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Abstract

This dissertation consists of three independent parts: The yield curve shapes gener-
ated by interest rate models, the yield curve forecasting, and the application of the
chance-risk classification to a portfolio of pension products. As a component of the
capital market model, the yield curve influences the chance-risk classification which
was introduced to improve the comparability of pension products and strengthen con-
sumer protection. Consequently, all three topics have a major impact on this essential
safeguard.

Firstly, we focus on the obtained yield curve shapes of the Vasicek interest rate
models. We extend the existing studies on the attainable yield curve shapes in the
one-factor Vasicek model by analysis of the curvature. Further, we show that the
two-factor Vasicek model can explain significantly more effects that are observed at
the market than its one-factor variant. Among them is the occurrence of dipped
yield curves. We further introduce a general change of measure framework for the
Monte Carlo simulation of the Vasicek model under a subjective measure. This can
be used to avoid the occurrence of a far too high frequency of inverse yield curves
with growing time.

Secondly, we examine different time series models including machine learning al-
gorithms forecasting the yield curve. For this, we consider statistical time series
models such as autoregression and vector autoregression. Their performances are
compared with the performance of a multilayer perceptron, a fully connected feed-
forward neural network. For this purpose, we develop an extended approach for the
hyperparameter optimization of the perceptron which is based on standard proce-
dures like Grid and Random Search but allows to search a larger hyperparameter
space. Our investigation shows that multilayer perceptrons outperform statistical
models for long forecast horizons.

The third part deals with the chance-risk classification of state-subsidized pension
products in Germany as well as its relevance for customer consulting. To optimize the
use of the chance-risk classes assigned by Produktinformationsstelle Altersvorsorge
gGmbH, we develop a procedure for determining the chance-risk class of different
portfolios of state-subsidized pension products under the constraint that the portfolio
chance-risk class does not exceed the customer’s risk preference. For this, we consider
a portfolio consisting of two new pension products as well as a second one containing
a product already owned by the customer as well as the offer of a new one. This
is of particular interest for customer consulting and can include other assets of the
customer. We examine the properties of various chance and risk parameters as well as
their corresponding mappings and show that a diversification effect exists. Based on
the properties, we conclude that the average final contract values have to be used to
obtain the upper bound of the portfolio chance-risk class. Furthermore, we develop
an approach for determining the chance-risk class over the contract term since the
chance-risk class is only assigned at the beginning of the accumulation phase. On the
one hand, we apply the current legal situation, but on the other hand, we suggest
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an approach that requires further simulations. Finally, we translate our results into
recommendations for customer consultation.
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Zusammenfassung

Diese Dissertation besteht aus drei voneinander unabhängigen Teilen: Die Zinsmo-
dellierung und die daraus resultierenden Zinsstrukturkurvenformen, die Zinsstruk-
turkurvenvorhersage sowie die Bestimmung der Chancen-Risiko Klasse eines Port-
folios aus Altersvorsorgeprodukten. Die Zinsstrukturkurvenform beeinflusst als Be-
standteil des Kapitalmarktmodelles die Chancen-Risiko Klassifizierung, die zur bes-
seren Vergleichbarkeit von Altersvorsorgeprodukten und Stärkung des Verbraucher-
schutzes eingeführt wurde. Alle drei Themen haben somit eine große Bedeutung für
den Versicherungsnehmer.

Der erste Teil befasst sich mit den Zinsstrukturkurvenformen, die das Vasicek Zins-
modell generiert. Dabei erweitern wir die aktuellen Studien bezüglich der Zinsstruk-
turkurvenformen im Einfaktor Vasicek-Modell um die Analyse deren Krümmungsver-
haltens. Weiter zeigen wir, dass das Zweifaktor Vasicek-Modell deutlich mehr am
Markt beobachtbare Effekte erklären kann als seine Einfaktor-Variante. Dazu gehört
das Auftreten von invers-gewölbte Zinsstrukturkurven. Darüber hinaus führen wir
einen allgemeinen Rahmen eines Maßwechsels für die Monte-Carlo-Simulation des
Vasicek-Modells unter einem subjektiven Maß ein. Dadurch kann das Auftreten einer
– empirisch – viel zu hohen Anzahl inverser Zinsstrukturkurven mit zunehmender
Zeit vermieden werden.

Im zweiten Teil untersuchen wir verschiedene Zeitreihenmodelle, inklusive Algo-
rithmen maschinellen Lernens, zur Vorhersage der zukünftigen Zinsstrukturkurve.
Dafür betrachten wir statistische Zeitreihenmodelle wie Auto- und Vektorautoregres-
sion. Deren Performance wird mit der eines mehrlagigen Perzeptrons, einem feed-
forward neuronalen Netz, verglichen. Hierzu entwickeln wir für die Hyperparame-
teroptimierung des Perzeptrons einen erweiterten Ansatz, der auf Standardverfahren
wie Grid und Random Search basiert, aber es erlaubt einen größeren Hyperparame-
terraum zu durchsuchen. Unsere Untersuchung zeigt, dass mehrlagige Perzeptrone
vor allem bei langen Vorhersagehorizonten die statistischen Modelle übertreffen.

Der dritte Teil beschäftigt sich mit der Chancen-Risiko Klassifizierung staatlich ge-
förderter Altersvorsorgeprodukte auf dem deutschen Markt und ihrer Bedeutung für
die Beratung. Um die Möglichkeiten der Nutzung der Chancen-Risiko Klassen der
Produktinformationsstelle Altersvorsorge gGmbH bei der Kundenberatung zu maxi-
mieren, entwickeln wir ein Verfahren zur Bestimmung der Chancen-Risiko Klasse
verschiedener Portfolios staatlich geförderter Altersvorsorgeprodukte. Hierbei soll
die Chancen-Risiko Klasse des Portfolios nicht größer als die Risikopräferenzklasse
des zu beratenden Kunden sein. Andere Anlagearten können eingeschlossen wer-
den. Wir untersuchen die Eigenschaften der verschiedenen Chancen- und Risikopa-
rameter samt zugehöriger Abbildungen und zeigen, dass ein Diversifikationseffekt
bei der Klassifizierung vorliegt. Aufbauend auf den Eigenschaften erhalten wir als
Ergebnis, dass als Obergrenze der Chancen-Risiko Klasse des Portfolios die gemit-
telten Endvermögen heranzuziehen sind und übersetzen dies in Empfehlungen für
die Kundenberatung. Darüber hinaus entwickeln wir ein Verfahren zur Bestimmung
der Chancen-Risiko Klasse über die Vertragslaufzeit eines Altersvorsorgeproduktes,
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da diese nur zu Beginn der Vertragslaufzeit zugewiesen wird. Zum einen wenden wir
die aktuelle Rechtslage an, zum anderen schlagen wir ein Verfahren vor, das weitere
Simulationen erfordert.
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ȳ Asymptotic level of the yield curve

Multi-step yield curve forecasting

b Bias

bpiq Bias of the variable xpiq in the estimation of xpiq

bl Bias of the lth layer

ci ith Criterion bound of the hyperparameter optimization

4hxtk Increment between xtk and xtk´h

p4hxtk Forecast increment between xtk and xtk´h

εtk Realizations of independent random variables with zero expectation
and equal variance at time tk

f True functional relation

pf Estimation of the true functional relation

fh True functional relation of the forecast horizon h

pfh Estimation of the true functional relation of the forecast horizon h

f piq True functional relation of the variable xpiq

pf piq Estimation of the true functional relation of the variable xpiq

h Forecast horizon

H Set of forecast horizons

H Size of H

L Number of hidden MLP layers

xiii



List of Symbols

m Considered model

M Set of models

mcv
µ Best model according to performance measure µ and cross validation

mew
µ Best model according to performance measure µ and expanding win-

dow approach

µ Performance measure

µml Performance measure of the lth validation set of model m

µm Mean of the performance measures over the validation sets of model m

µm,p Mean of the performance measures over the different values of hyper-
parameter p of model m

µm,p,vl Performance measure of the lth validation set of hyperparameter p with
value v and model m

µm,p,v Mean of the performance measures over the validation sets of hyperpa-
rameter p with value v and model m

n Number of observations

N Number of forecasting variables

N0 Input dimension of the MLP

NL Output dimension of the MLP

Nl Dimension of the lth hidden layer of the MLP

p Hyperparameter

P Set of hyperparameters

φ Activation function

σµm,p,v Empiric standard deviation of the performance measures over the vali-
dation sets of hyperparameter p with value v and the model m

σµm,p Empiric standard deviation of µm,p,v over v

tk Time point

v Hyperparameter value

V Set of hyperparameter combinations

xiv



List of Symbols

V ˚ Set of selected hyperparameter combinations

Vp Set of hyperparameter p values

V ˚
p,i Set of selected hyperparameter p values according to the ith Criterion

W Coefficient matrix

wpiq Coefficient of the variable xpiq in the estimation of xpiq

w
piq
t Coefficient of the variable time in the estimation of xpiq

w
piq
j Coefficient of the variable xpjq in the estimation of xpiq

Wl Coefficient matrix of the lth layer

xpiq Observations over time of the variable xpiq

xtk Observations at time tk

x
piq
tk

Observation at time tk of the variable xpiq

pxtk Forecast values at time tk

xtk Mean value of the observations at time point tk

xtrl lth training set

xvall lth validation set

Chance-risk classification of a portfolio

α Proportion of the entire capital invested in one pension product

αi Proportion of the entire capital invested in the ith pension product

α˚ Maximum proportion of the entire capital invested in one pension prod-
uct to obtain a portfolio chance-risk class not larger than given

α˚j Maximum proportion of the entire capital invested in one pension prod-
uct to obtain a portfolio chance-risk class not larger than j

α˚incr Maximum proportion of the entire capital invested in increasing the ex-
isting pension product to obtain a portfolio chance-risk class not larger
than given

bjT µc-intercept of the chance-risk class boundary between chance-risk class
j and j ` 1 for the accumulation phase T

xv



List of Symbols

β Proportion of the new investment invested in the existing pension prod-
uct

β˚ Maximum proportion of the new investment invested in the existing
pension product to obtain a portfolio chance-risk class not larger than
given

β˚j Maximum proportion of the new investment invested in the existing
pension product to obtain a portfolio chance-risk class not larger than
j

CRC Chance-risk class

CRCi Chance-risk class of the ith pension product

CRCcust Risk profile of the customer

CRCt Chance-risk class at time t

CRC Chance-risk class resulting from interpolation of the averaged final con-
tract values

CRCptfpαq Chance-risk class resulting from interpolation of the averaged final con-
tract values of the portfolio defined by αV 1 ` p1´ αqV 2

CRCptfpα1,α2q Chance-risk class resulting from interpolation of the averaged final con-
tract values of the portfolio defined by α1V

1 ` α2V
2 ` p1´ α1 ´ α2qV

3

f Function for calculating the averaged final contract values

g Function for calculating the measures from the averaged final contract
values

gT Function for calculating the measures from the averaged final contract
values depending on T

g´1T Function for calculating the averaged final contract values from the
measures depending on T

I New investment

t Passed time in months

µ Chance or risk measure

µc Chance measure

µr Risk measure

pµc µc for a fixed value µr equal zero

xvi



List of Symbols

µc,i Chance measure of the ith pension product

µr,i Risk measure of the ith pension product

µc,intpαq With proportion α interpolated chance measure of two pension prod-
ucts

µr,intpαq With proportion α interpolated risk measure of two pension products

µc,ptfpαq Chance measure of the portfolio defined by αV 1 ` p1´ αqV 2

µr,ptfpαq Risk measure of the portfolio defined by αV 1 ` p1´ αqV 2

µt Chance or risk measure at time t

µc
t Chance measure at time t

µr
t Risk measure at time t

µc,i
t Chance measure of the ith pension product at time t

µr,i
t Risk measure of the ith pension product at time t

P Premium of the contract

P i Premium of the ith pension product

P˚,i Maximum premium invested in the ith pension product

PT Idealized customer’s premium with accumulation phase T

T Accumulation phase of PIA classification

T Accumulation phase of the contract

T i Accumulation phase of the ith pension product in PIA classification

T i Accumulation phase of the ith pension product

Tt Simulated accumulation phase at time t

Tt Remaining accumulation phase of the contract at time t

VT Set of pension products with simulated accumulation phase T

vt Contract value after t months (before premium payment)

vit Contract value of the ith pension product after t months (before pre-
mium payment)

rvt Scaled contract value after t months (before premium payment)

xvii



List of Symbols

rvit Scaled contract value of the ith pension product after t months (before
premium payment)

V Pension product

V i ith pension product

vk Final contract value of the kth simulation

vkt Final contract value of the kth simulation at time t

V Mean of all or of the 2,000 lowest final contract values

V
c

Mean of the final contract values

V
r

Mean of the 2,000 lowest final contract values

V
c,i

Mean of the ith pension product final contract values

V
r,i

Mean of the ith pension product 2,000 lowest final contract values of

V
c,intpαq

With α interpolated mean of the final contract values of two pension
products

V
r,intpαq

With α interpolated mean of the 2,000 lowest final contract values of
two pension products

V
c,intpα1,α2q With α1 and α2 interpolated mean of the final contract values of three

pension products

V
r,intpα1,α2q With α1 and α2 interpolated mean of the 2,000 lowest final contract

values of three pension products

V
c,ptfpαq

Mean of the final contract values of the portfolio defined by αV 1 `

p1´ αqV 2

V
r,ptfpαq

Mean of the 2,000 lowest final contract values of the portfolio defined
by αV 1 ` p1´ αqV 2

V t Mean of all or the 2,000 lowest final contract values at time t

V
c
t Mean of the final contract values at time t

V
r
t Mean of the 2,000 lowest final contract values at time t

V
c,i
t Mean of the ith pension product final contract values of at time t

V
r,i
t Mean of the ith pension product 2,000 lowest final contract values of at

time t

x Customer age at the contract start

xviii



List of Acronyms

ADF augmented Dickey-Fuller
AltvPIBV Altersvorsorge-Produktinformationsblattverordnung
AR autoregression

cf. compare
CRC chance-risk class
CRK Chancen-Risiko Klasse

e.g. for example
ECB European Central Bank
EI-QFM European Institute for Quality Management for Financial Products

and Methods

i.e. id est

LIBOR London Interbank Bank Offered Rate

MAE mean absolute error
MAXE maximum error
MLP multilayer perceptron
MSE mean squared error

OECD Organisation for Economic Co-operation and Development

PIA Produktinformationsstelle Altersvorsorge gGmbH
PIB Produktinformationsblatt

VAR vector autoregression

xix



xx



1 Introduction

The yield curve is of great relevance in the financial and economic world. Particularly,
it contains all information on the attainable riskless returns for different maturity
dates at the bond market and displays the spot rates or yields for all times to maturity
(i.e. equivalent constant interest rates if a zero bond with remaining time to maturity
is bought now and held until maturity). Every bond market has its own yield curves
which represent its specific current market situation. For example, the U.S. yield
curve differs from the European and the German one.

The yield curve shape is an indicator of both the demand for money and the estima-
tion of the future interest rate development. A so-called normal yield curve increases
monotonically in the time to maturity. This means that investors intend to be com-
pensated with a higher spot rate for providing their money for a longer period of
time. However, if there is a lot of demand for money now an inverse yield curve can
appear. In this scenario, the market participants are not interested in getting money
for a longer time period and thus the yield curve decreases monotonically in the time
to maturity. Liquidity aspects will often lead to an initially normal curve that switches
to an inverse behavior for large times to maturity. The main reason being that there is
no liquid market for bonds with a maturity of say 40 years and longer. This is called
a humped yield curve. While these are the main conceptual shapes, the yield curve
shapes appearing in reality are not limited to them.

Due to its importance, a vast literature on the yield curve has been developed. One
emphasis of the literature is put on the estimation of the yield curve by fitting the
curve to the data using statistical techniques. The best-known examples are Nelson
and Siegel (1987) and Svensson (1994) who introduce a parsimonious model with
exponential decay terms. The model of Svensson (1994) is used by the European
Central Bank (ECB) or the Deutsche Bundesbank to estimate the European or German
yield curve. There are other approaches like Fama and Bliss (1987) who apply splines
for the estimation. Another emphasis of the literature is the modeling of the yield
curve. Three concepts can be distinguished: forward rate, short rate, and LIBOR
market models. The name indicates which parameter is modeled. Ho and Lee (1986)
and Heath et al. (1992) are contributions in the forward-rate models. Popular short
rate models are Vasicek (1977), Cox and Ross (1985), and Hull and White (1990).
The LIBOR market models are introduced by Miltersen et al. (1997) and Brace et al.
(1997). In Ho and Lee (1986), Heath et al. (1992), and Hull and White (1990), the
initial yield curve is perfectly fitted to the yield curve which is observed at the market.
Therefore, these models are also called no-arbitrage models. In Chapter 2, we discuss
the Vasicek model in more detail, especially with respect to the yield curve shapes.
Diebold and Li (2006) began to focus on the forecast of the yield curve to which little
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1 Introduction

attention was paid in the literature of yield curve modeling. They use statistical time
series models and evaluate the forecast out-of-sample. Based on this, further studies
followed as outlined in Section 3.1.

The modeling of the yield curve is the basis of different applications and risk in-
dicators. One example is the chance-risk classification by Produktinformationsstelle
Altersvorsorge gGmbH (PIA). Every German state-subsidized pension product being
sold has to be classified into one of five so-called chance-risk classes (CRCs). By law,
the classification has to be based on the simulated evolution of the contract value of
the pension products. As this contract value depends on the evolution of the capital
market, models for the simulation of interest rates and stock prices had to be cho-
sen. A two-factor Hull-White version of the Vasicek model for the short rate is used
on the interest rate side together with a variant of the Black-Scholes model on the
stock side (see Korn and Wagner (2018) for more details). These models are close to
the industry standard and therefore enable a reproduction of the CRC by the indus-
try. Particular arguments in favor of the two-factor variant in comparison with the
one-factor Hull-White model are the possibilities

• to model different effects for near and far forward rates,

• to generate other yield curve shapes than the normal, humped, and inverse one,

• and a much better fit for the prices of interest rate derivatives (see e.g. Acar
et al. (2011)).

In addition to the CRC, a standardized and mandatory Produktinformationsblatt
(PIB) was also introduced for German state-subsidized pension products. This is
intended to improve the transparency and comparability of the products which are
particularly important for customer consulting. A good consulting is characterized by
the fact that only products are recommended to the customer that correspond to his
risk preference. To ensure this, algorithms to assign a customer a CRC are necessary.
On this basis, only pension products with the same or a lower CRC are supposed to
be recommended. This approach is extended by including already bought pension
products in Chapter 4.

This thesis consists of three independent chapters. The main parts of Chapter 2
has been published in the European Actuarial Journal (see Diez and Korn (2020)),
while parts of Chapter 4 has been submitted at submission of the thesis (see Diez
et al. (2020)).

Chapter 2 is mainly concerned with the attainable yield curve shapes of the Vasicek
interest rate model. We focus on the two-factor Vasicek model since the possible yield
curve shapes of the one-factor Vasicek model are known in literature. In the one-
factor model, we additionally analyze the curvature of the yield curve shapes. It can
be shown that every normal yield curve is strictly convex, but not all inverse ones are
strictly concave. The two-factor Vasicek model can generate more yield curve shapes
than its one-factor variant and explain more observable effects of the market like
the occurrence of dipped yield curves. Furthermore, we introduce a general change
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of measure framework in the one-factor Vasicek model reducing the frequency of
inverse yield curves to occur over time.

In Chapter 3, we deal with forecasting the yield curve. For this purpose, statistical
time series models such as autoregression and vector autoregression are compared
with multilayer perceptrons (MLPs), a machine learning algorithm. For the hyper-
parameter optimization of the MLP, we develop an approach that includes standard
procedures such as Grid or Random Search but selects promising hyperparameters
in advance. This allows the search of larger hyperparameter spaces. In addition to
forecasting the yield curve of the next day, we consider a forecast horizon of one
month, three months, half a year, and one year. The neural networks outperform the
standard time series significantly for longer forecast horizons.

Chapter 4 focuses on the chance-risk classification of German state-subsidized pen-
sion products by PIA and its relevance for customer consulting. In this context, we
develop an approach for determining the CRC of a portfolio. In doing so, we consider
a portfolio consisting of two new products as well as one consisting of an existing one
and of a new product. For this purpose, the chance and risk parameters of the clas-
sification are examined first. Based on this, the existence of a diversification effect
is shown favoring the inclusion of the customer’s portfolio into customer consulting.
Furthermore, we develop an approach for determining the CRC of the pension prod-
uct over the contract term based on the classification by PIA. In our approach, further
simulations have to be performed. But the pension product and the evolution of its
CRC of the contract is better represented.

All computations of Chapter 2 and 4 were done with the open source program-
ming language R, which can be downloaded at www.r-project.org. For the com-
putations and data manipulations of Chapter 3, the open source programming lan-
guage Python which is available at www.python.org were employed. In particular,
the package NumPy (numpy.org) and pandas (pandas.pydata.org) were used for
data analysis and scikit-learn (scikit-learn.org) for the different models which in-
clude fitting and validation. The figures derived from our calculations are created
with the package ggplot2 (ggplot2.tidyverse.org) under R and with matplotlib
(matplotlib.org) under Python.
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2 Yield Curve Shapes of Vasicek
Interest Rate Models and Measure
Transformations1

In this chapter, we investigate the possible yield curve shapes of the Vasicek short
rate model. Keller-Ressel and Steiner (2008) and Keller-Ressel (2018) are the main
academic references for the yield curve shapes that affine one-factor short rate mod-
els can generate. On the one hand, the results are drawn from those papers. On the
other hand, they are complemented by adding results of the yield curve curvature in
the one-factor Vasicek model and of the yield curve shapes in the two-factor Vasicek
model. This model is particularly popular in connection with the chance-risk classi-
fication of German state-subsidized pension products. We show that the two-factor
model is more adept to explain more empirically observed effects than the one-factor
model. Furthermore, we consider the distribution of the yield curve shapes under
the risk-neutral and the real-world measure in the one-factor Vasicek model and in-
troduce a change of measure approach to avoid the occurrence of a far too high
frequency of inverse yield curves with growing time.

Our main contributions in this chapter are

‚ the proof of the existence of dipped yield curves in the two-factor Vasicek
model,

‚ an analysis of the yield curve shapes of the two-factor Vasicek model highlight-
ing empirically relevant effects that one-factor models cannot explain,

‚ a general change of measure approach to model the evolution of the yield curve
in Vasicek models over time,

‚ the development of a simulation framework for bonds and yields that respects
empirical findings with regard to the frequency of yield curve structures even
for long horizons.

We will illustrate all our findings with explicit examples. The essential parts and
results of this chapter are summarized in Diez and Korn (2020) which is published in
the European Actuarial Journal.

In the first section, we introduce definitions and notations in the context of yield
curves. Afterwards, we examine the observed European yield curves from 2005 until

1Based on published work: Diez and Korn (2020).
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2019 regarding their shapes and frequency of occurrence. These empirical results
are presented in Section 2.2. Section 2.3 deals with the Vasicek short rate models.
The one-factor Vasicek model is considered in Section 2.3.1 and the two-factor one
in Section 2.3.2. In both sections, the short rate model and the calculation of the
bond prices and the yields are described. Furthermore, we analyze which yield curve
shapes are generated by the individual models. Additionally, we investigate the dis-
tribution of the yield curve shapes for the one-factor Vasicek model since explicit
shapes of the distribution for the occurrence of the possible yield curve shapes are
given here. Section 2.4 considers a measure change and its effect on the yield curve
shapes in the one-factor Vasicek model. In Section 2.4.1, the use of the risk-neutral
measure Q and the real-world measure P in simulations are discussed. Subsequently,
Section 2.4.2 deals with the evolution of the short rate and yield curve shapes under
the real-world measure. Finally, we suggest a different approach for determining the
real-world measure which uses yield forecasts as well as conditions on the probability
to observe normal yield curves in the last Section 2.4.3.

2.1 Definitions and Notations

This section introduces the basic instruments, notations, and definitions in the con-
text of interest rates and their modeling. We refer to the corresponding chapters of
the monographs Brigo and Mecurio (2007) and Desmettre and Korn (2018).

Definition 2.1 (Zero-coupon bond). A zero-coupon bond with maturity T (for short
a T -bond) pays its owner one unit of money at time T . No further payments occur
before maturity. We denote its price at time t ď T by P pt, T q.

Note that P pt, T q also represents the present value at time t of one unit of currency
to be paid at time T . Clearly, P pt, tq “ 1 for all t. Further, we assume all bonds
occurring to be riskless, i.e. they do not admit default risk.

Buying a T -bond and holding it until maturity is a fully determined investment at
the time of purchase. To judge its performance on the remaining time to maturity
T´t, we introduce the notion of x “ T´t and write P pt, t`xq instead of P pt, T q. This
gives rise to the definition of the yield of this bond as the appropriate performance
measure.

Definition 2.2 (Yield). The yield ypt, xq of a zero-coupon bond with price P pt, t ` xq
is defined as

ypt, xq “ ´
lnpP pt, t` xqq

x

or equivalently as
P pt, t` xq “ e´ypt,xq¨x.

Thus, the yield is the continuously compounded interest rate that a money market
account must perform as the zero bond in the remaining time span x to maturity. For
an infinitesimally small time to maturity x ypt, xq is also called the short rate.
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2.1 Definitions and Notations

Definition 2.3 (Short rate). The short rate rptq is defined as

rptq “ lim
xÓ0

ypt, xq. (2.1)

ypt, xq depends on both the current time t and the time to maturity x. A funda-
mental curve describing the interest rate market is obtained by holding t fixed and
mapping the zero bonds of different times to maturity into yields. This curve is called
the yield curve at time t.

Definition 2.4 (Yield curve). For t ě 0 fixed the graph of the function

x ÞÑ ypt, xq, x ą 0

is called the yield curve.

The yield curve makes bonds of different times to maturity comparable with re-
gard to their yields. Generally, a larger yield is expected for a longer investment
horizon. However, this is not always the case. Regarding the shape of yield curves,
we distinguish the following basic shapes.

Definition 2.5 (Yield curve shapes). The yield curve as a function of x (for fixed t) is
called

‚ flat if it is constant on p0,8q,

‚ normal if it is a strictly monotonically increasing and bounded from above func-
tion on p0,8q,

‚ inverse if it is a strictly monotonically decreasing and bounded from below func-
tion on p0,8q,

‚ humped if it has exactly one local maximum and no minimum on p0,8q,

‚ dipped if it has exactly one local minimum and no maximum on p0,8q.

The five basic yield curve shapes are illustrated in Figure 2.1. There are more
shapes possible such as combinations of the ones given above that can e.g. have
exactly one local maximum and one local minimum. Also, in reality, there can (and
have) occur(ed) more irregular shapes than the ones mentioned in the definition.
However, as only the above ones are relevant for our theoretical findings in Sec-
tion 2.3, we will not consider any other shapes below.
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Figure 2.1: Basic yield curve shapes

2.2 Empirical Facts on the Frequency of Yield Curve
Shapes

To give an impression of the occurrence frequency of different yield curve shapes, we
present some facts that are based on publicly available interest rate data of triple-
A-rated government bonds from the ECB2. Figure 2.2 shows the yield curve from
2005 until 2019. The calendar time is on the x-axis and the time to maturity x on
the z-axis. The y-axis shows the yield ypt, xq in %. Different yield curve shapes can
be observed: normal, humped, dipped, and humped-dipped. The frequency of the
respective shapes is seen in Table 2.3. We consider daily data (i.e. 3,832 days) and
bond maturities up to 20 years for reason of market illiquidity.

2https://sdw.ecb.europa.eu/browse.do?node=9691417, accessed on 2020 July 14th.
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2.2 Empirical Facts on the Frequency of Yield Curve Shapes

Figure 2.2: Yield curves at the European bond market of triple-A-rated government
bonds from 2005 to 2019

Yield curve shapes 2005-2009 2010-2019 2005-2019
Normal 64.19 % 49.59 % 54.46 %
Dipped 15.25 % 44.89 % 34.99 %

Humped-dipped 17.98 % 2.04 % 7.36 %
Humped 2.58 % 3.49 % 3.18 %

Table 2.3: Yield curve shapes frequency occurring on (subsets of) January 1st 2005
to December 31th 2019 calculated from daily data of the ECB restricted
to bond maturities up to 20 years

When considering the last 15 years of the yield curve, we can see that the normal
one clearly occurs the most. No inverse yield curves can be observed in this data
set. Before and during the credit crisis (2005-2009), the normal yield curves clearly
dominate and the dipped ones are nearly catching up after the crisis.3 Humped-
dipped yield curves occurred about as frequently as dipped curves from 2005 until
2009 after which they have significantly decreased. The small proportion of humped
ones remained approximately the same over the period.

To illustrate four examples of dipped yield curves, we present Figure 2.4 which
contains four dipped yield curves at the dates indicated in the subfigures. Note in
particular that for the occurrence of dipped yield curves neither the credit crisis nor a
very low interest rate is necessary. For an overview of the development of the yields
themselves, we refer to Chapter 3, Section 3.4.1.

3The same behavior can be observed for German yield curves, see Appendix B of Diez and Korn
(2020).

9



2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

2015−05−29 2019−08−30

2005−06−30 2008−02−29

0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30

3.5

4.0

4.5

−0.75

−0.50

−0.25

2.0

2.5

3.0

3.5

0.0

0.5

1.0

x in years

y
(t

,x
) 

in
 %

Figure 2.4: Examples of dipped yield curves at the European bond market of triple-
A-rated government bonds for four different dates

2.3 Yield Curve Shapes in Vasicek Models

The Vasicek model is the interest rate model that allows the most explicit analytical
analysis. We have therefore chosen to consider the one- and two-factor versions of it
in this section.

2.3.1 The One-Factor Vasicek Model

The Vasicek model introduced in Vasicek (1977) belongs to the one-factor affine lin-
ear short rate models. Due to its analytic tractability, it is still used nowadays even
though it can only reproduce normal, inverse, and humped yield curves. In the fol-
lowing, we introduce it together with its properties. Furthermore, the distribution of
the different yield curve shapes is analyzed.

