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Abstract

Treating polyatomic gases in kinetic gas theory requires an appropriate molecule
model taking into account the additional internal structure of the gas particles.
In this paper we describe two such models, each arising from quite different ap-
proaches to this problem. A simulation scheme for solving the corresponding kinetic
equations is presented and some numerical results related to 1D shockwaves are

compared.

0) Introduction

Due to the European Space research project HERMES there is a growing interest
in the numerical solution of the Boltzmann-Equation, because this equation is the
right one to describe the flow fiel¢ around the shuttle during the phase of reentry

where it moves down from attitudes over 150 km to about 70 km.

In such or other realistic situations simulation methods are by far the most impor-

tant tools to solve the Boltzmann-Equation (see Nanbu's rewiew [9]). The first



of these schemes was proposed by Bird in 1968. It was based on the following
philosophy:

Imitiate the behavior of the real gas molecules in a reduced particle system. In
1980 Nanbu proposed a new method directly related to the Boltzmann-Equation but

suffering from practical weakness.

Starting from this point the laboratory of Technomathematics in Kaiserslautern has
developed a simulation method which is now quite well understood and has proven
to yield approximations of solutions of the Boltzmann-Equation given a sufficiently

large number of test particles (for a review of this scheme see [ 7]).

The present paper deals with the extension of this algorithm to the case of gases
with an internal structure. The treatment of these internal degrees of freedom can
be done either from a phenomenological point of view or from a microscopic one.
In the former case one concentrates on the exchange of energy betwee:i internal
and kinetic modes. The rules for this exchange are generally found by physical
heuristics and one has parameters at hand to fit computational results on experi-

mental data.

Whereas such a procedure may be well motivated by practical reasons (e.g. to
save computer time and storage ) the situation remains still unsatisfactory. There-
fore we have compared the by far mostly used phenomenological model [ 10 ] with

a microscopic one.

The plan of the paper is as follows:

In the first chapter we describe our microscopic model and its collisional equations.
Starting from these relations we derive the corresponding Boltzmann-Equation. To
make the paper selfcontained we summarize the features of phenomenological
models. In chapter 2 we introduce the Finite Pointset Method and describe the
simulation algorithm. Chapter 3 shows the simulation results for a 1D shock

wave. Chapter 4 gives a short summary.



I) Description of the Models

1. Description of a Microscopic Model for Polyatomic Gases

Considering a polyalomic gas onc has to take into account the additional internal
structure of the molecules. One approach to this problem is to consider only the
internal energy due to these additional effects, described in the section below. The
other approach is to construct a microscopic molecule model, which allows an ex-
plicit trcatment of these inner effects. The model described in this paper only takes
into account the additional rotational degrees of freedom, vibrational excitation is
neglected.

One of the simplest models having rotational degrees of freedom is the so called
‘loaded-sphere’, which allows a rigorous analytical treatment while still retaining
a large measure of geometric flexibility. This ‘loaded-sphere’-model, first introduced
by Jeans [1] into kinetic theory, is a spherical particle of radius a whose center
of mass (M) is offset a distance £ from the geometric center (G) (see Figurel ).
A molecule of this type is uniquely determined by its center-of-mass location x
from a fixed origin, the linear velocity v, the angular velocity ©, and an unit orien-
tation veclor 1 directed along the axis of symmelry. Location of the surface with
respect Lo the center of mass follows by defining the vector o(k) = €l + ak,

k being the unit outward normal on the particle surface.
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Figure 1



Under the assumption of binary collisions and molecular chaos one has the follow-
ing; |

A "0"-particle of mass m and moment of inertia 6 (with respect to the fixed
origin ) collides with an identical "1"-particle having precollision states (x,v,w,1)
and (x,,v;,@,,l,), respectively, so that an impulse S is transmitted along the
normal k lo the particle surface at the impact point, k being positive outward
from particle "0" (Figur2 ). Since the collisions are instanteous, the location and
orientation vectors remain unaltered during collision, and with primed postcollision
quantities one has the following relations between pre- and postcollision variables

from the equations of impact ([21.[3]):

