unique, which ensures that the learning
problem is well-posed.

We then show how the simple chains of n-tight automata can be learned. As per the
acceptance condition of a UVW, the chains describe the words to be rejected. Hence, learning
n-tight automata amounts to enumerating all simple chains of length up to » that do not reject
any of the positive examples. We show that enumerating them all can be posed as the problem
of enumerating the co-Pareto front elements of a monotone function.

Finally, we show how this insight leads to an efficient learning process: first, the monotone
function can be evaluated by solving a relatively simple model checking problem. Second,
for enumerating all chains, we can use a Pareto optima enumeration algorithm from existing
work, which outputs the co-Pareto front as a byproduct. The last step is then to run the usual

simulation-based automaton minimization steps.

Defining Tight Universal Very-Weak Automata

Given a set of positive examples P C L, we want to compute (learn) an automaton A such
that P C L(.A). We assume that for each p € P, we have that p = u,(v,)“ for some finite
words 1, v, € L1 with |v,| > 1.

Since there are infinitely many automata satisfying this condition, we need an optimization
criterion for finding the automaton .A. Minimizing the number of states of the solution is not a
meaningful optimization criterion in this context, as the smallest automaton is always the one
with O states — such an automaton does not visit final states, and by the acceptance definition
of UVW, this means that all words are accepted.

To permit learning from positive examples only, we hence define an alternative learning
criterion: we learn the strictest automaton (i.e., the one with the smallest language) that
satisfies some syntactic cut-off criterion. For UVWs, there is a natural criterion: the image

size of the ranking function, or equivalently, the length of the longest chain in a UVW.

Definition 3.3. Let P C X be a set of positive examples and A be a UVW with L(A) D P.
For n € IN, we say that A is n-tight for P if the following conditions hold:

1. There does not exist a simple chain of states longer than 7 in A (or equivalently, there

exists a ranking function proving the very-weakness with co-domain {1,...,n}),

2. For no other UVW A’ with P C L(A’) C L(.A), we have that all simple chains in A’
are of length at most 7.

We can show that for a given set of positive examples and a tightness value 7, there exists

an n-tight UVW. Furthermore, we will see that all n1-tight automata have the same language.

Chapter 3. Inferring Specifications from Examples 52

Lemma 3.2. Given a set of positive examples P and some value n € N, there exists a UVW
A, p that is n-tight for P. All other n-tight UVWs have the same language.

Proof. We construct a universal very weak automaton in its decomposed form, i.e., where the
UVW consists of a finite set of simple chains without transitions between them. Let C,, be a
set of all possible simple chains of length up to . We ignore the state identities/names, so that
a chain of length # is characterized completely by transitions between the states. There are
fewer than 2/*/(27=1) different transitions (as there can be at most 2/*I"* different self-loops
on 1 states and fewer than 2/=/("=1) many transitions between different states). Thus, the
set C,, finite. We choose an automaton A, p to consist of the set of all chains ¢ € C,, such
that P C L(c). We will use the symbol C,, p for that set. The automaton A, p, is an n-tight
UVW for P. We further claim that its language, £(A,,p) = Naec,, L£(A), is the language
of all n-tight automata.

Indeed, for a tighter UVW A’ (i.e., such that P C L(A") C L(A,p)) with maximal
chain length n, there must exist &« € X% such that « € L(A,p) \ L(A’). The fact that
a ¢ L(A") means that a run of A" on a will end up in one of its final (rejecting) states going
through a chain of up to n states. But by P C £(.A") and by our definition of A, p, this
chain should be a part of A, p. Therefore, & ¢ L(.A,, p), which yields a contradiction.

Let now A and A’ be two n-tight automata. If they are not equivalent, then there exists a
word & € ¢\ P accepted by one of them but not by the other. Without loss of generality, let
a ¢ L(A). Since all chains in A and A’ are of length at most 7, this means that the word is
rejected by one of such chains in A. As the chain can be added to A’ without making it reject
a word in P, this proves that A’ is not n-tight, yielding a contradiction. Hence, the assumption
that the two automata A and A’ are not equivalent but both n-tight cannot be fulfilled.

O

The lemma shows that for a given set of positive examples P, n-tight automata have a
unique language. We will call that language £,, p. It also shows how such an automaton can
be computed: we first enumerate all simple chains of length n that a decomposed automaton
accepting all elements from P could have. Taking these chains together, we obtain an n-tight
UVW.

In the next lemma, we want to justify the intuition of the tightness parameter 7, that is:
the larger # is, the more tightly we can describe the set of examples P.

Lemma 3.3. For n,n" € IN such that n < #’, and a given set of examples P, the following
inclusion holds: L,/ p C L, p.

Proof. We will show the claim for n’ = n + 1 (from which the original claim follows
inductively). Using the same notation as in the proof of Lemma 3.2, C, 1 p is a set of
all simple chains of length up to 7 + 1 consistent with P. In particular, C,. 1 p contains
all chains from C, p and also those of length exactly n + 1. The proof then proceeds as

follows: Lu11,p = MNaec,1p L(A) = (A€ (CpU(Crinp\Cop)) L(A) < Nacc,» L(A) =
Lyp. O

Chapter 3. Inferring Specifications from Examples 53

a,b b,c C
S T
o 7 (=)
a,b,c b,c C
, a,b % a,b,c ,
90 \\q-lj q2

FIGURE 3.7: Two example simple chains, where the lower one is syntactically
stronger than the first one.

Enumerating All Simple Chains of a UVW to be Learned

The n-tightness definition of the previous subsection states what language the automaton
that we want to learn from a set of positive examples should have. However, enumerating
all simple chains that are consistent with the given positive examples is computationally
inefficient as their number grows exponentially with 7 and the size of the alphabet. We show
in this subsection how this problem can be mitigated.

To do so, we represent simple chains syntactically by so-called chain strings. Then,
we define a partial order over these strings that corresponds to language inclusion between
automata consisting only of the represented chains. In order to obtain n-tight UVWs, we then
only need to enumerate all chain strings that are strongest according to this partial order.

We visualize this idea in Figure 3.7 for the case of n = 3 and £ = {a,b,c}. The
simple chains given there are represented by the chain strings ({4, b}, {b},{b,c},{b,c}, {c})
and ({a,b,c},{a,b},{b,c}, {a,b,c},{c}), which denote the edge labels along the chain,
alternating between self-loops and edges between states. Assuming that both chains are
compatible with some set of positive examples over the alphabet . = {a, b, c}, the lower one
is stronger than the upper one in the sense that it rejects strictly more words.

This can be seen from the fact that both chains have the same length, and at each self-loop
and each edge between the states, the labels for the lower chain are supersets of the respective
labels for the upper automaton. On the chain string level, we can easily see that by looking at
every pair of elements in the string and comparing the respective sets for set inclusion. Hence,
every rejecting run for the upper chain is a rejecting run for the lower one as well. Chain
strings induce a natural order by element-wise inclusion and, as already mentioned, the main
idea of our approach is to enumerate only the largest chain strings with respect to the partial
order that are consistent with the set of positive examples, which decreases the number of
chains to be enumerated.

To simplify the presentation henceforth, the formal definition of a chain string also
permits interrupted chains of states, which are not simple chains according to Definition 3.2.
Furthermore, we only care about chains in which exactly the first state is initial and exactly the
last state is rejecting. Generality is, however, not lost: if a simple chain does not have this form
(so it has additional initial or rejecting states), then it contains another shorter simple chain of
this form. This shorter simple chain can be extended to a chain of length n by duplicating

Chapter 3. Inferring Specifications from Examples 54

b,c [¢
ab b . % Abc& & /[%b,C@ c C‘%)
@ bcab a,b b,c
\ q// b /%b,cc]%a,b P

oG

FIGURE 3.8: Splitting a chain with multiple rejecting states

the last (rejecting) state and rerouting the outgoing transitions of the previously last state to
the new last state. This yields another chain of length 7 that is not missed when enumerating
all maximal (w.r.t. their partial order) chain strings of length # that are compatible with P
according to the definitions to follow. Figure 3.8 depicts this observation. The leftmost chain
is split into a chain for the rejecting state g, and a chain for the rejecting state 3. The now

shorter chain is post-processed to a longer chain by duplicating the last state.

Definition 3.4. Let > and n be given. A chain string for £ and n is of the form s =

(I, my,lp,my, ..., 1) € (2% x 2%)"~1 x 2%, Such a string s induces a chain-like automaton

= (Q,Z,(S, QI,F) with
*Q={q1,---,qn};

* Qr={qm}h

e 0={qi,xq) | xel,ie{l,...,n}}U{(qi,xqi+1) | x emie{l,...,.n—
1}}; and

* F={q.}.

Note that the induced automaton A consists of at most one single simple chain that is
reachable from an initial state.

The main idea of the following enumeration procedure is to cast the problem of finding all
strongest simple chains as a problem of finding the co-Pareto front of a monotonous function
fn over chain strings. This enables the use of a Pareto front enumeration algorithm [75] for
monotone functions to enumerate all simple chains that are consistent with the given positive
examples.

Said algorithm finds the Pareto front elements of a rectangular finite subset of IN* for
some u € IN. To make it compatible with the problem of finding simple chains, we have
to encode chain strings into IN*. The fact that all chain string elements are powersets
enables a relatively simple encoding. We set # = |X| - (2n — 1) and for every chain string
s = (l,my,lo,my,...,1,) € (2% x 2%)"~1 x 2% the corresponding encoded string in IN* is
of the form s’ = (l},) l‘f',ml, . Fl,l‘%, . ,1‘22‘, N L .,ZLZ|), where every every
element l]Z: and m; is either 0 or 1, dependmg on whether the ith element of X is part of the
encoded /;. The order of the elements of ¥ used in this encoding is arbitrary but fixed.

A Pareto-front enumeration algorithm necessarily also enumerates the co-Pareto front to

be sure it found all Pareto front points [75], which we exploit to find all strongest chain strings,

Chapter 3. Inferring Specifications from Examples 55

as these form the co-Pareto front. The monotone function itself implements a model checking
step of all elements in P against the chain, which is easy to solve due to the lasso-like structure

of the examples.

Lemma 3.4. Let P be a set of positive examples over the alphabet &, n € IN, and f,,: (2* x
2%)"=1 » 2% 5 B be a function that maps a chain string over ¥ and 7 to 1 if and only if
the automaton induced by the string rejects some element in P. Then, the function f, is

monotone.

Proof. Lets = (I1,my,lp, ..., my_1,1,) and 8" = (I}, m},1},...,m},_,,1}) be two chain
strings with I; C I/ for each i € {1,...,n} and m; C m] foreach i € {1,...,n —1}.
Furthermore, let A; = (Qs, %, 8, Qrs, Fs) and Ay = (Qy, X, 6y, Qp s, Fy) be the corre-
sponding UVWs as in Definition 3.4 with Qs = Q) = {g1,...,qn}-

We note that the transition relation in Definition 3.4 is monotone with respectto [... [,
and mj ... m,. Since we know that [; C I/ for eachi € {1,...,n}, using this monotonicity,
we conclude that 5; C Jdy. Hence, every run 7t of A for some word w € % is also a run of
Ay for the same word.

As universal automata accept all words that do not induce any rejecting run, this means that
all words rejected by A will also be rejected by Ay, and hence, we have £(Ay) C L(Ay).

To show that f, is monotone, recall that the function f, maps a chain string ¢ to whether
the UVW A; rejects a word in P, that is, f,(t) = 1 if and only if P Z L(.A;). Towards
a contradiction, assume that f,,(A;) = 1 but f,(Ay) = 0. This means that there exists a
word w € P such that w ¢ L(As) and w € L(Ag). Thus, w witnesses L(Ay) € L(As),
which is a contradiction to the previous part of the proof. In conclusion, we obtain that f;, is

monotone. OJ

Because f;, is monotone, we know that the UVW from Lemma 3.2 has the same language
as the language defined by the co-Pareto front of f,,. Indeed, the co-Pareto front represents
those chain strings that do not reject any word from P, but reject as many other words as

possible.

Corollary 3.1. Let P be a set of positive examples over the alphabet £, n € IN, and A be
the set of automata induced by the co-Pareto front elements of the function f,,. The language
Naca L£(A) is n-tight for P and X.

Proof. In Lemma 3.2, we have shown that by taking the intersection of the set of all UVWs
of length n, consistent with P, we get an n-tight automaton. The mentioned set is denoted by
Cp,p. Furthermore, we have shown that all n-tight automata have the same, unique n-tight
language, which we denote by £, p. Let’s denote the language () 4c4 L£(A) by L.

It is clear that £,, » C L4, because A C C,, p. The other inclusion, L4 C L, follows
from the definition of the set A. Let us assume L4 € L, i.e., that there is a word w such
thatw € Lo and w & L.

Then, there exists an automaton D € C,, p \ A such that w ¢ L£(D). The fact that D is
not at the co-Pareto front for function f, means that there is another automaton on the front,

D’ € A, which also rejects w. This is a contradiction with the assumption that w € L 4.

Chapter 3. Inferring Specifications from Examples 56

O]

The automaton from this corollary can be built easily, as universal very-weak automata
are closed under language intersection by just merging the state sets, transition relations, and
initial states [74]. This enables us to simply merge all chains found together into a single

UVW. The question, however, is how to do this in an efficient way.

Engineering Considerations of the Learning Algorithm

After the co-Pareto front of strongest chains has been enumerated, the last step in the con-
struction of the UVWs is merging them to a single UVW. We add the chains one by one
to a solution UVW. After every such step, we use the automaton minimization techniques
described in [3] to reduce the size of the automaton. If the process is stopped prematurely, the
result is still useful—a UVW that accepts a superset of the language that the final automaton
(given sufficient computation resources) would accept. This property makes it possible to use
the algorithm in the anytime fashion, stopping it when a given resource budget is exceeded.
It remains to be described how f,, can be computed efficiently. We implemented this
process as follows: let P = {(u1,v1),..., (Um,vm)} and A = (Q,X%,8,Qy, F) with Q =
{q1,--.,qn} be an automaton induced by a chain string to be checked. For every j €
{1,...,m}, we translate (1;,v;) to a deterministic Biichi automaton A’ accepting exactly
u;j(v;)“. Such an automaton has |u;| + [v;| + 1 states. We then check if .A" admits a word
rejected by A, i.e., if L(A") N L(A) # @. Since the complement of a universal co-Biichi

word automaton can be obtained in the form of a non-deterministic Biichi automaton by just

interpreting A as such, the standard product construction from linear-time model checking
can be applied to test if L(.A") N L(A) # @. The function f,, can then simply iterate over all
examples j € {1,...,m} and test if this is the case for any of them. Whenever it finds that

L(A) N L(A) # @ for some automaton .4’ built from a positive example, the function f,
returns 1. Otherwise, it returns O after iterating through all values for j € {1,...,m}.

Note that in an actual implementation of f,, there is no need to explicitly build A’ or
construct the product Biichi automaton. Rather, the implementation can make use of the fact
that only the last state of the simple chain is rejecting. So it can compute the states of the
product that are reachable and then check if state g, in the A component of the product is
reachable while at the same time, all characters in v; are contained in the self-loop label of

state . If and only if that is the case, a positive example number j is rejected by .A.

3.2.3 Evaluation

We implemented the presented approach in a prototype toolchain, which is available on
Github*. The enumeration of simple chains is performed by a tool written in C++, while the
subsequent minimization of the resulting UVWs is implemented in Python 3.

In order to assess the performance of our approach on practically relevant properties, we
considered the specification of the industrial on-chip bus arbiter of the AMBA AHB bus [15].

4https://github.com/TUC-ES/unite

https://github.com/TUC-ES/unite

Chapter 3. Inferring Specifications from Examples 57

TABLE 3.6: Mean computation times for UVW learning for the ten LTL
properties considered in Section 3.3.5

Time in s

Property chain len. 2 chain len. 3

1) Gla— (bVvevd)] 0.763 timeout
2) Gla— (bVo)] 0.517 1.029
3) G[X—a— (—=b+ X(—b))] 0.493 1.184
4) Gla — —b] 0.408 0.713
5) Gla— (=b A —c)] 0.533 1.059
6) Ga 0.526 1.057
7) Gla — Fb] 0.442 0.870
8) G[(aAb) — XF(—c)] 0.634 119.123
9) GFa 0.423 0.685
10) GF(—a A —b) 0.428 0.702

Specifically, we considered ten assumptions made for the master of the AHB bus, as described
in the case study paper on synthesizing AMBA AHB [94]. For simplicity, we abstracted
from the concrete variable names and rewrote predicates over categorial values into individual
propositions. For instance, the original property A8 [94] referring to a burst sequence of
unspecified length (denoted by the value INCR) is GHLOCK A (HBURST = INCR) —
X F(—REQ_VLD)]. It is rewritten into G[(a A b) — X F(—c)]. All the resulting formulas are
shown on the left-hand-side of Table 3.6.

Except for Property 3, all properties can be represented in UVW form by a single simple
chain with two states each. For Property 3, we need two chains of length 3. The properties
employing two to four atomic propositions have been learned over words with characters
that encode this number of propositions. Property 6 has been learned over positive examples
in which each character has three proposition values, while for Property 9, we used two
propositions. This deviation was necessary to ensure that there are enough distinct positive
examples for these properties.

For each property, we computed 50,000 different ultimately periodic words uov“ that
satisfy the property, where |u| is of length 0, 1, 2, 3, or 4, while |v] is of length 1, 2, 3, or
4. The characters of the words are the subsets of propositions holding, and all word part
lengths are equally likely to be chosen. We also use a uniform probability distribution over
the characters when computing the positive examples. Whenever a non-positive example for
the property is found during the positive example computation, it is discarded and another
example word is computed instead. We ran every experiment on 10 different example sets
generated in this way and report the mean values obtained in the following.

The experiments were conducted on a computer with four AMD EPYC 7251 processors
running at 2,1 GHz and an x64 version of Linux. The available main memory per run of
the learner was restricted to 3 GB. We used a computation time limit of 600 s per learning
problem.

Table 3.6 contains the mean computation times for all properties when using all 50,000

positive examples as input in each case.

Chapter 3. Inferring Specifications from Examples 58

250 | 1) Gla— (bVeVd) 2) Gla— (bVvo)]

g
% 10 4) Gla — —b]

0] 96— (-bA-0) 6) Ga 7) Gla — F Y

104\ 8 Glanb) = XF(=c)] 9 GFa 10) G F(—a A —b)

T T T T T T T T T T T T
0Ok 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k

FIGURE 3.9: UVW sizes for nine of the ten examples. The dotted lines are

for a UVW chain length of 3, while the solid lines are for a UVW chain length

of 2. The number of positive examples given to the learner ranges between

100 and 50,000 and is displayed on the x-axis of each chart. Parts in the charts

with absent lines represent timeouts, which were common for low numbers
of positive examples.

It can be seen that for most combinations, our approach computes a UVW rather quickly.
Only for one property with a higher number of atomic propositions and an unnecessarily long
chosen chain length, the toolchain times out.

Figure 3.9 shows for nine of the ten properties how big the computed UVW are, where
sizes for both chain lengths of 2 and 3 are reported. Here, we varied the number of positive
examples provided to the learner along the X-axis (minimum: 100, in steps of 100). For a
very low number of examples, our toolchain often times out. This is caused by the fact that
the tightest UVW is often very large when not enough positive examples are available. It can
also be observed that for a lower chain length, the computed UVW converges much earlier.

Figure 3.10 depicts the relationship between computation time and the sizes of the com-
puted UVWs in more detail, using Property 3, the one that was left out of Figure 3.9. It
can be observed that computation times are very short when enough positive examples are
available, and they grow only very mildly with additional positive examples. When, however,
not enough examples are available, the approach computes a much larger number of simple
chains, which also increases the workload of the UVW minimization heuristic.

Finally, Figure 3.11 depicts the UVWs learned for Property 3, G[X—a — (=b <
X(=b))]. The property can only be learned correctly with a chain length of 3, and the two
paths through the UVW from Figure 3.11b show the two ways in which the property can be

violated, namely:
(a) after a character with b = true is seen, in the next step both 4 and b are false, and

(a) after a character with b = false is seen, in the next step b is true and a is false.

Chapter 3. Inferring Specifications from Examples 59

UVW # States

Computation time (s)

102

[
T

0k 10k 20k 30k 40K 50k
Number of positive examples considered

FIGURE 3.10: Joint plot for the computation time and UVW sizes for Property
3.

—a A —b -aAb

(a) Chain-length 2 (b) Chain-length 3

FIGURE 3.11: Learned UVW from the positive examples for the LTL property
G[X —a — (—\b — X(—\b))].

Chapter 3. Inferring Specifications from Examples 60

The automaton has a simple structure and is quite easy to read. The computed UVW for a
chain length of 2 (Figure 3.11a) is, as expected, an overapproximation of the language to be
learned.

For all ten LTL properties considered in our experiments, the learned UVW:s for the correct
chain lengths represent the correct languages and have a minimal number of states. Moreover,
the resulting UVWs are fairly easy to understand (we refer the reader to the extended version
of the experiments, available in the code repository for their depiction), which underpins the
use of UVWs as an easy-to-understand specification formalism.

The results of the experiments are telling us that the proposed method works well when
many example traces are available, but can not handle when only a few are given. A further
challenge is that our method takes the tightness value as its input. It would be valuable if we
were able to determine an appropriate tightness value automatically from the sample. This,

however, remains an open problem.

3.2.4 Related Work

The problem of automata learning from data traditionally comes in two different settings:
active [10, 130, 199] and passive [182, 110, 179]. In an active setting, the learning algorithm
interacts with a teacher. The teacher answers two kinds of queries: membership queries
(whether a proposed word is in the language of the automaton) and equivalence queries
(whether a proposed automaton is the correct one). The learning process stops once the teacher
answers an equivalence query positively. Having a teacher that is able to answer equivalence
queries is a strong assumption. Our work focuses on the passive setting, where the learning
algorithm only has access to data, a set of classified examples.

The standard problem formulation of passive learning is that a sample consists of positive
and negative example traces (and this is the setup considered in Section 3.1). For such a setup,
several methods have been proposed for learning not only automata [110, 179], but also LTL
formulas [178, 47, 131], or STL formulas [39, 170]. None of these methods provides good
results when they are presented with only one class of traces—they return a trivial solution,
one that accepts (or rejects) all possible traces.

Our problem—Iearning a specification from system traces— fits into the process mining
framework (see Aalst et al. [1] for an overview): given an event log from a process, find a
process model that satisfies certain properties. The properties are fitness (the model should be
consistent with the examples from the log), precision (the model should not be overly general,
e.g., modeling arbitrary examples), generalization (the model should not be overly tight, e.g.,
consistent only with the examples from the log), and simplicity (the model should be simple).
Different operationalizations of the four properties give rise to different problem formulations
and solutions. By choosing UVWs as our model, we get (structural) simplicity and connect
it to the generalization property by the tightness value n, for which we require the tightest
possible UVW consistent with the data.

Closely related to our approach is an algorithm by Avellaneda et al. [18] for inferring
deterministic automata over finite words (DFAs) from positive finite-word examples alone.

Their algorithm searches for an n-state automaton A that is consistent with the given set of

Chapter 3. Inferring Specifications from Examples 61

positive examples and for which no other n-state DFA A’ exists such that the language of A’
is a strict subset of the language of .A. Both their approach and ours identify the language to
be learned in the limit and use a single additional parameter for choosing the complexity of
the language to be learned. Unlike in our approach, the resulting language in their algorithm
is not unique for a given value of 7.

Another direction of previous work is the identification of Live Sequence Charts
(LSCs) [152, 151] from system runs. Live Sequence Charts [58] are a specification for-
malism that is popular for its compliance to the UML standard and the corresponding tools
(e.g., IBM RSA). The set of properties representable as Live Sequence Charts, when not using
free variables, was shown to be contained in the intersection of LTL and ACTL [138], which
is characterized by UVWs (the version with free variables is characterized as a subset of
first-order CTL* [59]). The existing work on mining LSCs [152, 151] borrows the concepts
of support and consistency from data mining [103]. With user-defined thresholds for support
and consistency, charts are enumerated until one exceeding that threshold is found.

Rather than giving more credibility to patterns occurring most often in the example
traces (as is the case when using the notion of support), our method prefers semantically
stronger UVWs, controlled by their size. This lets our approach converge to the same property
regardless of the distribution of the traces, as long as all traces (in the form of ultimately
periodic words) have a non-zero probability of occurring.

A problem related to ours by the fact that the learning happens over (positive) demonstra-
tions only is inverse reinforcement learning [180]. There, however, it is the reward function
that is being learned. Obtaining only the reward function does not provide an interpretable
task specification. Inspired by inverse reinforcement learning, Vazquez-Chanlatte et al. [218]
learn LTL-like temporal specifications from demonstrations. In order to do so, they have
to pre-compute the implication lattice between the possible specifications, which limits the
applicability of their approach. This is not necessary in our work, as we take advantage of the
syntactic approximation of language inclusion between simple chains of UVWs. On the other

hand, they successfully handle noise in the sample.

3.3 Interactive Specification Inference for Robotic Systems

In this section, we turn our attention towards interaction between the human and the robot. Our
goal is to make it easier for humans to create precise, formal specifications that correspond to
their intent. This reminds of a setup in sections 3.1 and 3.2. Indeed, this section will directly
build on the SAT-based technique from 3.1. However, fixing the domain to human-robot
communication introduces some restrictions. In particular, we cannot hope to obtain more
than a handful of examples from the human.

We set our specification language for tasking robots to be the co-safe fragment of linear
temporal logic (LTL). LTL comes as a natural choice, given that there are planning and
synthesis toolchains from LTL specifications to implementations on robotics platforms, for
instance, Ant lab from Chapter 2 alongside many others [136, 148, 204]. Typical tasks

in the robotic domain are co-safe tasks (the ones that can be exemplified by a finite path),

Chapter 3. Inferring Specifications from Examples 62

and our work focuses on such tasks. Unfortunately, the fact remains that using LTL is not
straightforward for untrained users. [115, 72].

Natural language descriptions and programming-by-examples have been considered as
alternative, end-user friendly, ways to specify complex tasks. While LTL specifications can be
written in structured natural language [137], such systems still require a solid understanding
of LTL syntax and semantics. Dialog-based interfaces are usually limited to a fixed set of the
most common scenarios [214, 133]; utterances beyond the pre-programmed tasks are rejected.

On the other hand, as we have also seen in sections 3.1 and 3.2, current programming-
by-example techniques for temporal specifications (such as automata or LTL) expect many
positive and negative examples to be provided [56, 52]. Previous work in programming
through examples has shown that it is unreasonable to expect end-users to provide more than
a few examples [209]. Moreover, classical results in learning theory [95, 11] show that one
cannot identify non-trivial classes of formal languages (which includes LTL)—even in the
limit—employing only positive examples. As we discussed in Section 3.2, providing negative
examples is challenging; while it is simple to show an execution that accomplishes the task at
hand, users are confused when asked to show how not to accomplish the task. Thus, in this
section, we will identify domain-specific assumptions that will allow us to generate negative
examples from the positive ones.

In this section, we apply synthesis from examples and natural language description to the
problem of learning robotic tasks expressed in co-safe LTL formulas. Our approach consists
of three components. First, a synthesis procedure that takes a natural language description
of a task and an example execution trace from the user and generates a set of candidate LTL
specifications. Second, an interactive loop that uses distinguishing examples to identify the
correct LTL specification from that set. Third, a generalization step that eventually learns a
parameterized LTL specification. The three components ensure the following properties.

* QOur approach requires only a single example to be provided by the user, and a few

rounds of interaction in which the user judges examples provided by the system.
* We do not require the user to provide negative examples.

* Our technique generalizes from individual examples to learn a parameterized repre-
sentation and does not require the user to repeat the synthesis for small changes in

tasks.

We bias the search in the synthesis procedure based on the natural language description and
narrow down the search space based on the following two assumptions about user-provided
examples. First, we assume a principle of no excessive trace: when a user provides an example
trace, we assume that no proper prefix of the trace is sufficient to satisfy the underlying
specification. The second principle is similar. When a user provides an example, some of the
actions are complex, consisting of a number of primitive actions. We assume a principle of no
excessive effort: every primitive action in the example is necessary to satisfy the specification.
Contrapositively, the same example with a strict subset of primitive actions does not satisfy the
specification. Thus, we can generate a set of negative examples from a single user-provided

example.

Chapter 3. Inferring Specifications from Examples 63

We learn a set of candidate LTL specifications that are consistent with the one positive
example and the generated negative examples, and are informed by the natural language
description. Building upon the work from Section 3.1, we encode the learning problem as a
multi-objective optimization problem modulo SMT [34]. The optimization objectives approxi-
mate the correspondence of the natural language description to the prospective specification.

Given two candidate formulas, we use another instance of multi-objective optimization
modulo SMT to generate a world and a robot behavior in it that distinguishes between the two
candidates (assuming such a world exists). We interactively show the generated behavior to
the user and ask them to judge whether it is consistent with their original command. In this
way, we can narrow down candidate solutions to a single one.

While our synthesis procedure learns a specification, one expects that the system maintains
a parameterized mapping from natural language descriptions to specifications. For example, it
is unreasonable that the user must separately teach the robot to “pick up a red” item and to
“pick up a green item”. Our system generalizes the learned LTL specification through a form
of grammar expansion based on the work in language naturalization [223].

We start with a core DSL to express LTL properties and expand the DSL with new grammar
rules whenever the synthesis procedure learns a new mapping. This expansion process, called
naturalization in the natural language processing literature, allows the system to generalize
from previously synthesized specifications and combine them in new ways at a later point.
Potential ambiguous parses introduced by the new rules are ranked by a probabilistic model
that gets updated through interaction with the user.

We have implemented the synthesis technique in LTLTALK, which implements the syn-
thesis procedure and a planning toolchain on top of a visual interface for a robot navigating
a blocks world. (The LTLTALK’s codebase ° and web interface © are publicly available.)
LTLTALK’s interface allows the user to provide natural language descriptions of tasks as well
as example executions in the blocks world. An important characteristic of our domain is that
we can provide quick visual feedback to the user showing the effect of task execution. Thus,
we can use the interface to demonstrate distinguishing worlds in the third phase of synthesis.