Short Rate Dynamics and Bond Prices

In the one-factor Vasicek model (see Brigo and Mecurio (2007), Desmettre and Korn
(2018)) the short rate rptq follows an Ornstein-Uhlenbeck process with constant co-
efficients. We assume that under the risk-neutral measure Q the dynamics are given
by

drptq “ apθ ´ rptqqdt` σdWptq, rp0q “ r0 (2.2)
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where r0 and θ are constants, a and σ are positive constants, and Wptq is a one
dimensional Brownian motion. Consequently, the short rate rptq is mean-reverting at
θ (the mean-reversion level) with mean-reversion speed a. The drift of the short rate
process is negative if the short rate is larger than θ and positive if the short rate is
lower than θ.

Integrating the differential equation yields the unique solution

rptq “ r0e
´at
` θp1´ e´atq ` σ

ż t

0

e´apt´uq dWpuq.

Thus, the short rate rptq is normally distributed with mean and variance given by

E prptqq “ r0e
´at
` θp1´ e´atq,

Var prptqq “
σ2

2a
p1´ e´2atq.

The limit of the mean and variance for t going to infinity leads to

lim
tÑ8

E prptqq “ θ,

lim
tÑ8

Var prptqq “
σ2

2a
.

As a consequence, θ is the long-term average short rate. For r0 ă θ the mean short
rate converges towards θ in a monotonically increasing way and in a monotonically
decreasing way for r0 ą θ. The short rate can attain negative values. In the current
low interest rate environment, this is not necessarily a drawback of the Vasicek model.

The price P pt, t` xq is given under no arbitrage by

P pt, t` xq “ E
´

e´
şt`x
t rpuq du

|Ft
¯

where Ft is the natural filtration of the process at time t. In the Vasicek model, the
price P pt, t` xq has an analytical representation given by

P pt, t` xq “ eApxq´Bpxqrptq,

Apxq “

ˆ

θ ´
σ2

2a2

˙

pBpxq ´ xq ´
σ2

4a
Bpxq2,

Bpxq “
1

a
p1´ e´axq.

(2.3)

This yields the following formula of the yield ypt, xq as

ypt, xq “ ´
Apxq

x
`
Bpxq

x
rptq. (2.4)

As Apxq and Bpxq are deterministic, the yield is a linear function of rptq. Thus, the
Vasicek model counts among the affine linear models as already mentioned above.
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The entire yield curve is determined by the short rate rptq and is monotonically in-
creasing in rptq. This means that for a larger value of rptq the entire yield curve lies
above the one with a lower rptq. Due to the explicit affine linear structure, a shock to
the short rate rptq affects the entire yield curve. At any time t, two yields ypt, x1q and
ypt, x2q are perfectly correlated since

Corr pypt, x1q, ypt, x2qq “

Cov

ˆ

Bpx1q

x1
rptq,

Bpx2q

x2
rptq

˙

d

Var

ˆ

Bpx1q

x1
rptq

˙

d

Var

ˆ

Bpx2q

x2
rptq

˙

“ 1.

Clearly, these properties are not realistic and a crude simplification.

Hull-White Approach An additional disadvantage of the Vasicek model is that the
zero-coupon bond prices which are currently observed in the market, denoted by
PMp0, T q, cannot be exactly fitted due to the few free parameters. Hull and White
(1990) developed the approach of replacing the free parameters with time-dependent
parameters generating more degrees of freedom for an exact fit of PMp0, T q. In the
extension of the Vasicek model by the Hull-White approach the short rate dynamic
under the risk-neutral measure Q is given by

drptq “ pθptq ´ arptqq dt` σdWptq, rp0q “ r0

where a and σ are positive constants, r0 is a constant, and θptq is a time-dependent
function chosen in such a manner that the model zero-coupon bond prices P p0, T q
correspond to the market zero-coupon bond prices PMp0, T q. This model is often
called the one-factor Hull-White model. The explicit solution of the short rate equa-
tion is obtained by

rptq “ r0e
´at
`

ż t

0

e´apt´sqθpsq ds` σ

ż t

0

e´apt´uq dWpuq.

For determining θptq, we introduce the market instantaneous forward rate at time
zero for the maturity T denoted by fMp0, T q and calculated by

fMp0, T q :“ ´
BlnPMp0, T q

BT
.

It can be shown that with the choice of θptq by

θptq “
BfMp0, T q

BT

ˇ

ˇ

ˇ

T“t
` afMp0, tq `

σ2

2a

`

1´ e´2at
˘

the model zero-coupon bond prices fit the market zero-coupon bond prices.
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The zero-coupon bond price is then given by

P pt, t` xq “ eApt,t`xq´Bpxqrptq,

Apt, t` xq “ ln

ˆ

PMp0, t` xq

PMp0, tq

˙

` fMp0, tqBpxq ´
σ2

4a
p1´ e´2atqBpxq2,

Bpxq “
1

a
p1´ e´axq.

This extension of the Vasicek model is also an affine linear model and analytically
tractable. However, θptq is determined by the market instantaneous forward rates
which are only observed in principle on the market as well as their derivatives. For
it, a continuum of bond prices is required. Since this is not a given on the market,
additional assumptions on the shape of the forward rate and yield curves have to
be made. Furthermore, the mean-reversion property of the short rate at a long-term
level is no longer given since the mean-reversion level is replaced by the non-constant
function θptq

a
. Due to these disadvantages and the missing general analysis of the

yield curve shapes, this Hull-White type approach will not be discussed further and
we return to the one-factor Vasicek model.

Yield Curve and Yield Curve Shapes

We now take a closer look at the possible yield curve shapes the one-factor Vasicek
model can produce. This has already been pointed out in the original paper by Va-
sicek (1977). Proofs of the claims made there can be found in Keller-Ressel (2018)
and Desmettre and Korn (2018) (see also Keller-Ressel and Steiner (2008) who quote
contradicting statements from the literature which show that the possible shapes of
the yield curves – even for such simple models as the one-factor Vasicek model – are
commonly not completely understood). This section is based on the results given in
the above two sources. We also consider the case where the short rate is determinis-
tic. This is obtained by σ equal zero.

Applying de L’Hospital’s rule provides the limits of the yield curve on the short and
long end which are

lim
xÓ0

ypt, xq “ rptq, (2.5)

lim
xÒ8

ypt, xq “ θ ´
σ2

2a2
“: ȳ. (2.6)

Equation (2.1) shows that the yield curve is continuous at x “ 0. Furthermore,
the long-term yield ȳ is situated below the long-term average θ of the short rate rptq.
Thus, under the risk-neutral measure more yield curves with a larger short-term yield
than long-term yield are expected for large t. We will get back to this issue later in
Section 2.4.

Although the behavior of the yield curve on the short and long end is known by
Equation (2.5) and (2.6), it is not sufficient to determine the shape of the yield curve.
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For one-factor time-homogeneous and affine linear short rate models, Keller-Ressel
(2018) shows that only inverse, normal, and humped yield curves exist. Each at-
tainable yield curve shape is determined by the level of the current short rate rptq.
Keller-Ressel (2018) and Keller-Ressel and Steiner (2008) prove this by a detailed
analysis of generalized Riccati equations. Desmettre and Korn (2018) only consider
the Vasicek model and derive the yield curve shapes depending on rptq by an elemen-
tary analysis of the explicit yield curve shape.

Theorem 2.6. Let the risk-neutral short rate process be given by Equation (2.2). Set

bnorm :“ θ ´
3σ2

4a2
and binv :“ θ.

a) For σ ą 0 we have

‚ the yield curve can only be normal, inverse, or humped,

‚ the yield curve is normal if rptq ď bnorm,

‚ the yield curve is humped if bnorm ă rptq ă binv,

‚ the yield curve is inverse if rptq ě binv.

b) For σ “ 0 we have

‚ the yield curve can only be flat, normal, or inverse,

‚ the yield curve is normal if rptq ă θ,

‚ the yield curve is flat if rptq “ θ,

‚ the yield curve is inverse if rptq ą θ.

Proof. a) We refer to Desmettre and Korn (2018), proof of Theorem 2.53, p. 163 ff.
b) In the case of σ “ 0, the yield curve ypt, xq is deterministic and is calculated as

ypt, xq “ θ `
Bpxq

x
prptq ´ θq .

We obtain the first derivative as

Bypt, xq

Bx
“
BBpxq{x

Bx
prptq ´ θq .

Derivating Bpxq
x

results in

BBpxq{x

Bx
“
p1` axqe´ax ´ 1

ax2
ă 0

for a, x ą 0 (see also Lemma A.1 in Appendix A). Consequently, it holds

Bypt, xq

Bx

$

’

’

’

&

’

’

’

%

ă 0, rptq ą θ

“ 0, rptq “ θ

ą 0, rptq ă θ.
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2.3 Yield Curve Shapes in Vasicek Models

As Bpxq
x

is bounded, ypt, xq is also bounded. It follows that the yield curve is normal
for rptq ă θ, flat for rptq “ θ, and inverse for rptq ą θ.

Obviously, under the conditions of Theorem 2.6 we have

bnorm ă ȳ ă binv.

Note that for σ equal zero the short rate process rptq is deterministic. In this case,
the calculation of the zero-coupon bond price simplifies to

P pt, t` xq “ e´
şt`x
t rpsq ds.

Further, bnorm, binv, and ȳ coincide with θ.
Figure 2.5 illustrates Theorem 2.6. Both can in principle be found in Keller-Ressel

and Steiner (2008) and Desmettre and Korn (2018). In Figure 2.5a the short rate
process implies a random component. Note that the quantities bnorm, binv, and ȳ
are also shown. The yield curves are normal for rptq ď bnorm, humped for bnorm ă

rptq ă binv, and inverse for rptq ě binv. All yield curves asymptotically tend to ȳ.
Figure 2.5b depicts the attainable yield curve shapes for a deterministic short rate
process. Humped yield curves do not exist but a flat one for rptq equal θ.

(a) σ ą 0.
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(b) σ “ 0.
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Figure 2.5: Different yield curve shapes in the one-factor Vasicek model

Besides fully classifying the attainable yield curve shapes, it is an important result
of Theorem 2.6 that in the one-factor Vasicek model the yield curve shape depends
only on the level of the current short rate rptq. Therefore, a global upwards or down-
wards shift of the entire yield curve is not possible in the Vasicek model. However,
such global shifts are often elements of stress tests.

The curvature of the one-factor Vasicek model can also be classified.

Theorem 2.7. Let the risk-neutral short rate process be given by Equation (2.2).

a) For σ ą 0 the following assertions hold:
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2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

‚ Every normal yield curve is strictly concave.

‚ The inverse yield curve is strictly convex if rptq ě binv `
σ2

a2
.

b) For σ “ 0 the following assertions hold:

‚ Every normal yield curve is strictly concave.

‚ Every inverse yield curve is strictly convex.

Proof. a) We consider the following representation of ypt, xq:

ypt, xq “ θ ´
σ2

2a2
´

σ2

4a2
Bpxq

x

`

c´
`

1´ e´ax
˘˘

where

c :“ pθ ´ rptqq
4a2

σ2
´ 2.

First, we will prove that every normal yield curve is strictly concave. By the proof of
Theorem 2.53 in Desmettre and Korn (2018), p. 163 ff, we have c ě 1 for normal
yield curves. The second derivative of ypt, xq with respect to x is

B2y pt, xq

Bx2
“ ´

σ2

4a2

ˆ

B2Bpxq{x

Bx2
`

c´ 1` e´ax
˘

´ 2a
BBpxq{x

Bx
e´ax ` a2

Bpxq

x
e´ax

˙

.

Inspection of Bpxq
x

delivers the following properties for a, x ą 0 according to Lemma A.1
in Appendix A:

Bpxq

x
“

1´ e´ax

ax
ą 0,

BBpxq{x

Bx
“
p1` axqe´ax ´ 1

ax2
ă 0,

B2Bpxq{x

Bx2
“

2 p1´ p1` axqe´axq ´ a2x2e´ax

ax3
ą 0.

With a, σ, x ą 0 and e´ax ą 0, we obtain for c ě 1

B2y pt, xq

Bx2
ď ´

σ2

4a2

ˆ

B2Bpxq{x

Bx2
e´ax ´ 2a

BBpxq{x

Bx
e´ax ` a2

Bpxq

x
e´ax

˙

ă 0.

Therefore, the yield curve is strictly concave for rptq ď bnorm.

Next, we will prove that an inverse yield curve is strictly convex if rptq ě binv `
σ2

a2
.

We obtain the second derivative of the yield curve ypt, xq as

B2ypt, xq

Bx2
“ ´

σ2

4a2

ˆ

2pc´ 1q ` p2´ cqe´ax pa2x2 ` 2ax` 2q

ax3

´
e´2ax p4a2x2 ` 4ax` 2q

ax3

˙

“: ´
σ2

4a2
2pc´ 1q ` p2´ cqzpxq ´ zp2xq

ax3
“: ´

σ2

4a2
kcpxq

ax3
.
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2.3 Yield Curve Shapes in Vasicek Models

Since σ2 ą 0 and 4a3x3 ą 0, B
2ypt,xq
Bx2

has the same sign as kcpxq. Therefore, we consider
kcpxq. It attains the following limits of

lim
xÓ0

kcpxq “ 0, lim
xÒ8

kcpxq “ 2pc´ 1q

and has the first derivative of

Bkcpxq

Bx
“ a3x2e´ax

`

8e´ax ´ p2´ cq
˘

.

As a3x2e´ax ą 0 and e´ax is strictly monotonically decreasing from 1 to 0 for a, x ą 0,
Bkcpxq
Bx

has at most one zero for x ą 0 depending on c and it is given as

xc “ ´
1

a
ln

ˆ

2´ c

8

˙

.

Bkcpxq
Bx

does not have any zero in x ą 0 for c ď ´6 and we have for a, x ą 0

Bkcpxq

Bx
ď 8a3x2e´ax

`

e´ax ´ 1
˘

ă 0.

Consequently, kcpxq is negative since it strictly monotonically decreases from zero on
and thus B2ycpt,xq

Bx2
is positive for all x ą 0. Therefore, the yield curve ypt, xq is strictly

convex if rptq ě θ ` σ2

a2
. Since we have

rptq ě θ `
σ2

a2
ą θ,

the yield curve is also inverse due to Theorem 2.6.

b) In the case of σ “ 0, the yield curve ypt, xq is deterministic and is calculated as

ypt, xq “ θ `
Bpxq

x
prptq ´ θq .

We obtain the derivatives as

Bypt, xq

Bx
“
BBpxq{x

Bx
prptq ´ θq ,

B2ypt, xq

Bx2
“
B2Bpxq{x

Bx2
prptq ´ θq .

As B2Bpxq{x

Bx2
ą 0 for a, x ą 0 as in a) shown, we have

B2ypt, xq

Bx2
“

$

&

%

ă 0, rptq ă θ

ą 0, rptq ą θ.

Consequently, every normal yield curve is strictly concave and every inverse one is
strictly convex for σ “ 0.
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2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

Note that for σ ą 0 the strict convexity condition for the inverse yield curves stated
in the theorem is equivalent to the condition c ď ´6. In particular, one can verify
that not all inverse yield curves are strictly convex. According to the above proof, the
second derivative of the yield curve has exactly one zero for ´6 ă c ď ´2. We can
also determine values of c for which even the derivative of ypt, xq is strictly convex or
strictly concave (see Lemma 2.12).

Theorem 2.7 further restricts the possible yield curve shapes in the one-factor Va-
sicek model. Only strictly concave normal yield curves can be generated.

Yet, there are further consequences of the above-mentioned theorems regarding
the occurring yield curve shapes. According to Theorem 2.6 humped yield curves
occur only in the case of randomness (σ ą 0). Thus, they are a sufficient sign of
randomness. Equally, Theorem 2.7 implies that inverse yield curves which are not
strictly convex only exist in the case of randomness.

Corollary 2.8. Let the risk-neutral short rate process be given by Equation (2.2). In
that case, the following assertions are equivalent:

(i) The short rate process rptq is deterministic.

(ii) There is a value of rptq such that the yield curve is flat.

(iii) There is no value of rptq such that the yield curve is humped.

(iv) There is no value of rptq such that an inverse yield curve is not strictly convex.

Distribution of Yield Curve Shapes under Q

The one-factor Vasicek model generates three shapes of yield curves. However, how
likely is the observation of one particular shape in future times? In this section, we
give an answer by considering the distribution of the yield curve shapes under the
risk-neutral measure Q for t ą 0.

As a result of Section 2.3.1, the entire yield curve at time t depends only on the
short rate rptq. Furthermore, it is monotonic in rptq due to the affine linear structure
of ypt, xq. Thus, the distribution of rptq determines the distribution of the yield curve
shapes. The short rate rptq is normally distributed under Q with

rptq „ N
ˆ

r0e
´at
` θp1´ e´atq,

σ2

2a

`

1´ e´2at
˘

˙

.

Consequently, the proportions at time t of each yield curve shape can be calculated.

Proposition 2.9. Let the risk-neutral short rate process be given by Equation (2.2) with
σ ą 0. Let Eprptqq be the mean of rptq and Varprptqq its variance under the risk-neutral
measure Q. For t ą 0 being fixed, the probabilities of each yield curve shape to appear
under Q are given by:
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2.3 Yield Curve Shapes in Vasicek Models

qnorm “ P prptq ď bnormq “ Φ

¨

˚

˝

θ ´
3σ2

4a2
´ Eprptqq

a

Varprptqq

˛

‹

‚

,

qhump “ P pbnorm ă rptq ă binvq “ Φ

˜

θ ´ Eprptqq
a

Varprptqq

¸

´ Φ

¨

˚

˝

θ ´
3σ2

4a2
´ Eprptqq

a

Varprptqq

˛

‹

‚

,

qinv “ P prptq ě binvq “ 1´ Φ

˜

θ ´ Eprptqq
a

Varprptqq

¸

where Φ is the cumulative distribution function of the standard normal distribution.

The mean of the short rate rptq converges monotonically increasing towards its
limit θ for r0 ă θ. Thus, the proportion of humped and inverse yield curves grows
with the passing of time in the case of r0 ă θ. Hence, there is a time t˚ when at least
50 % humped and inverse yield curves are expected. t˚ is given by

t˚ “ ´
1

a
ln

ˆ

bnorm ´ θ

r0 ´ θ

˙

.

For r0 ą θ the mean of rptq decreases monotonically to θ. Hence, the proportion of
inverse yield curves declines but stays above 50 % for all times t ą 0.

(a) r0 “ 0.001 ă θ
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(b) r0 “ 0.02 ą θ
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Figure 2.6: Median yield curve at different times t. Parameters: a “ 0.401, θ “
0.01297, σ “ 0.0378

The evolution of the yield curve is illustrated by a numerical example with the
parameter a “ 0.401, θ “ 0.01297, and σ “ 0.0378 (the choice of the parameter, simi-
larly to the remaining examples below, is close to the parameters used for chance-risk
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2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

classification of German pension products). We denote the yield curve correspond-
ing to the mean of the short rate rptq as median yield curve. Figures 2.6 shows the
median yield curves at different future times t. In Figure 2.6a we choose r0 “ 0.001.
The initial yield curve is normal due to Theorem 2.6. The mean of rp1q lies below
bnorm. Thus, at least 50 % normal yield curves are expected. At t “ 5 the mean of
rptq is larger than bnorm. Hence, more than half of the yield curves are humped or
inverse. The same applies for t equal 10 and 20 years. Figure 2.6b illustrates the case
for r0 ą θ with r0 “ 0.02. For E prptqq ą binv, t ą 0, 50 % of the yield curves lie above
the plotted yield curves and are also inverse.

For tÑ 8 we obtain the following limit proportions:

qnorm
tÑ8
ÝÝÝÑ Φ

ˆ

´
3σ
?

8a3

˙

,

qhump
tÑ8
ÝÝÝÑ 0.5´ Φ

ˆ

´
3σ
?

8a3

˙

,

qinv
tÑ8
ÝÝÝÑ 0.5.

Asymptotically, 50 % inverse yield curves are expected independent of r0. The other
50 % are shared by humped and normal yield curves. For σ ą 0 the proportion of
humped ones is not zero. Thus, less than 50 % of normal yield curves are expected in
the far future, a behavior that is not in line with empirical observations in Section 2.2.

2.3.2 The Two-Factor Vasicek Model

The two-factor Vasicek model is able to overcome some disadvantages of the one-
factor version such as perfectly correlated yields for different times to maturity or the
full dependence on rptq of the yield curve shapes. Further, its analytical tractability
is comparable to the one-factor Vasicek model. We will look at its properties and in
particular at its corresponding yield curve shapes below. Section 2.3.2 is based on
Brigo and Mecurio (2007).

Short Rate Dynamics and Bond Prices

In the two-factor Vasicek model, the short rate is given as the sum of a deterministic
function and two correlated Ornstein-Uhlenbeck processes with constant coefficients.
Under the risk-neutral measure Q, the short rate rptq follows

rptq “ ψptq `Xptq ` Y ptq, rp0q “ r0 (2.7)

where Xptq and Y ptq are stochastic processes with dynamics

dXptq “ ´aXptqdt` σdW1ptq, Xp0q “ 0, (2.8)
dY ptq “ ´bY ptqdt` ηdW2ptq, Y p0q “ 0. (2.9)

20



2.3 Yield Curve Shapes in Vasicek Models

Here, r0 is a constant and a, b, σ, and η are positive constants. W1ptq and W2ptq are
two Brownian motions with correlation ρ P p´1, 1q. The function ψptq is deterministic
and defined as

ψptq “ r0e
´at
` θp1´ e´atq (2.10)

where θ is a positive constant and ψp0q “ r0. Integrating of Equations (2.8) and (2.9)
leads to

Xptq “ σ

ż t

0

e´apt´uq dW1puq,

Y ptq “ η

ż t

0

e´bpt´uq dW2puq.

Xptq and Y ptq are normally distributed with

Xptq „ N
ˆ

0,
σ2

2a

`

1´ e´2at
˘

˙

,

Y ptq „ N
ˆ

0,
η2

2b

`

1´ e´2bt
˘

˙

.

Thus, the short rate rptq is given by

rptq “ r0e
´at
` θp1´ e´atq ` σ

ż t

0

e´apt´uq dW1puq ` η

ż t

0

e´bpt´uq dW2puq.

Hence, the short rate rptq is again normally distributed with

E prptqq “ r0e
´at
` θp1´ e´atq,

Var prptqq “
σ2

2a

`

1´ e´2at
˘

`
η2

2b

`

1´ e´2bt
˘

` 2ρ
ση

a` b

`

1´ e´pa`bqt
˘

.

Again, the short rate can also be negative. Its mean is the same as in the one-factor
Vasicek model, while the variance contains additional terms due to the second source
of randomness. If t goes to infinity, the mean and variance tend to

lim
tÑ8

E prptqq “ θ,

lim
tÑ8

Var prptqq “
σ2

2a
`
η2

2b
` 2ρ

ση

a` b
.

θ is the long-term average rate.
The zero-coupon bond price P pt, t` xq is given by

P pt, t` xq “ E
´

e´
şt`x
t rpuq du

|Ft
¯
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2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

where the expectation is computed under the risk-neutral measure Q. Noting that
conditionally on the natural filtration Ft we have

ż t`x

t

pXpuq ` Y puqq du „ N pMpt, xq, V pxqq

with mean Mpt, xq and variance V pxq given by (see the relevant section in Brigo and
Mecurio (2007))

Mpt, xq “
1´ e´ax

a
Xptq `

1´ e´bx

b
Y ptq

and

V pxq “
σ2

a2

ˆ

x`
2

a
e´ax ´

1

2a
e´2ax ´

3

2a

˙

`
η2

b2

ˆ

x`
2

b
e´bx ´

1

2b
e´2bx ´

3

2b

˙

` 2ρ
ση

ab

ˆ

x´
1´ e´ax

a
´

1´ e´bx

b
`

1´ e´pa`bqx

a` b

˙

.

We use these equations and the fact that E pexppZqq “ exp
`

EpZq ` 1
2

VarpZq
˘

for
a normally distributed random variable Z with mean EpZq and variance VarpZq to
compute the price at time t of a zero-coupon bond with time to maturity x. Since we
have in addition

ż t`x

t

ψpuq du “ θx` pψpxq ´ θq
1´ e´ax

a
,

we finally obtain the explicit form of the zero bond price as

P pt, t` xq “ exp

ˆ

´θx´
1´ e´ax

a
pψptq `Xptq ´ θq ´

1´ e´bx

b
Y ptq `

1

2
V pxq

˙

.

The yield curve ypt, xq results directly as

ypt, xq “ θ `
Bapxq

x
pψptq `Xptq ´ θq `

Bbpxq

x
Y ptq ´

1

2

V pxq

x
(2.11)

where we have used the notation

Bzpxq “
1

z
p1´ e´zxq, z P ta, bu .

Due to the linear structure of ypt, xq, the two-factor Vasicek model also counts among
the affine linear models – even though we are in a multidimensional setting.

Note that with the choice of ψptq as in Equation (2.10) the model does in general
not fit the zero-coupon bond prices PMp0, T q which are currently observed in the
market. For an exact fit of the market prices PMp0, T q, the deterministic function
ψpxq has to be chosen so that

exp

ˆ

´

ż t`x

t

ψpuq du

˙

“
PMp0, t` xq

PMp0, tq
exp

ˆ

´
1

2
pV pt` xq ´ V ptqq

˙

.

This Hull-White type approach is not discussed further as it does not allow a general
analysis of the yield curve shapes.
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2.3 Yield Curve Shapes in Vasicek Models

Yield Curve and Yield Curve Shapes

In this section, we analyze the yield curves with regard to their possible shapes. If
rptq is deterministic (σ “ 0, η “ 0), we obtain the same equations and results as in
the deterministic case of the one-factor model. Therefore, we consider σ ą 0 and
η ą 0 in the following. Equation (2.11) can be transformed in terms of the short rate
rptq to

ypt, xq “ θ

ˆ

1´
Bapxq

x

˙

`
Bapxq

x
rptq `

ˆ

Bbpxq

x
´
Bapxq

x

˙

Y ptq ´
1

2

V pxq

x
.

Obviously, the yield curve depends not only on the short rate rptq as in the one-factor
Vasicek model but also on the stochastic process Y ptq. Therefore, different yield
curves can exist for one and the same short rate level rptq.

Considering all terms which are forming ypt, xq separately, we obtain the limits of
the yield curve on the short and long end as

lim
xÓ0

ypt, xq “ rptq,

lim
xÒ8

ypt, xq “ θ ´
σ2

2a2
´

η2

2b2
´ ρ

ση

ab
“: ȳ.

As in the one-factor Vasicek model, the yield curve is continuous at x equal to zero.
Since the mean of the short rate rptq tends to θ, more yield curves with a larger short-
term yield than long-term yield are expected for large t. This observation is identical
to the one in the one-factor Vasicek model. Note that this also holds true for ρ ă 0.
This follows from |ρ| ă 1 and the binomial formula.

For presenting results that lead to different behavior of the two-factor Vasicek yield
curve, we analyze its derivative at x equal to zero.

Theorem 2.10. Let the risk-neutral short rate process be given by Equation (2.7). Under
the assumption of a ‰ b, pairs of pXptq, Y ptqq exist with lim

xÓ0

Bypt,xq
Bx

ą 0 and lim
xÓ0

Bypt,xq
Bx

ă 0

for all values of the short rate rptq.

Proof. Differentiating the yield as given by Equation (2.11) with respect to x delivers

Bypt, xq

Bx
“
p1` axqe´ax ´ 1

ax2
pψptq `Xptq ´ θq `

p1` bxqe´bx ´ 1

bx2
Y ptq

`
σ2

2a2

ˆ

2
p1` axqe´ax ´ 1

ax2
´
p1` 2axqe´2ax ´ 1

2ax2

˙

`
η2

2b2

ˆ

2
p1` bxqe´bx ´ 1

bx2
´
p1` 2bxqe´2bx ´ 1

2bx2

˙

` ρ
ση

ab

ˆ

p1` axqe´ax ´ 1

ax2
`
p1` bxqe´bx ´ 1

bx2

´
p1` pa` bqxqe´pa`bqx ´ 1

pa` bqx2

˙

.
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Applying de L’Hospital’s rule twice at x “ 0, we get

lim
xÓ0

p1` zxqe´zx ´ 1

zx2
“ ´

1

2
z

for an arbitrary non-zero constant z. Using this for the relevant terms in the derivative
above, we obtain

lim
xÓ0

Bypt, xq

Bx
“ ´

1

2
pa prptq ´ θq ´ pa´ bqY ptqq .

For a fixed value of rptq, we get different values of the yield curve derivative at
x “ 0 by choosing different values of Y ptq. The corresponding value of Xptq is
obtained via Xptq “ rptq ´ ψptq ´ Y ptq.

Theorem 2.10 implies that different derivatives of the yield curve at the short end
exist for one and the same short rate rptq. Since the asymptotic long-term yield is
known, at least four yield curve shapes can occur in the two-factor Vasicek model.4

Note that the derivative of the yield curve at the short end cannot vary for a “ b and
depends on the relation between rptq and θ.

Before we specify the yield curve shapes, the following useful lemmas are intro-
duced.

Lemma 2.11. Let f : D Ñ R and g : D Ñ R, where D Ď R, be strictly concave
(convex) and fpxq ‰ gpxq. Then, both functions have a maximum of two intersections.

Proof. We prove this lemma for f and g being strictly concave. For f and g being
strictly convex, the proof follows analogously.

We assume that f and g have three intersections: x1, x2, and x3 with x1 ‰ x2 ‰ x3.
Furthermore, we assume x1 ă x2 ă x3 without loss of generality. Since f and g are
strictly concave, it holds for α P p0; 1q

fpαx1 ` p1´ αqx3q ą αfpx1q ` p1´ αqfpx3q,

gpαx1 ` p1´ αqx3q ą αgpx1q ` p1´ αqgpx3q.

Taking the difference between the two inequalities, we obtain for α P p0; 1q

fpαx1 ` p1´ αqx3q ´ gpαx1 ` p1´ αqx3q ą 0

because fpx1q “ gpx1q and fpx3q “ gpx3q. Since x1 ă x2 ă x3, there is an sα P p0; 1q so
that x2 “ sαx1 ` p1´ sαqx3 and the previous inequality holds for x2

fpx2q ´ gpx2q “ fpsαx1 ` p1´ sαqx3q ´ gpsαx1 ` p1´ sαqx3q ą 0.