Momentum 0" : m(v'-v) = - s-k
' (1.1)
Angular Momentum 0" : B(w-w) = - ox(s-k)
! (1.2)
"1": B8(w-w) = o,x(s-k)
Energy : %m(v2+ Vi) - -12-9“ wjw; + %9ij"’i1"’j1
1 2 12 ro "o (1.3)
= zm(Ven) + S 80i0) ¢ 76 0;,0),
The transformation (v,w,l,v,,0,,1;) = (v.@,1'v;,0;,1}) is given by
vio= v - 2k Vi = v+ ok
= w-s06"-(ocxk) W = W, + s-eli-[o,xk,) (1.4)
' =1 L, = 1
In these equations s is given by
s = - “'k (1‘5)
~l—~+—l~*(oxk)z+L o> k)*
m 21, 2101



where
v = (v-v+0,xX0,-wxao) (1.6)

defines the relative velocity of the impact points before collision and I, is the
moment of inertia about an axis perpendicular to the axis of symmetry I.

With o = el + ak equations (1.5) and (1.6) turn into:

s = — vk (1.7)
1 1 1 ’
mton Ilez(l><k)2+—2hez(l,>< k)?

v = (vp-v + elw,x1,) - e(oxl)) (1.8)

For the polyatomic "loaded-sphere’-model the state of such a particle involves the
location and the translational velocity as well as the angular velocity and the
orientation. One therefore defines the state space I' involving all possible states
and consisting of the location space A C R?, the velocity space V = R, the

angular velocity space (1 = R> and the orientation space O = SZ (unit sphere ), i.e.

F=AxVxQx0 = AxR*xR*x §2

A distribution function f € L'+(l“] is defined in such a way that f(t,x.v.0,l)dxdt
denotes the number of particles in the configuration element dx dt = dx dv dw dl.
A region ¥ in the state space I' at time ty= 0 maps into a region £ = Ty X,
in time, where T; is the [ree flow operator which will be discussed later. Particles
originally in £5 will be in ¥ at time t unless their trajectories are altered by

collision. This statement leads up to

d—d‘ [r dx dv dwdl = fj(r.r)dxdvdmdl (1.9)
i:t b2}

where J(I,f) denotes as usual the collision term.

Provided a sufficient smooth distribution function f one obtains by applying a trans-

port theorem the following polyatomic Boltzmann-Equation

Q-

. of . of - af :
{4-%—2—_\( +§v\—;v+a—um+—é—-l-l = J(f.1) (1.10)

|
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Representing the orientation vector - distributed over the unit sphere - by the corres-

ponding polar angles ¢, and ¢, (9,€[0,2%); @, €[0,x] ), equation (1.10) reads

Qs
-
Q-
-
Q-

f . 9. . of . of . _
vVt s @+ (3?,""+B'pz%) =J(r,1) (1.11)

Q-
—
Qs
»

Q-

+
»
+

To introduce the free flow operator we have to discuss the equations of motion of

a free particle are (NEWTON - Equations)

X = v
(1.12)

v F ( force/mass )

For discussing the rotational motion it is convienient to introduce a coordinate
system with the center of mass as origin and the axis along the main axis of

inertia. In this system the equation of rotational motion are given by the EULER-

Equations
Ly =  wrea(l,-12)
Loz = - wpws(l, - 12) (1.13)
Iads = 0

where Iz , I, are the moments of inertia in this system about the | - axis and an
axis perpendicular to 1, respectivly. Equation (1.13) is equivalent to the vector
equation

ILi-12

hlz o (ex1) = = Co.1> (0x1) (1.14)

I

© =

The time derivative of the orientation vector is given by

i = wxl (1.15)

or in terms of the corresponding polar angles ¢, and ¢,

'i"i - <m)(l, mi_.al.
9¢; i1,2
with
al il _ 1 _
al a?l ' uz a@z ( ﬂl- _'i“pz . Ez = l)

being an orthonormalbasis in the tangential plane to the unit sphere determined by

the orientation vector 1.



If we denote the state space of a single particle by Z = (x.v,@,1) then we have
because of the global existence of solutions of (1.12), (1.14) and (1.15) for reasonable
forces a well defined free operator T¢ which simply maps the initial state ?o to

the state at time t.

