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Abstract

Recommender systems recommend items (e.g., movies, products, books) to users. In this

thesis, we proposed two comprehensive and cluster-induced recommendation-based meth-

ods: Orthogonal Inductive Matrix Completion (OMIC) and Burst-induced Multi-armed

Bandit (BMAB). Given the presence of side information, the first method is categorized

as context-aware. OMIC is the first matrix completion method to approach the problem of

incorporating biases, side information terms and a pure low-rank term into a single flexi-

ble framework with a well-principled optimization procedure. The second method, BMAB,

is context-free. That is, it does not require any side data about users or items. Unlike

previous context-free multi-armed bandit approaches, our method considers the temporal

dynamics of human communication on the web and treats the problem in a continuous time

setting. We built our models’ assumptions under solid theoretical foundations. For OMIC,

we provided theoretical guarantees in the form of generalization bounds by considering the

distribution-free case: no assumptions about the sampling distribution are made. Addition-

ally, we conducted a theoretical analysis of community side information when the sampling

distribution is known and an adjusted nuclear norm regularization is applied. We showed

that our method requires just a few entries to accurately recover the ratings matrix if the

structure of the ground truth closely matches the cluster side information. For BMAB,

we provided regret guarantees under mild conditions that demonstrate how the system’s

stability affects the expected reward. Furthermore, we conducted extensive experiments to

validate our proposed methodologies. In a controlled environment, we implemented syn-

thetic data generation techniques capable of replicating the domains for which OMIC and

BMAB were designed. As a result, we were able to analyze our algorithms’ performance

across a broad spectrum of ground truth regimes. Finally, we replicated a real-world scenario

by utilizing well-established recommender datasets. After comparing our approaches to sev-

eral baselines, we observe that they achieved state-of-the-art results in terms of accuracy.

Apart from being highly accurate, these methods improve interpretability by describing and

quantifying features of the datasets they characterize.

ii



Zusammenfassung

Empfehlungssysteme empfehlen den Benutzern Artikel (z.B. Filme, Produkte, Bücher).

In dieser Arbeit stellen wir zwei umfangreiche und cluster-induzierte empfehlungsbasierte

Methoden vor: Orthogonal Inductive Matrix Completion (OMIC) und (Burst-induced Multi-

armed Bandit). Angesichts der vorhandenen Nebeninformationen wird die erste Methode

als kontextbewusst eingestuft. OMIC ist die erste Methode zur Matrixvervollständigung,

die das Problem der Einbeziehung von Verzerrungen, Nebeninformationen und einem rein

niederrangigen Term in einem einzigem flexiblen Framework mit einem fundierten Opti-

mierungsverfahren angeht. Die zweite Methodik, BMAB, ist kontextfrei. Das bedeutet,

dass sie keine Nebendaten über Nutzer oder Artikel benötigt.Im Gegensatz zu vorheri-

gen kontextfreien Ansätzen mit Multi-armed Bandits, berücksichtigt unsere Methode die

temporale Dynamik menschlicher Kommunikation im Internet und behandelt das Prob-

lem in einem kontinuierlichen Zeitrahmen.Wir haben die Annahmen unserer Modelle auf

eine solide theoretische Grundlage gestellt. Indem wir den verteilungsfreien Fall betrachtet

haben, haben wir für OMIC theoretische Garantien in Form von Generalisierungsschranken

aufgestellt. Für den Fall in dem die Datenverteilung bekannt ist und eine angepasste Kern-

normregularisierung angewendet wird, haben wir darüber hinaus eine theoretische Anal-

yse der Gemeinschaftsseiteninformationen durchgeführt. Wir haben gezeigt, dass unsere

Methode nur wenige Matrixeinträge benötigt, um die Bewertungsmatrix genau wieder-

herzustellen, wenn die Struktur der Grundwahrheit (ground truth) nahezu mit der Seit-

eninformation des Clusters übereinstimmt. Für BMAB haben wir unter milden Bedin-

gungen Rückgewinnungsgarantien entwickelt, die zeigen, wie die Stabilität des Systems

die erwartete Belohnung beeinflusst. Des Weiteren haben wir umfangreiche Experimente

durchgeführt, um unsere vorgestellten Methoden zu validieren. In einer kontrollierten

Umgebung haben wir Techniken zur Erzeugung synthetischer Daten implementiert, die

in der Lage sind, die Domänen zu replizieren, für die OMIC und BMAB entwickelt wur-

den. Nach dem Vergleich unserer Ansätze mit verschiedenen Basisverfahren stellen wir fest,

dass sie in Bezug auf Genauigkeit die besten Ergebnisse erzielen und einen neuen Stand

der Technik darstellen. Abgesehen von ihrer hohen Genauigkeit verbessern diese Methoden

die Interpretierbarkeit durch eine Beschreibung und Quantifizierung von Merkmalen der

charakterisierten Datensätze.
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Chapter 1

Introduction

Recommender Systems (RSs) recommend items (e.g., movies, products, books) to users.

The first Recommender System (RS)’s research was published in 1998 [1]. The authors in-

vestigated an automatic agent to find relevant papers and recommend them to researchers.

Since then, hundreds of works have been published and learning-based recommendation has

become a fundamental machine-learning task. Academia’s interest in RSs is driven by suc-

cess in recommenders’ applications. Specialists project that, by 2025, the recommendation

engine market size will reach over $12 billion, more than ten times its market value in the

year of 2018 [2].

In practical applications, the information about users (or items) is frequently available

in the form of clusters (categorical attributes) such as gender, nationality, occupation (or

genres, brands, authors, respectively) [3–6]. For instance, this type of side information, also

entitled as communities in the literature, is extensively used to improve RSs’ performance in

terms of accuracy enhancement [6], interpretability [7], and scalability [8]. When community

information is not directly observed, it can be recovered, as has been attempted in a series

of works [9, 10].

Despite the significant progress made by cluster-induced approaches in recommendation

systems, there are still a variety of unanswered research concerns. For instance, consider

the learning algorithms for matrix completion, which is the classical problem of recovering

the missing entries of a partially observed matrix. Since the NetFlix Prize [11], matrix

completion became a standard method for performing the recommendation task. In RS,

the rows correspond to users and the columns correspond to items, with each entry ti, ju

corresponding to the rating of the user i to item j. In practical applications, the following

refinements have proven helpful for enhancing the performance of classic matrix completion

methods:

(a) Incorporating biases [12, 13]: some users may generally be more critical than others.

This means that, generally, they tend to rate items lower than other users. Furthermore,

certain items are fundamentally superior to others. Thus they receive higher ratings;
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(b) Incorporating side information: there is plenty of items’ side information on the web,

and one may have access to user attributes, from which we can derive clusters (com-

munity side information) [14].

Previous approaches to incorporate side information do not explore communities’ orthog-

onality properties. Orthogonal constraints can benefit matrix completion techniques in a

myriad of aspects, including optimization and interpretability. Moreover, no comprehensive

method combines refinements (a) and (b) with a pure low-rank term in a single joint-trained

approach.

One can find another lack of comprehensiveness in the RS’s research by analyzing the

methodologies used to solve the especially challenging case where there is not only a lack

of information about user preferences and behavior, but of any usable side information.

Without the ability to profile users and items densely, a RS can rely only on recent user-item

interaction [15, 16]. A popular option is to model the problem as a context-free multi-armed

bandit (MAB) problem [17]: at each trial (new user requisition), the gambler (RS) selects

an arm (an item) to pull (to recommend) and observes a reward (a click or lack thereof).

Throughout the event history, an algorithm improves the policy to maximize the reward

(e.g., the number of clicks). The standard MAB setting is inadequate in practice because it

assumes that the (unknown) item popularity distribution is stationary [18–20]. Assuming

that the items’ popularity is not changing over time is highly unrealistic [16]. Therefore,

prior research [21–25] has dealt with the shifts in the items’ popularity by modeling context-

free and non-stationary MABs. They constructed shift detection methods to categorize the

users’ activities into stationary segments based solely on the observation of the reward

distribution. However, rather than actively exploiting the continuous temporal activity of

RSs, they model the problem as a discrete-time. This restricts previous approaches, as

they are unable to fully explore the complex dynamics of human communication (e.g., the

presence of bursts in recommendation requisitions) commonly observed in RSs’ activities [16,

26]. Modeling the time in a continuous configuration provides recommendation algorithms

the ability to recognize activity patterns that are connected to item popularity [27].

My research is guided to mitigate the incompleteness of the RSs’ methods in the above

scenarios. As a consequence, I have established and developed methodologies that help

advance the area of recommender systems. The following thesis, which is detailed in the

next section, describes this dissertation’s main hypothesis.
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1.1 Author’s Ph.D. Thesis

This dissertation concerns the validation of the following thesis:

“Orthogonal Inductive Matrix Completion (OMIC) and Burst-induced Multi-

Armed Bandit (BMAB), two comprehensive and cluster-induced recommendation

methods that I developed and which enjoy favorable theoretical guarantees, signifi-

cantly contribute to the field of learning-based recommender systems respectively in

the (1) context-aware and (2) context-free scenarios. The methods exhibit better

performance than the state-of-the-art (SOTA), as demonstrated experimentally

in the thesis through extensive synthetic and real-world data experiments. Be-

sides being highly accurate, these methods present the added benefit of improved

interpretability by describing and quantifying features of the datasets that they

characterize.”

Here, context-aware are those methods that perform recommendation in the presence of

an additional user and/or item side information, whilst context-free methods do not have

any side information as an input. In addition, we define a cluster as a collection of related

components (e.g., user, items, user-activity, etc.) that were not necessarily obtained using

unsupervised learning methods.

Previously Published Work

This dissertation is based on the following selected publications.

The core framework was published in:

[1] Antoine Ledent˚, Rodrigo Alves˚, and Marius Kloft. Orthogonal inductive
matrix completion. IEEE Transactions on Neural Networks and Learning Sys-
tems, 2021.

[2] Rodrigo Alves, Antoine Ledent, and Marius Kloft. Burst Induced Multi-
armed Bandit for Learning Recommendation. Proceedings of the 15th ACM
RecSys Recommender System Conference, 2021.

3



The applications of matrix completion were discussed in:

[3] Rodrigo Alves˚, Antoine Ledent˚, Renato Assunção, and Marius Kloft. An
empirical study of the discreteness prior in low-rank matrix completion. In
Proceedings of Machine Learning Researchp1q, volume 148: Pre-registration in
ML, pages 111–125, 2021.

[4] Fabian Jirasek˚, Rodrigo Alves˚, Julie Damay˚, Robert Vandermeulen,
Robert Bamler, Michael Bortz, Stephan Mandt, Marius Kloft, and Hans Hasse.
Machine learning in thermodynamics: Prediction of activity coefficients by ma-
trix completion. The journal of physical chemistry letters, 11(3):981–985, 2020.

Bounds for matrix completion with adjusted nuclear norm regulariser were discussed in:

[5] Antoine Ledent, Rodrigo Alves,Yunwen Lei, and Marius Kloft. Fine-grained
Generalisation Analysis of Inductive Matrix Completion. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021 (To appear).

Methods for disentangling loyal and ephemeral audiences in online time series were
proposed in:

[6] Rodrigo Alves˚, Antoine Ledent˚, Renato Assunção, Pedro Vaz de Melo, and
Marius Kloft. Are you here to stay? Disentangling the loyal audience from
the curious on social media. Submitted to ACM Transactions on Knowledge
Discovery from Data (TKDD), Aug 2021.

[7] Rodrigo Alves, Renato Assunção, and Pedro Vaz de Melo. Burstiness scale:
A parsimonious model for characterizing random series of events. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1405–1414, 2016.

[6] builds on [7]. The model proposed in [6] is entirely novel, with far fewer approxima-
tions and is both more efficient and effective. [7] is based on my Master’s thesis, with
significant refinements made after I received my degree.

Organization of the dissertation: The content of this dissertation is related to the
above publications in the following way:

Part One: Context-aware Recommendation – Chapter 2 is based on [1] and [3];
Chapter 3 contains material from [1] and [5]; Chapter 4 is based on [1], [3]
and [4];

Part Two: Context-free Recommendation – Chapter 6 is based on [2], [6] and [7];
Chapter 7 is based on [2] and [6].

Chapter 5 (resp. Chapter 8) contains discussions regarding related work of the first
(resp. second) part of the dissertation.
˚ The authors contributed equally to this research.
(1) Formerly JMLR WCP proceedings.
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1.2 Organization of this dissertation and the author’s contri-
butions

The dissertation starts with an introduction in the first chapter, followed by an outline

of its main contributions. Chapter 9 draws a conclusion and discusses future directions.

The remaining chapters are organized into two parts, each reflecting one of the two main

scenarios of recommendation systems: (1) context-aware (chapters 2 to 5) and (2) context-

free (chapters 6 to 8). The closing chapter of each part discusses the related work.

1.2.1 Part One: Context-aware recommendation

Methods, optimization and algorithms: In Chapter 2, I introduce OMIC, a matrix

completion method. To recover the missing entries, one must make an assumption about

the structure of the ground truth matrix, and the most frequent assumption is that it is

of low rank. However, optimally approximating the observed entries while minimizing the

rank is NP-hard [28]. The SoftImpute algorithm [29] bypasses this difficulty by using the

nuclear norm as a regularizer. Not only does SoftImpute work well in practice, but it also

enjoys favorable theoretical guarantees: it requires only a small number of known entries

to recover the underlying low-rank matrix exactly [30, 31] or approximately [32, 33] from

noisy entries. Aligned to SoftImpute, OMIC also imposes nuclear-norm regularization as

an effective convex relaxation of the rank constraint.

In practical matrix-completion applications, the following refinements have proven useful

for improving the performance of traditional matrix completion methods: (1) incorporating

biases; and (2) Incorporating side information. Previous work incorporated user and item

biases in a pre-processing step and then trained matrix completion on the residuals [12, 13].

Inductive Matrix Completion (IMC) [14] uses side information to guide the prediction of the

user-item ratings. IMC, which is backed up by well-developed learning theory [14, 34–37],

can be applied also to new users with no ratings, but for which side information is given.

The aim here is to create a comprehensive generic model that can incorporate all the

improvements mentioned above into a single flexible framework with a well-principled op-

timization procedure. The literature review in the first part of the thesis focuses on matrix

completion methods with a theoretical foundation. A thorough search of the relevant lit-

erature yielded only one work that attempted to incorporate some of the aforementioned

improvements into a single jointly trained model [38]. They consider outputs of the form

fi,j “ xJi Myj ` zi,j , (1.1)

with nuclear-norm regularization imposed on both Z and M . The model is trained with

gradient descent. The incorporation of both the standard low-rank term Z and the IMC
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term XMY J allows the model to capture both generic low-rank phenomena, as well as

any behavior related to the side information. The hyperparameters involved in the nuclear-

norm constraints can be optimized through cross-validation and allow the model to decide

how relevant the side information is. However, a single given matrix f. ,. can correspond to

several possible choices of M and Z, thereby limiting the interpretability of the model and

the individual terms of the sum (1.1). Furthermore, the model does not capture user and

item biases. OMIC remedies these failings. Firstly, the corresponding predictors can take

the following form as a particular case:

fi,j “ c` ui `mj ` xJi Myj ` zi,j , (1.2)

where c is an unknown constant that corresponds to a global bias of the model, ui and mj

are the biases of the i-th user and j-th movie, xi and yj are the known side information

vectors of the i-th user and j-th movie, whilst M and Z “ pzi,jq are parameter matrices

to which nuclear norm regularization is applied. The nuclear norm of a matrix is defined

as the sum of its singular values. Thus, our regularizer encourages M (and consequently

the side information term xJi Myj) and Z to have low-rank. In summary, OMIC is the first

matrix completion method able to model biases, side information terms, as well as residual

generic low-rank effects in a single, jointly trained model.

Furthermore, OMIC imposes orthogonality constraints for the construction of the in-

ductive matrices, which effectively require each term in the sum in (1.2) to live in separate,

mutually orthogonal subspaces. Such constraints have three advantages. First, training can

be performed for all components simultaneously. Second, the variables in (1.2) admit inter-

pretation. This is because any ground truth matrix can be represented uniquely (thanks to

the orthogonality conditions). The magnitude of the terms of the sum can be interpreted

as their relevance to the model. And third, it provides the ideal framework for modeling

IMC using cluster side information. Observe that clustering information is intrinsically or-

thogonal: m users distributed in d disjointed clusters can be represented by an orthogonal

matrix X P Rmˆd. Each row i of X is a one-hot encoding vector with the single high in the

position corresponding to the cluster that user i belongs to.

The second chapter also covers a proposal of an efficient optimization algorithm for solv-

ing the OMIC’s optimization problem, as well as it shows upper bounds on its convergence

rate (proofs available in the appendix). Further, I proposed a cluster detection method: as

in a typical use of OMIC, the method assumes that the rows (users) and columns (items) of

the rating matrix can be split into groups (communities), with the user and item commu-

nities contributing to the rating in an additive way. However, the community memberships

are unknown and they must be learned by the method. Previous attempts at detecting

user and item clusters based purely on a low-rank partially observed matrix assume noisily
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observed pure community behaviour [9, 10]. On the other hand, by performing commu-

nity discovery and low-rank matrix completion jointly, my method showed that community

behavior and continuous low-rank structure can coexist in the same matrix.

Theoretical analysis: In Chapter 3 I theoretically analyse OMIC. First, I prove the

uniqueness of decomposition of OMIC’s predictor. Such property allows our method to

give rise to interpretable solutions. Then, I proved learning-theoretical guarantees in the

form of generalization bounds. These apply to the case of a sampling distribution in the

distribution-free case (no assumption on the ground truth distribution). The better the

model matches the ground truth, the tighter the bounds.

I also conducted a theoretical analysis of community side information when the sampling

distribution is known. For that, I consider the case of adjusted nuclear norm regulariser:

instead of the nuclear norm of matrix M (with the predictor XMY J), the method regu-

larizes the nuclear norm of M̃ “ rD
1
2ME

1
2 s. Here, the diagonal matrix D has the entry

Du,u “
ř

jďn;fpiq“u pi,j , where fpiq denotes the cluster to which user-i belongs and pi,j is

the probability of sampling entry i, j. In other words, Du,u is the marginal probability of

hitting any entry whose user component belongs to cluster u. E can be defined analogously.

Experiments and applications: Chapter 4 presents experiments and applications of

OMIC in recommender systems and natural sciences. By generating synthetic data, I first

experimentally demonstrate that the proposed model is capable of retrieving biases and

cluster information if such a structure is present in the ground-truth matrix. For the RS

application case, I demonstrate that OMIC outperforms the SOTA in terms of accuracy,

with the added benefit of interpretability, on a large set of real-world data.

Lastly, I examined the application of OMIC in the natural sciences for the prediction

of activity coefficients in thermodynamics. In chemical engineering, activity coefficients are

a physicochemical property of binary liquid mixtures and they have relevance to modeling

chemical and phase equilibria as well as transport processes. I was the first to propose a

matrix completion method to predict activity coefficients through a probabilistic matrix

factorization model. In this case, each row corresponds to a solute while each column cor-

responds to a solvent. The entry ti, ju is the activity coefficient of a mixture of solute i and

solvent j. My model outperformed the modified-UNIFAC [39], the SOTA method refined

over three decades. Although the probabilistic method requires much less training effort

than the traditional baseline, it is still an expensive model in terms of algorithm complex-

ity. This fact makes it difficult to validate the model and to select the hyperparameters

properly. Furthermore, the scalability of large matrices is unfeasible. By using OMIC with

cluster side information (e.g., chemical family of the solute/solvent) to solve this matrix

completion problem, I achieved SOTA results with a (much) more efficient algorithm and

interpretable model.

Related work: Chapter 5 contains related work of the first part of the dissertation.
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1.2.2 Part Two: Context-free and cold-start methods

Methods, optimization and algorithms: In Chapter 6 begins the second part of the

dissertation. I shift our focus to address the particularly challenging recommendation sce-

nario, where there is not only a lack of information about user preferences and behavior,

but of any usable side information (context-free). Providing effective recommendations

here requires identifying the ‘trending’ items most popular among the audience. A popular

option is to model the problem as a multi-armed bandit [17]. The classic MAB approach,

on the other hand, is unrealistic because it assumes an environment with stationary reward

distribution. In fact, the popularity of the items may fluctuate over time [16, 40, 41].

Figure 1.1: Two examples of time series factoriza-
tion that motivate our method. Left: loyal and
curious systems’ audiences. Right: activity re-
lated to Psy and David Bowie. The data is taken
from Google Trend (Jan/2008 to Dec/2020; coun-
try: USA; search engine: Youtube). We give a
detailed description of the results in the main text.

I therefore model this challenge

recommendation scenario as a non-

stationary MAB problem. Interest-

ingly, the recommender is continuously

faced with the classic exploration/ex-

ploitation dilemma known from rein-

forcement learning: the RS must main-

tain a balance between recommending

a classic popular item and recommend-

ing the object of the current viral fad.

To illustrate this dilemma, consider the

following example. Suppose that a RS

must select among videos of two artists:

the South Korean singer Psy and the

British singer David Bowie. The gray

lines in both graphs of Figure 1.1 show

the cumulative1 level of system activity

(only USA audience) associated with

both artists. Most of the time, the rate

of growth of the system activity is approximately constant. However, this linearity is some-

times broken by sudden bursts of events highlighted by the two vertical lines. The first spike

(vertical red line) matches with the “Gangnam Style” release. The hit had an unprecedented

explosion of popularity2 and its music video “broke” the YouTube view counter’s limit. The

second burst of events (vertical blue line) coincides with David Bowie’s unexpected death.

This unfortunate exogenous event triggered the audience’s curiosity.

1For a time series T “ tt1, t2, ¨ ¨ ¨ , tnu, we denote the numbers of events that happened before t by
Nptq :“

řn
i 1ttiătu.

2The instant popularity pptq can be expressed as pptq “ BEpNptqq{Bt
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The existence of two types of audiences (disentangled in Figure 1.1, left graph) explains

the variations in the users’ activity: the loyal audience and the curious audience. The loyal

audience (green curve) is constituted by fans who assiduously follow the topic. In contrast,

the curious audience (yellow curve) only turned their attention to the topic due to an

extraordinary event. Thus, the environmental context in which the RS must make decisions

alternates between calm periods (where the loyal audience drives the users’ behavior), and

disruptive or ‘bursty’ periods (where the curious audience is driving sudden bursts of interest

in certain topics). In the real-life example presented here, during stable periods, the ratio

between the singers’ popularity is stable and Bowie is consistently more popular than Psy

(Figure 1.1, right graph). On the other hand, during the disruptive period dominated by

curious behavior, the relative popularity between Psy and Bowie changed drastically.

Motivated by this phenomenon, entitled audience curiosity [26, 42, 43], I developed the

BMAB, which is a novel context-free, non-stationary and cluster-induced MAB algorithm.

The algorithm’s core consists of two consecutive stages: (1) categorizing the user-activity

based on the system’s state; and (2) inducing the exploration and exploitation procedures

based on user-activity categories. BMAB is the main contribution of the second part of the

dissertation.

Prior work on non-stationary MAB problems [24, 44] has dealt with the shifts in the

items’ popularity in both context-free [21–25] and context-aware [16, 45, 46] situations.

While the first group solely uses the observed rewards, the latter group requires user or item

features to build its arm-selection strategy. This dissertation focus on context-free MABs.

Context-free MAB’s algorithms are divided into sliding-window methods [21, 23–25, 47, 48],

discounted factor methods [22, 25], and mixed approaches [49]. However, previous work did

not take into account the effect of audience curiosity in the reward distribution. They also

treat the problem as a discrete-time one, rather than actively exploiting the continuous

temporal activity of RSs. Comprehensively, BMAB incorporates all the cited refinements.

To implement these improvements, firstly, BMAB clusters the user-activity according

to the system’s state by carefully modeling the audience’s temporal dynamics. Depending

on which type of audience currently dominates the system requisitions, the method can

attribute two possible user-activity categories: loyal (stable) and curious (unstable). In a

continuous-time setting, I modeled the events as a combination of two Poisson processes,

one for each conceivable audience. By assuming that the loyal audience has a constant

incoming rate λL, I proposed a state detector based on a hypothesis test: it checks if a

homogeneous Poisson process, which has intensity function λptq “ λL, generates the last ∆

events. If the hypothesis is rejected, a burst is detected and the user-activity is classified

as curious. Otherwise, it is classified as loyal.
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In the second stage, by taking into account the user-activity category, BMAB induces the

slot-machine procedures that are responsible for exploring the environment and exploiting

prior knowledge of rewards distribution. As a result, I proposed a method to detect such

dramatic changes in the environment: it intensifies its exploratory behavior during the

turbulent period to keep up with changes in the optimal strategy. In the example above,

Psy’s sudden burst of popularity after the release of ’Gangnam Style’ deeply altered the

environment and reward distribution: Psy momentarily became more popular than David

Bowie.

A crucial parameter of BMAB is the incoming rate λL of the loyal audience. As a

contribution of this dissertation, I developed a model which is capable of disentangling the

two sorts of audiences illustrated in Figure 1.1 (left graph). The model does not rely on

difficult-to-obtain external data but just on Random Series of Events (RSE). RSEs are time

series in which the timestamps correspond to interactions between users and a specific item.

Stochastic point processes form a statistical framework to learn and infer about

RSEs [50, 51]. In theory, they could be used to the problem of estimating the loyal

audience of online items, but existing models are not appropriate for this particular setting.

While Poisson process [52, 53] can easily estimate the loyal audience when all incoming

events arrive at a fixed and predictable rate, they fail to mimic the bursts of events seen in

real data. On the other hand, self-exciting processes, such as Hawkes and Wold processes,

are able to capture the correlations between consecutive events that generate bursts of

activity [42, 54, 55]. In line with my previous work [26], we model the audience dynamic as

a mixture of two stochastic point processes. The first component is a Self-feeding process

(SFP) [55] and the second is a Homogeneous Poisson process (HPP). The SFP generates

a bursty behavior, corresponding to viral threads caused by sudden external events. In

contrast, the HPP models normal background behavior that is influenced only by the

overall popularity of the topic (the loyal audience). Therefore, the model is able to flexibly

incorporate dependencies between the two hidden and underlying point processes involving

the loyal and the curious audience.

The methodology here, however, is entirely novel, more efficient and more effective. In

order to disentangle the above-mentioned mixture of point Processes, I developed a new

Expectation–maximization (EM) methodology. To optimize the likelihood, I used the EM

algorithm, relying on Gibbs sampling in the E-step. Note that the EM algorithm in the case

of point processes requires great care since the events are not independent and the usual

derivations are not appropriate. In [26], a complicated EM strategy was derived based on

a series of approximations. Here, I introduce a different approach that requires (far) fewer

approximations.

10



Theoretically-wise, I proved regret guarantees for the BMAB algorithm when the states

are recoverable and bursts are separable. Then, I conducted an experimental analysis of

the theorized regret bounds using a large spectrum of the synthetic experimental setup.

Experiments and applications: In Chapter 7, I conducted extensive experiments to

evaluate BMAB in a context-free recommendation scenario. First, I proposed a generation

technique that establishes a link between user activity and item popularity. Then I gener-

ated several time series in order to analyze BMAB in different ground-truth regimes. My

method was also fitted in four real-world datasets. The comparison considered six SOTA

baselines and it achieved competitive results in both synthetic and real-world strands.

Furthermore, I used the audience disentangling model to monitor the changes in the

faithful audience behavior. Then, I illustrate the advantages of the disentangling method

through the analysis of real-world data: I describe the absolute loyalty and the relative

loyalty, indicators drawn from my model to characterize the absolute and relative influence

of the loyal audience on the observed events. At last, I performed extensive synthetic

analysis to show that my methodology is able to recover the ground truth model and

experimentally demonstrate that it fits a large number of real datasets with better results

than alternative models.

Related work: Chapter 8 contains related work of the second part of the dissertation.
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Part One:

Context-aware recommendation
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Chapter 2

Methods, optimization and
algorithms

Matrix completion, the problem of recovering the missing entries of a partially observed

matrix, has found application in a wide range of domains. As examples, consider the fol-

lowing. (1) A streaming provider recommends movies to its users based on an incomplete

database of user-movie ratings. (2) A social network wants to find missing links in their

friendship network. (3) A chemical producer wants to predict interactions of chemical com-

pounds from a subset of known pairwise interactions. These examples—from the domains

of recommender systems [56], social network analysis [57], and chemical engineering [58]—

highlight the wide range of applications of matrix competition. For simplicity, we frequently

use movie recommendation as a running example, so the data consists of user-movie ratings.

It should be clear that, more generally, we can work with type1-type2 pairs, depending on

the application, e.g., user-book, user-user, compound-compound, etc.

This chapter introduces cluster-induced-based matrix completion methods. Our ap-

proach is context-aware due to the inclusion of side information. In contrast to previous

matrix completion methods, our strategy can comprehensively incorporate bias, side infor-

mation, and pure low-rank terms into a single framework with a well-principled optimiza-

tion procedure. To accomplish this, we carefully design inductive matrices that enable our

method to capture the aforementioned refinements.

Based on these premises, our primary task is to recommend non-rated items to users.

We, therefore, propose a method (see Section 2.1.3) able to accurately recover the missing

entries from the rating matrix and then predict which items are most convenient for each

user. Notably, when side information is present, inductive matrix completion methods

demand the observation of only a tiny proportion [14, 34, 35, 37] of ratings from a large set

of users and items.