However, this is a contradiction to the assumption that x2 is an intersection of both
functions for which fpx2q “ gpx2q. Consequently, f and g can have a maximum of
two intersections.

4In the working paper Keller-Ressel (2019) which appeared during the revision process of the Eu-
ropean Actuarial Journal the results of Theorem 2.13 are generalized using the concept of total
positivity.
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Lemma 2.12. Let a, σ, x ą 0 and Kcpxq be defined as

Kcpxq :“ ´
σ2

4a2
Bapxq

x

`

c´
`

1´ e´ax
˘˘

.

The first derivative of Kcpxq with respect to x is

‚ strictly convex for c ě 1,

‚ strictly concave for c ď ´14.

Proof. First, we will prove that BKcpxq
Bx

is strictly convex for c ě 1. The third derivative
of Kcpxq with respect to x is

B3Kcpxq

Bx3
“ ´

σ2

4a2

ˆ

B3Bapxq{x

Bx3
`

c´ p1´ e´axq
˘

´ 3a
B2Bapxq{x

Bx2
e´ax

`3a2
BBapxq{x

Bx
e´ax ´ a3

Bapxq

x
e´ax

˙

.

Inspection of Bapxq
x

delivers the following properties for a, x ą 0 according to Lemma A.1
in Appendix A:

Bapxq

x
“

1´ e´ax

ax
ą 0,

BBapxq{x

Bx
“
p1` axqe´ax ´ 1

ax2
ă 0,

B2Bapxq{x

Bx2
“

2 p1´ p1` axqe´axq ´ a2x2e´ax

ax3
ą 0,

B3Bapxq{x

Bx3
“

6 pp1` axq e´ax ´ 1q ` 3a2x2e´ax ` a3x3e´ax

ax4
ă 0.

With e´ax ą 0 we obtain

B3Kcpxq

Bx3
ą 0

for c ě 1. Therefore, the first derivative of Kcpxq is strictly convex for c ě 1.

Next, we will prove that BKcpxq
Bx

is strictly concave for c ď ´14. The third derivative of
Kcpxq can be rewritten as

B3Kcpxq

Bx3
“

σ2

4a2

ˆ

6pc´ 1q ` p2´ cqe´ax pa3x3 ` 3a2x2 ` 6ax` 6q

ax4

´
e´2ax p8a3x3 ` 12a2x2 ` 12ax` 6q

ax4

˙

“:
σ2

4a2
6pc´ 1q ` p2´ cqzpxq ´ zp2xq

ax4
“:

σ2

4a2
kcpxq

ax4
.
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2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

Since σ2 ą 0 and 4a3x4 ą 0, B
3Kcpxq
Bx3

has the same sign as kcpxq. Therefore, we consider
kcpxq. It attains the following limits

lim
xÓ0

kcpxq “ 0, lim
xÒ8

kcpxq “ 6pc´ 1q

and has the first derivative of

Bkcpxq

Bx
“ a4x3e´ax

`

16e´ax ´ p2´ cq
˘

.

As a4x3e´ax ą 0 as well as e´ax is strictly monotonically decreasing from 1 to 0 for
a, x ą 0, Bkcpxq

Bx
has at most one zero in x ą 0 depending on c and it is given by

xc “ ´
1

a
ln

ˆ

2´ c

16

˙

.

Bkcpxq
Bx

does not have any zero in x ą 0 for c ď ´14 and we have

Bkcpxq

Bx
ď 16a4x3e´ax

`

e´ax ´ 1
˘

ă 0.

Consequently, kcpxq is negative since it strictly monotonically decreases from zero on
and thus B

3Kcpxq
Bx3

is negative for x ą 0. Therefore, the first derivative of Kcpxq is strictly
concave if c ď ´14.

We can now specify yield curve shapes generated by the two-factor Vasicek model
summarized in the following theorem.

Theorem 2.13. For the risk-neutral short rate process given by Equation (2.7), the
following assertions hold under the assumption of a ‰ b:5

(i) There are normal yield curves but only for rptq ă ȳ,

(ii) there are inverse yield curves but only for rptq ą ȳ,

(iii) there are humped yield curves for rptq ě ȳ,

(iv) there are dipped yield curves for rptq ď ȳ.

Proof. Note first that although the one-factor Vasicek model is a special case of the
two-factor one, we cannot simply infer the existence of the three classical yield curve
shapes by setting Y ptq equal zero. This is due to the fact that the remaining ingredi-
ents related to the second factor still remain in the yield representation. On top of
that, even for Y ptq equal zero their contribution to the yield curve depends on the
correlation coefficient ρ. Thus, we also have to prove the above-mentioned assertions
for normal, inverse, and humped yield curves.

5In contrast to the published version Diez and Korn (2020), the assertions (iii) and (iv) have been
modified leading to a different proof.
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2.3 Yield Curve Shapes in Vasicek Models

Depending on ρ two transformations of the yield curve ypt, xq are used:
Transformation 1:

ypt, xq “ ´
σ2

4a2
Bapxq

x

˜

cA ´
`

1´ e´ax
˘

¸

´
η2

4b2
Bbpxq

x

˜

cB ´
`

1´ e´bx
˘

¸

´ ρ
ση

ab

Ba`bpxq

x
` θ ´

σ2

2a2
´

η2

2b2
´ ρ

ση

ab
“:KcApxq `KcBpxq `R1pxq ` ȳ

where

cA :“ ´
4a2

σ2

ˆ

Xptq ` ψptq ´ θ `
σ2

2a2
` ρ

ση

ab

˙

,

cB :“ ´
4b2

η2

ˆ

Y ptq `
η2

2b2
` ρ

ση

ab

˙

.

Transformation 2:

ypt, xq “ ´
σ2

4a2
Bapxq

x

˜

cA ´
`

1´ e´ax
˘

¸

´
η2

4b2
Bbpxq

x

˜

cB ´
`

1´ e´bx
˘

¸

` ρ
ση

ab

ˆ

Bapxq

x
`
Bbpxq

x
´
Ba`bpxq

x

˙

` θ ´
σ2

2a2
´

η2

2b2
´ ρ

ση

ab

“:KcApxq `KcBpxq `R2pxq ` ȳ

where

cA :“ ´
4a2

σ2

ˆ

Xptq ` ψptq ´ θ `
σ2

2a2

˙

,

cB :“ ´
4b2

η2

ˆ

Y ptq `
η2

2b2

˙

.

The function Kcpxq, c P tcA, cBu, has the following specific properties depending
on c for x ą 0 as shown in Theorem 2.6 (see also Desmettre and Korn (2018), proof
of Theorem 2.53, p. 163 ff), Theorem 2.7, and Lemma 2.12:

• Kcpxq is strictly monotonically increasing and strictly concave for c ě 1,

• Kcpxq is strictly monotonically decreasing for c ď ´2,

• Kcpxq is strictly monotonically decreasing and strictly convex for c ď ´6,

• BKcpxq
Bx

is strictly monotonically decreasing and strictly convex for c ě 1,

• BKcpxq
Bx

is strictly monotonically increasing and strictly concave for c ď ´14.
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Further, it can be shown in a basic way that the functions R1pxq and R2pxq have
the following properties:

• R1pxq is strictly monotonically increasing and strictly concave for ρ ą 0,

• R1pxq is constant zero for ρ “ 0,

• R1pxq is strictly monotonically decreasing and strictly convex for ρ ă 0,

• BR1pxq
Bx

is strictly monotonically decreasing and strictly convex for ρ ą 0,

• BR1pxq
Bx

is constant zero for ρ “ 0,

• BR1pxq
Bx

is strictly monotonically increasing and strictly concave for ρ ă 0,

• R2pxq is strictly monotonically decreasing for ρ ą 0,

• R2pxq is constant zero for ρ “ 0,

• R2pxq is strictly monotonically increasing for ρ ă 0.

(i) As all yield curves converge towards the long-term yield ȳ, there can only be
normal yield curves if we have rptq ă ȳ. Otherwise the necessary condition for
a normal yield curve of

lim
xÓ0

Bypt, xq

Bx
ą 0

together with the convergence of ypt, xq towards ȳ leads to the existence of a
local maximum ypt, x˚q for x˚ ą 0 in the case of rptq ą ȳ which contradicts the
normality of the yield curve.

Next, we will show the existence of normal yield curves. In the case of ρ ě 0, we
use Transformation 1 of ypt, xq as mentioned above. Xptq and Y ptq are chosen in
such a way that KcApxq and KcBpxq are both strictly monotonically increasing.
This holds valid for cA ě 1 and cB ě 1 and hence Xptq`ψptq ď θ´ 3σ2

4a2
´ρση

ab
and

Y ptq ď ´3η2

4b2
´ ρση

ab
. R1pxq is also strictly monotonically increasing or constant

zero. As the sum of strictly monotonically increasing functions, ypt, xq is strictly
monotonically increasing. Since ypt, xq converges towards the long-term yield
ȳ, it is also bounded from above. Consequently, the yield curve is normal for
Xptq and Y ptq above. Further, the corresponding short rate is below ȳ.

For ρ ă 0 we consider the Transformation 2 of the yield curve. KcApxq and
KcBpxq are chosen again to be strictly monotonically increasing via cA ě 1 and
cB ě 1. This leads to Xptq`ψptq ď θ´ 3σ2

4a2
and Y ptq ď ´3η2

4b2
. R2pxq is also strictly

monotonically increasing. Thus, ypt, xq is also strictly monotonically increasing
and bounded from above for Xptq and Y ptq as seen above. Again, the related
short rate rptq is below ȳ.
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2.3 Yield Curve Shapes in Vasicek Models

(ii) The case for inverse yield curves follows with obvious modifications if we now
consider that necessary conditions for the relevant forms of KcApxq and KcBpxq
to be strictly monotonically decreasing are cA ď ´2 and cB ď ´2.

(iii) We consider Transformation 1 of ypt, xq and a short rate rptq ě ȳ.

We start with the case a ă b. We choose cB as

cB ą max

"

1;´
4b2

η2

ˆ

a

a´ b
prptq ´ θq `

η2

2b2
` ρ

ση

ab

˙*

and cA for ρ ď 0 as

cA ď min

"

´14;´
a2η2

b2σ2
cB

*

and for ρ ą 0 as

cA ď min

"

´14;´
4a2

σ2

ˆ

η2

4b2
cB ` ρ

ση

ab

˙*

.

The first derivative of ypt, xq with respect to x at x “ 0 is given by (see proof of
Theorem 2.10)

lim
xÓ0

Bypt, xq

Bx
“ ´

1

2
pa prptq ´ θq ´ pa´ bqY ptqq .

Solving the definition of cB to Y ptq returns

Y ptq “ ´
η2

4b2
cB ´

η2

2b2
´ ρ

ση

ab
.

With this we have

lim
xÓ0

Bypt, xq

Bx
“ ´

1

2

ˆ

a prptq ´ θq ` pa´ bq

ˆ

η2

4b2
cB `

η2

2b2
` ρ

ση

ab

˙˙

.

Since we choose cB ą ´4b2

η2

´

a
a´b
prptq ´ θq ` η2

2b2
` ρση

ab

¯

, it holds

lim
xÓ0

Bypt, xq

Bx
ą 0.

Next, we consider the difference between ypt, xq and ȳ. Bzpxq
x

is positive and
strictly monotonically decreasing in z ą 0 for x ą 0. Therefore, it holds

Bapxq

x
ą
Bbpxq

x
ą
Ba`bpxq

x
ą 0. (2.12)
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With these inequalities, cB ą 1, and 1 ´ e´zx ą 0 for x, z ą 0, we can estimate
the difference as follows:

ypt, xq ´ ȳ “´
σ2

4a2
Bapxq

x

˜

cA ´
`

1´ e´ax
˘

¸

´
η2

4b2
Bbpxq

x

˜

cB ´
`

1´ e´bx
˘

¸

´ ρ
ση

ab

Ba`bpxq

x

ą´
Bapxq

x

ˆ

σ2

4a2
cA `

η2

4b2
cB

˙

´ ρ
ση

ab

Ba`bpxq

x
.

For ρ ď 0 we have

´
Bapxq

x

ˆ

σ2

4a2
cA `

η2

4b2
cB

˙

´ ρ
ση

ab

Ba`bpxq

x
ě ´

Bapxq

x

ˆ

σ2

4a2
cA `

η2

4b2
cB

˙

.

With the choice of cA ď ´a2η2

b2σ2 cB, we obtain ypt, xq ´ ȳ ą 0 for all x ą 0.

For ρ ą 0 we have

´
Bapxq

x

ˆ

σ2

4a2
cA `

η2

4b2
cB

˙

´ ρ
ση

ab

Ba`bpxq

x
ą ´

Bapxq

x

ˆ

σ2

4a2
cA `

η2

4b2
cB ` ρ

ση

ab

˙

.

Due to the choice of cA ď ´4a2

σ2

´

η2

4b2
cB ` ρ

ση
ab

¯

, ypt, xq ´ ȳ ą 0 for all x ą 0.

Consequently, ypt, xq is greater than ȳ for the choice of cA and cB.

Since rptq is greater than or equal to ȳ, lim
xÓ0

Bypt,xq
Bx

is positive, ypt, xq converges

towards ȳ on the long end, and ypt, xq lies above ȳ, the yield curve has an odd
number of local extreme values.

Due to cA ď ´14 and cB ą 1, ypt, xq is the sum of strictly concave and strictly
convex functions. ypt, xq has a local extreme value if for ρ ď 0 it holds

BKcApxq

Bx
`
BR1pxq

Bx
“ ´

BKcBpxq

Bx

and if for ρ ą 0 it holds

BKcApxq

Bx
“ ´

ˆ

BKcBpxq

Bx
`
BR1pxq

Bx

˙

.

BKcA pxq

Bx
is strictly concave and BKcB pxq

Bx
is strictly convex due to the choice of cA

and cB. BR1pxq
Bx

is strictly concave for ρ ă 0, it is constant zero for ρ “ 0, and it
is strictly convex for ρ ą 0. Consequently, BKcA pxq

Bx
`

BR1pxq
Bx

and ´BKcB pxq
Bx

have a
maximum of two intersections for ρ ď 0 according to Lemma 2.11. The same
holds for BKcA pxq

Bx
and ´

´

BKcB pxq

Bx
`
BR1pxq
Bx

¯

with ρ ą 0. Therefore, the derivative
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of ypt, xq has a maximum of two zeros and thus ypt, xq a maximum of two local
extreme values.

Combined with the odd number of local extreme values that the yield curve
must have, it follows that the yield curve is humped for the above choice of
rptq, cA, and cB.

For a ą b we choose cA as
cA ě 1

and cB for ρ ď 0 as

cB ă min

"

´14;´
4b2

η2

ˆ

a

a´ b
prptq ´ θq `

η2

2b2
` ρ

ση

ab

˙

;´
b2σ2

a2η2
cA

*

and for ρ ą 0 as

cB ă min

"

´14;´
4b2

η2

ˆ

a

a´ b
prptq ´ θq `

η2

2b2
` ρ

ση

ab

˙

;´
4b2

η2

ˆ

σ2

4a2
cA ` ρ

ση

ab

˙*

.

Analogously to a ă b, it can be shown that lim
xÓ0

Bypt,xq
Bx

ą 0 and ypt, xq ą ȳ for

the choice of cA and cB. Due to the strict curvature of the derivative of KcApxq,
KcBpxq, andR1pxq, ypt, xq has a maximum of two local extreme values according
to Lemma 2.11. Together with rptq ě ȳ, lim

xÓ0

Bypt,xq
Bx

ą 0, lim
xÒ8

ypt, xq “ ȳ as well as

ypt, xq ą ȳ, it follows that ypt, xq is humped for the above choice of rptq, cA, and
cB.

(iv) We consider Transformation 1 of ypt, xq and a short rate rptq ď ȳ. For a ă b we
choose cB as

cB ă min

"

´14;´
4b2

η2

ˆ

a

a´ b
prptq ´ θq `

η2

2b2
` ρ

ση

ab

˙*

and cA for ρ ď 0 as

cA ě max

"

1;´
4a2

σ2

ˆ

η2

4b2
pcB ´ 1q ` ρ

ση

ab

˙

` 1

*

and for ρ ą 0 as

cA ě max

"

1;´
a2η2

b2σ2
pcB ´ 1q ` 1

*

.

As in (iii), the first derivative of ypt, xq with respect to x at x “ 0 is given by

lim
xÓ0

Bypt, xq

Bx
“ ´

1

2

ˆ

a prptq ´ θq ` pa´ bq

ˆ

η2

4b2
cB `

η2

2b2
` ρ

ση

ab

˙˙

.
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Since cB ă ´4b2

η2

´

a
a´b
prptq ´ θq ` η2

2b2
` ρση

ab

¯

, it holds

lim
xÓ0

Bypt, xq

Bx
ă 0.

Next, we consider the difference between ypt, xq and ȳ. With the properties of
Bzpxq
x

according to Inequality (2.12), 1 ´ e´zx ă 1 for x, z ą 0, and cB ă ´14,
we obtain

ypt, xq ´ ȳ “´
σ2

4a2
Bapxq

x

˜

cA ´
`

1´ e´ax
˘

¸

´
η2

4b2
Bbpxq

x

˜

cB ´
`

1´ e´bx
˘

¸

´ ρ
ση

ab

Ba`bpxq

x

ă´
Bapxq

x

ˆ

σ2

4a2
pcA ´ 1q `

η2

4b2
pcB ´ 1q

˙

´ ρ
ση

ab

Ba`bpxq

x
.

For ρ ď 0 we have

´
Bapxq

x

ˆ

σ2

4a2
pcA ´ 1q `

η2

4b2
pcB ´ 1q

˙

´ ρ
ση

ab

Ba`bpxq

x

ď´
Bapxq

x

ˆ

σ2

4a2
pcA ´ 1q `

η2

4b2
pcB ´ 1q ` ρ

ση

ab

˙

.

Due to the choice of cA ě ´4a2

σ2

´

η2

4b2
pcB ´ 1q ` ρση

ab

¯

`1, we obtain ypt, xq´ ȳ ă 0

for all x ą 0.

For ρ ą 0 we have

´
Bapxq

x

ˆ

σ2

4a2
pcA ´ 1q `

η2

4b2
pcB ´ 1q

˙

´ ρ
ση

ab

Ba`bpxq

x

ă´
Bapxq

x

ˆ

σ2

4a2
pcA ´ 1q `

η2

4b2
pcB ´ 1q

˙

.

With the choice of cA ě ´a2η2

b2σ2 pcB´1q`1, we obtain ypt, xq´ ȳ ă 0 for all x ą 0.

Consequently, ypt, xq is less than ȳ for the choice of cA and cB.

Since rptq is less than or equal to ȳ, lim
xÓ0

Bypt,xq
Bx

is negative, ypt, xq converges

towards ȳ on the long end, and ypt, xq is less than ȳ, ypt, xq has an odd number
of local extreme values. It has a local extreme value if for ρ ď 0 it holds

BKcApxq

Bx
“ ´

ˆ

BKcBpxq

Bx
`
BR1pxq

Bx

˙

.

and if for ρ ą 0 it holds

BKcApxq

Bx
`
BR1pxq

Bx
“ ´

BKcBpxq

Bx
.
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As cA ě 1 and cB ă ´14, BKcA pxq
Bx

is strictly convex and BKcB pxq

Bx
is strictly concave.

BR1pxq
Bx

is strictly concave for ρ ă 0, it is constant zero for ρ “ 0, and it is

strictly convex for ρ ą 0. Consequently, BKcA pxq
Bx

and ´
´

BKcB pxq

Bx
`
BR1pxq
Bx

¯

have a
maximum of two intersections for ρ ď 0 according to Lemma 2.11. The same
holds for BKcA pxq

Bx
`
BR1pxq
Bx

and ´BKcB pxq
Bx

with ρ ą 0. Therefore, the derivative of
ypt, xq has a maximum of two zeros and thus ypt, xq a maximum of two local
extreme values. Combined with the odd number of local extreme values that
the yield curve must have, it follows that ypt, xq is dipped for the above choice
of rptq, cA, and cB.

For a ą b we choose cA as
cA ď ´14

and cB for ρ ď 0 as

cB ą max

"

1;´
4b2

η2

ˆ

a

a´ b
prptq ´ θq `

η2

2b2
` ρ

ση

ab

˙

;

´
4b2

η2

ˆ

σ2

4a2
pcA ´ 1q ` ρ

ση

ab

˙

` 1

*

and for ρ ą 0

cB ą max

"

1;´
4b2

η2

ˆ

a

a´ b
prptq ´ θq `

η2

2b2
` ρ

ση

ab

˙

;´
b2σ2

a2η2
pcA ´ 1q ` 1

*

.

Analogously to a ă b, it can be shown that lim
xÓ0

Bypt,xq
Bx

ă 0 and ypt, xq ă ȳ. Due to

the strict curvature of the derivative of KcApxq, KcBpxq, and R1pxq, ypt, xq has a
maximum of two local extreme values according to Lemma 2.11. Together with
rptq ď ȳ, lim

xÓ0

Bypt,xq
Bx

ă 0, lim
xÒ8

ypt, xq “ ȳ, and ypt, xq ă ȳ, it follows that ypt, xq is

dipped for the above choice of rptq, cA, and cB.

Hence, the theorem states that all three yield curve shapes of the one-factor Vasicek
model are also produced by the two-factor Vasicek model. However, there is an
additional yield curve shape, namely the dipped one for a ‰ b. Note that we do not
claim the list of the attainable yield curves in Theorem 2.13 to be definitive.

To analyze the behavior of the yield curve shapes at time t for a ‰ b, we consider
the 10 %, the 50 %, and the 90 % quantile of rptq. Since rptq given r0 is normally
distributed, we can calculate those quantities explicitly. However, due to the two ran-
dom sources Xptq and Y ptq, we obtain different yield curve shapes for those quanti-
ties depending on the relation of Xptq and Y ptq. To illustrate this, we have chosen to
parameterize the set of curves by choosing ten quantile values of Y ptq starting with
the 5 % quantile and then increasing the quantile level in 10 % steps. The value of
ψptq is already fixed and the Xptq values are then determined by rptq, ψptq, and Y ptq.
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(a) 10 % quantile of rptq
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(b) 50 % quantile of rptq
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(c) 90 % quantile of rptq
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Figure 2.7: Yield curves generated by different quantiles of rptq and Y ptq at time
t “ 5. Parameters: r0 “ 0.001, a “ 0.401, b “ 0.178, σ “ 0.0378,
η “ 0.0372, θ “ 0.01297, ρ “ ´0.996

For the choice of parameters r0 “ 0.001, a “ 0.401, b “ 0.178, σ “ 0.0378,
η “ 0.0372, θ “ 0.01297, and ρ “ ´0.996, the yield curves are illustrated in Fig-
ure 2.7 for rp5q being equal to the 10 %, the 50 %, and the 90 % quantile. The first
fact that highlights the difference of those figures to the one-factor Vasicek model is
that there are more possible yield curves belonging to one value of the short rate. In
Figure 2.7a the short rate lies below the long-term yield ȳ. Inverse yield curves do
not occur in line with Theorem 2.13. However, dipped, normal, and humped yield
curves exist. In Figure 2.7b and 2.7c the specific quantile of the short rate is larger
than the long-term yield ȳ. In this case, dipped, inverse, and humped yield curves
are generated. Normal ones cannot exist. Note also that the humped yield curves are
above the inverse one which contrasts with the one-factor Vasicek model.
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2.4 Measure Change and Yield Curve Shapes

To classify pension products according to their chance and risk characteristics, the use
of Monte Carlo simulation methods to determine the distribution of their contract
values at the end of the accumulation phase is the natural choice. This is mainly
due to the complicated cost structures of the products and the way that profits are
generated, assigned, and shared between the policy holders and the insurer. As life
insurers typically invest in long-running interest rate products, the evolution of the
yield curve over (calendar) time is a crucial ingredient for the simulation of pension
products.

2.4.1 Pricing Measure, Physical Measure, and their Use in
Simulation

The question about which measure to use when simulation methods are applied for
chance and risk judgment is often not well understood in practical applications. How-
ever, it is clear that

‚ whenever there is the task to price a financial product in the future, a risk-neutral
measure Q has to be used if the product depends only on the capital market,

‚ the evolution of the stochastic input parameters for pricing a financial product
(such as the stock price for an option on that stock or the short rate determining
the bond price) has to be simulated under a physical measure P.

The reason for the first claim is arbitrage arguments for pricing a financial product.
For the second claim, note that the dynamic evolution of the capital market moves
under the physical measure, the so-called real-world measure.

As yield curves are derived from bond prices, given the choice of a pricing measure
Q all possible yield curves in the Vasicek model are fully determined. For this, note
also that the Vasicek model is time-homogeneous due to the constant coefficients.
The actual shape of the yield curve at time t only depends on the value of rptq in
the one-factor Vasicek model and on the values of rptq, Xptq, and Y ptq in the two-
factor Vasicek model. However, the short rate evolves over time under the physical
measure P. Thus, while the possible yield curves are fully determined by Q, the
physical measure P determines the probability of their occurrence in the future.

Below we will concentrate on the one-factor Vasicek model as we have explicit
forms of the distribution for the occurrence of the possible yield curve shapes. A
similar analysis of the two-factor model is an aspect of future research.

2.4.2 Evolution of the Short Rate and Yield Curves under the
Real-World Measure in the One-Factor Vasicek Model

In Section 2.3.1 we consider the distribution of future yield curve shapes under the
risk-neutral measure Q. However, as pointed out above, the probability of which
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future yield curves actually occur depends on the distribution of the simulated short
rate under a real-world P.

A natural requirement on a real-world measure P is that the resulting short rate
model stays in the Vasicek model class. To satisfy this requirement, we are construct-
ing the dynamics of the short rate under P via a suitable change of measure by a
Girsanov transformation. For this, we can change both the mean reversion level θ
and the mean reversion speed a by adding suitable terms and obtain the stochastic
differential equation of the short rate under P as

drptq “ pa` σdaqpθ ` σdθ ´ rptqqdt` σdĂWptq

:“ raprθ ´ rptqqdt` σdĂWptq,

rp0q “ r0.

(2.13)

Here, rθ is a real valued constant, ra is a positive constant, and ĂWptq is a one dimen-
sional Brownian motion under P obtained via

ĂWptq “ Wptq ` da

ż t

0

rpsq ds´ padθ ` rθdaqt.

As required, Equation (2.13) defines a one-factor Vasicek short rate process under P.
It is still normally distributed with

rptq „ N
ˆ

r0e
´rat
` rθp1´ e´ratq,

σ2

2ra
p1´ e´2ratq

˙

and an asymptotic behavior of

rptq „ N
ˆ

rθ,
σ2

2ra

˙

.

Compared to the short rate under Q, the additional drift dθ shifts the mean of the
short rate and da influences the variance of the short rate. More precisely, dθ deter-
mines the asymptotic center of the distribution of the short rate, while da determines
the intensity to be drawn back to this center. The zero-coupon bond price and the
corresponding yield are obtained as in Equation (2.3) and (2.4). Only the input to
those equations in form of the short rate rptq is obtained under the real-world mea-
sure P. The bounds of the short rate for the different yield curve shapes to appear
are the same as in Theorem 2.6.

Figure 2.8 illustrates the effect of the measure change of the short rate. First, we
will explain the two parts of the figure separately. On the right hand side, different
yield curves shapes depending on the level of the short rate rptq as well as the bounds
bnorm and binv under the risk-neutral measure Q are depicted. This right side of the
diagram is equivalent to Figure 2.5a. Here, one finds all possible yield curves since
a yield curve always corresponds to bond prices, i.e. to the risk-neutral measure Q.
Also, the bounds are not affected by the change of measure. Since the actual shape
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Figure 2.8: Effects on the frequency distribution of the different yield curve shapes
displayed via the change of the density of the short rate caused by a
change from the risk-neutral measure Q to the real-world measure P

of the yield curve at a future time t only depends on the value rptq, the physical
measure P enters the left hand side of the figure. There, the asymptotic densities of
the short rate under the risk-neutral measure Q as well as under a real-world measure
P are shown. These densities are (asymptotically) responsible for the distribution of
the short rate and thus also for the frequency of the occurrence of the different yield
curve shapes. Consequently, while Q determines the yield curve shapes, P determines
the frequency of their occurrence at future times. In Figure 2.8 the mean of the short
rate under P is below the bound binv. As a result, we expect to observe inverse yield
curves in the far future with a probability of less than 50 %. This is not the case if
we use the risk-neutral measure Q since then the asymptotic mean of the short rate
equals binv.

As in the case of the risk-neutral measure (see Section 2.3.1), the probabilities for
the three yield curve shapes depend on the distribution of the short rate. However,
the distribution of the short rate under P is considered. The asymptotic behavior of
the proportions of each single yield curve shape under P is given by

qnorm
tÑ8
ÝÝÝÑ Φ

ˆ

´

ˆ

3σ

4a2
` dθ

˙

?
2ra

˙

,

qhump
tÑ8
ÝÝÝÑ Φ

´

dθ
?

2ra
¯

´ Φ

ˆ

´

ˆ

3σ

4a2
` dθ

˙

?
2ra

˙

,

qinv
tÑ8
ÝÝÝÑ Φ

´

dθ
?

2ra
¯

.
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Hence, an asymptotic proportion of inverse yield curves under 50 % can only be
obtained for a negative dθ. A positive dθ increases the proportion of inverse and
humped yield curves. The influence of da on the proportions of inverse and normal
yield curves depends on dθ. For dθ ą 0 the proportion of inverse yield curves increases
with da, while the proportion of normal yield curves decreases. For dθ ă 0 inverse
yield curves are less likely with higher da. The proportion of normal yield curves
decreases with da for ´ 3σ

4a2
ă dθ ă 0 and increases for dθ ă ´ 3σ

4a2
.

2.4.3 The Choice of the Real-World Measure P
The choice of the real-world measure P is equivalent to the choice of the param-
eters rθ and ra in Equation (2.13). As these parameters correspond to a subjective
believe of future behavior of the interest market, their choice will always be up for
debate. Of course, an additional positive drift parameter rθ would lead to a higher
short rate. However, it would also lead to a higher proportion of future inverse yield
curves. To obtain requirements on the parameters rθ and ra, one can on one hand use
economic forecasts such as the annual ones given by the Organisation for Economic
Co-operation and Development (OECD) or historical estimations on either the drift of
the short rate or on the historical distribution of the yield curves. Below, we suggest
a mixture of using forecasts for the mean of the short rate at some future time st and
a condition on the probability to observe normal yield curves at a possible different
future time ss.

