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ABSTRACT
Patterns are considered as normalized measures and distances
between them are defined as distances of the corresponding
measures using metrics in measure spaces. This idea can be
applied for pattern recognition if "smeared" patterns have to
be compared with given ideal patterns. Different metrics are
sensitive to different characteristics of the patterns - this
is demonstrated in discussing examples. Particular attention
is paid to a problem of Qualilty Control for an artificial
fabric, where the distance to uniformity is defined and evalu-

ated; the results are now used in industry.




I TINTRODUCTION

We would like to introduce a few new thoughts on the problem
of Pattern Recognition and to explain them using examples. We
were led to a coﬂéideration of this topic by practical
problems in Quality Control of irregularities in the thickness
of an artificial fabric, and in automatic recognition of paper
currency. Both of these problems were posed to us by Industry.'
The mathematical concepts that we are using have not, toiour
knowledge, been applied to Pattern Recognition and seem to be

well suited to at least some special types of problems. The

following two questions arose:

1. We are given a finite set of ideal patterns (perfect
bank notes, for example) and a smeared pattern (an old,
well-used note). We want to identify the old bank note as
one of the possible kinds. This is a 'classical' problem
of Pattern Recognition. Some standard procedures for

solving this problem can be found in [1].

2. We are given a finite set of smeared or noise-
contaminated patterns (sections of fabric) and an ideal
‘pattern (a fabric with uniform thickness). The question is
which pattern is closest to the ideal pattern (i.e. has

the smallest irregularity)?

Both questions can clearly be answered if we had a sensible
concept of distance between patterns: In the first case, we
identify the smeared pattern as the ideal one that it is

"nearest" to; in the second case, a noisy pattern is




considered to be better the "closer" it is to the ideal.

The fundamental idea of this paper is that we interpret
patterns as measures in the mathematical sense and then define
the distance between patterns using a metric on the space of
measures. There are many different metrics on the space of
(normalised or probability) measures and they are all
sensitive to different characteristics of the pattern. The
trick in the mathematical modelling is to find the appropriate
metric for every application. In this report, we will present
a few different metrics and discuss what practical situations
they are best suited to. We pay particular attention to the
problem of fabric uniformity. A suitable metric for this
problem and an algorithm for computations in the case of

discrete measurements is presented.

II BASIC IDEAS AND NOTATION

We consider the set P of all Borel probability measures on 0,
a bounded set in R?, An element y of P represents a possible
pattern. For example, if Q were the interval [0,1], u€P could
be the mass distribution on 1 meter of fabric (we assume a
one-dimensional dependence). In practice, u.is determined by
the amount of absorbtion of a laser beam as it scans a
one-dimensional track in the fabric. Our general problem is to
examine different metrics p on Q, so that we can consider the

distance p(u,v) between two patterns p and v.

In the case of our quality control problem, we want to find a

function 1i(p) representing the irregularity of a pattern




p in P. Since the irregularity can be thought of the distance
from the ideal pattern u0 which is the uniform distribution in
Q, we define i(p) as p(u,u0%) . When 0=[0,1] we set ;0 is equal

to the Lebesque measure.

In practice, however, we rarely have continuous data (the
laser scanner measures the absorbtion at discrete points). We
will consider the following discrete case in applications:
P'(n) is the set of probability distributions on the set {1,2,
ces n}, where the points are thought to correspond to points
{xl,xz, cen xn} of 0. peP' is then given by an element (3,
uz,. «««s Mp) of [0,1]" such that Ipj=1 and may also be

interpreted as a measure 7 on 0 as follows:

7=7%
=3 1idy. .
i=1 1 Xi

Here 3y is the usual » measure at x. In regular scanning of
[0,1], xj; = i/n. In our quality control example, pj would then

be the scaled (so that Iuj=1) absorbtion at these points.

For the case 0=[0,1], xj = i/n, and ueP', we define the
discrete irregularity function i'(p) as p(%,70) with u© given

by u%;= 1/n for i=1,2, ... n.

Let us now consider a first example of a metric on P, derived
from the total variation norm -1y, in a standard way:
pv(u,v):= npu-viy. The total variation norm is defined on
finite signed measures on 0 as follows:

Il Ly, = sup ; I u(E{) |
i=1

where the sup 1is taken over all couhtable Borel partitions




{Ei} of Q. This metric defines the irregularity function iy,.
It is clear that iy(p) is equal to the Lj (AN)-norm of (up-1/n,
u2=1/n, ... pp-1/n). Figure 1 shows two test examples that
will be used during the course of this work. Table 1 shows the
performance of ié on these examples. We seé now why this is a
poor measure of irregularity: The two patterns have the same
irregularity but pattern A is considerably worse in the sense
that it contains a rather large hole in it. The.problem is
that the order of pj's does not play any role, that the method
does not realize that a bunch of small holes in the fabric are
not as bad as one large one. The same problem ocdurs if we try
to compute the distance between yx and u© using any of the

other usual Lp-distances on RN,

We are not restricted to metric functions on P. Since we are
interested in "disorder", it may be tempting to use the

concept of entropy, which measures order and disorder in

statistical mechanics:

0 2 0
E(uip¥) == izl Ri-ln (pi/uvj)

1In(n) +

™3
=

i Mi-ln(ui) : (2.1)
Here, E(u1p0%) is the entropy of p relative to 0 and in the
second line above we have taken 40 to be the uniform
distribution defined above. Since E(uip0) is zero when p=u0
and attains its maximum 1ln(n) when pj=vjj for some j, we can
consider E(ulu% as a measure of how different u is from u©
and so how "bad" it is. However, one need only look at the
formula for Entropy (2.1) to see that it is also 'not

influenced by the order of the measurements. Patterns A and B




would be considered equally good by this method, which we do

not want.

