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Abstract

This report contains the following three papers about computa-

tions of rarefied gas flows:

a)

b)

c)

Rarefied gas flow around a disc with different angles of
attack, published in the proceedings of the 17th RGD
Symposium, Aachen, 1990

Hypersonic flow calculations around a 3D-deltawing at low
Knudsen numbers, published in the proceedings of the 17th RGD
Symposium, Aachen, 1990

Rarefied gas flow around a 3D-deltawing, published in the
proceedings of the Workshop on Hypersonic Flows for Reentry

Problems, Part 1, Antibes, France, January 22-25, 1990.

All computations are part of the HERMES Research and Development

Program.
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RAREFIED GAS FLOW ARSUND A DISC WITH DIFFERENT ANGLES OF ATTACK
F.Gropengiesser, H.Neunzert, J.Struckmeier, B.Wiesen

AG Technomathematik
University of Kaiserslautern
Federal Republic of Germany

In this paper we will present a comparison between
measurements from a windtunnel and calculations performed
by the Finite-Point-set-Method ( FPM ) for solving the
Boltzmann equation.
The case considered is the flow around a circular disc at
different angles of attack. The comparison covers the whole
range of Knudsen numbers from nearly continuum flow ( Kn = 0.1 )
to nearly free molecular flow ( Kn = 20. ). Furthermore we
will investigate the dependence of the aerodynamic coeffi-
cients on different gas-surface interaction models, especially
the Maxwell-model with an accomodation coefficient. The
measurements shown in this paper were performed by Legge,
DLR Goettingen, FR Germany.

I. Introduction

Due to the european space project HERMES there is a growing
interest in fast and reliable codes for the numerical calculation of
flow fields around bodies in the range of free molecular flow,
rarefied gas and transition regime.

The codes mostly used so far are based on the DSMC method introduced
by 8ird [1] in 1968. This method is based on the following philosophy
[2}: one tries “o imitate the microscopic behavior of the gas on the
computer and do2s not care for any clear mathematical formulation

of the problem. DSMC is very succesful in practice but from a
mathematical point of view unsatisfactory since questions about the
quality of the approximations can only be answered in test cases and
not in terms of general statements independent of a specific situation.
As an alternative to this method we developed the Finite-Pointset-
Method ( FPM ), which is directly related to the Boltzmann equation
and does not suffer from a lack of mathematical foundation. In
chapter II we shortly describe the ideas of the FPM for the case of a
monoatomic gas. The more general case of gases with internal degrees
of freedom is discussed in [4]

To show the practical efficiency of the method we implemented a code
to calculate the 3d-flow field around a flat disc with different
angles of attack. In this special case we have the opportunity to
compare our numerical results with experimental data obtained by Legge
[6] for Knudsen numbers ranging from near continuum regime up to near
free molecular flow. In the present paper we show the results for a
monoatomic gas. A comparison of the results for a diatomic gas can be
found elsewhere [6

The computational data to perform these calculations are described in
chapter III. In chapter IV we describe the calculated aerodynamic
coefficients. In the last chapter of the paper we discuss the
influence of the specific gas-surface interaction model on the aero-

dynamic coefficients.



II. The Finite-Pointset-Method

The F?H is'a numerical method to solve the Boltzmann equation, which
descr}bes in the case of a monoatomic gas the evolution of a position-
velocity space distribution function f(t,x,v) with x ¢ ¢ R}, v ¢ R?.
The basic idea we use is [3] : approximate a given density function by
a finite point set w, = (x ,viJ,...,(xN,vN)], such that w, converges
to f with N tending go infinity. W

What we have to define is a distance between w and f. This distance
will be explained here in a simple one-dimensional situation - the ex-
tension to_the higher dimensional case can be found in [3]

Let f:[a,b] > R be a non-negative function with

[ f(x)dx = 1

[a,b]
and wy an approximation of f by a finite point set ( for a sketch see
figurg 1) . We define the discrepancy of Wy with respect to f by

1
sup | [ f£(x)dx - 5 #{ x.: x.e [a",b" ]} |

[a",b"] ¢ [a,b] [a",b .

1) We call a sequence of finite points a convergent approximation of f
if its discrepancy tends to zero if N tends to infinity.

2) For every fixed N one has to find the sequence w,*, which minimizes
the discrepancy with respect to f. mN* is called the optimal appro-
ximation of f.