The corresponding two possible requirements are:

(i) In st years a short rate of sr is expected.

(ii) In ss years a probability of at least sp ¨ 100 % to observe normal yield curves is
required.

These requirements are translated into the following equation and inequality

r0e
´rast
` rθ

´

1´ e´ra
st
¯

“ sr, (2.14)

r0e
´rass
` rθ

`

1´ e´rass
˘

`
σ
?

2ra

a

1´ e´2rassQ
sp ď bnorm (2.15)

where Q
sp is the sp quantile of a standard normally distributed random variable. Of

course, the inequality needs to be dealt with in a careful way: Either it is not possible
to obtain sp ¨ 100 % or more normal curves at time ss (given that the requirement on
the mean of the short rate at time st is already satisfied), or the inequality can even
be solved as an equality, or it might only be possible to fulfill the relation as a strict
inequality. We highlight that in our examples below.

We start to solve Equation (2.14) to obtain rθ as

rθ “
sr ´ r0e

´rast

1´ e´rast
. (2.16)
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Using this form of rθ in Equation (2.15) yields the inequality for ra as

θ ´
3σ2

4a2
´ r0e

´rass
´

´

sr ´ r0e
´rast

¯ 1´ e´rass

1´ e´rast
´

σ
?

2ra

a

1´ e´2rassQ
sp ě 0. (2.17)

Depending on the parameters sr, st, sp, and ss, Inequality (2.17) does not always have
a solution. We first consider the extreme values for ra. Therefore, let the left side of
Inequality (2.17) be denoted by fpraq. Its limits are

lim
raÓ0

fpraq “ θ ´
3σ2

4a2
´ r0 ´ psr ´ r0q

ss
st
´ σ

?
ssQ

sp “: fp0q,

lim
raÒ8

fpraq “ θ ´
3σ2

4a2
´ sr “ bnorm ´ sr “: fp8q.

Obviously, Inequality (2.17) always has a solution ra˚ for sr ă bnorm as then for large
values of ra we have fpraq ě 0 due to fp8q ą 0 and continuity of f . However, this
might only be true as a strict inequality.

Next, let us look at small values of ra. fp0q is non-negative if we have

sr ď

ˆ

θ ´
3σ2

4a2
´ r0 ´ σ

?
ssQ

sp

˙

st

ss
` r0 “: bfp0q.

Whether bfp0q is larger than bnorm or vice versa depends on the relation of r0 to st, ss,
and sp. The following relation holds

(i) st ď ss: bfp0q

$

’

’

&

’

’

%

ď bnorm, r0 ď bnorm ` σQsp

?
ss

st

ss´ st

ą bnorm, r0 ą bnorm ` σQsp

?
ss

st

ss´ st

(ii) st ą ss: bfp0q

$

’

’

&

’

’

%

ď bnorm, r0 ě bnorm ´ σQsp

?
ss

st
st´ ss

ą bnorm, r0 ă bnorm ´ σQsp

?
ss

st
st´ ss

Combining the achieved relations leads to

sr ď min
 

bfp0q; bnorm
(

: fp0q ě 0, fp8q ě 0,

min
 

bfp0q; bnorm
(

ă sr ď max
 

bfp0q; bnorm
(

: fp0q ă 0, fp8q ě 0 or
fp0q ě 0, fp8q ă 0,

sr ą max
 

bfp0q; bnorm
(

: fp0q ă 0, fp8q ă 0.

If signs of fp0q and fp8q differ, continuity of f implies the existence of a ra solving
Inequality (2.17) even as an equality. In the two cases of the same sign for fp0q
and fp8q, positive signs imply the existence of solutions of Inequality (2.17) as strict
inequalities. For negative signs we can only say that there might be no solution at all
but cannot give a general statement on existence/non-existence of a solution. These
results are summarized in:
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Proposition 2.14. Let the risk-neutral short rate process be given by Equation (2.2) and
the requirements determining the change of measure by Equation (2.14) and (2.15). Set

bfp0q :“

ˆ

θ ´
3σ2

4a2
´ r0 ´ σ

?
ssQ

sp

˙

st

ss
` r0 and bnorm :“ θ ´

3σ2

4a2

where Q
sp is the sp quantile of a standard normally distributed random variable. Subse-

quently, the following holds:

• If sr ď min
 

bfp0q; bnorm
(

, Inequality (2.17) is solvable. In addition, fpraq could be
positive for all positive ra. Inequality (2.17) is only satisfied as a strict inequality
in this case.

• If min
 

bfp0q; bnorm
(

ă sr ď max
 

bfp0q; bnorm
(

, Inequality (2.17) is solvable and
also possesses a solution if it is regarded as an equality.

• If sr ą max
 

bfp0q; bnorm
(

, the solvability of Inequality (2.17) cannot be determined
from the behavior of f at zero and infinity.

Remark 2.15. Due to the more complicated distribution of the yield curve types in
the two-factor model, there is no direct analogy to the proposition. One can only
give the heuristic advice that adding a negative risk premium to the short rate will
in principle avoid the occurrence of inverse yield curves. However, there is definitely
room for future research.

We illustrate the findings by some numerical examples. Let us start with an obser-
vation: The behavior of EPprptqq under the obtained real-world measure P is deter-
mined by r0 and sr. For sr ą r0 the mean increases with time and decreases for sr ă r0.
Hence, rθ is above r0 for sr ą r0 and below for sr ă r0.

In our examples the parameters of the real-world measure are calculated as above
for different values of sr. The following parameters of the risk-neutral measure and
requirements are used:

r0 “ 0.016, a “ 0.4, σ “ 0.005, θ “ 0.02, st “ 10, ss “ 20, sp “ 0.7.

Here, we have

bnorm “ 0.0199 ă 0.0121 “ bfp0q.

We first get rθ from Equation (2.16). Then, ra is obtained by treating Inequality (2.17)
as an equality and solving it. Figure 2.9 shows EPprptqq and the 70 % quantile of the
short rate under the different real-world measures P over time. The requirements
are marked. In Figure 2.9a sr is chosen larger than bfp0q and r0 but less than bnorm.
Equation (2.17) is also solvable. The mean of the short rate increases. In contrast,
the EPprptqq decreases in Figure 2.9b since sr is chosen to be less than r0. Furthermore,
sr lies between bfp0q and bnorm. Therefore, a solution of Equation (2.17) is obtained.
Figure 2.9c is based on sr being less than bfp0q. In this case fpraq is positive for all ra. ra is
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(a) r0 ă sr ă bnorm,
sr “ 0.017, ra “ 0.418, rθ “ 0.0170
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Figure 2.9: Mean and 70 % quantile of the short rate under a real-world measure P
at different times t. Parameters: r0 “ 0.016, σ “ 0.005, st “ 10, sp “ 0.7,
ss “ 20

chosen equal to a of the risk-neutral measure as there is no need to change. The 70 %
quantile of the short rate under P is notable under bnorm. Thus, we expect a fraction
of future normal yield curves strictly above 70 % at time ss. In Figure 2.9d, sr is chosen
larger than bnorm. Here, fpraq is negative for all values of ra. Thus, Equation (2.17) is
not solvable. We chose ra as 0.4, the risk-neutral mean reversion speed. The desired
70 % quantile of the short rate as well as EPprpstqq are well above bnorm for ss “ 20.
Therefore, the second requirement above can not be satisfied. This holds for all ra.
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2 Yield Curve Shapes of Vasicek Interest Rate Models and Measure Transformations

2.5 Conclusion

In this chapter, we have dealt with two issues. Our first contribution highlights new
findings for the Vasicek yield curves. In particular, we have shown significant advan-
tages of using a two-factor Vasicek model instead of using a one-factor model such
as

‚ the fact that the two-factor Vasicek model can overcome the complete depen-
dence of the yield curve shape from the level of the short rate rptq. This is
particularly important when looking at the history of empirically observed yield
curves in Europe where one has observed different yield curve shapes for the
same value of the short rate at different time instants.

‚ the possibility to exhibit dipped yield curves, a fact which is particularly impor-
tant in the current low interest rate setting.

‚ a better fit to market prices by introducing more parameters compared to a
one-factor Vasicek model.

As a consequence, the actuary should add the two-factor Vasicek model and multi-
factor models in general to his toolbox.

Our second main contribution concerns the question of the choice of a real-world
measure P for simulating the evolution of the short rate over (calendar) time. While
it is tempting to add a positive drift for the short rate and thus being able to show
higher future returns, one has the disadvantage that a seemingly natural ordering
between the returns of short-term and long-term fixed income investment gets lost.
The price for the higher expected returns of – say – 10-year bonds is the fast increase
of the probability to observe inverse yield curves in the future. It also contradicts the
empirical observation that normal yield curves are observed much more frequently
than inverse ones.

We have therefore equipped the actuary in Section 2.4 with a concept to handle
this issue: A reasonably chosen measure transformation (i.e. a reasonably chosen
drift and mean-reversion speed under P) can preserve the natural ordering between
short- and long-term investment in bonds.
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3 Multi-Step Yield Curve Forecasting
Using Machine Learning

The previous chapter focused on modeling the yield curve with the Vasicek interest
rate model. Next, we consider the forecast of the yield curve. The evolution of
the yield curve influences savings decisions of consumers, investment strategies of
corporations, and policy decisions of governments. Furthermore, it is crucial for
trading of financial products at the capital market and over-the-counter as well as
bond portfolio and risk management. Thus a good forecast is important, particularly
for the latter two.

Since computers have become more and more efficient over recent years tech-
niques of machine learning are being used practically on an increasing scale. A lot
of advancements have been made in this area and the theoretical understanding is
improving also. In addition, more and more applications can be found in which ex-
isting machine learning algorithms have been successfully validated. In the field of
yield curve forecasting, machine learning algorithms are not thoroughly studied in
the literature as will be seen in the following section. Instead, the emphasis is on
the extension and improvement of classical statistical methods. The studies using
machine learning algorithms are partially not very detailed regarding the description
and implementation of the hyperparameter optimization1 and the validation of the
models. Furthermore, the advantage of machine learning algorithms over classical
statistical methods is not an object of thorough investigations.

In this chapter, we aim to compare linear models that have the advantage of low
complexity and high interpretability with MLPs2 (fully connected feed-forward neu-
ral networks) that are more complex and potentially more powerful in the context of
yield curve forecasting. Our goal is to investigate whether it is beneficial to replace
the commonly used techniques by MLPs that gained much popularity for tackling
various regression tasks. Let us point out that we will not consider other popular
machine learning techniques such as random forests since we want to focus on com-
paring very simple white box models with very complex black box algorithms. We
will not be concerned with gray box models such as tree-based algorithms as well
that lie somewhere in between. This may be the subject of further studies.

We evaluate these models based on the data of the European yield curve pub-
lished by the ECB. For this, we establish an evaluation procedure and develop a new

1Hyperparameters are the parameters of the machine learning algorithms which are not learned
during the training but have to be chosen prior (see also Definition 3.1 in Section 3.2.1). Hyper-
parameter optimization is the search for the best hyperparameter combinations.

2MLP: multilayer perceptron.
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3 Multi-Step Yield Curve Forecasting Using Machine Learning

approach for hyperparameter optimization which allows us to search a larger hyper-
parameter space than standard methods. The latter can be transferred to other ap-
plications and machine learning algorithms. Since the performance strongly depends
on the length of the forecast horizon, we consider several different ones resulting in
different models that are appropriate.

The chapter is structured as follows. First, we give a short literature review of yield
curve forecasting. In the following section, the underlying mathematical problem of
time series forecasting is described. We introduce time series models, multi-step
forecasting strategies, and selection procedures like cross validation and expanding
windows. Then, we discuss the framework of our European yield curve forecasting.
This includes the considered models, our approach of hyperparameter optimization
which can also apply to other applications, the considered performance measures,
and selection procedures. Subsequently, the data basis and results are described.

3.1 Literature Review

Diebold and Li (2006) are one of the first who pay attention to the practical problem
of forecasting the yield curve, even though it plays an important role for bond portfo-
lio, price and risk management. They interpolate the yield curve according to Nelson
and Siegel (1987) and forecast the Nelson-Siegel parameters with a univariate first
order autoregressive model. This is known as the dynamic Nelson-Siegel model. The
short-term as well as long-term forecast quality of the model are evaluated out-of-
sample. They compare the dynamic Nelson-Siegel model with different simple time
series models. While the one-month-ahead forecasting of the yield curve using the
Nelson-Siegel parameters produces no better results than those of simple time series
models, the one-year-ahead results are significantly better.

Studies with different focus and extensions followed based on this groundwork. On
the one hand, macroeconomic variables like the annual inflation rate are added to the
models as additional exogenous variables (see Chen and Niu (2014) and De Pooter
et al. (2010)). Thus, different states of the economy are considered. Other studies
like Bernadell et al. (2005) take this aspect into account by using a regime-switching
model. On the other hand, further models besides the one by Nelson and Siegel
(1987) are used for estimating the yield curve. De Pooter (2007), De Rezende and
Ferreira (2013), and Poklepović et al. (2014) replace Nelson and Siegel (1987) with
the extension of Svensson (1994). De Pooter (2007) and De Rezende and Ferreira
(2013) examine additional term structure models. Laurini and Hotta (2010) use
a Bayesian estimation for forecasting the Nelson-Siegel and Nelson-Siegel-Svensson
parameters. Christensen et al. (2011) introduce an arbitrage-free Nelson-Siegel ap-
proach, an extension of the dynamic Nelson-Siegel model to avoid arbitrage oppor-
tunities.

While a larger number of studies focus on forecasting the yield curve with classical
statistic models, few investigations use machine learning techniques in this context.
Täppinen (1998) compares neural networks with linear regression for forecasting the

44



3.2 Setup and Objective

change in yields with different times to maturity three months in advance. It shows
that neural networks outperform the linear regression for yields with longer times to
maturity. He uses one out-of-sample set. Zimmermann et al. (2002) also forecast the
three and six month changes in the yields. They compare an error correction neural
network to a time-delay recurrent neural network and a MLP. The error correction
neural network outperforms the other neural networks. While Täppinen (1998) and
Zimmermann et al. (2002) forecast the changes in the yields, Bose et al. (2006) and
Poklepović et al. (2014) base the forecasting on the Nelson-Siegel parameters. Bose
et al. (2006) apply a MLP and a generalized feed-forward network on the Nelson-
Siegel parameters. Both architectures are fixed at one hidden layer with four neu-
rons. They use one out-of-sample set evaluating and comparing both approaches.
The generalized feed-forward network outperforms the MLP in their out-of-sample
set. Poklepović et al. (2014) forecast the Nelson-Siegel parameters as well as the
Nelson-Siegel-Svensson parameters using vector autoregression (VAR) and neural
networks. The best result delivers the neural network based on the Nelson-Siegel
parameters. In all four studies, the procedure of determining the network architec-
ture and evaluating the models admit of improvement.

Sambasivan and Das (2017) use a Gaussian Process regression, a machine learn-
ing technique, in conjunction with a dynamic modeling strategy. Whenever new yield
curve data is available the hyperparameters of the Gaussian Processes model are up-
dated. This method is compared to a VAR of yields and the Nelson-Siegel parameters
using a rolling window approach. Different short-, medium-, and long-term yields
of the next day are forecast. The VARs produce better results for short-term yields,
while the Gaussian Processes approach performs better in medium- and long-term
yields. Therefore, they suggest a combination of both methods for forecasting the
yield curve. Other forecasting horizons than one day are not considered in the paper.

Primarily, different methods of forecasting the yield curve are applied for the U.S.
market. There are few investigations of other markets. Caldeira et al. (2016a) and
Caldeira et al. (2016b) apply the different forecast methods on the Brazilian bond
market. Caldeira et al. (2016a) investigate an approach combining different forecast
models for different forecast horizons. In Caldeira et al. (2016b), different bench-
mark forecast models including the persistence model, VAR, dynamic Nelson-Siegel,
and arbitrage-free dynamic Nelson-Siegel model are compared with regard to their
forecasting performance. Bose et al. (2006) use different bonds of India as database.
The German bond market is investigated in Zimmermann et al. (2002), while Pokle-
pović et al. (2014) consider the Croatian financial market.

3.2 Setup and Objective

In this section, we formulate the underlying mathematical problem of time series
forecasting in general and the approach as well as the idea of the considered time
series models. While the one-time-step-ahead forecast is simple, there are different
strategies used in the literature to tackle multi-step forecasts of time series. These
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3 Multi-Step Yield Curve Forecasting Using Machine Learning

strategies are also introduced. Finally, we consider different selection procedures like
cross validation and expanding windows to evaluate the models. This section is very
general and presents the background of time series forecasting.

We consider N different variables that will be forecast. There is an observation of
each variable at each time tk P R`0 , k P t1, . . . , nu. The observations of the variables at
time point tk are denoted by xtk P RN . The development of each variable in the course
of time is depicted by n observations and are denoted by xpiq P Rn, i P t1, . . . , Nu. xpiqtk
refers to the observation of the ith variable at time tk.

The goal of a one-time-step-ahead forecast – which is the usual case – is to forecast
the observation xtk`1

based on the current observation xtk . For this purpose, the
functional relationship f : RN ˆ R`0 Ñ RN which maps the value of the time series
at time tk onto its value at time tk`1 has to be estimated and is represented by all
observations xtk , k P t1, . . . , nu, which are the true signal shifted by white noise. We
assume that

xtk`1
“ pfpxtk , tkq ` εtk

where k P t1, . . . , n ´ 1u, pf : RN ˆ R`0 Ñ RN is the estimation of f , and εtk P RN is
a vector of realizations of independent random variables with zero expectation and
equal variance. We choose pf such that it minimizes
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with respect to a suitable norm } ¨ } on Rpn´1qˆN . The forecast value of xtk`1
is then

pxtk`1
“ pfpxtk , tkq.

The actual value of the time series can depend on more than the last value. The
function f is then based not only on xtk but also xtk´1

and so on. Since we consider
only the dependence of xtk on xtk´1

, we restrict this section to this variant. However,
it can be easily transferred to the case of a dependency to more previous values.

3.2.1 Forecasting Models

We aim at comparing linear models that have the advantage of low complexity and
high interpretability with MLPs, fully connected feed-forward neural networks, that
are potentially more capable in learning the underlying distribution of the data.

Persistence Model

The basic time series model is the persistence model. Here, the forecast for the next
time step is simply the current value. Thus, the estimator pf is defined as the identity
function

pf pxtk , tkq :“ xtk .
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This trivial method is often called naive forecast as it does not take into account any
underlying structure. For forecasts of time series without jumps or low volatility, the
persistence model is often hard to beat if the forecast horizon is short. However, the
persistence model quickly becomes inaccurate for long-term forecasts or time series
that change significantly from one time step to the next.

Autoregression and Vector Autoregression

Besides the persistence model, we consider autoregressive and vector autoregressive
models, classical time series forecast models. For literature, we refer to the corre-
sponding chapters in Deistler and Scherrer (2018), Franke (2002), and Tsay (2010).
Both autoregression (AR) and VAR are modeled by a linear function pf .

In an autoregressive model, the value one-time-step-ahead of a variable only de-
pends linearly on its own previous values and on a stochastic term. Since we consider
a first order autoregressive model, denoted by AR(1), we have only a dependency on
the current value of the variable. Further, we assume an additional linearity of the
variable in time. AR(1) is defined by

pf piq
´

x
piq
tk
, tk

¯

:“ bpiq ` wpiq ¨ x
piq
tk
` w

piq
t ¨ tk (3.1)

for k P t1, . . . , nu and i P t1, . . . , Nu where bpiq is the bias and wpiq and w
piq
t are the

coefficients of the linear model.
Since we want to forecast N variables that are described by an AR(1) process,

each f piqpxpiqtk , tkq is estimated separately by an autoregressive model pf piqpx
piq
tk
, tkq. The

biases bpiq and coefficients wpiq and w
piq
t , i P t1, . . . , Nu, of the collection of variables

can be represented by a vector and a diagonal matrix, respectively. Hence, (3.1) can
be reformulated in matrix notation as follows:

pf pxtk , tkq “ b`W ¨

ˆ

xtk
tk

˙

(3.2)

where

b :“

¨

˚

˝

bp1q

...
bpNq

˛

‹

‚

and W :“

¨

˚

˝

wp1q ¨ ¨ ¨ 0 w
p1q
t

... . . . ...
...

0 ¨ ¨ ¨ wpNq w
pNq
t

˛

‹

‚

denote the bias and weight matrix of the model, respectively.
In contrast to the AR(1) model, a vector autoregressive model includes further de-

pendencies. In a first order VAR, denoted by VAR(1), xpiqtk`1
is explained by its own cur-

rent value xpiqtk and the current value of the other model variables xplqtk , l P t1, . . . , Nuztiu.
Analogously to (3.1) we define the VAR(1) as follows:

pf piq
´

x
piq
tk
, tk

¯

:“ bpiq `
N
ÿ

j“1

w
piq
j ¨ x

pjq
tk
` w

piq
t ¨ tk
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where wpiqj is the coefficient of the variable xpjq in the estimation of xpiq. The matrix
notation of the VAR(1) model satisfies (3.2) with bias and weight matrix given by

b :“

¨

˚

˝
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...
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˛

‹

‚

and W :“
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w
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t

˛
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.

Obviously, a VAR(1) is a generalization of an autoregressive model.
The biases and coefficients of autoregressive and vector autoregressive models are

estimated by least squares. Here, the sum of the squared residuals occurring in the
results of every single estimation is minimized. This has the effect that the biases and
coefficients of these models can be obtained by a closed formula if the data matrix
has full rank. Furthermore, these parameters and thus the models are interpretable
which is a huge advantage in contrast to black box machine learning algorithms such
as neural networks. A disadvantage is that only linear interrelations can be mapped
by these models. If the variable can not be described by a linear process, ARs and
VARs forecast evolutions poorly. However, these models are suitable as benchmarks
to evaluate the model performance of more complex models due to their simplicity
and interpretability.

Multilayer Perceptron

The above models are the benchmark for judging the suitability of MLPs. MLPs are
a class of very powerful but not easily usable, fully connected feed-forward neural
networks that constitute the foundational part of the deep learning framework. In
our setting we define MLPs based on Wiese et al. (2020) as follows:

Let φ : R Ñ R be Lipschitz continuous, monotonic function that satisfies φp0q “ 0.
In addition, let L,N0, . . . , NL`1 P N, Θ an Euclidean vector space and let
al : RNl´1 Ñ RNl be an affine mapping for any l P t1, . . . , L ` 1u. A function
pfθ : RN0 ˆΘ Ñ RNL`1, defined by

pfθpxtk , tkq :“ aL`1 ˝ gθ,L ˝ ¨ ¨ ¨ ˝ gθ,1pxtk , tkq

for k P t1, . . . , nu where

gθ,l :“ φ ˝ al for all l P t1, . . . , Lu

and φ being applied component-wise, is called a multilayer perceptron with L hidden
layers. In this setting N0 represents the input dimension, NL`1 the output dimension,
and N1, . . . , NL the hidden dimensions. Furthermore, for any l P t1, . . . , L ` 1u the
function al is defined by

alpxq :“ bl `Wlx

for every x P RNl´1 where, analogously to (3.2), bl P RNl is the bias and Wl P RNlˆNl´1

the weight matrix of the model. With this representation, the MLP’s parameters are
defined by

θ :“ pW1, . . . ,WL`1, b1, . . . , bL`1q P Θ.
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The function φ is referred to as activation function. Furthermore, note that MLPs
have a similar underlying structure as the linear models considered above. Indeed,
the main differences in MLPs are the non-linearity caused by the activation function
φ as well as the increased complexity induced by the hidden layers. The parameters
are estimated by minimizing a loss function. For the adjustment of the bias and
weights, backpropagation is used which computes the gradient of the loss function
with respect to each bias and weight.

Figure 3.1 illustrates one MLP with an input layer of 8 nodes, two hidden layers
where the first one has 11 nodes and the second one 13, and an output layer of 7
nodes. The links of each node to every other node of the following layer can clearly
be seen.

Hidden
Layer

Hidden
Layer

Input
Layer

Output
Layer

Figure 3.1: 2-layer MLP with input dimension N0 “ 8, output dimension N3 “ 7,
and hidden dimensions N1 “ 11 and N2 “ 13

The usage of MLPs is justified since theoretically MLPs are able to approximate
the underlying data structure arbitrarily well. The so-called universal approximation
theorem of one-layer perceptrons states that a feed-forward neural network with a
network architecture of a single hidden layer and a finite number of neurons can ap-
proximate any continuous functions on compact sets, see for instance Hornik (1991)
or Buehler et al. (2019). Note that only one hidden layer is needed, but the number
of neurons may be extremely large and potentially unfeasible to train the model. The
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universal approximation theorem can be easily transferred to MLPs with an output
dimension larger than one and more than one hidden layer which makes the training
of the model easier. This theorem is one of the main reasons for such models being
extremely popular nowadays.

Before we can calibrate the parameters of an MLP (the training process), we have
to decide on some external choices such as the activation function or the number of
hidden layers. Such parameters are examples of so-called hyperparameters that play
an important role in training the model.

Definition 3.1 (Hyperparameters). The parameters of the model that are chosen
prior to the training process and are not learned during the training are called hyper-
parameters. The main hyperparameters of MLPs are

• Network topology: The number L of hidden layers and the numbers N1, . . . , NL

of neurons per hidden layer,

• Activation function φ,

• Parameters of the optimization via backpropagation: e.g. solver, learning rate,
stopping criterion.

Since those hyperparameters have a huge influence on the accuracy of the forecast
obtained by MLPs, we aim to tune these hyperparameters to a quasi-optimal setting.
This task is rather challenging and time-consuming. Therefore, in Section 3.3.2 we
develop an approach how this task may be tackled in an automatized manner based
on the standard hyperparameter optimization like Grid and Random Search.

3.2.2 Forecasting Strategies

The one-time-step-ahead forecast is clear and based on the last known values. How-
ever, many applications in practice require a forecast of a longer period than one
time step resulting in a multi-step time series forecasting task. In this section, we
introduce different strategies implementing a multi-step forecast which can be found
in Chevillon (2007), Sorjamaa et al. (2007), and Taieb et al. (2012). These can be
used for all models presented in Section 3.2.1.

A straightforward approach is to follow the idea of the step by step forecast but
using the forecast values of h ´ 1 previous time steps to forecast the hth time step
where h is the forecast horizon and h ą 0. This leads to the recursive strategy
defined as follows.

Definition 3.2 (Recursive strategy). The recursive strategy involves using a one-time-
step model multiple times where the forecast for the prior time step is used as an
input for making a forecast on the following time step. The value xtk`h is forecast
recursively by

pxtk`h “
pfhpxtk , tkq “

pf1p pfh´1pxtk , tkq, tk`h´1q “
pf1 ˝ ¨ ¨ ¨ ˝ pf1
looooomooooon

h times

pxtk , tkq
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where pf1 : RN ˆ R`0 Ñ RN is the estimated one-time-step-ahead forecast model.

This strategy is also called iterated multi-step (see Chevillon (2007)). Although
constituting a rather straightforward approach to the problem at hand, one quickly
realizes the potential problems. Each forecast comes with an error and by using the
forecast as input we amplify the error and accumulate all the errors along the way.
An alternative approach avoiding the accumulation of errors is the multiple output
strategy that directly forecasts all relevant time steps simultaneously, consequently
using the same model for each time step.

Definition 3.3 (Multiple output strategy). The multiple output strategy involves de-
veloping one model that is capable of forecasting the entire forecast sequence in a
one-shot manner. Let H be the set of considered forecast horizons and set
H :“ 7pH q. Furthermore, we define

xtk`H
“

¨

˚

˝

xtk`h1
...

xtk`hH

˛

‹

‚

P RN ¨H

for k P t1, ..., rnu with rn “ n ´ maxtH u. The relation between xtk`H
and xtk is

estimated by pf : RN ˆ R`0 Ñ RN ¨H . Then, the forecast pxtk`H
of all forecast horizons

h P H is given by
pxtk`H

“ pfpxtk , tkq

where pf is an estimator for f : RN ˆ R`0 Ñ RN ¨H .

Here, the errors are not accumulated. Further, dependencies between different
forecast horizons are considered. However, this strategy has the disadvantage that
the same model is used for short- and long-term forecasts. It can be assumed that the
long-term forecast has a different functional relation than the short-term.

A third method is the direct multi-step forecast strategy.

Definition 3.4 (Direct multi-step forecast strategy). The direct multi-step forecast
strategy involves developing a separate model for each forecast time step. The fore-
cast value is computed by

pxtk`h “
pfhpxtk , tkq

where pfh : RN ˆ R`0 Ñ RN an estimator for fh : RN ˆ R`0 Ñ RN which maps the
relation between xtk`h and xtk for each forecast horizon h P H and k P t1, . . . , n´hu.

Since separate models are used for different forecast horizons, dependencies be-
tween different time-step-ahead forecasts cannot be modeled. However, this method
also prevents the accumulation of errors similar to the multiple output strategy. More-
over, this approach allows the usage of good short-term models and other models
suitable for long-term forecasts availing the different strengths of various models.
Therefore, we employ the direct multi-step forecast strategy and aim at finding ap-
propriate models for the time steps under consideration.
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For completeness let us mention that one can combine the direct multi-step and
recursive strategies in order to benefit from the respective strengths of the two meth-
ods. This approach is referred to as direct-recursive hybrid strategy.

3.2.3 Selection Procedures

We want to find the best model for representing the structure of the data at hand.
Therefore, the models have to be evaluated. For this, the data is split into a training
and validation set. The models are estimated on the training set which means the
parameters of the model, the bias and coefficients, are determined. Based on the
resulting bias and coefficients, the performance measures are calculated on the val-
idation set for each model. We refer to Section 3.3.3 for consideration of different
performance measures and their calculation. The best model is the model with the
best performance measure on the validation set. This can be either the smallest or
the largest depending on the type. In the following, we assume that the smaller the
performance measure, the better the model. Using only one training and validation
set bears the risk of depending extensively on a chosen time period. Therefore, dif-
ferent approaches are developed to avoid this risk. Two approaches are introduced
in the following: cross validation and expanding window approach.