We have used LTLTALK to learn LTL specifications for a number of common tasks in
a simulated world. We empirically show that most tasks can be learned through the use of
just one example, a few (less than 4) interactions, and less than 20 seconds. We furthermore
show in a case study how naturalization generalizes beyond the synthesized tasks, effectively

increasing the scalability of LTL specification synthesis.

3.3.1 Overview and Motivating Example

Figure 3.12 shows the high-level scheme of LTLTALK. LTLTALK maintains an extensible
grammar, mapping natural language utterances into a core language (which corresponds to
LTL). When a user issues a (natural language) description of a task, if the description can
be parsed into LTLTALK’s current core language, a plan is generated and executed. If, on
the other hand, LTLTALK cannot parse the command using its current grammar, the system

Shttps://github.com/mpi-sws-rse/ltltalk-interactive-synthesis
Shttps://ltltalk.mpi-sws.org

https://github.com/mpi-sws-rse/ltltalk-interactive-synthesis
https://ltltalk.mpi-sws.org

Chapter 3. Inferring Specifications from Examples 64

yes
no interactive synthesis grammar
of LTL specification expansion

|

NL
description

FIGURE 3.12: Schematic view of LTLTALK

synthesizes an LTL specification for the utterance through interaction with the user. Having
produced the natural language utterance and its LTL equivalent, LTLTALK expands its formal
language by inducing new grammar production rules.

Consider the robot simulation world presented in Figure 3.13. The world includes a robot
(the gray cube) that can move about its environment consisting of dry and wet tiles, and pick
items of different shapes and colors. LTLTALK internally maintains an extensible grammar,
initialized to a version of LTL, that maps known commands to LTL specifications. Consider a
situation when a user instructs the robot to take one red item from (7,4), but the robot does
not understand the instruction (as this utterance is not yet part of the internal grammar). We
show how LTLTALK learns an LTL specification and adds a mapping to its grammar. Initially,
LTLTALK asks the user to provide an example for the request by navigating the robot in the

simulation world (Figure 3.13a).

Step 1: Generate Candidates

Using the example provided by the user together with the original natural language instruction,

LTLTALK creates a number of candidate specifications:
a) eventually pick one red item at (7,4),
b) eventually pick one item at (7,4),
c) eventually pick every red item at (7,4), and
d) not robot at dry before pick every red item at (7,4).

The first three instructions correspond to requesting that eventually one red item, or one item
of any color, or every red item from the location (7, 4) is picked; the fourth one corresponds
to asking that eventually a red item from the location (7,4) is picked, but before that the
robot must pass over a wet tile. (We will see the full presentation of the core language
in Section 3.3.4.) Note that there are still other specifications consistent with the example.
However, the number of generated candidates is limited by a hyperparameter of the algorithm
and using the natural language instruction makes sure that the found candidates are relevant to

the user’s intent (full details of the algorithm are presented in Section 3.3.3).

Chapter 3. Inferring Specifications from Examples 65

(a) User’s example (b) Reject X
(c) Accept v

(d) Generalization

FIGURE 3.13: User’s interaction with LTLTALK. In 3.13a, the user provides
an example for the command take one red item from 7,4 by moving the
robot to (7,4) and picking a red item. Afterwards, based on the example
and the (natural language) command, a number of candidate specifications is
created. In 3.13b, LTLTALK shows the robot picking one green item, which
the user rejects. In 3.13¢, LTLTALK shows the robot picking (7,4) without
ever going through a wet tile and picking only one red item. The user accepts
it, thus narrowing down the set of candidates to a single specification. Finally,
3.13d shows that LTLTALK generalized from the inferred specification and
now understands commands such as take every triangle item from 4,0.

Step 2: Filter Based on Distinguishing Worlds

In order to determine which one of the candidate specifications is the one that the user had in
mind, LTLTALK first shows a world in which there is only one green triangle at the location
(7,4) and the robot picking that item (Figure 3.13b). When the user rejects that behavior,
LTLTALK can eliminate b) from the list of candidates. When in the next interaction the user
accepts the robot reaching the location (7,4) without passing over a water tile and picking
only one of the two red items (Figure 3.13c), LTLTALK eliminates specifications c) and d),
and concludes that the target specification is eventually pick one red item at
(7,4). The creation of the distinguishing worlds is described in Section 3.3.3.

Step 3: Generalization and Grammar Extension

Having determined the specification corresponding to the natural language description take
one red item from (7,4), LTLTALK uses the (specification, NL description) pair to form a
new, generalized rule. It augments the underlying grammar by the new production rule. (This

Chapter 3. Inferring Specifications from Examples 66

augmentation is described in Section 3.3.4.) With its augmented grammar, LTLTALK is now
able to understand expressions such as take every triangle item from (4,0), as illustrated
in Figure 3.13d.

3.3.2 Formal Models for Tasks and the World

We first formalize the notion of specification language, world model, and user demonstration.

We use the co-safe fragment of LTL as the specification language. We represent LTL
by syntax DAGs. (Both LTL and syntax DAGs are defined in Section 3.1.1.) The semantics
of LTL is defined over example traces. The formulas for which there exists a good prefix
of a trace, i.e., a finite trace whose every extension satisfies the formula, are called co-safe
Jormulas.

While LTL formulas are traditionally interpreted over infinite traces, in practical appli-
cations (including task-oriented robotic commands), it is often necessary to interpret LTL
formulas over finite traces. To facilitate that need, the semantics of LTL can be modified to
support evaluation over finite traces, as was done by De Giacomo et al. [61]. We use the finite

traces semantics to evaluate candidate formulas on the user-provided finite example traces.

The World Model

The propositional variables in our LTL formulas will come from a world model describing
the world and the robot’s actions in it. We take the planning approach and partition the
propositional variables into fluents F and actions A [62]. The set of fluents consists of the
propositional or integer variables describing facts about the state of the world; a valuation to
the fluents defines a state. An action from .A defines a transition between two states.

A world w is fully described by a tuple w = (F, A, ¢ 4, 95, Pinit), Where F is the finite
set of fluents, A is the finite set of actions, the fluent constraint ¢ r is an LTL formula on F
describing invariants on the world, the action constraint ¢ 4 is an LTL formula describing the
effect of an action on the fluents, and ¢;,,;; is an LTL formula over F describing the initial
state of the world.

For our block world with fixed world width w, world height I, set of colors C, and the set of
shapes S, the set of fluents F contains propositional variables describing the state of the world
(locations of obstacles, items, the robot, and what the robot is carrying). For ease of readability,
we describe our examples using Prolog-like predicates with relations and (bounded) integer
variables. Internally, these predicates are compiled into Boolean propositional variables. We
omit a full list of fluents and their propositional encoding but give examples.

We model the blocks world as a set of tiles (i,7),i € {1,...,w},j € {1,...,1}. Each
tile (i,) is exactly one of wall(i, j) (obstacle), dry(i, j) (dry tile), or wet(i, j) (wet tile). The
predicate at(x, y) denotes the robot is currently at location (x,y), and items(i,j)(c,s) = k
indicates there are k items of color ¢ and shape s at location (i, j). The predicate carry(c, s, k)
indicates that the robot is carrying k items of color ¢ and shape s.

The fluent constraints specify invariants that must hold on all reachable states. For example,
by asserting that the robot can only be in a location within the block world which is not a wall,

Chapter 3. Inferring Specifications from Examples 67

and that every location is either a wall, a wet tile, or a dry tile:

A\ G <at(i,j) — —wall(i, j) A (exactlyOne(dry(i,j),wall(i,j),wet(i,j)))
ij
(where exactlyOne is the propositional formula that ensures exactly one of its inputs is true),

or by specifying that the items can be only at locations that are not a wall:

A G(items(i,j)(c,s) =k— (k>0A(k>0— —wall(i,j))))

i,j,c,8k

The initial world ¢;,;; defines the locations of wall and wet tiles, the position of the robot, and
the location of all the items.

The actions available to the robot are motion in one of the 4 cardinal directions and picking
a set of items based on its properties. Moving is expressed by the action mov(x,y), with
x,y € {—1,0,1} and |x| + |y| = 1, and denotes that the robot moved in a relative direction.
Picking objects is expressed by the action pick(c,s) = k, which indicates that k items of color
¢ and shape s are picked. The action constraints state the effect of an action. Typically, the
effect of an action is specified as G(¢1 — X(a — ¢2)), where a € A and ¢; and ¢, are

propositional formulas on the fluent variables.
For example, the constraint

A A G((at(i,j) A —wall(i+ x,j +y)) — X(mov(x,y) — at(i +x,j +y)))
ij 1,0),(—1,0),
9= 01}
states that a move changes the position of the robot to the corresponding cell if the target cell
is not a wall. Similarly, we specify that whenever the robot standing on the tile (i, j) picks k

items of color ¢ and shape s, these items are removed from the tile.

AN N\ G((items(i,j)(c,s) = I A1 > k) — X(pick(c,s) = k — items(i,j)(c,s) = | —k))

ij ceCkleN
seS

Other action constraints specify, for example, that the robot can execute exactly one action
in each step:

Gl Van A (mav-d)

ac A aa €A
a#a

Given a world (F, A, ¢ 4, 5, Pinit), a finite trace is a world trace if it satisfies the fluent
constraint, the action constraints, and the initial constraint @;y;.

We further assume that the set A is partially ordered by a relation <. This allows us to
model related actions. For example, “pick an item” < “pick two items”.

In this work, we consider task-like specifications: the ones where a concrete change in the
environment needs to be accomplished in a one-off manner. We are not interested in infinite

executions or specifications that can be satisfied by no action at all. Therefore, we assume that

Chapter 3. Inferring Specifications from Examples 68

yes
generate generate no | i fener.athe{
sample S candidates C 1SHNSUISHINg
world
[judge the example

NL d

update set C

FIGURE 3.14: High-level interactive synthesis algorithm

the user’s specifications are co-safe LTL formulas, as they correspond to the described notion
of task. Furthermore, we assume that the user is able to demonstrate the intended specification

in a given world by a world trace.

3.3.3 Interactive Specification Synthesis

We now describe our algorithm for inferring an LTL specification, starting with a natural
language description and an example trace and creating distinguishing traces interactively.

Figure 3.14 shows a high-level view of the interactive synthesis method. The method
takes a world trace T and a natural language description d as an input (provided by a user).
First, the trace T is used to create a sample S of positive and negative traces. Positive traces
satisfy the specification; negative traces do not. From the information present in S and d, a set
of candidate specifications C is generated. In order to determine which one of the candidates
is the right one, LTLTALK generates an initial world state and a world trace that are able to
distinguish between the two most likely candidates. The user judges the provided example (by
answering if the example matches the intent expressed in d). The user’s verdict is then used to
update the set of candidate specifications until only one candidate remains.

Constructing a Sample from a Single Example

The example provided by the user represents a positive example, a member of P, the one
that should be satisfied by the prospective specification. With only this one example, a space
of potential specifications is too unconstrained, e.g., frue would be a legitimate candidate
specification, as it is consistent with the example. To shrink that space, we would like to infer
asample S = (P, N) that also contains negative examples. In order to infer what the set A/
might look like, we use two domain-specific heuristic principles: the principle of no excessive
trace and the principle of no excessive effort.

The first principle says that if a prefix of the trace T would already be a good example for
the user’s intention, then the user would never bother to give the full trace T. Therefore, we

add all the proper prefixes of the trace T to \V.

Chapter 3. Inferring Specifications from Examples 69

The second principle uses the partial order < over the set of actions and it says that the
user will not demonstrate unnecessarily complex actions. The partial order in our robotic
domain is naturally defined for picking actions: each picking action is a complex action
consisting of multiple atomic picks of individual items. Thus, the partial order is defined by
a subset relation between the picked items. Following the principle, any trace T[a/a’| that
replaces an action a with a strictly lower action a’ (i.e., 2’ < a) is added to \V.

Note that neither of the principles assumes that the user knows how to show a demonstra-
tion that is optimal in any sense. Instead, they only assume that the user will not go beyond an
already provided demonstration that is consistent with the specification.

For the user’s example shown in Figure 3.13a, the robot moving any part of the path from
(2,4) to (7,4) constitutes a negative example, according to the principle of no excessive trace.
The principle of no excessive action does not apply to this example, since the only picking

action in the example is already a primitive action (picking an individual item).

Constructing a Set of Candidate Specifications

Having created the sample S, we are interested in finding a set of candidate specifications that
are all consistent with S. (A formula is consistent with the sample, as defined in Section 3.1,
if it is satisfied by every trace from PP and by no traces from \.) Moreover, we want to bias
the search for candidate specifications using the natural language description d. The problem
we solve is the following: given a world w, a sample S, and natural language description d,

create a set of candidate specifications C such that
a) all specifications from C are consistent with the sample S

b) ¢ € C maximizes A (1, d), an idealized cost function capturing the connection between

the specification and the natural language description.

Encoding Samples in SMT

As a first step, for a given sample S and integer hyperparameters § and m, we show how
finding a set of m formulas of size up to ¢ that are all consistent with S can be encoded as an
SMT problem.

The encoding builds upon the encoding from Section 3.1. There, we were interested in
finding an LTL formula of a fixed size 1, consistent with the sample. In this section, we relax
the fixed-size requirement, and replace it with maximum size, § € IN. (This will allow us to
trade-off two desirable properties: the specification simplicity and its similarity to the natural
language description.) To this end, we introduce the integer variable A € IN, whose value

shall be determined by the solver, with the restriction A < 4.

Optimization Modulo Theories For our synthesis procedure, we require the candidate
formulas to not only satisfy the constraints imposed by ®¢, but also to find candidates that
optimize certain cost functions. For this, we use optimization modulo theories. Recall that

an optimization modulo theories problem [34] consists of the following components: a set

Chapter 3. Inferring Specifications from Examples 70

of hard constraints in a background logic (containing Boolean satisfiability but also other
theories); a set of soft constraints, each with a cost; and a set of cost functions. In any model,
the hard constraints must be met. The soft constraints induce an additional cost function: each
constraint may or may not be met, and the cost function adds up the weights of all constraints
that are not met. The goal is to find a model that satisfies the hard constraints, and is optimal
w.r.t. all the cost functions. Since there are multiple cost functions, an optimal solution is
chosen from the Pareto front of solutions. A model is on the Pareto front if there is no model

that performs better along all cost functions.

Natural Language Cost Function Our cost function comes from the natural language
description. Because the function A is an idealized function and is not readily available, we
have to approximate it. Provided with a rich dataset, one could learn its approximation, as
was done by Beltagy et al. [27]. Another option is using natural language processing tools to
recover the syntactic structure of the description and connect it to the structure of the formula,
as done by Lignos et al. [148].

Rich datasets are not commonly available and mapping linguistic structure to a formula is
not helpful if there is only a weak signal present in the natural language description. Therefore,
in this work, we approximate A (¢, d) by

L, d) = Y h(iab(y'),d)
' esubf (1)

where the label of a formula, lab(1) € O, is the top operator of the formula.
The approximation L uses a simple hints function & which assigns a score to each label of
the subformula based on the natural language description d. Our synthesis method considers

function % to be a black box that could be implemented in different ways. In our implemen-

overlaps(o,d)
lo[+]d]

measures how much overlap there is between the natural language description and the opera-

tation of the robot simulation world, we define h by h(o,d) = , which intuitively
tors and variables of the formula. We are using WordNet [167] lemmas and their synonyms to
compute /. Intuitively, for the natural language command d = take one red item from 7,4
from the motivating example, a propositional variable g referring to red items will have a
higher value /(g, d) than the one referring to e.g. blue items.

We add two classes of soft constraints to the hard constraints captured by the formula CI>5S .
First, for all o € O, we add a soft constraint \/; 5 x; , with a weight (o, d). This constraint
suggests that the operator o should occur somewhere in the formula (hence, disjunction) and
the strength of the suggestion is &(0,d). Second, in order to avoid maximizing L by adding as
many operators as possible, we additionally prefer smaller formulas. We use the variable A,
which captures the size of the found formula, and add an objective to minimize the value of A.

The updated formula, combining hard and soft constraints, is named CD(SS'L.

Solving the Constraint With this encoding, we query an optimization modulo theories
solver to give us m models for q)f’L, from which we extract the candidate specifications, each
of maximum size §. We iteratively query the solver for a solution, blocking the returned

Chapter 3. Inferring Specifications from Examples 71

solutions before the next iteration. Note that blocking is syntactic: it is possible that two
different, but semantically equivalent formulas could be found (e.g., FgU g and F g). The
candidates are ranked implicitly by the order in which they are found (our optimization
constraints prefer candidates that match the natural language description better). However,
in order to determine the correct specification from the set of candidates, we have to interact

with the user, as described next.

Generating Distinguishing World Traces

In order to narrow down the set of candidates C to a single candidate, LTLTALK iteratively
offers (visual) examples consisting of an initial world and a trace in it for the user to judge.
The world and the trace are generated in such a way that the user’s verdict eliminates some of
the candidates from C.

Given the two best ranked candidates, {; and 1, fluents F, actions A and the constraints
¢r and ¢ 4, we aim to find an initial world ¢;,,;; and a world trace that satisfies one constraint
but not the other, i.e., (¢ A =¢2) V (=91 A ¢2). Simply finding a satisfying trace can be
done in a standard way, e.g. by a language non-emptiness check for the intersection automaton,
or by iterative SAT solving [32]. However, in this case, we need to pay attention to two more

conditions:

* the found trace must be a world trace, i.e., it has to satisfy the fluent and action
constraints @ 7 and ¢ 4,

¢ in order to make the user’s decision about the shown trace effortless, the created world
must be simple and the trace short.

We formalize these requirements as another multi-objective optimization modulo linear
arithmetic problem and encode it in an optimizing SMT solver. Assuming the SAT formula
that encodes a satisfaction of the difference specification for the trace of length ¢, we add
the following constraints and objectives to it. First, we add the constraints ¢ 4 and ¢ . Then,
in order to keep the traces short, we add the objective to minimize ¢-. Finally, we define
an integer variable c that captures the complexity of the world by counting the number of
fluents that are true in ¢;,;; and we require this variable to be minimized. A model for the
final formula gives us a world and a trace that will distinguish between the two specification
candidates.

3.3.4 Grammar-based Generalization of Learnt Specifications

Natural language commands provided by the user serve two purposes. They are used to prune
the candidate specifications in Section 3.3.3, but also to expand the lexicon of the system for
later use.

The interactive specification synthesis technique from the previous section produces as
output a mapping from a natural language utterance to an LTL specification. However, such
a mapping is not robust to parameterization. For example, if a user has run the synthesis

procedure to teach the system pick one red from (7,4), it is unreasonable that the system

Chapter 3. Inferring Specifications from Examples 72

Spec — RobotState | Spec or Spec | Spec and Spec | not Spec \ Spec until
Spec | eventually Spec | Spec before Spec | Spec; Spec

RobotState — pick QItm at Loc | robot at Loc

Loc — (Num, Num) | dry | wall | kitchen | bathroom | living room //
Location attributes

// Item attributes:

QItm — Quant FItm

Quant — Univ | Num

Univ — every | all

FItm — item | Fltr item

Fltr — Prop | Fltr and Fltr |

Prop — Color | Shape

Color — red | blue | green | yellow | ...
Shape — triangle | square | circle | ...

FIGURE 3.15: Core language syntax. Reserved constants and variable names
are in italic.

requires them to run the synthesis procedure once again if they wish to pick one triangle
from (6,3). In this section, we describe a grammar-based generalization procedure that
complements the LTL synthesis procedure from Section 3.3.3 by synthesizing parameterized
specifications, thus improving the overall usability of the system.

We first describe our domain-specific core language that maps unambiguously to LTL and

which is the starting point of the grammar expansion procedure that we explain next.

The Core Specification Language

The grammar expansion starts with a domain-specific core language for specifying tasks in
the block world. We call it a core language to emphasize that it will be expanded through
the interaction with users. The grammar of the core specification language is shown in
Figure 3.15. The basic actions (moving and picking) can be combined using Boolean and
temporal connectives.

Note that LTL is contained in the core language. The grammar category RobotState
corresponds to propositional variables. The keywords eventually, until, and before
correspond to the temporal operators, and or and not to Boolean operators. We use the
semi-colon (3) to denote the chaining of two specifications.

The reason we need a core language is to distinguish the different concepts in the blocks
world (positions, items, color, shape, etc.) into separate lexical categories. This enables the
grammar expansion procedure to generalize a natural language utterance and induce new
production rules. At the level of LTL, the categories are all encoded with propositional
variables and syntactic generalization is not possible.

Chapter 3. Inferring Specifications from Examples 73

Grammar Expansion

Through interaction with users, the core grammar can be expanded using the naturalization
process [223]. Naturalization takes a pair of a natural language description and the correspond-
ing formal specification as its input and produces a grammar rule that generalizes from that
pair. In LTLTALK, the input for naturalization comes either from the process of interactive
synthesis (Section 3.3.3) or by the user giving a different name to an already successfully used
specification (or a chain of specifications).

The task of expanding the grammar starts with a natural language description d, the
corresponding formal specification s, and the probabilistic parser model p. While s must
be fully parsable using the current grammar’s production rules, only some parts of d may
be parsable. Using this vocabulary, for the example from Section 3.3.1, d = take one red
item from 7,4 and s = eventually pick one red item at (7,4). In orderto
induce new rules, the system identifies matches—parsable spans appearing in both d and s.
In our example, those are red (category Prop), one (category Quant), one red item
(category QItm), item (category FItm), and (7,4) (category Loc). A set of non-overlapping
matches is called a packing and is the basis for generating new grammar rules. Examples of
packing are { red, item } or {one}, whereas { one red item, one} is not a packing
because its elements are overlapping.

New grammar rules are introduced through simple packing, best packing, and alignment.
(There can be more than one rule introduced per one description-specification pair.) Simple
packing considers pre-defined primitive categories for matching (such as colors, shapes, or
numbers). The primitive matches in the above example are numbers one, 7, and 4 (category

Num), and color red (category Color). Therefore, a new rule is added to the grammar:

Spec — take Num Color item from (Num, Num) = eventually pick

Num Color item from Num Num

We use the symbol = to connect the right-hand side of the induced rule to the core-language
expression with the same semantics. From now on, LTLTALK will understand commands such
as take 2 yellow item from (1,3).

Best packing considers maximal packings, i.e., those that would become overlapping by
adding any other match, and chooses the packing that scores the best under the model p. The

best scoring maximal packing for our example results in the rule
Stmt — take QItm from Loc = eventually pick QItm from Loc.

Note that this rule is more general than the one generated from the simple packing; with this
rule in the grammar, LTLTALK will in the future understand commands such as take every
triangle item from kitchen. However, it is not the case that best packing is a better method
than simple packing: because of its eagerness to generalize as much as possible, it sometimes
produces non-desirable new rules.

The third method, alignment, is applicable when the language description d and the
specification s are almost identical: the non-identical parts are mapped to each other as

synonyms. For more details on grammar learning, see the work of Wang et al. [223].

Chapter 3. Inferring Specifications from Examples 74

The added production rules become first-class citizens of the grammar and can be com-
bined with the core grammar rules freely. This enables LTLTALK to learn complex tasks
through a combination of grammar-based naturalization and interactive synthesis. For instance,
the command take every triangle item from (4,3) or eventually robot at dry is parsable
immediately after the interactive synthesis of our working example.

LTLTALK can tolerate a number of wrong production rules being introduced in the process
of grammar expansion (either by a wrong generalization or by a user’s mistake). The model p
assigns a score to each derivation. Every time LTLTALK parses a user’s command, it offers a
ranked list of candidate executions for the user to pick from. The user’s choice is then used to
update the model p. Thus, an undesirable production rule will be voted down and, in effect,

excluded from the grammar.

3.3.5 Evaluation

The LTLTALK implementation consists of three independent modules:

* a front-end module, which shows the simulated world to users and enables them to give

examples for their commands (written in JavaScript);

* an interactive synthesis module, which implements the algorithms for synthesizing spec-
ifications from a natural language description and a single example, and for generating
distinguishing examples, as described in Section 3.3.3 (written in Python). This module

uses Z3 [63], an SMT solver that supports optimization modulo theories solving;

* an expanding formal language module, described in Section 3.3.4, implemented on
top of the interactive version of the SEMPRE semantic parser toolkit [223] (written in
Java). This module additionally uses a thin NLP layer for lemmatization and number

normalization [161].

In this section, we first evaluate the interactive synthesis algorithm in terms of performance
and its ability to recover the intended specification. Then, we demonstrate how the grammar-

based generalization complements interactive synthesis and allows LTLTALK to scale further.

Experimental Setup

We run all the experiments on a machine with four Intel Core 15-4590 CPUs at 3.3 GHz with
15 GB of RAM.

LTL Fragment The exact operators and the set of propositional variables are relevant for
the performance of the interactive synthesis algorithm. Ideally, one should use a language that
is expressive enough to cover all interesting robot tasks in the blocks world, but is as small
as possible. We explicitly use derived LTL operators, as using them makes specifications
more compact. Concretely, alongside operators of the propositional logic, we use derived
temporal operators {F, U, B}. Operators F and G are as defined in Section 2.1. The operator
B (“before™) is defined by ¢ By = F(@ AF).

Chapter 3. Inferring Specifications from Examples 75

TABLE 3.7: Natural language descriptions and target specifications used for

evaluation
task id natural language description specification spec. size
tl step into water and then visit (6,4) —at(dry) Bat(6,1)

2 reach (4,1), but remain dry in the process at(dry) Uat(4,1)

3 bring one green circle from (7,4) to (3,4) picked(1, green, circle, (7,4)) Bat(3,4)
4 take all green from (7,4) to water picked (every, green, *, (7,4)) B —at(dry)
t5 pick two square items from (4,0) F(picked (2, x, square, (4,0))

f:ffizee;r;r;g,{fe::o;nf gilyol)(in d from (11,1) picked (1, *, triangle, (4,0) B picked (1, ,*, (11,1))

t7 get one item from (1,2) and one from (3,1) F(picked(1,x,%,(1,2))) A F(picked(1, *,x,(3,1))

8 get one green and one blue item from (7,4) F(picked(1,green, ,(7,4))) A F(picked(1, blue, %, (7,4))
9 reach (5,4) by only going through the water ——at(dry) Uat(5,4)

first get one red item from (7,4) . .
and afterwards one green item from (10,8) picked(1, red, x, (7,4)) B picked(1, green, +, (10,8))

W R WU W R W WA

For a world of size 14 x 10, propositional variables are defined to determine the robot’s
location, the quality of the robot’s location (whether it is dry or wet), and the quantitative and
qualitative properties of the picked items (what combination of color and shape properties, how
many items, in numerical and some vs. all terms). We forbid the nesting of multiple temporal

operators beyond the B operator, whose definition involves nested temporal operators.

Benchmarks We created ten tasks, shown in Table 3.7. Each task consists of a natural
language task description, a world definition, and one example trace, which are given to
LTLTALK, as well as the target specification, which is used to verify whether LTLTALK
succeeded in synthesizing it. The specifications differ in their size (the size of their syntax
DAG), ranging from two to five. As discussed in Section 3.3.4, these formulas should be
viewed as language building blocks that can be combined in more complex formulas using

naturalization.

Interactive Synthesis Evaluation

We assess the different parts of the proposed interactive synthesis algorithm in detail. In
particular, we are interested in the following research questions:

RQ1 Does the algorithm synthesize specifications with only a few interaction rounds?
RQ2 Do natural language description and user interaction contribute to successful synthesis?
RQ3 How sensitive is the synthesis algorithm to parameter choices?

RQ4 How does our synthesis algorithm compare to enumerative synthesis?

RQ1: Ability to Synthesize Specifications We run our synthesis algorithm on the ten tasks
from Table 3.7, setting the maximum depth of the synthesized formula to 6 = 4 and the
number of initial candidates generated to 1 = 5. Table 3.8 summarizes the results of this
experiment. Because different runs of the optimizing solver may produce different models, we
execute our algorithm five times per task and report how often out of the five runs the target

specification was found, as well as the average number of interaction rounds.

Chapter 3. Inferring Specifications from Examples 76

TABLE 3.8: Performance of interactive synthesis for maximum size § = 4
and n = 5 initial candidates

task id formula found overall waiting time [s] number of interactions

tl yes (4/5) 4.5 2.8
t2 yes (5/5) 3.6 1.4
t3 yes (5/5) 6.28 2.6
t4 yes (4/5) 12.7 34
t5 yes (5/5) 14.4 2.4
t6 yes (5/5) 13.7 2
t7 no (0/5) 6.5 3
t8 no (0/5) 19.1 1.8
t9 yes (5/5) 3.2 2
t10 yes (5/5) 12.0 2.2
100 8
TITEELLTT
80 5
60 5
40 *
20 8

tl 2 3 t4 t5 6 t7 t8 9 t10

Oformula generation M formula solving

FIGURE 3.16: Relative times needed to generate and to solve formula CD?’L

In the majority of cases, LTLTALK found the target formula. It failed to do so for the tasks
t7 and t8, for which the target formula has size 5, which is beyond our default limit of § = 4.
The average number of interactions was 2.4, which we consider to be small enough to not
overly burden the user.

We measure the user’s overall waiting time—the time spent waiting for the system to
devise initial candidates as well as to devise distinguishing examples. The average overall
waiting time for the user is 9.6 seconds. We note that most of this waiting time is spent on
creating the initial candidate set, and in particular, on generating the propositional formula
CIDZSS’L. Figure 3.16 shows the relative times needed to generate q)f’L compared to the time
needed to solve it (i.e., to find the satisfying assignment). We observe that it takes much
longer to generate a formula than to solve it. The average times needed for solving formulas
from Table 3.8 and for generating distinguishing examples are both below one second. While
we do not consider the waiting time to be prohibitively long, we note that a more optimized
implementation of the formula generation (e.g. in C++ instead of in Python) would likely

reduce the overall running time of our synthesis.