However, user and item communities (clusters) are often not explicitly available. In this

case, our parallel task is to recover hidden communities that can assist the recommendation
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task. Previous attempts at detecting user and item clusters based purely on a low-rank

partially observed matrix assume noisily observed pure community behaviour [9, 59]. On the

other hand, we model community behaviour and continuous low-rank structure coexisting

in the same matrix. By constructing a model which efficiently exploits the “discreteness

prior” on the existence of underlying user and item communities that play a role in the

generation of the ratings, we propose to perform community discovery and low-rank matrix

completion jointly.

The main contributions in this chapter are the following:

• we propose a framework of inductive matrix completion learning methods, which

imposes orthogonal constraints on the columns of the inductive matrices. Then,

we construct an instance of our framework that comprehensively jointly models

biases, cluster side information, and a pure low-rank term;

• we propose an efficient optimization algorithm for solving our matrix completion

problem. Furthermore, we show its convergence and give upper bounds on its

convergence rate (proofs in the appendix);

• we also provide a scalable implementation of our algorithm that allows us to work

on large datasets;

• we also provide a method to recover hidden clusters based on the hypothesis that

community behavior and continuous low-rank structure can coexist in the same

matrix.

Parts of this chapter are based on:

Antoine Ledent˚, Rodrigo Alves˚, and Marius Kloft. Orthogonal inductive
matrix completion. IEEE Transactions on Neural Networks and Learning Sys-
tems, 2021.

Rodrigo Alves˚, Antoine Ledent˚, Renato Assunção, and Marius Kloft. An
empirical study of the discreteness prior in low-rank matrix completion. In
Proceedings of Machine Learning Researchp1q, volume 148: Pre-registration in
ML, pages 111–125, 2021.

˚ The authors contributed equally to this research.
(1) Formerly JMLR WCP proceedings.
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2.1 Description of the model and optimization procedure

Basic notation: We assume that we have an mˆ n matrix R whose entries are partially

revealed to us. The set of revealed entries is denoted by Ω Ă t1, 2, . . . ,mu ˆ t1, 2, . . . , nu,

and ΩK denotes the complement t1, 2, . . . ,mu ˆ t1, 2, . . . , nuzΩ (i.e., the set of unobserved

entries). The projection on the set of matrices with all entries on ΩK being zero is denoted

by PΩ. PΩK is defined similarly. We denote the matrix of observed entries by RΩ.

The general form of the optimization problem we consider is as follows:

minM LpRΩ,M,Λq with (2.1)

LpRΩ,M,Λq “
K
ÿ

k“1

L
ÿ

l“1

λk,l}M
pk,lq}˚ `

1

2

ÿ

pi,jqPΩ

`

»

–Ri,j ,

˜

K,L
ÿ

k“1,l“1

XpkqM pk,lqpY plqqJ

¸

i,j

fi

fl .

Here K (resp L) is the number of auxiliary matrices related to users (resp. items) and

λk,l a regularization parameter. Therefore, our model requires choosing sets of inductive

matrices Xpkq P Rmˆd
p1q
k , Y plq P Rnˆd

p2q
l representing prior knowledge about the problem.

The inductive matrices define the specific model choice with respect to the incorporation (or

lack thereof) of biases, side information etc. We now observe that the terms of equation (1.2)

can all be written in the form XpkqM pk,lqpY plqqJ for some suitably defined Xpkq, Y plq. For

instance, if we set X as the identity matrix and Y as a column matrix of all 1’s, then the

matrix XMY J has the user biases as entries: xiMyJj “ ui for all i, j. If we set both X and

Y as identity matrices, we obtain the specific user-movie match xiMyJj “ zi,j for all i, j.

We note that several specific variations of our model are possible depending on whether

or not side information is present, how many distinct types of side information are present,

whether or not we want to include user/item biases, etc. Therefore, we rely on a unified

formal framework to describe all possible variations of these ideas with the general model’s

predictors have the following form:

F “ pfi,jq “
K
ÿ

k“1

L
ÿ

l“1

XpkqM pk,lqpY plqqJ. (2.2)

In Figure 2.1, we illustrate an comprehensive example with K “ L “ 3 which takes

into account user and item biases, as well as side information in the form of partitions

of users and items into communities (with the movie communities being genres). This

representative example is described in more technical detail in Section 2.1.3, where we also

further explain how equation (1.2) can be fully incorporated as a particular case of (2.2).

To ensure the uniqueness of the decomposition, we require that the columns of the sets of
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Figure 2.1: Visualization of orthogonal inductive matrix completion (specifically, the com-
prehensive version explained in Section 2.1.3). The model is a sum of matrix terms, each of
the form XMY J. It means each combination of X and Y gives rise to a term in the sum.
We interpret the magnitude of this term as its relevance to the prediction.

inductive matrices form orthonormal bases of their respective spaces, i.e.

m
ÿ

i“1

Xk1
i,j1
Xk2
i,j2
“ δk1,k2δj1,j2 ;

n
ÿ

i“1

Y l1
i,j1
Y l2
i,j2
“ δl1,l2δj1,j2 ;

spank,jpX
k
. ,jq “ Rm and spanl,jpY

l
. ,jq “ Rn. (2.3)

Thus we call our method by Orthogonal Inductive Matrix Completion (OMIC). Observe

that the orthogonality assumption is not an assumption on the ground truth matrix, but

a restriction of model choice. Orthogonal constraints benefit matrix completion methods

in a variety of aspects, including providing an ideal environment for modeling biases and

cluster side information, efficient optimization and interpretability enhancement.

2.1.1 Modelling jointly trained user/item biases

One notable example of this setting provides a way to train a low-rank matrix completion

model together with user biases [12, 13]. For that, we generate the inductive matrices in

the following way:

STEP 1: Set Xp1q “ p 1?
m
, . . . , 1?

m
qJ and Y p1q “ p 1?

n
, 1?

n
, . . . , 1?

n
qJ

STEP 2: Set Xp2q (resp. Y p2q) to be the orthogonal complement of Xp1q (resp. Y p1q)

in Rm (resp. Rn)
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Then our model (2.1) is equivalent to the prediction function

fi,j “ c` ui `mj ` Zi,j , (2.4)

where Z is constrained to have columns and rows summing to zero.

Here, the terms Xp1qM p1,1qpY p1qqJ and Xp1qM p1,2qpY p2qqJ ` Xp2qM p2,1qpY p1qqJ, corre-

spond to a general, matrix-wise bias, and a combination of user/item specific biases respec-

tively. Meanwhile, the term Xp2qM p2,2qpY p2qqJ represents purely bias-free low-rank effects:

an entry of Xp2qM p2,2qpY p2qqJ will be large if the item and user are particularly well-fitted

to each other, independently of the general behavior of either user or item. This can be

especially interesting in terms of interpretability, or if each user must be paired with a single

item.

2.1.2 Modelling jointly trained cluster side information

A particularly representative case is when we are given side information about users and

items in the form of clusters, with each user (resp. item) belonging to exactly one user

(resp. item) cluster [38]. In this situation, we construct the columns of Xp1q (resp. Y p1q) as

normalized indicator functions of the user (resp. item) communities, as following explained

for Xp1q:

STEP 1: First, consider an orthogonal matrix X P Rmˆd, where m users will be split

into d disjointed clusters. For that, make each row i of X a one-hot encoding vector

with the single high in the position that corresponds to the cluster that user i belongs

to.

STEP 2: For all j P t1, 2, ¨ ¨ ¨ , nu, normalize ||X. ,j || “ 1

STEP 3: Finally, make Xp1q “ X.

STEP 4: The columns of Xp2q can then be chosen as an orthonormal basis of the

orthogonal complement of Xp1q in Rm.

Analogously, we define Y and Y p1q. Note that we have Y p2q as any orthonormal basis

of the orthogonal complement of Y p1q in Rn.
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In this case, our model (2.1) is equivalent to optimizing a prediction function of the form

fi,j “ Cfpiq,gpjq `Mi,gpjq ` Ufpiq,j ` Zi,j , (2.5)

Here, the function f : t1, 2, . . . ,mu Ñ t1, 2, . . . , d1
1u (resp. g : t1, 2, . . . , nu Ñ t1, 2, . . . , d1

2u)

assigns to each user (resp. item) its cluster. In terms of interpretability, note that in the

predictors Cfpiq,gpjq `Mi,gpjq ` Ufpiq,j ` Zi,j above, the contribution from C corresponds

to effects that only depend on the cluster of the user and the cluster of the item, the

contribution from M (resp. U) corresponds to ‘specific user-item cluster’ (resp. ‘specific

item-user cluster’) effects, whilst the contribution from Z corresponds to effects that are

purely specific to the user and the item (independently of their respective clusters).

2.1.3 A comprehensive jointly trained user/item biases and cluster side

information method

We note that several variations of the ideas for the construction of the auxiliary matrices

Xpkq and Y plq as above are useful in practice. Now we will present a more comprehensive

instance, which combines the ideas above by incorporating both user and item biases and

cluster side information. This is the specific model explained in Figure 2.1, and it is further

empirically investigated in the sections of the experiments (See Section 4.4). Given the

presence of cluster side information for users and items, we define our inductive matrices

Xpkq and Y plq as follows:

STEP 1: Xp1q and Y p1q are constructed as in Section 2.1.1, i.e. Xp1q “ p 1?
m
, . . . , 1?

m
qJ,

Y p1q “ p 1?
n
, 1?

n
, . . . , 1?

n
qJ.

STEP 2: As defined in Section 2.1.2, let X (resp. Y ) denote a normalized matrix whose

columns are indicator functions of the user (resp. item) communities. The columns of

Xp2q (resp. Y p2q) form an orthonormal basis of the space tv P spanpXq : xv,Xp1qy “ 0u

(resp. tv P spanpY q : xv, Y p1qy “ 0u), where spanpXq (resp. spanpY q) denotes the span

of the columns of X (resp. Y ).

STEP 3: Finally, the columns of Xp3q (resp. Y p3q) form an orthonormal basis of the

orthogonal complement of the columns of pXp1q, Xp2qq (resp. pY p1q, Y p2qq) in Rm (resp.

Rn).
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Therefore, this set-up corresponds to equation (1.2), together with some orthogonal-

ity constraints. Indeed, Xp1qM p1,1qpY p1qqJ is a constant and corresponds to c. Further-

more, all the rows of Xp1qM p1,3qpY p3qqJ (resp. columns of Xp3qM p3,1qpY p1qqJ) are equal,

so that the term Xp1qM p1,3qpY p3qqJ (resp. Xp3qM p3,1qpY p1qqJ) corresponds to u (resp.

m). Xp2qM p2,2qpY p2qqJ is the side information term corresponding to xiMyJj . Mean-

while, the remaining terms Xp1qM p1,2qpY p2qqJ ` Xp2qM p2,1qpY p1qqJ ` Xp3qM p3,2qpY p2qqJ `

Xp2qM p2,3qpY p3qqJ ` Xp3qM p3,3qpY p3qqJ correspond to the term Zi,j from equation (1.2),

further refined into specific components distinguishing effects involving (1) only the side

information of the users but not that of the items (or vice versa), (2) interactions between

user bias and item side information (or vice versa) or (3) no side information or biases

whatsoever.

2.2 Recovering inductive clusters via matrix completion

In Section 2.1 we propose a class of methods that uses communities (clusters) to induce the

learning procedure. However, user and item communities are often not explicitly available.

Here, we assume the rows (users) and columns (items) of the matrix split into groups

(communities) with the property that each entry of the matrix is a sum of components

corresponding to community behaviour and a purely low-rank component corresponding

to individual behaviour. We introduced such a decomposition in Section 2.1.2, assuming

complete knowledge of the communities of users and items. In contrast, we formulate an

optimization problem over all (completed matrix, set of communities) pairs based on a

nuclear-norm regularizer which jointly encourages both low-rank solutions and the recovery

of ‘relevant’ communities.

Based on (2.1), we propose the following optimization problem:

min
f,g

min
C,M,U,Z

L with L “
ÿ

pi,jqPΩ

|Cfpiq,gpjq `Mi,gpjq ` Ufpiq,j ` Zi,j ´Ri,j |
2

` λC}C}˚ ` λMU r}M}˚ ` }U}˚s ` λZ}Z}˚, (2.6)

subject to

ÿ

iPf´1puq

Mi,v “ 0 @u ď d1, v ď d2,
ÿ

jPg´1pvq

Uu,j “ 0 @u ď d1, v ď d2,

ÿ

iPf´1puq

Zi,j “ 0 @j ď n, and
ÿ

jPg´1pvq

Zi,j “ 0 @i ď m, (2.7)

where λC , λMU and λZ are regularization parameters. The conditions of (2.7) are the same

orthogonal conditions of our framework OMIC. They imply that the matrix Z is free of

any community-wide behaviour component (for either users and items) and the matrices
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M P Rmˆd2 and U P Rd1ˆn are free of any community-wide behaviour components for the

users and items respectively.

Remark 2.2.1. The optimization in (2.6) is over the matrices C,M,U and Z, and the

choice of communities f, g.

2.3 The OMIC algorithm

In this section, we propose an iterative imputation algorithm to solve the problem (2.1)

with the square loss. The first step is to develop a method to solve (2.1) in the case where

Ω “ t1, 2, . . . ,mu ˆ t1, 2, . . . , nu, the so-called “fully known case”. The final solution can

then be obtained by iteratively using this method.

The fully known case: Recall the singular value thresholding operator Sλ from [29],

which is defined by SλpZq “
řr
i“1pλi ´ λq`viw

J
i , where Z “

řr
i“1 λiviw

J
i is the singular

value decomposition (SVD) of Z.

In our case, we now introduce the Generalized singular value thresholding operator SΛ,

which, for any set of parameters Λ “ pλk,lq kďK
lďL

, and given a set of auxiliary matrices

Xpkq, Y plq (satisfying the orthogonality conditions (2.3)), is defined by

SΛpZq “
K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,lpM
pk,lqqpY plqqJ, (2.8)

where M pk,lq “ pXpkqqJZpY plqq, which ensures Z “
řK
k“1

řL
l“1X

pkqM pk,lqpY plqqJ.

Proposition 2.3.1. The definition in equation (2.8) is equivalent to the following:

SΛpZq “
K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJZY plq
¯

pY lqJ. (2.9)

Furthermore, Z̃ “ SΛpZq is the solution to the following optimization problem:

min
1

2
}Z̃ ´ Z}2Fr `

K
ÿ

k“1

L
ÿ

l“1

λk,l

›

›

›
pXpkqqJZY plq

›

›

›

˚
, (2.10)

or equivalently

min
1

2
}Z̃ ´ Z}2Fr `

K
ÿ

k“1

L
ÿ

l“1

λk,l

›

›

›
M pk,lq

›

›

›

˚
, (2.11)

subject to Z̃ “
K
ÿ

k“1

L
ÿ

l“1

XpkqM pk,lqpY plqqJ. (2.12)
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Proposition 2.3.1 is proved in Appendix A.

For any fixed set of hyperparameters Λ and auxiliary matrices Xpkq, Y plq (for k ď K, l ď

L), the final solution to the optimization problem (2.1) is obtained iteratively by the Al-

gorithm 1: at each step, a target matrix is constructed by setting the entries of Ω to the

observed values and imputing the values of the previous iteration to the entries of ΩK

(line 3). We then apply the fully known case (Proposition 2.3.1) to this target matrix

to reach the next iterate (line 4). This algorithm converges for any initial (0th iteration)

matrix, for example setting all the unobserved entries to 0 (line 1).

Algorithm 1 OMIC
INPUT: Partially observed matrix RΩ P Rmˆn, regularizing parameters Λ P RKˆL and
start matrix S P Rmˆn
MODEL CHOICE: Xp1q, . . . , XpKq and Y p1q, . . . , Y pLq

OUTPUT: A recovered matrix Z P Rmˆn
1: Initialize Znew Ð S
2: while not converged do
3: Zold Ð RΩ ` PΩKpZ

newq

4: Znew Ð SΛ

`

Zold
˘

5: end while
6: return Z “ Znew

If we must calculate several values of Λ, we can use warm starts to improve efficiency.

Algorithm 2 does this in the case where the range of values for Λ is a product V “
ś

k,l Vk,l
where the Vk,l are finite sets of candidate values for λk,l (ordered in increasing or decreasing

order): initial estimates of Mk,l for each value of λk,l are calculated by setting each λk1,l1

to infinity for k1 ‰ k, l1 ‰ l and solving the full problem (2.1) in this case. Furthermore,

each of those sets of Mk,l are calculated using warm starts along the sequence of λk,l P Vk,l.
For any real number λ, pk,lpλq denotes the set of hyperparameters Λ with Λk,l “ λ and

Λk1,l1 “ 8 otherwise.

Remark 2.3.2. “Setting λk1,l1 to infinity” amounts excludes the pk1, l1q term in the

sum (2.2) which defines our predictors. Thus our warm starts are computed by training

each term in that sum independently.
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Algorithm 2 OMIC with warm-starts
INPUT: Partially observed matrix RΩ P Rmˆn and a set of regularizing parameters V “
ś

k,l Vk,l
MODEL CHOICE: Xp1q, . . . , XpKq and Y p1q, . . . , Y pLq

OUTPUT: Set of recovered matrices ZΛ for all Λ P V
1: for k P t1, 2, . . . ,Ku do
2: for l P t1, 2, . . . , Lu do
3: for λ P Vk,l do
4: Λ “ pk,lpλq, S “ 0
5: Zk,l,λ ÐOMICpRΩ,Λ, Sq
6: end for
7: end for
8: end for
9: for Λ P V do

10: S Ð
řK,L
k,l“1 Z

k,l,λk,l

11: ZΛ ÐOMICpRΩ,Λ, Sq
12: end for
13: return ZΛ for Λ P V

2.3.1 A scalable version for OMIC algorithm

The main computational step at each iteration of the Algorithm 1 is the calculation of the

solution to an instance of the fully known case (line 4), which can be obtained via our

generalized singular value thresholding operator SΛ. Observe that the sum of the numbers

of columns of all Xpkq (resp. Y plq) is m (resp. n). Thus, if m and n are large (which is often

the case in RSs contexts), it is infeasible to even store all the auxiliary matrices in memory,

let alone perform operations on them directly. The same problem can occur with some of

the latent matrices M pk,lq. It is easy to see that the largest M pk,lq has at least m{K ˆ n{L

entries which is also very large.

In this section, we show how to circumvent this difficulty in the specific case of for

the comprehensive case of OMIC (with biases and cluster side information, Section 2.1.3)

where K “ L “ 3 and the auxiliary matrices are defined assuming the side information X,Y

consists of indicator functions of clusters. For instance, the columns of Y could represent sets

of movies belonging to a specific genre, whilst the columns of X could represent countries,

genders or professions for users. Our strategy heavily relies on both the “sparse-plus-low-

rank” structure present in the target matrices of the “fully known problem” solved at each

iteration, as well as the specific structure of the community side information.
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First, we define the matrices X̃p0q, ¨ ¨ ¨ , X̃p3q and Ỹ p0q, ¨ ¨ ¨ , Ỹ p3q as follows:

STEP 1: Let X̃p0q “ p0, . . . , 0qJ and Ỹ p0q “ p0, . . . , 0qJ.

STEP 2: X̃p1q “ Xp1q and Ỹ p1q “ Y p1q are constructed as in Section 2.1.1, i.e. Xp1q “

p 1?
m
, . . . , 1?

m
qJ, Y p1q “ p 1?

n
, 1?

n
, . . . , 1?

n
qJ;

STEP 3: Similarly to what we did in Section 2.1.2, let X (resp. Y ) denote a matrix

whose columns are indicator functions of the user (resp. item) communities. Make

X̃p2q “ normalizepXq and Ỹ p2q “ normalizepY q. Here, normalize denotes the operation

of normalizing each column.

STEP 4: Finally, X̃p3q “ Id and Ỹ p3q “ Id.

Remark 2.3.3. Note that X (resp. Y ) is a sparse matrix composed of the indi-

cator functions of user (resp. item) communities. Therefore, the matrices X̃p1q,

X̃p2q,X̃p3q,Ỹ p1q ,Ỹ p2qand Ỹ p3q can easily be stored in memory, and it is easy to mul-

tiply them by arbitrary vectors on either side.

Now observe that due to the rotational invariance of the Singular Value Decomposition

(SVD), the operator SΛ can be rewritten as

SΛpZq “
3
ÿ

k“1

3
ÿ

l“1

Sλk,l

´

XpkqpXpkqqJZY plqpY plqqJ
¯

. (2.13)

Thus, for a given Z, calculating SΛpZq boils down to computing the SVD of the matrices

Hpk,lq “ XpkqpXpkqqJZY plqpY plqqJ, which are the projections of Z on the spaces correspond-

ing to each pair of auxiliary matrices. We perform the SVD computation through a rank-

restricted alternating least squares algorithm (see Algorithm 4). This requires an efficient

strategy to compute Hpk,lqW1 and W2H
pk,lq, where W1 and W2 are any real conformable

matrices.

We now observe that for any conformable orthogonal matrix U , if W1 P Rnˆr, UUJW1 is

the projection of W1 on the span of the columns of U . Crucially, if V is an orthogonal matrix

with spanpV q Ă spanpUq, then for any W1 P Rnˆr, UUJW1 ´ V V
JW1 is the projection of
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W1 on the orthogonal complement of V in U . Applying this to the matrices Y plq and Ỹ plq,

we obtain, for all l ď 3:

Y plqpY plqqJW1 “ Ỹ plqpỸ plqqJW1 ´ Ỹ
pl´1qpỸ pl´1qqJW1. (2.14)

Similarly, for any W2 P Rmˆr and k ď 3,

XpkqpXpkqqJW2 “ X̃pkqpX̃pkqqJW2 ´ X̃
pk´1qpX̃pk´1qqJW2. (2.15)

With (2.14) and (2.15), we are now in a position to present our algorithm for calculating

Hpk,lqW1. We will divide the task into three steps.

STEP 1: First, we evaluate W̃1 “ Y plqrpY plqqJW1s using (2.14).

Observe that as a byproduct of the iterative imputation procedure, Z can be decomposed

as the sum of a sparse matrix ZSp and a low-rank matrix ZLR as follows:

Z “ ZSp ` ZLR “ ZSp ` ULR
“

DLRVLR
J
‰

. (2.16)

STEP 2: Then, using this decomposition, it is easy to calculate the quantity
˜̃
W1 “ ZW̃1

as follows:

˜̃
W1 “ ZW̃1 “ ZSpW̃1 ` ULRDLRpVLR

JW̃1q. (2.17)

STEP 3: Finally, we calculate Hpk,lqW1 “
`

XpkqrpXpkqqJ
˜̃
W1s

˘

J using (2.15). Symmet-

rically and with the same arguments we can compute W2H
pk,lq.

Algorithm 4 (based on [60]) describes how to compute SΛpZq for a fixed hyperparameter

set Λ and Algorithm 3 is our fully scalable implementation of Algorithm 1 for the case with

biases and cluster side information. In practice, we can further use warm start strategies

such as the one presented in Algorithm 2 to speed up convergence.

Remark 2.3.4. To avoid manipulating or storing large matrices, it is necessary to

perform the above operations in the correct order, which is defined by the brackets. This

remark applies, in particular, to Algorithms 3 and 4.
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Remark 2.3.5. The convergence of Algorithm 4 follows from that of Algorithm 2.1

in [60]: for each combination pk, lq, of which there are finitely many, the while loop from

lines 10 to 21 essentially runs Algorithm 2.1 from [60] on the component matrix Rpk,lq “

pXpkqqJRY plq, thus the full algorithm converges. The convergence of Algorithm 3 then

follows from (1) the convergence of Algorithm 4 (which is used inside the while loop)

together with (2) the convergence of Algorithm 1, which is established in Theorem 2.3.1.

Algorithm 3 Scalable OMIC with biases and cluster side information
INPUT: Partialy observed matrix RΩ P Rmˆn (stored as sparse matrix), regularizing
parameters Λ P R3ˆ3, maximum rank r ě 1 and a singular value decomposition of a start
matrix SSVDtULR, DLR, VLRu
MODEL CHOICE: Make X̃p0q, ¨ ¨ ¨ , X̃p3q from Xp1q, . . . , Xp3q and Ỹ p0q, ¨ ¨ ¨ , Ỹ p3q from
Y p1q, . . . , Y p3q

OUTPUT: Singular value decomposition of the recovered matrix Z P Rmˆn

1: Zs Ð RΩ

2: ZLR Ð SSVD

3: while Not converged do
4: Zs Ð RΩ ´ PΩpZLRq
5: ZLR Ð (Sλ)-ALS(Z “ tZs, ZLRu)
6: end while
7: return Z Ð ZLR
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Algorithm 4 (SΛ)-ALS: Generalized restricted truncated singular value thresholding via
alternating least squares
INPUT: Matrix Z P Rmˆn decomposed as in (2.16); thresholding parameters Λ P R3ˆ3

and maximum rank r ě 1
MODEL CHOICE: Make X̃p0q, ¨ ¨ ¨ , X̃p3q from Xp1q, . . . , Xp3q and Ỹ p0q, ¨ ¨ ¨ , Ỹ p3q from
Y p1q, . . . , Y p3q

OUTPUT: SΛpZq represented in storable low-rank format as pU,diagpΣq,Vq such that
SΛpZq “ UdiagpΣqVJ

1: Procedure Projection(Ep1q,Ep0q,Θ)
2: return Ep1qrpEp1qqJΘs ´ Ep0qrpEp0qqJΘs
3: end Procedure
4: UÐ Σ Ð VÐ NULL
5: for k in (1..3) do
6: for l in (1..3) do
7: U Ð random orthogonal mˆ r matrix
8: D Ð Idrˆr
9: AÐ UD

10: while ABJ not converged do
11: Θ Ð UDpD2 ` λk,lIq

´1

12: Θ̃ Ð Projection(X̃pkq, X̃pk´1q,Θ)

13:
˜̃
Θ “ Θ̃JZSp ` rpΘ̃

JULRqDLRsVLR
J

14: B̃ Ð Projection(Ỹ plq, Ỹ pl´1q,
˜̃
ΘJ)

15: Compute the SVD of B̃D “ Ṽ D̃2RJ and attribute V Ð Ṽ , D Ð D̃ and B Ð V D
16: Θ Ð V DpD2 ` λk,lIq

´1

17: Θ̃ Ð Projection(Ỹ plq, Ỹ pl´1q,Θ)

18:
˜̃
Θ “ ZSpΘ̃` ULRrDLRpVLR

JΘ̃qs

19: ÃÐ Projection(X̃pkq, X̃pk´1q,
˜̃
Θ)

20: Compute the SVD of ÃD “ ŨD̃2R̃J and attribute U Ð Ũ , D Ð D̃ and AÐ UD
21: end while
22: Θ̃ Ð Projection(Ỹ plq, Ỹ pl´1q, V )

23:
˜̃
Θ “ ZSpΘ̃` ULRrDLRpVLR

JΘ̃qs

24: M Ð Projection(X̃pkq, X̃pk´1q,
˜̃
Θ)

25: Compute the SVD of M : M “ ŪDσR̄
J.

26: UÐ CONCATpU, Ūq
27: Σ Ð CONCATpΣ,

`

pσ1 ´ λk,lq`, pσ2 ´ λk,lq`, . . . , pσr ´ λk,lq`
˘

q

28: VÐ CONCATpV, V R̄q
29: end for
30: end for
31: return U; diagpΣq;V
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2.3.2 Complexity and runtime analysis

Note that at each iteration of the Algorithms 1 and 3 theoretically require KL SVD op-

erations. However, for the instances of OMIC presented in this dissertation, most of the

SVD calculations are actually trivial. For instance, in the specific case of Section 2.1.1,

matrices M pk,lq “ pXpkqqJZY plq are vectors whenever k “ 1 or l “ 1, thus calculating the

SVD simply amounts to normalizing a vector. In fact, for any combination pk, lq such that

d
pkq
1 ` d

plq
2 is small, it is easy to compute the small matrix M pk,lq P Rd

pkq
1 ˆd

plq
2 and perform

its SVD through standard methods.

We performed experiments with synthetic data to compare the runtimes of SVD cal-

culations in SoftImpute and our algorithm. For each datapoint, we randomly selected a

matrix with the following parameters: rank P t5, 6, ¨ ¨ ¨ , 10u, m P t100, 101, ¨ ¨ ¨ , 1000u and

d
p1q
1 “ d

p1q
2 P t2, 3, ¨ ¨ ¨ , r0.1msu. More specifically, the users and items were each divided into

d
p1q
1 “ d

p1q
2 communities and the matrices Xp1q, Xp2q, Xp3q, Y p1q, Y p2q, Y p3q were constructed

according to the standard procedure described in Section 2.1.3. The matrices M pk,lq were

chosen with iid Gaussian entries.

We then compared, on the one hand (left part of Figure 2.2 ) the following two opera-

tions:

1. Performing the SVD of the full matrix R “
ř

k,lX
pkqM pk,lqpY pkqqJ,

2. Performing the SVDs of all nine matrices M pk,lq for k, l ď 3;

and on the other hand (right part of the figure), the following two operations:

1. One full iteration of the Softimpute algorithm, including imputation and singular

value thresholding operator.

Figure 2.2: Runtime comparison of main computations required for one iteration of Soft-
impute and OMIC. The red line is the identity.
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2. One full iteration of our algorithm, including the imputation and the application of

the generalized singular value thresholding operator.

Remark 2.3.6. As we can see from Figure 2.2, the computational burden of all nine

SVDs required in our algorithm is not more significant than that of the single SVD

required in the SoftImpute implementation. Furthermore, although one full iteration of

our algorithm is slower than one full iteration of the SoftImpute algorithm due to extra

multiplication steps, this appears to be the case only by a small constant factor.

Formal complexity analysis: We will provide a formal complexity analysis of our efficient

implementation proposed in Section 2.3.1. In this case, the number of iterations required

at each step of both Algorithm 3 as well as the SVD calculation (Algorithm 4) depend on

the many practicalities related to various warm starts applied in both cases. However, it is

possible to write down the complexity of performing one iteration.