Cross Validation

The cross validation approach is a classical procedure in machine learning that we
adopt to the time series setting. It can be used if the time series is stationary3. During
cross validation the data is partitioned into K ăă n disjoint, approximately equally
sized folds. We control this by dividing the time points tk, k P t1, . . . , nu, into K
complementary sets Tl, l P t1, . . . , Ku, so that

K
ď

l“1

Tl “ tt1, . . . , tnu and pTi X Tj “ Hq ^ p|7pTiq ´ 7pTjq| ď 1q @ i ‰ j.

All observations xtk with tk P Tl build the lth fold. Each fold will be used as the
validation set, while the remaining K ´ 1 folds constitute the training set. Note that
the folds can consist of contiguous as well as non-contiguous data points. In the
following, however, we consider the case of a temporally contiguous data block as a
validation set.

Figure 3.2 illustrates a 4-fold cross validation (K “ 4). In Figure 3.2a the valida-
tion set is contiguous, while in Figure 3.2b is non-contiguous. Each circle represents
one data point xtk . If the circle is colored gray, the data point belongs to the training
set and if it is black, to the validation set.

3A time series is weakly stationary if the mean of the time series is constant for all time points and
the covariance between the values at any two time points depends only on the difference between
the two time points and not on the location of the points along the time axis.
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(a) Contiguous validation set

Data set

Validation set

Training set

Iteration 1

Iteration 2

Iteration 3

Iteration 4

(b) Non-contiguous validation set

Data set

Validation set

Training set

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 3.2: 4-fold cross validation

For each model m P M where M is the set of models under consideration the
splitting results in K scores µml , l P t1, . . . , Ku, of the chosen performance measure
µ, respectively computed on the lth validation set. The validation score for model m
is defined as

µm :“
1

K

K
ÿ

l“1

µml .

The model mcv
µ :“ arg min

mPM
µm with the lowest validation score is selected by this

procedure as the best model with respect to the performance measure µ.

Expanding Windows

The second procedure for model selection is an expanding window approach. For
this purpose, let λ, ν P N and set

K :“

Z

n´ λ

ν

^

.

Our approach is as follows: We start our iterative procedure with the training set

xtr1 :“
`

xt1 ¨ ¨ ¨ xtλ
˘T
P RλˆN
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of the time series’ first λ data points and the validation set

xval1 :“
`

xtλ`1
¨ ¨ ¨ xtλ`ν

˘T
P RνˆN

consisting of the time series’ subsequent ν data points. Thus, we train every model
m P M on xtr1 and use it for forecast on xval1 . For this training and test set, we obtain
the score µm1 . The training set is then expanded by ν observations and we obtain

xtr2 :“
`

xt1 ¨ ¨ ¨ xtλ`ν
˘T
P Rpλ`νqˆN

as the new training set. The new validation set on which we compute the score µm2 is
given by

xval2 :“
`

xtλ`ν`1
¨ ¨ ¨ xtλ`2ν

˘T
P RνˆN .

We repeat this procedure further K ´ 2 times and in each iteration l P t1, . . . , Ku we
obtain an error score µml for model m P M . Figure 3.3 illustrates the training and
validation sets for the expanding window approach exemplary. Each circle represents
one data point. The color indicates whether the data point belongs to the training or
validation set. Gray points are members of the training set, black ones correspond to
the validation set.

Data set

Validation set

Training set

Iteration 1

Iteration 2

Iteration 7

Iteration 8

...
...

Figure 3.3: Expanding window approach with λ “ 4 and ν “ 2

The validation score for model m P M is defined as

µm :“
1

K

K
ÿ

l“1

µml .

The model mew
µ :“ arg min

mPM
µm with the lowest validation score is selected by this

procedure as the best model with respect to the chosen performance measure µ.
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3.3 Approach

The purpose of this paper is to investigate whether deep learning has a benefit to
forecasting the yield curve compared to classical models. More specifically, we aim at
finding out which of the above-mentioned models is best suited for forecasting. For
this, we use the European yield curve published by the ECB since it is a macroeco-
nomic indicator of an economic area and is becoming increasingly important. Fur-
thermore, the data are freely available. In this section, we describe our forecasting
approach of the yield curve and the evaluation of the different models. This includes
the specification of the considered models, the chosen performance measures, and
the selection procedure. Additionally, we introduce our hyperparameter optimization
approach. The description of the data and results of our analysis are summarized in
Section 3.4.

The yield curve data consists of different observations xtk P RN , tk P R`0 , where
xtk contains the yields of N different times to maturity at the time point tk. The
considered times to maturity are the same for all tk. Since the yield curve shows
structural changes over time and is not stationary (see Section 3.4.1), we do not di-
rectly forecast the absolute yields of different times to maturity. Instead, we consider
the increments of the absolute yields defined by

4hxtk “ xtk ´ xtk´h

for the considered forecast horizons h P H . We use the same n time points tk as
input data for all forecast horizons h and estimate the relation between 4hxtk`h and
4hxtk for k P t1, . . . , nu by a function pf . Since the level of the yield curve is not
observable in the increments, we add the mean value of the considered yields xtk at
time point tk as an additional input variable supplementing the increments and the
time point. The forecast increment is then

p4hxtk`h “
pfhp4hxtk , xtk , tkq

for any k P t1, . . . , nu and forecast horizon h P H where pfh : RN ˆ R ˆ R`0 Ñ RN .
The function pfh is estimated respectively by the different models mentioned above.
The forecast for the yield curve xtk`h is then given by

pxtk`h “ xtk `
p4hxtk`h .

Since it is not clear whether tk as an additional feature has an impact on the esti-
mation, we also consider a function independent of tk for the relation between4hxtk
and 4hxtk`h. Then, pfh : RN ˆ RÑ RN is the estimation of fh : RN ˆ RÑ RN with

p4hxtk`h “
pfhp4hxtk , xtkq.
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3 Multi-Step Yield Curve Forecasting Using Machine Learning

3.3.1 Models under Consideration

As a baseline, we consider a persistence model for yield curve forecasts, see Sec-
tion 3.2.1. This is equivalent to forecasting an increment of zero. As linear models,
we consider an AR(1) and VAR(1) model for the estimation of the increments for all
forecast horizons. Thus, we assume that the current value only depends on its previ-
ous one. This is justified by the analysis of the autocorrelation and partial autocorre-
lation (see Section 3.4.1). The AR and the VAR with order 1 are the simplest models
which also speaks for their usage since we want to compare models of low complexity
with very complex one and see how strong the simplest models are. Furthermore,
the order of the linear model coincides with the order chosen in the literature, see
among others Diebold and Li (2006). For comparison, we consider MLPs with the
same input data as the linear models. Consequently, the MLP has an input layer with
dimension N0 “ N`1 and N0 “ N`2, respectively, and output dimension NL`1 “ N
where N are the number of the forecast yields, see Section 3.4.1, and L is the number
of hidden layers which is a result of the hyperparameter optimization.

3.3.2 Hyperparameter Optimization

In our application, the MLP is the only model we consider that has tunable hyper-
parameters. However, our hyperparameter optimization can be used for all machine
learning algorithms with tunable hyperparameters and is introduced for such models
in general.

Hyperparameter optimization is a crucial step in many advanced machine learning
applications. One of the standard techniques in this regard is the Grid Search typ-
ically based on the cross validation method. It aims at finding the best performing
hyperparameter combination from a given set V ˚, a set of hyperparameter combina-
tions under consideration. For this, a cross validation is run for all hyperparameter
combinations in V ˚ and the combination with the smallest performance measure is
selected. Another method is Random Search. It differs from Grid Search in so far as
that the performance measure is not calculated for every hyperparameter combina-
tion in V ˚ but for a random subset of V ˚ selected uniformly. The size of this random
subset is prespecified, cf. Bergstra and Bengio (2012).

One obvious drawback of these methods, especially for Grid Search, is that the set
V ˚ needs to be specified in advance. Often it is not known in which range the hy-
perparameters should be. Choosing V ˚ too small may result in not finding a suitable
model, choosing the grid too large may not be feasible. Often the computing capacity
and the available time determine the composition of V ˚. In order to specify V ˚ such
that it allows for efficient optimization and yet yields an appropriate model for the
task at hand, it is beneficial to choose V ˚ adjusted to the data.

In this section, we develop an automatic approach for hyperparameter optimiza-
tion. Since our extension can apply to other applications, we introduce it in an
abstract manner. It is based on the set of all hyperparameter combinations that may
possibly be considered denoted by V . It is not the set of all possible combinations
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since this is in general unbounded. However, V is assumed to be very large and not
feasible for Grid Search. Our approach aims at restricting V to a feasible subset V ˚

by selecting only those hyperparameters that are plausible good candidates for the
best model.

Consequently, our approach for hyperparameter optimization consists of the fol-
lowing two steps:

(i) Preselection of hyperparameter combinations V ˚ from V based on multiple
validation curves and a suitable selection procedure.

(ii) Finding the best hyperparameter combination in V ˚ via Grid Search or Random
Search.

Step 1: Preselection of hyperparameters

In the first step, we find a suitable set of values for each hyperparameter p P P where
P is the set of the considered hyperparameters. For this, we choose an arbitrary hy-
perparameter p and the corresponding set Vp of possible values of the hyperparameter
p, while the other hyperparameters remain fixed. Vp is a subset of V . To obtain the
hyperparameter sets, we first define Vp and V results by V :“

Ś

pPP Vp. Vp is chosen
very large, spanning a wide range of possible values. The grid Vp of possible hyper-
parameter values which constitutes the basis of the preselection technique is selected
randomly. For this purpose, we specify lower and upper bounds for the respective
hyperparameter and select uniformly at random a given number of values within this
interval. Note that Vp may also be chosen in a different way.

Subsequently, a Grid Search with a performance measure µ is applied where only
the one currently considered hyperparameter varies. Based on a considered selection
procedure, it results in K training and corresponding validation sets. The validation
score of the model m on the validation set, l “ 1, .., K, is denoted by µm,p,vl where
v P Vp denotes the value of the hyperparameter p. The averaged measure over the K
validation scores as well as the empirical standard deviation are then defined by

µm,p,v :“
1

K

K
ÿ

l“1

µm,p,vl ,

σµm,p,v :“

g

f

f

e

1

K ´ 1

K
ÿ

l“1

pµm,p,vl ´ µm,p,vq2.

Based on these values, we can compute the empirical mean and standard deviation
on the whole grid Vp of the hyperparameter p as follows:

µm,p :“
1

7pVpq

ÿ

vPVp

µm,p,v,

σµm,p :“

d

1

7pVpq ´ 1

ÿ

vPVp

pµm,p,v ´ µm,pq2.
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Figure 3.4: Validation curve, different means of the performance measure, and cal-
culated quantities in the preselection step of the hyperparameter opti-
mization, K “ 4
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Figure 3.5: Preselection criteria of the hyperparameter optimization
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The function mapping v onto µm,p,v is referred to as validation curve. Figure 3.4
illustrates this curve, the various values under µ as well as the resulting statistical
properties.

If µm,p,v fluctuates only slightly among the various values of p, i.e. if σµm,p is small,
the hyperparameter p has no significant impact on the performance of the MLP and
we consider the default value for p without loss of generality. If various values of
the hyperparameter result in the same error, we choose the minimum value. The
selection of possible values for the hyperparameter p is based on the following criteria
which aim at ensuring that the forecast error is small and not very volatile:

• Criterion 1: Select all values v P Vp satisfying

µm,p,v ď min
jPVp

´

µm,p,j ` σµm,p,j
¯

“: c1.

• Criterion 2: Select all values v P Vp satisfying

µm,p,v ď min
jPVp

´

µm,p,j
¯

` σµm,p “: c2.

• Criterion 3: Select all values v P Vp satisfying

µm,p,v ` σµm,p,v ď min
jPVp

´

µm,p,j ` σµm,p,j
¯

` std
´

µm,p,v ` σµm,p,v
¯

where std is the standard deviation.

Criterion 1 is concerned with the forecast error for each hyperparameter value
separately. In contrast to this, Criteria 2 and 3 are concerned with the relations
among the performance measures of the other hyperparameter values. Criterion 2
takes into account the volatility of the validation curve. In Criterion 3 the standard
deviation of the upper bound of the confidence interval of the validation curve is
considered. Hence, Criterion 3 excludes those values having a low mean performance
score but a high fluctuation of the scores across the K validation sets. That is to
say, the performance measures vary strongly among the various folds and thus the
forecast cannot be trusted.

In Figure 3.5 the three criteria with their boundaries are illustrated for the hy-
perparameter p being the activation function. Depending on the criterion different
hyperparameter values are selected. Criterion 1 selects the identity function, while
Criterion 2 additionally selects the logistic function. Criterion 3 chooses the identity
and logistic function as Criterion 2. Since, as shown in Figure 3.5, the selected values
of the hyperparameter p and thus the restriction of Vp to V ˚

p depend on the selec-
tion criterion, we combine these criteria by taking the intersection of the individual
selections. Note that the set V ˚

p resulting from the intersection of Criteria 1 and 2
is non-empty since always one of these two criteria leads to a subset of the selection
obtained by the other criterion. Indeed, we have

ci ď cj ùñ V ˚
p,i Ď V ˚

p,j
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for all i, j P t1, 2u and i ‰ j. The parameter set selected by Criterion 3 can have
an empty intersection with the parameter grids selected by Criterion 1 and Crite-
rion 2. In this case, we take the union rather than the intersection since we cannot
obtain a consistent set of suitable values for the hyperparameter p. Thus, all val-
ues that are relevant to any of the three criteria are chosen. Applying this approach
for all hyperparameter p P P results in a selected hyperparameter combination set
V ˚ :“

Ś

pPP V ˚
p .

Step 2: Finding the best hyperparameters

Next, we apply Grid or Random Search based on the same selection procedure to the
set V ˚ obtained in Step 1 in order to find the best hyperparameter combination of
the considered machine learning model, i.e. leading to the smallest validation score
µm averaged over the K validation sets, cf. Section 3.2.3.

3.3.3 Performance Measures

After the description of the considered models in the previous sections, the different
performance measures are listed in the following. We consider three performance
measures evaluating the models: the mean squared error (MSE), the mean absolute
error (MAE), and the maximum error (MAXE). Of all these measures, the MSE is the
best known. It is defined by

MSE :“
1

N

1

n

N
ÿ

i“1

n
ÿ

k“1

´

x
piq
tk
´ px

piq
tk

¯2

where pxtk are the forecasts, xtk are the true values at time tk, k P t1, . . . , nu, N
the number of the considered yields, and n the number of observations for which a
forecast is made. The MSE is not only used for evaluating the models but also as the
loss function minimized during the training of the MLP.

The MAE is calculated by

MAE :“
1

N

1

n

N
ÿ

i“1

n
ÿ

k“1

|x
piq
tk
´ px

piq
tk
|.

Mathematically, the MAE corresponds to the `1-norm and is more interpretable than
the MSE since it indicates how far the forecast deviates from the true value on aver-
age. Last, we consider the MAXE calculated by

MAXE :“ max
i“1,...,N ;k“1,..,n

´

|x
piq
tk
´ px

piq
tk
|

¯

.

Since these performance measures specify the error in the forecast, a smaller measure
is better than a larger one.
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3.3.4 Selection Procedure

In order to choose a suitable model and appropriate corresponding hyperparameters
of the MLP, we combine cross validation with an expanding window approach. Our
motivation is based on the following observations:

• Neural networks allow for a vast amount of hyperparameter combinations that
have a significant impact on the quality of the forecast. The set of possible
hyperparameter combinations cannot easily be reduced by a simple analysis of
the data.

• Even after a preselection of hyperparameters, we have too many time periods
for efficiently running a proper expanding window loop with reasonable time
shifts for hyperparameter optimization.

• We want to choose the best model via expanding windows since this reflects a
real-world application better by not looking into the future.

We optimize the hyperparameters of the MLP that belong to one of the categories
in Definition 3.1 via our approach introduced in Section 3.3.2. Due to our motiva-
tion, we use a 4-fold cross validation with contiguous data points as a validation set
in the approach. The loss function of the MLPs which is minimized is the MSE. Af-
ter selecting the best hyperparameter combination, the classical time series models
and the MLP are evaluated by an expanding window approach. We have a total of
60 validation sets. As performance measure the MSE, MAE, and MAXE of the val-
idation sets are compared. Since the performance of the MLP depends on random
states which specify e.g. the initial weights, 45 MLPs are run with the same optimal
hyperparameters but different initial random states. The mean of the performance
measures of all 45 MLPs is used as the performance of the MLP.

Since we do not want to find the best MLP but comparing the models and ana-
lyzing the benefit of MLPs towards classical models, cross validation and expanding
windows can be combined. It is important that the evaluation of the models fits the
practical application which is the case here. How we choose the hyperparameters of
the MLP is independent of this. MLPs with better performance measures on the ex-
panding window approach can be found if the hyperparameter optimization is based
on the same selection procedure. However, it is more computationally intensive.

3.4 Forecasting the European Yield Curve

In this section, we describe the data of the European yield curve, the considered
yields, time periods, and forecast horizons. The results of the evaluation are also
presented in this section.
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3.4.1 Yield Curve Data

For estimation and validation of the models we use the zero-coupon yield curve for
triple-A-rated government bonds published by the ECB4. The zero coupon yields of
times to maturity of 3, 6, 9 months, and from one year to 30 years in one year steps
are provided. Data points are daily and compose a time span of 15 years, from 2004
September 6th until 2019 August 31th. It is a sample of 3,834 daily observations. As
calendar, the trading day calendar is used. According to this and the data, one year
has 256 trading days on average, half a year 128 trading days, one quarter of a year
64 trading days, and one month 21 trading days. These are also the different forecast
horizons we consider besides one trading day.
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Figure 3.6: Evolution of considered zero-coupon yields from 2004 September 6th to
2019 August 31th

Figure 3.6 shows the evolution of selected zero-coupon yields over calendar time.
All yields decrease in the last quarter of 2004 and the first half of 2005. Then a
significant increase of the short-term yields from about 2 % to 4 % can be seen before
the financial crisis of 2007. Simultaneously, the long-term yields do not increase to
the same extent, but all yields are close together. In the second half of 2008, the
short-term yields rapidly decrease, while the other yields go down slower. Until 2017
there is a tendency of decline in the yields, while afterwards the level remains steady.
This is followed by a decrease of the yields in 2019 once more.

Table 3.7 reports the descriptive statistics for selected yields based on the data.
The time to maturity is measured in years. For each time series the mean, standard
deviation, minimum, maximum, skewness, kurtosis, autocorrelation for a lag of 1,
256 as well as 512 trading days, and the augmented Dickey-Fuller (ADF) test statistic
are shown. The following well-known facts regarding yield curve data5 are also seen

4https://sdw.ecb.europa.eu/browse.do?node=9691417, accessed on 2020 July 14th.
5See Diebold and Li (2006), p. 343.
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here: The average mean yield curve is upward sloping, long-term yields are less
volatile and more persistent than short-term yields, and the autocorrelations are very
high even after one year (corresponds to the lag of 256). Due to the high lag-1
autocorrelation, we can assume a linear relation between the time series and its own
with lag-1 delayed values. The ADF test suggests that each time series has a unit root
and is consequently non-stationary.

Time to Mean Std. Dev. Min Max Skew Kurt Autocorrelation ADF
maturity Lag-1 Lag-256 Lag-512
(in years) (10´2) (10´2) (10´2) (10´2)

0.25 0.8191 1.5317 -0.9300 4.3255 0.9203 -0.4952 0.9998 0.8154 0.5841 -0.9450
0.5 0.8453 1.5680 -0.9147 4.3570 0.9055 -0.5558 0.9999 0.8201 0.5957 -0.9169
0.75 0.8739 1.5875 -0.9126 4.4474 0.8768 -0.6046 0.9999 0.8313 0.6161 -0.8467

1 0.9047 1.5990 -0.9079 4.5396 0.8392 -0.6556 0.9999 0.8435 0.6393 -0.7662
2 1.0463 1.6156 -0.9337 4.7138 0.6537 -0.9012 0.9998 0.8819 0.7239 -0.6263
3 1.2117 1.6142 -0.9567 4.7385 0.4725 -1.1288 0.9998 0.9048 0.7823 -0.5547
4 1.3903 1.6052 -0.9484 4.7343 0.3187 -1.2921 0.9997 0.9184 0.8201 -0.4524
5 1.5704 1.5927 -0.9188 4.7304 0.1912 -1.3964 0.9997 0.9266 0.8442 -0.3571
6 1.7435 1.5788 -0.8755 4.7291 0.0857 -1.4565 0.9997 0.9313 0.8592 -0.2711
7 1.9040 1.5650 -0.8243 4.7358 -0.0019 -1.4856 0.9997 0.9337 0.8680 -0.1943
8 2.0494 1.5520 -0.7752 4.7484 -0.0745 -1.4939 0.9997 0.9345 0.8726 -0.1438
9 2.1786 1.5402 -0.7274 4.7624 -0.1346 -1.4892 0.9997 0.9343 0.8744 -0.0074

10 2.2920 1.5295 -0.6803 4.7763 -0.1837 -1.4769 0.9997 0.9334 0.8742 0.0366
15 2.6628 1.4877 -0.4807 4.8722 -0.3130 -1.3962 0.9997 0.9253 0.8627 0.0812
20 2.8213 1.4534 -0.3473 4.9849 -0.3279 -1.3546 0.9996 0.9188 0.8553 0.1051
25 2.8773 1.4230 -0.2659 5.0984 -0.2906 -1.3484 0.9995 0.9150 0.8560 -0.0294
30 2.8868 1.3984 -0.2105 5.1750 -0.2302 -1.3562 0.9994 0.9114 0.8587 -0.2253

Table 3.7: Descriptive statistics for specific yields of the ECB over the period 2004
September 4th to 2019 August 31th (3,834 daily observations)

For the yield curve forecasting, we consider different times to maturity and their
relating yields. They are selected according to containing a mix of short-, medium-,
and long-term yields. We use the yields with times to maturity of 6 months, 1, 3, 5,
7, 10, and 20 years. For all time points, these seven yields are considered. Remember
that we do not directly forecast the absolute yields of different times to maturity
but the increments of the yields. The descriptive statistic of the increments can be
found in Appendix B. It contains the lag-1, lag-21, lag-256 autocorrelation, and the
lag-2 partial autocorrelation. The lag-1 partial autocorrelation corresponds to the
lag-1 autocorrelation and is therefore not listed separately. The difference between
the lag-1 partial autocorrelation and the lag-2 one is very large for all increments
except the lag-1 increments. Here, the lag-1 autocorrelation is already small. This
observation indicates that its previous to last value does not have a large direct impact
on the current value which justifies the assumption of using only the previous values
as input variables. We use the mean value of the seven considered yields as an
additional endogenous variable as an indicator of the yield level.

The data has a clear, structural change in the first three months of 2009, cf. Fig-
ure 3.6. To avoid including this time span, we consider the different increments of
the yields from 2010 March 1st to 2019 August 31th. Therefore, we use the incre-
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ments of one year, as the maximum forecast horizon, after the structural change. The
data set includes 2,430 daily observations.

3.4.2 Evaluation

In this section, we present the numerical results of the model comparison as ex-
plained in Section 3.3. The best hyperparameter combination of the MLPs is chosen
via our approach introduced in Section 3.3.2 and a 4-fold cross validation over the
period 2010 March 1st to 2019 August 31th. Table 3.8 contains the respective best
hyperparameter combination for each of the forecast horizons under consideration.
These MLPs are used for the evaluation of the models via expanding windows. In
Table 3.8a the time point tk is not used as an additional feature, while it is used in
Table 3.8b. The hyperparameters are described by the terms of the scikit-learn pack-
age. Here, the network architecture specifies the number of hidden layers and their
neurons. The input layer and output layer are fixed. Lbfgs is an optimizer in the fam-
ily of quasi-Newton methods, adam refers to a stochastic gradient-based optimizer
proposed by Kingma and Ba (2014), and sgd to stochastic gradient descent.

(a) Without time point tk as additional input variable

Hyperparameter
Forecast horizon (in trading days)

1 21 64 128 256
Network architecture (55, 40, 60, 60) (10, 65) (55) (25, 5, 80, 55) (70, 85, 25)
Activation function logistic logistic logistic identity tanh
Optimizer lbfgs adam adam sgd sgd
Alpha 0.797 0.797 0.0855 0.0855 0.0015
Learning rate constant adaptive constant adaptive adaptive
Initial learning rate 0.001 0.001 0.001 7.42e-05 0.000315
Momentum 0.9 0.729 0.9 0.767 0.951
Beta 1 0.9 0.684 0.92 0.9 0.9
Beta 2 0.999 0.999 0.262 0.999 0.999
Normalization MinMaxScaler MinMaxScaler MinMaxScaler MinMaxScaler StandardScaler

(b) With time point tk as additional input variable

Hyperparameter
Forecast horizon (in trading days)

1 21 64 128 256
Network architecture (60, 45, 45, 80) (10, 65) (85) (90, 20, 75, 40) (35, 75, 70, 75)
Activation function identity logistic logistic tanh relu
Optimizer lbfgs adam adam sgd sgd
Alpha 0.797 0.791 0.797 0.797 0.00672
Learning rate constant adaptive adaptive adaptive adaptive
Initial learning rate 0.001 0.000483 0.001 7.42e-05 0.000315
Momentum 0.9 0.767 0.729 0.767 0.886
Beta 1 0.9 0.61 0.075 0.563 0.72
Beta 2 0.999 0.999 0.999 0.343 0.999
Normalization MinMaxScaler MinMaxScaler MinMaxScaler MinMaxScaler StandardScaler

Table 3.8: Hyperparameter values of the best MLP
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The MLPs with these hyperparameters are used in the expanding window approach
comparing the different models. The data from 2010 March 1st to 2013 August 31th

constitute the first training set for training the models. The trained models are then
evaluated on the next month from 2013 September 1st to 2013 September 30th. Sub-
sequently, the training set is extended by the previous validation set and the next
month is used as the new validation set. We proceed until 2018 August 31th. In total,
we have 60 different validation sets and scores which are averaged to obtain one
score. As performance measure, we consider the MSE, MAE, and MAXE of the vali-
dation sets. Remember that 45 MLPs are run with the same optimal hyperparameters
but different initial random states. The mean of their performance measures is used
as the performance of the MLP. The results of the models evaluation are summarized
in Table 3.9.

The MSE is so low because the yields are less than one and the MSE becomes even
smaller due to squaring. The other performance measures are larger by an order of
magnitude. The MLP is the best model for all performance measures and forecast
horizons except for the MAXE and a forecast horizon of one trading day as well as
128 trading days. The AR(1) model performs best in this case. The next best model
after the MLPs is the persistence model for short-term up to medium-term forecast
horizons under the performance measure of MSE. Under the MAE and MAXE there
is one forecast horizon each of the short-term up to medium-term forecast horizons
where an autoregressive model is the best classical statistical model instead of the
persistence model. The AR(1) model would be chosen after the MLPs for a forecast
horizon of 128 trading days and the VAR(1) model for a forecast horizon of 256
days. The differences between the performance measure of the best MLP and the
best other models increase with the forecast horizon. The benefit of using a MLP is
greatest for a forecast horizon of 256 trading days. For the MAE the difference of the
best classical statistical model and the MLP is 0.06927 % which means that the MLP
is 0.06927 % closer to the true value on average than the best classical statistical
model. This difference is clearly noticeable for large amounts as well as in times of
low interests.

Whether a forecast with time point tk as an additional variable is better than with-
out can not be said in general. However, the consideration of the time point tk is
better for the best model for medium-term forecast horizons and worse for short-
and long-term forecast horizons.

In Table 3.10 the different runs of the MLP are compared to the best model of the
classical statistic models for the different performance measures. For this, we state
the minimum and maximum error of the different MLP runs as well as the maximum
quantile q P N of the MLP errors such that the error of the best classical statistic model
is larger than the error in q % of the runs of the best MLP. A quantile of zero means
that the error of the best classical statistic model is smaller than the minimum error
of the MLPs. That is the case for the MAXE and the forecast horizon of one trading
day and 128 trading days, see Table 3.10c. If the error of the best classical statistic
model is larger than the maximum error of the MLPs the quantile is 100 %. The MLP
is the best model in all runs. This is given for the MSE and MAXE for two forecast
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(a) Forecast horizon of 1 trading day

MSE MAE MAXE
(10´8) (10´4) (10´4)

Persistence 7.3187 1.8360 9.8059
AR(1) 7.3452 1.8421 9.7803
AR(1) with tk 7.3472 1.8395 9.8234
VAR(1) 7.4556 1.8563 9.8211
VAR(1) with tk 7.4532 1.8533 9.8594
MLP 7.3182 1.8322 9.8538
MLP with tk 8.3390 1.9874 10.1513

(b) Forecast horizon of 21 trading days

MSE MAE MAXE
(10´6) (10´4) (10´4)

Persistence 1.4935 8.7691 29.5428
AR(1) 1.5534 8.9267 29.7112
AR(1) with tk 1.5720 8.7395 29.6659
VAR(1) 1.7237 9.4537 30.9675
VAR(1) with tk 1.7503 9.3621 30.8799
MLP 1.4808 8.4356 29.2209
MLP with tk 1.4717 8.3906 29.2636

(c) Forecast horizon of 64 trading days

MSE MAE MAXE
(10´6) (10´4) (10´4)
4.8529 15.9896 44.7575
5.0147 16.3902 44.8930
5.5063 17.1468 46.7420
5.2913 17.4416 47.5278
6.6261 19.7642 51.6741
4.7320 15.6084 44.6375
4.5727 14.7706 43.6202

(d) Forecast horizon of 128 trading days

MSE MAE MAXE
(10´6) (10´4) (10´4)

Persistence 10.5736 23.9950 59.8552
AR(1) 9.7324 23.7923 56.8065
AR(1) with tk 12.8400 28.9881 62.6128
VAR(1) 13.5881 28.4764 62.2101
VAR(1) with tk 11.5109 27.9145 59.3082
MLP 9.4606 22.9513 60.3836
MLP with tk 9.5980 23.1332 61.2511

(e) Forecast horizon of 256 trading days

MSE MAE MAXE
(10´6) (10´4) (10´4)

24.9299 36.4237 79.2252
15.3891 30.9599 72.9785
18.0064 34.3573 67.9758
11.8774 27.4735 66.26655
11.9210 26.9073 62.6852
7.1175 19.9796 54.6273
8.6477 22.0782 56.8995

Table 3.9: Performance measure of the different forecast models. For all models,
the own last value and the mean of the yields are used as input. Addi-
tionally, the time point tk is considered in the models.
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(a) MSE

Forecast Best classical
Best MLP

Best classical Minimum Maximum Quantile
horizon statistical model model MLP MLP

(trading days) (10´6) (10´6) (10´6) (in %)
1 Persistence MLP 0.073187 0.073129 0.074495 91
21 Persistence MLP with tk 1.4935 1.4454 1.4936 100
64 Persistence MLP with tk 4.8529 4.1820 5.0653 96

128 AR(1) MLP 9.7324 8.8540 10.5607 80
256 VAR(1) MLP 11.8774 6.3349 8.3300 100

(b) MAE

Forecast Best classical
Best MLP

Best classical Minimum Maximum Quantile
horizon statistical model model MLP MLP

(trading days) (10´4) (10´4) (10´4) (in %)
1 Persistence MLP 1.8360 1.8314 1.8471 95
21 AR(1) with tk MLP with tk 8.7395 8.3204 8.4804 100
64 Persistence MLP with tk 15.9896 13.6958 15.7232 100

128 AR(1) MLP 23.7923 22.0694 24.3601 94
256 VAR(1) with tk MLP 26.9073 18.5571 22.6239 100

(c) MAXE

Forecast Best classical
Best MLP

Best classical Minimum Maximum Quantile
horizon statistical model model MLP MLP

(trading days) (10´4) (10´4) (10´4) (in %)
1 AR(1) MLP 9.7803 9.8283 9.9216 0
21 Persistence MLP 29.5428 28.8869 29.5264 100
64 Persistence MLP with tk 44.7575 42.4912 44.9933 96

128 AR(1) MLP 56.8065 57.2432 64.2952 0
256 VAR(1) with tk MLP 62.6852 50.9110 59.3307 100

Table 3.10: Comparison of the best classical statistical model to the 45 runs of MLP
with the best hyperparameter combination

horizons, cf. Table 3.10a, and for the MAE for three, cf. Table 3.10b. In all other
cases, the best classical statistical model lies in the quantile over 90 % except for the
MSE and forecast horizon of 128 trading days. Here the quantile is still large at 80 %.
The better performance of the MLP compared to the classical model is clearly visible.