Chapter 3. Inferring Specifications from Examples 77

(a) Varying J, with m set to 5 (b) Varying m, with ¢ set to 4

8 10 125 % 5 10 110 %
g g g z
= b . o= H
5 8 20 E 5 8 8 @
8 2 &3 3z

=1 . b el —_ =
8 B 6 15 g 3 E 6 6 g
2 : 573 :
82 4 {10 2 52 4 4 2
e ° gL °
5 = 3 E
It 2 15 -3 o 2+ 12 3
2 2 3 2
g 0l— . I I 1 E § 0Ll— . I 10 g
= 2 3 4 5 2 = 1 3 5 7 =]

maximum size of formula & initial number of candidates m

FIGURE 3.17: Number of recovered specifications and running time for
different choices of hyperparameters 1 and ¢

RQ2: Role of NL and User Interaction We further examine the role that the natural
language hints play. We ran the same experiment but supplied no hints information when
generating the formula <I>5S’L. Without the hints, the intended formula was recovered in only 9
out of 50 cases. Clearly, increasing the size of the initial candidates set 1 would allow the
algorithm to recover the formula without the natural language hints eventually. This would,
however, increase the candidate generation time and the number of interactions needed with
the user, impacting the user experience.

We next evaluate the role interaction plays in the overall synthesis procedure. In particular,
we evaluate whether the initial candidates generation is already enough, i.e., whether it could
stand on its own, without additional interaction with the user. Among the 50 runs, the target
specification was the top-ranked candidate in 15 cases, it was among the top 3 candidates
in 34 cases, and among the top 5 in 38 cases. With non-expert users in mind, we consider
only the top-ranked candidate as a successful trial. This means that without interaction, the
specification would be successfully recovered in only 15 experiments. We conclude that the
interaction is an important part of the synthesis procedure, as it manages to narrow down the

set of candidate specifications to a single, correct specification.

RQ3: Varying the Hyperparameters Our synthesis algorithm has two hyperparameters:
the maximum size of the specification J and the number of initial candidates . The larger
these two parameters are, the longer the synthesis runs, but also the more tasks can be
successfully solved. We conducted a number of preliminary experiments, varying ¢ and .
Figure 3.17 shows the number of successfully recovered specifications and the running time
for different values of ¢ (Figure 3.17a) and for different values of m (Figure 3.17b).

For & > 5, there is a possibility to recover all the specifications from benchmarks, since
the target specifications do not exceed this depth. However, for 6 = 5 or § = 6, the
algorithm successfully recovered only 9 out of 10 specifications. The task t7 (which has
size 5) was not recovered, even though the similar task t8 was. A closer inspection reveals
that the synthesized specification for t7 was picked(1,*,*,(1,2)) Bpicked(1,*,%,(3,1)).
This shorter specification was consistent with a single example (as were the other candidate

specifications), and the natural language description was not able to bias the search towards

Chapter 3. Inferring Specifications from Examples 78

TABLE 3.9: Performance of interactive synthesis for maximum size § = 4
and n = 5 initial candidates without using the no excessive trace principle
for generation of negative examples

taskid formula found overall waiting time [s] number of interactions

tl no (2/5) 3.5 2.8
t2 no (2/5) 2.7 2.6
t3 no (1/5) 2.1 34
t4 no (0/5) 4.0 3.0
t5 yes (5/5) 2.3 2.6
t6 no (1/5) 3.9 2.4
t7 no (0/5) 35 2.2
t8 no (0/5) 2.5 2

t9 no (0/5) 3.7 32
t10 yes (5/5) 4.6 3.2

the correct specification. A different example trace or a better NL similarity function would
be necessary to recover the intended specification.

So far, we have insisted on the user providing only a single example. However, depending
on the application, it may be the case that asking for few examples would not harm the user
experience. To see what the effects of going beyond a single example are, we re-ran the
interactive synthesis on the same benchmark set, but with two examples provided for each
specification instead of just one. The pre-interaction results improve: the target specification
was the top-ranked candidate in 22 cases, it was in the top 3 in 35 cases and in top 5 in 39
cases. Additionally, the specification for the task t7 is now successfully recovered with § = 5.
Thus, by using more initial examples, one might choose a smaller number of initial candidates,
at the expense of higher user effort.

As described in Section 3.3.3, our algorithm relies on two principles for devising a set of
negative examples: the principle of no excessive trace and the principle of no excessive effort.
We evaluated what the relative contributions of those principles to the performance of the
algorithm are by running the same experiment, but giving up on using one of the principles
at a time. When negative examples were generated without the no excessive trace principle,
the results were significantly worse (as can be seen in Table 3.9). When the principle of no
excessive effort was not used, the system was not able to recover t8 for the specification depth
6 = 5 (which it was able to do using the principle). On the other hand, not using the no
excessive effort principle results in reducing overall waiting time for the user to below 10
seconds for each of the tasks.

Finally, we performed an additional experiment, whereby we encoded the generation of
distinguishing worlds eagerly, already in the formula q)f’L. This has potential advantages
over the current, lazy generation, approach: no waiting time for the user between interactions,
never finding two semantically equivalent specifications (for traces up to a fixed length),
and a possibility to take a smarter strategy in choosing which disambiguating example to
present the first. An obvious drawback is that the eager generation increases the size of CID‘;’L.

Unfortunately, we found the eager generation approach not to scale well: the average waiting

Chapter 3. Inferring Specifications from Examples 79

time for initial candidates rose to 70 seconds, with 10 solver timeouts (for a timeout set to 120

seconds). We thus stick to the lazy generation.

RQ4: Comparison with Enumerative Synthesis A natural baseline for generating initial
candidates is enumerative synthesis [7]. We ran two variants of the algorithm: enumerating
expressions from the language in the order of size and enumerating expressions from the
language biased by their similarity to the natural language description. We enumerated over
the same language that was used in the previous experiments, in particular using only those
propositional variables that appeared in the example trace. To compare with our approach, we
let the enumeration run for 20 seconds (the total time our algorithm at most takes). We then
check whether the target specification is contained in the set of specifications consistent with
the examples (the user-provided positive and generated negative examples), i.e., whether the
system could possibly find it through disambiguating interactions with the user.

The size-based enumeration successfully found four specifications: t1, {2, t5, and
t9. While t5 is the smallest size specification, we observe that none of t1, t2, and
t9 contains a picking action. If in an example some items are picked up, there are
many more propositional variables to consider, which means that the size of the lan-
guage to enumerate increases, making the enumeration more difficult. For example,
picking a red circle from (1,2) that contains only that item makes the following propo-
sitions true: picked(1,red,*,(1,2)), picked(1, *,circle, (1,2)), picked(1,red, circle, (1,2)),
picked (every, red, , (1,2)), picked(every, , circle, (1,2)),
picked (every, red, circle, (1,2))).

After adding the natural language bias, enumeration is able to successfully find five
specifications: t1, 2, 3, t9, and t10. We conclude that our SMT-based method for deriving

initial candidates is superior to enumeration.

Case Study for Grammar-Based Generalization

We illustrate our grammar-based generalization from Section 3.3.4 using case studies. First, we
consider the examples from Table 3.7 and show that LTLTALK learns not only the individual
demonstrated tasks (t1 - t10), but a whole class of tasks obtained by generalization. Then we
show how grammar-based generalization can be used for providing complex but repetitive
specifications in an easy way. Finally, we show how the generalization helps with tasks from

robotic dialog systems literature.

Generalization of Interactive Synthesis Tasks

Table 3.10 shows induced specification expressions alongside examples of newly parsable
commands for a subset of examples from Table 3.7. When a derived production rule does not
have Spec as its left-hand side, we add to the table a core-language expression with which it
shares the semantics, and denote this by the symbol =.

Chapter 3. Inferring Specifications from Examples 80

TABLE 3.10: Example expressions expanding the core grammar

NL description ~ generated grammar rule newly parsable commands

(t1) step into water and then visit (6,4)
step into water and then visit (1,1)

step into water and then visit (Num, Num . L
P ¢ !) step into water and then visit kitchen

step into water and then visit Loc

(t2) reach (4,1), but remain dry in the process
reach (Num, Num) but remain dry in the process reach (10,8) but remain dry in the process
reach Loc but remain Loc in the process s

(t3) bring one green circle from (7,4) to (5,4)
bring one Color Shape from (Num, Num) to (Num, Num) bring every blue square from kitchen to bathroom
bring Quant Prop Prop from Loc to Loc s

(t4) take all green from (7,4) to water

take every color from (Num, Num) to water take two squares from (1,3) to water
take Quant Prop from Loc to water take one item at (2,4)
take =pick s

(t10) first get one red item from (7,4) and afterwards one green item from (10, 8)
first get Quant Prop item from Loc first get all triangle items from (2,1)
and afterwards Quant Prop item from Loc and afterwards two red items from kitchen
from=at take one item from kitchen

Let us first consider task t4. Its natural language description is take all green from (7,4)
to water and the learnt core language specification is pick every green item at
(7,4) before not robot at dry. After generalization, the command take two
squares from (1,3) to water is immediately understood. Namely, using the best packing
method, the expression take Quant Prop from Loc to water is added to the lan-
guage. Using the alignment method, LTLTALK furthermore learnt that fake can be used
interchangeably with pick, and thus an expressions such as take one item at (2,4) is now a
part of the language.

Note that the system has not generalized over the word water. The reason is that water is
not even partially parsable—it does not appear in the grammar (and the properties of wet tiles
can only be expressed by negating the grammatical entity dry). Hence, which generalizations
are produced also depends on how the grammar is designed.

The generalization from task t3 enables the system to understand expressions such as bring
every blue square from kitchen to bathroom. However, the same generalization allows for
some nonsensical expressions to become parsable: e.g., bring three yellow red from kitchen
to bathroom. As discussed in Section 3.3.4, this is a property of the best packing technique:

it generalizes aggressively, at a price of introducing spurious expressions to the language.

Complex Specifications The naturalization technique proves to be especially useful for
scenarios in which the robot does many structurally similar tasks over and over again, e.g.,
a hospital robot taking different drugs to different patients. In our abstract blocks world,
consider a task of distributing items of different colors from a selected location (for instance,
(2,3)) to the four corners of the world. Conceptually, the task is very simple: the robot first
needs to take all red items to the lower-left corner, then it needs to take all blue items to the
upper-left corner, then it needs to take all green items to the lower-right corner, and finally, it
needs to take all yellow items to the upper-right corner. Its specification in the core language,
shown in Figure 3.18, is complicated and repetitive. Furthermore, the specification is of depth
15. Our interactive synthesis algorithm is not able to uncover such a long specification.

Chapter 3. Inferring Specifications from Examples 81

pick every red item at (2,3) before robot at (1,1)
and

pick every blue item at (2,3) before robot at (1,10)
and

pick every green item at (2,3) before robot at (14,1)

and

pick every yellow item at (2,3) before robot at (14,10)

FIGURE 3.18: Sorting items based on colors using the core language

The solution comes from the modularity of the target specification. Using interactive
synthesis, the user can first specify the command all red from 2,3 to 1,1. LTLTALK general-
izes from the specification and now knows the meaning of any command that corresponds
to Quant Prop from Loc to Loc. Now the specification from Figure 3.18 can be
written by using the conceptual idea of the task, saying all red from 2,3 to 1,1 and all blue
from 2,3 to 1,10 and all green from 2,3 to 15,1 and all yellow from 2,3 to 14,10 (while
this specification is also fairly long, it assumes much less knowledge about the core language:
only that individual specifications can be connected by the operator and).

Finally, this specification can be renamed into distribute colors from 2,3. In the future,

then, the user could do the same for any other location using a single command.

Dialog Systems Tasks Now we turn our attention to tasks inspired by three studies of
robotic dialog systems [133, 214, 188]. The idea of a dialog system is that the robot can ask
its user clarifying questions to understand the task. The tasks are of two kinds: navigation and
delivery. Here, we show how LTLTALK is able to do typical navigation and delivery tasks, but
also go beyond those.

The tasks of interest are navigation (e.g., go to the bathroom) [133, 214], delivery (e.g.,
bring a spoon from the living room to the kitchen) [214], and a complex combination of
atomic tasks (e.g., go to the bathroom and then go to the living room) [188].

Assume first that a user of LTLTALK tasks the robot to eventually be at the restroom. Af-
ter the user provides the example (and potentially judges the examples provided by LTLTALK),
the system learns that restroom is the same as bathroom (using alignment). Similarly, after the
user demonstrates the command go to the kitchen, LTLTALK knows that the meaning of this
phrase corresponds to eventually at the kitchen (using simple packing).

It is not only learning of a new phrase that happened, but also generalization. To illustrate,
the expression go to the restroom is now a part of the language of LTLTALK, as it learnt the
meaning of go to Loc as well as the synonymity of bathroom and restroom.

The generalization happens over different grammar categories. For instance, assuming

that the user demonstrates the command go to the kitchen and then go to the living room,

Chapter 3. Inferring Specifications from Examples 82

LTLTALK will introduce a new rule to its grammar, encoding that two categories Spec can
be connected with the connector and then, thus forming a new production rule Spec —
Spec and then Spec = Spec before Spec (using best packing). This allows for
generalizing to kinds of actions different than navigation only, e.g., pick one red item at the
kitchen and then go to the living room is now a part of the LTLTALK’s language.

These examples show how LTLTALK’s approach can achieve the functionality of the
existing dialog systems. These systems ask the user for particular parts of the action, which
makes them dependent on knowing the exact structure of possible specifications. LTLTALK,
on the other hand, gets the clarification from the user by way of demonstration, therefore

providing a more usable solution.

3.3.6 Related work

We presented LTLTALK, a natural language robotic interface using interactive specification
synthesis from examples and natural language descriptions. In all three areas (NL commu-
nication with robots, synthesis from natural language, and synthesis from examples), recent
years have brought a lot of interesting developments. In this section, we relate LTLTALK to

the works in these topics.

Natural Language Interfaces for Robotics

In an attempt to provide a more natural specification language for robotics but keep the
precision of a formal language, Kress-Gazit et al. [137] propose a controlled, natural looking-
language that matches a fragment of LTL. SLURP [148] uses NLP techniques to map the
linguistic structure of a command to a fragment of LTL. LTLTALK shares the usage of LTL as
its underlying expressive and precise specification language, but adapts the formal language
to the users’ style through interaction with them.

The grammar expansion technique that we use originates from Voxelurn [223], an NL
instruction system for a 3D-blocks building world. There, a user is expected to provide a
formal specification for a natural language description that was not understood by the system.
LTLTALK removes that burden from its users and enables them to provide an example instead
(which is then turned into a formal specification using the interactive synthesis algorithm).

The early work in the robotic dialog systems [166, 133] puts forward the idea of under-
standing a specification through interactions with the user. They learn the new expressions
but do not generalize. Generalization of the learnt expressions is achieved by Thomason et al.
[214] using the induction of a CCG grammar from the semantic parsing framework SPF [16].
The commands are limited to delivery and navigation tasks, in contrast to LTLTALK’s ability
to handle temporal specifications with different propositional variables.

Synthesis from Natural Language

NLyze [101] proposes a natural language interface to spreadsheet programming where a natural
language utterance is mapped to a DSL using a semantic parser; the users resolve ambiguity
by selecting the correct spreadsheet macro from a ranked list of candidates. SQLizer [232]

Chapter 3. Inferring Specifications from Examples 83

proposes an NL interface for SQL query programming. (The users are assumed to be unaware
of the underlying tables’ structure, so providing examples is not an option.) A semantic parser
is used as a front-end to generate sketches of SQL queries, and ambiguity is resolved by
program repair. Similarly, NaLIR [144] uses an NL interface for SQL programming, and lets
users select correct queries. Compared to these systems, LTLTALK actively asks for user input
by showing new, disambiguating, worlds.

Many successful NL to DSL systems use large datasets of natural language descriptions
and corresponding formal language commands to train the synthesizer’s model [22, 27, 66,
190]. Instead of requiring a large training set upfront, which is challenging to obtain, LTLTALK

learns over time and adapts to idioms and user-specific ways of expressing commands.

Synthesis from Examples

Example-based synthesis techniques have developed several strategies to resolve the inherent
ambiguity. Similarly to LTLTALK, Scythe [222, 221], a system for learning SQL queries from
input-output examples, uses active querying for disambiguation. Beyond the different applica-
tion domains, LTLTALK integrates the semantic parser more tightly, as the core language is
gradually extended based on user interaction.

Several techniques have been developed to reduce user effort in example-based synthesis.
SketchAX [8] leverages properties such as invariance to input perturbations to generate an
additional set of examples. Drachsler-Cohen et al. [70] propose a system that interacts with
a user by generating abstract examples, which represent a set of concrete examples and
thus reduces the rounds of interaction. FlashProg [163] allows users to inspect generated
programs in a compact form or asks clarifying questions based on existing test data. Peleg
et al. [187] develop a Granular Interaction Model, which on the one hand shows evaluation
results at intermediate steps in a program, and on the other hand asks users to inspect generated
programs and to provide feedback on parts of it. These techniques do not directly apply to our
domain of LTL specification. In particular, unlike the programs in the target domains of these
works (integer and bitvector manipulating programs, string processing), LTL specifications

are challenging to inspect by users.

Synthesis from Natural Language and Examples

Combining example-based specifications with natural language descriptions has also been
explored previously to reduce the number of examples that a user has to provide. Common
with LTLTALK, these techniques use the natural language description of a task to bias the
search for the correct program towards more likely candidates, but other details differ which
make them not immediately applicable to synthesizing LTL specifications.

Manshadi et al. [162] use a dependency parser to bias the search for regular expressions,
but the underlying synthesis relies on version space algebra. REGEL [53] uses a semantic
parser to obtain the basic scaffolding for the target regular expression from the user’s NL
description, and then completes the expression using programming-by-example. Nye et al.
[181] use a neural network instead of a semantic parser to generate sketches that are filled

Chapter 3. Inferring Specifications from Examples 84

using enumerative synthesis. MARS [54] encodes synthesis as a MAX-SMT problem, similar
to LTLTALK, but trains a neural network to provide the weights. LTLTALK avoids the training
phase by adapting over time using an extensible semantic parser. Finally, Raza et al. [197]
use a semantic parser to split the natural language description into smaller parts for which
the user can separately provide examples. LTLTALK’s generalization procedure similarly
allows to combine smaller tasks into more complex ones, but the composition happens in
the semantic parser itself and does not require re-synthesizing the low-level tasks for new
combinations. Neither of the above-mentioned techniques uses active disambiguation through

user interaction.

3.4 Conclusion

In this chapter, we described three methods for learning temporal specifications from examples.
The first method tackles the problem of learning a minimal LTL formula from a sample
consisting of both positive and negative examples. It does so by casting the problem as an
instance of propositional satisfiability and using the power of existing SAT solvers.

For many use-cases, however, we typically get only positive examples. Thus, we ventured
into specifications from positive examples only. Because the problem of learning from positive
examples is ill-defined, we introduced a notion of tightness to define it properly. We recognized
UVW as a class of automata suitable for learning under that definition. The results show that
this method can successfully work if a large example set is provided to it.

Finally, our third method brings the learning of specifications closer to the real world: we
develop LTLTALK, an interface for commanding robots. LTLTALK enables its non-expert
users to interact with the robots that expect commands given in LTL.

LTLTALK uses a combination of example-driven synthesis and grammar-based natural-
ization that allows “one-shot” learning and generalization of LTL specifications from natural
language utterances and examples. Because it cannot assume access to a large example set,
LTLTALK builds upon the work from the first method (Section 3.1). It resolves the problem
of obtaining negative examples (the problem that motivated the second method) by taking
advantage of domain-specific knowledge.

Like all techniques based on programming by natural language and examples provided
by users, LTLTALK is ultimately incomplete. The candidate generation may fail to find the
correct specification. This can, for example, happen if the hyperparameter m (number of
initial candidates) is too small. Another example is if no distinguishing worlds are found. That
can happen either because the candidate formulas are semantically equivalent or because the
bound on lengths of world traces is too small. The result in both of those cases is that the
grammar will contain a wrong production rule.

As shown in our experimental evaluation, such incompleteness is rare in practice. More-
over, the advantage of combining with naturalization is that the probabilistic grammar model

is robust to a few wrong production rules.

85

Chapter 4

Planning with Multiple Speculative
Initial States

In a multi-robot system that supports asynchronous requests (such as the one described in
Chapter 2), a natural question arises: how to plan for the robots already executing some
previous task? While in practice the question may get resolved by additional assumptions
(e.g., the planning is much faster than the robots’ execution), in this chapter, we aim to explore

the problem in the most general setup, domain-independent planning.

4.1 Introduction

After plan execution has begun, the need to replan can arise for many reasons. Perhaps the
agent’s goal has changed [171] or additional goals have become known [28]. Perhaps the
environment, or the agent’s perception of it, has changed, possibly giving rise to better ways
of achieving the agent’s goal [51]. Or maybe the original plan was constructed in haste, and
now that execution is underway, the agent has the leisure to try to find a better plan to switch
to [149]. Regardless of the cause, if the agent is using a planning technique such as forward
state-space search, replanning necessitates choosing an initial state for the search.

This small detail, often glossed over in previous work on replanning, raises a vexing
problem: with execution underway, this initial state must be one far enough along the current
plan that the agent will not encounter it until the replanning process has finished (because
otherwise, transitioning to the new plan is not possible). But conservatively choosing an initial
state that is too far along the old plan risks inefficiency: the agent’s actions will not reflect the
new information until the state is reached, possibly causing it to miss opportunities.

The most common solution in current systems appears to be to always choose a transition
point that is a fixed time ahead in the future, either as part of system design [97, 164] or
through an estimate for the replanning time [149, 200]. But this is at odds with the purpose of
automated, domain-independent planning, which is to enable an agent to handle a variety of
problems and situations with a single algorithm. In this chapter, we introduce a principled
approach to the problem of choosing the initial state for online replanning, which we call the
Multiple Initial State Technique (MIST). In MIST, we integrate the choice of the state into the

search itself, as only the search has the proper information about the necessary trade-offs.

Chapter 4. Planning with Multiple Speculative Initial States 86

The structure of MIST resembles that of the classic search algorithm A* [104]. In MIST,
however, the open list is initialized with multiple potential initial states rather than just one.
These states represent speculations on the state in which the agent might be once the search
is done. Open nodes are prioritized by their estimated goal achievement time, taking into
account both the makespan of the resulting plan and an estimate of when the planning process
itself will finish. In this way, MIST reasons online, during the search, about which initial state
is most promising to explore.

In MIST, once the execution goes past a state, that state is no longer viable as an initial
state. We also present a variant of MIST that allows the planner to consider initial states that
may have already been passed but that are still reachable. For both variants, we prove that the
first solution MIST finds is better than any other one it might find by continuing its search.
(The claim is conditioned on the suitable properties of heuristic functions, which we will
describe later in the chapter.)

To assess the effectiveness of MIST in a concrete yet domain-independent way, we
implement it in the Fast Downward planner [108] and extend a set of benchmarks from the
International Planning Competition (IPC) to our replanning setting. We find that MIST yields
better agent behavior, in the sense of achieving its goals more quickly, than either using a

fixed constant or trying to predict replanning time in advance.

4.2 Problem Definition

Although MIST applies to any setting in which planning occurs in the context of ongoing
execution, for concreteness, we investigate MIST in classical planning with online goal arrival.
The focus is on the moment when a new task arrives while the agent is already executing its
current plan. This is equivalent to a series of arriving jobs assuming that each task arrives

after the previous planning phase is done.

Background

We consider the finite-domain representation (FDR) [20, 107] for classical planning tasks:
Definition 4.1. A planning task is a tuple (V, A, c,so,T):
* V is afinite set of state variables, each with a finite domain of possible values,

* A s afinite set of actions. Each action a is a pair (pre,, eff ,) of propositional formulas

called preconditions and effects,
e ¢: A — R is a function assigning cost to every action,
* 5q is the initial state (complete variable assignment),

 T'is a propositional formula over the set of states called goal.

Chapter 4. Planning with Multiple Speculative Initial States 87

We denote the set of all complete variable assignments, or states, by S. If a state s € S
satisfies a propositional formula @, we say that s is compliant with ® and write s |= ®.
A goal I is accomplished in a state compliant with it. An action a € A can only be applied to
astate s € Sif s |= pre,. The effect of the action a is described by the propositional formula
over state variables, eff . The outcome of this application is state denoted by post ().

A solution (plan) to a planning task is a sequence of actions 77 = (a1, ay, . ..,a,) with the
overall cost C(71) = YI' ; ¢(a;) leading from the initial state sy to a state that is compliant
with the goal T

In what follows, the action costs ¢ will be interpreted as the time required to execute them.

Continual Online Planning Tasks

We express the notion of continual online planning in the classical planning setting by
extending tasks with a second goal, assumed to arrive during the execution of the plan for the

original goal.

Definition 4.2. A continual online planning (COP) task is a tuple
(V/ A/ ¢, rOld/ rnew, 50, TTsy, i):

 states V, actions A, and cost function c are as before,
* T'oiq is a propositional formula called the old goal,

* T'hew is a propositional formula called the new goal,

* 5g is the agent’s state at the time when 'y, appeared,

® sy Ty = (a1ay .. .ay) is a sequence of actions, taking the agent from the state s to a

state compliant with the old goal T'g4 (the agent’s current plan).

Note that, while s is not necessarily the first state of the agent’s original plan for I'5)q, we
disregard all states before the arrival of I'yey, and focus on the suffix of the original plan that
can still be changed. We assume the actions to be non-interruptible: if I',e,, appeared during
the execution of an action, s is the state at the end of the action.

We assume for simplicity that 'y and I'ney are not in direct conflict, i.e., I'ojg A I'pew i
satisfiable. A solution to a COP task is a plan 7t consisting of two parts: a prefix of 775, r , and
the newly planned extension. There must exist 1 < j < 7 such that 77 = (agaz ... ajbl coby).
If the extension b . . . by, is not empty, we call the state in which by will be applied the deviation
state. The state to which the plan 7t takes the agent must be compliant with I'gjq A T'pew. A
solution is said to be optimal if it minimizes the total planning and execution time, i.e., the
time from the arrival of the new job Iy, to the end of the execution of 7t.

In order to achieve I'yey, it may be useful to deviate from 775, ,, early. For example, such

old
a situation occurs if a warehouse robot is moving back to its home base to deliver a package
for I'gq, while 'y, requires picking up another package close to where the robot was when

I'hew arrived.

Chapter 4. Planning with Multiple Speculative Initial States 88

Algorithm 5 MIST
Input: sg, Lo, 1, iew, 75,1

1: v < 0; closed - @

2: open < {(r,r) | r € R}

3: while open # @ do

4 (S/ refs) < arg min(t,reﬁ)eopen f(t/ reﬁ, 7)

5 if (s, refs) is not consistent with the state of the execution then
6: discard (s, refs)
7
8
9

R

old?

if s = T'oiq A Thew then
return path to s
: closed <« closed U { (s, refs) }
10 Y+ v+1

11: for t € successors(s) do

12: refy <— refs

13: if ((t,ref;) ¢ (open U closed) or g, (t) < g;’é;f(t) then
14: open < open U {(¢,ref;) }

15: return fail

Observe that such indirect conflicts can be characterized by the degree to which 775 1,

is useful for the combined goal I'gig A I'new. At one extreme end, 7,1, is a prefix of an

old
optimal plan for I'gjg A I'new. In this case, it is best to complete the execution of 7ts, . At

the other extreme end, 7t r ,, is not useful at all, i.e., no optimal plan for I'gig A I'yew shares a

old

non-empty prefix with 7ts r . In that case, it is best to stop 77, r,, immediately. However, it

old* old

is not known upfront where between the two extremes to position the planner. Our aim is to

address this trade-off automatically and in full generality.

4.3 The Multiple Initial State Technique (MIST)

Algorithm 5 shows the pseudocode of the MIST algorithm. Its structure closely resembles that
of A*, with a few important modifications (marked by the red text color). In contrast to A*,
MIST uses a set of potential initial states that we call reference states. The reference states

are sampled from the plan 715, 1, towards the old goal, and are passed to the algorithm as a

old
parameter R. These starting states are different “guesses” on where the agent will be when
planning finishes, and they are the potential deviation states for the overall plan.

The open list (open) is initialized using the reference states (Line 2). Each element of open
is a pair of the search node and its corresponding reference state (a candidate for the deviation
state). Each newly created search node inherits the reference state of its parent (Line 12).

As in A*, nodes in the open list are expanded in a best-first order according to f, and put
into the closed list afterwards. When a node is expanded, its successors are inserted into the
open list if they are new, or replaced if they are reached with a lower g-value than before
(Line 13). As time passes and execution of the current plan progresses, search nodes whose
corresponding plan deviates from the executed actions become invalid and are discarded

(Line 6). Line 7 checks the termination condition, reflecting Definition 4.2.

Chapter 4. Planning with Multiple Speculative Initial States 89

The most important difference to A* is the open list ordering function f. Given a state s,
its reference state ref;, and the number of expansions made by the algorithm so far y (sg is
treated as a default parameter), MIST uses f(s, refs,¥) = C(7Ts, ref,) + Sref (5) + h(s) +
0s(s, refs,). The first part, C(7Ts, rof,), represents the time required to move from the initial
state sg to the reference state that was used to reach s along the execution path. The second
part, gy, (s) + h(s), is the same as in A*: following our interpretation of action costs as their
durations, it combines the time needed to get from the reference state ref; to the state under
consideration s with the estimated time to reach the goal from s. The third part, the overshot
function 0s, models a state becoming irrelevant (f = o) as the execution passes through it
before the estimated end of planning. It is defined as:

0 if <'V + ’7(S>) ' texP < C<7Tso,refs)

oo otherwise

o0s(s, refs, 7y) =

where 7(s) estimates the remaining number of expansions until a plan is found, ., is the
time per expansion to translate expansions to execution time, and C(nso,refs) is the time to
reach ref; along 715, r,,,. We will discuss below how to obtain such estimates by adapting prior
work [212, 44].