At each iteration of Algorithm 3, the key step is the singular value thresholding operation

using Algorithm 4. For each iteration inside Algorithm 4, the complexity can be computed

from the following operations, which are each required a fixed number of times (here, as

usual, r is the fixed maximum rank set as a hyperparameter):

• Multiplying each column of a matrix in Rmˆr or Rnˆr by a different constant (e.g.

lines 11 and 16). Cost: Oppm` nqrq.

• Computing the SVD of a Rmˆr or Rnˆr matrix (e.g., lines 15, 20 and 25). Cost:

Opr3 ` pm` nqr2q.

• Performing projections onto the spaces corresponding to Xpkq or Y plq via the procedure

from line 1. Cost: Opm` nq.

• Multiplying r vectors by the current target (see lines 13, 18 and 23). Cost: Op|Ω|r `

pm` nqr2q.

Since r ď m` n, this yields an overall complexity of OpKLr|Ω|r ` pm` nqr2sq. Note that

KL “ 9, so that the complexity is Op9r|Ω|r` pm`nqr2sq “ Op|Ω|r` pm`nqr2q, the same

as the SoftImpute algorithm [29].
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2.3.3 Convergence guarantees

The OMIC algorithm enjoys convergence guarantees, which we present here. Here, we fix a

Λ and assume that we perform the iterative imputation procedure in the algorithm above

starting from Z0 “ 0, with (for each i ě 0)

Zi`1 “ SΛ

`

PΩpRq ` PΩKpZ
iq
˘

. (2.18)

We have the following two results.

Theorem 2.3.1. Consider our general setting with auxiliary matrices satisfying the con-

ditions (2.3) and the operator SΛ defined accordingly. The sequence Zi defined in (2.18)

converges to a solution Z8 of the optimization problem (2.1) with the squared loss. In

particular, the loss L converges to the minimum L˚ of optimization problem (2.1).

Theorem 2.3.2. Let L˚ be the minimum value of the loss L from problem (2.1). For every

fixed Λ, the sequence Zi has the following worst-case asymptotic convergence:

LpZiq ´ LpZ8q “ LpZiq ´ L˚ ď
2}Z0 ´ Z8}2Fr

i` 1
, (2.19)

where Z8 is the limit of the sequence Zi.

We prove Theorems 2.3.1 and 2.3.2 in the Appendix A.

Remark 2.3.7. We use the notation Z8 to refer to the limit of the sequence of iterates,

instead of referring to ‘the solution Z˚ of the optimization problem (2.1)’ because the

solution is not necessarily unique and Z8 may depend on the initialization. Indeed,

the optimization problem is convex but not strongly convex. Thus, there can be several

solutions, but each corresponds to the same value of the objective function.

To check that the specific problem (2.1) can indeed have several equivalent solutions,

consider the following example. Xp1q “ Y p1q “ Id (so that our algorithm coincides with

Softimpute), m “ n “ 2, and let the observed entries be R2,1 “ R1,2 “ 1 (thus, Ω “

tp2, 1q; p1, 2qu.
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Here are three equivalent solutions to the optimization problem with regularising pa-

rameter λ:

A´ “

˜

λ´ 1 1´ λ

1´ λ λ´ 1

¸

;

A` “

˜

1´ λ 1´ λ

1´ λ 1´ λ

¸

; and

A0 “

˜

0 1´ λ

1´ λ 0

¸

.

In all three cases, the nuclear norm is 2´ 2λ, and the value of the objective function is

λp2 ´ 2λq ` 1
2pλ

2 ` λ2q. It is also easy to check that those are actually solutions of (2.1)

because performing any extra iteration of the algorithm yields the same matrix: for A0,

after the imputation step we get the target

˜

0 1

1 0

¸

“ 1ˆ

˜

0

1

¸

´

1 0
¯

` 1ˆ

˜

1

0

¸

´

0 1
¯

,

where the second line is the SVD. It is clear from the SVD that applying the singular value

thresholding operator will return the matrix A0. Thus, the algorithm converges exactly to

A0 in one (zero) iteration(s).

For A`, note that after the imputation step, we get the target

˜

1´ λ 1

1 1´ λ

¸

“ p2´ λq ˆ

˜

1{
?

2

1{
?

2

¸

´

1{
?

2 1{
?

2
¯

` λˆ

˜

´1{
?

2

1{
?

2

¸

´

1{
?

2 ´1{
?

2
¯

,

and it is clear that after applying the SVT operator we obtain

p2´ 2λq ˆ

˜

1{
?

2

1{
?

2

¸

´

1{
?

2 1{
?

2
¯

“

˜

1´ λ 1´ λ

1´ λ 1´ λ

¸

“ A`,

as expected. A similar calculation shows that A´ is also a solution.
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2.4 Collaborative Clustering Algorithm

Since (2.6) involves optimization over a combinatorial number of possible functions f, g we

propose a heuristic algorithm to reach a solution. Like (2.6), our algorithm takes as input

the partially observed matrix R and the hyperparameters d1, d2 and Λ “ tλZ , λC , λMUu.

Our strategy, further represented in Algorithm 5, is as follows.

STEP 1: First, we solve the optimization problem (2.6) for f “ g “ null (which is

equivalent to d1 “ d2 “ 0, see [29]).

STEP 2: Secondly, we cluster (using the k-means algorithm) both the rows and the

columns of the recovered matrix, with the numbers of clusters set to d1 and d2, yielding

the partitions f0 and g0 respectively.

STEP 3: By using OMIC algorithm we solve problem (2.6) with f “ f0, g “ g0 fixed,

obtaining the matrices R̂0 “ tC0,M0, U0, Z0u.

Our next aim is now to iteratively refine the partitions f and g.

STEP 4: To this end, for each set of non-negative parameters θ “ pθ1, θ2, θ3, θ4q in

some predetermined set Θ, the following cluster profile:

Sθ “ θ1C̃0 ` θ2M̃0 ` θ3Ũ0 ` θ4Z0. (2.20)

Here C̃, M̃ and Ũ are m ˆ n matrices such that C̃i,j “ Cfpiq,gpjq@i ď m, j ď n, M̃i,j “

Mi,gpjq@i ď m, j ď n, and Ũi,j “ Ufpiq,j@i ď m, j ď n3.

STEP 5: For each θ P Θ we now obtain partitions fθ (resp. gθ) of the users (resp.

items) by clustering the rows (resp. columns) of Sθ.

3Note that since the matrices C̃, M̃ , Ũ and Z live in mutually orthogonal subspaces with respect to the
Frobenius inner product, the matrices C,M,U, Z (and in particular the loss L) are well-defined for any full
matrix R “ C̃ ` M̃ ` Ũ ` Z for any given set of hyperparameters and partitions f, g.
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STEP 6: Next we solve (2.6) fixing f “ fθ, g “ gθ, obtaining the matrices R̂θ “

tCθ,Mθ, Uθ, Zθu and calculate `θ “ LpRΩ, R̂θ,Λ, fθ, gθq.

STEP 7: Then, we compute the minimum `θmin
of `θ over all values of θ and retain the

partitions fθmin
, gθmin

and the associated matrices R̂θmin
“ tCθmin

,Mθmin
, Uθmin

, Zθmin
u.

STEP 8: Finally, if the algorithm is not converged, we can feed this data to the next

iteration of the algorithm: we attribute R̂0 “ R̂θmin
, f0 “ fθmin

, g0 “ gθmin
and go back

to STEP 3.

Regarding the choice of the searched set Θ, since we use the k-means algorithm as the

clustering procedure, we can restrict ourselves to θs such that θ1 ` θ2 ` θ3 ` θ4 “ 1, and

for computational reasons, we set Θ to be the intersection of that set with a given discrete

grid. Note that the value θ “ p1, 0, 0, 0q P Θ will always return the same clustering and the

same loss as the previous iteration. Thus, the loss is guaranteed to decrease monotonically

at each iteration and the algorithm converges.

The intuition behind the introduction of the heuristic search parameter θ and the con-

struction (2.20) of Sθ is as follows. If λZ and λMU are both very large, and the item

partition g is correct, it is best to cluster the rows of M̃ ` C̃. Indeed, the items only exhibit

community behaviour in those components. On the other hand, if the ground truth contains

a large Ũ component (i.e., if there is significant interaction between user communities and

specific items), or if the current item partition g is significantly wrong, then the component

Z ` Ũ will be more relevant to the clustering problem. We further split all components so

we can look for solutions across a spectrum of confidence in the current partition (a very

large θ4 will reset the optimization procedure to a distant solution, whilst a large θ1 will

keep the current solution unchanged). Thus our algorithm includes a mix of incremental

steps and explorative search.
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Algorithm 5 Collaborative Clustering
INPUT: Partially observed matrix RΩ and hyperparameters d1,d2, Λ “ tλZ , λC , λMUu

OUTPUT: Cluster functions f and g

1: f “ null, g “ null
2: Z “ arg minZ LpRΩ,Λ, f, gq
3: f0 “ clusterRows(Z, d1), g0 “ clusterColumns(Z, d2)
4: R̂0 “ tC0,M0, U0, Z0u “ arg minC,M,U,Z LpRΩ,Λ, f0, g0q

5: repeat
6: MAKE C̃0, M̃0, Ũ0 FROM R̂0, f0, g0

7: f “ f0, g “ g0, `0 “ LpRΩ, R̂0,Λ, f0, g0q

8: for θ P Θ do
9: Sθ “ θ1C̃ ` θ2M̃ ` θ3Ũ ` θ4Z

10: fθ “ clusterRows(Sθ, d1), gθ “ clusterColumns(Sθ, d2)
11: R̂θ “ tCθ,Mθ, Uθ, Zθu “ arg minC,M,U,Z LpRΩ,Λ, fθ, gθq

12: `θ “ LpRΩ, R̂θ,Λ, fθ, gθq
13: end for
14: θmin “ arg minθp`θq
15: R̂0 “ R̂θmin

, f0 “ fθmin
, g0 “ gθmin

16: until f0 ““ f and g0 ““ g
17: return f ,g

2.4.1 Hyperparameter selection and scalability

The relevant hyperparameters in our model are d1, d2,Λ “ tλZ , λC , λMUu. In practice, they

can later be determined through cross-validation. Note that the cross-validation procedure

can be executed in parallel: different sets of (d1, d2,Λ,) can be fitted separately. In the case

of d1 and d2, it is not necessary to run the full algorithm for each combination. Indeed, note

that the choice of d1 and d2 is likely to have a large effect on the optimal loss for typical

values of Λ. Thus, a promising strategy is to run a rudimentary version of our algorithm

(e.g., with a single clustering step) for several d1’s and d2’s, and select the best performing

values.

Regarding the for loop in Algorithm 5 (lines 8-13) observe that the iteration i`1 does not

depend on iteration i. In this case, small adjustments also allow these steps to be executed

in parallel, significantly reducing the computing burden of the search for the parameters Θ.

Note that line 11, which requires performing OMIC algorithm to solve the version of

problem (2.6) for known f, g, can be greatly accelerated with warm starts (see Algorithm 2):

the full recovered matrix from the previous iteration (of the repeat loop) is used as a

warm start for each value of Θ, so that only a small number of imputations is required.

Similar to other involved optimization algorithms4, further improvements can be performed

4such as architecture search for neural networks
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if necessary. For instance, one could initially select the optimal value of Θ based on an even

smaller number of imputations, and perform a more thorough imputation procedure on the

chosen Θ before moving to the next iteration of the repeat loop.

2.5 Conclusion

We presented a framework for cluster-induced matrix completion. Due to the presence

of side information, our approach is context-aware. Comprehensively, we are the first to

integrate bias, side information, and pure low-rank terms into a single framework using a

well-principled optimization approach.

Additionally, we provided an algorithm to deal with our complex optimization problem

and show that it is convergent regardless of initialization. To handle large matrices, we

extend our technique to a scalable variant that computes matrices in sparse plus low-rank

structure.

Finally, we developed a strategy for recovering latent clusters in the absence of side

information. Contrasting previous works, by exploring cluster detection and matrix com-

pletion together, we proposed the coexistence of a cluster side information term and a pure

low-rank term in the same matrix.
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Chapter 3

Theoretical analysis

This chapter presents a theoretical analysis of OMIC, a method described in Chapter 2. We

began by proving the uniqueness of the decomposition of the predictor. Then, we provide

theoretical guarantees in the form of generalizations bounds.

The main contributions of this chapter are the following:

• we prove the uniqueness of decomposition of OMIC’s predictor. Such property

allows our method to give rise to interpretable solutions.

• we provide generalization bounds in the distribution-free case (where we make no

assumption on the ground truth distribution). The better our model matches the

ground truth, the tighter the bounds.

• we present a theoretical analysis for the cluster side information case, assuming

that the sampling distribution of the entries is known and employing an adjusted

nuclear norm regulariser.

Parts of this chapter are based on:

Antoine Ledent˚, Rodrigo Alves˚, and Marius Kloft. Orthogonal inductive
matrix completion. IEEE Transactions on Neural Networks and Learning Sys-
tems, 2021.

Antoine Ledent, Rodrigo Alves,Yunwen Lei, and Marius Kloft. Fine-grained
Generalisation Analysis of Inductive Matrix Completion. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021 (To appear).

˚ The authors contributed equally to this research.
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3.1 Uniqueness of decomposition of the predictor

We note that our orthogonality constraints offer the additional advantage of interpretabil-

ity: the spaces
!

XpkqMpY plqqJ
ˇ

ˇM P Rd
pkq
1 ˆd

plq
2

)

are orthogonal with respect to the Frobe-

nius inner product. Thus, each ground truth matrix R has a unique representation R “
řK
k“1

řL
l“1X

pkqRpk,lqpY plqqJ. Bellow, we provide the detailed proof of these results:

Proposition 3.1.1. Let Fk,l “ tR : DM P Rd1kˆd2l : R “ XpkqMpY plqqJu denote the KL

subspaces corresponding to each pair of auxiliary matrices pXpkq, Y plqq. Those vector spaces

Fk,l are orthogonal (w.r.t. the Frobenius inner product) and their direct sum is the whole

of Rmˆn:

à

Fk,l “ Rmˆn. (3.1)

In particular, for any R P Rmˆn, there exist a unique collection of matrices Rpk,lq P Fk,l
such that R “

ř

k,lR
pk,lq. In fact,

Rpk,lq “ pXpkqqJRY plq. (3.2)

Proof. We divide the proof into two parts: the proof that the subspaces are mutually

orthogonal and the proof that their direct sum is the whole of the matrix space.

The subspaces Fk,l are mutually orthogonal. Let A P Fk,l and B P Fk1,l1 where either

k ‰ k1 or l ‰ l. By definition of the subspaces in question, there exist M P Rd1kˆd2l and

N P Rd
1
k1
ˆd2

l1 such that A “ XpkqMpY plqqJ and B “ Xpk
1qNpY pl

1qqJ.

We now compute the (Frobenius) inner product between A and B in both cases.

Case 1: l ‰ l1, in which case by the assumption on Y p1q, . . . Y plq, we have pY plqqJY pl
1q “

0 P Rd
2
lˆd

2
l1 . Then,

xA,By “ Tr
´

XpkqMpY plqqJpXpk
1qNpY pl

1qqJqJ
¯

“ Tr
´

XpkqMpY plqqJY pl
1qNJpXpk

1qqJ
¯

“ Tr
´

XpkqM0NJpXpk
1qqJ

¯

“ 0
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Case 2: k ‰ k1

xA,By “ Tr
´

pXpk
1qMpY plqqJqJXpkqNpY plqqJ

¯

“ Tr
´

Y plqMJpXpk
1qqJXpkqMpY plqqJ

¯

“ Tr
´

Y plqMJ0MpY plqqJ
¯

“ 0,

as expected.

The direct sum is the whole of Rmˆn:
À

k,l Fk,l “ Rmˆn. Let R P Rmˆn. For each

column vector v P Rm we have immediately v “
ř

kX
pkqpXpkqqJv by our assumption on

the X’s. Applying this to each column of R, we have R “
ř

kX
pkqpXpkqqJR. Similarly,

R “
ř

lRY
plqpY plqqJ. Plugging the second equation into the first one, we obtain

R “
ÿ

k

XpkqpXpkqqJR

R “
ÿ

k

XpkqpXpkqqJ
ÿ

l

RpY plqpY plqqJq

“
ÿ

k,l

Xpkq
”

pXpkqqJRY plq
ı

pY plqqJ

P
à

k,l

Fk,l,

as expected (this also proves equality (3.2)).

3.2 Learning-theoretical guarantees under distribution-free
sampling

3.2.1 Generalization bounds

In this section, we focus on generalization bounds which apply to the comprehensive method

with biases plus cluster side information (Section 2.1.3). We can easily extract similar

bounds that hold for the instances presented in Sections 2.1.1 and 2.1.2 (see Section 3.2.2).

We assume a distribution-free approach, meaning that we do not have any assumption

about the sampling distribution. We will write Ck,l for an upper bound on the entries of

the ground truth component XpkqRpk,lqpY plqqJ where Rpk,lq “ pXpkqqJRY plq. Similarly, we

will write rk,l for the rank of Rpk,lq. Thus, e.g., if C2,3 is large, one concludes that in the

ground truth matrix, the specific affinities of items in t1, 2, . . . nu to a whole cluster of users

is a significant factor in determining the value of each entry. If C3,3 is large, the individual

affinities between users and items, independently of their respective clusters, is a strong

factor.
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The following follows from the Theorem 3.2.1 in the Section 3.2.2.

Corollary 3.2.1. Consider the comprehensive setting (Section 2.1.3)and assume the user

(resp. item) communities are of sizes within a ratio of Op1q, as well as that (without loss

of generality) b ě a, and m ě n. For any ε ą 0, the required number of entries to recover

the ground truth matrix within ε expected loss (with probability ě 1´ δ) is

O

˜

p1{ε2q

ˆ

C2
1,1 ` C

2
1,2b` C

2
1,3n` C

2
2,1a` C

2
2,2b
?
ar2,2 ` C

2
2,3n

?
ar2,3

` C2
3,1m` C

2
3,2m

a

br3,2 ` C
2
3,3m

?
r3,3n` logp1{δq

˙

¸

.

Alternatively, using the nuclear norms of the component matrices, we have the following

sample complexity bound:

O

˜

p1{ε2q

ˆ

C1,1M1,1 `
?
bC1,2M1,2 `

?
nC1,3M1,3 `

?
aC2,1M2,1 `

?
bC2,2M2,2 `

?
nC2,3M2,3

`
?
mC3,1M3,1 `

?
mC3,2M3,2 `

?
mC3,3M3,3 ` logp1{δq

˙

¸

,

where Mk,l is the nuclear norm of the matrix Rpk,lq.

3.2.2 Proof of the generalization bounds

Notation: In this section, we assume the entries are sampled with i.i.d. noise, so that obser-

vations of entry Ri,j are of the form Ri,j`δi,j for δi,j „ ∆i,j for some noise distribution ∆i,j
5.

Thus, N i.i.d. observations indexed by α P t1, 2, . . . , Nu are denoted by Riα,jα ` δα where

piα, jαq is the α’th i.i.d. choice of entry, and each δα is drawn from ∆iα,jα independently. The

loss function ` : RˆRÑ R` is bounded by a constant B, with Lipschitz constant bounded

by L`. For all k ď K, l ď L, i ď m, j ď n, we will write xki (resp. ylj ) for the ith row

(resp. jth column) of the matrix Xpkq (resp. Y plq ), X pkq for maxmi“1 }x
k
i }2 “ maxmi“1 }x

k
i }2

and Yplq for maxni“1 }y
l
j}2. For a predictor f : t1, 2, . . . ,mu ˆ t1, 2, . . . , nu Ñ R, we will

write Rpfq for the expected risk Epi,jq„Dp`pfpi, jq, Ri,j ` δi,jq and R̂pfq for the empirical

risk p1{Nq
řN
α“1 `pfpi, jq, Riα,jα ` δαq.

5Furthermore, Ri,j and ∆i,j are defined so that Ri,j “ arg miny Eδi,j p`pRi,j ` δi,j , yqq.
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First, let us recall that for any x1, . . . , xN and any function class F we can define the

(data dependent) Rademacher complexity Rpx1,...,xnqpFq as

Rpx1,...,xnqpFq :“ Eσ sup
fPF

1

N

N
ÿ

i“1

σifpxiq, (3.3)

where the σi’s are i.i.d. Rademacher random variables (i.e. Ppσi “ 1q “ Ppσi “ ´1q “ 0.5).

Then, recall the following lemma from [38, 61].

Lemma 3.2.2. Let a matrix R P Rmˆn, which is observed with i.i.d. noise, so that observing

entry pi, jq results in an output of Ri,j ` δ where δ „ ∆i,j where the ∆i,j are distributions.

Let FM be the set of matrices R̃ P Rmˆn with }R̃}˚ ď M and |R̃i,j | ď C. Let us write

the data-dependent Rademacher complexity for N samples indexed by α P t1, 2, . . . , Nu

by RN pFMq “ E
´

supR̃PFM
1
N

řN
α“1 σαR̃iα,jα

¯

, where the σα are independent Rademacher

random variables, and the piα, jαq are entries sampled independently.

We have the following bound on the expected complexity R “ EΩpRN pFMqq:

R “ EΩpRN pFMqq ď

c

9MCCp
?
m`

?
nq

N
.

Here, C is the universal constant from [62].

We now can show the following lemma regarding cluster side information. The central

concept is to absorb the variation between entries that correspond to the same cluster into

the “noise” of a corresponding problem that we can apply Lemma 3.2.2.

Lemma 3.2.3. Let X P Rmˆa and Y P Rnˆb be auxiliary matrices whose columns are

indicator functions of distinct sets forming partitions tc1, c2, . . . , cau and ts1, . . . , sbu of

t1, 2, . . . , nu and t1, 2, . . . ,mu respectively. Set M ą 0 and consider the function class

FM :“
 

XMY J
ˇ

ˇ}M}˚ ďM
(

. The Rademacher complexity RN pFMq satisfies

R “ EΩpRN pFMqq ď

g

f

f

e

9CMC
´?

a`
?
b
¯

N
. (3.4)

where C is a bound on the predicted entries.

Proof. This follows from Lemma 3.2.2 applied to the following modified problem: let

fpiq (resp. gpjq) be the cluster to which user i (resp. item j) belongs for all i ď m

(resp. j ď n). For u ď a and v ď b, an observation ĚRu,v will have the distribution
 

Ri,j `∆i,j

ˇ

ˇpi, jq „ Du,v
(

where Du,v is the distribution D conditioned on u “ fpiq and

v “ gpjq. We note that Lemma 3.2.2 allows for the observations of sRu,v to be perturbed

by random variables with distributions Ę∆u,v conditioned on pu, vq. The differences between
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the values of the ground truth matrix at different pairs pi, jq where the communities of i

and j are fixed can be absorbed into this perturbation.

Proposition 3.2.4. Let A P Rmˆn be a matrix and let v P Rm and w P Rn be two vectors.

We have

}vwJ dA}˚ ď max
i,j
|vi||wj |}A}˚ (3.5)

where d denotes the Hadamard (entry wise) product.

For the proof of Proposition 3.2.4, we will need the following lemma (Lemma 6 from [29],

see also [28]):

Lemma 3.2.5. For any matrix Z, the following holds:

}Z}˚ “ min
U,V ;

UVJ“Z

}U}Fr}V }Fr

“ min
U,V ;

UVJ“Z

1

2

`

}U}2Fr ` }V }
2
Fr

˘

(3.6)

Now we will prove Proposition 3.2.4.

Proof. By an equivalent formulation of the nuclear norm 3.2.5 we have:

}vwJ dA}˚ “ min
`

}B}Fr}C}Fr;BC
J “ vwJ dA

˘

ď min
`

}diagpvqB}Fr}diagpwqC}Fr; diagpvqBpdiagpwqCqJ “ vwJ dA
˘

“ min
`

}diagpvqB}Fr}diagpwqC}Fr; pvw
Jq d pBCJq “ vwJ dA

˘

ď min
`

}diagpvqB}Fr}diagpwqC}Fr;BC
J “ A

˘

ď min
`

max
i
|vi|}B}Fr max

j
|wj ; }diagpwqC}Fr

ˇ

ˇBCJ “ A
˘

“ max
i,j
|vi||wj |}A}˚,

as expected.
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We are now in a position to present the main results.

Theorem 3.2.1. Consider the setting from Section 2.1.3 (in particular, K “ L “ 3). Let

K denote the maximum ratio between the sizes of any two user or item clusters. Without

loss of generality, assume n ď m. Choose some Mk,l and Ck,l such that }Rpk,lq}˚ ďMk,l

and maxi,j |R
pk,lq
i,j | ď Ck,l for all pk, lq. Let f̂ be the solution to the optimization problem

min R̂pfq s.t. @k, l,

f “
ÿ

k,l

pXpkqM pk,lqpY plqqJq; }M pk,lq}˚ ďMk,l;

and }XpkqM pk,lqpY plqqJ}8 ď Ck,l @k, l, i and j. (3.7)

With probability ě 1´δ over the draw of the training set, the solution to the optimization

problem (3.7) satisfies

Rpf̂q ď 2L`

c

9C
N
ˆ

„

?
2

4
?
mn

a

C1,1M1,1 `
1

4
?
cm

b

C1,2M1,2p1`
?
bq `

1
4
?
m

b

C1,3M1,3p1`
?
nq

`
1

4
?
cn

b

C2,1M2,1p
?
a` 1q `

1
?
c

b

C2,2M2,2p
?
a`

?
bq `

1
4
?
c

b

C2,3M2,3p
?
a`

?
nq

`
1
4
?
n

b

C3,1M3,1p
?
m` 1q `

1
4
?
c

b

C3,2M3,2p
?
m`

?
bq `

b

C3,3M3,3p
?
m`

?
nq



` 2B

c

logp1{δq

2N
` E . (3.8)

Expressed in terms of matrix ranks instead, we obtain:

Rpf̂q ď 2L`

c

9C
N
ˆ

„

?
2C1,1 ` C1,2

4
?
Kb

b

1`
?
b` C1,3

4
?
n

b

1`
?
n

` C2,1
4
?
Ka

b

?
a` 1` C2,2

4
a

abr2,2

?
K
b

?
a`

?
b` C2,3

4
a

Kanr2,3

b

?
a`

?
n

` C3,1
4
?
m

b

?
m` 1` C3,2

4
a

Kmbr3,2

b

?
m`

?
b` C3,3 4

?
mnr3,3

b

?
m`

?
n



` 2B

c

logp1{δq

2N
` E . (3.9)

Here C is an absolute constant and c is the number of elements in the smallest cluster among

all users and items’ clusters together.

Proof. For convenience we start the proof by considering the setting from the Section 2.1.2

(in particular, K “ L “ 2, without the presence of biases). Let c1 (resp. c2) be the size of

the smallest community of users (resp. items). Let X̃p1q P Rmˆa and Ỹ p1q P Rnˆb denote

matrices whose columns are the (non-normalised) indicator functions of the communities.
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By Lemma 3.2.2, the Rademacher complexity of the function class tX̃p1qMpỸ p1qqJ; }M}˚ ď

M1,1 ^ }X̃
p1qMpỸ p1qqJ}8 ď C1,1u is bounded by

d

9C1,1M1,1Cp
?
a`

?
bq

N
.