Summarizing, the MLP outperforms the classical statistical models for every con-
sidered forecast horizon under the MSE and MAE. Under the MAXE the MLP is the
best in three out of five forecast horizons. The best model after the MLP is the per-
sistence model for short- and medium-term forecast horizon (until 64 trading days).
The benefit of using a MLP over the persistence model is very small for the fore-
cast horizon of one trading day and 21 trading days. Therefore, the question arises
whether the costs of hyperparameter optimization are justifiable in this case. Based
on the results above, we suggest to use a persistence model for a forecast horizon of
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one trading day since the yield curve does not fluctuate much within one trading day.
For medium-term forecast horizons the benefit cost relation should be considered in-
dividually depending on the requirements of the model’s accuracy and simplicity for
a specific application. For long-term forecast horizons, however, we recommend to
a MLP since it’s forecast quality in that context is significantly superior to all other
models under consideration.

3.5 Conclusion

The evolution of the yield curve is decisive for various areas and applications. For
this reason, accurate forecasting is necessary. Therefore, we investigated the benefit
of using deep learning algorithms that are potentially more capable in learning the
underlying distribution compared to linear models that have the advantage of low
complexity and high interpretability in the context of yield curve forecasting. As a
data basis, we used the European yield curve data published by the ECB. For our ex-
amination, we compared the performance of persistence, autoregressive, and vector
autoregressive models with MLPs. Since the performance strongly depends on the
length of the forecast time interval, we considered short-, medium-, and long-term
forecast horizons that result in different models that are appropriate. Evaluating the
models an expanding window approach with 60 validation sets and the performance
measures MSE, MAE, MAXE were used.

A crucial step for MLPs is the hyperparameter optimization. We extended standard
procedures such as Grid and Random Search with a preselection of promising hyper-
parameter values. This is done automatically based on three criteria. Based on the
preselection Grid or Random Search is run. Our method allows to search a larger
hyperparameter space than usually possible with standard methods. It can be eas-
ily transferred to other applications and machine learning algorithms. We used our
approach to optimize the hyperparameters of the MLPs on the data of the European
yield curve.

The result of the hyperparameter optimization was the basis for the evaluation of
the MLP. Since the performance of the MLP depends on random states which specify
e.g. the initial random states, 45 MLPs were run with the same optimal hyperpa-
rameters but different initial random states. The performance measure of the MLP
was then derived from the averaged performance of the 45 MLPs. Then, these were
compared to the performance of the persistence and the simple linear models. For all
considered forecast horizons the MLP outperformed the classical statistical models
under the performance measure of MSE and MAE. The second-best model was the
persistence model or the autoregressive model depending on the forecast horizon.
Under the performance of MAXE, the MLP was the best model at three of five forecast
horizons. For the remaining two forecast horizons the autoregressive model outper-
formed the MLP. However, we do not suggest to use MLPs for all forecast horizons.
For short-term forecast horizons, the difference between the MLP and the persistence
model is so small that the cost of training and optimizing the MLP should influence
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the model choice considerably. For long-term forecast horizons, MLPs should be used
in any case.

The models do not consider macroeconomic variables as well as different regimes
of the yield curve as exogenous variables. These are enhancements for further stud-
ies since our focus was on the comparison of linear models with MLPs and we did
not want to develop the best model for forecasting the yield curve including other
exogenous variables which e.g. represent the economic situation. Besides the consid-
eration of additional variables, the MLPs can be replaced by other machine learning
algorithms like recurrent neural networks and Random Forest. This is left for further
studies.
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4 Chance-Risk Classification of a
Portfolio consisting of
State-Subsidized Pension Products
and its Impact on Customer
Consulting

Consulting in the finance industry mostly consists of two parts, at least during the
initial consultation. The customer’s risk profile is determined based on a question-
naire and is aggregated into a risk class. Afterwards, matching products should be
offered. For this, investment products are classified into different asset classes. This
procedure is intended to ensure that the customer is recommended products that
are suited for him and match his risk preference. In Germany for example, this is
regulated in § 64 (3) of the Wertpapierhandelsgesetz. The same procedure has also
been established within the insurance industry for consulting on retirement provision
products. This approach is simple and practical, but it does not include products al-
ready owned by customers. Due to diversification effects, however, the total view of
the customer’s portfolio may differ from an individual view of each product which
may result in different investment recommendations.

For state-subsidized pension products, we extend the above described consulting
approach to include the customer’s portfolio. We choose this type of product since
there is a unified classification by PIA1 in Germany which is missing for other financial
products. Therefore, we are restricting the scope of our study to this country only.
Each state-subsidized pension product is assigned to one of five so-called CRCs2.
Based on this classification of single products, we develop a method for determining
the CRC of a portfolio. As a result, we are able to

• determine the maximum premium in a new pension product so that the cus-
tomer’s portfolio has no larger CRC than his risk preference.

• offer a wider range of products to the customer. This is particularly important in
the insurance industry where each insurance company offers significantly fewer
products than in the banking sector.

1PIA: Produktinformationsstelle Altersvorsorge gGmbH.
2CRC: chance-risk class.
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• compensate for previously incorrect consulting via the portfolio.

• create new pension products with a specific CRC as upper bound.

Additionally, we introduce a procedure for determining the CRC of a state-subsidized
pension product over the contract term since it can be affected by the current evolu-
tion of the capital market.

This chapter is divided into four sections. In Section 4.1, we describe the classifi-
cation of state-subsidized pension products by PIA. This includes the description of
the chance and risk parameters calculation of the classification in Section 4.1.1 as
well as the class boundaries definition in Section 4.1.2. The following section inves-
tigates the properties of the chance and risk parameters as well as their mappings.
On the basis of these, the existence of a diversification effect is shown and the CRC
of a portfolio is determined. The results are summarized in Section 4.3. At this,
both a portfolio consisting of two new pension products, Section 4.3.2, and one of an
already purchased and a new pension product, Section 4.3.3, are considered. Fur-
thermore, implications for customer consulting are given on the basis of our results.
Finally, different approaches for determining the evolution of the pension product’s
CRC over the contract term are introduced in the last section.

4.1 Classification of State-Subsidized Pension Products

Since 2017 it has been a legal requirement that every state-subsidized pension prod-
uct sold in Germany must be classified in one of five CRCs and that this classification
is shown on the corresponding PIB3. This classification is assigned by PIA and based
on a mathematical capital market simulation and the corresponding evolution of the
contract value of the pension product. It is explained in the following section. For
literature, we refer to Korn and Wagner (2018) and Section 3.2 of Korn and Wagner
(2019).

4.1.1 The Classification Algorithm

The classification is based on the distribution of the simulated contract value at the
end of the accumulation phase of an idealized customer who is defined in § 14 of
the Altersvorsorge-Produktinformationsblattverordnung (AltvPIBV). For the idealized
customer, contracts with different kinds of premium payments – regular payment or
single payment – as well as with different accumulation phases T of 12, 20, 30, and
40 years are specified by law. For a regular premium payment, it is assumed that the
customer pays 100 Euros (including state bonuses) to the insurer every month until
the end of the accumulation phase T . For the same accumulation phase, the sum
of all premium payments of the regular payment corresponds to the premium of the
single payment which is paid at the beginning of the accumulation phase. Thus, the

3PIB: Produktinformationsblatt.
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idealized customer pays 1, 200 ¨ T Euros as single premium. We denote the premium
of the idealized customer by PT and it is defined by

PT “

#

100 Euros, regular monthly premium in [0,T)
1200 ¨ T Euros, single premium at the beginning of the accumulation phase.

The idealized customer with a single premium payment is only considered if the
pension product allows only a single premium payment and no regular premium ac-
cording to § 14 (1) sentence 2 of the AltvPIBV. Since the contract value depends on
the evolution of the capital market, 10,000 scenarios of the pension product’s evolu-
tion are generated per simulation for each accumulation phase T . In the simulation,
costs and product-specific properties are considered, whereas management decisions
regarding strategy and investments are not simulated. We denote the simulated con-
tract values at the end of a specific accumulation phase T by vk, k “ 1, . . . , 10, 000.
Without loss of generality, we assume that vk is non-negative in all scenarios. This
corresponds to the assumption that the customer can at most loose his paid premiums
over the accumulation phase. If the pension product has a contractual money-back
guarantee, meaning that at least the sum of paid premiums including state bonuses
has to be credited to the customers account at the end of the accumulation phase, vk

is the maximum of the simulated final contract values and 1, 200 ¨ T .
Based on the final contract values vk, the chance and risk measure which present

deterministic annual interest rates are calculated. For the chance measure, the mean
of the simulated contract values is calculated by

V
c
“ EpV q (4.1)

where E denotes the expected value with respect to the empirical distribution of
the sample and V defines the final contract values of the pension product. The risk
measure µr is based on the mean of the 2,000 lowest final contract values which is
given by

V
r
“ E pV |V ď Q0.2q (4.2)

where Q0.2 is the 20 % quantile of V defined by P pV ď Qpq “ p.
Afterwards, the largest constant interest rates µc and µr are determined based on

the customer’s monthly payments or single payment which lead to the above calcu-
lated means V

c
and V

r
. In this calculation, a simple savings process without costs or

randomness is assumed. Thus, the relation between the averaged final contract value
V and its corresponding constant interest rate µ is

V “

$

’

’

’

&

’

’

’

%

100
ř12¨T
k“1

´

1`
µ

12

¯k

, regular premium

1200 ¨ T
´

1`
µ

12

¯12T

, single premium.

(4.3)
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Then, µc is the largest value which solves Equation (4.3) with V
c

as V and µc as µ
and µr the largest value which solves the Equation for µr with V

r
as V and µr as µ.

µc and µr span a space which is divided in different areas by the CRC boundaries
determined using reference products, see Section 4.1.2. These areas define the CRCs
and the products are classified according to their µc and µr combination.

PIA determines a CRC for the provider for each accumulation phase of the ideal-
ized customer depending on the simulated premium payment. According to § 5 (2)
sentence 4 of the AltvPIBV, the agreed accumulation phase of the offered pension
product, denoted by T , determines the accumulation phase T of the classification
and which of the four CRC is assigned to the product. It holds

for

$

’

’

&

’

’

%

T P p0; 12s
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,

/

/

.

/

/

-

has to be shown on the PIB.

4.1.2 Chance-Risk Class Boundaries

The classification of a pension product requires a clear allocation of the pair (µc, µr)
to one of five CRCs. The CRC characterizes different earnings potential and risk
whereby a higher CRC is accompanied by higher risk and higher earnings poten-
tial. They are defined in Produktinformationsstelle Altersvorsorge (2016) and in
Schreiben des Bundesministeriums der Finanzen vom 14.03.2019 as follows:

The CRC specifies how the earnings potential and risks of this pension product
are assessed compared to other state-subsidized pension products. For an idealized
customer, the pension product is evaluated by the PIA for various capital market
scenarios over a comparable accumulation phase obtained by § 5 (2) sentence 4 of
the AltvPIBV. Thereby, a money-back guarantee is taken into account. The so called
Riester pension products always contain one.4 A money-back guarantee is given if
at least the paid premiums and state bonuses are available for pension cover at the
end of the accumulation phase. Premiums for an additional insurance as well as
premiums which relate to already paid-out capital are deducted.5

4Original text: ”Die Chancen-Risiko-Klasse (CRK) gibt an, wie die Ertragschancen und Risiken dieses
Produkts gegenüber anderen steuerlich geförderten Altersvorsorgeprodukten einzuschätzen sind.
Für einen Musterkunden hat die unabhängige Produktinformationsstelle Altersvorsorge dieses Pro-
dukt für verschiedene Kapitalmarktszenarien über eine vergleichbare Ansparphase von X Jahren
untersucht und in die CRK Y eingeteilt. Dabei wurde berücksichtigt, ob dieses Produkt zu Be-
ginn der Auszahlungsphase eine Beitragserhaltungszusage enthält. Riester-Produkte enthalten
immer eine Beitragserhaltungszusage.” (Schreiben des Bundesministeriums der Finanzen vom
14.03.2019, p. 9).

5Original text: ”Mit einer Beitragserhaltungszusage sagt der Anbieter Folgendes zu: Zu Beginn der
Auszahlungsphase stehen mindestens die eingezahlten Beiträge und ggf. gezahlten Altersvor-
sorgezulagen zur Altersabsicherung zur Verfügung. Beitragsanteile für eine Zusatzabsicherung
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CRC 1 The pension product offers a secure investment through a fixed guaranteed
(minimum) positive interest rate over the whole accumulation phase or an interest
rate linked to a reference interest rate. The earnings potential is low. The irrevocably
accumulated capital after deducting the costs continuously increases in the accumu-
lation phase. The insurer issues a money-back guarantee.

CRC 2 The pension product offers a safety-oriented investment with limited earn-
ings potential. The insurer issues a money-back guarantee.

CRC 3 The pension product offers a balanced investment with moderate earnings
potential. If the insurer does not issue a money-back guarantee, there is a moderate
risk of loss.

CRC 4 The pension product offers a return-oriented investment with higher earn-
ings potential. If the insurer does not issue a money-back guarantee, there is a higher
risk of loss.

CRC 5 The pension product offers an opportunity-oriented investment with high
earnings potential. If the insurer does not issue a money-back guarantee, there is a
high risk of loss.6

Note that CRC 1 and 2 also include additional qualitative criteria besides the earn-
ings potential and risk. Products in CRC 1 and 2 need a money-back guarantee, while
CRC 1 additionally has the requirement of a continuously increasing guaranteed cap-
ital after deducting the costs in the accumulation phase. The money-back guarantee
must be contractually assured.

For classification of a pension product into one CRC, the classes have to be clearly
defined by both chance and risk measure. To determine the boundaries of the CRCs,

und Beitragsanteile, die bereits ausbezahltes Kapital betreffen, werden dabei abgezogen.” (Pro-
duktinformationsstelle Altersvorsorge (2016)).

6Original text: ”CRK 1 Das Produkt bietet eine sichere Anlage durch eine bis zum Beginn der
Auszahlungsphase festgelegte garantierte (Mindest-)Verzinsung oder an einen Referenzzins gekop-
pelte Verzinsung mit niedrigen Ertragschancen. Das unwiderruflich gebildete Kapital nach Abzug
der Kosten steigt in der Ansparphase fortwährend an. Der Anbieter gibt eine Beitragserhal-
tungszusage.
CRK 2 Das Produkt bietet eine sicherheitsorientierte Anlage mit begrenzten Ertragschancen. Der
Anbieter gibt eine Beitragserhaltungszusage.
CRK 3 Das Produkt bietet eine ausgewogene Anlage mit moderaten Ertragschancen. Gibt der An-
bieter keine Beitragserhaltungszusage, so besteht ein moderates Verlustrisiko.
CRK 4 Das Produkt bietet eine renditeorientierte Anlage mit höheren Ertragschancen. Gibt der
Anbieter keine Beitragserhaltungszusage, so besteht ein höheres Verlustrisiko.
CRK 5 Das Produkt bietet eine chancenorientierte Anlage mit hohen Ertragschancen. Gibt der
Anbieter keine Beitragserhaltungszusage, so besteht ein hohes Verlustrisiko.” (Schreiben des Bun-
desministeriums der Finanzen vom 14.03.2019, p. 10).
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different reference portfolios without costs are simulated. No costs are considered so
that the CRC does not depend on cost concepts. Furthermore, no product concepts
are included in the reference portfolio to make the CRCs independent of them as
well. The reference portfolios are chosen such that they represent the characteristic
of the respective CRC. Especially, the money-back guarantee and the continuously
increasing capital are considered in the definition of the reference portfolios.

Reference portfolio 1 Zero-coupon bonds maturing at the end of the accumulation
phase are bought with every premium.

Reference portfolio 2 As many zero-coupon bonds that mature at the end of the
accumulation phase as necessary to secure the premium are bought with every pre-
mium. From the remaining premium payment call options on the risky asset with
at-the-money strike and a one-year term are bought. In the last year of the accu-
mulation phase, the maturity of the call option equals the end of the accumulation
phase. Any profits of the call options are credited to the customers account and also
secured with zero-coupon bonds with maturity at the end of the accumulation phase.

Reference portfolio 3 A portfolio containing 50 % stocks is held. The remaining
amount is invested in zero-coupon bonds with a constant maturity of 10 years.

Reference portfolio 4 A portfolio containing 75 % stocks is held. The remaining
amount is invested in zero-coupon bonds with constant a maturity of 10 years.

Reference portfolio 5 A portfolio comprised only of stocks is held.

The reference portfolios are the same for single premium payments as well as for
regular premium payments. However, only a one-off allocation of the premium in
the investment components is made at the beginning of the accumulation phase.

For each reference portfolio, the chance and risk measure are calculated as ex-
plained in Section 4.1.1. Then, the boundaries between the CRCs are defined as a
straight line with slope 1 in a µc-µr-diagram. With the exception of the boundary
between CRC 4 and 5 which lies on the fifth reference portfolio the straight line goes
through the center of the line segment of two neighboring reference portfolios. For
the different combinations of accumulation phases T of 12, 20, 30, and 40 years and
premium payment, regular or single, the CRC boundaries differ. Figure 4.1 illustrates
one combination.

By the choice of slope 1 of the CRC boundaries, each CRC boundary can be spec-
ified uniquely as a point on the straight line. For this, we choose the µc-intercept
which is the chance measure of the specific boundary at a risk measure of zero. The
µc-intercept of the boundary between CRC j and j ` 1, where j “ 1, 2, 3, 4, for the
accumulation phase T is denoted by bjT in the following. One pension product with
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Figure 4.1: Illustration of reference portfolios and CRC boundaries

µc and µr can be then classified by the difference µc ´ µr. The interval between two
successive bjT in which the difference lies determines the CRC.

4.2 Properties of the Chance and Risk Parameters

We examine the properties of the parameters and their mappings mentioned in Sec-
tion 4.1.1. V

c
and µc as well as V

r
and µr quantify the return of a product, not the

loss as is usual with classical risk measures. Therefore, µr is no risk measure in the
classical sense. The name risk measure is misleading. Nevertheless, we will keep the
term risk measure as this is the designation on the PIB.

The averaged final contract values V
c

and V
r

are non-negative due to vk ě 0.
Therefore, µc and µr are larger than ´12. Obviously, the mean of the final contract
values is always larger than the mean of the 2,000 lowest final contract values: V

c
ą

V
r
. The same holds for the chance and risk measure: µc ą µr. The chance and

risk parameters only coincide if the final contract values vk are equal in all 10,000
simulations. Furthermore, a larger risk parameter V

r
or µr is better than a lower one

because they do not quantify the loss of a pension product but the profit. Pension
products with a money-back guarantee have a non-negative chance and risk measure.

We define the following mathematical framework for the analysis of the mappings.
We denote the set of pension products with a simulated accumulation phase of T by
VT . A pension product is defined by the mapping V : Ω Ñ R`0 where Ω is a fixed
set of scenarios and V pωq is the final contract value at the end of the accumulation
phase T of the realization ω P Ω. V

c
is the result of the mapping f c : VT Ñ R`0 with

f cpV q “ EpV q and V
r

the result of f r : VT Ñ R`0 with f rpV q “ E pV |V ď Q0,2q. µc or
µr is determined by the mapping gT ˝ f c : VT Ñ r´12;8q or gT ˝ f r : VT Ñ r´12;8q
where gT : R`0 Ñ r´12;8q. Mathematically, the mapping f c, f r, gT ˝f c, and gT ˝f r are
risk measures analyzed in the following. The mappings are illustrated in Figure 4.2.
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pωkqk“1,...,10,000
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gT
µc, µr

Chance or
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Figure 4.2: Illustration of mappings and notations

If there were no costs and the entire premium were invested directly in the corre-
sponding asset, the pension product with a multiple of the premium would result in
the same multiple of the final contract values. Linearity of the final contract values
in the premium would be also given if all costs were proportional to the premium or
the contract value. However, since fixed costs, e. g. custody costs or unit costs, exist,
the assumption of linearity is only approximately fulfilled. The higher the premium,
the lower the influence of fixed costs so that we are again closer to linearity. To sim-
plify, we assume in the following that the costs are linear in the premium payment
and the contract value. This results in the linearity of the final contract values in the
premium.

For analyzing the mappings of the chance and risk parameters, we adapt some
properties of classical risk measures to the profit view of the PIA and define them as
follows.

Definition 4.1. Let VT be a set of pension products with a simulated accumulation
phase T . A mapping % : VT Ñ R is

• monotonic if for X, Y P VT with X ď Y it holds

%pXq ď %pY q,

• cash invariant if for X P VT and m P R it holds

%pX `mq “ %pXq `m,

• concave if for X, Y P VT and 0 ď λ ď 1 it holds

%pλX ` p1´ λqY q ě λ%pXq ` p1´ λq%pY q,

• positive homogeneous if for X P VT and λ ě 0 it holds

%pλXq “ λ%pXq.
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The meaning of monotonicity is clear: If the payoff of a pension product is larger
than another one, the measure % increases. The property of cash invariance, also
called translation invariance or translation property, is given if by adding a constant
amount m to X the risk will be reduced by the same amount. For diversification the
property of concavity is important. Consider X and Y as different pension products
which define the final contract values for a constant premium payment under the
assumption of linearity. If the (monthly) available wealth for retirement is divided
with a fixed proportion λ between both products, which means diversifying, a final
capital of λX ` p1 ´ λqY will be obtained. The risk should not increase by splitting
wealth in different investments. This is guaranteed by concavity and depicts the
idea of diversification. If the condition of concavity as equality is fulfilled, then the
measure is linear.

Lemma 4.2. Let f c : VT Ñ R`0 be defined as in Equation (4.1) and f r : VT Ñ R`0 as in
Equation (4.2). f c has the following properties

• monotonicity,

• cash invariance,

• linearity (concavity as equality),

• positive homogeneity.

f r has the following properties

• monotonicity,

• cash invariance,

• concavity,

• positive homogeneity.

Proof. The properties of f c follows from the linearity and monotonicity of the ex-
pected value.
f r is a conditional Value at Risk which is defined by EpX|X ď Qpq where X is a

random variable and Qp the p quantile of X. The conditional Value at Risk is a coher-
ent risk measure which is characterized by monotonicity, cash invariance, convexity,
and positive homogeneity. For the definition of classical risk measures and their prop-
erties, we refer to Föllmer and Schied (2011). Transferring the classical conditional
Value at Risk to the profit view instead of loss changes convexity to concavity and the
properties monotonicity and cash invariance remain as defined above.

µc and µr are determined by mappings pgT ˝f cqpV q and pgT ˝f rqpV q. Here, gT pV q is
the inverse function of Equation (4.3) depending on the kind of premium payment.
Unfortunately, Equation (4.3) cannot be explicitly solved for µ for regular premium
payment in contrast to single premium payment. Therefore, we analyze the inverse
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function g´1T : r´12;8q Ñ R`0 which corresponds to the right side of Equation (4.3)
to obtain properties of gT pV q. We start with the case of regular premium payment
and define g´1T pµq as

g´1T pµq “ 100
12¨T
ÿ

k“1

´

1`
µ

12

¯k

.

The first and second derivatives are

Bg´1T pµq

Bµ
“ 100

12¨T
ÿ

k“1

k

12

´

1`
µ

12

¯k´1

,

B2g´1T pµq

Bµ2
“ 100

12¨T
ÿ

k“1

k

144
pk ´ 1q

´

1`
µ

12

¯k´2

.

For single premium payment we obtain

g´1T pµq “ 1200 ¨ T
´

1`
µ

12

¯12T

,

Bg´1T pµq

Bµ
“ 1200 ¨ T 2

´

1`
µ

12

¯12T´1

,

B2g´1T pµq

Bµ2
“ 1200 ¨ T 2

ˆ

T ´
1

12

˙

´

1`
µ

12

¯12T´2

.

Clearly, g´1T pµq is strictly monotonically increasing and convex for µ ě ´12 for reg-
ular premium payment as well as single premium payment. Hence, gT pV q is strictly
monotonically increasing and concave for V ě 0. Furthermore, g´1T pµq is continuous.
Due to the strict monotonicity of g´1T pµq for µ ě ´12, gT pV q is also continuous for
V ě 0. Figure 4.3 illustrates the transformation function gT pV q for V ě 0 to sum
of paid premiums and its properties for the different kinds of premium payment and
accumulation phases T . In this figure the curves of the different accumulation phases
intersect in one point since the x-axis shows the averaged final contract value divided
by the sum of paid premiums. A value of one on the x-axis corresponds to an aver-
aged final value of the paid premium sum which in turn corresponds to a constant
interest rate of zero for all accumulation phases.

Due to the properties of gT , the properties of the mappings gT ˝ f c and gT ˝ f r can
be determined and are summarized in the following Lemma.

Lemma 4.3. Let gT : R`0 Ñ r´12;8q be defined as inverse function of Equation (4.3),
f c : VT Ñ R`0 as in Equation (4.1), and f r : VT Ñ R`0 as in Equation (4.2). gT ˝ f c

and gT ˝ f r are monotonic and concave.

Proof. We define f as f c or f r. Let X, Y P VT and X ď Y . Due to Lemma 4.2, f is
monotonic and we have

fpXq ď fpY q.
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Figure 4.3: Illustration of function gT pV q for the different kinds of premium pay-
ment

As gT increases strictly monotonically, we obtain

pgT ˝ fqpXq “ gT pfpXqq ď gT pfpY qq “ pgT ˝ fqpY q.

The chance and risk measure is also monotonic.
Let X, Y P VT and 0 ď λ ď 1. Depending on the considered measure, f is linear or

concave. In both cases, we have

fpλX ` p1´ λqY q ě λfpXq ` p1´ λqfpY q

which is an equality in the case f “ f c. Due to the monotonicity and concavity of gT ,
we have

pgT ˝ fqpλX ` p1´ λY qq “ gT pfpλX ` p1´ λqY qq ě gT pλfpXq ` p1´ λqfpY qq

ě λgT pfpXqq ` p1´ λqgT pfpY qq

“ λpgT ˝ fqpXq ` p1´ λqpgT ˝ fqpY q.

Consequently, gT ˝ f c and gT ˝ f r are concave.

Due to the non-linearity of gT , gT ˝ f c and gT ˝ f
r are neither cash invariant nor

positive homogeneous.
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4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

4.3 Chance-Risk Class of a Portfolio and the
Consequences for Customer Consulting

The determination of the CRC of a portfolio is of interest for insurance companies,
especially for customer consulting of pension products. For consulting with respect
to pension products, the European Institute for Quality Management for Financial
Products and Methods (EI-QFM) in Kaiserslautern developed an algorithm to assign
a customer also a CRC (for details see Korn and Andelfinger (2016)). Based on this,
a pension product with a higher CRC than the customer’s should not be sold to the
customer, only pension products with the same or a lower CRC. Therefore, only the
latter are suitable products. This seems to be common sense in the German insurance
industry. Hence, the customer has only pension products with the same or lower risk
than his own risk preferences. Furthermore, this standard is very easy and practica-
ble. However, it does not take pension products or other assets which the customer
already owns into account and thus might ignore possible diversification effects. This
leads to the question of the existence of a diversification effect in the classification
and how to determine the CRC of a portfolio. Moreover, it should be possible to de-
termine the CRC of a portfolio (at least in the sense of an upper bound) during the
consultation. For this, we examine the classification by PIA for diversification effects
first. Based on these results, we take a closer look at determining the CRC of a port-
folio. Here, we consider a portfolio consisting of two new pension products and then
one of a pension product that has been running for t months and a new one. Since all
of these questions arise in practice and are of great interest to the insurance industry,
we will derive some practical implications based on our theoretical findings.

We consider two pension products with the same accumulation phase T and kind
of premium payment. V i P VT , i “ 1, 2, has a CRC of CRCi. It is specified by the pairs
pV

c,i
, V

r,i
q and pµc,i, µr,iq which results from the classification. Besides the CRC, µc and

µr of both pension products are known and denoted by µc,i and µr,i, i “ 1, 2. The risk
profile of the customer is described by CRCcust. Furthermore, the CRC boundaries
are known by bjT where j “ 1, 2, 3, 4 and T “ 12, 20, 30, 40.