Having <y as an argument for f has an interesting consequence: it now matters when the
function f is evaluated for the relative order of the nodes in open. In practice, we do not
re-evaluate f on all the nodes in the open list each time the best element is retrieved (Line 4).
Instead, we approximate the value of the f-function by keeping the search nodes sorted only
by ¢ + h, but separately for each reference state. Subsequently, we do the full evaluation
only to select the next reference state for which a node should be expanded using the nodes
with minimal g + & for each reference state. This approximation is justified by the fact that a
changed value of -y affects all the nodes corresponding to the same reference state equally. The
loss of precision comes from disregarding differences in #. In preliminary experiments, we
also tried a recomputation strategy in exponentially increasing intervals as used in Bugsy [44]
and found the difference in solution quality to be negligible compared to this approximation
strategy.

Another practical consideration is that we can safely prune a search node (s, ref;) if s is
a reference state itself that is reached by 77, r,,, after passing through ref; and C (77, ref,) +
Sref, (8) = C(7T5,,5) holds.

Theoretical Properties

A* is guaranteed to find an optimal solution, provided that the heuristic function is admissible
(and nodes can be reopened). A similar guarantee cannot be given for MIST. The essential
difference between the two settings (and thus necessarily between the two algorithms) is that
in an offline setting, the exploration of the state space during the planning phase comes at no
cost. On the other hand, in an online setting, exploring a part of the search space that is not
going to be used in the solution can decrease the quality of the final plan, since that time was
not used efficiently.

Chapter 4. Planning with Multiple Speculative Initial States 90

Consider a situation where the only optimal plan deviates at the reference state r, and
expanding all the nodes on that plan takes exactly the time that the agent needs to reach r.
Expanding any other node will make MIST miss this path. Hence, unless the heuristic
functions / and # were perfect, there is no guarantee that MIST will find an optimal solution.

With optimality out of reach, we can prove a simpler property: the stopping criterion of
MIST is a correct one. MIST stops the search as soon as the first state compliant with both
of its goals is found, which raises the question of whether there is some trade-off between
continuing the search and the quality of the solution. We show that continuing the search can
not possibly result in a better plan, assuming the heuristic functions / and # are admissible.

We will use /1*(s) to denote the true value of the cost to reach the goal from s, and 17*(s) to
denote the number of expansions from s to the end of planning. Following the same notation
style, f*(s, refs, 7vs) and 0s* (s, refs, ys) denote the functions f respectively os calculated using
h*(s) and 17*(s) instead of the heuristics & and 77. We are using the notation v = -, to indicate
that the third argument of the f-function is the value of y when the node s was explored.

Theorem 4.1. Let i be admissible with respect to planned execution time and # admis-
sible with respect to the number of expansions. Let 01 = sg,51,...,5;,P1,P2-..Pm be
the sequence of states corresponding to the first solution 711 found by MIST (with the de-
viation state s;). Assume the algorithm continued the search and found another solution

with the state sequence 0y = sg, s1, .- -, i, 41,92, -+, qn (with the deviation state sj). Then
F(Pmssis Ypu) < F (@057, 7q,)-

Proof.
f*(pmrsiz ’Ypm)
= C(Tso,s,) + &s;(Pm) + 08" (P, i, Vp,,)
= f(pmssi;Tpu) 4.1)
< f(qu i vpu) (4.2)
= C7tso5;) + &s;(a1) + h(q1) + 05(q1, 55, 7py,)
< C(7,, S,> + 85,(‘11 h*(q1) + 0s™ (41,5}, 7p,,) (4.3)
< C(7t, 5,) + 85,(511) h*(q1) + 0s™(q1, 8}, 7)) (4.4)
< C(Ttsy,s;) + 8s;(qn) +05™(qn, 8j, 7q,) (4.5)
=f" (qmsjr%/n>

The true cost of the solution 711 is f*(pm, Si, Yp,.) = C(7Tso,5,) + &s; (Pm) + 08" (P, Sis Vp,i)-
Following the search structure of MIST, at some point we chose to expand p,. Since p,, is
the last state on the path and our heuristic functions are admissible, the true cost f* is equal to
the cost function f (Equality 4.1). Inequality 4.2 comes from our choice of the state p,, over
some state ¢; from 0.

From the admissibility of & and os (which follows from the admissibility of #) with respect
to ™ and 0s*, we get Inequality 4.3. The value of 0s* for some later point <y, when exploring

g1, would be greater or equal to the value for the same state q; and the reference state s; at

Chapter 4. Planning with Multiple Speculative Initial States 91

time point yp,, (Inequality 4.4). This follows from the definition of 0s*, which is monotonic
when observed as a function of its third argument (time passed so far).

Finally, Inequality 4.5 comes from (a) vq, + 7" (qx) = 7q + 7" (q:) and (b) gs,(q1) +
h*(q1) < gs;(qn). Both sides of equality (a) are equal to the overall planning time. Inequality
(b) comes from the fact that 1*(g;) is the smallest cost from ¢; to a goal state. Since that goal

state is not necessarily g,,, we get the inequality. O

4.4 MIST for Recoverable Tasks

—n .
]_1;1 RI2 i

FIGURE 4.1: A truck executing a plan when a new goal appears.

Depending on how the reference states are selected from the initially computed plan,
situations may arise in which MIST’s replanning strategy incurs a large cost. Consider the
example from Figure 4.1. The truck is heading to location L when a new goal, to pick up
and deliver a package to L appears. It may happen that the planner is not able to find a plan
before the truck has already passed the first reference state R, which is closest to the package.
MIST requires the truck to continue following the current plan until the next reference state
R5 and only then turn back to pick up the package. Depending on the distance between R
and Rj, this can cause an arbitrarily large cost penalty compared to turning around at some
intermediate location. Even if reference states are frequent, MIST can still incur a large
penalty if it repeatedly misses its predicted planning time.

An engineering solution addressing these issues could be to pause the execution for some
time if planning is expected to finish soon. Here, we instead suggest a variant of MIST, that
we call MIST;.., as an algorithmic solution for a class of COP tasks that satisfy a form of
recoverability. This notion of recoverability requires that, for every sequence of actions of
the current plan, there is a sequence of actions that reverses the effects of it. In the following
definition, we will slightly abuse the previously introduced notation, denoting by post, () a

state of the agent after applying a sequence of actions « beginning with in state s.

Definition 4.3. For a COP task (V, A, ¢, Toid, Tnew, S0, 7TsyTyq)» 1€t S0, ..., Sn be the state

sequence induced by 775, 1 ,,- We denote the action subsequence taking the agent from s; to s;,

old*
with i < j, by &; ;. The task is said to be recoverable if, for every such @; ;, there exists an
action sequence &; ; such that postsj (b_cz-,]-) is compliant with every formula that appears as a

precondition or goal in s;.

This restriction gives the planner more room for error in the prediction of when re-planning
will terminate: when a reference state s is passed, the planner may still finish computing a
plan for s, because there is a recovery sequence that brings the agent to a state where that plan

is applicable.

Chapter 4. Planning with Multiple Speculative Initial States 92

Many COP applications are naturally recoverable. Examples include warehouse logistics
and various types of manufacturing problems. Furthermore, recoverability relates to known
notions of invertibility and undoability, and prior work has established methods to test these
properties [112, 60]. Our solution considers the recoverability sequence to be known. In our
experiments, we focus on domains where each action has an immediate inverse action of the
same cost.

In order to adapt Algorithm 5, two things need to be changed. First, the states of 7t r,,
that the agent’s execution already went through should not be discarded, because the agent
can still come back to them. Second, we have to change the definition of the function f to
reflect the possibility of returning to a reference state.

Reminding ourselves, f is defined as a sum of three parts: C(77s, sef.) + [&ref, (5) + ()] +
0s(s, refs, 7v), with os being either 0 (if planning is estimated to finish before the execution
reaches ref;), or infinity (otherwise). We adapt os to consider the possibility of using the

recovery sequence to move back to ref;, redefining it as

0s(s, refs, v) = C(&) + C(&) +max((y +1(s)) - fexp — C(7Tsy 1), 0)

Like before, 0s evaluates to 0 if planning is expected to finish in time. Otherwise, it now
describes the additional execution time incurred by moving past the reference state (&) and
back («). If planning takes longer than total the execution of 75 . then the agent will

additionally have to wait in s, the last state of 775, 1, (described by the last term of 0s).

old
In Figure 4.2, we can see a visual explanation for the modified overshot function os:

The dashed red bar denotes the time needed to execute the current plan leading to s,, with

v+ teap N(s) - texp 08

FIGURE 4.2: Overshot.

su = Tow. The green bar labeled by 7y - fexp is the time spent planning so far, and the dashed
green bar (17(s) - texp) shows the estimation on when the planning will finish. In the illustrated
example, the planning time is estimated to exceed the time when the selected reference state
refs is reached. The os function describes this additional execution time, plus the time it takes
to go back to ref;.

To prove that MIST;. retains the same property of the first found solution being the best
possible, we need to introduce another mild assumption. Namely, our recovery paths have to
be well-behaved: applying a sequence of actions and its recovery sequence is of a lower cost
than doing the same for any extension of that sequence. With this assumption, we are able to
prove hat the overshot function remains admissible.

Lemma 4.1. Assume that # is admissible, and that for a path « that is a prefix of a path
&' it holds that C(&) + C(&) < C(a’) + C(a’) (well-behaved recovery paths). Then os is
admissible, i.e. 0s(s, refs, y) < 0s*(s, refs, v).

Chapter 4. Planning with Multiple Speculative Initial States 93

Proof. Let & be the subsequence of actions on 77,1, taking the agent from the reference

old
state ref; to the state in which it would be at time 7 + 7(5) - texp. Similarly, let a* be the
subsequence of actions taking the agent to the state at time y + 17" (s) - teyp. Since 7 < 1%, @
must be a subsequence of a*. With the assumption of well-behaved recovery paths, we have

C() + C(&) < C(a*) + C(a*), and thus 0s < 0s*. O

Since o0s is again admissible, the proof of Theorem 4.1 also applies to MIST;.c.
Consider again the logistics example from Figure 4.1. While MIST must continue along
the plan until reaching Ry, MIST;.. will be able to finish computing a new plan from the

(already passed) reference state Rq, and can turn around without having to go to R, first.

4.5 Evaluation

We implemented MIST in Fast Downward [108]. As explained earlier, in our implementation
we use a standard A" open list for each reference state, using the MIST extensions to the
f-function only to select the open list to be used for the next expansion to avoid having to
re-sort the open list. For MIST,.., our implementation assumes that each action has an inverse
action with the same cost.

Like Bugsy, we estimate the remaining number of expansions as 17 = delay * d [44, 69],
where delay is the (moving) average number of expansions between inserting a node into the
open list and expanding it, and d is an estimation of the remaining steps to the goal (like ,
but ignoring action costs). The expansion delay is important to counteract search vacillation
[69], i.e., the search fluctuating between different solution paths and, in our case, potentially
different reference states. For d, we do not use the distance estimate of the current state,
but instead the minimal distance of any evaluated state that corresponds to the considered
reference state to make the planning time estimations more stable.

Our key performance metric is the goal achievement time (GAT), i.e. overall time for online
planning and execution, measured from the moment when the new goals appear. We measure
this time as a number of expansions to make the experiments more robust. Action costs are
translated into execution time using an instance-specific factor from cost to expansions (we
give more details in the next subsection).

In all experiments, the popular FF heuristic [113] is used to guide the search. For the
expansion delay, we use a moving average over the last 100 expansions. The experiments
were run on a cluster of 2.20 GHz Intel Xeon E5-2660 CPUs. The time and memory limits

were set to 30 minutes and 4 GB, respectively.

Benchmarks

We adapted the IPC domains Elevators, Logistics, Rovers, Transport, and VisitAll to our
setting, as representatives of applications where (i) goals are of an additive nature and there
are no conflicts between them and (ii) all action sequences & have a recovery sequence & with
the same cost. Criterion (ii) is required for our implementation of MIST,... We furthermore

experiment with Tidybot, which we adapted to satisfy (ii). In Tidybot, there are cases where

Chapter 4. Planning with Multiple Speculative Initial States 94

initial planning | new set of goals appears

% reference nodes
\\\\\\\\\\\\ ST R NI e

initial (planned) execution

(a)

second planning

initial planning .

-
R sclccted reference node
time

initial execution second execution

FIGURE 4.3: Generating benchmark instances.

objects are placed behind each other, and the robot cannot reach behind the object in the front.
We added an un-finish action to ensure recoverability. However, previously finished objects
must be picked up again in these cases, necessitating the planner to falsify and re-achieve
previously achieved goals. We assume actions to be non-interruptible.

In some of our benchmark domains, recovery sequences with lower cost can exist. For
example, there could be shortcuts to inverting the agent’s movements. In the Rovers domain,
photos would not need to be “un-taken”. In such cases, our implementation of MIST. is
pessimistic and more practical implementations may achieve lower plan costs.

The instances were adapted by splitting the set of goals in two: the first half is available in
the beginning, and the other one becomes available later. The second set of goals is scheduled
to appear during the execution of the first computed plan to obtain interesting instances. The
process is illustrated in Figure 4.3. The initially computed plan is being executed as a new job
arrives (Figure 4.3a). Here, the planner considers 5 reference states as potential initial states
for the new plan. The planner has computed an updated plan that starts from the second-to-last
reference state (Figure 4.3b). The initial plan is executed until that point before switching to
the new plan. The goal achievement time is the time from the start of the second planning
phase to the end of the overall execution.

In order to obtain interesting benchmark instances, we tried to ensure that the second
planning phase starts and ends during the first planned execution. Thus, we generated the
instances such that the second set of goals appears after 10% of the initial plan is executed.
Furthermore, we estimated the length of the second planning phase by running the planner
offline for both goals from the original start state, and used that to generate different experi-
mental setups where the second planning phase is estimated to end at E = 0.2,0.3,...,0.9 of
the initially planned execution. This is achieved by adjusting the factor for the translation of

the action cost to execution time, thereby changing the agent’s actions duration.

Results

We compare MIST to the following baselines, which represent different traditional approaches
to solving COP tasks:

* finish: Finish execution and plan only for the new goals.

Chapter 4. Planning with Multiple Speculative Initial States 95

* stop: Stop execution and re-plan from the current state.

* approximate: Approximate the duration of the re-planning phase, and use the state
where the agent is expected to be at that time as the deviation state. We use the same
estimation for the number of expansions as MIST, i.e. 17(m) = delay * d(m), using the
average expansion delay from the initial planning phase and the estimated distance of

the current state.

* fixed latency: Stop execution at a fixed point in time (we test values of 101,102, . ..,10”

expansions for this time point). We also consider a theoretical oracle configuration that
chooses the best-performing time point to stop the execution (out of the tested values)

per instance.

MIST has one important parameter: the selection of the reference states. In our implemen-
tation, we set a number of reference states ng, which are then selected in uniform intervals
from the current plan. Figure 4.4 shows the goal achievement time (in number of expansions)
for different values of ng across our full benchmark set. If there are too few reference states,
the algorithm does not have the best starting point for the next plan available. On the other
hand, the performance also decreases if too many reference states are used, as it becomes more
difficult to settle on the most promising one quickly (especially if the planning time estimation
is not very accurate). Across the tested numbers of reference states, MIST chooses nodes for
expansion corresponding to the reference state which is used for the solution 38% of the time
on average, more for fewer reference states (55% for ng = 3), and less the more reference
states are used (30% for ng = 24). The overall best results are obtained with ng = 8 for
MIST and ng = 9 for MIST,., and we use these settings for the remaining experiments.

Figure 4.5 shows the relative goal achievement time compared to MIST for the considered
algorithms for different expected end points of the second planning phase. If the planning
time is very short compared to the execution time (small values of E), stopping the execution
as soon as possible works well, but loses out compared to MIST if planning is non-trivial
(E > 0.2). As expected, finishing the execution becomes better with increasing expected
planning times, though MIST always performs better. The fixed latency configurations offer
some interpolation between the two extremes of stopping or finishing the execution. Given
the diversity of our benchmark set, a fixed latency can not accurately predict the planning

time, and these configurations are outperformed by MIST. The approximation baseline also

104
105 % —«— MIST
132 MIST,.
1.31
1.3
| | | | | |
0 5 10 15 20 25

FIGURE 4.4: GAT as geometric mean over all instances (Y-axis) for MIST
with different numbers of reference states (X-axis).

Chapter 4. Planning with Multiple Speculative Initial States 96

—— MIST
MISTrec
—— finish
— StOp
approx.
FL;
FL102
FL103
- FL104
- FL105
- FL106
- FL107
02 03 04 05 06 07 08 09 oracle

FIGURE 4.5: GAT as geometric mean over all instances relative to MIST
(Y-axis) for E =0.2,0.3,...,0.9 (X - axis).

Elevators Logistics Rovers
1.3 1.3 1.3
1.2 1.2
—— MIST
1.1 1.1 MISTrec
e e _ .
e e e R > A se--===zzzf |— finish
1 e 1 AR T e - StOp
approx.
| | | | | | | FL,01
0.2 0.3 04 05 06 07 08 09 02 03 04 05 06 07 08 09 02 0.3 04 05 06 0.7 08 0.9 FLo o
10°
Tidybot Transport Visitall FL103
13| 13| 13| =7 Flips
—== FLyps
-== FLygs
12| 12 . FLIO
- == 107
L - oracle
1.1k SIAT e 7 11
a2 |
- o

1—~— 1

| | | | | | |
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09

FIGURE 4.6: GAT relative to MIST (Y-axis) for E = 0.2,0.3,...,0.9 (X-
axis).

works well for short planning times, but tends to overestimate the duration of the re-planning
phase. On average, MIST reduces the goal achievement time by 8.6% compared to stopping
and re-planning immediately, by 6.8% compared to finishing the planned execution, and by
5.1% compared to approximating the re-planning time.

Figure 4.6 gives more insight into the individual domains. The observations from the
overall results hold across most domains, with minor exceptions. On VisitAll, the approximate
baseline comes very close to MIST on average, beating it for some values of E. This can
can be attributed to the offline planning time estimation being more accurate. While that also
helps MIST to select the correct reference state to expand towards more frequently (46% of
the time compared to 35% on other domains), MIST can still suffer from the added overhead.
In the Rovers domain, MIST and MIST,.. outperform all competitors for all values of E, and
may even beat the oracle (which can be inaccurate if the best deviation state is between two of
the considered time points). Both stop and approximate perform particularly poorly in that

domain, with up to 35% respectively 23% worse goal achievement time compared to MIST

Chapter 4. Planning with Multiple Speculative Initial States 97

when considering large expected planning times. Conversely, finish comes close to MIST,
which indicates that interrupting the execution while re-planning is particularly costly in that
domain.

MIST;e. and MIST exhibit similar performance. This suggests two conclusions. First, the
way we generate testing instances averages out the edge cases in which MIST,.. significantly
outperforms MIST (illustrated in Figure 4.1). Second, even though MIST,,; does not prune

reference nodes, it is able to effectively focus its search effort just as well as MIST.

4.6 Related Work

One example of the need for replanning in an industrial context is on-line goal arrival in
manufacturing. Ruml et al. [200] address printing systems, where additional pages to print
arrive asynchronously. They use a hand-tuned constant to represent the maximum planning
time and predict when the new plan can start; if this bound is exceeded, the planning process
is interrupted and re-tried later when the printing plant is assumed to be less busy and easier
to plan for. Similarly, but in the context of robot navigation, Likhachev et al. [149] use a
predefined constant to predict the time when a new plan will be found during an anytime
search, allowing them to select the state at which the new plan will take control from the
currently executing plan. Systems designed for spacecraft control commonly incorporate
replanning, often by fixing a latency within which the planner must react [97, 164], thereby
fixing the initial state for the revised plan. In our work, we aim for a more principled and
flexible approach that eschews hand-tuned constants.

In some situations, it can be assumed that replanning time will be negligible [132, 156,
155]. This again allows selection of the initial state in advance, in particular stopping the
execution as early as possible when a new plan can be assumed to be available. We consider
that approach as one of our baselines.

The setting in which replanning is driven by new goals appearing online has been called
continual online planning (COP) [28, 142, 43]. In that work, COP tasks are defined as Markov
Decision Processes where additional goals arrive stochastically at each time step and so world
states are extended with the current goal set. In the work presented in this chapter, we leave
aside any assumptions about goal arrival distributions and focus on the fundamental question
of how the plan search for the combination of an old goal and a new goal can be formulated in
the context of a currently executing plan.

In what is perhaps the closest work to ours, Cashmore et al. [49] consider replanning in the
context of plan execution. They use a feature of PDDL?2.2, called timed initial literals (TILs),
to represent non-interruptible commitments of the currently executing plan and an ad hoc
extension of the domain model, called a bail-out action generator, to provide alternatives for
interruptible actions. Their approach always discards the remainder of the original plan, thus
avoiding the need to choose an initial state but assuming that the system can safely idle if
necessary during replanning. Furthermore, their approach is inherently tied to PDDL planning,
focusing on the intricacies of interrupting individual actions, rather than a generic solution for

state-space search, as described in this chapter.

Chapter 4. Planning with Multiple Speculative Initial States 98

The concern of time passing during planning has been addressed by Cashmore et al. [50],
although without the complexity of a concurrently executing plan. Their main focus lies on
finding plans that respect external temporal constraints, such as a deadline for arriving at
a bus stop. An associated line of more theoretical work [208, 57] takes as its objective to
maximize plan feasibility, leaving aside the notion of overall goal achievement time that we
address here. There are also several time-aware heuristic search methods, such as Bugsy [44]
and Deadline-Aware Search [69]. However, these methods do not consider concurrent plan

execution and merely search from a given static initial state.

4.7 Conclusion

In Chapter 2, we encountered the problem of serving asynchronous task requests in a multi-
robot system. In the Ant 1ab implementation, we solved it by simply considering only idle
robots as candidates for executing new tasks. In this chapter, we examined how the active
robots (the ones already executing some previous plans) could be included in the planning
process. We did so in the general setting of domain-independent planning.

We proposed a technique called MIST, which addresses the problem of selecting an
initial state for planning in the context of an already-executing plan. MIST plans for multiple
potential initial states simultaneously. In the process of speculative planning, it reasons about
its own planning time and adjusts its actions accordingly. We investigated the performance
of MIST on modified planning benchmarks and found that MIST outperformed both the
approximate and the fixed latency baseline.

99

Chapter 5

Reinforcement Learning with
Non-Markovian Rewards

In this chapter, we will not consider specifications given explicitly as temporal logic formulas,
as we did in previous chapters. Instead, we consider specifications that are given implicitly,
as rewards which the agent receives during its exploration of the environment. We will still
keep our focus on the femporally extended tasks, the ones that impose strict temporal relations
between different actions of the agent.

The temporally extended tasks do not fit naturally to the model of reinforcement learning
(RL), which is typically used to learn from rewards. Indeed, the RL problem is modeled
so that the agent’s rewards disregard the history of the agent’s behavior, and they depend
only on the last state and action. Prior work assumed that the user explicitly provided the
temporal dependence and incorporated it into an RL algorithm. Our approach does not need
such an assumption: it uses automata learning to uncover the (temporally extended) reward.
We implement the approach in the algorithm called Joint Inference of Reward Machines and
Policy (JIRP).

In the second part of the chapter, we explore the middle ground between the two extremes:
knowing everything about the reward (as assumed by prior work) and knowing nothing about
the reward (and using automata learning to uncover it). The middle ground is allowing the
user to provide advice to the learning algorithm. The advice we expect to get from users
is in the form of describing the behaviors that seem promising (but without quantifying or

guaranteeing that an agent following the advice will indeed obtain any reward).

5.1 Introduction

Learning from rewards is typically done using the model of reinforcement learning (for a
broad overview, see the classical textbook by Sutton et al. [210]). Reinforcement learning
assumes the environment in which an intelligent agent operates to be modeled by a Markov
Decision Process (MDP): the states of the MDP capture the relevant information about the
environment, while state-action pairs are equipped with rewards that either reinforce desired
or penalize undesired behaviors. In many RL tasks, however, the agent receives its reward

sparsely for complex actions over a long period of time.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 100

| |
d
f (¢, —50)
€
C g (C, —50)
- | ,
a A b (b,0) (d,0) (¢, 100
| I
(§,—10) (g, —10) (g,—10)
(a) The office world (b) Reward machine

FIGURE 5.1: Running example

Learning an optimal policy in such settings can not be achieved using standard RL
algorithms: those settings do not map naturally to MDPs as the reward does not depend on
the immediate state of the environment and the chosen action but rather on the history of the
actions that the agent has performed—in other words, the reward function is non-Markovian.
A similar problem occurs under different guises: a non-Markovian dynamics of the MDP or
partial observability that creates an illusion of a non-Markovian environment. We focus on
the non-Markovian reward formulation of the problem and will later draw connections to the
related formulations.

Clearly, a reward function is Markovian or non-Markovian only with respect to the
underlying MDP, and one can augment the states of any MDP with (relevant parts of) the
history to obtain an equivalent problem with a Markovian reward function. However, the
exact augmentation is crucial: if done naively, the augmented state space becomes too large to
be computationally tractable. To overcome this problem, finite-state machines or temporal
logic formulas have been proposed to concisely capture the temporal nature of non-Markovian
reward functions and make the RL task feasible [19, 127, 122, 40, 46]. We focus on a specific
type of finite-state machines, called reward machines, which have, since proposed by Icarte

et al. [122], been adopted as a general way to capture non-Markovian reward functions.

5.2 Preliminaries

In this section, we introduce the necessary notation and background on reinforcement learning
and reward machines. All the notions will be illustrated using the running example of the
office world shown in Figure 5.1a. The agent (its position denoted by a triangle symbol) has
to first go to location b, then d, and finally to ¢, and receives a reward of 100 upon doing so. If
it gets to ¢ without respecting the order of going to b and d first, the agent receives a reward of
-50. Finally, each time the agent visits g, it gets a reward of -10.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 101

Decision Processes

We begin by defining Markov Decision Processes (MDPs), which model RL problems by
incorporating sequential decision making with effects on received rewards and subsequent

environment states.

Definition 5.1. A labeled Markov decision process with non-Markovian rewards (MDP) is a
tuple M = (S,s1, A, p, R, 7, P, L) consisting of a finite state space S, an agent’s initial state
s € S, a finite set of actions A, and a probabilistic transition function p: S x A x S — [0, 1].
A reward function R : (S X A)™ x S — R and a discount factor y € [0,1) together specify
the overall payoff to the agent. Finally, a finite set P of propositional variables, and a labeling
function L : S x A x S — 2P determine the set of relevant high-level events that the agent
senses in the environment. We define the size of M, denoted as | M|, to be |S| (i.e., the

cardinality of the set S).

Our definition differs from the “usual” modeling used in reinforcement learning (e.g.,
[210]) in two ways. First, the reward function is defined over the whole history, and such
functions are called non-Markovian'. (A Markovian reward function R’ : S x A x S =+ R
is commonly used in modeling RL problems and is assumed by RL algorithms.) Second,
we include a set of propositions: they come from expert knowledge of what is relevant for
successfully executing a task and are assumed to be available to the agent.

In our example from Figure 5.1, the state is the agent’s position in the grid and the actions
available to the agent are movements in the four cardinal directions. The transition function
captures the small probability of slipping. The propositions are P = {a,b,c,d,e, f, g}, and
the labeling function L applied to the triple (s, 4, s’) returns a set of propositions that are true
in the state s’ (e.g., for the agent that successfully moved from initial position to the left, the
labeling function would return {a}). Note, however, that only labels are not enough: the full
state space is still necessary in order to capture the model’s dynamics.

A policy is a function mapping states in S to a probability distribution over actions in A.
At state s € S, an agent using policy 77 picks an action a with probability 7t(s, a), and the
new state s’ is chosen with probability p(s,a,s’). A policy 7t and the initial state s; together
determine a stochastic process. A trajectory is a realization of this stochastic process: a
sequence of states and actions Spa1S7 . . . dxS, With sg = sj. Its corresponding label sequence
is 0105 ...l where L(s;,a;41,Si+1) = {i+1 for each 0 < i < k. Similarly, the corresponding
reward sequence is 111y .. .1, where r; = R(Spa157 ...4a;s;), for each i < k. The overall
payoff of the agent is }_; 'r;. We call the pair (A, p) := (£14a ... by, 1172 ... 7%) a trace.

It is worth noting that not every sequence of labels is a label sequence. Some sequences
simply can not be attained by the underlying MDP. We formalize this notion of attainable

label sequences in the following definition.

Definition 5.2. Let M = (S,s;, A, p,R,, P, L) be alabeled MDP and m € IN a natural
number. A trajectory { = Soa151 - .. 4k € (S X A)* x S is said to be m-attainable if k < m
and p(sj_1,a;,s;) > 0foreachi € {1,...,k}. Moreover, a trajectory { is called attainable

I'The process dynamics remain Markovian. Thus, we keep the name of Markov decision processes

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 102

if there exists an m € IN such that { is m-attainable. Analogously, we call a label sequence
A = lj...l; (m-)attainable if there exists an (m-)attainable trajectory sga1sy . . . Sx_14xSk
such that I; = L(s;_1,4a;,s;) foreachi € {1,...,k}

Reward machines

Reward machines [122] are a way to represent a non-Markovian reward function. A reward
machine reads a label, responds with a reward, and moves to its next state. Technically,
a reward machine is an instance of a Mealy machine [207], with a set of real numbers as
its output alphabet and subsets of propositional variables (from the set P defined by the
underlying MDP) as its input alphabet.

Definition 5.3. A reward machine A = (V, vy, 2P 0,6,) is defined by a finite, nonempty
set V of states, an initial state v; € V, an input alphabet 27, an output alphabet O C R, a
(deterministic) transition function : V x 2P — V, and an output function o: V' X 2P 5 0.
We define the size of A, denoted as |Al, to be | V| (i.e., the cardinality of the set V).

A run of a reward machine A on a sequence of labels £14; ... ¢, € (2F)* is a sequence
vo(41,71)v1(€2,72) - .. vg_1(Lk, x)vi of states and label-reward pairs such that vop = v;
and for all i € {0,...,k — 1}, we have §(v;, {;11) = vji1 and 0(v;, biy1) = rip1. We
write A(l105...4;) = riry... 7, to connect the input label sequence to the sequence of
rewards produced by the machine A and say that the machine A is consistent with the trace
(b10y .. Ly, 1110 .. k)

We say that a reward machine A captures the reward function R of an MDP if for
every trajectory spa151 . . . xSy and the corresponding label sequence ¢1 /45 . .. £, the reward
sequence that the agent receives equals A(¢1/; . ..).