Now observe that by Lemma 3.2.4, the function class

F1,1 :“ tXp1qMpY p1qqJ|}M}˚ ďM1,1 ^ }X
p1qMpY p1qqJ}8 ď C1,1u

satisfies

F1,1 Ă F̃1,1 :“ tX̃p1qMpỸ p1qqJ; }M}˚ ďM1,1c
´1{2
1 c

´1{2
2 ^ }X̃p1qMpỸ p1qqJ}8 ď C1,1u,

where c1 (resp. c2) is the size of the smallest community of users (resp. items). Recall that

c “ minpc1, c2q. Then, it follows that

RpF1,1q ď

d

9C1,1pM1,1{ 2
?
c1c2qCp

?
a`

?
bq

N
ď

1
?
c

d

9C1,1M1,1Cp
?
a`

?
bq

N

By the same argument applied to the two situations where each user or item is a single

community, we obtain the following results for F1,2 :“ tXp1qMpY p2qqJ|}M}˚ ď M1,2 ^

}Xp1qMpY p2qqJ}8 ď C1,2u, F2,1 :“ tXp2qMpY p1qqJ|}M}˚ ď M2,1 ^ }X
p2qMpY p1qqJ}8 ď

C2,1u and F2,2 :“ tXp2qMpY p2qqJ|}M}˚ ďM2,2 ^ }X
p2qMpY p2qqJ}8 ď C2,2u:

RpF1,2q ď RpF̃1,2q ď
1
4
?
c

c

9C1,2M1,2Cp
?
a`

?
nq

N
;

RpF2,1q ď RpF̃2,1q ď
1
4
?
c

d

9C2,1M2,1Cp
?
m`

?
bq

N
;

and

RpF2,2q ď RpF̃2,2q ď

c

9C2,2M2,2Cp
?
m`

?
nq

N
,

after noting that F1,2 Ă F̃1,2 :“ tX̃p1qMpỸ p2qqJ; }M}˚ ďM1,2c
´1{2
1 ^ }X̃p1qMpỸ p2qqJ}8 ď

C1,2u; F2,1 Ă F̃2,1 :“ tX̃p2qMpỸ p1qqJ; }M}˚ ďM2,1c
´1{2
2 ^ }X̃p2qMpỸ p1qqJ}8 ď C2,1u; and

F2,2 Ă F̃2,2 :“ tX̃p2qMpỸ p2qqJ; }M}˚ ďM2,2 ^ }X̃
p2qMpỸ p2qqJ}8 ď C2,2u. Here X̃p2q and

Ỹ p2q are identity matrices.
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By considering the subadditivity of Rademacher complexity, Talagrand’s lemma and

the classic Rademacher theorem, we can calculate the empirical risk Rpf̂q (setting from

Section 2.1.2) directly as:

Rpf̂q ď 2L`

”

RpF1,1q `RpF1,2q `RpF2,1q `RpF2,2q

ı

` 2B

c

logp1{δq

2N
` E

ď 2L`

c

9C
N

„

1
?
c

b

C1,1M1,1p
?
a`

?
bq

`
1
4
?
c

b

C1,2M1,2p
?
a`

?
nq

`
1
4
?
c

b

C2,1M2,1p
?
m`

?
bq

`

b

C2,2M2,2p
?
m`

?
nq



` 2B

c

logp1{δq

2N
` E . (3.10)

Now observe that if we set the number of user and item communities to one, then we

obtain exactly the model setting of Section 2.1.1 (only with biases). Then we can directly

extract our second partial result:

Rpf̂q ď 2L`

c

9C
N

„

?
2

4
?
mn

a

C1,1M1,1

`
1

4
?
m

b

C1,2M1,2p1`
?
nq

`
1
4
?
n

b

C2,1M2,1p
?
m` 1q

`

b

C2,2M2,2p
?
m`

?
nq



` 2B

c

logp1{δq

2N
` E . (3.11)
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By using 3.10 and 3.12, we reach our first result of the theorem (distribution free bounds

for the comprehensive case described in Section 2.1.3):

Rpf̂q ď 2L`

”

3
ÿ

k“1

3
ÿ

l“1

RpFk,lq
ı

` 2B

c

logp1{δq

2N
` E

ď 2L`

c

9C
N
ˆ

„

?
2

4
?
mn

a

C1,1M1,1 `
1

4
?
cm

b

C1,2M1,2p1`
?
bq `

1
4
?
m

b

C1,3M1,3p1`
?
nq

`
1

4
?
cn

b

C2,1M2,1p
?
a` 1q `

1
?
c

b

C2,2M2,2p
?
a`

?
bq `

1
4
?
c

b

C2,3M2,3p
?
a`

?
nq

`
1
4
?
n

b

C3,1M3,1p
?
m` 1q `

1
4
?
c

b

C3,2M3,2p
?
m`

?
bq `

b

C3,3M3,3p
?
m`

?
nq



` 2B

c

logp1{δq

2N
` E . (3.12)

Regarding the second result, we haveMk,l »
?
c1,kc2,lCk,l

a

d1,kd2,lrk,l, where rk,l is the

rank of Mk,l and c1,k (c2,l) is the size of the largest community among Xpkq (Y plq). If Xpkq is

a identity matrix, then c1,k “ 1. In the case of Xpkq be a unity vectors c1,k “ m. Plugging

this back into the first result yields the second result, as expected.

3.3 Learning-theoretical guarantees under a given distribu-
tion sampling

3.3.1 Adjusted nuclear norm regulariser

In this section, we introduce our adjusted nuclear norm regulariser. We first recall that in

standard (non-inductive) matrix completion, the weighted nuclear norm [63, 64] of a matrix

Z is defined as }
?
DZ

?
E}˚ where D P Rmˆm (resp. E P Rnˆn) are diagonal matrices

whose diagonal entries contain the marginal row (resp. column) sampling probabilities.

Regularising the weighted nuclear norm instead of the standard nuclear norm leads to

better theoretical guarantees.

The method is based on a careful distribution-dependent rescaling of the matrix M . The

idea is that we must look at the principal directions (singular vectors) of the side informa-

tion matrices, but computed with respect to a distribution-sensitive inner product: when

computing inner products of vectors in the column space of x, components corresponding

to highly users which are more likely to be sampled must be weighted more. In practical

applications, one can observe that some movies have more ratings than others, and some

users are more active than their counterparts.

Here we want to analyze the use of the adjusted nuclear norm regulariser in the presence

of cluster side information. Let pi,j be the probability of sampling entry i, j. We define a
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diagonal matrix D P Rd1ˆd1 as follows: for each user cluster u we set Du,u “
ř

jďn;fpiq“u pi,j ,

where fpiq denotes the cluster to which user-i belongs. In other words, Du,u is the marginal

probability of hitting any entry whose user component belongs to cluster u. We define

E P Rd2ˆd2 analogously. We can now write our predictors as

XMY J “ XD´
1
2 rD

1
2ME

1
2 sE´

1
2Y J, (3.13)

where X and Y are indicator matrices, respectively, of users and items community informa-

tion. For instance, if user i belongs to the community ci out of d1 communities, the vector

xi P Rd1 has 0s in all positions except position ci, which has the value of 1.

Remark 3.3.1. Although we consider the knowledge of the distribution, we could also

define empirical versions of those quantities: D̂u,u :“
ř

jďn;fpiq“u
hi,j
N , where hi,j is the

number of times that entry pi, jq was sampled, i.e. hi,j “
řN
o“1 1ξo“pi,jq “ #pΩXtpi, jquq.

Therefore, the aim would be to regularise rD
1
2ME

1
2 s instead of M . However, some

extra technical modifications may be necessary: if some users or items have extremely small

sampling probability, the corresponding entries of D
1
2 and E

1
2 will be very large. We tackle

this issue by forcing the entries of D and E to be bounded, which we achieve via smoothing.

Fixing a parameter α P r0, 1s, we define D̃ “ αD ` p1´ αqI{d1 and Ẽ “ αE ` p1´ αqI{d2

where I is the identity matrix. We also define accordingly M̃ “ D̃
1
2MẼ

1
2 .

3.3.2 Generalization bounds

This section focuses on generalization bounds that apply to the adjusted nuclear norm

regulariser proposed in the previous section. We assume the sampling distribution is known.

The following follows from the Theorem 3.3.1 in Section 3.3.3.
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Corollary 3.3.2. Consider the setting described in Section 3.3.1. Assume that

d “ maxpd1, d2q, the ground truth rank is r and the its entries are bounded by C.

Assuming M̃ is cross validated within a constant factor of the optimal value, for any ε ą 0,

the required number of entries to recover the ground truth matrix within ε expected loss

(with probability ě 1´ δ) is

O

˜

p1{ε2q

ˆ

C2dr log dq

˙

¸

.

Alternatively, expressed in terms M̃, we have the following sample complexity bound:

O

˜

p1{ε2q

ˆ

dM̃2 log d

˙

¸

.

3.3.3 Proof of the generalization bounds

Notation: In this section, we also assume the entries are sampled with i.i.d. noise, so

that observations of entry Ri,j are of the form Ri,j ` δi,j for δi,j „ ∆i,j for some noise

distribution ∆i,j . The loss function ` : R ˆ R Ñ R` is bounded by a constant B, with

Lipschitz constant bounded by L`. For a predictor f : t1, 2, . . . ,mu ˆ t1, 2, . . . , nu Ñ R, we

will write Rpfq for the expected risk Epi,jq„Dp`pfpi, jq, Ri,j`δi,jq and R̂pfq for the empirical

risk p1{Nq
řN
α“1 `pfpi, jq, Riα,jα ` δαq. Finally, the predictors f are restricted to the class

F̃r “
!

XMY J : }M̃}˚ ď M̃
)

for some real number M P R`.

Theorem 3.3.1. Let X P Rmˆd1 and Y P Rnˆd2 be cluster indicator matrices, respectively,

of users and items. Without loss of generality, assume n ď m and let d “maxpd1, d2q. Let

f̂ be the solution to the optimization problem:

min R̂pfq

f “ F̃r “
!

XMY T : }M̃}˚ ď M̃
)

. (3.14)

Assume also that the ground truth matrix R is realisable, i.e. there exists an M̄ such

that R “ XM̄Y J and }M̄}˚ ď M̃. (In particular, M̃ must be chosen large enough via cross

validation).

With probability ě 1´δ over the draw of the training set, the solution to the optimization

problem (3.14) satisfies
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Rpf̂q ď O

˜

L`M̃
?
dp1`

a

logp2dqq
?
N

`B

c

logp2{δq

N

¸

. (3.15)

Expressed in terms of matrix ranks instead, we obtain:

Rpf̂q ď O

˜

L`
?
rC
?
dp1`

a

logp2dqq
?
N

`B

c

logp2{δq

2N

¸

. (3.16)

Proof. First let us present the following lemma extracted from the results of [64]:

Lemma 3.3.3. Let a matrix R P Rmˆn, which is observed with i.i.d. noise, so that observing

entry pi, jq results in an output of Ri,j ` δ where δ „ ∆i,j where the ∆i,j are distributions.

Without loss of generality, assume n ď m. For any matrix Z we set Z̃ “ D̃
1
2ZẼ

1
2 . Let f̂

be the solution to the following optimization problem

min R̂pfq

f “ F̃M̃ “

!

Z : }Z̃}˚ ď M̃
)

. (3.17)

Assume also M̃ is chosen (via cross-validation) to be large enough to ensure the ground

truth matrix R is realisable, i.e. }Z}˚ ď M̃. With probability ě 1´ δ over the draw of the

training set, the solution to the optimization problem (3.17) satisfies

Rpf̂q ď O

˜

L`M̃
?
mp1`

a

logp2mqq
?
N

`B

c

logp2{δq

2N

¸

. (3.18)

Similarly to the proof of Lemma 3.2.3, from Lemma 3.3.3 we applied to the following

modified problem: let fpiq (resp. gpjq) be the cluster to which user i (resp. item j)

belongs for all i ď m (resp. j ď n). For u ď a and v ď b, an observation ĚRu,v will have

the distribution
 

Ri,j `∆i,j

ˇ

ˇpi, jq „ Du,v
(

where Du,v is the distribution D conditioned on

u “ fpiq and v “ gpjq. We also note that Lemma 3.3.3 allows for the observations of sRu,v

to be perturbed by random variables with distributions Ę∆u,v conditioned on pu, vq. The

differences between the values of the ground truth matrix at different pairs pi, jq where the

communities of i and j are fixed can be absorbed into this perturbation. Therefore, the

first result yields from Lemma 3.3.3 by solving a problem where R has dimensions d1 ˆ d2,

if d1 ě d2. If d2 ą d1, the Lemma 3.3.3 applies to RJ.

Finally, to express the final result in terms of matrix ranks, we note that M̃ scales like

C
?
r where r and C are bounds on the rank and maximum entries, respectively. Indeed,
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note

}D̃
1
2 }2Fr ď d1

1

2d1
`

1

2

ÿ

a

Du,u
2
“ p1{2q ` p1{2q “ 1, (3.19)

and similarly }Ẽ
1
2 }2Fr ď 1. Thus if }M}8 ď C and rankpMq ď r, we have }M̃}˚ ď

?
r}M̃}Fr ď

?
r

c

ř

u,vrD̃
1
2
u s

2rẼ
1
2
v s

2M2
u,v ď

?
r}M}8

c

ř

u,vrD̃
1
2
u s

2rẼ
1
2
v s

2 ď
?
rC. Plugging

back, we have the second result, as expected.

3.4 Remarks on proof techniques and comparison to IMC
bounds

The bounds admittedly follow reasonably straightforwardly from similar techniques as those

used for standard matrix completion, applied to auxiliary problems corresponding to each of

the four terms (Xp2qM p2,2qpY 2qJ, Xp2qM p2,3qpY 3qJ, Xp3qM p3,2qpY 2qJ and Xp3qM p3,3qpY 3qJ)

independently and then merged via the subadditivity of Rademacher complexity. Indeed,

in the distribution-free case state-of-the-art bounds for the number of known entries take

the form (cf. [38, 61])

O
`

Mp
?
n`

?
mq

˘

(3.20)

where M is a bound on the nuclear norm.

However, we note that the state-of-the-art bounds for inductive matrix completion

(whose predictors take the form XMY J for some fixed side information X and Y , with nu-

clear norm minimization at work on M), applied to any of the first three terms in question

do not yield bounds as tight as ours.

Indeed, there is no suitable equivalent to (3.20) in the inductive case, and the state-

of-the-art bounds for inductive matrix completion (cf. [34, 65]). The main contribution of

our bounds is to provide specific learning guarantees for IMC with cluster side information.

To better understand this phenomenon, consider the case where C1,l “ Ck,1 “ 0. Note

that, in this case, the bounds presented in Corollary 3.2.1 improve with the quality of the

side information: the better the ground truth matrix can be approximated by community

behaviour, the closer the bound behaves to the bound one would obtain for an aˆ b matrix

with each user and item being assimilated to its community. We note that for a fixed

tolerance threshold ε, our distribution-free sample complexity bounds scale as

KC2
2,2b
?
ar2,2 `

?
KC2

2,3n
?
ar2,3 `

?
KC2

3,2m
a

br3,2 ` C
2
3,3m

?
r3,3n, (3.21)

It means that, if C2,2 is much larger than C2,3, C3,2 and C3,3, the bound behaves simi-
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larly to the situation where the users and items are identified with their category. Whilst

this is not very surprising, the bound does show that this remains true for small but non

zero values of C2,3, C3,2 and C3,3: the model can effectively learn a combination of commu-

nity behaviour and user behaviour with no further difficulty than if it were learning both

problems independently. Note also conversely that if a, b are very small (as in the particular

case of biases where a “ b “ 1), the first three terms of (3.21) are very small and the bound

essentially tells us that the model is about as hard as learning the low-rank residual alone.

Moreover, the bounds show that prior knowledge of the community structure helps more

than knowledge of the generic low-rank structure. Indeed, consider a typical situation where

the communities are of equal and small size, and also C2,3 “ C3,2 “ 0, a “ b, m “ n and

r2,2 “ a, and assume that the absolute values of the maximum and minimum entries of Rp2,2q

are of the same order so that the maximum absolute value of an entry of R is » C2,2`C3,3.

With knowledge of the community structure, our model requires in the distribution-free

case OpC2
2,2a

2 ` C2
3,3m

3{2?r3,3q entries. If we were to apply a generic low-rank method

instead, the number of required entries would then be OppC2,2 ` C3,3q
2m

a

pr3,3 ` aqmq.

To better understand the impact of our bounds under a known distribution and applying

adjusted nuclear norm regulariser (Section 3.3.3), consider the representative case when only

C2,2 ‰ 0, our distribution-free bound (3.8). In this case, our bound on the number of require

entries takes the form

O
`

C2
2,2b
?
ar2,2

˘

, (3.22)

whereas knowing the distribution, our bound (3.3.2) takes the form

O
`

C2br log b
˘

. (3.23)

By ignoring log terms, assuming a “ b and b " r, we see that adjusted nuclear norm

regulariser bounds scales as Cb instead of Cb3{2.

3.5 Conclusion

In this chapter, we performed a theoretical analysis of OMIC. We, first, proved the unique-

ness of the predictor’s decomposition, which justifies our experimental interpretability anal-

ysis. For that, we proved that the subspaces are mutually orthogonal and that their direct

sum is the whole of the matrix space.

Then, in the form of generalization bounds, we provide theoretical guarantees for our

method when no assumption on the ground truth sampling distribution. Our bounds im-

prove with the quality of the side information: the better the ground truth matrix can be

approximated by community behaviour, the closer the bound behaves to the bound one

would obtain for an aˆ b matrix with each user and item being assimilated to its commu-
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nity. Finally, we presented an analysis when the entries sample distribution is known and

an adjusted nuclear norm regulariser is applied: our results show that the bounds with the

knowledge of the sampling distribution scales as C2b instead of C2b3{2, when no assumption

about the sampling distribution is made.

50



Chapter 4

Experiments and applications

This chapter presents synthetic and real-world data experiments, as well as applications

of the methods described in Chapter 2. We began by analyzing the OMIC algorithm in

different ground-truth regimes with synthetic datasets. Then, we verify our method’s per-

formance in a context-aware and collaborative-filtering scenario on recommender datasets.

Finally, we present a novel application of matrix completion in chemical engineer.

The main contributions of this chapter are the following:

• we provide empirical analysis which shows that OMIC exhibits better performance

and flexibility across the whole spectrum of varying quality of side information;

• by considering a large array of real data, we show that our method surpasses the

state-of-the-art in terms of accuracy;

• we demonstrate how our methods give rise to interpretable solutions, for instance,

in terms of the amount of user bias, movie quality, and cluster effects in a learned

matrix;

• we examined the application of OMIC in the natural sciences for the prediction of

activity coefficients in thermodynamics. We are the first to use matrix completion

to tackle this task.
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4.1 Metrics

Let R P Rmˆn denote the ground truth matrix, R̂pkq the matrix predicted by method k and

let Ω̄ be the test set (a subset of entries). Let R̄pkq, B̂
pkq
U and B̂

pkq
I be respectively the zero-

order term (Xp1qM p1,1qY p1q in the case of Section 2.1.1), the vector of user biases and the

vector of items biases estimated by method k. In the SoftImpute case we need an extra post-

processing step to estimate the biases: R̄pSIq “
ř

ij R̂
SI
ij {mn, B̂

pSIq
Ui

“
ř

jpR̂
pSIq
ij ´ R̄pSIqq{n

and B̂
pSIq
Ij

“
ř

ipR̂
pSIq
ij ´ R̄pSIqq{m. To assess the methods we used the metrics presented in

the list bellow:

• Root-mean-square Error (RMSE): RMSE “
b

ř

i,jPΩ̄pR̃ij ´Rijq
2{|Ω̄|

• Mean Absolute Deviation (MAD): MAD “
ř

i,jPΩ̄ |R̃ij ´Rij |{|Ω̄|

• Matrix Bias Deviation (MBD): MBD “
ˇ

ˇR̄´ R̄pkq
ˇ

ˇ

• User Bias Deviation (UBD) and Item Bias Deviation (IBD): UBD “ }BU ´

B̂
pkq
U }Fr (resp. IBD “ }BI ´ B̂

pkq
I }Fr )

• Spearman Correlation (SPC): in recommender systems the RMSE is not the only

important method to assess the quality of prediction. A method can have a smaller

RMSE than another one but recommend less accurately. SPC “ ρS

´

RΩ̄, R̂
pkq

Ω̄

¯

, the

Spearman correlation between two vectors composed of the entries of R and R̂pkq on

the test set.
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To assess the agreement of our clustering method with the ground truth:

• Random Index (RI): Let f1, f2 be two partitions of a set t1, 2, . . . ,mu, the Random

index RIpf1, f2q between f1 and f2 is defined as the proportion of pairs of elements in

t1, 2, . . . ,mu which are either placed in the same cluster in both partitions f1, f2 or

placed in a different cluster in both partitions f1, f2:

RIpf1, f2q “ #pSf1,f2q{

˜

n

2

¸

, where

Sf1,f2 “ pti1, i2u : rf1pi1q “ f1pi2q ^ f2pi1q “ f2pi2qs _ rf1pi1q ‰ f1pi2q ^ f2pi1q ‰ f2pi2qsq .

Remark 4.1.1. Note that lower values of RMSE, MAD, MBD, UBD and IBD and

higher values of SPC and RI correspond to better performance. RI is well defined even

if f1 and f2 return a different number of clusters.

4.2 Baselines

Our model is a fundamental tool that relies only on an incomplete matrix and a set of

side information. We compare our model with other similarly fundamental models such as

IMC [14, 34, 38] and Softimpute [29], with the understanding that the basic ideas could be

refined and incorporated into more sophisticated recommender systems.

• SoftImpute (SI) is a matrix completion method that uses nuclear-norm regulariza-

tion. This is a standard baseline for non-inductive matrix completion [29].

• SoftImpute with bias (B-SI) is a popular approach that consists in first, training

user and item biases, and then training the SoftImpute model on the residuals.

• Inductive Matrix Completion with Noisy Features (IMCNF) In this

model [38] we train a sum of an IMC term and a residual SoftImpute term jointly (via

alternating optimization). This model requires side information and was, therefore,

only considered in real data experiments.

In the scenario where no explicit side information is provided for users or items, two

branches of clustering frameworks are widely used in collaborative filtering-based recom-

mendation systems: (1) matrix factorization methods and (2) nearest neighbor methods.

We select as baselines a state-of-the-art representative example of each branch as follows:
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• Matrix Factorization: Apply standard nuclear-norm matrix factorization [29] and

then cluster the rows (resp. columns) of the recovered matrix to detect communities

of users (resp. items).

• Nearest Neighbors: Nearest neighbor methods typically calculate a statistical dis-

tance between users (resp. items) using only the known entries and then group the

users (resp. items) hierarchically. As a representative example, we used the Pearson

correlation.

4.3 Synthetic experiments

We use synthetic data to examine the models proposed in Chapter 2 and the algorithms

developed in Section 2.3 by considering several ground-truth regimes. To that end, we

propose two matrix generation procedures to assess our model’s ability (1) to detect the

user and item biases (Section 2.1.1) and (2) to recover hidden clusters (Section 2.2).

4.3.1 User and item biases generation procedure

Our first generation procedure can be described as follows:

STEP 1: Let ã be the vector with components ãi “ i ´ m`1
2 and let b̃ be the vector

with components ãj “ i ´ n`1
2 . Then compute a “ ã

}ã} and b “ b̃
}b̃}

. We also write

v1 P Rm for p 1?
m
, 1?

m
, . . . , 1?

m
qJ and v2 P Rn for p 1?

n
, 1?

n
, . . . , 1?

n
qJ

STEP 2: Then we define G “ 1
2av

J
2 `

1
2v1b

J and S P Rmˆn where Si,j “ p1{mnq, if

pi, jq P t1, ¨ ¨ ¨ ,m{2u ˆ t1, ¨ ¨ ¨ , n{2u Y tm{2 ` 1, ¨ ¨ ¨ ,mu ˆ tn{2 ` 1, ¨ ¨ ¨ , nu, and Si,j “

´p1{mnq otherwise.

STEP 3: Therefore, we can generate a matrix R P Rmˆn as

Rpαq “ αcG` p1´ αqcS, (4.1)

where α P r0, 1s is a parameter that controls the relative intensities of the user/item

biases and the non-inductive component, and c is a scaling constant.

Note that G is composed of the sum of two terms. The first term is a matrix with all rows

being equal, whilst the second term’s columns are all equal. Thus G is made up of user

and item biases. On the other hand, the S matrix can be divided into four blocks of equal
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sizes. The top left and bottom right blocks entries have a constant value of p1{mnq. The

remaining block has entries with the value ´p1{mnq.

4.3.2 Cluster side information generation procedure

We also generated square matrices in Rmˆm where the users and items are naturally divided

into k clusters of size m{k. Without loss of generality, the first cluster consists of the first

m{k entries, etc., and we assume f, g are defined according to this clustering arrangement.

Our data generation procedure basis on the following three matrices:

STEP 1: To represent the cross-community affinities, first generate a pure community

component matrix A. For that, construct a k ˆ k matrix Ā with i.i.d. Np0, 1q entries.

Then set Ui,j “ Āfpiq,gpjq and set A to be a normalized version of U of Frobenius

norm m.

STEP 2: Construct the matrix B̃1 P Rmˆk whose columns are projections of in-

dependent Gaussian vectors in Rm onto the space tx P Rm :
ř

iPf´1pcq xi “ 0,@c P

t1, 2, . . . , kuu. B̃1 represents the User ˆ (Item community) term. Generate similarly

B̃2 for the Item ˆ (User community) term. Set Ui,j “ B̄1
i,gpjq ` B̄2

fpiq,j and let B be a

normalised version of U with Frobenius norm m.

STEP 3: In the next step, generate the community-free behaviour matrix C. It is

simply constructed with i.i.d. Np0, 1q entries, then projected to the space tX P Rmˆm :
ř

iPf´1pcq xi,j “ 0,@c P t1, 2, . . . , ku, j ď m^
ř

jPg´1pcq xi,j “ 0,@c P t1, 2, . . . , ku, i ď mu

and normalised to have unit Frobenius norm.

STEP 4: Using these basis matrices, we can construct matrices of the form:

Rpα, βq :“ A` αB ` βC, (4.2)

where the parameters α and β regulate the importance of ground truth behaviours

associated to A,B and C.

Note that for a given f, g, the matrices A,B,C belong to the (independent) subspaces

corresponding, in (2.6), to C, (M`U) and Z respectively. The parameters α and β in (4.2)

regulate the importance of the community components and the community-free component.
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4.3.3 Experimental setup and results

All the hyperparameter tuning was done through cross-validation. We split the set of ob-

served entries Ω into two randomly sampled subsets: 95% for training and 5% for validation.

The range of the parameters was adjusted according to each model’s needs.

Recovering user and item biases: To assess our model’s ability to detect the importance

of user and item biases, we generate matrices according to the procedure described in

Section 4.3.1. For that, we needed to select the parameters m,n, c and α. We chose

m “ n “ c “ 100. The parameter α P t0, 0.25, 0.5, 0.75, 1u was empirically selected in

such a way that the expected intensity of the biases’ component varied. Note that in the

extremes of the α interval the generated matrix is just composed of one of the components.

To determine the number of observed entries and the sampling distribution, we consid-

ered two extra parameters: the percentage of observed entries pΩ and a parameter γ P N that

manages the sparsity distribution. Given a fixed pΩ we randomly selected γppΩmn{pγ` 1qq

entries in the first m{2 rows and ppΩmn{pγ ` 1qq in the remaining ones. The parameter

pΩ was varied in t0.15, 0.30, 0.50u and the parameter γ as varied in the range t1, 4u (γ “ 1

indicates uniformly sampled observations).

Note that for SI, we need an extra post-processing step to estimate the biases. In this

case, we calculate the matrix bias as the average of the predicted matrix entries. After

subtracting the SI matrix bias, we calculated the users and the items bias by averaging the

columns and the rows, respectively.

For each combination of α, γ and pΩ we generated 50 different samples of Rpαq. Given a

sampled matrix, we recovered the unknown entries through OMIC, B-SI and SI. Figure 7.1

summarizes the results of the performed simulations.

Figure 4.1: Summary of synthetic data simulations results. The first graph shows the
relationship between all combinations of the parameters (α, γ, pΩ) and the RMSE. The
second one shows how (α, γ, pΩ) influences the correct recovery of user and item biases
((UBD+IBD)/2). Each box plot in the first two graphs is obtained from 50 simulations.
The third graph displays the distribution of the MBD over all of the simulations.
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Remark 4.3.1. In the presence of user and item biases, we observe that our method

consistently outperforms SI and B-SI, in terms of RMSE, UBD and IBD, and performs

as well as SI in the MBD case. In addition, OMIC’s ability to recover the correct user

and item biases (UBD and IBD in Figure 7.1) is particularly marked in the case of non

uniformly sampled entries, as might be expected, in line with Corollary 3.2.1.

Recovering hidden side information: In Section 4.3.2 we proposed a generation pro-

cedure. The parameters α and β in (4.2) regulate the importance of the community com-

ponents and the community-free component. We varied α and β in t0, 0.25, 0.50, 0.75, 1u.

We also varied the percentage of observed entries pΩ P t0.15, 0.30u. For each each possible

combination of α, β and pΩ, we generated 50 samples of Rpα, βq P Rmˆm with users (resp.

items) divided into clusters of size m{k, where m “ 100 and k “ 4.

Figure 4.2 summarizes the results of the performed simulations with respect to the

accuracy of the detected cluster by our method and the baselines. Since the baselines do

not provide a clear way to select the number of clusters, we assume that the value is known,

that is, d1 “ d2 “ 4.

Remark 4.3.2. We observe that our method consistently outperforms the baselines,

especially when the importance of the community-free component is low (β is low).

We also investigate whether d1 and d2 can be determined through cross validation as

suggested in Section 2.4.1. Figure 4.3 shows the distribution of the detected number of

clusters obtained by our method through cross validation.

Figure 4.2: Rand index distribution grouped by the parameters alpha, β and PΩ
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Figure 4.3: The distribution of the number of our model detected clusters according to the
parameters α, β and PΩ

Remark 4.3.3. Note that our method can often accurately predict the number of clus-

ters, especially when the number of observed entries is sufficient and the community-free

component is small.

Figure 4.4: φ distribution grouped by the parameters α, β and PΩ

Finally, we compared the accuracy of our method with the Matrix Factorization baseline6

that can be seen as single optimization of Problem (2.6) with f “ g “ null. Let RCC

and RMF be the matrices R recovered through our method and Matrix Factorization,

respectively. We proposed quantity

φ “ p||RMF ´R||F ´ ||RCC ´R||F q{||R||F
6Note that Nearest Neighbors does not aim to predict the unknown entries but only recover clusters.
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to make the comparison between the methods. Observe that φ is normalized by the Frobe-

nius Norm of R, forcing the matrices to be of a similar scale. If φ is greater than 0 our

method outperforms Matrix Factorization. Figure 4.4 shows, the distribution of φ grouped

by α, β and PΩ.

Remark 4.3.4. We observe that our method consistently outperforms the baseline since

it has high values of φ (in all scenarios).

4.4 OMIC as a recommender system

In this section, we present our results on data from the field of recommender systems. We

begin by introducing the datasets, then provide our results, and conclude with a practical

exploration of the added interpretability benefits of our method.

4.4.1 Datasets

We worked with the following datasets:

• Amazon (R P R164383ˆ101364): Amazon is a multinational technology company which

mainly focuses on e-commerce. We used the “Electronics” dataset, which we obtained

through [66]. Users are Amazon’s clients and items are electronic products (e.g.,

smartphones). The rating range is from 1 to 5 and the entry pi, jq refers to the rating

given by client i to the product j.