3) The expectation values of functions & with respect to f can be
approximated -by averages of ¢ over wy with accuracy
[ o) E(x)dx - § 2 o(x,) ]| s Var (2)D(wy, f)
where Var(¢) is the variation of ¢ [3].

The general concept of FPM can now be formulated as follows

(1) Given the initial value f°, find a good approximation by a finite

D(mN,f) =

pointset wﬁ - {(x“,vi),...,(xﬂ,v“) }

(2) Find a time evolu%ion of the poi”ts
with wy (0) = mﬁ such that wy(t.) is a good approximation of
f(ti,...,...}, the solution of-“the Boltzmann equation at time
t, 2 jeAt. '

J
One may express this concept also by saying that one has to find an

algorithm constructing for each N a w] such that D(w’,f°) > 0 and one
has to find an evolution w,(t.) such ghat D(w,(t.),f(t.)) » 0 for
0<t.<T NTTJ N23 J

St<T.

ITITI.Calculations performed with the FPM

The FPM algorithms described in [3] and [4] for monoatomic and poly-
atomic gases respectively can be implemented in such a way that the
resulting code is almost completely vectorized.

In all our calculations we used a rectangular grid which was built up
by cubes of the same size. In the presented calculations of flows of
monoatomic gases the number of points was limited by 200.000. The
total number of time steps needed to reach the statiomary state and
to perform time averaging to smooth the data was 150 in each
calculation.

We have used the VP100 vector computer of Fujitsu, which has a peak
performance of 285 MFLOPS. The mean performance in our calculations
was about 60 MFLOPS. The maximum CPU time to perform a single run
was 420 seconds, the required main storage was lower than 11 MBytes
in each case.

These data show that our code makes it possible to perform extensive

parameters studies for the input data:
- instream velocity : Ma = 15.6 , instream temperature : 2.3 K



- Knudsen number: 0.1 - 20

- angle of attack: 45°, 0%, 759, go°,

- gas-surface interaction law: Maxwell interaction with variable
accomodation coefficient

- wall temperature: 189.8 K, which is the stagnation temperature.

IV. Aerodynamic coefficients

The results we obtained from our calculations may be divided into two
parts:
- qualitative values such as density field, temperature field, and
Mach field
- quantitative values: the aerodynamic coefficients.
Although the qualitative values can be very instructive to visualize
the properties of the flow, they are not easy to handle in experimental
considerations. :
For quantitive values the situation is quite different from the point
of view of the experimentalists: they can be measured quite
accurately. In addition aerodynamic coefficients are the deciding
parameters for the construction of a space shuttle, take for example
the lift-to-drag ratio. Therefore the numerical results for these
values should agree as well as possible with the measured ones.
Figure 2 shows a comparison of calculated and measured values for the
drag coefficient, figures 3, 4 and 5 show the comparison for lift,
pressure drag and friction drag respectively. As can be seen the main
differences arise in the case of the lift coefficient for high
Knudsen numbers, the worst case error being about 22%. The mean error
in this case is however about 6% which lies in the range of the

experimental inaccuracy.

V. Dependence of aerodynamic coefficients on the gas-surface inter-
action model

As shown in chapter IV. the comparison between measurements and
calculation with complete accomodation as gas-surface interaction is
not content in each cases. Especially for the 1lift coefficient at
high Knudsen numbers we get unsatisfactory results. However the
nunerical results tend to the analytical value of the free molecular
linit. The reason for this difference can be found by considering the
models used for the mathematical description of the gas by the
Boltzmann-Equation. One necessary model for the dynamic description
is the collision model, for example the hard-sphere gas in the actual
calculation. The other modelisation of nature is done by a simple
description of the gas-surface interaction. The aerodynanic
coefficients now seem to be more sensitive to the gas-surface inter-
action model than to the collision model.

Therefore we will give an investigation about the influence ot an
accomodation coefficient to the integrated surface properties. We will
focus especially on the Maxwell-model, which is given as a linear
combination of complete accomodation and specular reflection.

In the free molecular limit one can calculate analytically, that the
aerodynamic coefficients are given as the same linear combination of
the value for complete accomodation and specular reflection. For small
Knudsen numbers one will espect just a small change in the coefficients.
In the transitional regime it is possible to cover the dependence on
the accomodation coefficient by a simulation method.