We assume that CRC1 ď CRC2. This is ensured if the chance and risk measure of
the pension products are in the following relations:

(i) µc,1 ă µc,2 and µr,1 ą µr,2,

(ii) µc,1 ď µc,2 and µr,1 ď µr,2,

(iii) µc,1 ě µc,2 and µr,1 ě µr,2.

Figure 4.4 illustrates the different cases. In the following we focus on the first case
since it corresponds to the best practice of consulting which is described in Weber
(2009). According to this a customer should be consulted optimally, see Thesis 14 in
Section 3 of Weber (2009). This means that products should only be recommended
if they are not dominated by another product in the earnings potential as well as in
the risk. This is only given in the first case. Therefore, we restrict our investigation
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to this area. In the second and third case, one pension product is dominated by the
other one. All money should be invested in the dominating pension product.

(a) Case 1

µc

µr

µc,1

µr,1

µc,2

µr,2

(b) Case 2

µc

µr

µc,1

µr,1

µc,2

µr,2

(c) Case 3

µc

µr

µc,1

µr,1

µc,2

µr,2

Figure 4.4: Illustration of the different relations of the chance and risk measure of
each pension product such that CRC1 ă CRC2

In the following a portfolio of two pension products is considered. This is deter-
mined by the distribution of the investment in each pension product. We denote the
proportion invested in pension product V 1 by α with 0 ď α ď 1. The remaining pro-
portion p1 ´ αq is invested in pension product V 2. The investment can be a monthly
as well as a single premium payment. We also consider a total investment of the
premium payment of the idealized customer since for α “ 1 or α “ 0 the averaged
final contract values V

c,i
and V

r,i
as well as the chance and risk measures µc,i and

µr,i, i “ 1, 2, result. Under the assumption of linearity of the costs in the premium
payment and the contract value, see Section 4.2, the allocation of the investment in
two pension products is equivalent to the same allocation of the final contract values.
Thus, the portfolio is defined by αV 1 ` p1 ´ αqV 2. The results can be transferred
one-to-one to the same allocation of the premium payments.
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4.3.1 Diversification Effect

In the last section, we examined the properties of the chance and risk parameters of
PIA. We use these results to examine the classification for a diversification effect.

Due to the properties of PIA’s chance and risk parameters which we showed in
Section 4.2, the averaged final contract values and the chance and risk measure of a
portfolio of two pension products can be estimated by each chance and risk parame-
ters of the pension products. The results are summarized in the following Lemma.

Lemma 4.4. Let V 1, V 2 P VT be two pension products with the same accumulation
phase T . Let V

c,i
, V

r,i
be defined as in Equation (4.1) and (4.2) and µc,i, µr,i as in

Equation (4.3) depending on the kind of premium payment for i “ 1, 2. Let gT be
the inverse function of Equation (4.3). Let the portfolio with fraction 0 ď α ď 1
be defined via αV 1 ` p1 ´ αqV 2. Let the interpolated averaged final contract val-
ues be defined as V

j,intpαq
:“ αV

j,1
` p1 ´ αqV

j,2
and the interpolated measures as

µj,intpαq :“ αµj,1 ` p1´ αqµj,2, j “ c, r.

a) For the portfolio, we have

V
c,ptfpαq

“ V
c,intpαq

, V
r,ptfpαq

ě V
r,intpαq

,

µc,ptfpαq
ě µc,intpαq, µr,ptfpαq

ě µr,intpαq.

b) Furthermore, we have

V
c,ptfpαq

ě V
r,ptfpαq

,

µc,ptfpαq
ě µr,ptfpαq.

c) For the chance measure of the portfolio, it holds

µc,ptfpαq
ď max

`

µc,1;µc,2
˘

.

Proof. Clearly, a) follows due to linearity of f c and concavity of f r, gT ˝f c, and gT ˝f r.
b) results by the definition of V

c
and V

r
as well as µc and µr.

For c) we consider the calculation of µc,ptfpαq by

µc,ptfpαq
“ gT

´

g´1T
`

µc,ptfpαq
˘

loooooomoooooon

“V
c,ptfpαq

¯

“ gT

´

α g´1T
`

µc,1
˘

loooomoooon

“V
c,1

`p1´ αq g´1T
`

µc,2
˘

loooomoooon

“V
c,2

¯

“ gT

´

V
c,intpαq

¯

.

Taking the derivative of µc,ptfpαq with respect to α results in

Bµc,ptfpαq

Bα
“

BgT

´

V
c,intpαq

¯

BV
c,intpαq

´

g´1T
`

µc,1
˘

´ g´1T
`

µc,2
˘

¯

.
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µc,ptfpαq increases in α if µc,1 ą µc,2 or rather V
c,1
ą V

c,2
and decreases if µc,1 ă µc,2

or rather V
c,1
ă V

c,2
since gT and g´1T are strictly monotonically increasing. Conse-

quently, it holds
µc,ptfpαq

ď max
`

µc,1;µc,2
˘

.

Unfortunately unlike the mean of the final contract values, the chance measure
of a portfolio is not linear in the single chance measure of the pension products.
Therefore, we use the linearity of the mean of the final contract values to restrict
µc,ptfpαq, cf. proof of Lemma 4.4 c).

The linear combination of V
r

and µr of two pension products represents the up-
per limit of the portfolio’s risk. Furthermore, µc of the portfolio is bounded from
below by the interpolation of the chance measure of each pension product. The risk
is reduced, while the return is constant or increasing depending on the considered
parameter. This is a classical diversification effect which exists due to the chance and
risk definition of the classification by PIA.

Figure 4.5 illustrates Lemma 4.4. Figure 4.5a is based on the averaged final con-
tract values V

c
and V

r
, while Figure 4.5b shows the chance measure µc and risk mea-

sure µr. The dashed black line is the interpolation of the corresponding chance and
risk parameters of two pension products for all values of α P r0; 1s. The dashed green
one represents one possible realization of V

c,ptfpαq
and V

r,ptfpαq
or µc,ptfpαq and µr,ptfpαq

of the portfolio for all values of α P r0; 1s. We consider one linear combination of
the two pension products specified by one value of α. In Figure 4.5a the interpolated
V

c,intpαq
and V

r,intpαq
combination is vertically shifted upwards to obtain the actual

V
c,ptfpαq

and V
r,ptfpαq

. The upward estimation of V
r,ptfpαq

by V
c,intpαq

on the y-axis results
from b) in combination with a) of Lemma 4.4. Figure 4.5b illustrates the relation
between the interpolation of the chance and risk measures of the pension products
and of the portfolio. All possible actual chance and risk measures of the portfolio
with specific proportion α lie on the green line between the two arrows. µr,ptfpαq is
estimated upward by µc,2 on the y-axis which results from b) and c) of Lemma 4.4.

Besides the interpolation of only the averaged final contract values or only the
chance and risk measures, the interpolation of a combination of these parameters can
be considered as well. In Figure 4.6 we put the different possibilities of interpolation
of the parameters and their resulting µc and µr in relation to each other. Each point
represents one α. The red line is the actual chance and risk measure of the portfolio.
It results from interpolation of the final contract values of each simulation run. The
green one is the interpolation of the chance measure µc and risk measure µr of each
pension product. Besides these two lines, the interpolation of V

c
and µr, the turquoise

line, is drawn as well as the interpolation of both V
c

and V
r
, the purple one. The

measure of the interpolated values of V
c

is larger than the interpolated µc. This
follows from the relation

µc,ptfpαq
“ gT

´

αV
c,1
` p1´ αqV

c,2
¯

ě αµc,1
` p1´ αqµc,2.
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(a) V c and V r of the portfolio

V
c

V
r

CRC 1

CRC 2

CRC 3

CRC 4

CRC 5

V
c,1

V
r,1

V
c,2

V
r,2

V
c,ptfpαq

“

αV
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` p1 ´ αqV

c,2

αV
r,1
` p1 ´ αqV
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V
c,ptfpαq

V
r,ptfpαq

(b) µc and µr of the portfolio
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CRC 1
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µc,1

µr,1

µc,2

µr,2

αµc,1 ` p1 ´ αqµc,2

αµr,1 ` p1 ´ αqµr,2

µc,2

µc,ptfpαq

µr,ptfpαq

Figure 4.5: Estimation of the portfolio chance and risk parameters via their interpo-
lation

Therefore, the turquoise line lies always right of the green line in a µc-µr diagram.
Furthermore, the purple line illustrating the interpolation of the averaged final con-
tract values V

c
and V

r
lies above the turquoise one. This always holds due to the

86



4.3 Chance-Risk Class of a Portfolio and the Consequences for Customer Consulting

concavity of gT

µr,ptfpαq
ě gT

´

α g´1T
`

µr,1
˘

loooomoooon

“V
r,1

`p1´ αq g´1T
`

µr,2
˘

loooomoooon

“V
r,2

¯

ě αµr,1
` p1´ αqµr,2.

The actual portfolio is above the purple line. The position of the interpolated chance
and risk measure, the green line, with respect to both the interpolated averaged
final contract values, the purple line, and the actual chance and risk measure of the
portfolio, the red one, is inconclusive. For µc,1 ă µc,2 and µr,1 ą µr,2, the focused case,
the actual chance and risk measure of the portfolio as well as the measures of the
interpolated final contract values lie above the interpolation of the measures due to
the above estimations. If µc,1 ă µc,2 and µr,1 ă µr,2 or µc,1 ą µc,2 and µr,1 ą µr,2, the
actual values (red) and the measure of the interpolated averaged final contract values
(purple) can lie above as well as under the green line. These are the strict dominant
cases where one pension product dominates the other (Case 2 and 3 mentioned in
Section 4.3).
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Figure 4.6: Different chance and risk parameter interpolation combinations

In Figure 4.6 pension products with a higher chance and risk measure than the
chance and risk measure of pension product V 1 can be produced by a combination
of both pension products, see the red line for this. Thus, pension product V 1 is
not optimal since it is dominated by different combinations of pension product V 1

and V 2. Furthermore, all combinations of pension products left of the maximum of
the red curve are not optimal. They are dominated by products right of the maxi-
mum and have a higher chance measure at same risk measure. The combinations
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left of the maximum are inefficient, while the combinations right of the maximum
are efficient. This reminds of Markowitz’s portfolio theory and its efficient and in-
efficient frontier. With this knowledge the insurance company can create optimal
pension products by combining an optimal with a non-optimal pension product. If
two pension products are optimal, a combination thereof provides a decreasing line
in a chance-risk-measure diagram.

4.3.2 Portfolio of Two New Pension Products

In the last section, we estimated the averaged final contract values as well as the
chance and risk measure of a portfolio consisting of different pension products. These
parameters determine the CRC. But what is the CRC of the portfolio and can it be re-
stricted by the chance and risk measure of the pension products themselves? Clearly,
if the distribution of the final contract values of the combining pension products are
known, the CRC of the portfolio is determined by weighted summation of the final
contract values of the pension products in every simulation run under the assumption
of the (at least approximate) linearity of the costs. Based on these, the chance and
risk measure are calculated according to Section 4.1.1. Hence, we obtain the CRC of
the portfolio. However, the final contracts values are not available for the insurance
consultant or the customer since they are not allowed to be published. The insur-
ance consultant and the customer only know the CRC of the pension product printed
on the PIB which is handed over in the customer consultation. Is this information
enough to determine the CRC of a portfolio or is more information needed especially
for the insurance consultant? This is one question we investigate in this section.

Lemma 4.4 enables us to limit the CRC of the portfolio resulting in the following
theorem.

Theorem 4.5. Let V 1, V 2 P VT be two pension products with V
c,i

, V
r,i

defined as
in Equation (4.1) and (4.2) for i “ 1, 2. Let gT be the inverse function of Equa-
tion (4.3) and 0 ď α ď 1. The CRC of the portfolio of two pension products defined
as αV 1 ` p1´ αqV 2 is not greater than the CRC resulting from interpolation of the av-
eraged final contract values V

c,i
and V

r,i
of each pension product with proportion α.

Proof. Due to Lemma 4.4 it holds that V
c,ptfpαq

equals the interpolation of V
c,1

and
V

c,2
with fraction α, while V

r,ptfpαq
is larger than the interpolation of V

r,1
and V

r,2
.

Therefore, the point pV
c,ptfpαq

, V
r,ptfpαq

q lies vertical above pV
c,intpαq

, V
r,intpαq

q in a V
c
-V

r
-

diagram. The point pV
c,intpαq

, V
r,intpαq

q is located in the area above a line l which is the
transformation by g´1T of the next larger CRC boundary. Due to the strict monotonicity
of g´1T , l is also strict monotonic. Thus, the point pV

c,ptfpαq
, V

r,ptfpαq
q also lies above the

line l because of its position vertically above pV
c,intpαq

, V
r,intpαq

q. Since gT is continuous,
the transformation by gT of both points lies in the area above the transformation of
the line. Due to they way l is constructed, the transformation by gT is exactly the CRC
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boundary. Consequently, the CRC of the portfolio is not larger than the CRC resulting
from the interpolation of V

c,i
and V

r,i
.

Corollary 4.6. Theorem 4.5 cannot be transferred to the interpolation of the chance and
risk measures of each product due to the additional horizontal shift of pV

c,ptfpαq
, V

r,ptfpαq
q

to pV
c,intpαq

, V
r,intpαq

q.

We denote the CRC resulting from interpolation of the averaged final contract val-
ues by CRC. CRCptfpαq is then the CRC of the portfolio defined as αV 1 ` p1 ´ αqV 2

resulting from the interpolated averaged final contract values of the two pension
products. Note that CRCptfpαq corresponds to CRC1 for α “ 1 and to CRC2 for α “ 0.

Theorem 4.5 requires a function gT which is continuous and invertible. Note that
any strictly monotonic and continuous function R`0 Ñ D, where D Ď R, satisfies
these requirements since the function is invertible due to the strict monotonicity. The
inversion function is again strictly monotonic in the same direction and continuous.
Consequently, Theorem 4.5 holds for other strictly monotonic and continuous func-
tions than gT as well.

Clearly, the qualitative criteria of CRC 1 and CRC 2 have to be taken into account. If
a pension product does not satisfy them, the CRC of the portfolio cannot be less than
CRC 2 or CRC 3. Due to Corollary 4.6, the statement of the theorem does not hold for
the CRC resulting from interpolation of the chance and risk measure of each pension
product. If only the chance and risk measure of the products are known, they have
to be converted into the corresponding averaged final contract values. Instead of the
interpolation of the mean of the 2,000 lowest final contract values, the interpolation
of the risk measures of each pension product can be used for the estimation of µr,ptfpαq.
The statement of Theorem 4.5 can be transferred to this interpolation. However, the
resulting CRC is more inexact than the result which is obtained by interpolation of
V

r
. This can be pointed out in Figure 4.6.

Recommendation for Customer Consulting. The meaning of Theorem 4.5 for the
practical application is clear. The CRC of the portfolio can be approximated via interpo-
lation of the averaged final contract values. The use of the chance and risk measure or
the CRC itself is not permitted since they can lead to an incorrect consultation. In this
case the portfolio can have a greater CRC than the customer’s CRC. Thus, the customer
takes a higher risk than he prefers.

Consequently, the knowledge of the CRCs alone is not sufficient. At any rate, the
customer consultant has to be provided with the chance and risk measure. However, the
knowledge of the averaged final contract values saves the transformation of the chance
and risk measure to the averaged final contract values.

Figure 4.5 also shows the relation between the CRC of the interpolated chance and
risk parameters and of the portfolio. When considering the averaged final contract
values as in Figure 4.5a, the portfolio is in CRC 2 assuming the dashed green line is
the actual realization of V

c,ptfpαq
and V

r,ptfpαq
. However, lower CRCs are possible which

can be obtained by a larger vertical shift upward of the linear combination. Obviously,

89



4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

a CRC larger than 3, the CRC of the interpolated averaged final contract values of the
pension products, cannot be generated. Figure 4.5b considers the pension products’
interpolated chance and risk measures. All actually possible chance and risk measures
of the portfolio lie on the green line between the two arrows. Obviously, the portfolio
can have a lower as well as larger CRC than the CRC of the interpolated chance and
risk measures which falls in CRC 3. The CRC of the actual portfolio cannot simply be
characterized by the interpolation of the chance and risk measures compared to the
interpolation of the averaged final contract values.

Next, we investigate the relationship between the proportion α and the CRC of the
corresponding portfolio. We project the point pµc,ptfpαq, µr,ptfpαqq on the µc-axis parallel
to the CRC boundaries by calculating µc,ptfpαq ´ µr,ptfpαq to determine the CRC of a
portfolio. Thus, we receive the corresponding pµc “ µc ´ µr at pµr “ 0.

Theorem 4.7. Let V 1, V 2 P VT be two pension products with µc,i and µr,i calculated by
f c ˝ gT and f r ˝ gT where f c is defined as in Equation (4.1), f r as in Equation (4.2),
and gT as inverse function of Equation (4.3) for i “ 1, 2. Let be µc,1 ă µc,2, µr,1 ą µr,2

in such a way that we have CRC1 ď CRC2. Let CRCcust be a given risk profile with
CRC1 ď CRCcust ď CRC2 and bCRCcustT the µc-intercept of the CRC boundary between
CRCcust and CRCcust ` 1 for the accumulation phase T . Let upαq be defined as

upαq :“ gT
`

αg´1T
`

µc,1
˘

` p1´ αqg´1T
`

µc,2
˘˘

´ gT
`

αg´1T
`

µr,1
˘

` p1´ αqg´1T
`

µr,2
˘˘

.

Let the premium distribution α˚ be chosen such that α˚ solves

upα˚q “

#

up0q, CRCcust “ CRC2

bCRC
cust

T , else.
(4.4)

Then, the CRC of a portfolio of two pension products with proportion α ą α˚ is not
larger than CRCcust.

Proof. We use the linearity of f c and calculate µc,ptfpαq by

µc,ptfpαq
“ gT

`

αg´1T
`

µc,1
˘

` p1´ αqg´1T
`

µc,2
˘˘

“ gT

´

V
c,intpαq

¯

.

Using the relation

V
r,ptfpαq

ě αg´1T
`

µr,1
˘

` p1´ αqg´1T
`

µr,2
˘

“ V
r,intpαq

from Lemma 4.4 in combination with the strictly increasing monotonicity of gT results
in

µc,ptfpαq
´ µr,ptfpαq

ďgT

´

V
c,intpαq

¯

´ gT

´

V
r,intpαq

¯

“ upαq.

Taking the derivative of upαq with respect to α yields

Bupαq

Bα
“

BgT

´

V
c,intpαq

¯

BV
c,intpαq

´

g´1T
`

µc,1
˘

´ g´1T
`

µc,2
˘

¯

´

BgT

´

V
r,intpαq

¯

BV
r,intpαq

´

g´1T
`

µr,1
˘

´ g´1T
`

µr,2
˘

¯

.
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For µc,1 ă µc,2 the minuend is smaller than zero due to the strict monotonicity of gT .
The subtrahend is non-negative for µr,1 ą µr,2. Hence, Bupαq

Bα
ă 0 in this case so that

upαq is strictly monotonically decreasing.
Furthermore, it holds

up0q “ µc,2
´ µr,2,

up1q “ µc,1
´ µr,1

ă bCRC
1

T

where bjT is the µc-intercept of the CRC boundary between CRC j and CRC j ` 1 and
the accumulation phase T . For CRC1 ă CRC2, it holds up0q ą up1q since µc,1 ă µc,2

and µr,1 ą µr,2. For CRCcust “ CRC2, α˚ “ 0 solves Equation (4.4). Due to the strict
monotonicity of upαq, no further α which solves Equation (4.4) exists. It holds for
CRC1 ď CRCcust ă CRC2

up0q ě bCRC
2´1

T ě bCRC
1

T ą up1q.

Combined with the strict monotonicity of upαq and the choice of CRCcust, this results
in the existence of exactly one α˚ solving Equation (4.4).

Due to the strictly decreasing monotonicity of upαq, it holds upαq ă upα˚q for
α ą α˚. Consequently, for µc,1 ă µc,2, µr,1 ą µr,2 and α ą α˚ we have the estimation

µc,ptfpαq
´ µr,ptfpαq

ď upαq ă upα˚q “

#

up0q, CRCcust “ CRC2

bCRC
cust

T , else.

The CRC of the portfolio of two pension products with proportion α ą α˚ is not larger
than CRCcust in this case.

Theorem 4.7 requires that gT is strictly monotonically increasing. gT can be re-
placed by any strictly monotonically increasing function R`0 Ñ D, where D Ď R, and
Theorem 4.7 still holds.

Note that α˚ “ 0 for CRCcust “ CRC2. In this case the CRC of the portfolio of two
pension products with proportion α is not larger than CRC2 for all 0 ď α ď 1. This is
in line with the expectation that it is not possible to end up with a CRC that is larger
than the maximum CRC of both pension products when two pension products are
combined. The qualitative criteria of CRC 1 and 2 are not considered in Theorem 4.7.
This must be ensured by the combined pension products. The recommended policy is
described in the next paragraph. Moreover, Theorem 4.7 can also be used to combine
two pension products with different CRC to a new one with an CRC between.

Recommendation for Customer Consulting. Theorem 4.7 provides an equation for
determining the proportion of wealth to invest in the different pension products. This
equation cannot be solved explicitly for α˚. Therefore, α˚ has to be numerically deter-
mined.

However, the qualitative criteria must be taken into account. For this, we give the
following manageable rules:
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4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

• The customer has a CRC of 1 (CRCcust “ 1): Only pension products with a
money-back guarantee and continuously increasing capital should be combined.

• The customer has a CRC of 2 (CRCcust “ 2): Only pension products with a money-
back guarantee should be combined. This is always guaranteed by Riester pension
products.

• The customer has a larger CRC than 2 (CRCcust ą 2): All possible pension prod-
ucts can be combined.

We illustrate Theorem 4.7 on an example with regular premium payment and ac-
cumulation phase T of 12 years. Pension product V 1 has CRC 1 with µc,1 “ 2.6577 %
and µr,1 “ 1.0184 %. The qualitative criteria of CRC 1 are given. Pension product V 2

is specified by µc,2 “ 8.1296 %, µr,2 “ ´2.9618 %, and CRC 5. It has neither a money-
back guarantee nor a continuously increasing capital. Obviously, the requirements of
µc,1 ă µc,2 and µr,1 ą µr,2 are fulfilled. CRC 1 and 2 cannot be reached by the portfolio
since the money-back guarantee is not contractually secured in total. Nonetheless,
we also calculate α˚ for a CRCcust of 1 and 2 for illustration. Solving Equation (4.4)
for α˚ using different values for CRCcust delivers the α˚ of Table 4.7.

CRCcust 1 2 3 4 5
α˚ in % 94.86 75.18 46.56 0.2697 0

Table 4.7: α˚ depending on CRCcust for the example of two new pension products

For different α, we calculate µc,ptfpαq and µr,ptfpαq as well as the constant interest rate
of both interpolated averaged final contract values as an estimation of the chance
and risk measure of the portfolio. These parameters and the corresponding CRC are
illustrated in Figure 4.8. Figure 4.8a shows the relation between the actual and the
estimated CRC. The lower line represents the constant interest rates of the interpo-
lation of the averaged final contract values, while the upper line shows the actual
values of the portfolio. Every point of the lines belongs to one α. The same α on the
interpolated and actual line are connected by a vertical arrow which also specifies
the direction in which the interpolated value is moved obtaining the true value. Note
that α goes from 1 to 0 for the direction from pension product V 1 to pension product
V 2. The color clarifies in which interval α lies depending on α˚ which depends on
CRCcust. We denote α˚ which belongs to CRCcust equal j, j “ 1, . . . , 5, by α˚j . For
the red points, it holds α ą α˚. The olive points specify α˚ ě α ą α˚2 and so on. The
statement of Theorem 4.7 is clearly seen. For α ą α˚j , the actual CRC is not larger
than the estimated CRC which is again not larger than CRCcust. This is also clari-
fied in Figure 4.8b which shows the actual and estimated CRC depending on α. The
dashed vertical lines are α˚j , j “ 1, . . . , 5. On the left side near α˚j , a jump in the CRCs
can be seen. The CRC of the portfolio according to weighted sum of the final contract
values is smaller than the CRC resulting from the interpolation of the averaged final
contract values. Before that, the CRCs are equal. Remember that CRC 1 and 2 are
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not reachable due to the missing qualitative criteria of the portfolio. They have to be
updated to CRC 3. Figure 4.8 shows the calculated values without consideration of
the qualitative criteria.

(a) µc-µr-diagram
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(b) α-CRC-diagram
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Figure 4.8: Relation between α, CRC, and CRC of the portfolio with two new pen-
sion products
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For the downward estimation of µr,ptfpαq in Theorem 4.7, αµr,1`p1´αqµr,2 can also
be used instead of gT

´

αg´1T pµr,1q ` p1 ´ αqg´1T pµr,2q

¯

. The so obtained α˚ is larger
than the one in Theorem 4.7. This is implied by the relation

µr,ptfpαq
ě gT

´

αg´1T
`

µr,1
˘

` p1´ αqg´1T
`

µr,2
˘

¯

ě αµr,1
` p1´ αqµr,2

due to the concavity of gT .

4.3.3 Portfolio of an Existing and New Pension Product

In this section, we consider the purchase of a pension product and the CRC determi-
nation of the portfolio if the customer already owns a pension product. The approach
introduced by us is in accordance with the concept of PIA. The determination of the
portfolio CRC is again based on the distribution of the premium payment.

The existing pension product was contracted with an agreed premium of Pold and
accumulation phase of T old t months ago where t P t0, . . . , 12 ¨ T oldu. In addition,
we have a new pension product with agreed accumulation phase of T new. The ac-
cumulation phases of both pension products end at the same time. This means that
the remaining accumulation phase of the existing pension product corresponds to
the accumulation phase of the new product: T new “ T old ´ t{12. Furthermore, both
pension products have the same kind of premium payment. The classification of the
new pension product is based on the accumulation phase T new and premium PT new.
We assume that the averaged final contract values of the new pension product of the
classification, denoted by V

c,new
and V

r,new
, as well as the chance measure µc,new and

risk measure µr,new are known besides its CRC. The customer will invest an amount
of I where I is either the monthly or the single premium. First, we assume that the
entire investment is used for the new pension product. Thus, it holds Pnew “ I.

Determination of the Chance-Risk Class

By Theorem 4.5 the CRC of a portfolio can be estimated from above using the av-
eraged final contract values. The averaged final contract values of the new pension
product are known for the accumulation phase T new and the premium PT new. How-
ever, the current averaged final contract values of the existing pension product have
to be calculated. It is defined by the method of determining the evolution of the con-
tract value over the accumulation phase of PIA based on the remaining contract term.
Figure 4.9 illustrates the approach of calculating the current averaged final contract
values.

The starting point is the current contract value vold
t of the existing pension product

which can be taken from the annual information the customer receives from the
insurance company. The current contract value has to be scaled to the premium
payment PT new of the idealized customer to assign him an artificial but updated CRC.
Under the assumption of the linearity of the final contract values in the premium
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vt

Contract value
at time t

Scaling to PT new

rvt

Scaled contract
value at time t

Simulation
over T new

vkt ,
k “ 1, ..., 10, 000

Final contract values of
the simulation at time t

Eq. (4.1)
V

c
t

Eq. (4.2)
V

r
t

Figure 4.9: Calculation of the averaged final contract values at time t of a existing
pension product.

payment, we obtain the scaled contract value by

rvold
t “ vold

t ¨
PT new

Pold

where rvold
t is the contract value at time t scaled to the premium of the idealized

customer. The scaling to PT new results from the choice of the function gT below (see
Equation (4.5) and (4.6)). Both sides of the equations are calculated based on the
same premium payment. Furthermore, scaling ensures a consistent approach to the
classification by PIA. If the contract value is made up of different assets (for example
a three-pot hybrid product), all the assets components have to be scaled as above.

Based on rvold
t as starting capital, the final contract values are simulated over the

same accumulation phase T new and the same capital market development as the new
pension product. The latter includes the knowledge of the current market model pa-
rameters and the stochastic scenarios of the PIA model both of which we assume as
known. In the simulation 100 Euros are used as regular monthly premium and no fur-
ther premium payments for single premium payment. Furthermore, the simulation is
performed for the contract parameters at contract start with the valid contract costs
at their time of withdrawal. The sum of the premiums in the simulation is defined as
100 ¨ p12 ¨ T new ` tq for regular premium and 1, 200 ¨ T new for single premium payment
according to the assumed premium payments. The single premium payment sum re-
sults from the assumption that contract values are scaled to PT new. Consequently, costs
tied on the sum of the premiums, e.g. the acquisition costs of a classical life insurance
pension product, have to be adjusted such that they are calculated on the basis of the
premium sum in the current simulation. This ensures that all values are consistently
considered. The acquisition costs are usually charged over the first five years accord-
ing to the zillmerization. These are still to be taken into account in the simulation at
t ď 60 with an adjusted basis and at the time of withdrawal. As a result, we obtain
the simulated final contract values, denoted by vkt , k “ 1, . . . , 10, 000. Based on these,
the averaged final contract values V

c
t and V

r
t are calculated by Equation (4.1) and

(4.2).
The CRC of the portfolio can be estimated by the interpolation of the averaged final

contract values. The proportion αold of the final contract value of the existing pension
product is the same as the one of the total premium payment which is invested in
the existing pension product due to the assumption of linearity of the final contract
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values in the premium payment. Thus, αold results from

αold “
Pold

Pold ` Pnew ,

while
1´ αold “

Pnew

Pold ` Pnew

is the proportion of the final contract values of the new pension product. Then, the
interpolated averaged final contract values of the two pension products are obtained
by

V
c,intpαoldq

“ αoldV
c,old
t ` p1´ αoldqV

c,new
,

V
r,intpαoldq

“ αoldV
r,old
t ` p1´ αoldqV

r,new
.