A reward machine that captures the reward function of the motivating example is shown
in Figure 5.1b. We note here that there can be multiple reward machines that capture the
reward function of an MDP—reward machines may differ on a label sequence that does not
correspond to any trajectory of an underlying MDP.

Reinforcement Learning With Reward Machines

In reinforcement learning, an agent explores the environment modeled by an MDP, receiving
occasional rewards according to the underlying reward function [210]. One way to learn an
optimal policy in environments such as our motivating example from Figure 5.1a is tabular
Q-learning [226]. There, the value of the function q(s, a), which represents the expected
future reward for the agent taking action 4 in state s, is iteratively updated. For MDPs with a
Markovian reward function, g-learning converges to an optimal policy in the limit, provided
that all state-action pairs are seen infinitely often [226].

The QRM algorithm [122] modifies g-learning to learn an optimal policy when the
reward function is encoded by a reward machine. Algorithm 6 shows one episode of the
QRM algorithm (with episode length eplength, learning rate «, and discount factor 7y as its

hyperparameters and a reward machine as its input). It maintains a set Q of g-functions,

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 103

Algorithm 6 QRM_episode
Input: areward machine (V,v,2F,0,8,0), a set of g-functions Q = {q"|v € V}
1: hyperparameters: episode length eplength, learning rate «, discount factor y
2. s < InitialState();v <— vi; A < [];p < |]
3: for 0 < t < eplength do
: a < GetEpsilonGreedyAction(q", s)

4
5: s’ + ExecuteAction(s,)
6: Vv < 5(v,L(s,a,5))
7
8
9

r < o(v,L(s,a,s')) | or observe reward in JIRP |
q'(s,a) « (1—a)-q'(s,a) +a-(r+- maxq” (s',a))
for0 € V\{v} do

10: ¥« 6(9,L(s,a,5"))
11: P« oV, L(s,a,5s"))
12: q’(s,a) « (1—a)-q°(s,a) +a- (7 +v -maxq” (s',a))

13: append L(s,a,s") to A; append r to p
14 s sve v
15: return (A, p, Q)

denoted as g for each state v of the reward machine (their initial values can be specified as an
input to the algorithm).

The current state v of the reward machine guides the exploration by determining which
g-function is used to choose the next action (Line 4). However, in each single exploration step,
the g-functions corresponding to all reward machine states are updated (Lines 8 and 12).

The fundamental hypothesis of QRM is that the rewards are known, but the transition
probabilities are unknown. When using QRM without rewards explicitly provided (in particu-
lar, as a part of JIRP), the rewards must be observed (see Line 7). During the execution of
the episode, traces (A, p) of the reward machine are collected (Line 13) and returned in the
end. While not necessary for g-learning, the traces will be useful in our algorithm to check the

consistency of an inferred reward machine with rewards received from the environment.

5.3 Joint Inference of Reward Machines and Policies (JIRP)

Given a reward machine, the QRM algorithm learns an optimal policy. In many situations,
however, assuming the knowledge of the reward function (and thus the reward machine) is
unrealistic. Even if the reward function is known, it can be challenging for users to formalize
it in terms of a reward machine. In this section, we describe an RL algorithm that iteratively
infers (i.e., learns) a correct reward machine together with the optimal policy for a given RL
problem and a labeling function, which provides high-level knowledge about relevant events.

Our algorithm combines an automaton learning algorithm to infer hypothesis reward
machines and the QRM algorithm for RL on the current candidate. Inconsistencies between
the hypothesis machine and the observed traces are used to trigger re-learning of the reward
machine. We show that the resulting iterative algorithm converges in the limit almost surely to

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 104

Algorithm 7 JIRP
1: Initialize the hypothesis reward machine H with a set of states V
2: Initialize a set of q-functions Q = {qY|v € V'}
3: Initialize X = @
4: forepisoden =1,2,...do
(A, p,Q) = QRM _episode(H, Q)
if H(A) # p then
add (A, p) to X
infer a new, minimal hypothesis reward machine H based on the traces in X
re-initialize Q

Y X R

the reward machine capturing the reward function and to an optimal policy for this reward

machine.

JIRP Algorithm

Algorithm 7 describes our JIRP algorithm. It maintains a hypothesis reward machine A and
runs the QRM algorithm to learn an optimal policy (given). The episodes of QRM are used
to collect traces and update g-functions. As long as the traces are consistent with the current
hypothesis reward machine H, QRM interacts with the environment using H to guide the
learning process. However, if a trace (A, p) is detected that is inconsistent with the hypothesis
reward machine (i.e., H(A) # p, Line 6), our algorithm records it in a set X (Line 7)—we
call the trace (A, p) a counterexample and the set X a sample. Every time the sample is
updated, JIRP infers a minimal reward machine (Line 8) that is consistent with the sample
(we formalize this shortly).

Note that JIRP infers not an arbitrary consistent reward machine but a minimal one (i.e., a
consistent reward machine with the smallest number of states among all consistent reward
machines). This additional requirement can be seen as Occam’s razor strategy [153] and is
crucial in that it enables JIRP to converge to an optimal policy in the limit.

Inference of Minimal Reward Machines

Intuitively, a sample X C (2°)t X O contains a finite number of counterexamples, and we

would like to construct a (new) reward machine that is both minimal and consistent with X.

Task 5.1. Given a finite set X C (2F)* x O, construct a minimal reward machine 7 that is
consistent with X in that % (A) = p for each (A,p) € X.

To learn minimal consistent reward machines, we adopt a popular approach from classical
automata learning [110, 179, 175]. Furthermore, the approach is similar to our technique for
learning LTL formula from Chapter 3. The idea is to generate a sequence of propositional

logic formulas ®X for increasing values of n € IN \ {0} that satisfy two properties:

+ ®X is satisfiable if and only if there exists a reward machine with 7 states that is

consistent with X; and

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 105

* asatisfying assignment of the variables in ® contains sufficient information to derive

such a reward machine.

By starting with 7 = 1 and increasing 7 by one until ®X becomes satisfiable, which we check
using a SAT solver, we obtain an effective algorithm that learns a minimal reward machine
that is consistent with the given sample.

Before we show how to construct the formula ®X in the remainder, let us briefly introduce
the necessary notation. First, we observe that Ox C IR, the set of rewards that appear in
the sample X, is finite. Additionally, for a trace T = ({103 ... 0, r1r2... 1) € (20)* x O%,
we define the set of prefixes of T by Pref(t) = {(I;...Li,r1...1;) € (2P)* x O% | 0 <
i < k}. Here, we note that (¢,€) € Pref(7) always holds. We lift this notion to samples
X C (2P)* x O% by Pref(X) = Uex Pref (7). Finally, we will denote the label sequence
obtained by appending to the sequence A a label [by Al. Similarly, the concatenation of the
reward sequence p and a reward r will be pr.

Encoding Reward Machines in Propositional Logic

The encoding of reward machines in propositional logic exploits the observation that once a set
V of states and an initial state v; € V is fixed, every reward machine A = (V,vy,2%,Ox, 6, 0)
is uniquely determined by its transition function ¢ and its output function ¢. Hence, let us fix
a set V of states with |V| = n and an initial state v € V.

To encode the transition function and the output function, we introduce two propositional
variables: d, ;,, forv,w € Vand! € 2P: and oy rforve V.l e 2P and r € Ox. Intuitively,
the variable d, ; ,, is set to true if and only if the transition d(v, /) = w exists in the prospective
reward machine, while o, ; , is set to true if and only if o'(v,1) = r.

To ensure that the variables d, ; ,, and o, ; , indeed encode deterministic functions, we add

the following constraints:

AWA [[Vodu] A /\ﬂ(dv,z,WAdv,z,w/)]} 5.1)

veV [e2P b weV w#£w eV
/\ /\ |:[\/ OV,IJ’} A [/\ _‘(Ov,l,r A Ov,l,r’)]:| (5.2)
veVi]eP bt reO r#r'eO

Note that Formula (5.1) ensures that for every state v € V and symbol | € 2P the variable
d, 1w is set to true for exactly one w € V, whereas Formula (5.2) ensures that for every state

v € V and symbol | € 2" the variable 0y, s is set to true for exactly one r € O.

Remark 5.1. Given a satisfying assignment Z |= (5.1) A (5.2), we can derive a reward
machine Az = (V,v1,27,0x,6,0) by é(v,1) = wifand only Z(d,;,,) = 1,and o' (v,) = r
if and only if Z (o0, ,) = 1.

So far, we have captured the basic structure of a reward machine in our encoding. However,

A7 is not (yet) related to the sample X. We connect it to the sample in the following section.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 106

10 10 i 10 10
I
0.8 —— JRP 0.8 — QAs 08 — HRL 0.8 — DDON
To6 To6 Tos| To6
o4 o4 Foal Foa
02 0.2 02 02
0.0 0.0 0. o
500000 1000000 1500000 2000000 500000 1000000 1500000 2000000 0 500000 1000000 1500000 2000000 500000 1000000 1500000 2000000
number of training steps number of training steps number of training steps number of training steps
10 10 10 10
0.8 0.8 08 0.8
To6 206 To6 To06
o4 goa o4 o4
W A
0.2 — JIRP. 0.2 —— QAS 0.2 — HRL 0.2 — DDON
0.0 0.0 0.0 o
100000 200000 300000 400000 100000 200000 300000 400000 0 100000 200000 300000 400000 100000 200000 300000 400000
number of training steps number of training steps number of training steps number of training steps
10 ceee 10 10 1.0
JIRP — HRL DDON
08 ! 08 08 08
206 206 206 206
o4 o4 o4 o4
aAs
02 0.2 02 02
0.0 0.0 0.0 0.0 | WHFES N
200000 400000 600000 200000 400000 600000 0 200000 400000 600000 200000 400000 600000
number of training steps number of training steps number of training steps number of training steps

FIGURE 5.2: Attained rewards of 10 independent simulation runs averaged
for every 10 training steps for autonomous vehicle scenario (first row), office
world scenario (second row), and Minecraft world scenario (third row).

Consistency with the Sample

To encode consistency with a sample in propositional logic, we introduce new auxiliary
variables x, , for (A, p) € Pref(X) and v € V. Intuitively, these variables capture the run of
the prospective reward machine on (prefixes of) label sequences in X in the sense that x, ,, is
set to true if and only if the prospective reward machine reaches states w after reading A. To

obtain the desired meaning, we add the following constraints:

Xy A\ "Xy (5.3)
veV\{vr}
A Ay Adyiw) = Xaw (5.4)
(ALpr)ePref(X) vweV
A A xw o (5.5)
(ALpr)ePref(X) veV

Intuitively, Formula (5.3) ensures that the reward machine starts in the initial state q;, while
Formula (5.4) ensures that the variables x, ,, encode valid runs of the prospective reward
machine on prefixes of label sequences in X. Formula (5.5) enforces that the prospective
reward machine outputs the correct rewards.

The conjunction of Formulas (5.1), (5.2) (ensuring that the reward machine is well defined),
(5.3), (5.4), and (5.5) (ensuring that the reward machine is consistent with the sample X) is
the desired propositional formula ®X. The satisfying assignment for this formula yields a

minimal reward machine consistent with the sample.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 107

5.4 JIRP Case Studies

In this section, we compare JIRP to other algorithms that might be brought to bear in a
non-Markovian environment, for three different scenarios:

(1) an autonomous vehicle scenario, (2) an office world scenario as in the running example,
adapted from [122], and (3) a Minecraft world scenario adapted from [9].

We compare the following four different methods:

1) JIRP: We have implemented a prototype of JIRP, which uses the tabular g-learning
method [226] and the libalf library [38] to infer minimal reward machines.

2) QAS (g-learning in augmented state space): to incorporate the extra information of
the labels (i.e., high-level events in the environment), we perform tabular g-learning
[226] in an augmented state space with an extra binary vector representing whether
each label has been encountered or not. We choose the learning rate to be « = 0.8 and
the discount factor to be y = 0.9.

3) HRL (hierarchical reinforcement learning): following [139], we define one option for

each propositional variable p € P, and the option terminates whenever p becomes true.

4) DDQN (deep reinforcement learning with double g-learning) [106]: the neural network
used has 6 fully-connected layers and 64 neurons per layer. The feature inputs of the

neural network are the past 200 labels along the trajectory and the current MDP state.

Before reporting on the results of the comparison, we give a short summary of algorithmic

optimizations implemented in JIRP.

Optimizations

When implementing JIRP, we introduced two algorithmic optimizations: (1) batching of
counterexamples and (2) transfer of g-functions.

Algorithm 7 infers a new hypothesis reward machine whenever a counterexample is
encountered. This could potentially incur a high computational cost in frequently inferring
the hypothesis reward machines. In order to adjust the frequency of inferring new reward
machines, we batch encountered counterexamples. After each period of N episodes (where
N € Z is a user-defined hyperparameter), we infer a new hypothesis reward machine (if
there are some counterexamples encountered).

Optimization (2) addresses the fact that in Algorithm 7, after a new hypothesis reward
machine is inferred, the g-functions are re-initialized and the experiences from the previous
iteration of RL are not utilized. We try to preserve the information from past hypothesis
reward machines. Criterion for preserving is based on a notion of equivalent states, as defined

below.

Definition 5.4. Given a reward machine A and a state v € V, let A[v] be the machine with
v as the initial state. For two reward machines A and A over the sets V and V of states,
respectively, two states v € V and ¢ € V are equivalent, denoted by v ~ ¢, if and only if
Alv](A) = A[0](A) for all label sequences A.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 108

To determine pairwise equivalent states, one can use a simple modification of Hopcroft’s
partition refinement algorithm [116]. More precisely, if A has m states and A has # states, one

can decide the equivalence of every pair of states in time O (27 - (m + n)?).

Autonomous Vehicle Scenario

We consider the following autonomous vehicle scenario, sketched in Figure 5.3a. As is
common in many countries, some of the roads are priority roads. While traveling on a priority
road, a car has the right-of-way and does not need to stop at intersections. In the example of
Figure 5.3a, all the horizontal roads are priority roads (indicated by gray shading), whereas
the vertical roads are ordinary roads.

S ettt s ket A
1 1
))
B I
1 1
“““ e
1 1
|1 |1
(pr A —sp,0)
(a) Map of a residential area. (b) Reward machine for the autonomous vehicle.

FIGURE 5.3: Autonomous vehicle scenario and a reward machine capturing
the reward function

Let us assume that the task of the autonomous vehicle is to drive from position “A” on
the map to position “B” while obeying the traffic rules. To simplify matters, we are here
only interested in the traffic rules concerning the right-of-way and how the vehicle acts at
intersections with respect to the traffic from the intersecting roads. Moreover, we make the
following two further simplifications: (1) the vehicle correctly senses whether it is on a priority
road and (2) the vehicle always stays in the road and goes straight forward while not at the
intersections.

The vehicle is obeying the traffic rules if and only if
* itis traveling on an ordinary road and stops for exactly one time unit at the intersections;
* it is traveling on a priority road and does not stop at the intersections.

We intend to achieve the above task in the setting of episodic RL. Specifically, after each
episode of 100 time units, the vehicle receives a reward of 1 if it reached B while obeying
the traffic rules; otherwise it receives a reward of 0. It can be seen that the (implicit) reward
function is non-Markovian (the reward depends not only on the current state, but also on the
history of states from which one can decide if the traffic rules were obeyed). The set of actions
is A = {straight, left, right, stay }, corresponding to going straight, turning left, turning right
and staying in place. For simplicity, we assume that the labeled MDP is deterministic (i.e, the

slip rate is zero for each action).

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 109

The set of propositional variables is {sp, pr, B, x} and the labeling function L is defined
by

/

sp € L(s,a,s") & a = stay,

/

x € L(s,a,s)sse X,

/

(s,a,5")

pr € L(s,a,s') < s'.priority = true,
(s,a,5")
(s,4,57)

B € L(s,a,s)esx=xpgANsy=uys,

where s’ priority is a Boolean variable that is true if and only if s’ is on a priority road, X
represents the set of locations where the vehicle is entering an intersection, s’.x and s’.y are
the x and y coordinate values at state s, and xg and yp are x and y coordinate values at B (see
Figure 5.3a).

The reward machine in Figure 5.3b captures the reward function for traffic rules. The state
vg denotes that the vehicle is on a priority road. In this state, the vehicle ends up in the sink
state (v3) if it stops. While on a priority road, the vehicle does not have to pay attention to
intersections.

However, if the vehicle transitions to the state vq (that is, if it enters a non-priority road),
it has to stop for exactly one time unit at the intersection (state vp). At all the transitions
mentioned thus far, the vehicle only gets a reward of 0. Only upon transitioning from v to vy
does it get a reward 1.

Note that this is not a unique reward machine capturing our reward function. For instance,
there could be other reward machines that would describe what happens upon reading B in the
state vi. (However, this will never occur in the given scenario.)

We set eplength = 100, N = 100 (we discuss the choice of N in the following subsec-
tion), and used the transfer of g-functions for the JIRP method. The first row of Figure 5.2
shows the attained rewards with the four different methods in the autonomous vehicle scenario.
The y-axis shows the reward obtained after after the number of training steps shown on the
x-axis. JIRP converges to optimal policies within 100,000 training steps, while QAS does not
converge to optimal policies, HRL and DDQN are stuck with near-zero cumulative reward for

up to two million training steps.

Batch Sizes

To test the influence of different batch sizes of counter-examples, we perform JIRP with four
different batch sizes of counter-examples: N = 1, N = 10, N = 100 and N = 1000. Table
5.1 shows the average computation time for 10 independent runs with the four different batch
sizes in autonomous vehicle scenario. Figure 5.4a shows the attained median rewards of 10
independent simulation runs with the four different batch sizes in the autonomous vehicle
scenario. We observe that with increased batch size, the computation time decreases as the
frequency of inferring new hypothesis reward machines decreases (as shown in Table 5.1).

On the other hand, the number of training steps necessary for convergence increases when N

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 110

TABLE 5.1: Average computation time (in seconds) for JIRP and four differ-
ent batch sizes in autonomous vehicle scenario.

N=1 N=10 N=100 N = 1000
time (s) 3995.99 3193.280 2110.23 1311.79

1.0 —I 1.0 I |
0.8 0.8
Bo.6 Bo0.6
o Y iy
; 0.4 —— batch s?ze: 1 E 0.4 +— w?th transfer
—— batch size: 10 —— without transfer
—— batch size: 100
0.2 N | || I —— batch size: 1000 0.2 h
0.0 ”—l 0.0
0 100000 200000 300000 400000 500000 0 50000 100000 150000 200000
number of training steps number of training steps
(a) Four different batch sizes. (b) With and without the transfer of g-functions.

FIGURE 5.4: The effects of algorithmic optimizations: attained median re-
wards of 10 independent simulation runs in the autonomous vehicle scenario.

becomes larger than 100 (as shown in Figure 5.4a), as slow updating of hypothesis reward

machines can cause delay for the optimal convergence.

Transfer of Q-functions

To test the influence of the transfer of q-functions, we perform JIRP in the autonomous vehicle
scenario with and without the transfer of g-functions. As can be seen in Figure 5.4b, JIRP
with the transfer of g-functions converges to an optimal policy at about 110,000 training steps,
while JIRP without the transfer of g-functions converges to an optimal policy at about 140,000

training steps. Therefore, the transfer of gq-functions improves sampling efficiency of JIRP.

Office World Scenario

We consider the office world scenario in the 9x 12 grid-world [122]. The agent has four
possible actions at each time step: move north, move south, move east and move west. After
each action, the robot may slip to each of the two adjacent cells with the probability of 0.05,
respectively. We use three tasks with different high-level structural relationships among
subtasks such as getting coffee, getting mails and going to the office.

We use the same hyperparameters as those in the autonomous vehicle scenario. The second
row of Figure 5.2 shows the cumulative rewards with the four different methods in the office
world scenario. JIRP converges to an optimal policy within 150,000 training steps, while QAS
and HRL reach only 40% and 80% (respectively) of the optimal median cumulative reward
within 400,000 training steps, and DDQN is stuck with near-zero attained reward for up to
400,000 training steps.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 111

Minecraft World Scenario

We consider the Minecraft example in a 21 x21 gridworld [9]. The four actions and the slip
rates are the same as in the office world scenario. We use four tasks including making a plank,
making a stick, making a bow and making a bridge.

We use the same hyperparameters as those in the autonomous vehicle scenario. The
third row of Figure 5.2 shows the cumulative rewards with the four different methods in the
Minecraft world scenario. JIRP converges to an optimal policy within 600,000 training steps,
while QAS, HRL and DDQN reach only 50%, 40% and 20% (respectively) of the optimal

median cumulative reward within 600,000 training steps.

5.5 RL in non-Markovian Environments with Advice (J IRPAd”)

In previous sections, we argued how unrealistic it is to assume that a user can provide a
reward machine capturing the non-Markovian reward function. However, it is reasonable to
assume that there will be users who can provide some intuition about the reward function. The
JIRP method does not support that—it will blindly explore and update the hypothesis reward
machine based on the encountered examples.

In this section, we want to use the intuition that users have and let our algorithm accept
advice from them. We think of advice as indicating which of the label sequences observed
by the agent are promising (i.e., for which sequences the agent could get a reward, without
determining the numerical value of the reward), and which are not. A label sequence is a
word of finite length, and we represent advice as a set of deterministic finite automata (DFAs)
that accept promising label sequences. The key argument in favor of choosing DFAs as a
formalism for advice is that they are widely known among engineers. Furthermore, many
declarative specification languages (such as regular expressions or linear temporal logic) can
be translated into DFAs.

Our algorithm is an extension of JIRP, presented in previous sections. Thus, we name
itJ IRPAdU, to indicate that it takes advice from the user about the reward machine and uses
it to learn more efficiently. Advice can express the full information about when the reward
machine will give a reward, as well as no information at all. Importantly, the advice is not
assumed to be perfect: the algorithm can handle wrong advice.

JIRPA9? takes a set of advice DFAs as its input. Interacting with the environment, the
agent iteratively learns a reward machine as described in previous sections. We extend the
SAT-based encoding from Section 5.3 to learn a reward machine that is not only consistent
with the observed rewards, but also compatible with the advice. The advice reduces the
space of all possible reward machines consistent with the observations, thus speeding-up the

PAdv

convergence. If an an incompatible advice is given by the user, JIR eventually discards

that advice and recovers the learning process.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 112

L

FIGURE 5.5: An advice compatible with the reward machine from Fig-
ure 5.1b. The advice says that the label b must be a part of the sequence that
gets a reward.

Advice

We use a set of deterministic finite automata (DFAs) to model advice from the user. Formally,
an advice DFA D is given by D = (Q,q;, %, 5, F). It consists of a nonempty, finite set Q
of states, an initial state g; € Q, an input alphabet X (here: ¥ = 2P), a transition function
0: QXX — Q,andset F C Q of final states.

The core idea of an advice DFA is to guide the inference of reward machines by providing
information about which label sequences might result in a reward and which cannot result
in a reward. More precisely, the meaning of an advice DFA D is that all label sequences
A € L(D) can (but do not need to) obtain a positive reward, whereas all label sequences
A ¢ L(D) must not receive a positive reward. Hence, an advice DFA acts as a binary classifier
indicating which explorations are promising and which are not.

In our algorithm, advice DFAs are used to restrict the space in which to search for the true
reward machine (i.e., the one capturing the reward function R of the MDP). We do so by only
constructing candidate reward machines that are compatible with the advice DFAs given by
the user, as defined below. This makes it possible to learn the correct machine with fewer

examples and speeds up the overall convergence of our RL algorithm.

Definition 5.5. We say that an advice DFA D and a reward machine A are compatible
if for all nonempty attainable label sequences ¢145 ... ¢ € (2F)T of the MDP M with
A(l1ly ... Lg) =11y .. .1 itholds that 7, > O implies {105 ... ¢ € L(D).

We have chosen DFAs as the means of providing advice for two reasons. First, DFAs
are a simple formalism, familiar to many engineers and data scientists, that admit effective
translations from other common formalisms, such as regular expressions or Linear Temporal
Logic. Second, DFAs have a simple, binary semantics, which does not permit to express
different reward values for different behaviors. This reflects the observation that it is less
demanding for humans to give advice suggesting “what must not be done” than providing the
exact, quantitative value.

Figure 5.5 shows an example of an advice DFA compatible with the reward machine
from Figure 5.1b. Finally, note that our definitions so far only permit advice for positive
rewards. This is not a restriction since we can simply introduce a second “type” of advice
DFA for negative rewards. For the sake of a simpler presentation, however, the remainder of
this chapter focuses on advice DFAs for positive rewards only.

Similar to the notion of compatibility of an advice and a reward machine, we say that a

trace (103 ... Lk, 112 ... k) is included in advice D if ri > 0 implies {145 ... ¢ € L(D).

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 113

Algorithm 8 The JIRPA%? algorithm
Input: Aset D = {Ds,...,D,} of advice DFAs
1: Initialize an empty sample X <— @
2: Initialize a reward machine A with state set V that is compatible with D
3: Initialize a set of g-functions Q = {g¥ | v € V'}
4: for episodesi =1,2,...do
50 (Ap,Q) « QRM(A Q)
6. if A(A) # p then
7: Add (A, p) to X
8
9

if (A, p) is not included a DFA in D € D then
: Remove D from D
10 if X or D have changed then
11: Infer a new minimal reward machine A, consistent with X and compatible with D
12: Re-initialize Q (or transfer g-functions)

Reinforcement Learning with Advice

Our advice-guided RL algorithm, JIRPA%?, is shown as Algorithm 8. It is a simple extension
of JIRP that takes into account the user’s advice. It maintains a hypothesis reward machine A
and runs the QRM algorithm to learn an optimal policy (wrt. A). The episodes of QRM are
used to collect traces and update g-functions. As long as the traces are consistent with the
current hypothesis reward machine A and included each advice DFAs in D, QRM interacts
with the environment using A to guide the learning process.

If a trace (A, p) is encountered that is inconsistent with the hypothesis reward machine
(i.e., A(A) # p), our algorithm records it in a sample set X (Lines 6 and 7). Similarly, if there
exists an advice DFA D € D that does not include (A, p), we remove D from D (Lines 8 and
9). This is necessary because the (A, p) is an actual trace experienced by the agent, showing
that the advice was incorrect.

Every time the sample is updated or an advice is removed, JIRPA4? infers a new minimal

reward machine A’ (Line 11) that is
(a) consistent with the sample in the sense that A’(A) = p holds for all (A,p) € X and
(b) compatible with each advice DFA in D.

Note that JIRPA% infers a minimal consistent and compatible reward machine (i.e., one with
the fewest number of states among all consistent and compatible reward machines). Also note
that we re-use all of JIRP’s algorithmic optimizations, such as transfer of g-functions from one
reward machine to the next and batching of counterexamples, but we omit their descriptions

in the pseudocode.

Adding Compatibility with Advice to the Propositional Encoding

The key part of the Algorithm 8 is Line 11, where a new reward machine is inferred. This
inference makes sure that the inferred reward machine is consistent with the advice. To achieve

that, we extend the encoding into propositional logic presented in Section 5.3.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 114

Let us fix an advice DFA D € D, say D = (Qp, q1p,2%,6p, Fp). We now show how to
constrain the variables d,,; ,, and 0,y ; , so that the prospective reward machine is compatible
with D. We can then successively add similar constraints until the prospective reward machine
is compatible with all advice DFAs from D.

The key idea of our encoding is to track the synchronized runs of the prospective reward
machine A7 and the advice DFA D.

Furthermore, since our definition of compatibility refers to attainable sequences of the
underlying MDP, we want to track the run of an automaton which captures possible transitions
of the MDP. Formally, an NFA is a tuple N' = (Q, qr, 2, A F) where Q, q1, X, F are as in
DFAs and A C Q x £ x Q is the transition relation. Similar to DFAs, a run of an NFA 2(on
aword u = ay ...ay is a sequence qo, . . . g such that go = gy and (g;_1,a;,9;) € A for each
i€ {1,...,k}. In contrast to DFAs, however, NFAs permit multiple runs on the same input.
An NFA accepts a word u if there is a single run on that word that ends in an accepting state.

We now observe that every MDP M can be “translated” into an NFA A/ that is “equiv-
alent” to the reward machine in a sense that it accepts only the label sequences that are
attainable in M.

Lemma 5.1. Given a labeled MDP M, one can construct an NFA Ny with 2| M| states that
accepts exactly the attainable label sequences of M.

Proof. Given a labeled MDP M = (S,s;, A, p,R, 7, P, L), we construct an NFA Ny =
(Qm, q1,m, 28, Apt, Faq) by

* qiLM = SI;

e (s,4,8") € Ay if and only if there exists an action a € A with L(s,a,s’) = £ and
p(s,a,s) > 0; and

‘FM:S.

A straightforward induction shows that A € £(AN) holds if and only if A is an attainable
label of M. O

Now we come back to adding constraints which will ensure the compatibility with the
advice DFA D. The final goal is to derive a machine A7 from the model Z of the propositional
encoding. We introduce the following new auxiliary variables to the encoding: zy 4, 4,, for
veV,qgp € Qp,and gp € Quq. Intuitively, zy g4, 18 set to true if there exists a label
sequence A such that Az: vy Ay (upon reading A, the machine Az will end up in state
v), D:qip i> gp (upon reading A, the advice automaton D will end up in state gp), and
N gim N gm (upon reading A, the NFA tracking attainability of a sequence in the MDP
M will end up in state gq). °

. . R A . .
2To ease the notation, we have used an intuitive symbol A: v =5 w to abbreviate a run of the reward machine A

on the input-sequence A that starts in v and leads to w. By definition, we have A: v 5 v for the empty sequence €
and every state v. We did similarly for runs of a DFA and an NFA.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 115

We now add the following constraints:

ZVI/QI,DA]I,M (5'6)

/\ /\ /\ /\ (ZVW/DrQM A dv,l,v’) — Zv’,q;),q;\/1 (5.7)

vV EV 2P 8p(qp,0)=qy (L4) EDM

/\ /\ /\ Zvapqm 7 \/ Oy,1r (5.8)

VeV dp(qp)=4p (Al) DM reRx
qp¢Fp TEF r=>0
Note that Formula (5.6) ensures that the synchronized runs of the prospective reward
machine Az, the NFA N4, and the advice DFA D start in their initial states. Formula (5.7) en-
forces that the variables zy 4, 4,, correctly track the synchronized runs. Finally, Formula (5.8)
ensures that Az is compatible with D by contraposition: if A7 has moved to state v after
reading a label sequence A and is now processing a new label [but Al ¢ L(D) (indicated
by D reaching a non-final state q’ ¢ Fp), then the output must not be positive. We denote
the conjunction of Formulas (5.6), (5.7), and (5.8) by CDnD. For a set D of advice DFAs, we
denote the conjunction of corresponding formulas by ®2, that is L := Ap.p OF.
The final encoding ®\'" is given by ®XP := DX N\ DD,

5.6 Optimal Convergence

In this section we prove that our encoding has desirable properties, culminating with the
proof that the final RL algorithm (JIRP, as well as its generalization JIRPA9?) converges to an
optimal policy. We begin by showing the properties of the encoding.