• Douban 7 (R P R4999ˆ4577): Douban is a social network where users can produce

content related to movies, music, and events. Douban users are members of the

social network and Douban items are a subset of popular movies. The rating range is

r1, 5s P N and the entry pi, jq corresponds the rating of user i to movie j. The author

of this dissertation collected the movies’ genres from the Douban website.

• Goodreads spoiler dataset (R P R4199ˆ3278): This dataset was released by [67] and

it is available online. Goodreads is a social cataloging website that allows individuals

to freely search its database of books, annotations, and reviews. In this case, an entry

pi, jq represents the rating of the user i for the book j on a scale from 0 to 5. For

each user-book pair, in addition to the rating score, the review text is also available.

Each sentence of the review was annotated with respect to whether or not spoilers

were present. We generated 89 features, such as the length of the review and which

7Rating matrix available in https://doi.org/10.7910/DVN/JGH1HA
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percentage of the text contains spoilers. Based on the available side information, we

performed clustering of the corresponding features to translate them into community

information, which we then used as the X,Y .

• LastFM (R P R1875ˆ4354): Last.fm is a British music website that builds a detailed

profile of each user’s musical taste based on music recommendations. Differently

from the other datasets, an entry pi, jq represents the number of views of user i to

band/artist j. We expressed the number of views o a log scale. The website allows

users to tag artists, which allows us to group the items (artists) by their associated

tags. The corresponding (tag-based) groups were then compared to the clusters ob-

tained by our method.

• MovieLens: We consider the MovieLens 1M (R P R6040ˆ3706) and MovieLens 20M

(R P R138493ˆ27032) datasets, which are broadly used and stable benchmark datasets.

MovieLens is a non-commercial website for movie recommendations. Like in Douban,

an entry pi, jq represents the rate of user i to movie j on a scale from 1 to 5. In

MovieLens 1M, we chose cluster information such as age range for users and movies

genres.

We also aim to observe correlations between our recovered clusters and explicitly or

implicitly available categorical side information. We noticed that some of this categorical

side information was highly unbalanced: some categories have fewer than ten items while

others have thousands of items. To properly assess, we keep only items associated with cat-

egories that have a significant number of instances on Douban, LastFM and MovieLenz1M

datasets.

4.4.2 Collaborative-filtering recommendation

Collaborative-filtering-based methods for recommender systems are one of the most impor-

tant applications of matrix completion. In this section, we will analyze the behavior of our

model as a recommender system as well as benchmark against the baselines in this same

task.

Our model is a fundamental tool that relies only on the incomplete matrix and some high-

level side information and has the benefit of interpretability. We compare our model with

other similarly fundamental models such as SoftImpute (SI) (see [29]) and IMCNF (see [38]),

with the understanding that the basic ideas could be refined and incorporated into more

sophisticated recommender systems. To make the comparison, we considered the instances

presented in sections 2.1.1, 2.1.3 and 2.2 that we respectively call in Table 4.1 by B-OMIC,

BC-OMIC and CC-OMIC. Since no systematic side information was provided for Amazon

and MovieLenz20M, we only investigated the performance of B-OMIC, CC-OMIC and Soft-

Impute. For each dataset, we split the set of observed entries (uniformly at random) into a
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Table 4.1: Performance comparison of our methods vs baselines on the real datasets

Amazon Douban Google Reads LastFM MovieLenz1M MovieLenz20M
pΩ 0.0001 0.0305 0.0331 0.0051 0.0446 0.0051

R
M

S
E

B-OMIC 1.0406 0.8832 1.0736 2.2009 0.8870 0.7804
BC-OMIC - 0.8745 1.0540 2.1915 0.8776 -
CC-OMIC 1.0387 0.8796 1.0821 2.1801 0.8958 0.7893
SI 1.0625 0.9582 1.0991 2.4109 0.9280 0.8025
IMCNF - 0.8825 1.0770 2.1937 0.9192 -

S
P

C

B-OMIC 0.4121 0.5292 0.5113 0.5256 0.6278 0.6697
BC-OMIC - 0.5632 0.5120 0.5351 0.6185 -
CC-OMIC 0.4113 0.5443 0.5084 0.5362 0.6071 0.6423
SI 0.4119 0.5090 0.4857 0.5040 0.5943 0.6521
IMCNF - 0.5345 0.5052 0.5087 0.5998 -

R
I Users - - - - 0.7036 -

Items - 0.5548 - 0.7305 0.6080 -

training set (85 %), a validation set (10%) and a test set (5%). Table 4.1 summarizes the

results of the real-world data experiments.

Remark 4.4.1. Observe that OMIC has the lowest RMSE and largest SPC on all

datasets.

We also observed correlations between our recovered clusters and available categorical side

information.

Remark 4.4.2. Note that correlations between our recovered clusters and available sets

of categorical side information are high (RI, see Table 4.1), especially the item groups

on the LastFM dataset and the users’ age range on the MovieLenz dataset.

It follows that real-world datasets do, in fact, exhibit a non-trivial combination of dis-

crete (community) behaviour and continuous (generic low-rank) behaviour (although the

extent to which that is the case is moderate). Furthermore, the groups recovered by our

method are interpretable in the sense that they often correlate with available qualitative

categorical side information (even though we did not feed this information to the model).
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4.4.3 Illustration of OMIC’s interpretability

As explained above, one advantage of our method is that it can provide partial explanations

for its predictions: each prediction is a sum of terms coming from each of the model’s com-

ponents. Furthermore, this sum is uniquely determined since the components of the model

live in mutually orthogonal spaces and correspond to well-defined, distinct intuitive phe-

nomena. For example, if some auxiliary vectors are constructed from user community side

information, the algorithm can disentangle the users’ particular tastes from those of their re-

spective communities. In particular, our method can discover facts about community-wide

behavior.

We illustrate those effects in Figures 4.5 and 4.6. On the left of Figure 4.5, we show

the norms of each of the components of the recovered matrix: our recovered matrix takes

the form R “
ř

k,lď3X
pkqM̂ pk,lqpY plqqJ where the M̂ pk,lq are obtained as the solution to

our optimization problem (2.1), and each component in XpkqM̂ pk,lqpY plqqJ in the sum cor-

responds to an interpretable concept. For instance, Xp2qM̂ p2,1qpY p1qqJ correspond to user

community biases. The norms of each component can give us an idea of how important

each component is globally. Thus we see that over the whole GoodReads dataset, the most

important components (excluding the global bias) are: (1) the specific match between the

user and the book, (2) user generosity, and (3) the quality of each book.

The second picture presents an explanation for an individual prediction. In other words,

we chose one entry of R (say, Ri,j) and represented the corresponding entry of each of

the above-mentioned components: for instance, the orange bar to the right of the graph

represents the entry pXp3qM̂ p3,3qpY p3qqJqi,j , which corresponds to the same rating. This

number represents the part of the rating pi, jq which is attributable to a specific preference

of the user for the particular movie (discounting the parts of this preference which are

shared by the other members of that user’s community or other movies of the same genre).

Figure 4.5: The first two graphs show the relative influence of the components on the
predictions of the whole matrix and one individual entry, respectively. The last two graphs
show the distribution of the users and item biases obtained by the Douban dataset.
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Figure 4.6: Affinity between user communities (grouped by gender and age) and movie gen-
res for MovieLens. These biases can be directly read from the component Xp2qM p2,2qpY p2qqJ

in the instance of Section 2.1.3.

Thus, in this case, the book is not generally considered good by the users (cf. large

negative component corresponding to the purple bar). However, the individual is usually

generous (first orange bar), and the specific book and user are a good match for each other

(cf. large orange component corresponding to the rightmost bar).

Note that we specifically train our model in a way that treats each of the components as

a separate entity, with its own cross-validated hyperparameter. So that the decomposition

along those components is more finely tuned and intertwined with the optimization process

(rather than collected as a statistic after applying a standard matrix completion method).

The last two graphs show the distribution of user biases and movie quality in the Douban

dataset. The distribution is similar to a normal distribution (squished at the boundaries),

allowing us to characterize the users (resp. movies) on a spectrum between haters and lovers

(resp. B-movies and blockbusters).

Figure 4.6 shows bar charts illustrating the affinities between user communities (gender-

age combinations) and four movie genres in the MovieLens dataset. Note that these affinity

scores are part of our model and can be directly read from the component Xp2qM p2,2qpY p2qqJ

(cross-communities component, Section 2.1.3). We observe that OMIC is able to detect

noteworthy human behaviour. For instance, female users tend to prefer drama and romance

movies while male users appreciate comedies and thrillers instead. One can also notice that

the biases vary with users’ ages: for instance, older male users like romance movies more

than their younger counterparts. Among others, the impact of gender in the general model

is stronger for the female gender than for the male gender. It can be noticed by the scale

of the graphs.
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4.5 Predicting activity coeffients via matrix completion

A key property in chemical engineering is the activity coefficients, which measure the non-

ideality of liquid mixtures. Activity coefficients are important for modeling chemical and

phase equilibria, but they are also important for transport processes in general. Although

experimental data on thousands of binary mixtures are available, prediction methods are

still required to calculate the activity coefficients in many relevant mixtures that were not

previously investigated.

In this dissertation, we describe a novel application of machine learning to the field of

physical chemistry and thermodynamics: the prediction of activity coefficients of binary liq-

uid mixtures by matrix completion. The entry ti, ju is the activity coefficient of a mixture of

solute i and solvent j. Here, we use the instance of our method presented in Section 2.1.2 by

considering the chemical family of the solute/solvent as cluster side information. We achieve

comparable results to our previous method [58], with a (much) more efficient algorithm with

the benefit of interpretability.

4.5.1 Dataset

We trained and evaluated our matrix completion method using data from the Dortmund

Data Bank (DDB) (version 2019). The data consists of activity coefficients at infinite

dilution in binary mixtures. We adopted temperatures between 297.15 K and 299.15 K,

i.e., at 298.15 ˘ 1 K. Temperature dependence of activity coefficients over such narrow

temperature ranges is typically negligible and, thus, we did not consider it.

The DDB is a private dataset. The application of Section 4.5 was developed in collab-

oration with the Thermodynamics Group (Lehrstuhl für Thermodynamik) of the TU

Kaiserslautern, which has the license to use the dataset. We warmly thank Prof. Hans

Hasse and his group for the collaboration on this work.

For several solute-i ˆ solvent-j mixtures, multiple results on activity coefficients over the

specified temperature range are observed. For training and evaluation purposes, we average

the coefficients of these mixtures. Additionally, we modified the dataset to take into account

only the molecular components. Non-molecular solutes and solvents were omitted from the

data set: primarily salts and ionic liquids and metals and components for which no molecular

formula was available. Additionally, to evaluate the proposed model’s predictions using the

leave-one-out method, all solutes and solvents for which we observe only one single mixture

coefficient Rij were excluded from the data set. The above conditions were met for a total

of 4094 activity coefficients Rij distributed in 240 solutes-i and 250 solvents-j.
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We split the compounds into clusters of their chemical families (e.g., alcohols, alka-

nes, ketones, etc.). Then we constructed the induced matrices according to the procedure

described in Section 2.1.2.

4.5.2 Baselines

This section considers the following baselines:

• UNIFAC: (see [68]): phenomenological model the uses chemical group-

contributions as information features. It is a stable state of art baseline;

• Probabilistic matrix factorization (see [58]): the model defines a probability

distribution over all Rij by specifying a stochastic process that hypothetically gener-

ates activity coefficients conditioned on the latent compounds features ui (resp. vj)

of solute-i (solvent-j).

Figure 4.7 shows the probabilistic graph of our generative model with the following gener-

ating procedure:

STEP 1: For each solute i (and each solvent j), draw a latent feature vector ui (vj)

of dimension K from a multivariate normal distribution with zero mean vector 0k and

standard deviation Σu (Σv).

STEP 2: Generate each Rij as a Cauchy distribution with scale λ and centered around

the inner product of ui and vj .

Figure 4.7: Probabilistic graph of our model. Each activity coefficient in Rij is distributed
as a Cauchy distribution with scale λ and centered around the inner product of ui and
vj . Each solute (solvent) feature vector vi (ui) is distributed as a multivariate normal
distribution with zero mean vector 0k and co-variance matrix Σu (Σv).

65



Therefore, we have a probabilistic matrix factorization model since our large matrix R

is modeled in terms of the product of a (smaller) tall matrix, whose rows are the solute

feature vectors ui, and a narrow matrix, whose columns are the solvent feature vectors vj .

We empirically selected K “ 4, λ “ 0.15 and Σu “ Σv “ 0.8IK . Here, IK P RKˆK is the

identity matrix.

4.5.3 Experimental results

We applied OMIC to the DDB activity coefficients data and compared our findings to

UNIFAC’s predictions and our previous probabilistic matrix completion method. For the

prediction of each of the 4094 activity coefficients Rij , we fit our model considering only the

remaining 4093 coefficients. Table 4.2 presents the results in terms of RMSE and MAD.

We compute these metrics in two scenarios: (1) full data, by considering all data points

described in the previous sections; and (2), UNIFAC data, by considering only the data

points that UNIFAC can also predict.

Table 4.2: Comparison of our method’s results to those of the UNIFAC (state-of-the-art
method) Full data: all data points described in Section 4.5.1. UNIFAC data: only the
data points that UNIFAC can also predict.

Full data UNIFAC data

MAD RMSE MAD RMSE

OMIC 0.3058 0.6916 0.2352 0.5618

SoftImpute 0.3412 0.7933 0.3354 0.7626

Probabilistic MF 0.3363 0.8246 0.3156 0.7734

UNIFAC – – 0.3547 0.7912

Remark 4.5.1. Our method outperformed the baselines since it produced results that

have a lower deviation in terms of RMSE and MAD. Note that the UNIFAC method has

been the state-of-the-art method for predicting activity coefficients for more than three

decades.
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Remark 4.5.2. UNIFAC can predict only 5.73% of the total number of entries of the

matrix R. On the other hand, our method is capable of estimating the coefficients of the

entire matrix.

Our method is also explainable. Differently from the baselines, our method induces

the learning process with the compounds’ families to factorize the prediction of each single

binary mixture coefficient as

Mij “ cij ` ui ` vj ` zij ,

where cij is a component related to the combination between the family of solute-i and the

family of solvent-j, ui represents the combination of the solute-i and the family of solvent-j,

vi (respectively) represents the combination of the solvent-j and the family of solute-i, and

zij is the special combining ability of solute-i and solvent-j, a component not explained by

the families of the compounds. Figure 4.8 illustrate the interpretability of the predictor.

Figure 4.8: Visualization of orthogonal inductive matrix completion for the prediction of
activity coefficients. The model is a sum of explainable matrix terms.
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4.6 Conclusion

We conducted experiments to validate the approaches described in Chapter 2 under a wide

range of regimes. To accomplish it, we presented generation strategies to simulate the

environment for which our approaches were designed. Our methods were more accurate

than alternative ones at recovering bias and cluster-side information.

Then, we demonstrated how we could apply our methods to recommender systems and

chemical engineering. For the first application, we showed that OMIC has SOTA accu-

racy in recommendation prediction. Additionally, we illustrated how our strategy improves

interpretability without requiring any additional post-processing procedure.

Regarding our second application, we show a novel application of machine learning for

the field of chemical engineering. We introduced an inductive matrix completion approach

for predicting the activity coefficients of liquid mixtures at infinity dilution. Our method

outperforms the SOTA method with the added benefit of interpretability.
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Chapter 5

Related work and discussion

5.1 Related work on inductive matrix completion

Inductive matrix completion [14, 35–37] is the problem of solving matrix completion with

some side information: given some features X P Rmˆd1 and Y P Rnˆd2 , it tries to find

a low-rank matrix M such that R “ XMY J approximates the observed matrix well. It

has found many successful applications in recent years [69–71]. Theoretical guarantees were

provided in [72–74]. Note that in the basic model, successful IMC requires that the columns

of X (resp. Y ) span the left (resp. right) singular vectors of the SVD of the ground truth

matrix (this case is often referred to as ”perfect” side information). In [38] the extended

model R “ XMY J `N , with nuclear-norm regularization applied to both M and N was

proposed. Recently, progress was made in the direction of matrix completion with side

information with the need to extract features jointly [75]. In this dissertation, we proposed

a method that efficiently incorporates user biases, an IMC term, and a pure low-rank term,

jointly, in the form of R “
ř

XpkqMY plqJ.

On the application side, [76] model user-item interactions over time using a tensor and

exploited users’ side information (such as demographics information) to improve accuracy.

In the same line, [77] propose to improve the prediction accuracy by exploiting the user’s

demographic information. [78] developed an algorithm that utilizes item side information for

selecting top-N recommender systems. For that, they use auxiliary matrices to induce the

learning procedure and recover an aggregation coefficient matrix that is used within an item-

based recommendation framework to generate recommendations for the users. Finally, [79]

investigate the problem of exploiting heterogeneous side information for recommendations.

5.2 Related work on community discovery

Community discovery is a widely researched task in recommender systems. In [9], the

authors propose a probabilistic model to solve binary matrix completion with graph side

information based on the assumption that the users form communities. The clusters are
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recovered from the graph information via the stochastic block model, and the cluster pref-

erences are then recovered from the observed data. Similar approaches can be observed

in [59, 80–82]. The main difference between these works and ours is that they do not allow

for non-random user-specific behaviour within each cluster (except [59]). That is, there is

no difference between predicting the matrix and predicting the clusters. In that respect,

our setting is more similar to the regularization-based techniques [83–85]. The paper [59] is,

to our knowledge, the only work that incorporates item-specific behaviour in a community

detection context. They do so in a discrete fashion with the concept of “atypical” movies

and users. Our approach is a continuous one, which includes the possibility of representing

any matrix (at a regularization cost). A deep learning approach to extracting community

information from graphs is offered by graph neural networks [86, 87].

Another systematic work thatstudies collaborative clustering is [88]. The authors pro-

vide a deep theoretical analysis of a model. There, the items must be clusterized based on

discrete ratings given by users. Here the ratings are iid for any fixed pair of communities

and no specific algorithm is presented. In [89, 90], the authors detect user groups applying

k-means on the user-latent factor matrix (imputing the unknown entries via collaborative

filtering). Nearest neighbor techniques are also employed in aggregation methods: in [91],

the authors use the Pearson correlation to define the similarity among the users while in [92],

the cosine similarity is applied. One distinguishing characteristic of our model is that it

is able to learn both ratings and communities jointly. Although some authors explore or-

thogonality and factorization to implement clustering in matrices [93–95], their works differ

from ours since they start from a fully-known matrix.

5.3 Related work on the theory of matrix completion

A major step signaling the beginning of the construction of a formal theory of matrix

completion was the introduction of the SoftImpute algorithm [29], which uses the nuclear

norm as a regularizer. Around the same time, the field witnessed a series of breakthroughs

in the study of how many entries are required to recover a low-rank matrix exactly [30, 31]

or approximately from noisy entries [32, 33]. Those works assume that the entries of the

matrix are sampled uniformly. A simpler and more complete approach to the same results

was provided in both [96] and [97]. The conclusion of the works on exact recovery is that if

the entries are sampled uniformly, it is possible to recover the matrix with high probability

assuming Opµrn logpnq2q entries are observed, where n is the dimension of the matrix, and

µ is some notion of coherence, which is Op1q if the singular vectors have roughly equal

components.

Other works [63, 98–100] have focused on the case of non uniformly sampled entries. The

general form of the results obtained is (similarly to the uniform case) that Oprn logpnq2q
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observed entries are sufficient. However, these results come at the cost of making strong

explicit assumptions on the distributions, sometimes with relevant constants showing up in

the bounds.

The case of non-uniform entries with absolutely no assumption on the sampling distri-

bution is an interesting one that commands a completely different approach. It was studied

in [61, 101]. The most related work to ours is [38], where the authors study and provide

generalization bounds for a model composed of a sum of an IMC term and a standard

SoftImpute model. This model can be seen as a particular case of ours. Note we require to

adapt proofs to obtain bounds with a tighter dependence on the dimensions of both left and

right side information for the bounds to be non-trivial in case of user biases. Furthermore,

no notion of interpretability or orthogonality was presented.

5.4 Related work on prediction of activity coefficients

Binary mixtures are fundamentally important in the field of chemical engineering because

they are versatile. In general, the properties of mixtures cannot be described solely on the

basis of the properties of their constituent parts. Alternatively, if it is possible to deter-

mine the respective properties of the binary constituent sub-mixtures of a multi-component

mixture, then the properties of the multi-component mixture can often be predicted [102].

Therefore, the knowledge of the properties of binary mixtures is essential for the design and

optimization of the vast majority of chemical engineering processes.

Because the experimental determination of physico-chemical properties is time-

consuming, it is practically impossible to investigate binary mixtures containing all

relevant components. Note that even the largest databases of physico-chemical properties,

such as the DDB [103] and the NIST Chemistry WebBook [104], contain only a small

fraction of the activity coefficients of relevant mixtures. As a result, predictive methods for

physico-chemical properties are required.

Although machine learning approaches to chemical and engineering sciences date back

more than 50 years, the true potential of artificial intelligence in these fields has only re-

cently begun to be realized [105]. Recent advances in chemical and material sciences have

been summarized, for example, by [106]. and [107]. Machine learning methods have pre-

viously been used to predict the physicochemical properties of mixtures, including their

activity coefficients. However, most of these approaches are quantitative structure-property

relationships techniques that use physical descriptors of the components as input data to

characterize the considered mixtures and relate them to the desired property using a ma-

chine learning algorithm, such as a neural network. Note that the scope of these approaches

is typically quite limited and restricted to a few groups of compounds.

Predicting properties of binary liquid mixtures from first principles is not possible yet,
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except for very simple cases. But there are phenomenological models for this, such as

UNIFAC [68, 108] and COSMO-RS [109], which are used for this task. Process simulations

often rely on the quality of these predictions and great effort has been taken over the last

decades to parameterize these models using the available experimental data.

In contrast to previous approaches, we proposed using inductive matrix completion to

predict activity coefficients. Our method also has the advantage of being able to predict

the coefficients of compounds whose features vectors (e.g. chemical properties) are un-

known. Additionally, we got interpretable solutions by inducing the learning mechanism

with knowledge of the compounds’ chemical families. Such characteristics are regarded as

critical for the development of machine learning techniques capable of explaining physical

and chemical events [105, 110].
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Part Two:

Context-free recommendation
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Chapter 6

Methods, optimization and
algorithms

The second part of the dissertation begins with this chapter. We turn our focus to the

development of a method that investigates an environment in which there is not just a lack

of knowledge about user preferences and behavior, but also of any usable side information.

Without the ability to profile users and items densely, a RS can rely only on recent user-item

interaction [15, 16]. A typical example is when a new user visits a news website: a RS must

select an item solely based on user-independent data (e.g., the average click-through rate)

and then monitor whether the new user clicks on the recommended content. The website’s

goal is to capture the attention of users and increase the overall number of clicks. Providing

effective recommendations in this situation involves determining the most popular ‘trending’

items among the website’s readership.

We mimic this challenging environment by using a MAB, the classic reinforcement learn-

ing problem. At each trial (new user), the gambler (RS) selects an arm (e.g., news article)

to pull (show to the user) and observes a reward (a click or lack thereof). Throughout the

event history, an algorithm improves the policy to maximize the reward (e.g., the number

of clicks). The standard MAB setting assumes that the (unknown) item popularity distri-

bution is stationary [18–20]. This assumption implies there exists a most popular item fixed

over time.

However, one might note that the traditional MAB is in most circumstances ineffective.

For recommender systems, assuming that the reward distribution is stationary is highly

unrealistic. The items’ popularity may change over time [16, 26]. Therefore we model the

problem as a non-stationary multi-armed bandit.

We can find in literature a variety of prior works on context-free non-stationary

MAB [21–25]. By treating the MAB problem as a discrete-time one, they don’t actively

exploit continuous temporal dynamics in the reward environment. To address this flaw,

we proposed BMAB, a non-stationary and context-free MAB problem, and a novel
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cluster-induced algorithm to solve it. The algorithm’s core consists of two consecutive

stages: first, BMAB groups the user-activity based on the system’s state; and second, it

induces the exploration and exploitation procedures based on user-activity categories.

Motivated by a phenomenon entitled audience curiosity (as illustrated in Section 1.2.2),

the grouping procedure is base on existence and interaction of two types of audiences: the

loyal audience and the curious audience [26, 42, 43]. The loyal audience is constituted by

fans who assiduously follow the topic. In contrast, the curious audience only turned their

attention to the topic due to an extraordinary event.

The main contributions of this chapter are the following:

• we proposed a non-stationary and context-free MAB problem in which the tem-

poral dynamics of the recommender audience influences the reward distribution;

• we developed the Burst-induced Multi-Armed Bandit (BMAB) algorithm, a

cluster-induced approach for solving the problem stated in the previous item;

• we prove regret guarantees for the BMAB algorithm when the states are recover-

able and bursts are separable. We also experimentally analyze the proposed regret

bounds;

• we proposed a model which is able to disentangle the slowly-varying regular ac-

tivity of the loyal audience from the curious activity occurring in bursts. This

model does not depend on hard-to-get external information but uses only a ran-

dom series of events RSE. Then we developed a novel EM approach to cope with

our intensity function’s complex dependence on the history of the process.

Parts of this chapter are based on:

Rodrigo Alves, Antoine Ledent, and Marius Kloft. Burst Induced Multi-
armed Bandit for Learning Recommendation. Proceedings of the 15th ACM
RecSys Recommender System Conference, 2021.

Rodrigo Alves˚, Antoine Ledent˚, Renato Assunção, Pedro Vaz de Melo, and
Marius Kloft. Are you here to stay? Disentangling the loyal audience from
the curious on social media. Submitted to ACM Transactions on Knowledge
Discovery from Data (TKDD), Aug 2021.

Rodrigo Alves, Renato Assunção, and Pedro Vaz de Melo. Burstiness scale:
A parsimonious model for characterizing random series of events. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1405–1414, 2016.

˚ The authors contributed equally to this research.
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6.1 Description of the model and problem formulation

Basic notation: let K “ t1, 2, ¨ ¨ ¨ ,Ku be a set of K arms and T “ tt1, t2, ¨ ¨ ¨ , tNu denote

a sequence of N timestamps in the interval p0, T s. At each time ti, a gambler chooses one of

the K arms and observes the reward ri P t0, 1u. The reward distribution at time t depends

on the state sptq of the system. We set sptq “ 0, if t occurs during the loyal state, and

sptq “ 1, if t occurs during the curious state. We call by user-activity category si “ sptiq,

the category of the recommendation request that happens at time ti.

6.1.1 Temporal dynamics assumptions

We assume that the time series T is generated by a mixture of two stochastic point processes:

(1) a HPP with intensity8 λptq “ λL, and (2) a Piece-Wise Homogeneous Poisson process

(PW-HPP) with intensity λCptq. We assume that the intensity λCptq of the second process is

piecewise constant, with the transitions occurring at the random and unobserved timestamps

M “ tm1,m2, ¨ ¨ ¨ ,mnu (by convention we also set m0 “ 0), on whose distribution we make

no formal assumption9. Thus, λCptq can assume pn`1q values in the interval p0, T s, denoted

by tc0, c1, c2, ¨ ¨ ¨ , cnu.We write cj for the (unique) value the intensity λCptq takes in the

interval rmj ,mj`1q. A key assumption of our work is that the underlying distribution has

the property that cj ! λL (w.p. 1), if j mod 2 ” 0, and cj " λL, otherwise. This implies

that the PW-HPP alternates between silent mode (very low intensity) and bursty mode

(very high intensity). Finally, write Bptq “
ř

j:mjăt
pj mod 2q for the number of PW-HPP

transitions into the bursty mode which occurred before t (thus, if sptq “ 1, t belongs to the

Bptqth burst).

The first graph of Figure 6.1 presents a realization of a mixture of two stochastic point

processes with the properties described above. In this example, λL “ 3, λCptq alternates

between 0.15 and 15, T “ 100 and the elements of M (vertical red lines) were randomly se-

lected aiming for the expected number of events of both processes to be the same (cf. details

in Section 7.1.2). The HPP models the loyal audience (second graph, green curve, stable

throughout the observed interval) while the PW-HPP models the curious audience (last

graph, yellow curve, unstable).

At this point, it is necessary to distinguish between three different and correlated con-

cepts. The first concept is the label of the audience that event ti correspond to. Even in a

given stable or bursty period, the label of the audience is not observed. Thus, it is unknown

whether ti P HPP (loyal audience, second graph of Figure 6.1) or ti P PW-HPP(curious

audience, third graph of Figure 6.1). Our second concept is the system (slot machine)

state sptq. Our underlying assumption is that the state sptq of the slot machine at time t

8Intensity function is formally defined in Section 6.3.2
9Other than the fact that the total number of transitions n is finite with probability 1.
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Figure 6.1: Difference between audiences, system’s states and user-activity category. First
graph: jointly activity of the loyal and curious audiences (gray curve, mixture of a HPP
and a PW-HPP). The actual user-activity categories are shown by the dots on the first
graph: blue for loyal category, and orange for the curious category. The jointly activity is
disentangled in the following two graphs. Second graph: HPP (green curve), models the
loyal audience. Third graph: PW-HPP (yellow curve), models the curious audience. In
all graphs, the vertical lines indicate the actual state transitions (i.e., the set M) and the
colored stripes at the background represents the system’s states: blue for loyal state, and
orange for the curious state.

depends on the current dominating audience dynamic: sptq “ 0 in the calm periods (loyal

state), and sptq “ 1 in the bursty periods (curious state). Thus, sptq depends of the value

of the intensities of HPP and PW-HPP at time t, and it is defined for the whole observed

interval r0, T q. In Figure 6.1, the system’s states are represented by the colored stripes at

the background: blue for loyal state, and orange for the curious state. Observe that the

event t150 (blue circle, second graph) belongs to the loyal audience while the slot machine

is set to the curious state at same time t “ t150.