We will present simulation results for two different Knudsen numbers,
namely 0.1 and 5.0, at an angle of attack of 45 degrees. Calculations
were performed for accomodation coefficients ranging from 0.0
(specular reflection) to 1.0 (complete accomodation) with a stepsize

of 0.1.



Figure (6) shows the drag coefficient, figure (7) the the lift
coefficient, figure (8) the pressure-drag coefficient and finally
figure (9) the friction-drag coefficient.

For the large Knudsen number 5.0 we get the expected linear behavior
of the aerodynamic coefficients. For the small Knudsen number the
influence of the accomodation coefficient is much weaker and we get
@ nonlinear dependence on the accomodation coefficient.

VI. References
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HYPERSONIC FLOW CALCULATIONS ARQUND A 3D-DELTAWING
AT LOW KNUDSEiN NUMBERS

F.Gropengiesser, H.Neunzert, J.Struckmeier and B.Wiesen

AG Technomathematik
University of Kaiserslautern

Federal Republic of Germany

This paper presents numerical results for hypersonic
flows around a 3d-deltawing at low Knudsen numbers, i.e.
near the continuum regime. The underlying body geometry
corresponds to one of the testcases on rarefied gas regime
proposed for the workshop on hypersonic flow, which was held
in Antibes, France, January 1990.

The numerical method used in the calculations is the
so-called Finite-Pointset-Method ( FPM ) developed at the
university of Kaiserslautern during the last year. The
paper shows that the FPM is an efficient alternative
method beside the well-known Monte-Carlo-methods ( DSMC ).

I. Introduction

In this paper we will focuse only on the numerical results and
the computational effort of the FPM. The theoretical part of the
FPM and a detailled description of the method can be found in
reference [1}. The flow around a 3d-body at low Knudsen numbers
is a pretentious testcase for numerical methods in the rarefied gas
regime.

The geonetry of the deltawing is shown in figure 1. The Knudsen
number in this case is defined by the ratio between the mean free
path and the length of the deltawinqg.

TT. Numerical results

We will present calculations at a Knudsen number of 0.01 and

0.1 in the case of the monatomic gas Argon. The case of diatomic

as Nitrogen with a Larsen-Borgnakke model can be found in reference
?2]. The angle of attack was 30 degree in both cases. The wall
temperature was fixed at 620 K, the instream temperature 13.5 K and
the Mach Number 20.2. The gas-surface-interaction was complete
accomodation and the particle collision were performed by a hard-
sphere-scattering. The following table gives the results for
integrated surface quantities at a Knudsen number 0.01

heat transfer coefficient CH =0.38
pressure-drag coefficient CDP = 1.29
friction-drag coefficient CDF = 0.04
lift coefficient CL = 0.74
drag coefficient CD = 1.05

The following figures present results for a Knudsen number of 0.1.
Figure 2 shows the density contours near the symmetry plane, figure
3 the temperature, figure 4 the Mach contours near the symmetry
plane.



Figure 6 to 8 show the corresponding contours in the cross-sectional
plane at x/L = .8, where the plane is nerpendicular to the upper
surface of the deltawing as shown in figure 5.

III. Computational effort

The computational effort of a simulation method in a realistic
flow situation depends mainly on three conditions

(1) the Knudsen number

The space discretization of the flowfield, which is necessary to
perform the collision procedure and the sampling of macroscopic
quantities, has to be correlated to the Knudsen number. As a conse-
quence the number of cells needed to get a reasonable resolution of
the flow field increases with a decreasing Knudsen number and the
ratio between the number of cells and the Knudsen number decreases
dramatically in three space dimensions.

(ii) the convergence to the stationary state

All existing simulation methods try to reproduce the instationary

flow problem. On the other hand one is mainly interested on the flow
structure in the stationary state. Therefore the number of timesteps,
which have to be performed to reach the stationary state, characterize
the efficiency of a numerical method.

(iii) the fluctuations in the stationary

A simulation method produces scattered data, because of the finite
number of points, which approximate the exact gas distribution. To
get smooth data it is necessary to perform time averaging procedures
in the stationary state. Dependent on the quality of a single
sinulation step, the number of timesteps, which are necessary to
reach the stationary state.