Theorem 5.1. Let X C (27)* x R be a sample and D a finite set of advice DFAs that
are compatible with X. Moreover, let OXP = ®X A ®D be the propositional encoding as
defined above. Then, the following holds:

1. IfZ = CID%(’D , then the reward machine A7 is consistent with X and compatible with
each D € D.

2. If there exists a reward machine with 7 states that is consistent with X and compatible
with each D € D, then <I>§’D is satisfiable.

We will first show two lemmas: the first one claiming that the formula d)ff’D captures the
consistency property (wrt. the sample X), and the second one claiming that it also captures
the compatibility property (wrt. the advice D).

Lemma 5.2. Let Z = quZ(’D and A7 the reward machine as in Remark 5.1. Then, A7 is
consistent with X (i.e., Az(A) = p for each (A, p) € X).

Proof. LetZ = <I>§’D and A7 the reward machine constructed from the model Z. To prove
Lemma 5.2, we show the following, more general statement by induction over the length of
prefixes (A, p) € Pref(X): if Az: q 2 v, then

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 116

1. Z(x),) = true; and
2. AI()L> = p.
Lemma 5.2 then follows immediately from Part 2 since X C Pref (X).

Base case: Let (¢,¢) € Pref(X). By definition of runs, we know that Az: v; — v; is the
only run of A on the empty word. Similarly, Formula (5.3) guarantees that the initial
state v; is the unique state v € V for which Z(x,) = true holds. Both observations
immediately prove Part 1. Moreover, A(e) = € holds by definition of the semantics of

reward machines, which proves Part 2.

Induction step: Let (Al, pr) € Pref(X). Moreover, let Az: vy A v L wbe the unique run
of A on A. By applying the induction hypothesis, we then obtain that both Z(x,) =
true and A(A) = p hold.

To prove Part 1, note that A7 contains the transition §(v,!) = w since this transition
was used in the last step of the run on Al. By construction of Az, this can only be the
case if Z(d,,) = true. Then, however, Formula (5.4) implies that Z(x,;4) = true
because Z(x, ,) = true (which holds by induction hypothesis). This proves Part 1.

To prove Part 2, we exploit Formula (5.5). More precisely, Formula (5.5) guarantees that
if Z(x,,) = true and the next observed label is I with reward r, then Z(o,,;,) = true.
By construction of Az, this means that o'(w,!) = r. Hence, Az outputs 7 in the last step
of the run on Al. Since Az(A) = p (which holds by induction hypothesis), we obtain
Az(Al) = pr. This proves Part 2.

Thus, A7 is consistent with X.]

In the following lemma, we prove that the reward machine derived from the model of the

propositional formula is also compatible with the advice.

Lemma 5.3. Let 7 = CDnX’D and A7 the reward machine derived from it. Then, A7 is
compatible with D € D: i.e., Az({10y ... 0x) = r1rp. .. 1 and rp > 0 implies €10, ... 0 €
L(D) for every nonempty, attainable label sequence ¢1¢5

Proof. Let L |= CD%’D and A7 be the reward machine derived from it. We first show that
Az: vy Ay D: ai,p LN ap, and Nag: g1 m A qm imply Z(2y,qp,q,,) = true for all label
sequences A € (2)*. The proof of this claim proceeds by induction of the length of label

sequences, similar to Part 2 in the proof of Lemma 5.2.

Base case: Let A = e. By definition of runs, the only runs on the empty label sequence are
Ar:vi = vy, D: qip 5 ai,p, and Nag: grm 5 q1,m- Moreover, Formula (5.6)
ensures that Z(zy,,q, 5,4, ,,) = true, which proves the claim.

Induction step: Let A = A’/. Moreover, let A7: q Yovh w,D:qp A, pPD LN gp, and
N gim A, PM EN g be the runs of Az, D and N on A = A/, respectively. By

induction hypothesis, we then know that Z(zy,p,, p,,) = true. Moreover, Az contains

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 117

the transition (v, £) = w because this transition was used in the last step of the run of
Az on A. By construction of Az, this can only be the case if Z(d, ;,,) = true. In this
situation, Formula 5.7 ensures Z(zw,qp,q,,) = true (since also ép(pp,£) = qp and

(P, £, qr) € Apg), which proves the claim.

Letnow A = £1/4; ... ¢ be a nonempty, attainable label sequence (i.e., k > 1). Moreover,

Oyly. ¢ lly.. by ‘
let Az: q L2l v 2 wbe the run of Az on A, D: q1.p Lkl pp — qp the run of

Don A, and Npag: g1 m M PM EN g the run of an NFA capturing the attainable
sequences. Our induction shows that 7(zy,q;,q,,) = true holds in this case.

Towards a contradiction with the statement of the Lemma, assume that Az ({105 ... ¢) =
riry... 1, 1 > 0, and l1ly ... 0, ¢ L(D). In particular, this means qp ¢ Fp. Since
Op(pp, k) = qp (which was used in the last step in the run of D on ¢1/;.../¢) and
T (zv,qpqn) = true (due to the induction above), Formula (5.8) ensures that Z(o,¢,) = 0
for all » € O with r > 0. However, Formula (5.2) ensures that there is exactly one » € O
with Z(oy,¢,) = 1. Thus, there has to exist an r € O such that r < 0 and Z (o, ¢,) = 1.
By construction of Az, this means that the last output r; of Az on reading ¢, must have
been r, < 0. However, our assumption was r;, > 0, which is a contradiction. Thus, A7 is
compatible with the advice DFA D. O

We are now ready to prove the correctness of our SAT encoding.

Proof of Theorem 5.1. The proof of Part 1 follows immediately from Lemma 5.2 and
Lemma 5.3.

To prove Part 2, let A = (V, vy, 2P 0,6, o) be a reward machine with 7 states that is
consistent with X and compatible with each D € D. From this reward machine, we can
derive a valuation Z for the variables d, ;, and o, ;, in a straightforward way (e.g., setting
Z(dyw) = trueif and only is é(v,) = w). Moreover, we obtain valuation for the variables
x, from the runs of (prefixes) of traces in the sample X, and valuations for the variables
Zy,pp,py frOom the synchronized runs of A, D, and N, for each D € D. Then, Z indeed
satisfies CD%’D. O

With Theorem 5.1, we have established that our propositional encoding has the desirable

properties. Now we continue building up the proof that JIRPA®

converges to an optimal
policy. We first show that JIRPA4 almost surely explores every attainable trajectory in the

limit (i.e., with probability 1 when the number of episodes goes to infinity).

Lemma 5.4. Given m € N, JIRPA? with eplen > m almost surely explores every m-

attainable trajectory in the limit.

Proof. We use induction over the length i of trajectories to prove that JIRP with eplength > m

explores every m-attainable trajectory with a positive (non-zero) probability.

Base case: The only trajectory of length i = 0, sy, is always explored because it is the initial
state of every exploration.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 118

Induction step: Let i = i’ + 1 and { = soa0s1 - . . Syas; be an m-attainable trajectory of
length i < m. Then, the induction hypothesis yields that JIRPA explores each m-
attainable trajectory Soaos1 . . .Sy (of length i’ = i — 1). Moreover JIRPA™ continues
its exploration because eplength > m > i’. At this point, every action a; will be chosen

with probability at least € X where As, C A denotes the set of available actions

1
1As, 7
in the state sy (this lower bound is due to the e-greedy strategy used in the exploration).
Having chosen action a;, the state s; is reached with probability p(sy,a;,s;) > 0

because (is m-attainable. Thus, the trajectory is explored with a positive probability.

Since JIRPA™ with eplength > m explores every m-attainable trajectory with a positive
probability, the probability of an m-attainable trajectory not being explored becomes 0 in the
limit (i.e., when the number of episodes goes to infinity). Thus, JIRPA4? almost surely (i.e.,

with probability 1) explores every m-attainable trajectory in the limit. O

As an immediate consequence of Lemma 5.4, we obtain that JIRPA almost sure explores

every (m-)attainable label sequence in the limit as well.

Corollary 5.1. Given m € N, JIRPA% with eplen > m almost surely explores every -
attainable label sequence in the limit.

In what follows, we will determine an upper bound on the episode length, which will
guarantee that we find all the necessary label sequences to 1) eliminate the advice DFAs
incompatible with the true reward machine 2) determine the correct reward machine. The
optimal convergence then follows directly from having the correct reward machine.

We first observe that every reward machine A can be translated into a DFA 2, that is
“equivalent” to the reward machine. This DFA operates over the combined alphabet 27 x O
and accepts a sequence (¢1,71) ... (¢, rx) if and only if A outputs the reward sequence

r172 ... 1 on reading the label sequence ¢1/; . .. /.

Lemma 5.5. Given a reward machine A = (V, vy, 2P 0,6, o), one can construct a DFA
Aa with |A| 4 1 states such that L(Ap) = {(I1,71) ... (I, 7e) € 2F x o) | A(ly...) =
r1.. Tk}
Proof. For a given reward machine A, we define a DFA Ax = (Q, q;,2F x Ox, 6, F) by

* Q=VU{L} where L ¢V;

® qr = Vi,
w ifd(v,f) =wando(v,f) =r;
. 5(V,(£,7’)) — () ()

1 otherwise

s F=V.

In this definition, | is a new sink state to which A moves if its input does not correspond
to a valid input-output pair produced by A. A straightforward induction over the length of
inputs to Aa shows that it indeed accepts the desired language. In total, Ap has |[A| + 1
states. [

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 119

The next lemma tells us that there is a short label sequence witnessing that an advice DFA

is incompatible with the true reward machine.

Lemma 5.6. Let A be a reward machine and D an advice DFA. If D is not compatible with
A, then there exists an attainable label sequence (145 . .. ¢, with k < 2| M| - (JA| +1) - |D|
such that A(glgz e gk) =riry... 11 >0,and ... [& L(D)

Proof. Let A be a reward machine and Ox C IR the finite set of rewards that A can out-
put. Moreover, let D = (Qp, q1p, 27,6p, Fp) be an advice DFA. Our proof proceeds by
constructing a sequence of auxiliary automata to derive the desired bound.

First, we construct the DFA A} = (Qj, 91 ar 2P x Oy, dx, Fa) according to Lemma 5.5.
Recall that (I1,71) ... (It %) € L(AR) ifand only if A(l; ... Ix) = rqy ... 7. Moreover, A}
has |A| 4 1 states.

Second, we modify the DFA A} so that it only accepts sequences (I1,71) ... (I, k) with
rx > 0. To this end, we augment the state space with an additional bit b € {0, 1}, which

tracks whether the most recent reward was 0 or greater than 0. Formally, we define a DFA
An = (Qa,q1,4,27 X R,8p, Fa) by

* Qa=Qax {01}

* g1a = (972 0);

* 0a((v,b),(I,r)) = (64(v, (1,7)),b) where b = 1 if and only if 7 > 0; and
e Fa=Fax{1}.

It is not hard to verify that A, indeed has the desired property. Moreover, by Lemma 5.5, Aa
has 2(|A| + 1) states.

Third, we adapt the advice DFA D, which works over the alphabet 27, to match the input
alphabet 27 x Ox of Aa. We do so by expanding the domain of the transition function dp: it
now maps the elements of S 4 x (27 x Ox) into S, while disregarding the Ox component.
This modification does not change the size of the automaton D.

Fourth, we construct the simple product NFA of Aa, D and N, (the last one is as
obtained by Lemma 5.1). This NFA is given by A = (Q, g5, 2P x Ox, A, F) where

* S =0aXQpXOQum:
* 91 = (q1.A, 91D, 91.M)5

* ((9a,9D,9M), (9a, 9p, 9\)) € Aiff there exists (I, 7) such that Sa(qa, (1,7)) = G,
op(gp, (I,7)) = qps, and (qm,9)y) € A

e F=Fp X (QD\FD)

By construction, A accepts a sequence (I1,71) ... (Ix, 7x) ifandonly if A(ly ... Ix) =11 ...7%
with 7y > 0 and I;...ly ¢ L(D) and the sequence is attainable in the MDP M—in other
words, £(.A) contains all sequences that witness that D is not compatible with A. Moreover,
Ahas2(|A| +1) - |D| - | M| states.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 120

It is left to show that if D is not compatible with A, then we can find a witness with
the desired length. To this end, it is sufficient to show that if £(A) # @, then there
exists a sequence (I1,71)...(I,rx) € L(A) with k < 2(|A| +1)-|D|-|M]|. This
fact can be established using a simple pumping argument. To this end, assume that
(I, r1) ... (I, rx) € L(A) with k > 2(]A| +1) - |D| - |M|. Then, there exists a state
g € Q such that the unique accepting run of A on (I3,71) ... (I, 7¢) Vvisits g twice, say at the
positions 7, j € {0, ...k} with i < j. In this situation, however, the NFA A also accepts the
sequence (I1,71) ... (L;, 7)) (liy1,7j41) - - - (I, 7%), Where we have removed the “loop” between
the repeating visits of g. Since this new sequence is shorter than the original sequence, we
can repeatedly apply this argument until we arrive at a sequence (I},77) ... (I}, ;) € L(A)
with ¢ < 2(|A[+1) - |D| - IM]. By construction of A, this means that [...} is attainable,
A(ly...1)) =7ry...rp,rg>0,and [..., ¢ L(D), which proves the claim. O

Next, we show that if two reward machines are semantically different, then we can bound

the length of a trace witnessing this fact.

Lemma 5.7. Let A; and A, be two reward machines. If A; and A, differ on an attainable
label sequence A, then the length of A is at most 2| M| - (|A7| +1) - (JAz| +1).

The proof closely follows the structure of the proof of Lemma 5.6.

Proof. Consider the DFAs A, and Aja, with |A;| + 1 and |Az| + 1 states, respectively,
obtained as in Lemma 5.5. Consider also the NFA A\, which accepts only attainable label
sequences, obtained as in Lemma 5.1. This NFA is of size |[M]|. Let .A be synchronized
product of Aa,, Aa,, and Ay, similar to the one in the proof of Lemma 5.6. This automaton
has 2| M| - (JA1| +1) - (|A2] + 1) states. If A; # A; on an attainable label sequence, then
we can find a sequence which leads in this product to a state where A 4 accepts (the label
sequence is attainable), but exactly one of A; and A, accepts. To show the bound on the length
of this sequence, we will use a similar argument as in the previous lemma. Assume that this
sequence is longer than the number of states of the automaton .4. This means that there is one
element of the sequence that is repeated. But the same product state can be reached by the
sequence in which the part between the two repetitions is removed. This procedure can be
applied until a new sequence is found, of length at most 2| M| - (|A¢| +1) - (|A2] +1). O

With Lemmas 5.6 and 5.7 at hand, we are ready to prove that the correct reward machine
will eventually be learned.

Lemma 5.8. Let M be a labeled MDP and A a true reward machine captur-
ing the rewards of M. Moreover, let D = {Di,..., Dy} be a set of ad-
vice DFAs and #gmax = max{|D,...,Dy|}. Then, JIRPA%™ with eplen >
max {2| M| - (|A| + 1) - fimax, 2| M| - (|A| + 1)?} almost surely learns a reward machine in

the limit that is equivalent to A.

Proof. Let (Xo,Dy), (X1, D1), ... be the sequence of samples and sets of advice DFAs that

PAdv

arise in the run of JIR whenever a new counterexample is added to X (in Lines 6 and 7 of

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 121

Algorithm 8) or an advice DFA is removed from the set D (Lines 8 and 9 of Algorithm 8).
Moreover, let Ag, A1, . .. be the corresponding sequence of reward machines that are computed
from (X;, D;). Note that constructing a new reward machine is always possible because
JIRPA4? makes sure that all advice DFAs in the current set D are compatible with the traces
in the sample X.

We first observe three properties of these sequences:

1. The true reward machine A (i.e., the one that captures the reward function R) is
consistent with every sample X; that is generated during the run of JIRPA4?. This
is due to the fact that the each counterexample is obtained from an actual exploration of
the MDP and, hence, corresponds to the “ground truth”.

2. The sequence Xy, Xj, ... grows monotonically (i.e., Xo € X; C - -) because JIRpAdv
always adds counterexamples to X and never removes them (Lines 6 and 7). In
fact, whenever a counterexample (A, p) is added to X; to form X;1, then (A,p) ¢
X; (i.e., X; © Xjy1). To see why this is the case, remember that JIRpAdv always
constructs hypothesis that are consistent with the current sample (and the current set
of advice DFAs). Thus, the current reward machine A; is consistent with X;, but the
counterexample (A, p) was added because A;(A) # p. Thus, (A, p) cannot have been

an element of X;.

3. The sequence Dy, D1, ... decreases monotonically (i.e., Dy 2 D1 D ---) because
JIRpAdY always removes advice DFAs from D and never adds any (Lines 8 and 9). Thus,

there exists a position i* € IN at which this sequence becomes stationary, implying that
Di = Di+1 for i > i

Similar to Property 1, we now show that each advice DFA in the set D;, i > i*, is
compatible with the true reward machine A. Towards a contradiction, let D € D; be an advice
DFA and assume that D is not compatible with A. Then, Lemma 5.6 guarantees the existence

of a label sequence /1 . .. [, with

k<2IM[-(JAl+1)-|D|
<2[MI - (JA] +1) - fmax

such that A(ly,...Ix) = rq...1%0x > 0, and I1...ly ¢ L(D). Since we have chosen
eplen > 2(|A| + 1) - fimax, Corollary 5.1 guarantees that JIRPAYY almost surely explores this
label sequence in the limit. Once this happens, JIRPA%” removes D from the set D (Lines 8

and 9). Hence, we obtain the following:
4. Every advice DFA in D;, i > i*, is compatible with the true reward machine A.

Next, we establish the three additional properties about the sub-sequence A+, Aj<y1, ... of
hypotheses starting at position i*:

5. The size of the true reward machine A is an upper bound for the size of A;x (i.e., |Ax| <

|A]). This is due to the fact that A is consistent with every sample X; (Property 1),

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 122

every advice DFA in D;, i > i*, is compatible with A (Property 4), and JIRPA% always

computes minimal consistent reward machines.

6. We have |A;| < |A;41] for all i > i*. Towards a contradiction, assume that |A;| >
|Aii1|. Since JIRPA% always computes consistent reward machines and X; C Xiypif
i > i* (see Property 2), we know that A;, 1 is not only consistent with X;; but also
with X; (by definition of consistency). Moreover, JIRPA4’ computes minimal consistent

reward machines. Hence, since A, ;1 is consistent with X; and |A; 1| < |A;|, the reward

machine A; is not minimal, which is a contradiction.

7. We have A; # A fori > i* and j € {i*,...,i}—in other words, the reward machines
generated during the run of JIRPA?Y after the i*-th recomputation are semantically
distinct. This is a consequence of the facts that (A}, p;) was a counterexample to A; (i.e.,
Aj(Aj) # p;j) and that JIRPA%’ always constructs consistent reward machines (which
implies A;(A;) = p).

Properties 5 and 6 now provide |A| as an upper bound on the size of any reward machine
that JIRPA%™ constructs after the i*-th recomputation. Since there are only finitely many
reward machines of size at most |A|, Property 7 implies that there exists a j* > i* after which
no new reward machine is inferred. Hence, it is left to show that Ajx = A (i.e., Ajx (1) = A(A)
for all label sequences A).

Towards a contradiction, let us assume that A;» # A. Then, Lemma 5.7 guarantees the

existence of a label sequence A = I; ... [with

k<2IMJ- (|Ax|+1) - (JA[+1)
<2IM| - (JA] + 1)

such that Aj-(A) # A(A).

Since we have chosen eplen > 2| M| - (|A| 4 1)2, Corollary 5.1 guarantees that JIRPA4?
almost surely explores this label sequence in the limit. Thus, the trace (A, p), where p = A(A),
is almost surely returned as a new counterexample, resulting in a new sample X 1. This, in
turn, causes the construction of a new reward machine, which contradicts the assumption that
no further reward machine is generated. Thus, the reward machine A; is equivalent to the

true reward machine A. O

PA% now follows from Lemma 5.8 and the correctness of the QRM

The correctness of JIR
algorithm [122]. Lemma 5.8 also provides us with an upper bound on the length of the

episodes that JIRPA9? has to explore.

Theorem 5.2. Let M be a labeled MDP, let A be a true reward machine encoding the rewards
of M, and let D = {D1,. . .,Dg} be a set of advice DFAs. Moreover, let m be as in
Lemma 5.8. Then, JIRPA?Y with eplen > m almost surely converges to an optimal policy in
the limit.

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 123

U 1.0 1.0
0.8 — o0 0.8 — HRL 0.8 — D-DON
= ?;i Tos6 Bos
S — @ g g
304 — {b,d.q} o4 pos4
— {bd}
0.2 L {bdb} 0.2 0.2
0.0 = ¢ (bdbo} 0.0 0.0
200000 400000 600000 0 200000 400000 600000 0 200000 400000 600000
number of training steps number of training steps number of training steps
(a) JIRPAYY with advice (b) HRL (c) DDQN
FIGURE 5.6: Attained rewards of 30 independent simulation runs averaged
for every 10 training steps each for case study I.
1.0 U — — 1.0 1.0
0.8 =y 0.8 — HRL 0.8 — D-DQN
Tos L i:i Bos Tose
S — 2 g
D0.4 " 304 D04
02 —— {eabf} 02 02
. o . .
0.0 VM Hﬂ I ﬂ” rf 0.0 0.0
0 200000 400000 600000 0 200000 400000 600000 0 200000 400000 600000
number of training steps number of training steps number of training steps
(a) JIRPA? with advices (b) HRL (c) DDQN

FIGURE 5.7: Attained rewards of 30 independent simulation runs averaged
for every 10 training steps each for case study II.

5.7 JIRPA?’ Case Studies

In this section, we implement the JIRPA% approach in two case studies. We compare the three
different methods (also used in Section 5.4):

1. JIRPA?: Qur implementation uses the RC2 SAT solver [172] from the PySAT li-

brary [124]. A special case of JIRPA4?, when no advice is given, is the JIRP algorithm,
from Section 5.3.

2. HRL (hierarchical reinforcement learning): We use a meta-controller for deciding the
subtasks (represented by encountering each label) and use the low-level controllers

expressed by neural networks [139] for deciding the actions at each state for each
subtask.

3. DDQN (deep reinforcement learning with double g-learning): We use the double g-
learning method of Hasselt et al. [106]. The DDQN can access the past 200 labels of
the trajectory as well as the MDP state.

Figure 5.9 illustrates the advices we use with JIRPA4? in the case studies: DFAs expressing
“eventually ap, then eventually &;..., then eventually a,, 1", noted {aoa - - - a1}

Case Study I: Officeworld Domain

This case study relies on the officeworld scenario as introduced in Figure 5.1. We specify a

more involved task than that in the motivating example: go to location b, then d, then back to

3 All experiments were conducted on a Vivobook laptop with 1.80-GHz Core i7 CPU and 32-GB RAM

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 124

advice @ {b} {bd} {bdb} {bdbg}

steps [X 103] 4545 307.5 189.0 144.0 142.5
inference [s] 149.0 13.9 1.7 0.7 0.5
inferences 6.1 5.0 3.2 2.3 2.0

TABLE 5.2: Performance of JIRPAd”, for different advice.

b, and finally go to g. We run the J IRPA algorithm with different sets of advice DFAs D.

Impact of advice

104
{bdbg}{ o{l 1} o = ° ﬁ
{bdb}{ oa{Jo o o 103-%
{bd}{ e— o o E 1029
b, d, g} c
{bd, g} o oH T} Sl o |
{9} 00— T} E= TihE, o
{d} a0 5 100 o o r [
{b}{ co— T F—i¢g € 10-1 ° °
2 o — T _H S o
| ! 10721 , , —
0 200000 400000 600000 Q = s s s s s
ber of training steps 2227383 2
numbe g step 5 & 3 8
5 —~ 9
o -
(a) Training steps for optimal policy convergence. (b) Cumulative inference time, on a logarithmic scale.

FIGURE 5.8: Distribution of 30 independent simulation runs on each set of
advice DFAs with JIRPA4? on case study 1.

Figure 5.6a shows the attained reward of JIRPA? for 8 sets of advice DFAs: @, {b}, {d},
{g}. {b.d,g}, {bd}, {bdb}, {bdbg}, and Figure 5.8a shows the optimal policy convergence
training steps. We observe a clear impact of advices on the performance. It can be seen that
the closer the advice is to the ground truth, the faster the maximal reward is reached.

Table 5.2 shows the performance of JIRPA% for different advice DFAs. Measured over 30
independent simulation runs, the first row shows the median number of thousands of training
steps to convergence; the second row shows the median time needed for reward machines
inference; and the third row shows the average number of inferences. With shorter individual
inference time and fewer triggers of the reward machine inference, the cumulative inference
time drops significantly when using advice, and becomes negligible compared to the RL
simulation time with D € {{bd}, {bdb},{bdbg}}.

Figure 5.8b shows the cumulative inference time for the values of D from the set
{@,{b},{d},{g},{b.d g}, {bd}, {bdb}, {bdbg}}. The advice is clearly helpful, but there
is no clear, functional connection between the advice and the algorithm’s performance. For
instance, the inference time with D = {g} increases with respect to the baseline (no advice

given).

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 125

g aq K1
>(Vo V1 Vo e

FIGURE 5.9: Advice DFA format used in our case study. The short notation
for such DFAs would be agay - - - a0y 1.

Compared to JIRPA4? with D = @ (which corresponds to JIRP), JIRPA% with D = {b},
D = {bd} and D = {bdbg} achieves optimal convergence in 68%, 42% and 31% of the
training steps, and with 9.3%, 1.1% and 0.34% cumulative inference time, respectively.

Case Study II: Taxi Domain

In the second case study, we illustrate a case when the JIRP algorithm is not useful—when the
reward function is Markovian. Nonetheless, using advice can be beneficial in such situations.

This experiment is inspired by the OpenAl Gym environment Taxi-v3 (https://
gym.openai.com/envs/Taxi-v3/), introduced by Dietterich [67]. The agent, a
taxi, navigates on a grid with walls and boarding locations.The agent starts on a ran-
dom cell. A passenger starts on a random boarding location. The set of actions is
A = {S,N,E,W, Pickup, Dropoff }. The action Pickup picks up the passenger present
at the agent’s current location and has no effect if no passenger is present. The action Dropoff
drops off the passenger from the taxi to the agent’s current boarding location, and has no effect
if the taxi is empty or not over any boarding location. The actions S, N, E, W correspond to
moving in the four cardinal directions.

We make some assumptions to simplify the problem: the passenger always starts on
location A, and the agent starts on a random cell other than a boarding location. We specify
the task as carrying the passenger to location B. We define eight labels: a, b, c, d for standing
on an empty location (A, B, C, D respectively), and e, f, g, h for standing on a location with

the passenger on it (A, B, C, D respectively).

Results

Figure 5.7a presents performances by using 6 different set of advice DFAs: @, {e}, {a}, {b},
{f}, {eabf}. Optimal reward is reached only with advices {a} and {eabf}.

(=) (==

(D=0 (b) D = {a}
FIGURE 5.10: The inferred reward machine in all runs of the taxi domain.
Omitted transitions are self-looping transitions.

With D = @, only one reward machine is inferred, preventing counterexamples from
being registered and new inference to be triggered. This is because the label f (having the

passenger on B) is in the sequence if and only if the agent succeeds in the task. Hence

https://gym.openai.com/envs/Taxi-v3/
https://gym.openai.com/envs/Taxi-v3/

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 126

the reward machine inferred without advice (Figure 5.10a) is the smallest possible that will
correctly classify every attainable label sequence.

The label a, being triggered when the passenger is picked up from A, is helpful to JIRPA%
because it helps the agent track the passenger’s location. The advice a lets the reward machine
include this label (Figure 5.10b).

This case study shows that advice can be useful even when the reward function is Marko-
vian. Indeed, the advice here was used to infer how to reach the state in which a reward is

given.

5.8 Related Work

The problem of incorporating high-level temporal knowledge into RL has been studied in
hierarchical RL [211, 68, 185]. There, an RL problem is decomposed into a two-level
hierarchy: a meta-controller decides on a subtask to pursue, and a controller decides on
actions within the chosen subtask.

The idea of capturing temporal abstraction in a temporal logic or automaton-like form
appeared already in the work of Bacchus et al. [19], but an interest in it resurged with the
introduction of task monitors [127] and reward machines [122]. They are assumed to be given
to the RL agent.

Similar to our work on JIRP, a number of papers followed that suggested learning an
automaton-like representation from experience instead of assuming that the user provides
them [123, 88, 87, 105]. In JIRPAY we go a step further and assume that the user is able to
provide some knowledge. That knowledge is then incorporated into the learning of reward
machines.