More precisely, sptq is determined by

sptq ” maxpi|mi ď sptqq mod 2. (6.1)

Finally, the third concept is the user-activity category psiq. Each event ti corresponds

to activity of an user (request of a recommendation). For a given user-activity, we have

si “ sptiq. Therefore, si is just defined in the events’ timestamps (left graph of Figure 6.1,

blue and orange dots). We categorize an user-activity as loyal, if si “ sptiq “ 0, and curious

otherwise.

The timeline of events is another way to illustrate our temporal assumptions. Figure 6.2

depicts the main concept of the distribution of events in timelines. We observe the point

process N timestamps of events (set T ) up to a time tN (grey dots in the fourth row).

Furthermore, we assume that these events are a mixture of events coming from the loyal
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audience and the curious, two independent point processes, shown yellow and green in the

first and third rows, respectively. We model the curious generating the occasional bursts as

a PW-HPP. The events associated with the loyal audience are modeled by a second process,

a HPP, shown in the third row.

A third underlying process, about which we make no assumptions, controls the times

when the curious audience (or PW-HPP) transitions occur. These transitions are shown

as red dots in the second row in Figure 6.2. The main difficulty with this model is that we

only observe the gray dots in the fourth row. The labels associated with each event (the

green and yellow colors) and the transitions (the red dots) are not directly observed.

Figure 6.2: A mixture of point processes in timelines. The curious (PW-HPP) and loal
audience (HPP) labels, as well as the transitions (events of M), are not observed.

Observed (HPP + PW-HPP): T
Loyal audience: HPP(λP )

Transitions: (M)

Curious: PW-HPP(λCptq)

6.1.2 Reward distribution assumptions

In our model, the reward distribution is a consequence of the audience variation: we assume

that reward distribution is stationary in the absence of bursts. Hence, in all pieces of

the interval where sptq “ 0 we model the distribution of arm a’s reward at time t as

rpa, tq „ Bernoullipθ0
aq. In contrast, in the presence of bursts (sptq “ 1) the reward

distribution varies: each burst has its own stationary reward distribution. Therefore, we

model rpa, tq „ Bernoullipθ
Bptq
a q when sptq “ 1.

At each time ti, the agent must choose an arm according to a policy πpt|sptq, Bptqq.

Let θ̄ta “ Errpa, tqs be the expected reward for arm a at time t given sptq and Bptq. As

mentioned before, a common goal is to maximize the expected reward RpT q over the entire

horizon, which can be written as

E
`

RpT q
˘

“ E
N
ÿ

i“1

θ̄tiπpti|sptiq,Bptiqq,

where the expectation runs over both (1) the random choices made by the algorithm policy

and (2) the reward distribution. Note that we do not let the expectation run over the
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distribution of the timestamps. Thus the left-hand side is technically a random variable.

We also adapt the notion of (expected) regret, which relies on the concept of the optimal

fixed arm. Let θ̄t˚ “ maxj θ̄
t
j be the expected reward of the optimal arm at time t given sptq

and Bptq, the expected regret is then defined as:

E
`

RpT q
˘

“ E
N
ÿ

i“1

“

θ̄ti˚ ´ θ̄
ti
πpti|sptiq,Bptiqq

‰

, (6.2)

where the expectation is also over the random choices made by the algorithm policy and

the random rewards.

6.2 Burst-induced multi-armed bandit

To solve the problem formulated in Section 6.1 we propose the BMAB algorithm. In this

section, we will describe our algorithm according to the following structure: first, we will

present the main ideas of the Thompson sampling algorithm, which forms the backbone of

our method; second, we will describe the steps of BMAB and show its regret guarantees;

finally, we will present a slot-machine state detector, which we use to group the user-

activities.

6.2.1 Thompson sampling algorithm

The Thompson sampling (TS) algorithm is a classical stochastic approach to solve the MAB

problem. In this setting, at time t, the slot machine has K arms and, when an arm a is

played, the machine produces a reward rpaq. The reward distribution of arm a is a Bernoulli

distribution with fixed and unknown parameter θa. In summary, an arm a has probability

θa of returning 1 as a reward, and 1´ θa of returning 0.

Also known as posterior sampling, TS assumes an independent prior belief over each θa.

In this Bernoulli reward case, it is natural to choose a beta-distribution as a prior (since it

is a conjugate prior). Thus for the MAB case, for each arm a, the prior probability density

function of θa is beta-distributed with parameters αa and βa:

ppθaq “
Γpαa ` βaq

ΓpαaqΓpβaq
pθaq

αa´1p1´ θaq
βa´1,

where Γ is the gamma function. At each time t, the TS algorithm samples a vector Θ “

tθ̂1, θ̂2, ¨ ¨ ¨ , θ̂Ku, where θ̂i „ Betapαi, βiq (i.i.d). Then the policy selects the arm πptq “

argmaxiθ̂i.
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Remark 6.2.1. The exploration procedure is probabilistic tackled. At each step, the

probability density function fpθq of Betapα, βq is greater than zero in the whole domain

r0, 1s. Thus any arm has non-zero probability of being selected.

Remark 6.2.2. In the special case when α “ β “ 1, θ „ Uniformp0, 1q.

Due the conjugacy properties of the beta distribution, the Bayesian update of the pa-

rameters α and β is particularly simple: at time t, after the algorithm selects arm πptq and

observes the reward rpπptqq, the parameters of the prior distribution of θπptq can be updated

as follows:

rαπptq, βπptqs “ rαπptq ` rpπptqq, βπptq ` p1´ rpπptqqqs. (6.3)

6.2.2 The BMAB algorithm

The BMAB algorithm is described in Algorithm 6. The core idea is to use a different instance

of the Thompson sampling algorithm on each stationary region with a separate count of α

and β for each reward distribution. Then, for a given state, the reward distribution of an arm

a is a Bernoullipθaq with prior θa „Betapα, βq. At time t, the vectors α0 P RK and β0 P RK

(resp. α1 P RK and β1 P RK) denote the parameters of the priors related to the K arms

in the loyal (resp. curious) state. Each arm a has reward distribution rpaq „Bernoullipθaq.

In the loyal state, the estimated distribution of θa is θa „Betapα0ras, β0rasq, whereas in the

curious state, we have θa „Betapα1ras, β1rasq instead.

To support our explanation we will illustrate our algorithm execution for the time series

displayed in Figure 6.1. We assume that K “ 3 and rθ1, θ2, θ3s “ r0.3, 0.4, 0.5s in the

loyal state. Regarding the curious state, the parameters assume the values rθ1, θ2, θ3s “

r0.3, 0.9, 0.5s (in pm1,m2s) and rθ1, θ2, θ3s “ r0.9, 0.4, 0.5s (in pm3,m4s). Thus in this case,

the best arm during the entire loyal state is arm 3, whilst in the first burst of events it

is arm 2, and during the second burst of events it is arm 1. Figure 6.3 shows the prior

distributions of θ1, θ2, and θ3 at the times t0,m1,m2,m3,m4, tN “ 100u. The first row of

graphs corresponds to the priors of the loyal state while the second row of graphs corresponds

to the priors of the curious state.
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Algorithm 6 BMAB
INPUT: Number of arms K P t2, 3, 4, ¨ ¨ ¨ u, set of events’ timestamps T “ tt1, t2, ¨ ¨ ¨ , tNu
and forgetting-rate γ P r0, 1s

1: α0 “ β0 “ α1 “ β1 “ t1u
K

2: for i P t1, 2, ¨ ¨ ¨ , Nu do
3: si “ ωptiq
4: @a P t1, 2, ¨ ¨ ¨ ,Ku sample θ̂a „ Betapαsiras, βsirasq
5: a˚ “ argmaxaθ̂a
6: Observe the reward rpa˚q
7: pαsira

˚s, βsira
˚sq “ pαsira

˚s ` rpa˚q, βsira
˚s ` p1´ rpa˚qqq

8: if si ““ 0 then
9: α1 “ γα1 , β1 “ γβ1

10: @a P t1, 2, ¨ ¨ ¨ ,Ku if α1ras ă 1 make α1ras “ 1
11: @a P t1, 2, ¨ ¨ ¨ ,Ku if β1ras ă 1 make β1ras “ 1
12: end if
13: end for

Figure 6.3: Realization of the BMAB algorithm in the mixture of point processes pre-
sented in Figure 6.1 (K “ 3; Loyal state: rθ1, θ2, θ3s “ r0.3, 0.4, 0.5s ; and Curious state:
rθ1, θ2, θ3s “ r0.3, 0.9, 0.5s (in pm1,m2s) and rθ1, θ2, θ3s “ r0.9, 0.4, 0.5s (in pm3,m4s)). First
row of graphs: prior distribution of θ1, θ2, and θ3 at the times t0,m1,m2,m3,m4, tN “
100u concerning the loyal state. Second row of graphs: prior distribution of θ1, θ2, and
θ3 at the times t0,m1,m2,m3,m4, tN “ 100u concerning the curious state.

81



Our precise algorithm can be split into three main steps:

STEP 1 – Initialization [Line 1]: we initialize all entries of the vectors α and β as 1.

Thus, priors are initialised as uniform distributions (at t “ 0).

STEP 2 – Recommendation and learning procedures [Lines 3-7]: in order to

maximize the reward, BMAB aims to learn (by updating its priors of) the piece-wise

reward distributions with enough confidence to select the best arm at the event time.

Therefore, at each event ti the algorithm needs to detect the category of the user-

activity si “ sptiq. We assume that an oracle ω is available to provide an estimate of

the system’s state at each timestamp in tt1, t2, ¨ ¨ ¨ , tiu (line 3). When a perfect oracle

(i.e. with ωptq “ sptq) is available, we refer to our algorithm as [BMAB-O]. In practice,

the role of the oracle can be assumed by our realistic state detector from Section 6.2.4.

We refer to the resulting instance of our algorithm as [BMAB-R]. For each of the

user-activity categories, 0 for loyal and 1 for curious, we model a different instance of

TS. Therefore, in the next step (line 4), we sample θ̂a (for each a) according to the

current prior distribution Betapαsiras, βsirasq corresponding to the current user-activity

category si and the arm a. Our policy is to select (recommend) the arm a˚ which has

the highest θ̂a (line 5). Finally, we observe the reward rpa˚q of the selected arm and

update the priors of the TS related to the user-activity category si (in accordance with

(6.3)).

Define mn
i as the nth element of the ordered set ttj |tj ą miu, so that m5

2 is the fifth

timestamp in the stationary section pm2, tns.

STEP 3 – Burst separation [Lines 8-12]: we note that the loyal state is associated

with a single stationary reward distribution: our method’s estimate of the distribution

corresponding to the loyal state keeps improving throughout the whole event horizon

(first row of graphs, Figure 6.3). In the problem definition, we further assume that each

bursty period comes with its own reward distribution. Accordingly, we aim to treat

each bursty period as a separate MAB problem, resetting the Thompson priors at the

beginning of each burst whilst keeping a global count for the periods where the loyal

audience dominates. However, due to the uncertainty inherent in the state prediction

method (ωptq), we engineer a soft transition procedure: whenever a burst appears to

be ending, the priors corresponding to the burst are gradually forgotten rather than

discarded immediately. In Figure 6.3, observe that from t “ 0 to t “ m1 the loyal priors
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have significantly changed after some reward observations while the curious priors stay

as initialized. During the first bursty period pm1,m2s, the curious priors changed as

the model learned the reward distribution of the burst. One can observe at time m2

that loyal priors remain the same as those at m1, since the bursty dynamic governs the

interval pm1,m2s. This fact can also be seen at the second bursty period (pm3,m4s).

Similarly, when the bursty period appears to taper off, the learned priors are gradually

forgotten as the model gains confidence in its observation of a return to normality. To

accomplish it, BMAB employs a forgetting-rate γ P r0, 1s: at each step with si “ 0, we

compute α1 “ γα1 and β1 “ γβ1. If some entry of α1 or β1 is less than 1, we round it to

1 (lines 8-12). The effects of this forgetting procedure can be observed in Figure 6.4. At

time t “ m5
2, i.e., five loyal user-activities after m2, an increase of the variance around

the expected value of θs is seen for the curious state. By observing t “ m10
2 , t “ m15

2

and t “ m3, we note that our smooth forgetting procedure eventually leads to a return

to a uniform prior after sufficiently many loyal-state timestamps.

Figure 6.4: Forgetting procedure of the BMAB algorithm: in the interval pm2,m3s (loyal
state active) of the the mixture of point processes presented in Figure 6.1 (K “ 3; Curious
state: rθ1, θ2, θ3s “ r0.3, 0.9, 0.5s (in pm1,m2s)). Prior distribution of θ1, θ2, and θ3 at the
times tm2,m

5
2,m

10
2 ,m

15
2 ,m3u concerning the curious state.
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6.2.3 BMAB regret guarantees

In this section, we present regret guarantees for the [BMAB-O] algorithm (with a perfect

oracle). For completeness reasons, let us recall the following theorem from [111]:

Theorem 6.2.1. For the K-armed stochastic bandit problem, TS using Beta priors has

expected regret

E
`

RpT q
˘

ď O
´

a

KN logN
¯

,

where N is the total number of events and the big-Oh notation hides only absolute constants.

Now we will prove the regret guarantees for the [BMAB-O] that are stated in the

following theorem:

Theorem 6.2.2. Write nb for the total number of bursts and let the set N “

tN0,N1, ¨ ¨ ¨ ,NBptN qu contain the number of timestamps in each period (with N0 corre-

sponding to the entire calm period and Ni corresponding to the ith burst: N0 “
ř

j 1sptjq“0,

and for all i ą 0, Ni “
ř

j 1sptjq“1^Bptjq“i). We assume access to an optimal oracle ω

with ωptq “ sptq for all t and set γ “ 0. For all configurations nb,N satisfying the (mild)

condition
ř

j 1sptjq“0^miătjămi`1
ą 0 for all i mod 2 “ 0, we have

E
`

RpT q
˘

ď O
´

a

nbKN logK
¯

,

where N “
řnb
i“0Ni is the total number of events.

Proof. From (6.2) we have:

RpT q “
N
ÿ

i“1

“

θ̄ti˚ ´ θ̄
ti
πpti|sptiq,Bptiqq

‰

“
ÿ

iPΩ0

“

θ̄ti˚ ´ θ̄
ti
πpti|0,´q

‰

`

nb
ÿ

l“1

ÿ

jPΩ1plq

“

θ̄
tj
˚ ´ θ̄

tj
πptj |1,lq

‰

“ R0pT q `
nb
ÿ

l“1

RlpT q, (6.4)

where Ω0 “ ta|sptaq “ 0u, Ω1plq “ tb|sptbq “ 1 and Bptbq “ lu, R0pT q is the loyal-state

regret and for l ą 0, RlpT q is the component of the regret corresponding to the ith burst.

The condition
ř

j 1sptjq“0^miătjămi`1
ą 0 for all i mod 2 “ 0 guarantees that the bursts

are separable in the sense that Bptq “ # tj : ωptjq “ 0^ ωptj`1q “ 1^ tj`1 ď tu can be

computed by the oracle. Therefore, we essentially have pnb ` 1q stationary Thompson

sampling algorithms.
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Accordingly, applying Theorem 6.2.1 to equation (6.4) we obtain:

ErRpT qs “ ErR0pT qs `
nb
ÿ

l“1

ErRlpT qs

“

nb
ÿ

i“0

ErRipT qs

“ O

˜

nb
ÿ

i“0

a

KNi logK

¸

ď O

˜

g

f

f

epnb ` 1q
nb
ÿ

l“0

KNl logK

¸

“ O

˜

g

f

f

enbK logK
nb
ÿ

l“0

Nl

¸

“ O

˜

a

nbKN logK

¸

, (6.5)

where at the fourth line, we have used Jensen’s inequality (more precisely, }x}1 ď
?
d}x}2

for all x P Rd). The theorem follows.

Remark 6.2.3. As expected, we observe that stable systems, where bursts are rare,

expect to have lower regret, as the number of bursts influences the regret bound by a

factor of
?
nb.

To empirically verify our regret guarantees, we performed 1000 simulations. For more

details on the generation procedure, see Section 7.1.2. We explore the following parameter

values: λL “ 1, ErN s P t1000, 1001, ¨ ¨ ¨ , 5000u, PH P r0.4, 0.6s (percentage of events that

belongs to HPP), nb P t1, 2, 3u, b P t5, 6, ¨ ¨ ¨ , 20u, K P t2, 3, 4u. The reward distribution

parameters θ0
i , θ

p
i (i ď K, p ď nb) were generated as iid Up0, 1q. For each simulation, we

chose a random combination of the above parameters and compared the regret the bound

to the regret observed when running BMAB. The two first graphs of Figure 6.5 are plots

of the theoretical regret bound versus the empirical regret related to the 1000 sampled

simulations.

Remark 6.2.4. As expected, all graphs exhibit a linear relation that matches with our

theoretical results.
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Figure 6.5: First two graphs: comparison between theoretical guarantees and experimen-
tal results of the regret (RpT q). The red line is the function fpxq “ x. The second line
shows the function fpxq “ ax ` b, where a and b are the coefficients of the linear regres-
sion fitting of RpT q versus OpRpT qq. Last graph: boxplot of the dispersion of the state
detector accuracy.

6.2.4 A realistic state detector

In this section, we will propose a method to group the user-activities into two categories:

loyal and curious. For that, we need to develop a realistic state detector that is a crucial

step of [BMAB-R]. We assume that the loyal audience rate λL is known. In Section 6.3 we

discuss a method to recover λL. Such a rate does not require prior knowledge of the reward

distributions and can be measured through the system’s traffic logs. Note that, although

the system’s state is defined at any time t, we only need to predict it when an event ti

happens.

Our method requires a positive integer sensitivity hyperparameter ∆ as well as a con-

fidence parameter δ P p0, 1q. For all i, we then write ∆i “ ti ´ ti´∆`1 (if i ă ∆, ∆i “ ti).

Then, we write qδpµ, ρq “ qGammapµ, ρ, δq for the (left) quantile function of the Gamma

distribution with shape µ and scale ρ, i.e., PpX ď qδpµ, ρqq “ 1 ´ δ where X follows a

Gamma distribution with shape µ and scale ρ.

In order to detect the system state at the time of event ti we aim to test the hypothesis

that the elements of the set T∆i “ tti´∆`1, ti´∆`2, ¨ ¨ ¨ , tiu (if i ă ∆, T∆i “ t0, t1, t2, ¨ ¨ ¨ , tiu)

are timestamps generated by a uniform Poisson process with intensity λL.
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Our state detector is described in Algorithm 7.

STEP 1 – Compute ∆i and T∆i [Lines 1-5]: Firstly, we compute the size of the

interval ∆i that is covered by the set T∆i .

STEP 2 – Hypothesis test [Lines 6-11]: If the timestamps in T∆i were indeed

generated by a Poisson process with intensity λL, then the distribution of ∆i “ ti ´

ti´∆`1 will be a Gamma distribution with shape ∆ ´ 1 and scale λL. Accordingly, we

calculate the quantile function qδp∆´1, λLq and test the hypothesis stated by comparing

qδp∆ ´ 1, λLq and ∆i (lines 6-11), returning the state 0 (loyal), if the hypothesis is

accepted, and 1 (curious) otherwise.

The three last graphs of Figure 6.6 illustrate our state detector for a fixed δ “ 0.95 and

different values of ∆ P t5, 10, 15u. Experiments show that our state detector has comparable

performance to the optimal oracle: the boxplots on the right side of Figure 6.5 show the

distribution of the state detector accuracy as a function of the number of bursts. As can be

seen, we achieved high accuracy (on average, more than 90% of the states were recovered

correctly). The simulations are identical to those used to evaluate our regret guarantees

(Section 6.2.3).

Figure 6.6: State detector and activity categorization. First graph: optimal detector
scenario. Three last graphs: point-wise user-activity categorization (loyal and curious)
by using the detector proposed in Section 6.2.4 (we fixed δ “ 0.95 and varied ∆ P t5, 10, 15u).
Red dots means wrong categorization. In all graphs, the vertical lines indicate the actual
state transitions (i.e., the set M), the colored stripes at the background represents the
system’s states detection and the user-activity categories are shown by the dots.
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Algorithm 7 State Detector ω-R
INPUT: Event set tt1, t2, ¨ ¨ ¨ , tiu P Ri, sensitive parameter ∆ P t2, 3, 4, ¨ ¨ ¨ u, confidence
parameter δ P p0, 1q and loyal audience intensity λL P R (and λL ą 0)
OUTPUT: State of the slot machine sptiq P t0, 1u

1: if i ă ∆ then
2: ∆i “ ti
3: else
4: ∆i “ ti ´ ti´∆`1

5: end if
6: qδp∆´ 1, λLq “ qGammap∆´ 1, λL, δq
7: if qδp∆´ 1, λLq ě ∆i then
8: return 1
9: else

10: return 0
11: end if

6.3 Disentangling loyal and curious audiences via an EM-
approach

This section will describe a method to disentangle loyal and curious audiences and, therefore,

calculate λL. We start with a brief description of the SFP process. Then we formally define

our model and a EM approach to solve it. Finally, we discuss algorithmic details.

6.3.1 Self-feeding process

In our temporal dynamics assumptions (Section 6.1.1) we considered that the events T can

be split into a HPP and a PW-HPP. However, between transitions, we have mixtures of

homogeneous Poisson processes. Such a mixture is unstable to separate because we would

have infinite compositions with the same probability. Therefore, it might be impossible

to separate if we do not know at least one intensity function of the considered processes.

Furthermore, in order to calculate the loyal intensity λL, we may need to make some as-

sumptions about the transition distribution. To overcome these drawbacks, we approximate

our PW-HPP to a SFP. A common characteristic of the SFP instances is the mix of bursty

periods alternating with quiet intervals [55].

The conditional intensity of the SFP has a simple dependency on its past. Locally,

it behaves similarly to a homogeneous Poisson process, but its conditional intensity rate

is inversely proportional to the temporal interval between the two previous events. More

precisely, the conditional intensity function is defined as follows:

λspt|Htq “
1

µ{e`∆ti
(6.6)
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Figure 6.7: Approaching an SFP by a PW-HPP. First row of graphs: three different
SFP genarations with mu “ 0.1 and t P p0, 100s; Second row of graphs: approximation
of the SFP above by a PW-HPP. The vertical lines on the second row of graphs represents
the Poisson transitions

where ∆ti “ ti ´ ti´1 and ti “ maxkttk : tk ď tu. This implies that the inter-event

times ∆ti`1 “ ti`1 ´ ti are exponentially distributed with expected value µ{e `∆ti. The

inter-event times ∆ti follow a Markovian property. The constant µ is the median of the

inter-event times and e « 2.718 is the Euler constant.

The first row of graphs in Figure 6.7 shows three realizations of the SFP process in the

interval p0, 100s with a parameter µ “ 0.1. One striking aspect of this plot is its variability.

To illustrate how a SFP can be similar to a PW-HPP, we made an approximation for each

SFP instance. As a result, the second row of graphs in Figure 6.7 depicts corresponding of

PW-HPP by considering the intensities of the above SFP. As can be seen, the SFP process

behaves similarly to a non-homogeneous Poisson process with step-wise fix intensities.

6.3.2 Notation and formal EM construction

We always observe T “ tt1, t2, ¨ ¨ ¨ , tnu, 0 ă t1 ă t2 ă . . . ă tn, event timestamps from

the mixture of the SFP (curious) and the HPP (loyal audience). Note that, in practical

applications, T ‰ T since we need to predict λL before the first recommendation requisition.

We use the convention that zi “ 0, if ti P HPP, and zi “ 1, if ti P SFP. Recall we define

Nptq “
řn
i“1 1tiďt to be a function that computes the cumulative number of events up to

time t. Finally, we set θ “ Z, where Z “ tz1, z2, ¨ ¨ ¨ znu (the latent variables), θ´i “ θ z θi
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Figure 6.8: Mixture of point process in timelines for our EM approach. The curious (PW-
HPP) and loal audience (HPP) labels, as well as the transitions (events of M), are not
observed.

Observed (HPP + SFP): T
Loyal audience: HPP(λP )

Curious: SFP(µ)

where θi :“ tziu.

The core concept of our EM setup is depicted in Figure 6.8, which corresponds to the

BMAB model depicted in Figure 6.2. Similarly, we observe n timestamps of events up to

a time tn (grey dots in the third row). Furthermore, we assume that these events are a

mixture of events coming from the loyal audience and the curious, two independent point

processes, shown as yellow and green in the first and second rows, respectively. The primary

distinctions are as follows: (1) we approximate our PW-HPP to a SFP; and (2) our EM

approach does not address the transitions of the the BMAB’s PW-HPP. In practice, we

model the PW-HPP’s transitions implicitly by the SFP’s intensity function. The events

associated with the loyal audience are also modeled by a second process, a HPP, shown in

the second row.

Based on that, consider a general continuous-time Markov process adapted to the fil-

tration pHtqtPR` , and let Npa, bq be the random number of events in pa, bs. The conditional

intensity rate function characterizes the distribution and is given by

λpt|Htq “ lim
hÑ0

E pNpt, t` hq|Htq {h.

For a small time interval pt, t` hq, the value of λpt|Htq ˆ h is approximately the expected

number of events in pt, t ` hq. The simplest example is the homogeneous Poisson process

where λpt|Htq “ λpptq “ λp, a deterministic (and constant) function, independent of the

history of events.

At time t, the history of the process is composed of the observed event timestamps

tt1, t2, . . .u ă t and unobserved labels tz1, z2, . . .u. Define the following two intensity func-

tions: (1) the SFP intensity λsptq “ 1{rptgptq ´ tgpgptqqq ` µ{es where gpuq “ maxpv P

t´µ, 0u Y T |v ă uq and µ ą 0 is the SFP parameter; and (2) λpptq “ λL ě 0, is the

intensity of the HPP. Similarly we can define λ`s ptq “ limδÑ0 λspt` δq (resp. λ`p ptq) as the

intensity of the SFP (resp. HPP) immediately after t.
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Now we can describe our generative model:

STEP 1: Assume t “ 0;

STEP 2: Generate two exponential variables Es and Ep with intensities λ`s ptq and

λ`p ptq respectively. Make E “ minpEs, Epq.

STEP 3: The next event will take place at t` E and it will belong to the SFP (resp.

HPP) component if E “ Es (resp. Ep).

STEP 4: Let t “ t` E and continue the generation procedure from STEP 2.

6.3.3 E-STEP

Considering the described generative model we aim to infer the SFP and HPP parameters,

respectively, µ and λL. To optimize the likelihood, we will use the EM algorithm, relying

on Gibbs sampling in the E-step. However, the EM algorithm in the case of point processes

requires great care since the events are not independent data and the usual derivations are

not appropriate.

This section explains how to use Gibbs sampling to draw a set of latent variables Z

(also referred to as θ) from the conditional distribution given a fixed set of parameters µ

and λL. We start with an initialized value for θ, and we perform a large number NGibbs

of updates on its components. At each update step, we pick i ď n and update the value

of the components θi according to the conditional distribution of θi given the current value

of θ´i (and, as always, the value of T ). After a large number of iterations, this procedure

yields a sample whose distribution is approximately that of a sample of θ given T only. To

perform this procedure, we need to compute the conditional probability Ppθi|T, θ´iq for any

i, θi, θ´i.

Those conditional probabilities and densities are proportional to the corresponding like-

lihoods. Note that we have the following expression for the likelihood of our model:

Lpθq “
n
ź

i“1

λsptiq
ziλpptiq

1´zi ˆ e´
ştn
0 λsptq`λpptqdt

“

n
ź

i“1

λsptiq
ziλ1´zi

L ˆ e´p
ştn
0 λsptqdt`tnλLq. (6.7)
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This naturally factorizes as Lpθq “ LspθqLppθq where Lspθq and Lppθq are, respectively,

the components of the likelihood function (evaluated at θ) corresponding to the SFP and

HPP components: Lspθq “
śn
i“1 λsptiq

zie´
ştn
0 λsptqdt. Lppθq is defined similarly.

A key observation now is that the factors in (6.7) corresponding to the intervals p0, tis

and ptfpfpiqq, tns, do not depend on the value of z, where fpuq “ argminjttj |tu ă tj^zj “ 1u

denotes the index of the next SFP event after tu. Indeed, whether ti is an SFP or Poisson

event only influences the SFP intensity of the next two SFP events. Therefore, we can

drastically reduce the computation time by writing equivalently:

Ppzi “ z|T, θ´iq9LispΩzqLippΩzq, (6.8)

where LispΩzq (resp. LippΩzq) corresponds to the component of the likelihood corresponding

the SFP (resp. HPP) and to the interval rti, tfpfpiqqq and Ωz :“ θ´i Y tzu.

LispΩzq and LippΩzq can be computed directly. This concludes the explanation of the

computation of Ppzi “ z, |T, θ´iq. Since zi P t0, 1u is a discrete random variable, it is then

straightforward to sample from the corresponding distribution. We, therefore, must perform

several Gibbs updates which yield θi. This concludes the generation procedure for the E

step.

6.3.4 M-STEP

In this section, we explain how to maximize the log-likelihood (corresponding to the current

estimate of the conditional distribution of the θ) over the set of parameters tµ, λLu. The

procedure described in the E-STEP section allows us to draw Nθ samples tθ1, θ2, ¨ ¨ ¨ , θNθu

from the conditional distribution of θ given the current estimate of tµ, λLu. We then update

µ via the formula

µ̂ “
řNθ
j“1 argminµ logpLspθjqq

Nθ
, (6.9)

where the likelihood minimization steps are performed via binary search. Note that µ is an

easy parameter to estimate as it affects the whole interval. Thus argminµLspθjq is already

a good estimate even for a single value of j.