The required CPU-time at a Knudsen number of 0.01 was 7.5 hours.
The calculations were performed at a Siemens VP100 at the university
of Kaiserslautern with a peak performance of 285 MFLOPS ( 3.5 hours )
and at a Siemens VP400 at the university of Karlsruhe with a peak
performance of about 1.140 MFLOPS ( 4 hours ).
The required main storage was 63 MB at the VP100 and 183 MB at the
VP400. The number of particles used in the simulation was about
3.6 millions and the number of cells increases from about 15.000 at the
beginning to about 70.000 in the stationary state. 6.5 hours were
needed to reach the stationary state, mainly to build up the adaptive
grid structure and 1 hour was needed to perform the time averaging
procedure. At larger Knudsen numbers and more rarefied flow conditions
the CPU-time is much less than above, for example about 1 hour at
Kn = 0.1. In the case of diatomic gas ( including the Larsen-Borgnakke
model for the internal energy ) the required CPU-time was about 20%

higher.
IV. References

[1] F.Gropengiesser, H.Neunzert, J.Struckmeier
Conputational methods for the Boltzmann ecuation, Berichte der
Arbeitsgruppe Technomathematik, Universitaet Kaiserslautern, to
appear in "Venice 1998 : The State of Art in Appl. and Industrial
Math.", ed. R. Spigler, Kluwer acad. publ., 1990.

[2] F.Gropengiesser, H.Neunzert, J.Struckmeier, B.Wiesen
Hypersonic flow calculation around a deltawing, Workshop on
Hypersonic flows, Antibes, France, 1990, in preparation.
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Rarefied Gas Flow Around A 3D-Deltawing

F. Gropengiesser, H. Neunzert, J. Struckmeier, B. Wiesen

Laboratory for Technomathematics
University Kaiserslautern
Federal Republic of Germany

This paper presents numerical results for hypersonic flows around a 3D-deltawing at
a low Knudsen number. The underlying body geometry as well as the physical parame-
ters correspond to testcase 7.2.1. of the workshop. The numerical method used for the
calculations is the Finite-Pointset-Method (FPM) developed at the University of Kaisers-
lautern since 1987. The paper gives a short introduction to the method and then follows
the required output formats of the workshop. Further calculations can be found in [3],[4].

Figure 1: Illustration of the deltawing

69.9985°

R = 0.0013

1 The Finite Pointset-Method

The FPM is a numerical method to solve the Boltzmann equation, which describes in the
case of a monoatomic gas the evolution of a position-velocity space distribution function
f(t,z,v) with z € @ C R®>, v € R The basic idea we use is [1]: approximate a
given density function by a finite point set wy = {(z1,v1),--,(zn,vn)}, such that wy
converges to f with N tending to infinity.



What we have to define is a distance between wy and f. This distance will be explained
here in a simple one-dimensional situation - the extension to the higher dimensional case
can be found in [1]. Let f : [a,b] — R be a non-negative function with

] f(z)dz = 1
[a,8]

and wy an approximation of f by a finite point set (for a sketch see the following
figure).

We define the discrepancy of wy with respect to f by

1
D(wn,f) = su z)dr — —#{z;:z; € [a',V

1. We call a sequence of finite points a convergent approximation of f if its dicrepancy
tends to zero if N tends to infinity.

2. For every fixed N one has to find the sequence wy*, which minimizes the discrepancy
with respect to f. wy* is called the optimal approximation of f.

3. The expectation values of functions ® with respect to f can be approximated by
averages of ® over wy* with accuracy

1 p '
| [ @@ f(2)dz - 5 0 8(2i)| < Var(@) Dl /)
where Var(®) is the variation of ¢ [1].

The general concept of FPM can now be formulated as follows:

1. Given the initial value f°, find a good approximation by a finite pointset w% =

{(x?,vf), Tt (x?\hvjov)}'

2. Find a time evolution of the points

t; = wn(t;) = {(z1(¢)),v1(t5)), - - (2n(ts), vn(t5)) }
with wy(0) = W} such that wy(¢;) is a good approximation of f(;,---,--), the
solution of the Boltzmann equation at time ¢; = j - At.

One may express this concept also by saying that one has to find a algorithm con-
structing for each N a w}; such that D(w}, f°) — 0 and one has to find a evolution wy(t;)
such that D(wn(t;), f(t;)) = 0for 0 <¢; <T.