Combining the results in (1.11),(1.12),(1.14) and (1.15) one ends up with the Boltz-

mann-Equation of the following form

Q-
—

gaf |
F3v

|
Q;ch

<m l)(mxl)a— +{wxl,a.

Qv
-

On the left the first three terms make up the streaming portion of the monoatomic
Boltzmann-Equation while remaining three terms are related to the polyatomic

structur of the ‘loaded-sphere’ model.

Since the transformation (1.4) is its own inverse the right hand sided collision term

can be derived in the same fashion as in the monoatomic case, resulting

) = fl(v.k>|x f(x') f(r}) du(k) dr, - fl(v.lolx f(t)fit,) du(k)dr,
<v,k>>0 <v,k> <0

= (v,w,1)

Here x denotes the differential cross section which is in the case of ‘loaded spheres’

the same as for hard spheres, i.e.

)r.=4a2

Since the collision equations (1.4) are symmetric in k one ends up with the Boltz-

mann-Equation for ‘loaded-spheres’ given in the following way (I = R>x®3xs2):

af of §__f_+11‘lz l.> af

(m,l)(mxl)g—i-ﬁ(uxl,aig’T (1.16)

L[ [ icv i be (1) 1) - 1) 1(5,)) dulh) d,

In sz




2. The Kinetic Equation for Phenomenological Models

In many cases one is not interested in the details of the evolution of the internal
coordinates but in the exchange of internal and translational energy. In such a
situation the complete simulation is by far to expensive. For this reason phenomeno-
logical equations are introduced in which this energy exchange is controlled by
models which are based on physical heuristics and which have parameters to fit
computational results and experimental data. the kinetic equation which gives the

mathematical framework to study such models is [ 6]

(-g—t+v%) f(t,x,v,e) (1.17)

= j I f J.ﬂv-Wll o(E;E.e,az'.elzn-n')(r'- f, - r-r.) du(n') d%' dzel dw

R, Ap S2
with
E = %Iv—wﬂz+s+sl
vt (vew) v ' YEE--e)
f = f[l.x.v.g] f, = f(l.x.w.e,]
f'= f(t,x,v,e') f, = f(t,x,w',e'l)
‘ Ap = {(ebe)): 0 s €leis e've < E]

As can be seen by inspectior of the left hand side of (1.17) the free flow operator

takes here a particularly simple form:
Denoting by Z = (x,v,e) we have

T (Z) = (x+tv,v,e) (1.18)

In (1.17) the different models for the energy exchange are described by specific ¢ 's.
The by far most famous model is the so called Larsen-Borgnakke model.

For this model the scatlering cross-section reads



o(E;e,e,>€\e;.nn')
= Z(E)oo(lv-wl) h(n-n') 8(e-¢') 8(e,-¢)
+ (1-Z(E)) oo(llv-wh) R(E;e.e, > €\€;) h(n-p')

with

fh(n-n') du(n') =1 IR d% =1

s2 Ap

R = a,(Iv'-w'1) IV'-w'I* N(E)

The features of this model are

- The total cross section depends on [lv-w| only.

- A part of the collisions is elastic. The ratio of elastic to inelastic collisions
is controlled by the total collision energy.

- The ‘energy scattering kernel' does not depend on € or €y, it is determined

by the total cross section o,.

II) The Finite Pointset Method ( FPM )

In this section we will describe how the ideas of the FPM described in [7] can
be transformed for the case of internal energy models. To get an approximation
of the solution of the Boltzman-Equation by point measures (particle simulation )

one has to perform the following steps:

a) time discretization

b) separation of ‘free flow and interaction
c) local homogehization

d) weak formulation

¢) measure formulation
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To do so we first rewrite the Boltzmann-Equation in its so called mild formulation

4 t1,@) = 11 )(T@)) @.1)

Here T, is the free flow operator described in section one (see (1.12),(1.14),(1.15)
and (1.18) respectively ) and 7 is the state vector of the system under consideration.
I we approximate the derivative on the left hand side by a difference quotient
we oblain easily a first order approximation of the solution given by a sequ.uce

of recursively defined functions:

fas1(Tac@) = 1,@) + at I(1,.0,) @) (2.2)

From section one we have seen the following properties of T, and the collision

operator J

a) in the case of the microscopic model:

T, does not change velocities and if the initial angular velocity is perpendi-
cular to the orientation vector it is also unchanged. These quantities are
changed due (o collisions in which the orientation of the particles enters as

a paramecler.

b) in the case of the phenomenological model:

The free flow changes the position; the collisions change the velocities and

the internal energy.