The problem statements in the aforementioned papers differ slightly, but in essence, they
are solving the same problem: learning a non-Markovian structure of the underlying MDP.
This can either be a non-Markovian reward function, a non-Markovian environment dynamics,
or partial observability that creates an impression of non-Markovian dynamics. When the
MDP is partially observable (POMDP), reward machines need to represent the memory
necessary to distinguish between states whose observations coincide. Icarte et al. [120] do this
in their algorithm named LRM. The approach taken in JIRP (as well as in JIRPA%) and LRM
have different strengths: JIRP excels when the temporal structure of the rewards contains
all the useful information because it learns a smallest and complete representation of the
rewards. In this situation, LRM tends to learn larger-than-necessary reward machines, which
makes reinforcement learning slower. In cases where the reward function is Markovian, on
the other hand, JIRP is not as useful, while LRM can still speed up RL as it can infer useful
information about the structure of the POMDP that is not contained in the reward function.
The performance of JIRPA?? in such a setup entirely depends on the quality of the received
advice.

The notion of advice for RL has been explored in the work by Icarte et al. [121]. There,
advice has the form of a temporal logic formula, which can be compiled into a DFA. They

assume the availability of background knowledge functions, heuristic functions that help the

Chapter 5. Reinforcement Learning with Non-Markovian Rewards 127

agent follow the advice. No such assumption is necessary for our approach. Focusing more
on safety than on helping the learning process, the work on shields for RL [5] corrects the

agent behavior if it violates the temporal logic specification.

5.9 Conclusion

This chapter focused on specifications that are given implicitly, as rewards that the agent gets.
We explored the non-Markovian setup, in which rewards depend on the history of states and
actions. Our work is the first to tackle the problem assuming that the (non-Markovian) reward
function is not explicitly given to the algorithm. The proposed solution is based on learning
automata that capture relevant parts of history, implemented in an algorithm named JIRP. We
extended it with the ability to accept advice from users and named that extension JIRPA4?.

One view of our approach is that it helps users with modeling of a problem (in particular,
of a state-space). Instead of expecting users to conceptualize states so that the reward function
is Markovian, our algorithm infers a suitable state-space through the agent’s exploration.
Another notable by-product of our approach is the interpretability of the inferred reward
function.

A significant drawback of the used constraint-solving methods for automata inference
is their scalability. In order to address this challenge, we had to assume that the algorithm
receives a set of labels, which define what events bear relevance for getting rewards. While
this assumption is not entirely unrealistic, it leaves some burden on the user in an otherwise
automated process.

We have shown the optimal convergence property of our algorithms, with an upper
bound on the necessary length of the episode. The experiments show that the proposed
methods successfully converge to an optimal policy on a number of different small to mid-size

benchmarks. Furthermore, they convincingly outperform competing methods.

128

Chapter 6

Conclusion

In this thesis, we have seen a new model for programming multi-robot systems, one in
which robots’ work is provided as a service, managed by a centralized backend system. To
demonstrate such a programming model, I have implemented a backend system Antlab,
which accepts declarative specifications (in LTL) and makes sure that the robots of the system
execute it.

Antlab ensures conformance with the specification by reasoning on two levels. At the
first level, it assumes (unrealistically) that the world is ideal (that is, there are no disturbances
or unforeseen events, and robots are perfectly synchronized in their actions) and creates a plan
for (the subset of) robots with that assumption. At the second level, it locally resolves any
conflicts of robots’ actions and triggers replanning when necessary. In other words, instead of
modeling all things that could possibly go wrong and accounting for them up-front, Ant 1ab
deals with problems as they arise.

This two-levels approach enables Ant 1ab to scale beyond toy examples. However, it
also prevents Ant lab from giving the full end-to-end correctness guarantee for the execu-
tion. While realistic scalability remains of utmost importance for Ant 1ab, exploring and
incorporating different methods (already existing or to appear in the future) for verification of
cyber-physical systems would be a way to identify the sweet spot between providing strong
guarantees and swift execution.

Choosing LTL as the specification language of Ant 1ab enables us to use existing methods
for the synthesis and verification of LTL specifications. On the other hand, we have observed
that LTL can be difficult for users to master. Furthermore, it does not allow to easily express
swarm actions. Thus, it is worth exploring different specification languages in the context of
the proposed programming model.

With LTL set as the specification language, I addressed the problem of translating the
user’s intent into the corresponding LTL specification. To this end, I have presented LTLTALK.
It is a tool that uses a single demonstration and a natural language description to devise a
set of candidate LTL specifications, which it then narrows down to the correct one by visual
interaction with the user. The inferred specification is used to generalize from the provided
natural language description, expanding the language of the system for future uses.

We have seen in the thesis that LTLTALK is capable of uncovering and combining common
LTL specifications. Interesting future work is examining how well are end-users able to work

with LTLTALK, studying it from the perspective of human-machine interaction. In this thesis,

Chapter 6. Conclusion 129

I have solved the problem of learning from only positive examples either by identifying a
representation form with a suitable notion of tightness (UVW, in Section 3.2), or by utilizing
domain knowledge to derive negative examples (Section 3.3). The same problem (learning
from positive examples) under different assumptions remains intriguing.

An interesting planning problem arising from the Antlab’s programming model is
planning for robots that are already executing some previous task. In this thesis, we pose
the problem in a general, domain-independent planning form. The proposed solution is a
modification of A* search, with speculative initial states. The general problem formulation
takes the view of a single agent (which may be a set of robots) and plans for it in a centralized
manner. Explicitly considering different robots’ plans and planning in a decentralized fashion
(perhaps in groups) might bring additional benefits.

In Chapter 5, we have studied the problem of reinforcement learning for temporally
extended rewards. In most natural models for such settings, the Markovian property for the
reward function does not hold. Therefore, our algorithm interleaves learning of automata
capturing the reward function with reinforcement learning. We demonstrate experimentally
that this approach outperforms previous approaches and prove that the method converges to
an optimal policy.

In order to gain scalability, our method may get advice from the user on promising
sequences to explore (the advice is formulated as a DFA). It must get the set of labels that are
relevant for the reward (which are then used as the alphabet of the automaton to be learned).
A practically useful extension would be finding a way to automatically infer those labels.

Overall, in this thesis, I argued for a novel multi-robot systems programming model,
implemented a proof-of-concept for such a model, and solved specification and planning
problems stemming from that model. Beyond technical challenges, there are economic and
societal questions about using robots as a shared resource. The answers to those questions are
equally important in determining the future of multi-robot programming, as are the technical

ones, described in the thesis.

130

Bibliography

[1]

Wil M. P. van der Aalst, Josep Carmona, Thomas Chatain, and Boudewijn F. van
Dongen. “A Tour in Process Mining: From Practice to Algorithmic Challenges”. In:
Trans. Petri Nets Other Model. Concurr. 14 (2019), pp. 1-35.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015.

URL: https://www.tensorflow.org/.

Keerthi Adabala and Riidiger Ehlers. “A Fragment of Linear Temporal Logic for
Universal Very Weak Automata”. In: Automated Technology for Verification and
Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October
7-10, 2018, Proceedings. 2018, pp. 335-351. bo1: 10.1007/978-3-030 -
01090-4_20.

R. Vaughan et al. Stage simulator. http://wiki.ros.org/stage. Indigo

version.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Kénighofer, Scott
Niekum, and Ufuk Topcu. “Safe Reinforcement Learning via Shielding”. In: AAAL
AAAI Press, 2018, pp. 2669-2678.

R. Alur, S. Moarref, and U. Topcu. “Compositional Synthesis of Reactive Controllers
for Multi-agent Systems”. In: CAV. 2016.

Rajeev Alur, Rastislav Bodik, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal,
Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman,
Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. “Syntax-Guided Synthesis”. In: Dependable Software
Systems Engineering. Vol. 40. NATO Science for Peace and Security Series, D:

Information and Communication Security. IOS Press, 2015, pp. 1-25.

Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta. “Augmented
example-based synthesis using relational perturbation properties”. In: PACMPL
4.POPL (2020). DOI1: 10.1145/3371124.

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-030-01090-4_20
https://doi.org/10.1007/978-3-030-01090-4_20
http://wiki.ros.org/stage
https://doi.org/10.1145/3371124

Bibliography 131

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jacob Andreas, Dan Klein, and Sergey Levine. “Modular multitask reinforcement
learning with policy sketches”. In: ICML’2017. JMLR. org. 2017, pp. 166-175.

Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”. In: Inf.
Comput. 75.2 (1987), pp. 87-106. DOI: 10.1016/0890-5401(87) 90052—6.
URL: https://doi.org/10.1016/0890-5401(87)90052-6.

Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”. In: Inf.
Comput. 75.2 (1987), pp. 87-106.

Dana Angluin. “On the Complexity of Minimum Inference of Regular Sets”. In: Inf.
Control. 39.3 (1978), pp. 337-350.

Dana Angluin and Dana Fisman. “Learning regular omega languages”. In: Theor.
Comput. Sci. 650 (2016), pp. 57-72.D01: 10.1016/j.tcs.2016.07.031.

M Fareed Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowd-
hury, and Cesare Tinelli. “SYSLITE: syntax-guided synthesis of PLTL formulas from
finite traces”. In: 2020 Formal Methods in Computer Aided Design (FMCAD). IEEE.
2020, pp. 93-103.

ARM Ltd. Amba specification (rev. 5). 2019. URL: http://infocenter.arm.
com/help/index . jsp?topic=/com.arm.doc.1ihi0033/index.
html.

Yoav Artzi. Cornell SPF: Cornell Semantic Parsing Framework.2016. eprint: arXiv:
1311.3011.

Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. “Parametric
Identification of Temporal Properties”. In: Runtime Verification - Second International
Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised
Selected Papers. Vol. 7186. Lecture Notes in Computer Science. Springer, 2011,
pp- 147-160. URL: https://doi.org/10.1007/978-3-642-29860~-
8_12.

Florent Avellaneda and Alexandre Petrenko. “Inferring DFA without Negative Exam-
ples”. In: Proceedings of the 14th International Conference on Grammatical Inference,
ICGI 2018, Wroctaw, Poland, September 5-7, 2018. 2018, pp. 17-29. URL: http:
//proceedings.mlr.press/v93/avellanedal9a.html.

Fahiem Bacchus, Craig Boutilier, and Adam J. Grove. “Rewarding Behaviors”. In:
Proceedings of the Thirteenth National Conference on Artificial Intelligence and
Eighth Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI
96, Portland, Oregon, USA, August 4-8, 1996, Volume 2. 1996, pp. 1160-1167. URL:
http://www.aaai.org/Library/AAAT/1996/aaai96-172.php.

Christer Béckstrom and Bernhard Nebel. “Complexity Results for SAS™ Planning”.
In: Computational Intelligence 11.4 (1995), pp. 625-655.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.tcs.2016.07.031
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0033/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0033/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0033/index.html
arXiv:1311.3011
arXiv:1311.3011
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
http://proceedings.mlr.press/v93/avellaneda19a.html
http://proceedings.mlr.press/v93/avellaneda19a.html
http://www.aaai.org/Library/AAAI/1996/aaai96-172.php

Bibliography 132

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. “DeepCoder: Learning to Write Programs”. In: International Conference on
Learning Representations (ICLR). 2017.

Tomds Balyo, Marijn J. H. Heule, and Matti Jarvisalo. “SAT Competition 2016: Recent
Developments”. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA. AAAI Press, 2017,
pp- 5061-5063.

Gregor B. Banusic, Rupak Majumdar, Marcus Pirron, Anne-Kathrin Schmuck, and
Damien Zufferey. “PGCD: robot programming and verification with geometry, con-
currency, and dynamics”. In: ICCPS. ACM, 2019, pp. 57-66.

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 171-177. DOI:
10.1007/978-3-642-22110-1_14. URL: https://doi.org/10.
1007/978-3-642-22110-1_14.

Ezio Bartocci, Luca Bortolussi, and Guido Sanguinetti. “Learning Temporal Log-
ical Properties Discriminating ECG models of Cardiac Arrhytmias”. In: CoRR
abs/1312.7523 (2013). arXiv: 1312 .7523. URL: http://arxiv.orqg/abs/
1312.7523.

I. Beltagy and Chris Quirk. “Improved Semantic Parsers For If-Then Statements”. In:
Annual Meeting of the Association for Computational Linguistics (ACL). 2016.

J. Benton, Minh B. Do, and Wheeler Ruml. “A Simple Testbed for On-line Planning”.
In: Proceedings of the ICAPS-07 Workshop on Moving Planning and Scheduling
Systems into the Real World. 2007.

J. van den Berg and M. Overmars. “Prioritized motion planning for multiple robots”.
In: IROS. 2005.

A. Biere, K. Heljanko, T. Junttila, T. latvala, and V. Schuppan. “Linear Encoding of
Bounded LTL Model Checking”. In: LMCS 2.5:5 (2006), pp. 1-64.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. “Bounded model checking”. In: Advances in Computers 58 (2003), pp. 117-148.
DOI: 10.1016/S0065-2458 (03) 58003-2. URL: https://doi.org/10.
1016/50065-2458(03)58003-2.

Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala, and Viktor Schup-
pan. “Linear Encodings of Bounded LTL Model Checking”. In: Logical Methods in
Computer Science 2.5 (2006). DOI: 10.2168/LMCS—-2 (5:5) 2006.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, eds. Handbook of
Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press,
2009. 1SBN: 978-1-58603-929-5.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://arxiv.org/abs/1312.7523
http://arxiv.org/abs/1312.7523
http://arxiv.org/abs/1312.7523
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.2168/LMCS-2(5:5)2006

Bibliography 133

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Nikolaj Bjgrner, Anh-Dung Phan, and Lars Fleckenstein. “vZ - An Optimizing SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings. 2015, pp. 194-199.

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
“Synthesis of Reactive(1) designs”. In: J. Comput. Syst. Sci. 78.3 (2012), pp. 911-938.
DOI: 10.1016/7.jcss.2011.08.007. URL: https://doi.org/10.
1016/7.9css.2011.08.007.

Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Science. 2018,

pp. 1-479. URL: https://www.cs.cornell.edu/jeh/book.pdf.
Mikolaj Bojanczyk. “The Common Fragment of ACTL and LTL”. In: Foundations

of Software Science and Computational Structures, 11th International Conference,
FOSSACS. Ed. by Roberto M. Amadio. Vol. 4962. Lecture Notes in Computer Science.
Springer, 2008, pp. 172-185. DOI: 10.1007/978-3-540-78499-9_13.

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider,
and David R. Piegdon. “libalf: The Automata Learning Framework™. In: CAV’2010.
2010, pp. 360-364. DOI: 10.1007/978-3-642-14295-6_32. URL: https:
//doi.org/10.1007/978-3-642-14295-6_32.

Giuseppe Bombara, Cristian loan Vasile, Francisco Penedo, Hirotoshi Yasuoka, and
Calin Belta. “A Decision Tree Approach to Data Classification using Signal Temporal
Logic”. In: Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control, HSCC 2016, Vienna, Austria, April 12-14, 2016. ACM,
2016, pp. 1-10.

Ronen I. Brafman, Giuseppe De Giacomo, and Fabio Patrizi. “LTLf/LDLf Non-
Markovian Rewards”. In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelli-
gence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. 2018,
pp. 1771-1778. URL: https://www.aaal.org/ocs/index.php/AAAT/
AAAT18/paper/view/17342.

Leo Breiman, JH Friedman, Richard A Olshen, and Charles J Stone. Classification
and Regression Trees. Wadsworth, 1984. Routledge, 1993.

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte.
“A randomized scheduler with probabilistic guarantees of finding bugs”. In: Proceed-
ings of the 15th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA,
March 13-17, 2010. 2010, pp. 167-178. DO1: 10.1145/1736020.1736040.
URL: http://doi.acm.org/10.1145/1736020.1736040.

https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://www.cs.cornell.edu/jeh/book.pdf
https://doi.org/10.1007/978-3-540-78499-9_13
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342
https://doi.org/10.1145/1736020.1736040
http://doi.acm.org/10.1145/1736020.1736040

Bibliography 134

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Ethan Burns, J. Benton, Wheeler Ruml, Sung Wook Yoon, and Minh Binh Do. “An-
ticipatory On-Line Planning”. In: Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling (ICAPS-12). 2012.

Ethan Burns, Wheeler Ruml, and Minh Binh Do. “Heuristic Search When Time
Matters”. In: Journal Artificial Intelligence Research 47 (2013), pp. 697-740.

J. Richard Biichi. “On a decision method in restricted second-order arithmetic”. In:
Int. Congr. for Logic, Methodology and Philosophy of Science. Stanford Univ. Press,
1962, pp. 1-11.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano,
and Sheila A. Mcllraith. “LTL and Beyond: Formal Languages for Reward Function
Specification in Reinforcement Learning”. In: IJCAI. ijcai.org, 2019, pp. 6065-6073.

Alberto Camacho and Sheila A. Mcllraith. “Learning Interpretable Models Expressed
in Linear Temporal Logic”. In: ICAPS. AAAI Press, 2019, pp. 621-630.

Steven Carr, Nils Jansen, and Ufuk Topcu. “Verifiable RNN-Based Policies for
POMDPs Under Temporal Logic Constraints”. In: IJCAI. ijcai.org, 2020, pp. 4121-
4127.

Michael Cashmore, Andrew Coles, Bence Cserna, Erez Karpas, Daniele Magazzeni,
and Wheeler Ruml. “Replanning for Situated Robots”. In: Proceedings of the Twenty-
Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018.
2019, pp. 665-673.

Michael Cashmore, Andrew Coles, Bence Cserna, Erez Karpas, Daniele Magazzeni,
and Wheeler Ruml. “Temporal Planning while the Clock Ticks”. In: Proceedings of
the Twenty-Eighth International Conference on Automated Planning and Scheduling,
ICAPS 2018. 2018, pp. 39-46.

Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, and Bram Ridder.
“Opportunistic Planning for Increased Plan Utility”. In: Proceedings of the ICAPS-16
Workshop on Planning and Robotics (PlanRob 2016). 2016.

Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. “Active learning for
extended finite state machines”. In: Formal Asp. Comput. 28.2 (2016), pp. 233-263.

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. “Multi-modal Synthe-
sis of Regular Expressions”. In: Programming Language Design and Implementation
(PLDI). 2020.

Yanju Chen, Ruben Martins, and Yu Feng. “Maximal Multi-layer Specification Syn-
thesis”. In: Foundations of Software Engineering (FSE). 2019. DO1: 10 .1145/
3338906.3338951.

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion. A Bradford Book, 2005.

https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/3338906.3338951

Bibliography 135

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. “Learning
Assumptions for Compositional Verification”. In: TACAS. Vol. 2619. Lecture Notes in
Computer Science. Springer, 2003, pp. 331-346.

Andrew Coles, Shahaf Shperberg, Erez Karpas, Solomon Shimony, and Wheeler
Ruml. “Beyond Cost-to-go Estimates in Situated Temporal Planning”. In: Proceedings
of the ICAPS Workshop on Heuristics and Search for Domain-independent Planning
(HSDIP). 2019.

Werner Damm and David Harel. “LSCs: Breathing Life into Message Sequence
Charts”. In: Formal Methods Syst. Des. 19.1 (2001), pp. 45-80. DOI: 10.1023/A:
1011227529550.

Werner Damm, Tobe Toben, and Bernd Westphal. “On the Expressive Power of
Live Sequence Charts”. In: Program Analysis and Compilation, Theory and Practice,
Essays Dedicated to Reinhard Wilhelm on the Occasion of His 60th Birthday. 2006,
pp. 225-246. DOI: 10.1007/978-3-540-71322-7_11.

Jeanette Daum, Alvaro Torralba, Jorg Hoffmann, Patrik Haslum, and Ingo Weber.
“Practical Undoability Checking via Contingent Planning”. In: Proceedings of the
Twenty-Sixth International Conference on Automated Planning and Scheduling, ICAPS
2016. 2016, pp. 106-114.

Giuseppe De Giacomo and Moshe Y. Vardi. “Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces”. In: International Joint Conference on Artificial
Intelligence (IJCAI). 2013.

Giuseppe De Giacomo and Moshe Y. Vardi. “Synthesis for LTL and LDL on Finite
Traces”. In: International Joint Conference on Artificial Intelligence (IJCAI). 2015.

Leonardo De Moura and Nikolaj Bjgrner. “Z3: An Efficient SMT Solver”. In: Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08.
2008.

J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit. “Collision-
Free Reactive Mission and Motion Planning for Multi-Robot Systems”. In: ISRR.
2015.

A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia. “DRONA: A Framework for
Safe Distributed Mobile Robotics”. In: ICCPS. 2017, pp. 239-248.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, Sailesh R, and Subhajit Roy. “Program synthesis using natural language”. In:
International Conference on Software Engineering (ICSE). 2016. DO1: 10.1145/
2884781.2884786.

Thomas G. Dietterich. “Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition”. In: CoRR ¢s.1.G/9905014 (1999). URL: https : / /
arxiv.org/abs/cs/9905014.

https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1007/978-3-540-71322-7_11
https://doi.org/10.1145/2884781.2884786
https://doi.org/10.1145/2884781.2884786
https://arxiv.org/abs/cs/9905014
https://arxiv.org/abs/cs/9905014

Bibliography 136

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]
[80]

Thomas G. Dietterich. “Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition”. In: J. Artif. Intell. Res. 13 (2000), pp. 227-303.

Austin J. Dionne, Jordan Tyler Thayer, and Wheeler Ruml. “Deadline-Aware Search
Using On-Line Measures of Behavior”. In: Proceedings of the Fourth Annual Sympo-
sium on Combinatorial Search, SOCS 2011. 2011.

Dana Drachsler-Cohen, Sharon Shoham, and Eran Yahav. “Synthesis with Abstract
Examples”. In: Computer Aided Verification (CAV). 2017. DOI: 10.1007/978-3~-
319-63387-9_13.

Matthew B Dwyer, George S Avrunin, and James C Corbett. ‘“Patterns in property
specifications for finite-state verification”. In: Proceedings of the 21st international

conference on Software engineering. 1999, pp. 411-420.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns in Property
Specifications for Finite-State Verification”. In: International Conference on Software
Engineering (ICSE). 1999. DO1: 10.1145/302405.302672.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Property Specification
Patterns for Finite-state Verification™. In: Proceedings of the Second Workshop on
Formal Methods in Software Practice. FMSP °98. Clearwater Beach, Florida, USA:
ACM, 1998, pp. 7-15. 1SBN: 0-89791-954-8. DOI: 10.1145/298595.298598.
URL: http://doi.acm.org/10.1145/298595.298598.

Riidiger Ehlers. “ACTL N LTL Synthesis”. In: CAV. Vol. 7358. Lecture Notes in
Computer Science. Springer, 2012, pp. 39-54.

Riidiger Ehlers. “Computing the Complete Pareto Front”. In: CoRR abs/1512.05207
(2015). URL: http://arxiv.org/abs/1512.05207.

Riidiger Ehlers, Ivan Gavran, and Daniel Neider. “Learning Properties in LTL N
ACTL from Positive Examples Only”. In: FMCAD. IEEE, 2020, pp. 104-112.

A. Elfes. “Using occupancy grids for mobile robot perception and navigation”. In:
IEEE Computer 22(6) (1989), pp. 46-57.

E. M. Eppstein. ROS navigation stack. http://wiki.ros.org/navigation.

Indigo version.
M. A. Erdmann and T. Lozano-Pérez. “On multiple moving objects”. In: ICRA. 1986.
P. Eyerich, R. Mattmiiller, and G. Roger. “Using the Context-Enhanced Additive

Heuristic for Temporal and Numeric Planning”. In: Towards Service Robots for
Everyday Environments. Springer, 2012, pp. 49-64. ISBN: 978-3-642-25116-0. DOI:
10.1007/978-3-642-25116-0_6. URL: http://dx.doi.org/10.
1007/978-3-642-25116-0_6.

https://doi.org/10.1007/978-3-319-63387-9_13
https://doi.org/10.1007/978-3-319-63387-9_13
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/298595.298598
http://doi.acm.org/10.1145/298595.298598
http://arxiv.org/abs/1512.05207
http://wiki.ros.org/navigation
https://doi.org/10.1007/978-3-642-25116-0_6
http://dx.doi.org/10.1007/978-3-642-25116-0_6
http://dx.doi.org/10.1007/978-3-642-25116-0_6

Bibliography 137

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw
Wang. “Extending Automated Compositional Verification to the Full Class of Omega-
Regular Languages”. In: Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Vol. 4963. Lecture Notes in Computer
Science. Springer, 2008, pp. 2-17. DOI: 10.1007/978-3-540-78800-3_2.

Maximilian Fickert, Ivan Gavran, Ivan Fedotov, Jorg Hoffmann, Rupak Majumdar,
and Wheeler Ruml. “Choosing the Initial State for Online Replanning”. In: AAAL
AAAI Press, 2021, pp. 12311-12319.

Nathanaél Fijalkow and Guillaume Lagarde. “The Complexity of Learning Linear
Temporal Formulas from Examples”. In: CoRR abs/2102.00876 (2021).

R. Fikes and N. J. Nilsson. “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving”. In: Artif. Intell. 2.3/4 (1971), pp. 189-208. DOI: 10.
1016/0004-3702(71) 90010~-5. URL: http://dx.doi.org/10.1016/
0004-3702(71)90010-5.

E. Filiot, N. Jin, and J.-F. Raskin. “Antichains and compositional algorithms for LTL
synthesis”. In: FMSD 39.3 (2011), pp. 261-296. DOI: 10.1007/s10703-011~
0115-3.URL: http://dx.doi.org/10.1007/s10703-011-0115-3.

C. Finucane, Gangyuan Jing, and H. Kress-Gazit. “LTLMoP: Experimenting with
language, Temporal Logic and robot control”. In: IROS. 2010, pp. 1988—1993.

Daniel Furelos-Blanco, Mark Law, Alessandra Russo, Krysia Broda, and Anders
Jonsson. “Induction of Subgoal Automata for Reinforcement Learning”. In: AAAL
AAAI Press, 2020, pp. 3890-3897.

Maor Gaon and Ronen I. Brafman. “Reinforcement Learning with Non-Markovian
Rewards”. In: AAAI. AAAI Press, 2020, pp. 3980-3987.

Ivan Gavran, Eva Darulova, and Rupak Majumdar. “Interactive synthesis of temporal
specifications from examples and natural language”. In: Proc. ACM Program. Lang.
4.00PSLA (2020), 201:1-201:26.

Ivan Gavran, Rupak Majumdar, and Indranil Saha. “Antlab: A Multi-Robot Task
Server”. In: ACM Trans. Embedded Comput. Syst. 16.5s (2017), 190:1-190:19.

B. Gerkey and V. Rabaud. Slam Gmapping package. https://github.com/

ros-perception/slam_gmapping. Indigo version.

M. Ghallab, C. Aeronautiques, C. K. Isi, and D. Wilkins. PDDL: The Planning
Domain Definition Language. Tech. rep. CVC TR98003/DCS TR1165. Yale Center
for Computational Vision and Control, 1998.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning - theory and
practice. Elsevier, 2004. ISBN: 978-1-55860-856-6.

https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1007/s10703-011-0115-3
https://github.com/ros-perception/slam_gmapping
https://github.com/ros-perception/slam_gmapping

Bibliography 138

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. “Synthesis of
AMBA AHB from formal specification: a case study”. In: International Journal on
Software Tools for Technology Transfer 15.5 (2013), pp. 585-601. DO1: 10.1007/
s10009-011-0207-9.

E. Mark Gold. “Language Identification in the Limit”. In: Information and Control
10.5 (1967), pp. 447-474.

Erich Grédel, Wolfgang Thomas, and Thomas Wilke, eds. Automata, Logics, and Infi-
nite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001]. Vol. 2500. Lecture Notes in Computer Science. Springer, 2002.

Nicola Muscettola Gregory, Gregory A. Dorais, Chuck Fry, Richard Levinson, and
Christian Plaunt. “IDEA: Planning at the Core of Autonomous Reactive Agents”. In:
in Proceedings of the 3rd International NASA Workshop on Planning and Scheduling
Jor Space. 2002.

Martin Grohe, Christof Loding, and Martin Ritzert. “Learning MSO-definable hy-
potheses on strings”. In: International Conference on Algorithmic Learning The-
ory, ALT 2017, 15-17 October 2017, Kyoto University, Kyoto, Japan. Vol. 76. Pro-
ceedings of Machine Learning Research. PMLR, 2017, pp. 434-451. URL: http:
//proceedings.mlr.press/v76/grohel7a.html.

Martin Grohe and Martin Ritzert. “Learning first-order definable concepts over struc-
tures of small degree”. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society,
2017, pp. 1-12. URL: https://doi.org/10.1109/LICS.2017.8005080.

E. Guizzo. “Three Engineers, Hundreds of Robots, One Warehouse”. In: IEEE Spec-
trum 45.7 (2008), pp. 26-34. 1SSN: 0018-9235. DO1: 10.1109/MSPEC. 2008 .
4547508.

Sumit Gulwani and Mark Marron. “NLyze: Interactive Programming by Natural
Language for Spreadsheet Data Analysis and Manipulation”. In: Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data. 2014. DOI:
10.1145/2588555.2612177.

Y. Guo and L.E. Parker. “A distributed and optimal motion planning approach for
multiple mobile robots”. In: ICRA. 2002.

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques,
3rd edition. Morgan Kaufmann, 2011. 1SBN: 978-0123814791. URL: http://hanj.
cs.illinois.edu/bk3/.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths”. In: IEEE Trans. Systems Science and
Cybernetics 4.2 (1968), pp. 100-107.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom
Melham, and Daniel Kroening. “DeepSynth: Program Synthesis for Automatic Task
Segmentation in Deep Reinforcement Learning”. In: CoRR abs/1911.10244 (2019).

https://doi.org/10.1007/s10009-011-0207-9
https://doi.org/10.1007/s10009-011-0207-9
http://proceedings.mlr.press/v76/grohe17a.html
http://proceedings.mlr.press/v76/grohe17a.html
https://doi.org/10.1109/LICS.2017.8005080
https://doi.org/10.1109/MSPEC.2008.4547508
https://doi.org/10.1109/MSPEC.2008.4547508
https://doi.org/10.1145/2588555.2612177
http://hanj.cs.illinois.edu/bk3/
http://hanj.cs.illinois.edu/bk3/

Bibliography 139

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning
with Double Q-Learning”. In: Proc. AAAI’16. Phoenix, Arizona: AAAI Press, 2016,
pp. 2094-2100. URL: http://dl.acm.org/citation.cfm?id=3016100.
3016191.