In the next sections, we look at other metrics on P and the

irregularity functions that they generate.

General information on probablility measures can be found in

[2] and [3].

IIT BOUNDED LIPSCHITZ DISTANCE

Let D be the set of real valued functions f on [0,1] such that
f(x)elo,1] and I1f(x)-f(y)1£€ 1x-y! for all x,y€0. The Bounded
Lipschitz Distance between two elements p and v of P can be

written as:

pp(u,v) = sup 1f £.ap - [ £-dvi. (3.1)
feD ‘

The integration is taken over Q. Since the addition of a
constant to f does not change the value of _the expression
within the sup in (3.1), the condition f(x)e€[0,1] can be
dropped when the diameter of 0 is less than or equal to one
(when 0=[0,1] for instance). In this case, the discrete
irregularity ip associated with this distance can now be

defined and then reduced to an easier form:

ip(u) := pp(R,70)
n
=max | X £3-(ui=1/n)1 (3.2)
Tep |2, fi (Him/m)
where D':= {feﬁn: 1£i-f3411% 1/n}. We can set f£31=0 without

loss of generality since the addition of a constant to f does
not change the value of the expression in the maximum above.

See Table 1 for an application of this technique to the




examples in Figure 1. We see the properties that we want, that

pattern B is more irregular than A.

The computation of the irregularity ip can be achieved using
the simplex algorithm since (3.2) defines a 1linear

optimisation problem with inequality contraints.

When 0=[0,1], the Bounded Lipschitz Distance is identical to

the following Kantorowitsch and Rubinstein Metric:

Pkr(n,v) := inf I IX=-yl ay
vey

whefe ¥ is the set of all positive borel measures on 02 such
that ¥(E-Q)-¥(Q-E) = v(E)-u(E). Since the metrics are the
same, the discrete irregularity functions they generate are
identical, although the different representation gives rise to
a different numerical procedure. A detailed account of the

Kantorowitsch-Rubinstein Metric is given in [4].

The Bounded Lipschitz Distance has another interesting
mathematical property which has practical implications: it
defines the weak convergence in P, i.e. %ié Pp(Hn, n)=0 iff
#n ¥, u. Physically, this means that the pp-distance between a
pattern (say the letter A) and the same pattern slightly
smeared or shifted (the letter A read by an optical reader
slightly out of alignment) is small. One can calculate the
following directly from (3.1):'iig Pb (U, ly) = 0, where

Uty 1s the measure p shifted by x. The application of this idea

is being investigated by the authors.




IV DISCREPANCY

In the <case of Bounded |Lipschitz Distance, discrete
irregularity computions involved a linear optimisation problem
with n-1 state variables and 2n-2 inequality constraints. In
our application, we wish to consider n=4096. Clearly, the
calculation time for this method is prohibitive. We now
consider Discrepancy, which does not suffer from this

drawback.

The Discrepancy metric for the case 0=[0,1] is defined as

follows:

Px(p,v) = sup I1p(l[a,B]l)=-v([«,B])!I
0£u<£BR<£1

The idea of Discrepancy was first introduced in a number
theoretical setting by Hermann Weyl (see [5]). It is still the
object of considerable interest in such diverse fields as
Numerical Integration and Diophantine Appfoximation [6]. The

discrete irregularity corresponding to this metric is

B
i&(n) := max I X (ui=1/n) 1 . (4.1)
14u4B4n 1=«

The results of this method are shown in Table 1. One can see
directly from the formula (4.1) that ii(u) measures the .
largest "hole" in y, where we consider positive and negative
deviations around ;0 to be holes.

The question now is how do we calculate, ix. A norm on R is
closely related to the calculation of ii. The norm is defined

as

nEun

B
max 1,3 fj I. (4.2)
1404R<n 17X
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We must only find a way to evaluate this norm for any f since

ii(u)zuu—nou. We turn first to a direct evaluation of (4.2).

We define:
Fgp := 0
FJ :=i§1fl .
Then
nfn = max IFg=Fy! .
: 0<£u<B<4n

The calculation of F and 1fn as above is of order n2.

In order to describe a better algorithm, we will need a few

notations and ideas.

Let n>2. fel! is called alternating when f£j-fj414 0 for

i=1,2, ... n. We write feRQ.