These properties together with the particular form of (2.2) suggest to split the

iteration formula into two steps:

the collision simulation

Bos1(D) = (4@ + atI(fa.0y) @) (2.3)

and the free flow

fn+1(2) = 3n+l(T—At(_z))) (2.4)
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The numerical simulation of (2.4) will be obvious. So we have to concentrate on
(2.3). Notice that (2.3) is a discretized version of the spatially homogeneous Boltz-

mann-Equation.

To handle the collision process - in which the space coordinate is unchanged - we
have to introduce the concept of spatial homogenization according to a given cell

structure. To do this we divide the domain of computation A into cells:
A = UC; C;nC.=¢g i4j Lj=1,....M

and introduce the homogenization operator

f(x,.) =~ Z Xe(x)

i=1 1}

ff{x,- (2.5)

Here xc‘(x} is the characteristic function of the cell C;. From (2.4) it can be
seen that the free flow destroys this homogenization so that it has to be performed

before each collision step.

Now we tackle the main question of the simulation, namely the performance of
the collisions. In the case of phenomenological models this procedure has been
described in great detail in [6] so that we concentrate on the case of the micro-
scopic model. Becausc the principles of the collision simulation are the same for
cach cell, we can simplify the notation: we denote by f;(v,w,1) the homogenized
density function in an arbilrary but fixed cell at time j-at. Then equation (2.3)

reads:

fiea(1) = (l - Al = 1 fi(u k| x t(,) du(k}dt,] f(t)

n s2 (2.6)

%I r[(» k>l £(c') 1;(x}) du(k) dr,

n s2

Here t denotes (v,w,1) as in section one. As can be seen from (2.6) the require-
ment that f,,, is a nonnegative function forces a truncation of the collision kernel
i{v,k>| x . Fortunately, in praclical cases this can be done in a way that only a

few particles are affected.
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In a next step we renormalize the density function, i.e. we replace f, by

fj ri/f ffl(‘t)d‘t dx
c;m

This renormalization gives an additional term to the scattering cross section x:

X — xfffj(t)'dtdx
c; 1

Having prepared (2.6) in this way we may proceed to the weak formulation of this
equation: we multiply (2.6) with a test function ¢ € Cy(m), integrate, and use

the fact that the collision maps to its own inverse:

ff,-ﬂ(t) p(1)dr = J [k(t.1r,)e] f;(t) 1;(r,) drdr, (2.7)
I TIx1

Here we have:

1
[Keadel = [ [ o(Fakinay) 6 a da
0 s2

with
t'(k;1,1y) a < %";K“'k)h‘ d u(k)
S

T(a,k;1,14) =

. l>a>%J;|<v.k>lxdu(k)
S

and
-1
du(k) = [%fl(v.l&lx dp(k)] . %|(v.k>|xdp(k) (2.8)
s2

Equation (2.7) together with (2.8) is of standard type, which has been discussed
in other papers ([61,[8]), and its measure theoretic interpretation is now straight-

forward:

Suppose you have a discrete approximation u}q of the density function:

N_I_Na N)
;i = ¥ Z: (v -
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such that u? —=— f;(t)dr. How to find a corresponding sequence of discrete

probability measures p’f“ with Il?u—"-) f“_l(‘t)dt ?

One possible way to do this will be described by the following algorithm:

Suppose you have N point measures T, ce Ty

1) Choose randomly a permutation p of {l N} and group together -1;- pairs: .