Malte Helmert. “Concise Finite-Domain Representations for PDDL Planning Tasks”.
In: Artificial Intelligence 173 (2009), pp. 503-535.

Malte Helmert. “The Fast Downward Planning System”. In: J. Artif. Intell. Res. 26
(2006), pp. 191-246. DOI: 10.1613/jair.1705. URL: https://doi.org/
10.1613/jair.1705.

D. Hennes, D. Claes, W. Meeussen, and K. Tuyls. “Multi-robot Collision Avoidance
with Localization Uncertainty”. In: AAMAS. 2012, pp. 147-154. 1SBN: 0-9817381-1-7,
978-0-9817381-1-6.

Marijn Heule and Sicco Verwer. “Exact DFA Identification Using SAT Solvers”. In:
ICGI’2010°. Vol. 6339. Lecture Notes in Computer Science. Springer, 2010, pp. 66—
79.D01: 10.1007/978-3-642-15488-1_1.

Jorg Hoffmann. “The metric-FF Planning System: Translating "Ignoring Delete Lists"
to Numeric State Variables”. In: J. Artif. Int. Res. 20.1 (Dec. 2003), pp. 291-341. 1SSN:
1076-9757. URL: http://dl.acm.org/citation.cfm?i1id=1622452.
1622463.

Jorg Hoffmann. “Where ’Ignoring Delete Lists’ Works: Local Search Topology in
Planning Benchmarks”. In: J. Artif. Intell. Res. 24 (2005), pp. 685-758. DOI: 10 .
1613/jair.1747. URL: https://doi.org/10.1613/3air.1747.

Jorg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: Journal of Artificial Intelligence Research 14 (2001),
pp- 253-302.

Gerard J. Holzmann. “The Logic of Bugs”. In: Proceedings of the 10th ACM SIG-
SOFT Symposium on Foundations of Software Engineering. SIGSOFT °02/FSE-10.
Charleston, South Carolina, USA: Association for Computing Machinery, 2002, 81-87.
ISBN: 1581135149. pOI1: 10.1145/587051.587064. URL: https://doi—
org.ezp-prodl.hul.harvard.edu/10.1145/587051.587064.

Gerard J. Holzmann. “The logic of bugs”. In: Symposium on Foundations of Software
Engineering (FSE). 2002. DOI: 10.1145/587051.587064.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979. 1SBN: 0-201-02988-X.

Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. “Lazy
Abstraction-Based Controller Synthesis”. In: ATVA. Vol. 11781. Lecture Notes in
Computer Science. Springer, 2019, pp. 23-47.

http://dl.acm.org/citation.cfm?id=3016100.3016191
http://dl.acm.org/citation.cfm?id=3016100.3016191
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1705
https://doi.org/10.1007/978-3-642-15488-1_7
http://dl.acm.org/citation.cfm?id=1622452.1622463
http://dl.acm.org/citation.cfm?id=1622452.1622463
https://doi.org/10.1613/jair.1747
https://doi.org/10.1613/jair.1747
https://doi.org/10.1613/jair.1747
https://doi.org/10.1145/587051.587064
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/587051.587064
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/587051.587064
https://doi.org/10.1145/587051.587064

Bibliography 140

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. “Multi-
Layered Abstraction-Based Controller Synthesis for Continuous-Time Systems”. In:
HSCC. ACM, 2018, pp. 120-129.

W. N. N. Hung, X. Song, J. Tan, X. Li, J. Zhang, R. Wang, and P. Gao. “Motion
Planning with Satisfiability Modulo Theroes”. In: ICRA. 2014, pp. 113-118.

Rodrigo A Toro Icarte, Ethan Waldie, Toryn Klassen, Richard Valenzano, Margarita P.
Castro, and Sheila A. Mcllraith. “Learning Reward Machines for Partially Observable
Reinforcement Learning”. In: NeurIPS. 2019.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A.
Mcllraith. “Advice-Based Exploration in Model-Based Reinforcement Learning”.
In: Canadian Conference on Al. Vol. 10832. Lecture Notes in Computer Science.
Springer, 2018, pp. 72-83.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A.
Mcllraith. “Using Reward Machines for High-Level Task Specification and Decom-
position in Reinforcement Learning”. In: ICML’2018. 2018, pp. 2112-2121. URL:
http://proceedings.mlr.press/v80/icartel8a.html.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Q. Klassen, Richard Anthony Valenzano,
Margarita P. Castro, and Sheila A. Mcllraith. “Learning Reward Machines for Partially
Observable Reinforcement Learning”. In: NeurIPS. 2019, pp. 15497-15508.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. “PySAT: A Python
Toolkit for Prototyping with SAT Oracles”. In: SAT. 2018, pp. 428-437. DOI: 10.
1007/978-3-319-94144-8_26. URL: https://doi.org/10.1007/
978-3-319-94144-8_2¢.

Nils Jansen, Bettina Konighofer, Sebastian Junges, Alex Serban, and Roderick Bloem.
“Safe Reinforcement Learning Using Probabilistic Shields (Invited Paper)”. In: CON-
CUR. Vol. 171. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020,
3:1-3:16.

Natasha Yogananda Jeppu, Thomas F. Melham, Daniel Kroening, and John O’Leary.
“Learning Concise Models from Long Execution Traces”. In: DAC. IEEE, 2020, pp. 1-
6.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. “A Composable Specification
Language for Reinforcement Learning Tasks”. In: NeurIPS. 2019, pp. 13021-13030.

Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. “Zab: High-
performance broadcast for primary-backup systems”. In: Proceedings of the 2011
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2011, Hong Kong, China, June 27-30 2011. 2011, pp. 245-256. DOI1: 10.1109/
DSN.2011.5958223. URL: https://doi.org/10.1109/DSN.2011.
5958223.

Anthony Willem Kamp. “Tense Logic and the Theory of Linear Order”. PhD thesis.
University of California, Los Angeles, 1968.

http://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223

Bibliography 141

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

Joseph Kim, Christian Muise, Ankit Shah, Shubham Agarwal, and Julie Shah.
“Bayesian Inference of Linear Temporal Logic Specifications for Contrastive Ex-
planations”. In: IJCAI. ijcai.org, 2019, pp. 5591-5598.

Russell Knight, Gregg Rabideau, Steve A. Chien, Barbara Engelhardt, and Rob
Sherwood. “Casper: Space Exploration through Continuous Planning”. In: IEEE Intell.
Syst. 16.5 (2001), pp. 70-75.

Thomas Kollar, Vittorio Perera, Daniele Nardi, and Manuela M. Veloso. “Learning
environmental knowledge from task-based human-robot dialog”. In: ICRA. IEEE,
2013, pp. 4304-4309.

Zhaodan Kong, Austin Jones, Ana Medina Ayala, Ebru Aydin Gol, and Calin Belta.
“Temporal logic inference for classification and prediction from data”. In: 17th In-
ternational Conference on Hybrid Systems: Computation and Control (part of CPS
Week), HSCC’ 14, Berlin, Germany, April 15-17, 2014. ACM, 2014, pp. 273-282. URL:
http://doi.acm.org/10.1145/2562059.2562146.

Zhaodan Kong, Austin Jones, and Calin Belta. “Temporal Logics for Learning and
Detection of Anomalous Behavior”. In: IEEE Trans. Automat. Contr. 62.3 (2017),
pp- 1210-1222. po1: 10.1109/TAC.2016.2585083. URL: https://doi.
0org/10.1109/TAC.2016.2585083.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. “Temporal-Logic-Based Reactive
Mission and Motion Planning”. In: IEEE Transactions on Robotics (2009).

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. “Translating Struc-
tured English to Robot Controllers”. In: Advanced Robotics 22.12 (2008). DOI: 10.
1163/156855308X344864.

Hillel Kugler, David Harel, Amir Pnueli, Yuan Lu, and Yves Bontemps. ‘“Temporal
Logic for Scenario-Based Specifications”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, 11th International Conference, TACAS 2005, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Ed. by Nicolas Halbwachs and
Lenore D. Zuck. Vol. 3440. Lecture Notes in Computer Science. Springer, 2005,
pp. 445—460. 1SBN: 3-540-25333-5. DOI1: 10.1007/978-3-540-31980-1_29.
URL: https://doi.org/10.1007/b107194.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. “Hier-
archical deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation”. In: NeurlPS’2016. 2016, pp. 3675-3683.

Orna Kupferman and Moshe Y. Vardi. “Safraless Decision Procedures”. In: 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25
October 2005, Pittsburgh, PA, USA, Proceedings. IEEE Computer Society, 2005,
pp. 531-542.D01: 10.1109/SFCS.2005.66.

http://doi.acm.org/10.1145/2562059.2562146
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1163/156855308X344864
https://doi.org/10.1163/156855308X344864
https://doi.org/10.1007/978-3-540-31980-1_29
https://doi.org/10.1007/b107194
https://doi.org/10.1109/SFCS.2005.66

Bibliography 142

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. “General LTL Specification
Mining (T)”. In: 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. IEEE Computer
Society, 2015, pp. 81-92. URL: https://doi.org/10.1109/ASE.2015.71.

Seth Lemons, J. Benton, Wheeler Ruml, Minh Binh Do, and Sung Wook Yoon.
“Continual On-line Planning as Decision-Theoretic Incremental Heuristic Search”.
In: Embedded Reasoning, Papers from the 2010 AAAI Spring Symposium, Technical
Report §S-10-04. 2010.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.B. Scherl. “GOLOG: A Logic
Programming Language for Dynamic Domains”. In: J. Log. Program. 31.1-3 (1997),
pp- 59-83. DOI1: 10.1016/50743-1066(96) 00121~-5. URL: http://dx.
doi.org/10.1016/S0743-1066(96)00121-5.

Fei Li and H. V. Jagadish. “Constructing an Interactive Natural Language Interface
for Relational Databases”. In: PVLDB 8.1 (2014). poI: 10.14778 /2735461 .
2735468.

Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. “SUGILITE: Creating Multimodal
Smartphone Automation by Demonstration”. In: CHI. ACM, 2017, pp. 6038-6049.

Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. “Mining assumptions for synthesis”.
In: 9th IEEE/ACM International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011.1EEE, 2011, pp. 43—
50. URL: https://doi.org/10.1109/MEMCOD.2011.59705009.

V. Lifschitz and W. Ren. “A Modular Action Description Language”. In: AAAI. AAAI
Press, 2006, pp. 853-859.

Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell P. Marcus, and
Hadas Kress-Gazit. “Provably Correct Reactive Control from Natural Language”. In:
Auton. Robots 38.1 (2015). DOI: 10.1007/s10514-014-9418-8.

Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. “ARA*: Anytime
A* with Provable Bounds on Sub-Optimality”. In: Advances in Neural Information
Processing Systems 16 [Neural Information Processing Systems, NIPS 2003. Ed.
by Sebastian Thrun, Lawrence K. Saul, and Bernhard Scholkopf. MIT Press, 2003,
pp- 767-774.

Y. Lin and S. Mitra. “StarL: Towards a Unified Framework for Programming, Simu-
lating and Verifying Distributed Robotic Systems”. In: LCTES. 2015.

David Lo and Shahar Maoz. “Mining Scenario-Based Triggers and Effects”. In: 23rd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2008),
15-19 September 2008, L’Aquila, Italy. 2008, pp. 109-118. DO1: 10.1109/ASE.
2008.21.

https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1016/S0743-1066(96)00121-5
http://dx.doi.org/10.1016/S0743-1066(96)00121-5
http://dx.doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.1109/MEMCOD.2011.5970509
https://doi.org/10.1007/s10514-014-9418-8
https://doi.org/10.1109/ASE.2008.21
https://doi.org/10.1109/ASE.2008.21

Bibliography 143

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

David Lo and Shahar Maoz. “Specification mining of symbolic scenario-based mod-
els”. In: Proceedings of the 8th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE’ 08, Atlanta, Georgia, November
9-10, 2008. 2008, pp. 29-35.DOI: 10.1145/1512475.1512482.

Christof Loding, P. Madhusudan, and Daniel Neider. “Abstract Learning Frameworks
for Synthesis”. In: TACAS. Vol. 9636. Lecture Notes in Computer Science. Springer,
2016, pp. 167-185.

Lingzhi Luo, Nilanjan Chakraborty, and Katia P. Sycara. “Multi-robot assignment
algorithm for tasks with set precedence constraints”. In: /CRA. IEEE, 2011, pp. 2526—
2533.

Hang Ma, Wolfgang Honig, TK Satish Kumar, Nora Ayanian, and Sven Koenig. “Life-
long path planning with kinematic constraints for multi-agent pickup and delivery”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019,
pp- 7651-7658.

Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. “Lifelong Multi-Agent
Path Finding for Online Pickup and Delivery Tasks”. In: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017. 2017,
pp- 837-845.

Monika Maidl. “The Common Fragment of CTL and LTL”. In: FOCS 2000, Proceed-
ings. 2000, pp. 643-652. DOI: 10.1109/SFCS.2000.892332. URL: https:
//doi.org/10.1109/SFCS.2000.892332.

Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Damien Zufferey.
“Assume-Guarantee Distributed Synthesis”. In: IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 39.11 (2020), pp. 3215-3226.

Rupak Majumdar and Filip Niksic. “Why is random testing effective for partition tol-
erance bugs?” In: PACMPL 2.POPL (2018), 46:1-46:24. DO1: 10.1145/3158134.
URL: http://doi.acm.org/10.1145/3158134.

Oded Maler and Dejan Nickovic. “Monitoring Temporal Properties of Continuous
Signals”. In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis of Timed
Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant
Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings.
Vol. 3253. Lecture Notes in Computer Science. Springer, 2004, pp. 152—166. URL:
https://doi.org/10.1007/978-3-540-30206-3_12.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. “The Stanford CoreNLP Natural Language Processing Toolkit”.

In: Association for Computational Linguistics (ACL) System Demonstrations. 2014.

Mehdi Hafezi Manshadi, Daniel Gildea, and James F. Allen. “Integrating Program-
ming by Example and Natural Language Programming”. In: Conference on Artificial
Intelligence (AAAI). 2013.

https://doi.org/10.1145/1512475.1512482
https://doi.org/10.1109/SFCS.2000.892332
https://doi.org/10.1109/SFCS.2000.892332
https://doi.org/10.1109/SFCS.2000.892332
https://doi.org/10.1145/3158134
http://doi.acm.org/10.1145/3158134
https://doi.org/10.1007/978-3-540-30206-3_12

Bibliography 144

[163]

[164]

[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Mikaél Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. “User Interaction
Models for Disambiguation in Programming by Example”. In: User Interface Software
& Technology (UIST). 2015. DO1: 10.1145/2807442.2807459.

Conor McGann, Frederic Py, K Rajan, H Thomas, R Henthorn, and R McEwen.
“T-rex: A model-based architecture for auv control”. In: 3rd Workshop on Planning
and Plan Execution for Real-World Systems. Vol. 2007. 2007.

Andre Medeiros. ZooKeeper’s atomic broadcast protocol: Theory and practice. 2012.

Cetin Mericli, Steven D. Klee, Jack Paparian, and Manuela M. Veloso. “An interactive
approach for situated task specification through verbal instructions”. In: Autonomous
Agents and Multi-Agent Systems (AAMAS). 2014.

George A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM
38.11 (1995). 1ssN: 0001-0782. DOI: 10.1145/219717.219748.

Tom M. Mitchell. Machine learning. McGraw Hill series in computer science.
McGraw-Hill, 1997. 1SBN: 978-0-07-042807-2. URL: http://www.worldcat.
org/oclc/61321007.

Salar Moarref and Hadas Kress-Gazit. “Automated synthesis of decentralized con-
trollers for robot swarms from high-level temporal logic specifications”. In: Auton.
Robots 44.3-4 (2020), pp. 585-600.

Sara Mohammadinejad, Jyotirmoy V. Deshmukh, Aniruddh G. Puranic, Marcell
Vazquez-Chanlatte, and Alexandre Donzé. “Interpretable classification of time-series
data using efficient enumerative techniques”. In: HSCC. ACM, 2020, 9:1-9:10.

Matthew Molineaux, Matthew Klenk, and David Aha. “Goal-driven autonomy in a
Navy strategy simulation”. In: Twenty-Fourth AAAI Conference on Artificial Intelli-
gence. 2010.

Anténio Morgado, Carmine Dodaro, and Jodo Marques-Silva. “Core-Guided MaxSAT
with Soft Cardinality Constraints”. In: Principles and Practice of Constraint Program-
ming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings. Ed. by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer Science.
Springer, 2014, pp. 564-573. DO1: 10.1007/978-3-319-10428-7_41. URL:
https://doi.org/10.1007/978-3-319-10428-7_41.

L. De Moura and N. Bjgrner. “Z3: an efficient SMT solver”. In: TACAS. 2008, pp. 337—
340.

S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki. “SMT-Based
Synthesis of Integrated Task and Motion Plans from Plan Outlines”. In: ICRA. 2014.

Daniel Neider. “Applications of automata learning in verification and synthesis”.
PhD thesis. RWTH Aachen University, 2014. URL: http://darwin.bth.rwth-
aachen.de/opus3/volltexte/2014/5169.

https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/219717.219748
http://www.worldcat.org/oclc/61321007
http://www.worldcat.org/oclc/61321007
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-319-10428-7_41
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/5169
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/5169

Bibliography 145

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

Daniel Neider. “Computing Minimal Separating DFAs and Regular Invariants Using
SAT and SMT Solvers”. In: ATVA. Vol. 7561. Lecture Notes in Computer Science.
Springer, 2012, pp. 354-369.

Daniel Neider, Jean-Raphaél Gaglione, Ivan Gavran, Ufuk Topcu, Bo Wu, and Zhe
Xu. “Advice-Guided Reinforcement Learning in a non-Markovian Environment”. In:
AAAI AAAI Press, 2021, pp. 9073-9080.

Daniel Neider and Ivan Gavran. “Learning Linear Temporal Properties”. In: FMCAD.
IEEE, 2018, pp. 1-10.

Daniel Neider and Nils Jansen. “Regular Model Checking Using Solver Technologies
and Automata Learning”. In: NASA Formal Methods. Vol. 7871. Lecture Notes in
Computer Science. Springer, 2013, pp. 16-31.

Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learning”.
In: ICML. Morgan Kaufmann, 2000, pp. 663—-670.

Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-Lezama.
“Learning to Infer Program Sketches”. In: International Conference on Machine
Learning (ICML). 2019.

José Oncina and Pedro Garcia. “Inferring regular languages in polynomial updated
time”. In: Pattern recognition and image analysis: selected papers from the IVth
Spanish Symposium. World Scientific. 1992, pp. 49-61.

Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Berfrouei, and
Georg Weissenbacher. “Randomized Testing of Distributed Systems with Probabilistic
Guarantees”. In: Proceedings of the 2018 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA.
to appear. 2018.

M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems,
4th Edition. Springer, 2020.

Ronald Parr and Stuart J Russell. “Reinforcement learning with hierarchies of ma-
chines”. In: Advances in neural information processing systems. 1998, pp. 1043—
1049.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Curran As-
sociates, Inc., 2019, pp. 8024-8035. URL: http: //papers .neurips.cc/
paper/9015-pytorch—-an-imperative-style-high-performance-
deep—-learning-library.pdf.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Bibliography 146

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

Hila Peleg, Sharon Shoham, and Eran Yahav. “Programming Not Only by Example”.
In: International Conference on Software Engineering (ICSE). 2018. DOI1: 10.1145/
3180155.3180189.

Vittorio Perera and Manuela M. Veloso. “Handling Complex Commands as Service
Robot Task Requests”. In: International Joint Conference on Artificial Intelligence
(IJCAI). 2015.

Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. IEEE Computer Society, 1977, pp. 46-57.

Illia Polosukhin and Alexander Skidanov. “Neural Program Search: Solving Pro-
gramming Tasks from Description and Examples”. In: International Conference on
Learning Representations (ICLR). 2018.

Oleksandr Polozov and Sumit Gulwani. “FlashMeta: a framework for inductive pro-
gram synthesis”. In: OOPSLA. ACM, 2015, pp. 107-126.

community project. ROS2. https://index.ros.org/doc/ros2/. Accessed:
November 2016.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. “ROS: an open-source Robot Operating System”. In: ICRA Workshop on
Open Source Software. 2009.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
ISBN: 1-55860-238-0.

V. Raman, N. Piterman, and H. Kress-Gazit. “Provably correct continuous control for
high-level robot behaviors with actions of arbitrary execution durations”. In: /CRA.
2013, pp. 4075—4081.

Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and Sanjit A
Seshia. “Reactive synthesis from signal temporal logic specifications”. In: Proceedings
of the 18th international conference on hybrid systems: Computation and control.
2015, pp. 239-248.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. “Compositional Pro-
gram Synthesis from Natural Language and Examples”. In: International Joint Con-
ference on Artificial Intelligence (IJCAI). 2015.

Heinz Riener. “Exact synthesis of LTL properties from traces”. In: 2019 Forum for
Specification and Design Languages (FDL). IEEE. 2019, pp. 1-6.

Ronald L. Rivest and Robert E. Schapire. “Inference of Finite Automata Using Homing
Sequences”. In: Inf. Comput. 103.2 (1993), pp. 299-347.

Wheeler Ruml, Minh Binh Do, Rong Zhou, and Markus P. J. Fromherz. “On-line Plan-
ning and Scheduling: An Application to Controlling Modular Printers”. In: Journal
Artificial Intelligence Research 40 (2011), pp. 415-468.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, 2009.

https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/3180155.3180189
https://index.ros.org/doc/ros2/

Bibliography 147

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia. “Automated com-
position of motion primitives for multi-robot systems from safe LTL specifications”.
In: IROS. IEEE. 2014, pp. 1525-1532.

I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia. “Implan: Scalable
Incremental Motion Planning for Multi-Robot Systems”. In: ICCPS. 2016.

Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J. Pappas, and Sanjit
A. Seshia. “Implan: Scalable Incremental Motion Planning for Multi-Robot Systems”.
In: ICCPS. IEEE Computer Society, 2016, 43:1-43:10.

Stanly Samuel, Kaushik Mallik, Anne-Kathrin Schmuck, and Daniel Neider. “Resilient
Abstraction-Based Controller Design”. In: CoRR abs/2008.06315 (2020).

Sven Schewe and Bernd Finkbeiner. “Bounded Synthesis”. In: ATVA. Vol. 4762.
Lecture Notes in Computer Science. Springer, 2007, pp. 474-488.

Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2008. ISBN: 978-0-521-86572-2. URL: http : / /
www . cambridge .org/gb/knowledge/isbn/iteml1173872/?site\

_locale=en_GB.

Shahaf S. Shperberg, Andrew Coles, Bence Cserna, Erez Karpas, Wheeler Ruml,
and Solomon Eyal Shimony. “Allocating Planning Effort When Actions Expire”.
In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019. 2019,
pp- 2371-2378.

Rishabh Singh and Sumit Gulwani. “Predicting a Correct Program in Programming
by Example”. In: CAV (1). Vol. 9206. Lecture Notes in Computer Science. Springer,
2015, pp. 398-414.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
intelligence 112.1-2 (1999), pp. 181-211.

Jordan T. Thayer and Wheeler Ruml. “Using Distance Estimates in Heuristic Search”.
In: Proceedings of the Nineteenth International Conference on Automated Planning
and Scheduling (ICAPS-09). 2009.

Theano Development Team. “Theano: A Python framework for fast computation
of mathematical expressions”. In: arXiv e-prints abs/1605.02688 (May 2016). URL:
http://arxiv.org/abs/1605.02688.

Jesse Thomason, Shiqi Zhang, Raymond J. Mooney, and Peter Stone. “Learning to
Interpret Natural Language Commands through Human-Robot Dialog”. In: IJCAIL
AAAI Press, 2015, pp. 1923-1929.

M. Turpin, K. Mohta, N. Michael, and V. Kumar. “Goal Assignment and Trajectory
Planning for Large Teams of Aerial Robots”. In: RSS. 2013.

http://www.cambridge.org/gb/knowledge/isbn/item1173872/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1173872/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1173872/?site_locale=en_GB
http://arxiv.org/abs/1605.02688

Bibliography 148

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

Prashant Vaidyanathan, Rachael Ivison, Giuseppe Bombara, Nicholas A. DeLateur,
Ron Weiss, Douglas Densmore, and Calin Belta. “Grid-based temporal logic in-
ference”. In: 56th IEEE Annual Conference on Decision and Control, CDC 2017,
Melbourne, Australia, December 12-15, 2017. 2017, pp. 5354-5359. URL: https:
//doi.org/10.1109/CDC.2017.8264452.

Leslie G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (1984),
pp. 1134-1142. DO1: 10.1145/1968.1972. URL: http://doi.acm.org/
10.1145/1968.1972.

Marcell Vazquez-Chanlatte, Susmit Jha, Ashish Tiwari, Mark K. Ho, and Sanjit A.
Seshia. “Learning Task Specifications from Demonstrations”. In: Neural Information
Processing Systems (NeurIPS). 2018.

M. Cip, P. Novik, M. Selecky, J. Faigl, and J. Vokiinek. “Asynchronous decentralized

prioritized planning for coordination in multi-robot system”. In: /ROS. 2013.

P. Velagapudi, K. Sycara, and P. Scerri. “Decentralized prioritized planning in large
multirobot teams”. In: /ROS. 2010.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Interactive Query Synthesis
from Input-Output Examples”. In: SIGMOD Conference. 2017.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing highly expres-
sive SQL queries from input-output examples”. In: Programming Language Design
and Implementation (PLDI). 2017.

Sida I. Wang, Samuel Ginn, Percy Liang, and Christopher D. Manning. “Naturalizing
a Programming Language via Interactive Learning”. In: ACL (1). Association for

Computational Linguistics, 2017, pp. 929-938.

Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki. “Task and Motion Policy
Synthesis as Liveness Games”. In: ICAPS. 2016, p. 536.

Andrzej Wasylkowski and Andreas Zeller. “Mining temporal specifications from
object usage”. In: Autom. Softw. Eng. 18.3-4 (2011), pp. 263-292. URL: https:
//doi.org/10.1007/s10515-011-0084-1.

Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning
8.3 (1992), pp. 279-292. 1SSN: 1573-0565. DOI: 10.1007/BF00992698. URL:
https://doi.org/10.1007/BF00992698.

C.A. Webber. XUDD: A Python Actor Model System. https://github.com/
xudd/xudd. Accessed: March 2016, Branch: master.

K. W. Wong, C. Finucane, and H. Kress-Gazit. “Provably-correct robot control with
LTLMoP, OMPL and ROS”. In: IROS. 2013, pp. 2073-2073. DOI: 10.1109/IROS.
2013.6696636.

T. Wongpiromsarn, U. Topcu, and R. M. Murray. “Receding Horizon Temporal Logic
Planning”. In: IEEE Trans. Automat. Contr. (2012).

https://doi.org/10.1109/CDC.2017.8264452
https://doi.org/10.1109/CDC.2017.8264452
https://doi.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
https://doi.org/10.1007/s10515-011-0084-1
https://doi.org/10.1007/s10515-011-0084-1
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://github.com/xudd/xudd
https://github.com/xudd/xudd
https://doi.org/10.1109/IROS.2013.6696636
https://doi.org/10.1109/IROS.2013.6696636

Bibliography 149

[230] T. Wongpiromsarn, U. Topcu, and R.M. Murray. “Receding Horizon Temporal Logic
Planning”. In: Trans. on Automatic Control 57.11 (2012), pp. 2817-2830. ISSN:
0018-9286. p01: 10.1109/TAC.2012.2195811.

[231] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu,
and Bo Wu. “Joint Inference of Reward Machines and Policies for Reinforcement
Learning”. In: ICAPS. AAAI Press, 2020, pp. 590-598.

[232] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. “SQLizer: query
synthesis from natural language”. In: PACMPL 1.00PSLA (2017). DOI: 10.1145/
3133887.

https://doi.org/10.1109/TAC.2012.2195811
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887

150

Curriculum Vitae

Research Interests

Program Synthesis, Interpretable Learning, Human-Robot Interaction, Software Verification

Education and employment

2016 — 2021 Doctoral student, Max Planck Institute for Software Systems, Kaiserslautern, Germany.
2013 — 2016 Research Engineer, Bellabeat Inc, Zagreb, Croatia.

2011 - 2013 M.Sc., Mathematics and Computer Science, University of Zagreb, Zagreb, Croatia.

2008 — 2011 B.Sc., Mathematics, University of Zagreb, Zagreb, Croatia.

	Summary
	Zusammenfassung
	Acknowledgements
	Introduction
	Antlab: a Multi-Robot Task Server
	The Programming Model
	Antlab Implementation
	Task Assignment and Path Planning
	Evaluation
	Related work
	Conclusion

	Inferring Specifications from Examples
	Inferring Specifications from Positive and Negative Examples
	Preliminaries
	Inferring a Minimal formula with a SAT-based Learning Algorithm
	A Decision Tree Based Learning Algorithm
	Evaluation
	Related Work

	Inferring Specifications from Positive Examples Only
	Preliminaries
	Learning Universal Very-Weak Automata
	Evaluation
	Related Work

	Interactive Specification Inference for Robotic Systems
	Overview and Motivating Example
	Formal Models for Tasks and the World
	Interactive Specification Synthesis
	Grammar-based Generalization of Learnt Specifications
	Evaluation
	Related work

	Conclusion

	Planning with Multiple Speculative Initial States
	Introduction
	Problem Definition
	The Multiple Initial State Technique (MIST)
	MIST for Recoverable Tasks
	Evaluation
	Related Work
	Conclusion

	Reinforcement Learning with Non-Markovian Rewards
	Introduction
	Preliminaries
	Joint Inference of Reward Machines and Policies (JIRP)
	JIRP Case Studies
	RL in non-Markovian Environments with Advice (JIRPAdv)
	Optimal Convergence
	JIRPAdv Case Studies
	Related Work
	Conclusion

	Conclusion
	Bibliography
	Curriculum Vitae