If, moreover, for some ue{l,z, .o n—z} we have I1fyl21fy4q1

and I1fy421>1f4491 then we call feRl} contractable.

A contraction f of a contractable f is defined as follows:

fi when i<«
£fi:= { fotfoar1tEo+2 when i=«
fi+2 when i>«
where o(f) := min {i: Ifi121f5471 and |fi+2Ié|fi+1l}

It is clear that feRR-2,

For feR? we now denote by m(f) the number of alternations of f

and by I(f)4 the index of the j-th alternation:

m(f):= 1{i: f£i-f54,€ 0}
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I(f)§ := min {i: £j-£j414 0 and i> I(£)j-1}
We write I(f)op=1 and I(f)m(f)+1=n for convenience.

We now group the alternations together and define fehm(f) py

I(f)

By :=
’ i=1(f)4-1

It is clear that ufu=1f1 and 2ehl(f) for all fehn.

Lemma 1: If feR§ and is not contractable, then
nfn = max 1£41
1<€i<n

Proof: We assume that ufu > max 1fj1. It follows then that

f- 1 e
nxn = | 3
ji=1 1

for certain 1 and m with 1-m=0. We assume without loss of

generality that

m
1""‘1

with fp>0 and £3>0. Then 1>m+l (since feRl) and 1£14914f;

since otherwise

m
1 2 f£41 > 1

m
| 3
i=1+2 =

fit = nfn.
i=1"t
We also know that If1+21 £ 1f1491 because f is not
contractable. 1f3421 = 1f1431 = ... > I1fyl follows in the same :

way. We show similarly that 1fyl > 1£71. Therefore

1£11 = 1f14791 = ... = 1fx! :=B >0

m-1 must be odd and

g

m :
nfn = ¥ £y = (-1)i+tl.8 = 8 = I1fy1.
i=1 1 : '

i

We have reached the desired contradiction. Lemma 1 follows.

Lemma 2: If feR] and is contractable then nfu=ifu.

Procf: It is easy to see that ufi=ufu. We assume that nEu<ufu
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and try to find a contradiction. In this case we have

£ If
nfn = | il
i=1
for some 1 and m where the 1 and m must satisfy at least one
of the following four alternatives: l=a+l (i), l=a+2 (ii), m=«

(iii), m=a+l (iv), where o=« (f) is defined as above.

Case (i): l=a+l. We assume without loss of generality that

I£>0
i > 0.
i=1"t
Hence fy4720. Also fy4240, 1fg431> f41q, and ma2a+3. Then
m m m=2. .
nfw =, T £4 £ I f3 = I £f5 £ nfun.
i=a+1 1=0+3 i=0+3

This is the desired contradiction.

The cases (ii) to (iv) lead to similar contradictions. Lemma 2

follows.

We are now in the position to give the steps (and the

justification) of an algorithm for computing nfun:

1. Calculate h=%.
2. If h is not contractable, then compute ifi=1hi with the

“help of lemma 2. Otherwise, replace h by h and repeat step 2.

The algorithm is also order n2 and there are certain
theoretical worst case examples where it requires more
operations than the direct evaluation. However, it functions
much faster in practice. In Table 2, a comparison of
calculation times of the twé algorithms is given. The number
of operations needed to calculate -1 using directly is only
dependent on n. The algorithm is data dependent. Two tests

were made, one with vectors of pseudo random numbers uniformly




distributed in [-1/2,1/2] and one with laser intensity data
with mean value removed. A sample of this data is shown in
Figure 2. The algorithm is also practicable with patterns of
4096 points. On an IBM AT, one such calculation on fabric

pattern data take less than a minute.

V_CONCLUSIONS

We have discussed some measure space distances and how they
can be applied to problems in Pattern Recognition. 1In
particular, we have examined the problem of evaluation of
irregularities in thickness of a fabric. The discrete
irregualrity function based on Discrepancy had suitable
properties and can be calculated relatively quickly. The
method is currently being used to monitor production quality

and to evaluate new production techniques in Industry.

For other applications, particularly those where the number of
measured data points is small, the Bounded Lipschitz Distance

seems to be very promising.

Almost all of what is discussed here can be extended to
patterns of higher dimension. Discrepancy and Bounded
Lipschitz Distance can be defined over patterns on squares or
in cubes. The only thing which has Jua obvious extension to
higher dimension 1is the algorithm we described. More

sophisticated ideas, maybe using number-theoretic methods,

will be necessary.
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PATTERN A PATTERN B
Iy 0.5000 0.5000
Ip 0.0417 0.0625
Ix 0.1250 0.2500

TABLE 1: PERFORMANCE OF Iy, Ip AND I4 ON THE TEST
PATTERNS IN FIGURE 1
N=100 N=1000 N=2000
DIRECT CALCULATION 0.120 6.090 21.08
ALGORITHM
RANDOM ' DATA 0.070 0.250 0.450
ALGORITHM
LASER INTENSITY DATa| ©-004 0.070 0.200

TABLE 2: TIME IN SECONDS FOR 10 NORM CALCULATIONS ON
A SIEMENS MAINFRAME COMPUTER
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