(T Trezy) "("n(s)"xm) ERE

2) For each pair of these pairs (*xeiy Txeiepy) generate a [0,1] uniformly distributed

random number a and a random unit vector distributed according d{i(k).
1

IF o< 5 [iI<v. k> x du)
s2

-v-k

1 1 2z 1 2z
mt2g & nixk)” + 5 e® (xgy x k)

-k

glw

Yo € V)
Vrd «— V. + i-k
T(is1) T(is1) m
=1
Op) —— Wpiy ~ 5-6-(0xk)
-1
Doy € Oriony * s-8,-(0,xk)

ENDIF

Recall that in (2.9) the relative velocity of the points of impact is dependent on
Ty Tnien - © and 6, are the inertia tensors dependant on 1y(;).1x(.,) and o

and o, are given by

o = Elj{(i}* ak gy = Eln(i.u"’ ak

From the formula in (2.9) it is obvious that in this algorithm linear momentum,
angular momentum and energy are conserved in each collision.
Another fact which is important from the numerical point of view is that this is

very easily to implement in a completly vectorized manner.
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I11) One-Dimensional Shockwaves

After having introduced two quite different models describing a polyatomic gas in
the previous sections, we will now apply these models and the corresponding simu-
lation schemes (o a classical problem arising in gas motion, namely the internal
structure of a shockwave. To simulate such a shockwave we assume that the gas
is far off the shockfront in equilibrium. These equilibrium states will be described
via the quantities p;, T;,u; denoting the density, temperature and velocity, where
i=1 indicates the upsteam and i=2 the downstream. A characteristic lenght is intro-

duced by the shockthickness A defined by (Figure2):

_ P27 0

(3%) max

Shockwave
- P at rest
T
> \p
Y,
0, T
“z
—
2y
x
upstream downstream
Figure 2

In the following we will restrict to an onedimensional planar shockwave, which
advances along the spatially x-axis (this can be achieved by rotating the coordinate
system ), i.e. the shockwave is independant of the remaining coordinates. Furthermore
we sel exlernal forces Lo zero and assume that the moving gas is in an equilibrium
state far upstream and downstream. Refering to a coordinate system with the
shockwave at rest we can write down the conditions related to the conservation

of mass, momentum and energy while crossing the shockwave, i.e.
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mass Py U, = Py,
momentum pl*uf tp, = pz-u: + P, (3.1)
energy pyu, (Fuf+ 3RT) + Prut ay = pyu(Fup + 3RT,) + Py Uz* Q,

In these equations we used the additional notations: p pressure, q heatflux.

In the far off equilibrium one has the following conditions concerning the pressure

and the heatflux:

Pi @ Pip = ORT;
i= 1,2
qi_. qim = 0
Hence (3.1) can be reduced to
pl.ul - pz- uz

oy uf +o,RTy = o, u: + szTz (3.2)
1.2 . 7 _ 1.2 . 7
7% *2RT = 7y + 2RT,

The equations (3.2) are the well known Rankine-Hugoniot-conditions in term of a

polyatomic gas.

Represcntating the shock profiles one usually relates to the normalized quantities

for density and temperatur ( p, Tf‘) defined by

— _ p_pl - T“Tl
e = pz'p: T= Tz"'T]

In terms of these quanlities onc oblains the well known shock profile shown below

in Figur 3.
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o
ol

ol

L d

upstream downstream

Figure 3

Considering a polyatomic gas one has to take into account the additional phenomena
arising from the different degrees of freedom. While passing the shock the gain
of energy occurs in two steps. First there is a narrow region where the fast
degrees of freedom gain cnergy while the slow degrees remain inert. Then there
is a broader relaxion zone involving a gradual approach to equilibrium between
all degrees of freedom. In the present models the fast degrees are due to trans-
lation and the slower degrees are due (o rotation. Representating these different
types of energy with the corresponding temperatures one gets the following qualita-

tive structure:

%

upsiream downstream

Figure 4
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A parameter describing the transition ratio between translational and inner energy in
the case of the phenomenological model is easily found and given by the collision
rale.