2



2 Results of calculations for testcase 7.2.1.: (testgas
Nitrogen N,)

I. General data

a) computer : 1. VP 400 Fujitsu
¢ 1. VP 100 Fujitsu
main storage : 1. 256 Mbyte main storage unit

256 Mbyte vector storage unit
ii. 128 Mbyte main storage unit

maximal performance : 1. 1140 Mflops
1. 285 Mflops
mean performance : 1. 90 Mflops
1. 60 Mflops
b) required cpu-time : 12.5 hours
(7.5 h on the VP400, 5h on the VP 100)
required computer storage : 199 Mbyte on the VP 400
76 Mbyte on the VP 100
c) cpu-time until stationary state : 11 hours
(6h on the VP 400, 5 h on the VP 100)
cpu-time for averaging : 1.5 hours on the VP 400
d) collision model : Larsen-Borgnakke model
gas-surface-interaction model  : complete accomodation

e) The mean free path of the upstreaming gas is defined in the usual way (2]

TFTCr

(¢’ mean spead, ¢, relative velocity, o7 total cross section n number density).
The Knudsen number is given by

(L chord length)

Transport coefficients can be calculated by using Q-integrals. Because of the high
Mach number of the upstreaming gas we used the hard sphere total cross section,
where the only free parameter is the sphere diameter. The value for this parameter
was given by the N, diameter.

f) ne, =4,65-10%°/m?

g) upstream boundary condition: Maxwellian with ps, teo, Tog



II. Gridstructure

a) An adaptive grid consisting of cubes is used. Starting with coarse cells the grid is

refined during the first timesteps and then every tenth timestep. After about 60
timesteps the grid stagnates.

initial number of cells: 15750
final number of cells: 71040

b) Figure 2: 3-D illustration of the final grid

III. Flowfield results for plane of symmetry:

Figure 3 : Density contours near the symmetry plane

Figure 4 Mach number contours near the symmetry plane

Figure 5 : Translational temperature contours near the symmetry plane
Figure 6 Internal temperature contours near the symmetry plane

IV. Flowfield results for a cross flow plane

Figure 7 : Density contours in the cross flow plane

Figure 8 : Mach number contours in the cross flow plane

Figure 9 : Translational temperature contours in the cross flow plane
Figure 10 : Internal temperature contours in the cross flow plane

V. Stagnation streamline results

Figure 11 : Density along the stagnation streamline
Figure 12 : Translational temperature along the stagnation streamline
Figure 13 : Internal temperature along the stagnation streamline

VI. Overall forces

1. heat-transfer coefficient Cp = 0.276
2. pressure-drag coefficient Cpp = 1.32
3. friction-drag coefficient Cpr = 0.039
4. lift coefficient Cr = 072
5. drag coefficient Cp = 1.06

Cpp and Cpr are normalized by the projection of the surface area and not by the
surface area itself.

VII. Convergence History
Figure 14: drag coefficient versus simulation time
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illustration of the final grid

3-0D

Figure 2

WL W W T T T

B

Y

g T T I T 1 JI T

A

q__










euejd AljowwAs ey} Jesu
8IN0jU0D eJnjeiedwe} |BUOKBISUBIL

: G ainBi4




eueld Ajjewwis ey) Jesu
§inOjuoa e.njesadwe} jsuieiyl

: g aJnbig ' 5

00k




'8'0 = /X Uuol}08s SS0JD B
£In0juod Ajisuag
: 2 9.nBi4







80 = /X uol}088 SS0.4D B
§INOjuod ainjesadwa} |euojje|suel]
: 6 94nbi4

e10) 4

00

0ot

00




80 = /X uol}1988 SS04D e
€JN0OjU0D aunjeladwa} |eulaju]
: : Ol @4nBi4

005

) 4




djw/x v}

2

aujjweas)s uopsubBe)s Buoje
Aysuaqg

: b eunBi4

+

- 0

- £

T 21

- 02

- €2

T L¢

- 0€




A

-
4
-+

T 2%

T v¥e

1 o019
1zeL
aujwesss uopsubeys Buoje e

eJnjesadwa| ‘|sue.) T 946

: 2L @unbBi4 + 8604




aujweal}s uopeubels Buoje

ainjesadwa | |eusdyuy)

€l 94nBi4

T+ 96

rri

26l

- O¥e

+ 882

- 9EE

a:i

\ zev




9-8't = IV

sdajsawn osi ort ozl 001 oe 09 or 02
v €¢——————
NN VA ARA AN A NPT A AR

pebeioar

bGeip |jesar0 10)

Aloysiy aouabiaauon

vI 24nbi4

Skt

oe’l

Syl

091

SLt

061

S0?

oee

SEZ

08’2