Regarding the parameter λL, first, let Upθq “
ř

j 1zj“0. Averaging over all values of θ,

we immediately obtain the following formula for the λL:

λ̂L “
řNθ
j“1

Upθjq

tn
Nθ

. (6.10)
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6.3.5 Algorithmic details

Algorithm 8 describes how to compute µ and λL for a fixed parameter set Nθ and NGibbs.

The last parameter controls how many updates on the latent variables components need

to be performed during the E-STEP. In practice, we can decrease NGibbs gradually during

the EM-Algorithm execution to speed up convergence. Note that we set NGibbs “ Opnq
so that each timestamp is expected to be updated a constant number of times. Nθ, the

size of the warm-start set, can be adapted depending on the available computer resources.

However, a small number proved to be sufficient. We refer to [112] for more information

about EM-Algorithm convergence.

Algorithm 8 Desintangler
INPUT Random series of events T P Rn, size of the set of warm-starts Nθ P t1, 2, 3, ¨ ¨ ¨ u
and number of Gibbs updates NGibbs “ Opnq
OUTPUT: SFP (curious) parameter µ and HPP (loyal) parameter λL

1: µ, λL, θ1, θ2, ¨ ¨ ¨ , θNθ Ð warmStartspT,Nθq

2: while Not converged do
3: for i P t1, 2, ¨ ¨ ¨ , Nθu do
4: θi “ GibbsSamplerpθi, µ, λL, NGibbsq

5: end for
6: µ, λL “ M-STEPpθ1, θ2, ¨ ¨ ¨ , θNθq
7: end while
8: return µ, λL

Remark 6.3.1. In the E-STEP, to prevent the model from getting stuck in low-likelihood

regions, we performed likelihood-based re-sampling: after several iterations, we replace

the current estimate of the set tθ1, . . . , θNθu by a set of Nθ elements drawn with replace-

ment from that set with probabilities proportional to the likelihoods.
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6.3.6 Warm-starts for θ and parameter initialization

Instead of an initial random choice of θ, we propose a warm start strategy that can signifi-

cantly reduce the convergence time of our algorithm. For generating a set θ we proceed as

follows:

STEP 1: First, we divide the interval r0, tnq into nk sub-intervals I1, . . . , Ink of size

tn{nk, i.e. Ii “ rpi´ 1qtn{nk, itn{nkq.

STEP 2: For each i ď nk, we define ui “
ř

jďn 1tjPIi , the number of events belonging

to interval Ii.

STEP 3: Then we sample one sub-interval I˚ from I1, I2, . . . , Ink with PpIiq91{ui@ui ‰

0.

STEP 4: Estimate λL “ u˚{ptn{nkq.

STEP 5: To estimate µ and Z, we can now calculate pi and draw zi „ Bernoullip1´piq.

If ti P Ij , then pi “ minpλL ˆ ptn{nkq{uj , 1q. Thus, we can now estimate µ based on

our estimated sample of the underlying SFP process with ordered timestamps V “

tv1, v2, ¨ ¨ ¨ u ” tti|zi “ 1u, i.e. µ “ medianpt∆iuq, where ∆i “ vi´vi´1 and ∆1 “ v1 (for

details, see [55]).

We now have an initial value for the parameters λL, µ and the set of latent variables θ “ Z,

which concludes the warm start and initialization phase.

6.3.7 Complexity analysis

The execution time of the algorithm is highly dependent on the observed data. Nevertheless,

if we restrict the number of iterations of the EM algorithm to NEM ! n, our algorithm has

complexity OpNEMNGibbsnq (indeed, each component of the likelihood calculations involved

in the computation of the conditional probabilities consists of a sum over each event in the

interval rti, tfpfpiqqq). In the worst case, this interval is the whole of T and the computation

complexity for one Gibbs iteration is Opnq).

94



6.4 Conclusion

In this chapter, we introduced a novel MAB problem and an algorithm to solve it, which

we called BMAB. Our approach is context-free, as it does not incorporate any side in-

formation about users or items. Additionally, it is non-stationary, as the distribution of

rewards changes with time. Unlike previous approaches, our method models the time in a

continuous setting and considers the audience’s dynamics to explore and exploit the reward

environment.

BMAB handles reward distribution by segmenting user activity into two types: loyal

and curious. A critical phase in our methodology is determining the rate λL at which events

are transmitted from the user’s loyal audience. This rate enables us to determine which

audience is the most prevalent at a given time t. To find λL, we developed a method for

modeling audiences as a hybrid of HPP and SFP. Following that, we presented an EM

technique to learn the parameters of the aforementioned processes’ parameters.

Additionally, we introduced a state detector capable of determining with high accu-

racy which audience member (loyal or curious) is dominant. Finally, we provided regret

guarantees for our algorithm under mild constraints.
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Chapter 7

Experiments and applications

This chapter presents synthetic and real-world data experiments, as well as applications

of the methods described in Chapter 6. We began by analyzing the BMAB algorithm in

different ground-truth regimes. Then, we verify our method’s performance in a context-free

recommendation scenario on real-world datasets versus several state-of-the-art baselines.

Finally, we characterize online time series to show how our technique can discriminate

between loyal and curious audiences.

The main contributions of this chapter are the following:

• we evaluate the BMAB algorithm and compare it to several baselines in two exper-

imental strands: synthetic data simulations and real-world datasets. We compare

our method to six state-of-the-art baselines and achieve competitive results;

• regarding the task of disentangling loyal and curious audiences: (1) we performed

extensive empirical work, in which we show that our model fits real-world datasets

with better results than alternative models; (2) we also performed synthetic data

experiments to analyse the behaviour of our method in different ground-truth

regimes;

• we proposed indices able to describe and quantify the loyal audience and we com-

puted them for eleven real-world data sets.
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RecSys Recommender System Conference, 2021.

Rodrigo Alves˚, Antoine Ledent˚, Renato Martins Assuncao, Pedro Vaz de
Melo, and Marius Kloft. Are you here to stay? disentangling the loyal audi-
ence from the curious on social media. Submitted to ACM Transactions on
Knowledge Discovery from Data (TKDD), Aug 2021.

˚ The authors contributed equally to this research.

7.1 Context-free recommendation

To compare our method with the baselines, we conducted experiments with two data

strands: synthetic and real-world datasets. In the first case, we performed several sim-

ulations to verify the performance of BMAB in different ground truth regimes. In the

second strand, we validated our model on four recommender systems datasets. We show

that our methods exhibit SOTA performance in all cases.

7.1.1 Baselines and parameter selection

We evaluated the following baselines:

• TS – Thompson Sampling: traditional stationary MAB algorithm [18]. For more

details, see Section 6.2.1.

• EXP3: broadly used MAB algorithm that considers a non-stationary environment.

EXP3 uses a parameter γ to control exploration and exploitation during all the period

(γ was selected following Corollary 3.2 of [113]).

• EXP3DD – EXP3 with Drift Detection: EXP3 with a reward distribution shift

detection procedure. When the best arm changes, EXP3DD re-initializes the algo-

rithm. Hyperparameter selection was performed according to Section V of [22].

• DUCB – Discounted UCB: A UCB-type method that tackles non-stationarity

by maintaining exploratory behavior throughout the event horizon. Hyperparameter

tuning following Section 3.1 of [25].

• MUCB – Monitored UCB: MUCB detects the change on the arms’ reward distri-

bution by comparing the rewards in the two last time intervals of the same size. The

parameters w and b were setting according to Section 5 (Remark 1)[23].
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• WMD – Windowed mean-shift detection: WMD is a framework that uses time

windows to detect shifts in the arms’ reward distribution. As in [21] we set ε and τ

according to Section 5 and Theorem 4.1.

In all cases, the cited parameters and sections follow the notation of the respective

papers. We can split the baselines into three groups depending on which rewards environ-

ment they were designed to work in: stationary TS; non-stationary EXP3; and piece-wise

stationary, EXP3DD, DUCB, MUCB and WMD. For BMAB-O and BMAB-R, we

empirically selected the forgetting-rate γ “ 0.70, the detector confidence index δ “ 0.95,

and the detector window ∆ “ 10. We assume we know λL in the synthetic strand. To find

λL in the real-world data, we use the method described in Section 6.3.

7.1.2 Generation of synthetic audience dynamics

The generation procedure consists of five steps:

STEP 1: Choose a set of parameters tλL, Ñ , PH , nb, bu. λL will be the loyal audience

intensity. The (curious audience) intensity in the bursty periods will be set to bλL. PH

and Ñ will have the following properties: Ñ will be the expected number of timestamps

so that Ñ “ EpNq, and the expected number of timestamps attributed to the loyal

audience (outside bursts) will be PHÑ . nb will be the (fixed) number of bursts.

STEP 2: Generate a Poisson process with event rate λL along the time interval p0, T s,

where T “ PH ˆ ErN s{λL.

STEP 3: Split the interval p0, T s into the set of nb contiguous sub-intervals of the same

size U “ tp0, T1s, pT1, T2s, ¨ ¨ ¨ , pTnb´1, T su.

STEP 4: Let λCptq “ bλL, when sptq “ 1, and λCptq “ 0.05λL, otherwise. We

consider burst intervals of size Tb “ pp1´ PHq ˆ T q{pnb ˆ bq. This guarantees that the

expected number of (curious) events during bursts is pbλLqnnpp1´PHq ˆ T q{pnbˆ bq “

p1´PHqλLT “ p1´PHqÑ . For each Ui “ px, ys generate m2pi´1q`1 „ Uniformpx, y´Tbq

and m2pi´1q`2 “ m2pi´1q`1 ` Tb.
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STEP 5: Generate the PW-HPP given the set M and λCptq of step 4.

Our approach can ensure a relationship between the activities of the users and the

popularity of the items (as described in Section 6.1) if the parameters are properly chosen.

Figure 6.1 depicts an example of this generating procedure.

7.1.3 Synthetic data experiments

To compare our method with baselines, we designed a reward setting where the rewards

depend strongly on the state of the system. We set the parameters as follows. By using

the generation procedure proposed in Section 7.1.2, we set λL “ 1 and varied ErN s P
t1000, 2000, 5000u, PH P t0.25, 0.5, 0.75u, nb P t1, 2, 3u and b P t5, 10, 20u. We set K “ 3

and set the loyal-state parameters as follows rθ0
1, θ

0
2, θ

0
3s “ r0.3, 0.4, 0.5s. During the each

burst, the reward parameters are the same as in the loyal state except for one arm, whose

parameter is set to 0.9. The sequence of arms whose reward changes is selected from t1, 2, 3u

by uniform sampling without replacement. Figure 6.1 shows an instance of the generation

procedure for λL “ 3, ErN s “ 500, PH “ 0.5, nb “ 2 and b “ 5. The effect of step 5 can be

visualized in Figure 6.3.

Figure 7.1: Summary of the results of the synthetic data experiments. The graphs are orga-
nized according to the tuple tErN s, PH , nb, bu. The green line (”Optimal”) is the theoretical
reward of the best possible algorithm. Each data point corresponds to the average of 20
simulations.
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For each set of tλL,ErN s, PH , nb, bu we generated 20 samples. For each sample, we

performed [BMAB-O], [BMAB-R] and the baseline algorithms. Figure 7.1 show the

performed simulation results. The green lines (“Optimal”) in Figure 7.1 show the perfor-

mance of a hypothetical algorithm with the ability to always select the best arm (with the

largest θ). Thus, in theory, no algorithm can achieve better performance. Each point in

Figure 7.1 is the average normalized reward RpT q{ROptimalpT q, averaged over 20 samples.

Remark 7.1.1. Note that both [BMAB-O] and [BMAB-R] consistently outperform

the baselines in all the considered scenarios. In addition, the proximity of the two BMAB

curves reveals [BMAB-R]’s ability to recover the correct states with high accuracy, with

this fact being particularly marked in the case where there is an even mix of both point

processes (PH “ 0.5). Smaller values of nb led to better performance. This result

matches with our theoretical results presented in Section 6.2.3.

7.1.4 Real-world data experiments

In this section, we present our results on real data. We selected the four following recom-

mender systems datasets:

• Behance: Behance is a social media platform devoted to the dissemination and

discussion of creative work. In this RS, each user has the option to appreciate (“like”)

a piece of art.

• Google trends: We collected the time series related to the singers Psy and David

Bowie (K “ 2) from 2008 to 2020 (YouTube search engine, only USA). The Google

trends API only returns a normalized audience (an integer value, maximum 100) for

each month. As a result, we modeled each month as 1 unit of time: Jan/2008 P

p0, 1s, Feb/2008 P p1, 2s, ¨ ¨ ¨ , Dec/2020 P p155, 156s. To convert normalized audiences

into timestamps, we generated events uniformly along the corresponding month. For

instance, if the API returned x events for Feb/2008, we generated 10x events between

1 and 2.

• Outbrain: Outbrain is a web advertising platform that displays content within

websites. The data set contains users’ clicks at recommended content.10

10The data is available at https://www.kaggle.com/c/outbrain-click-prediction/data
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• MovieLens: MovieLens is a non-commercial website for movie recommendations.

We used MovieLens (25M) which is a broadly used recommendation dataset.11

For the Behance, Outbrain and MovieLens datasets, we selected the five most popular

items as the arms of our bandit problem. The number of arms K, the observed time T and

the number of events N of all datasets are available in Table 7.1. In all cases, we split the

time T into two subsets: the first one (TλL , cf. Table 7.1) is used to estimate λL; while the

rest of the data is used to evaluate [BAMB-R] and the baselines.

Remark 7.1.2. We note that our general strategy can be adapted and incorporated in

different RS contexts. For example, if rewards or user-reward pairs can be embedded

in a dictionary space, we could use our method with a modified version of Thompson

Sampling where at each observation, each positive component of a virtual feature vector

is Thompson Sampling-updated.

Note that both our method and the baselines are stochastic. As a result, we performed all

the algorithms for each dataset 50 times. For the real datasets, the reward is deterministic.

At each time ti, we consider that rptiq “ 1, if the algorithm (correctly) recommends the

item that the user liked (Behance, MovieLens), searched (Google trends) or clicked on

(Outbrain), and rptiq “ 0 otherwise.

We present the results in Table 7.1. We evaluated the performance of [BMAB-R]

against the baselines by considering the average reward pRpT q{Nq. In real datasets, Optimal

and [BMAB-O] cannot be defined due to the lack of well-defined bursts.

11The data is avaiable at https://grouplens.org/datasets/movielens/

Table 7.1: Description of the real-world databases and summary of the results of the two
experiments with real-world data. Metric: average of the observed reward (RpT q{N)
and its standard deviation (higher values are better). For synthetic data, the rewards are
normalized by the reward of the Optimal algorithm (RpT q{ROptimalpT q).

Behance Google Trends Outbrain MovieLens

(K,N) p5, 7122q p2, 19850q p5, 86689q p5, 270403q

T [Jun to Nov/2011] [2008,2020] [14 to 28/Jun/2016] [Sep/2001,Oct/2019]

TλL [Jun/2011] [2008] [14/Jun/2016] [Sep/2001,Dez/2003]

BMAB-R 0.5937˘ 0.004 0.7756˘ 0.002 0.5449˘ 0.008 0.22656˘ 0.001

TS 0.3975˘ 0.042 0.6972˘ 0.033 0.4123˘ 0.018 0.22652˘ 0.002

EXP3 0.2202˘ 0.011 0.5249˘ 0.020 0.3053˘ 0.021 0.2223˘ 0.001

EXP3DD 0.2320˘ 0.013 0.5337˘ 0.030 0.3062˘ 0.024 0.2244˘ 0.001

DUCB 0.5014˘ 0.003 0.7616˘ 0.001 0.4852˘ 0.001 0.1701˘ 0.001

MUCB 0.5055˘ 0.006 0.7640˘ 0.002 0.4637˘ 0.001 0.2182˘ 0.001

WMD 0.4197˘ 0.037 0.6951˘ 0.021 0.4237˘ 0.014 0.2039˘ 0.005
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Remark 7.1.3. We observe that our algorithm significantly outperformed all the base-

lines in all the real datasets except MovieLens, where the performance was comparable

to that of the TS baseline. It is likely to happen because the behavior of the five most

popular items is stationary. Thus, our algorithm detects no bursts and behaves exactly

like TS in that case. Note that in particular, in the Outbrain and Behance datasets, our

method outperformed the second best algorithm ([MUCB] and [DUCB], respectively)

by 12% and 17% (respectively).

7.2 Characterizing online timeseries

To analyze our disentangling model in different ground-truth regimes and compare it with

the baselines, we conducted two experiment strands: synthetic data simulations and real-

world datasets. In the first case, we use the generation procedure explained in Section 6.3.2,

varying µ and λL. This allows us to evaluate how our model performs in different regimes.

We chose the parameters in order to control (1) the number of events (n) and (2) the

expected percentage (PH) of the observed events that belong to each of the latent processes

(SFP and HPP). We also validate our model on fourteen real datasets split into four groups:

collaborative recommendation systems (Digg and Reddit), forums (AskMe, MetaFilter, and

MetaTalk), hashtag-based chat (Twitter) and collaborative working (Github(Users) and

Github(Project)). In total, we analyzed more than 63 million events.

7.2.1 Synthetic data generation and evaluation

Let PH “
řn
i“1p1 ´ ziq{n be the proportion of observed events that belong to HPP. We

chose sets of µ and λL corresponding to estimated values of pEpnq,EpPHqq in the set

t500, 750, 1000u ˆ t0, 0.25, 0.5, 0.75, 1u. For each pair pEpnq,EpPHqq, we conducted 50 sim-

ulations (we use the generation procedure described in Section 6.3.2) and assessed our

methods via two metrics: δpµ, µ̂q and δpλL, λ̂Lq. The function δpa, bq is defined as

δpa, bq “ |a´b|
a . (7.1)

Therefore, the metrics assess our method’s ability to accurately recover the parameters of

the ground truth model given the observations. The reason we do this instead of simply

counting the proportion of correct labels is as follows. Correctly classifying the timestamps

is both more difficult and less interesting inside a burst compared to calm periods. On the

other hand, δpµ, µ̂q and δpλL, λ̂Lq are far less sensitive to the label assignments in a short

bursty period, but a small value of δpa, bq still indicates excellent performance.
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Figure 7.2: Summary of the results of our experiments with synthetic data. δpµ, µ̂q (top,
yellow) and δpλL, λ̂Lq (bottom, green) distributions grouped by pEpPHqq. The x-axis shows
the expected number of observed events.

We report the results of our experiments evaluated with both metrics in Figure 7.2.

Remark 7.2.1. The box plots show that our method has a strong ability to recover the

underlying parameters of SFP and HPP based only on the observed timestamps. Larger

values of the number of events (n) correspond to smaller values of δpµ, µ̂q and δpλL, λ̂Lq.

Mixtures with higher PH tend to produce fewer bursts and therefore have a more uniform

behavior over the whole observed period. Consistently with this, we observe that larger

values of PH correspond to smaller values of δpλL, λ̂Lq.

7.2.2 Baseline models and fitting metrics for real datasets

Our model relies only on the observed event timestamps. We compare our model with the

following similar models:

• Hawkes processes [42, 50, 54, 114, 115]: Hawkes processes are a class of self-exciting

processes which are widely used for modeling web communications. The Hawkes

process model assumes that any event increases the probability of additional events.

Its conditional intensity is λpt|Htq “ λ`
ř

tiăt
Kpt´ tiq, where Kpxq ą 0 is the kernel

function, which satisfies
ş8

0 Kpxqdx ă 1, to ensure stationarity.
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• BuSca [26]: similarly to our model, BuSca is also a mixture process involving a

Poisson process and a self-exciting process. The conditional intensity of the BuSca

model is given by λpt|Htq “ λ ` 1
∆t`µ{e

, where λ ě 0 and µ ą 0 are constants and

∆t is the last SFP interval before t. The primary distinction between BuSca and our

model is in the optimization procedure: we present here an approach that requires far

less approximations when computing the EM likelihood.

To assess the Hawkes Process method’s performance we used the random time change

theorem to transform a HP into a unit rate Poisson process (see [50]). After the trans-

formation we computed the determination coefficient R2
Hawkes corresponding to the linear

regression problem predicting the cumulative number of events Nptq for all ts in the trans-

formed process. Similarly, for BuSca, we computed R2
S (SFP) and R2

HPP (homogeneous

Poisson process) for the disentangled processes (see [26]) and computed the final coefficient

R2
BP “ pR

2
S `R

2
HPP q{2.

To check the goodness of fit of our model, we first output the tẐu Ă θi, where i “

argmaxjtLpθjq ; 1 ď j ď Nθu, which allows us to disentangle the HPP from the SFP. For

the SFP fitting, we took the inter-event times sample and built the empirical cumulative

distribution function Fptq leading to the odds-ratio function ORptq “ Fptq{p1´Fptqq. Then,

we computed the R2
SFP coefficient of the linear regression problem predicting the cumulative

number of events Nptq versus the ORptq (see [55]).

The computation of R2
HPP consists in estimate R2 as the determination coefficient cor-

responding to the linear regression problem predicting Nptq from t on the interval by con-

sidering the timestamps tti|zi “ 0u. Finally, we compute R2 “ pR2
SFP `R

2
HPP q{2.

Remark 7.2.2. All R2 coefficients vary between 0 (worst case) and 1 (best case).

7.2.3 Data Sets

We show the usefulness of our model by fitting the following eleven real-world data sets,

which we also described in Table 7.2.

• AskMe, MetaFilter and MetaTalk: the time-series are topics of an online discus-

sion forum and the events consist of comments timestamps12.

• Digg, each time-series corresponds to a different news post in the website and the

events are the diggs, similar to Facebook likes, given to the respective post.

12Avaliable at http://stuff.metafilter.com/infodump/
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• Enron, a sequence of events is associated with an e-mail account. They are the

incoming and outgoing messages timestamps 13.

• For Github, we split this dataset into two parts: Github (Users) and Github

(Projects). In the first one, the events are activities of a user (in different projects).

In the second one, the events correspond to the activities of different users on the

corresponding project.

• Google Trends: the time series corresponds to the fraction of YouTube views over

time. We consider only USA users. Each topic is related to famous people such

as singers and politicians, which were defined and collected by the author of this

dissertation.

• Twitter: the event timestamps correspond to tweets featuring a given hashtag.

• Youtube: each time series corresponds to a YouTube video and the events are the

timestamps of users’ comments.

• Yelp: dataset consists of timestamps of user ratings for several restaurants.

Table 7.2 shows the total number of RSEs (#RSE), the average number of events (n), as

well as the average of the indices absolute loyalty κ and relative loyalty κ̃ (see Section 7.2.5)

for each data set.

13Avaliable at: https://www.cs.cmu.edu/~./enron/

Table 7.2: Fitting and characterization of the datasets

#RSE n κ κ̃ R2(our model) R2
BP R2

Hawkes

AskMe 490 133 0.37 0.42 0.8496 ˘ 0.11 0.6210˘ 0.11 0.3224˘ 0.15

Digg 972 122 0.31 0.43 0.8947 ˘ 0.10 0.7234˘ 0.09 0.4828˘ 0.18

Enron 131 1208 0.60 0.37 0.9465 ˘ 0.07 0.9147˘ 0.06 0.5879˘ 0.25

GitHub(U) 47450 603 0.77 0.50 0.9568 ˘ 0.03 0.9550˘ 0.04 0.8966˘ 0.08

GitHub(P) 21852 629 0.74 0.50 0.9546 ˘ 0.03 0.9484˘ 0.04 0.8634˘ 0.10

G. Trends 450 1297 0.63 0.52 0.9491 ˘ 0.07 0.9392˘ 0.01 0.8317˘ 0.29

MetaFilter 8232 175 0.43 0.48 0.8927 ˘ 0.09 0.7125˘ 0.11 0.3909˘ 0.18

MetaTalk 2452 203 0.43 0.49 0.9174 ˘ 0.08 0.7921˘ 0.11 0.4537˘ 0.20

Twitter 16762 1078 0.71 0.49 0.9472 ˘ 0.05 0.8877˘ 0.12 0.8107˘ 0.23

Yelp 1522 135 0.25 0.37 0.9088˘ 0.13 0.9443 ˘ 0.08 0.8461˘ 0.14

YouTube 250 3241 0.59 0.49 0.9701˘ 0.02 0.9701 ˘ 0.01 0.7010˘ 0.18
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7.2.4 Fitting and characterization of real-world datasets

Table 7.2 shows the goodness-of-fit statistics (average and standard deviation) for our model

and the baselines grouped by dataset.

Remark 7.2.3. Our model surpasses the Hawkes process method in all datasets con-

sidered. It also consistently outperforms BuSca (better fitting in 9 out of 11 datasets).

Figure 7.3: Top: fitting performance (determination coefficient) as a function of the propor-
tion PH “ |PP |{n of Poisson events per dataset. Bottom: distribution of the proportion
PH “ |PP |{n per dataset.
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Figure 7.3 show how our disentangled models behave under different regimes. To

construct the figure, we computed PH and rounded the value considering the range

t0, 0.2, 0.4, ¨ ¨ ¨ , 1u. The extremes correspond, respectively, to an approximately a pure SFP

and a pure Poisson process (see histograms on the bottom of Figure 7.3).

Remark 7.2.4. We can observe in Figure 7.3 that our model improves significantly

when the bursty behavior dominates the mixture. Indeed, the high concentration of the

R2 (as R2
SFP and R2

HPP ) statistics of our model close to the maximum possible value

shows that our model can accurately fit the time series considered, as well as disentangle

the mixed process into its two hidden components (HPP and SFP).

7.2.5 Absolute and relative loyalty

After learning the component intensities λsptq and λpptq we can contrast their absolute and

relative influence on the observed events. We define two indexes, both in the interval r0, 1s:

κ “
1

b´ a

ż b

a

λpptq

λpptq ` λsptq
dt and κ̃ “

şb
a λpptqdt

şb
apλpptq ` λsptqqdt

. (7.2)

The absolute loyalty κ tells us the importance of the loyal audience averaged over the

time interval ra, bs, whilst the relative loyalty κ̃ describes the proportion of the activity in

the interval ra, bs that is assigned to the loyal audience. The plot on the left-hand side

of Figure 7.4 shows the average κ̃ versus the average κ for each of the real datasets. For

Figure 7.4: Left: Scatterplot of the average κ̃ versus the average κ for each of the real
datasets. Right: Dispersion of the indicators κ and κ̃ per datasets.
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instance, consider the two pairs associated with GitHub: κ « 0.8 but κ̃ « 0.5. It shows

that while the loyal audience (HPP component) dominates most of the time, only half of

the activities are carried out by them, i.e., the other half comes from the curious.

We observe a significant dispersion on the absolute loyalty κ when related to the topic

of the time series (second graph, Figure 7.4). However, relative loyalty κ̃ is relatively stable

between topics (third graph, Figure 7.4). Thus, the percentage of activity performed by the

loyal audience does not change much among topics. The distribution of these activities, on

the other hand, differs according to item.

7.3 Conclusion

Using the methods given in Chapter 6, we conducted synthetic and real-world data ex-

periments. By assessing the empirical reward, we observed that the BMAB algorithm

consistently beats the baselines in all synthetic circumstances. Additionally, in the real-

world recommender scenario, our algorithm outperformed all baseline algorithms except for

one dataset where performance was comparable to that of the Thompson Sampling algo-

rithm. We determined that the cause was that audience dynamics remained stable during

the studied period.

In terms of separating loyal and curious audiences, our model outperforms by better

fitting the great majority of the investigated real-world datasets. We then proposed two

indices to characterize the system’s audience: absolute and relative loyalty.
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Chapter 8

Related Work and Discussion

8.1 Related work on multi-armed bandits

MABs were introduced in [18] and more formally defined in [116]. Some classic and

broadly used algorithms to solve this problem is the Thompson sampling (TS) algorithm

[18, 117], ε-greedy policies [118], Exp3 [113] and strategies based on Upper Confidence

Bounds (UCB) [17]. TS algorithm enjoys strong empirical performance [119], regret guar-

antees [111] and has been successfully applied in a wide variety of RSs domains [120–124].

In non-stationary MABs, the reward distribution is allowed to change through time.

There are two major classes of non-stationary MABs: adversarial MABs and piece-wise

stationary MABs. In adversarial MABs, an adversary controls the payoff generation, so no

statistical assumptions are imposed [113]. However, the problem is still stationary in the

sense that the aim is to return a single arm that is the globally optimal action at a fixed time

horizon. In contrast, the reward generation is non-stationary on the whole time horizon

in piece-wise stationary MABs, but it is stationary on several unknown intervals [21]. Our

model belongs to the latter category. Previous work on piece-wise stationary MABs can be

further categorized into context-aware and context-free approaches, depending on whether

side information (user/item features) are exploited.

In related work on (context-aware) piecewise stationary MABs, [45] proposed LogUCB,

an extension of UCB that estimates the average reward of a topic through a logistic re-

gression on its features. In line with our work, [16] presents a MAB algorithm that also

considers the temporal influence on the item consumption probability. They construct the

policy algorithm as a probabilistic framework that uses as context a high-dimensional vector

containing side information about the users (demographic information) and the items (query

keywords). There are two key differences between this work and ours: (1) our method is

context-free (does not need feature vectors); and (2) instead of treating the problem as

a discrete-time one, our model actively exploits continuous temporal dynamics to detect

possible changes in the reward environment.
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Related work on context-free MABs includes [22], who performed constant exploration

inspired by the EXP3 algorithm to detect changes in which arm is the best, while [23]

achieved this by simply comparing the rewards in the two last time-intervals of size w. In

both cases, whenever such a distributional change is detected, the backbone MAB algo-

rithm is restarted with the aim of finding the best arm under the new distribution. In the

same direction, [21] proposed a general framework that can be used together with several

algorithms. After also dividing the event horizon into several equal-sized windows (of size

w), they compute scores for each arm based on both the rewards and the number of obser-

vations in the following two intervals: (1) the last window in which a change in the best

arm was observed, and (2) the last observed window. If the absolute difference between the

scores in the two windows is greater than a hyperparameter ε, the algorithm is re-initialised.