In case of the ‘loaded spheres’ it is obvious that the transition hetween the Lrans-
lational and the rotational (= internal ) energy is dependant of the eccentricity, which
describes the geometric variation of the loaded spheres from the hard a{pheres. In
this case an appropriate parameter y is motivated by the transformation equations

(1.4) and given by

= _%
Y(¢) i) (3.3)

with i(e) being the radius of inertia (see [21,.[3]). Decreasing values of y cause
a smaller transition betwcen the two forms of energy, i.e. the relaxation zone until
the downstream equilibrium is reached tends to infinity. Realize that y=0 equals
the hard sphere and that in this case there is no energy transition. While crossing
the shock only the translational energy is altered, the rotational energy remains

unaltered, i.e. the relaxation zone is infinity.

When the ‘loaded-sphere’ does not differ much from the hard-sphere (small )
then the transition parameter y is nearly linearly dependant on the eccentricity

(compare Figure 5 ).

- L
Y(€)
0.5 ¢
T = Sx100
0 1 ; } . >
0 10 20 30 40 F[x]
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Below we show 5 plots of an internal structure of a one-dimensional shock wave
resulting from the simulation process described in the previous section done on a
Siemens VP100 vector computer. Here we restrict on a upstream velocity of 20 Ma,
for other Mach-Numbers consult [3]. Due to a limit in CPU seconds it was not
possible to receive shockwave profiles for eccentricities less than 5%. The corres-

ponding CPU-time on the vector unit were

Eccentricity € % 5 7.5 10 15 20
CPU-Time min 40 32 25 19 14

The numerical results shown in the figures are quite similar to experimental
measurements [5]. The sliarp bend in the density and temperature curve before
reaching the downstream equilibrium is a typical phenomena while using Boltzmann
simulation schemes, but are considered more realistic than the symmetric Navier-
Stokes solutions (sec [4]). Note that with increasing eccentricity the rotational
temperature leaves the upsteam equilibrium earlier and even starts to increase

sooner than Lhe densily when increasing the eccentricily even more.
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In order to compare these two models describing a polyatomic gas in a quite differ-
ent way, one has to care for an appropriate criterion. Refering to the internal
structure of a shockwave the density and temperature profiles are mainly dependent
on Lhe transition rate between the two different kinds of energies. By examining
the impact equations (1.4) - (1.8) for the ‘loaded-sphere’ model it follows directly
that the ratio of transition between translational and internal (rotational ) energy
is proportional to the square of y(e) (see (3.3)), while this ratio in case of the

phcnomenological model is given by the collision rate. Thus we have:

A “loaded-sphere’-shockwave is s°—ilar to a "‘phenomenological’-shockwave
if the square of y(e) is proportional to the collision rate, provided all

other scales of influence (e.z. Mach-Number,...) are unaltered.

For 20 Ma we have the following comparison data:

Eccentricity €% 5 7.5 10 15 20

Collision Rate % 98 ~99 97 95 90 80

Below the corresponding profiles of the two models are listed. In case of the
eccentricities of 5% and 7.5% two comparison profiles of the Larsen-Borgnakke
model are shown, while for the other eccentricities the exact corresponding com-

parison profile are given.
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1V) Summary and Conclusions

We developed and implementated two algorithms to solve numerically two different
Boltzmann-Equations for gases with internal degrees of freedom. One of those
equations and the corresponding algorithm are based on a phenomenological point
of view concentrating on the energy exchange between translational and internal
modes, the other one starts from a microscopic model which has been described

in the first chapter.

Despite the difference both CPU-times and main storage requirements to perform

a 1 D shockwave are nearly the same.

CPU-times in min main storage

10 (coll. rate ~0.6)
Larsen-Borgnakke < 12 MB
40 (coll. rate ~ 1.0)

14 (eccentricity ~20%)

L oaded-Son : < 15 MB
oaded-spheres 40 (eccentricity ~ SX)

In all our testcases the density, kinetic and internal temperature profiles are in
a good agreement if the corresponding parameters eccentricity and collision rate
are chosen in a suitable manner. This result may be interpreted as an additional

confirmation of the Larsen-Borgnakke model.

However due to the quite small CPU-times needed to perform 1D shockwave
calculations with the ‘loaded-sphere’ model we have now a computational tool at
hand to study the behavior of a gas of rotating molecules if a strong magnetic

field is applied.
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