Similarly, [47] performed change detection by comparing two previous time windows. Their

model also relies on estimates of the probability of false alarm and the probability of missed

detection to improve robustness. Instead of resetting the algorithm altogether, [24] adopted

a fixed sliding training window while [125] used a different window size for each arm. With

a slightly different approach, [25] proposed the so-called ‘Discounted-UCB (DUCB)’ algo-

rithm. The main idea is to give a higher selection probability to two classes of arms: the

arms which recently returned high rewards and the arms which were not recently selected.

Therefore, instead of resetting the whole procedure, DUCB tackles the non-stationarity by

maintaining a minimum amount of exploration throughout the event horizon. By mixing

the two previous approaches (discounted reward and sliding window), [49] assigns more rel-

evance to the recent rewards. The last w rewards are not discounted whilst the remaining

ones are. [48] proposed a piece-wise MAB algorithm that detects abrupt changes in the

reward distribution through a hypothesis test. As a criterion for this hypothesis test, they

rely on the Page-Hinkley statistic, which involves a random variable defined as the differ-

ence between the reward time t and the average reward, cumulated in the last m steps.

Our method’s main difference from other context-free methods lies in our shift detection

procedure. Instead of detecting changes only in the reward distribution, we analyze the

system’s temporal dynamics to identify behavioral changes in the audience. Our hypothesis

is that such behavioral change is associated with the items’ popularity.

8.2 Related work on the dynamics of human communication

Popularity prediction and online trend detection [27, 126–129] are fundamentally linked to

the recommendation task, especially when no context is available [15]. Previous works show

that item popularity increases and decreases over time [27, 40, 130] and it is triggered by

bursts [43, 126, 129, 131, 132]. One of the first attempts to associate human communica-

tion with the emergence of bursts was [43]. They proposed that human activities tend to

110



alternate between periods of calm and intense activity. Plenty of works substantiate this

premise [42, 54, 55, 133, 134]. Such alternating behavior points at the presence of two dis-

tinct types of audiences: the loyal audience which corresponds to the stable activity which

occurs during the calm periods and curious audience, which is highly unpredictable, and

responsible for the burst activity in the system [26].

The stochastic point process form the statistical framework to model random sequences

of events [50]. Poisson processes, for example, are broadly used to measure stable au-

diences [26, 52, 53]. On the other hand, power-law distributions and self-exciting point

processes have been used to model the unexpected behavior of bursts [42, 43, 54, 55]. In

this work, we propose that the loyal and the curious audiences form a mix of two stochastic

point processes. The difference in the intensity of the point processes defines the state of

the MAB problem.
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Chapter 9

Conclusion

The recommender systems research field is highly dynamic and challenging. Frequently,

researchers confront multiple and new recommendation domains, each with its own set

of social and behavioral dynamics. Additionally, civil and academic societies have been

expressing a need for more transparent machine learning methods. Therefore, to the es-

tablishment of the field’s future, it is crucial to consistently develop methodologies and

algorithms that are not only accurate, but also comprehensive and interpretable.

In this thesis, we addressed the problem of proposing two comprehensive, theoreti-

cally inspired and cluster-induced recommendation methods: Orthogonal Inductive Ma-

trix Completion and Burst-induced Multi-armed Bandit. The first one is a context-aware

method, whereas the second one is categorized as context-free. Apart from being highly

accurate, these methods improve interpretability by describing and quantifying features of

the datasets they characterize.

We built our model’s assumptions under solid theoretical foundations. For OMIC we

provided theoretical guarantees in the form of generalization bounds. We showed that one

needs to know just a few entries to accurately recover the rating matrix if the structure

of the ground-truth highly correlates to the clustering side information. For the BMAB

algorithm, we provided regret guarantees under mild conditions. We outlined how the

system’s stability affects the expected reward.

Finally, we conducted extensive experiments to validate our proposed methodologies.

In a controlled environment, we implemented synthetic data generation techniques capable

of replicating the domains for which OMIC and BMAB were designed. As a result, we

were able to analyze our algorithms’ performance across a broad ground-truth spectrum.

Additionally, we replicate a real-world scenario by utilizing well-established recommender

datasets. After comparing our approaches to several baselines, we observe that they achieved

SOTA results in terms of accuracy.
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9.1 Summary of Results

The main results of this thesis can be summarized as follows.

Part One: context-aware recommendation – Chapter 2: we introduced OMIC, a

framework of inductive matrix completion learning methods, which imposes orthogonal

constraints on the columns of the inductive matrices. Aligned to [29], our method imposes

nuclear-norm regularization as an effective convex relaxation of the rank constraint. OMIC

is a comprehensive method because it models biases, cluster side information, and a pure

low-rank term simultaneously. Notably, we are the first to apply such refinements in com-

bination. Additionally, our model gives rise to an interpretable solution, as each ground

truth matrix can be uniquely represented. Thus, the magnitude of a predictor’s terms can

be interpreted as to its relevance to the model. Furthermore, we also provided an effi-

cient optimization algorithm to deal with our optimization problem, proved its convergence

and developed a scalable implementation. Finally, we extended our core methodology by

developing a technique for recovering latent clusters in the absence of side information.

Differently from previous approaches [88–90], we showed that community behavior and

continuous low-rank structure could coexist in the same matrix.

Chapter 3: we provide a theoretical analysis of OMIC. At first, we proved that

the predictor has a unique decomposition. This fact theoretically justifies the experiment

section’s interpretability analysis. Furthermore, we provide theoretical guarantees for our

method in the distribution-free case (with no assumption on the ground truth distribution).

Observe that, when the ground truth matrix can be approximated by community behavior,

the given sample complexity bound makes excellent use of the side information by remaining

independent of the matrix’s size while further refining the dependence on the side informa-

tion’s dimensions. We also provided bounds for cluster side information by applying an

adjusted trace norm regulariser in the case that sampling distribution is known [64].

Chapter 4: we conducted extensive experiments using both synthetic and real-world

data. Through the use of synthetic data, we demonstrated that OMIC outperforms Soft-

Impute [29] and is more flexible across a broad range of side information. Additionally, our

method was capable of detecting latent biases and clusters with high accuracy. When ap-

plied to real-world recommender data, we demonstrated that our method outperforms the

SOTA [29, 38] in terms of accuracy, with lower RMSE and higher SPC than the baselines.

Then, we illustrate how OMIC produces interpretable solutions through examples taken

from real-world datasets. At the end of the chapter, we presented an application of our

method in the natural sciences: the prediction of activity coefficients in thermodynamics.

We are the first to use matrix completion for this task, and our error deviation was lowest

among the benchmarked models [58, 68].
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Part Two: context-free recommendation – Chapter 6: we introduced a non-

stationary and context-free multi-armed bandit problem. Different from prior work [21–25],

in our model the recommender audience’s temporal dynamics influence the reward

distribution. To solve this problem, we developed the BMAB algorithm, a cluster-induced

approach. By extending the remarkable TS’s bounds of [111], we established regret

guarantees for the BMAB algorithm, under the conditions that the states are recoverable

and bursts are separable. Further, we experimentally analyzed the proposed regret bounds.

Our bounds demonstrate that stable environments with fewer bursts expect to have a

higher reward. This fact is rather intuitive because also more occasional changes in the

distribution of rewards are expected.

A crucial step of the BMAB algorithm is to determine which audience is most dominant

at time t. To do so, the algorithm requires knowledge of λL that corresponds to the system’s

expected rate of requisition if just the loyal audience is considered. As a result, we proposed

an EM approach that is capable of disentangling the loyal audience’s slowly varying regular

activity from the curious activity occurring in bursts. Our method requires significantly

fewer approximations than alternatives [26].

Chapter 7: we conducted synthetic and real-world data experiments with the methods

described in Chapter 6. By analyzing the empirical reward, we observed that the BMAB

algorithm consistently outperforms the baselines in all synthetic scenarios. Also, on the

real-world recommender scenario, our algorithm outperformed all the baselines [18, 21–

23, 25, 113] except in one dataset, where the performance was comparable to that of the

Thompson Sampling algorithm [18]. After carefully analyzing the MovieLenz dataset, we

concluded that the reason was that the audience dynamics were stationary at the observed

period.

Regarding the task of separating loyal and curious audiences, our model surpasses the

baselines [26, 50, 114, 115] by better fitting 9 out of 11 analyzed real-world datasets. To in-

terpret our results, we proposed two indices to characterize the system’s audience: absolute

and relative loyalty. For instance, based on the GitHub dataset, we could conclude that the

loyal audience dominates most of the time (on average, around 80%). However, only half

of the activities are carried out by them, i.e., the other half comes from the curious.

9.2 Future work

As extensively discussed in this work, orthogonal constraints benefit IMC in a variety of

properties. However, some of the available side information is naturally not orthogonal [38].

Therefore, there is a lack of any non-orthogonal comprehensive method that combines biases,

non-orthogonal side information, and a pure low-rank term. Although such a method would

lose interpretability properties, exploring its own properties and special guarantees would
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be interesting.

Besides the recommendation task, we explored how to recover latent clusters. We do

not make any assumptions on the group properties, other than the fact they are disjointed.

However, the great part of the recommendation system has some spatial features (e.g.,

the user location, warehouse positioning, etc.). Thus, future work could also observe if

constrained cluster methods can compose the rating structure. For instance, one could

establish that only users of contiguous areas are able to be aggregated inside of a cluster [135,

136].

Regarding our context-free methods, a future perspective to investigate is how to exploit

audience dynamics in more complex reinforcement learning scenarios. One possibility is

to explore the model-free reinforcement learning methods, such as Q-learning [137]. For

instance, the update of the Q-function can be influenced by the audience dynamics: the

learning rate and discount factor might assume different values according to which audience

is dominant at the moment of the update. Another possibility is to have more deeply

analyzed the interaction between the state detector and the rewarding process. [138] models

the loyal audience also as a PW-HPP. In this case, the audience considers that a topic loyal

audience’s rate can increase or decrease after transitions. Although the major part of the

analyzed time-series does not present transitions, it might be a significant refinement for a

specific domain.

At last, adversarial MABs have gained significant importance in the RS community [139–

141]. However, the emphasis is once again on the distribution of rewards. Therefore, another

relevant question is how susceptible our approach might be to false popularity attacks. This

discussion is related to how connected the popularity of the items is to the users’ ratings.

Thus a reasonable extension is to assume that, instead of each burst having a stationary

rewards distribution, an adversary influences the observation of the rewards.
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Appendix A

The OMIC algorithm
convergence guarantees

We will now prove Theorems 2.3.1 and 2.3.2. The proofs rely mostly on adaptations of

the techniques from [29], together with extensive use of the rotational invariance of the

Frobenius and nuclear norms, as well as the linear independence of the spaces corresponding

to each side information pairs.

A.1 The fully-known case

Proof of Proposition 2.3.1. Equation (2.9) follows from the fact that M pk,lq in the decom-

position is unique and determined by the formula M pk,lq “ pXpkqqJZY plq. This itself follows

from the orthogonality of the side information matrices after multiplying each side of equa-

tion (2.12) by pXpkqqJ on the left and Y plq on the right. The equivalence between the next

two problems also follows.

As to the fact that SΛpZq is the solution to problem (2.11), let us first note that the

case K “ L “ 1 with identity side information is just lemma 1 in [29].

Now, note that

}Z̃ ´ Z}2Fr

“
ÿ

k,l

}XpkqM pk,lqpY plqqJ ´XpkqM̃ pk,lqpY plqqJ}2Fr

“
ÿ

k,l

}M pk,lq ´ M̃ pk,lq}2Fr, (A.1)

where at the first equality, we have used the orthogonality of the terms of the sum with

respect to the Frobenius inner product, at the second equality, we have used the ro-

tational invariance of the Frobenius norm. Here M̃ pk,lq “ pXpkqqJZY plq, so that Z “
ř

k,lX
pkqM̃ pk,lqpY plqqJ.

116



Using this, we can reformulate the problem (2.11) as follows:

min
ÿ

k,l

1

2
}Mk,l ´ pXpkqqJZY plq}2Fr `

K
ÿ

k“1

L
ÿ

l“1

λk,l

›

›

›
M pk,lq

›

›

›

˚
, (A.2)

which can be solved as KL independent optimization problems, with the solution corre-

sponding to index pk, lq being given by M pk,lq “ Sλk,lppX
pkqqJZY plqq, by an application of

lemma 1 from [29]. The proposition follows.

A.2 Convergence guarantees

Let us dispose with the following straightforward observation:

Lemma A.2.1. The generalized singular value thresholding operator SΛ (2.3.1) satisfies,

for any two matrices Z1, Z2 P Rmˆn,

}SΛ pZ1q ´ SΛ pZ2q}Fr ď }Z1 ´ Z2}Fr , (A.3)

and in particular, SΛp.q is a continuous map.

Proof. This follows from the corresponding lemma 3 in [29], together with the definition of

the operator SΛ:

}SΛpZ1q ´ SΛpZ2q}
2
Fr

“

›

›

›

›

K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJZ1Y
plq
¯

pY plqqJ ´
K
ÿ

k“1

L
ÿ

l“1

XpkqSλk,l

´

pXpkqqJZ2Y
plq
¯

pY plqqJ
›

›

›

›

2

Fr

“

›

›

›

›

›

K
ÿ

k“1

L
ÿ

l“1

Xpkq

˜

Sλk,l

´

pXpkqqJZ1Y
plq
¯

´ Sλk,l

´

pXpkqqJZ2Y
plq
¯

¸

pY plqqJ

›

›

›

›

›

2

Fr

“

K
ÿ

k“1

L
ÿ

l“1

›

›

›
Sλk,l

´

pXpkqqJpZ1 ´ Z2qY
plq
¯›

›

›

2

Fr

ď

K
ÿ

k“1

L
ÿ

l“1

›

›

›
pXpkqqJpZ1 ´ Z2qY

plq
›

›

›

2

Fr

“ }Z1 ´ Z2}
2
Fr, (A.4)

where at the fourth line, we have used Lemma 3 from [29].

Now, let us define the quantity

QpA|Bq “
1

2
}PΩpRq ` PΩKpBq ´A}

2
Fr `

ÿ

k,l

λk,l}pX
pkqqJAY plq}˚.
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We have that the loss LpZq corresponding to a matrix Z can be written QpZ|Zq. Fur-

thermore, let us define Zi`1 “ arg minZ QpZ|Z
iq (since this is an instance of the fully known

case, the solution is unique and given by the operator SΛ above). We now have the following

lemma, which shows that the loss decreases monotonically with i:

Lemma A.2.2. Define the sequence Zi by Zi`1 “ arg minZ QpZ,Z
iq (with any starting

point, for instance Z0 “ 0), which is equivalent to definition (2.18). We have

LpZi`1q ď QpZi`1|Zkq ď LpZiq. (A.5)

Proof. The proof is based on the proof of Lemma 2 in [29]. We have

LpZiq “ QpZi|Ziq

“
1

2
}RΩ ` PΩKpZ

iq ´ Zi}2Fr `
ÿ

k,l

λk,l}pX
pkqqJZiY plq}˚

ě min
Z

1

2
}RΩ ` PΩKpZ

iq ´ Z}2Fr `
ÿ

k,l

λk,l}pX
pkqqJZY plq}˚

“ QpZi`1|Ziq

“
1

2
}pRΩ ´ PΩpZ

i`1q ` pPΩKpZ
iq ´ PΩKpZ

i`1qq}2Fr `
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

“
1

2

›

›pRΩ ´ PΩpZ
i`1q

›

›

2

Fr
`

1

2

›

›pPΩKpZ
iq ´ PΩKpZ

i`1qq
›

›

2

Fr
`
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

ě
1

2

›

›pRΩ ´ PΩpZ
i`1q

›

›

2

Fr
`
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

“ QpZi`1, Zi`1q “ LpZi`1q. (A.6)

Next, we have the following lemma:

Lemma A.2.3. The sequence }Zi ´ Zi´1}Fr is monotone decreasing:

}Zi ´ Zi`1}Fr ď }Z
i ´ Zi´1}Fr. (A.7)

Furthermore,

Zi ´ Zi`1 Ñ 0 as iÑ8. (A.8)

Proof. We have

}Zi ´ Zi`1}2Fr

“ }SΛ

`

PΩKpZ
i´1q `RΩ

˘

´ SΛ

`

PΩKpZ
iq `RΩ

˘

}2Fr
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ď }
`

PΩKpZ
i´1q `RΩ

˘

´
`

PΩKpZ
iq `RΩ

˘

}2Fr

By Lemma A.2.1

“ }PΩKpZ
i´1q ´ PΩKpZ

iq}2Fr (A.9)

ď }Zi ´ Zi´1}2Fr, (A.10)

which proves the first statement (A.7). As for the second statement (A.8), it will follow

from the following two claims:

Claim 1: PΩpZ
i ´ Zi`1q Ñ 0.

Claim 2: PΩKpZ
i ´ Zi`1q Ñ 0.

Proof of Claim 1: Note that by inequality (A.7), the sequence }Zi´Zi`1}Fr must converge.

In particular, }Zi ´ Zi`1}Fr ´ }Z
i ´ Zi´1}Fr Ñ 0, and by inequalites (A.9) and (A.10),

}PΩKpZ
i´1q ´ PΩKpZ

iq}Fr ´ }Z
i ´ Zi´1}Fr Ñ 0,

from which we conclude that

}PΩpZ
iq ´ PΩpZ

i`1q}2Fr Ñ 0.

Claim 1 follows.

Proof of Claim 2: We know by inequality (A.5) that LpZiq must converge, and thus LpZiq´
LpZi`1q Ñ 0, from which it follows that

QpZi`1|Ziq ´QpZi`1|Zi`1q Ñ 0. (A.11)

Now,

QpZi`1|Ziq ´QpZi`1|Zi`1q

“
1

2
}RΩ ` PΩKpZ

iq ´ Zi`1}2Fr `
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

´
1

2
}RΩ ` PΩKpZ

i`1q ´ Zi`1}2Fr ´
ÿ

k,l

λk,l}pX
pkqqJZi`1Y plq}˚

“
1

2
}PΩKpZ

i`1q ´ PΩKpZ
iq}2Fr, (A.12)

which, together with (A.11), implies claim 2.
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The next step is to prove that each limit point of the sequence Zi is a solution to the

optimization problem (2.1). To prove this, we will need the following lemma:

Lemma A.2.4. Let Zni Ñ Z8 be a convergent subsequence of Zi. Let pni P

B
ř

k,l }pX
pkqqJZiY plq}˚ be a sequence of subgradients of our regularizer

ř

k,l }M
pk,lq}˚

evaluated at Zi. There exists a convergent subsequence of pmi which converges to some

p P B
ÿ

k,l

}pXpkqqJZ8Y plq}˚,

a subgradient of our regularizer, evaluated at the limit Z8.

Proof. First, recall from [142] and [29] that the set of subgradients of the nuclear norm of

a matrix A is given by

B}A}˚ “
 

UV J `W,UJW “ 0 “ VWJ, }W }σ ď 1
(

,

where UDV J is the SVD of the matrix A. Using the chain rule and the fact that the side

information matrices Xpkq, Y plq are constant, we can calculate the set of subgradients of our

regularizer evaluated at both Zi and Z8 as follows:

B
ÿ

k,l

}pXpkqqJZiY plq}˚ “

#

ÿ

k,l

U ik,lpV
i
k,lq

J `W i
k,l, pU

i
k,lq

JW i
k,l “ 0,W i

k,lV
i
k,l “ 0, }W i

k,l}σ ď 1

+

(A.13)

and

B
ÿ

k,l

}pXpkqqJZ8Y plq}˚ “

#

ÿ

k,l

Uk,lV
J
k,l `Wk,l, U

J
k,lWk,l “ 0,Wk,lVk,l “ 0, }Wk,l}σ ď 1

+

,

(A.14)

where Uk,lDk,lV
J
k,l (resp. U ik,lD

i
k,lpV

i
k,lq

J) is the singular value decomposition of

pXpkqqJZ8Y plq(resp. pXpkqqJZiY plq).

By compactness, there exists a subsequence mi of ni such that Wmi converges to a value

W . By continuity of the spectral norm, we also have }W }˚ ď 1. Furthermore, it follows

from the convergence of Zni (and in particular, of Zmi) to Z8 that
ř

k,l U
mi
k,l pV

mi
k,l q

J Ñ
ř

k,l Uk,lpVk,lq
J. The result follows.
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Proposition A.2.5. Every limit point of the sequence pZiqiPN defined in (2.18) is a sta-

tionary point of the loss function LpZq “ 1
2}Z̃ ´Z}

2
Fr `

řK
k“1

řL
l“1

›

›pXpkqqJZY plq
›

›

˚
defined

in (2.10). Hence, it is also a solution to the fixed point equation

Z “ SΛ pRΩ ` PΩKpZqq . (A.15)

Proof. Let Z8 be such a limit point. There exists a subsequence Zni such that Zni Ñ Z8.

By Lemma A.2.3 ,we have Zni ´ Zni´1 Ñ 0, which by continuity of the operator SΛ

implies that

RΩ ` PΩKpZ
ni´1q ´ Zni Ñ RΩ ´ PΩpZ

8q. (A.16)

Now, note that by definition of Zi,

@i, 0 P BQpZi|Zi´1q “ ´pPΩpRq ` PΩKpZ
i´1q ´ Ziq ` B

ÿ

k,l

}pXpkqqJZiY plq}˚.

Thus, we can choose, for all i, a pi P B
ř

k,l }pX
pkqqJZiY plq}˚ such that pi ´ pPΩpRq `

PΩpZ
i´1q ´ Ziq “ 0. Now, by Lemma A.2.4, there exists a subsequence Zmi of Zni such

that pmi Ñ p for some

p P B
ÿ

k,l

}pXpkqqJZ8Y plq}˚. (A.17)

Putting equations (A.16) and (A.17) together, we obtain

0 “ pmi ´ pPΩpRq ` PΩKpZ
mi´1q ´ Zmiq

Ñ p´RΩ ´ PΩpZ
8q. (A.18)

Thus, 0 is a subgradient of L evaluated at Z8. The first statement of the Proposition

follows. As for the second statement, note that

Zmi “ SΛ

`

RΩ ` PΩKpZ
mi´1q

˘

. (A.19)

Furthermore, by Lemma A.2.3, Zmi ´ Zmi´1 Ñ 0, and therefore Zmi´1 Ñ Z8. Thus,

using the continuity of the generalized singular value thresholding operator, we obtain by

passing to the limits in (A.19):

Z8 “ SΛ pRΩ ` PΩKpZ
8qq , (A.20)

as expected.
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Proof of Theorem 2.3.1. In Proposition A.2.5, we have already proved that any limit point

of the sequence pZiqiPN (defined in equation (2.18)) is a stationary point of the loss function,

and therefore a solution to the optimization problem (2.1). Thus, the only thing left to prove

is that the sequence pZiqiPN converges: indeed, if that is the case, its limit will be its (only)

limit point, and will be a solution to problem.

Let us first dispense with the following simple observation: by Lemma A.2.2, for any i,

we have

LpZiq ď LpZ0q. (A.21)

Since the objective function L is a continuous function of the matrix Z, the set of matrices

Z satisfying equation (A.21) is compact. Thus, by compactness, there exists at least one

limit point Z̄.

Now, by the continuity of SΛ and the definition of Zi, we have, for any i:

} sZ ´ Zi}2Fr

“
›

›SΛ

`

RΩ ` PΩKp
sZq
˘

´ SΛ

`

RΩ ` PΩKpZ
i´1q

˘›

›

2

Fr

ď
›

›

`

RΩ ` PΩKp
sZq
˘

´
`

RΩ ` PΩKpZ
i´1q

˘›

›

2

Fr

“ }PΩKp
sZ ´ Zi´1q}2Fr ď }

sZ ´ Zi´1}2Fr, (A.22)

where at the first line, we have used Proposition A.2.5 and the definition of Zi.

We will now show that the sequence pZiqiPN actually converges to sZ. To do this, we pro-

ceed by contradiction. Assume Zi doesn’t converge towards Z̄. By definition of convergence,

this implies that there must exist an ε˚ ą 0 such that there exists an infinite subsequence

ZI1 , ZI2 , . . . such that for all i, }ZIi ´ sZ}Fr ě ε˚. Since the subsequence ZI1 , ZI2 , . . . is

contained in the compact set

Cε˚ :“
 

Z : LpZq ď LpZ0q ^ }ZIi ´ Z̄}Fr ě ε˚
(

,

it must have a limit point Z̃ P Cε˚ inside that set. In particular, we have

}Z̃ ´ sZ}Fr ě ε˚ (A.23)

Set ε “ ε˚
3 . Since sZ is a limit point of pZiqiPN, there certainly exists an index k such

that

}Zk ´ sZ}Fr ď ε. (A.24)
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Since Z̃ is also a limit point of pZiqiPN (specifically, a limit point of the subsequence

pZIiqiPN), there exists an index l such that l ą k and

}Z l ´ Z̃}Fr ď ε. (A.25)

On the other hand, since l ą k by iteratively applying equation (A.22) l ´ k times, we

obtain:

} sZ ´ Z l}Fr ď } sZ ´ Z
k}Fr ď ε, (A.26)

where the last inequality follows from equation (A.24).

Now, by equations (A.26) and (A.25) and the triangle inequality, we obtain:

}Z̃ ´ sZ}Fr ď }Z̃ ´ Z
l}Fr ` }Z

l ´ sZ}Fr (A.27)

ď ε` ε “ 2ε “
2ε˚
3
ă ε˚, (A.28)

which is in contradiction with equation (A.23). Thus, we deduce by contradiction that

Zi indeed converges to its only limit point sZ (which we refer to as Z8 in the rest of the

appendix). As explained at the beginning of the proof, this, together with Proposition A.2.5,

implies Theorem 2.3.1, as required.

We can now proceed with the proof of our Theorem 2.3.2 on the worst-case convergence.

Proof of Theorem 2.3.2. The proof is exactly the same as that of theorem 2 in [29] (and

also takes inspiration from [143]), and we reformulate it into our notation here for the sake

of completeness only.

For θ P r0, 1s, we write Zipθq for p1 ´ θqZi ` θZ8. Note that by convexity of our loss

function L, we have LpZipθqq ď p1´ θqLpZiq ` θLpZ8q.
Note also that we have

}PΩKpZ
i ´ Zipθqq}2Fr “ θ2}PΩKpZ

i ´ Z8q}2Fr ď θ2}Zi ´ Z8}2Fr ď θ2}Z0 ´ Z8}2Fr, (A.29)

where we have used Lemmas A.2.3 and A.2.1.
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Using these facts and the definition in the construction of the sequence Zi, we can derive

the following key inequalities:

LpZi`1q “ min
Z

„

LpZq ` 1

2
}Z ´ Zi}2Fr



ď min
θPr0,1s

„

LpZipθqq ` 1

2
}Zipθq ´ Zi}2Fr



ď min
θPr0,1s

«

LpZiq ` θpLpZ8q ´ LpZiqq ` 1

2
θ2}Z0 ´ Z8}2Fr

ff

. (A.30)

The last expression is minimised for θ “ θi where

θi “ min

ˆ

LpZiq ´ LpZ8q
}Z0 ´ Z8}2Fr

, 1

˙

. (A.31)

(If }Z0´Z8}2Fr “ 0, then Zi “ Z8 @i and there is nothing to prove.) Recall also that

θi is a decreasing sequence (cf. Lemma A.2.2): if θi ď 1, then θj ď 1 @j ą i. Suppose

θ0 “ 1. Then, plugging this back into equation (A.30), we obtain:

LpZ1q ´ LpZ8q ď 1

2
}Z0 ´ Z8}2Fr, (A.32)

and therefore θ1 ď 1
2 . Thus, in all cases, θi ă 1 @i ě 1. Note also that if θ0 “ 1,

inequality (2.19) is satisfied (this follows from inequality (A.32)).

Now, for i ě 1, we can just use the explicit expression (A.31) for θ, which, plugged back

into equation (A.30), gives:

LpZi`1q ´ LpZiq ď ´pLpZ
iq ´ LpZ8qq2

2}Z0 ´ Z8}2Fr

. (A.33)

Now, writing αi for pLpZiq ´ LpZ8qq (which is a decreasing sequence, as shown by

Lemma A.2.3) and using the above expression, we obtain

αi ě
α2
i

2}Z0 ´ Z8}2Fr

` αi`1 ě
αiαi`1

2}Z0 ´ Z8}2Fr

` αi`1, (A.34)

which yields:

α´1
i`1 ě

1

2}Z0 ´ Z8}2Fr

` α´1
i . (A.35)
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Summing both sides for the index running from 1 to i´ 1, we obtain:

α´1
i ě

i´ 1

2}Z0 ´ Z8}2Fr

` α´1
1 . (A.36)

Since θ1 ă 1, by definition of θ1, we obtain α1

2}Z0´Z8}2Fr
ď 1

2 . Plugging this back into

equation (A.36), we obtain:

α´1
i ě

i´ 1

2}Z0 ´ Z8}2Fr

` α´1
1

ě
i´ 1

2}Z0 ´ Z8}2Fr

`
1

}Z0 ´ Z8}2Fr

“
i` 1

2}Z0 ´ Z8}2Fr

,

which yields inequality (2.19) after inverting both sides.
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