Next, the chance and risk measure of the interpolated averaged final contract val-
ues have to be determined for the upper bound of the CRC of the portfolio. Calculat-
ing them according to Equation (4.3) with T new as T and the corresponding V

intpαq
as

V leads, generally speaking, to an increased chance and risk measure of the portfolio.
The reason for this is the non-consideration of the already paid up premiums of the
existing contract. They are assessed as return. Therefore, the function for calcula-
tion the chance and risk measure has to be modified. The chance and risk measure
are defined as the annual constant interest rate over the accumulation phase T by
PIA. At the beginning of the contract, T can be considered either as the entire or the
remaining accumulation phase. Consequently, the chance and risk measure can be
seen as an annual return over the entire contract term as well as over the remaining
one. In the first approach, the chance and risk measure leading to the corresponding
interpolated averaged final contract values over the entire accumulation phases are
calculated by

V “

$

’

&

’

%

α ¨ 100
řt
j“1

`

1` µ
12

˘12T`j
` 100

ř12T
j“1

`

1` µ
12

˘j
, regular premium

1200 ¨ T
´

α ¨
`

1` µ
12

˘12T`t
` p1´ αq ¨

`

1` µ
12

˘12T
¯

, single premium.
(4.5)

In the second approach, the chance and risk measure as annual constant yield over
the remaining contract term solve the equation

V “

$

&

%

α ¨ rvt ¨
`

1` µ
12

˘12T
` 100

ř12T
j“1

`

1` µ
12

˘j
, regular premium

pα ¨ rvt ` p1´ αq ¨ 1200 ¨ T q ¨
`

1` µ
12

˘12T
, single premium.

(4.6)

The chance and risk measure of the interpolated averaged final contract values are
then obtained by solving Equation (4.5) or (4.6) with αold as α, T new as T , the appro-
priate interpolated averaged final contract value V

intpαoldq as V , and the corresponding
µ.

96



4.3 Chance-Risk Class of a Portfolio and the Consequences for Customer Consulting

We define the function gT,αpV q as the inverse function of Equation (4.5) or (4.6)
solved for µ. Unfortunately, Equation (4.5) or (4.6) cannot be explicitly solved. Since
g´1T,αpµq consists of summands which are strictly monotonically increasing and convex
for µ ě ´12 (cf. Section 4.2), the function gT,αpV q is again strictly monotonically
increasing and concave for V ě 0. Additionally, gT,αpV q is continuous in this domain
since g´1T,αpµq is strictly monotonically increasing and continuous for µ ě ´12.

Both approaches differ in the consideration of the performance of the existing pen-
sion product in the calculation of the chance and risk measure. In Equation (4.5), the
portfolio is classified by both the past performance of the existing pension product
as well as the future performance of the portfolio, while the past performance of the
existing pension product does not matter in Equation (4.6). Here, only the future per-
formance is decisive for classification. For a balanced performance of both pension
products over their entire contract term, the chance and risk measure are similar in
both approaches. Normally, the performance of a pension product varies over its con-
tract term. There are phases of high and low returns. Assuming the existing pension
product has a tremendous performance on the first t months which leads to a very
high contract value at time t and a low performance afterwards. In Equation (4.6) the
performance of the last t months dominates the future performance which leads to a
low measure, although the overall performance of the existing pension product and
thus of the portfolio is tremendous. Conversely, despite a poor performance in the
first t months, the measure of Equation (4.6) can be large if the future performance
is very good. In both cases, Equation (4.5) leads to a more balanced measure that
better reflects the overall performance of each pension product and the portfolio.

Depending on the type of pension product, part or all of the contract value at time
t is irrevocably allocated to the customer which means that at least this amount is
available at the end of the accumulation phase. From this perspective only the fu-
ture return of the portfolio is of interest to the customer. Therefore, Equation (4.6)
should be chosen for the classification of the portfolio. However, as we discussed
before, this approach can misrepresent the existing pension product and its perfor-
mance. Furthermore, the customer cannot fully dispose of his current contract value
that has been earned up to now. If he dissolves his pension product in order to do
so, he has to pay a cancellation fee. Consequently, the return generated up to that
time point cannot be completely realized. Since pension products are contracted to
finance the pension phase, they are usually held until the beginning of the retire-
ment. Therefore, the return over the entire accumulation phase is important to the
customer. Due to these arguments, we recommend the calculation of the chance and
risk measure according to Equation (4.5) compared to Equation (4.6). Nevertheless,
a final specification of the legislator about the valid approach is required.

Based on µc and µr, the CRC of the portfolio αoldV
old ` p1´ αoldqV

new resulting
from the interpolation of the averaged final contract values, denoted by CRCptfpαoldq,
is determined by using the current CRC boundaries of the accumulation phase T new.
The qualitative criteria of CRC 1 and 2 are to be taken into account. According to
Theorem 4.5, the CRC of the portfolio is not greater than CRCptfpαoldq. Therefore,
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4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

we obtain an upper bound for the CRC of the portfolio with the above described
approach. For αold “ 0 and αold “ 1, CRCptfpαoldq of the portfolio is not an estimation
from above since the entire capital is invested in a single pension product and the
risky averaged final contract value of the pension product is known. The calculation
of the estimated CRC for αold “ 0 results in CRCnew. It also corresponds to the
classification of PIA.

Recommendation for Customer Consulting. As in Section 4.3.2, the average final
contract values should be used to determine an upper bound of the CRC of the portfolio
via interpolation. For the new pension product, its averaged final contract values of the
classification can be used if they are known. The final contract values of the existing
pension product have to be simulated. For this, the current contract value of the existing
pension product has to be known. The chance and risk measure of the portfolio approx-
imated by the interpolation of the averaged final contract values are then calculated by
a modified function which takes the already paid premiums into account.

As an example we consider a classical life insurance pension product which was
contracted four years ago (t “ 48) with an agreed monthly premium of 100 Euros
and contract term of 32 years. The pension product has a guaranteed interest rate of
1.25 % and a current contract value of 3, 931.50 Euros (vold

48 “ 3, 931.50 Euros). Addi-
tionally, a new fund saving plan with a monthly premium of 200 Euros is purchased
which invests the premium after costs in a pure equity fund with a volatility of 25 %.
The agreed contract term is 28 years and corresponds to the remaining accumulation
phase of the existing pension product. The simulated accumulation phase of the clas-
sification is 30 years (T new “ 30). The existing pension product has a money-back
guarantee and a continuously increasing capital, while the fund saving plan has not.
However, both products have the same contract costs: acquisition costs of 2.5 % of
the premium sum extracted constantly over the first five years and monthly admin-
istrative costs of 7 % of the premium. The fund of the fund saving plan additionally
has ongoing charges of 0.3 %.

First, the current averaged final contract values of the classical life insurance pen-
sion product have to be calculated. The scaled current contract value is equal to the
current contract value since the agreed premium corresponds to P30: rvold

48 “ vold
48 “

3, 931.50 Euros. Based on rvold
48 , we simulate the classical life insurance pension prod-

ucts over 30 years with the current market model parameters of PIA, the current
parameters of the reserve fund, a guaranteed interest rate of 1.25 %, and the current
valid contract costs. There are still acquisition costs to be taken into account for one
year. Basis of these costs are the premium sum which is 40, 800 Euros in the simula-
tion. This is also the minimum final contract value due to the money-back guarantee
of the pension product. As current parameters of the reserve fund, we use a propor-
tion of equities of 20 %, a volatility of the equities proportion of 12 %, a duration of
the bond proportion of 12 years, costs of the reserve fund of 0.1 %, a current declared
total return of 3 % as well as the return of the equities of the last year of 5 % and the
second to last year of 10 %. Based on the simulated final contract values, we obtain
V

c,old
48 “ 58, 432.80 Euros and V

r,old
48 “ 52, 231.78 Euros.
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The current averaged final contract values of the fund saving plan are known due
to classification and it holds V

c,new
“ 126, 958.29 Euros as well as V

r,new
“ 36, 000

Euros. The proportion αold of the total premium payments which is invested in the
classical life insurance pension product is obtained by

αold “
100

100` 200
“

1

3
.

Then, the interpolated averaged final contract values with the proportion αold in the
existing pension product and the remaining proportion in the fund saving plan are
V

c,intp1{3q
“ 104, 116.46 Euros and V

r,intp1{3q
“ 41, 410.59 Euros. With Equation (4.5) for

calculating chance and risk measure, we receive µc “ 5.6468 %, µr “ 0.6028 % and
with Equation (4.6) µc “ 5.7768 %, µr “ 0.6588 %. In both cases, the CRC resulting
from the interpolation of the averaged final contract values, CRCptfp1{3q, is 3 according
to the current CRC boundaries of 30 years. Consequently, the CRC of the portfolio
consisting of the existing and new pension product is not larger than 3. Due to the
missing qualitative criteria for CRC 1 and 2, the CRC cannot be smaller than 3.

The Choice of the Proportion α

Assuming the above calculated CRC of the portfolio as an upper bound does not fit
the risk profile of the customer meaning CRCcust ă CRCptfpαq. The investment of the
entire amount I in the new pension product leads to an unsuitable portfolio’s CRC
for the customer. Therefore, we investigate in this section how the premium in the
new pension product or the proportion α should be chosen such that the customer
does not take more risk than he prefers. For this, two different cases are considered:

(i) The premium of the existing pension product can be increased.

(ii) The premium of the existing pension product cannot be increased.

(i) The existing pension product can be raised. We consider the increase in accor-
dance with the contract conditions as well as the purchase of the contract on the
same conditions. In case of the latter, the contract still has to be sold. Both variants
can cause different costs which are taken into account in the calculation. We treat
both kinds of increases as a separate product.

Our considered portfolio in this case consists of three pension products: the exist-
ing one, the increase of the existing one, and the new pension product. The entire
investment I is used split in both new pension products. The proportion β, 0 ď β ď 1,
is used for increasing the existing pension product. The remaining proportion p1´βq
is invested in the entirely new pension product. Relative to the total premium pay-
ment we obtain the following proportion:

• αold which is invested in the existing pension product and constant

αold “
Pold

Pold ` I

99
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• αincr which is taken for increasing the existing pension product

αincr “
βI

Pold ` I

• αnew which is invested in the new pension product

αnew “
p1´ βq I

Pold ` I
“ 1´ αold ´ αincr.

αincr and αnew can only take values between 0 and I
Pold`I

depending on β. Both add
up to I

Pold`I
.

For the calculation of the CRC of the portfolio with these three products, we need
the averaged final contract values. Besides the current averaged final contract values
of the existing pension product V

old
t (see Section 4.3.3) and the one of the entirely

new pension product V
new

– these values are known – we need the averaged final
contract values of the increase of the existing, denoted by V

c,incr
0 and V

r,incr
0 . Here, the

different costs are to be taken into account. We specify the averaged final contract
values of the increasing by a subscript of 0 to emphasize that it does not have to
correspond to the values of the classification but may have to be simulated itself. If
the same pension product is purchased again in order to increase the existing pen-
sion product, the averaged final contract values of the classification are used as the
averaged final contract values of the increasing: V

c,incr
0 “ V

c,old
and V

r,incr
0 “ V

r,old
. We

assume that the averaged final contract values of the classification are known. If the
increase of the existing pension product according to the contract conditions has the
same costs as the new purchase of the same pension product and they are also taken
at the same time points in relation to the contract term, the averaged final contract
values of the classification are also employed. In addition to the costs, the other con-
tract parameters also have to be the same. If the pension product is not sold anymore,
the averaged final contract values have to be simulated as described in Section 4.1.1.
The same applies if the costs or other contract parameters of increasing the premium
according to the contract conditions differ from the new purchase which is normally
the case. The corresponding costs as well as the contract parameters of the increase
of the existing pension product are used in the simulation.

Under the assumption of the linearity of the final contract values in the premium,
we obtain the following interpolation of the averaged final contract values:

V
c,intpαold,αincrq

“ αoldV
c,old
t ` αincrV

c,incr
0 ` αnewV

c,new
,

V
r,intpαold,αincrq

“ αoldV
r,old
t ` αincrV

r,incr
0 ` αnewV

r,new
.

We extend Theorem 4.7 to the case of a portfolio of three pension products with
one fixed proportion of one pension product.
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Theorem 4.8. Let g : R`0 Ñ D, where D Ď R, be a strictly monotonically increas-
ing function calculating the chance and risk measure from the averaged final contract
values. Let V 1 P VT be an already t months existing pension product with V

c,1
t and

V
r,1
t calculated as described in Section 4.3.3 over a simulation phase of T . Let α1 be

the proportion which is invested in V 1 and be fixed. Let V 2, V 3 P VT be two pension
products with V

c,i
, V

r,i
defined as in Equation (4.1) and (4.2) for i “ 2, 3. Let αi be

the proportion which is invested in pension product V i with 0 ď αi ď p1 ´ α1q and
α2`α3 “ 1´α1. Let V

c,2
ă V

c,3
and V

r,2
ą V

r,3
such that CRCptfpα1,1´α1q ď CRCptfpα1,0q

where CRCptfpα1,α2q is the estimated CRC of the portfolio α1V
1`α2V

2`p1´α1´α2qV
3.

Let CRCcust be a given risk profile with CRCptfpα1,1´α1q ď CRCcust ď CRCptfpα1,0q and
bCRC

cust

T the µc-intercept of the current boundary between CRCcust and CRCcust ` 1 for
the accumulation phase T . Let upα1, α2q be defined as

upα1, α2q :“ g
´

α1V
c,1
t `α2V

c,2
`p1´α1´α2qV

c,3
¯

´g
´

α1V
r,1
t `α2V

r,2
`p1´α1´α2qV

r,3
¯

Let α˚2 be chosen such that α˚2 solves

upα1, α
˚
2q “

$

’

&

’

%

upα1, 0q, CRCcust “ CRCα1,0

bCRC
cust

T , else.
(4.7)

Then, the CRC of the portfolio of α1V
1 ` α2V

2 ` p1 ´ α1 ´ α2qV
3 with α2 ą α˚2 is not

larger than CRCcust.

Proof. Analogous to proof of Theorem 4.7, we use the linearity of f c for calculation
of µc,ptfpα1,α2q as

µc,ptfpα1,α2q “ g
´

α1V
c,1
t ` α2V

c,2
` p1´ α1 ´ α2qV

c,3
¯

“ g
´

V
c,intpα1,α2q

¯

,

the estimation of

µr,ptfpα1,α2q ě g
´

α1V
r,1
t ` α2V

r,2
` p1´ α1 ´ α2qV

r,3
¯

“ g
´

V
r,intpα1,α2q

¯

,

and the strictly increasing monotonicity of g to obtain the estimation

µc,ptfpα1,α2q ´ µr,ptfpα1,α2q ď g
´

V
c,intpα1,α2q

¯

´ g
´

V
r,intpα1,α2q

¯

“ upα1, α2q.

Since α1 is fixed, u depends only on α2. Taking the derivative of u with respect to α2

yields

Bupα1, α2q

Bα2

“

Bg
´

V
c,intpα1,α2q

¯

BV
c,intpα1,α2q

´

V
c,2
´ V

c,3
¯

´

Bg
´

V
r,intpα1,α2q

¯

BV
r,intpα1,α2q

´

V
r,2
´ V

r,3
¯

.
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4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

For V
c,2
ă V

c,3
the minuend is smaller than zero due to the strict monotonicity of g.

The subtrahend is non-negative for V
r,2
ą V

r,3
. Hence, Bupα1,α2q

Bα2
ă 0 in this case so

that upα1, α2q is strictly monotonically decreasing.
Furthermore, it holds

upα1, 0q “ g
´

α1V
c,1
t ` p1´ α1qV

c,3
¯

´ g
´

α1V
r,1
t ` p1´ α1qV

r,3
¯

,

upα1, 1´ α1q “ g
´

α1V
c,1
t ` p1´ α1qV

c,2
¯

´ g
´

α1V
r,1
t ` p1´ α1qV

r,2
¯

ă bCRCptfpα1,1´α1q

T

where bjT is the µc-intercept of the CRC boundary between j and j`1 for the accumu-
lation phase T . Due to V

c,2
ă V

c,3
and V

r,2
ą V

r,3
, we have upα1, 0q ą upα1, 1´ α1q.

For CRCcust “ CRCptfpα1,0q, α˚2 “ 0 solves Equation (4.7). Due to the strict mono-
tonicity of upα1, α2q no further α2 solving Equation (4.7) exists. It holds

upα1, 0q ě bCRCptfpα1,0q´1
T ě bCRCptfpα1,1´α1q

T ą upα1, 1´ α1q

for CRCptfpα1,1´α1q ď CRCcust ă CRCptfpα1,0q. Combined with the strict monotonicity
of upα1, α2q and the choice of CRCcust this results in the existence of exactly one α˚2
solving Equation (4.7).

Due to the strictly decreasing monotonicity of upα1, α2q, it holds
upα1, α2q ă upα1, α

˚
2q for α2 ą α˚2 . Consequently, for V

c,2
ă V

c,3
, V

r,2
ą V

r,3
and

α2 ą α˚2 we have the estimation

µc,ptfpα1,α2q ´ µr,ptfpα1,α2q ďupα1, α2q ă upα1, α
˚
2q “

$

’

&

’

%

upα1, 0q, CRCcust “ CRCα1,0

bCRC
cust

T , else.

The CRC of the portfolio α1V
1 ` α2V

2 ` p1 ´ α1 ´ α2qV
3 with α2 ą α˚2 is not larger

than CRCcust in this case.

Note that the portfolio’s CRC estimated from above can be attained via Theo-
rem 4.8. If CRCptfpα1,1´α1q “ CRCptfpα1,0q, Theorem 4.8 provides α˚2 “ 0. No other
upper estimated CRC than CRCptfpα1,1´α1q or CRCptfpα1,0q can be generated via the
choice of α2 in this case.

The new pension product is chosen so that the requirements of Theorem 4.8 are
satisfied. As function g for the chance and risk measure, the inverse function of
Equation (4.5) or (4.6) of Section 4.3.3 is employed with T new as T and αold as α.
Applying Theorem 4.8 delivers α˚incr. All αincr ą α˚incr ensure that the CRC of the
portfolio is not larger than the desired CRCcust. The corresponding proportion β˚ of
I can be calculated by

β˚ “ α˚incr

`

Pold ` I
˘

I
.

The maximum premium in the new pension product, P˚,new, ensuring that the CRC
of the portfolio is not larger than CRCcust is calculated by p1´ β˚qI.
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Recommendation for Customer Consulting. If the existing pension product can be
increased, a maximum premium to be invested in the increase can be calculated such
that the CRC of the portfolio is not larger than a given one. For this, the averaged final
contract values of the increase have to be simulated and calculated in the PIA model in
addition to the present model of the existing pension product if necessary.

However, the qualitative criteria must be taken into account. For this, the consultant
has to ensure that the existing and new pension product fulfill the qualitative criteria for
CRC 1 if the customer has a CRC of 1 (CRCcust “ 1) and for CRC 2 if the customer has
a CRC of 2 (CRCcust “ 2).

We take the example of the previous section even if CRC 1 and 2 cannot be reached
due to the missing qualitative criteria. Nevertheless, we also calculate these cases for
illustrative purposes. The existing pension product can be increased incurring the
same costs as previously and the acquisition costs being charged over the next 60
months. The simulation of the increase over 30 years results in the averaged final
contract values: V

c,incr
0 “ 48, 379.26 Euros and V

r,incr
0 “ 43, 655.14 Euros. The simula-

tion is based on the current market model parameters of PIA, the current parameters
of the reserve fund as above, a guaranteed interest rate of 1.25%, and the valid con-
tract costs.

We consider the case where the entire investment of 200 Euros is used for the fund
saving plan and the case where it is used for the increase. The CRC of the portfolio
of the existing pension product and the fund saving plan is not larger than 3 as cal-
culated in Section 4.3.3: CRCptfp1{3,0q

“ 3. The same calculation for the portfolio of
the existing pension product and the entire investment of 200 Euros in the increase
delivers CRCptfp1{3,2{3q

“ 1 for both functions of gT,1{3pV q and the current CRC bound-
aries of 30 years. Consequently, CRCptfp1{3,2{3q

ă CRCptfp1{3,0q and Theorem 4.8 can be
applied. We obtain α˚incr in % and α˚new in % listed in Table 4.10 for different CRCcust

with CRCptfp1{3,2{3q
ď CRCcust ď CRCptfp1{3,0q besides the constant αold.

gT,1{3pV q
CRCcust

1 2 3
αold in % 33.33 33.33 33.33

α˚incr in %
Eq. (4.5) 55.40 33.40 0
Eq. (4.6) 55.66 34.09 0

α˚new in %
Eq. (4.5) 11.26 33.26 66.66
Eq. (4.6) 11.01 32.58 66.66

Table 4.10: αold, α˚incr, and α˚new depending on CRCcust for the example of an ex-
isting and new pension product with the possibility of increasing the
existing one

For different αincr P r0; 2{3s we calculate the actual µc,ptfp1{3,αincrq and µr,ptfp1{3,αincrq of
the portfolio as well as µc and µr of the interpolated averaged final contract values
V

c,intp1{3,αincrq and V
r,intp1{3,αincrq as estimation of the chance and risk measure of the port-

folio. These parameters and the corresponding CRC are illustrated in Figure 4.11 for
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Figure 4.11: Relation between αincr, CRC, and CRC of the portfolio with an existing
and new pension product

both functions of gT,1{3pV q. Just like in Figure 4.8a the lower line represents the con-
stant interest rates of the interpolation of the averaged final contract values, while
the upper line shows the actual values of the portfolio. Every point of the lines be-
long to one αincr. The same αincr on the interpolated and actual line are connected
by a vertical arrow which also specifies the direction in which the interpolated value
is moved to obtain the true values. Note that αincr goes from 2{3 to 0 from the point
at the top left to the point at the bottom right. For αincr “ 2{3 it looks like the actual
chance and risk measure and the one of the interpolation are the same, but they are
not albeit with only a very small difference. As for αincr “ 0 a part of the total pre-
mium payment is always invested in the existing pension product, another product
with another order of the final contract values. Therefore, the interpolation of the
averaged final contract values is an estimation from above of the portfolio. The color
clarifies the interval depending on α˚incr which in turn depends on CRCcust wherein
αincr lies. We denote α˚incr which belongs to CRCcust equal j, j “ 1, 2, 3, by α˚incr,j.
The statement of Theorem 4.8 is clearly seen. For αincr ą α˚incr,j the actual CRC is not
larger than the CRC resulting from the interpolation of the averaged final contract
values which is again not larger than CRC j.

(ii) In the second case the existing contract cannot be increased: Whether the con-
tract conditions of the existing pension product exclude an increase or the contract is
not sold anymore. Consequently, the CRC of the portfolio can only be controlled with
the investment in the new pension product. This means that not the entire available
amount I will be invested in any case. Here, the premium of the new pension prod-
uct Pnew and thus α have to be adjusted until the desired CRC of the customer results
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from the calculation in Section 4.3.3. For CRC 1 or 2 as CRCcust, the existing and
new pension product have to fulfill the qualitative criteria of CRC 1 or 2.

Recommendation for Customer Consulting. The CRC of the portfolio has to be esti-
mated according to Section 4.3.3 for every possible premium of the new pension product.
The premium of the existing pension product remains the same. The qualitative criteria
for CRC 1 and 2 have to be taken into account.

We consider the same example as before with the knowledge that CRC 1 and 2
cannot actually be reached. Here, the classical life insurance pension product cannot
be increased. For different premiums in the fund saving plan with Pnew P r0; 200s, we
calculate the estimated CRC of the portfolio of the existing and new pension product
as described in Section 4.3.3 and obtain the premium P˚,new in Euros for the different
CRCcust which are listed in Table 4.12. If the customer has a risk profile of 2, a
fund saving plan with a maximum premium of 59.11 Euros or 56.26 Euros should be
contracted such that the portfolio does not have a larger CRC than 2. Furthermore,
100 Euros are invested in the classical life insurance pension product.

gT,αpV q
CRCcust

1 2 3

P˚,new in Euros
Eq. (4.5) 15.81 59.11 200
Eq. (4.6) 14.99 56.26 200

Table 4.12: P˚,new depending on CRCcust for the example of an existing and new
pension product without the possibility of increasing the existing one

4.4 Chance-Risk Class of a Pension Product over the
Contract Term

The classification by PIA only determines the CRC at the time of purchase. However,
the CRC of the pension product will not remain the same over the contract term.
Factors such as the past performance of the pension product, the amortization of the
acquisition costs, or the current financial market situation might influence the CRC.
Unfortunately, there are no legal specifications on the determination of the current
CRC of an existing contract already running a certain period of time. The legislator
only specifies the framework for the CRC at purchase. We introduce different ap-
proaches of determining the CRC over the contract term in this section. Thereby, we
apply the legal situation of the classification to this question first. Afterwards, further
conceivable procedures are presented. These are in accordance with the concept of
the classification by PIA. Additionally, the approaches in this section are consistent
with the CRC determination of a portfolio consisting of an existing and new pension
product.
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4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

We consider an existing pension product contracted at the age of x with agreed ac-
cumulation phase T and premium payment P . Let vt denote the contract value after
t months just before the next premium payment where t “ 0, . . . , 12 ¨ T . Clearly, the
current contract value after zero months is zero: v0 “ 0. The remaining accumulation
phase after t months, denoted by Tt, results from

Tt “ T ´
t

12
.

The values of the classification by PIA are calculated at the contract start t “ 0. We
use the above notation of these values without a subscript of 0 in order to emphasize
that these values are coming from the classification by PIA. The calculated values for
determining the CRC at later time points t ą 0 are identified by a subscript.

The CRC of the pension product at the beginning of the contract is issued by PIA
and printed on the PIB. It is determined for a simulated accumulation phase of

T “

$

’

’

’

&

’

’

’

%

12, T P r0; 12s

20, T P p12; 20s

30, T P p20; 30s

40, T P p30;8s

according to § 5 (2) sentence 4 of the AltvPIBV. Furthermore, the simulation is
based on the assumption of a premium payment of the idealized customer (see Sec-
tion 4.1.1).

Figure 4.13 shows the chronological sequence of the pension product. In addition,
it illustrates the CRC at different times t and the corresponding simulated accumula-
tion phases for this calculation explained below. The simulated accumulation phases
T and Tt extend beyond the age of 67 years since the end of both phases do not
necessarily end with reaching this age. For example, a contract with T of 13 years is
simulated over an accumulation of 20 years for classification.

Age
x

Contract start

67

Retirement
age

Accumulation phase T Pension phase

x ` t

v0 “ 0 vt v12T

Accumulation phase Tt

CRC
Simulated accu-

mulation phase T

CRCt
Simulated accu-

mulation phase Tt

Figure 4.13: Chronological sequence of a pension product
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We assume that the pension product already runs t months and we want to de-
termine the current CRC of the pension product denoted by CRCt. According to
the legislator four different accumulation phases are considered in the classification
of the pension product. For each of them the CRC is calculated under the terms
described above. The pension product receives then the CRC of one of the four ac-
cumulation phases corresponding to its own accumulation phase. Transferring this
procedure to our issue implies that the running pension product obtains one of the
four CRC issued by PIA depending on the remaining accumulation phase Tt. CRCt
results from

CRCt “

$

’

’

’

&

’

’

’

%

CRC of T “ 12, Tt P r0; 12s

CRC of T “ 20, Tt P p12; 20s

CRC of T “ 30, Tt P p20; 30s

CRC of T “ 40, Tt P p30;8s

where CRC is the current CRC of the pension product issued by PIA at time t. The
CRC can jump if the classification interval changes from one time point to the next,
e.g. from Tt “ 12 1

12
to Tt “ 12. However, the current CRC can also change, while

two sequential remaining accumulation phases lie in one classification interval since
the pension products are checked every year and the capital market parameters are
changed.

An advantage of this approach is that no further simulations have to be performed.
However, costs included in the classification may differ in each accumulation phase
considered by PIA. Therefore, the costs may change when the underlying accumu-
lation phase of the CRC changes over the contract term. Consequently, the costs of
the contract could not be correctly taken into account which is problematic. Further-
more, the already paid premiums are not included in the classification. In addition,
the CRC has to exist for each of the four accumulation phases which is not necessarily
the case. For example, if the minimum offered contract term of the pension product is
larger than 12 years or the pension product is no longer sold, then the corresponding
CRC of the pension product is not calculated by PIA. These are problems where it is
not clear how to deal with them.

Therefore, we develop further approaches which have the disadvantage that ad-
ditional simulations have to be run, but the correct costs and paid premiums are
considered and the existence of a CRC for every remaining accumulation phase is
ensured. In order to determine the CRC of an existing pension product, the current
averaged final contract values V t of the pension product have to be calculated first
which is not straightforward. Based on these values, the running pension product is
assigned a CRC via the chance and risk measure.

The calculation of the averaged final contract values is similar to the one in Sec-
tion 4.3.3 except for the choice of the scaling and of the simulation phase. The basis
of the determination of the averaged final contract values and thus of CRCt is the
current contract value vt of the pension product. This value has to be scaled to the
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4 Chance-Risk Classification of a State-Subsidized Pension Product Portfolio

premium payment of the idealized customer by

rvt “ vt ¨
PT
P

where rvt is the contract value scaled to the premium of the idealized customer at time
t. Scaling of the contract value ensures a consistent approach to the classification by
PIA. As in Section 4.3.3, we assume that the contract value is linear in the premium
payment. If the contract value is made up of different assets (for example a three-pot
hybrid product), all assets components have to be scaled as above.

Next, the final contract values of the pension product have to be simulated over the
remaining accumulation phase Tt in the PIA model under consideration of the con-
tract value rvt as starting capital and the premium payment PT . No further premium
payments are considered in the simulation in the single premium payment case. The
distribution of the contract value in different asset components has to be taken into
account. For the simulation of the market model, the capital market developments
with the current model parameters of the PIA model, which we assume as known,
and asset costs are used, while the contract is simulated on the contract parameters
which hold at the contract start. Thus, the current market situation as well as the
specific contract conditions are represented. The premium sum in the simulation is
defined as 100 ¨ t12 ¨ Tt ` tu for regular premium and 1, 200 ¨ T for single premium
payment according to the assumed premium payments. Consequently, costs with the
premium sum as basis, e.g. the acquisition costs of a classical life insurance pension
product, have to be adjusted so that they are calculated on the basis of the premium
sum of the current simulation.

The simulated accumulation phase Tt cannot be straightforwardly determined. All
of the following approaches are conceivable. For a better understanding, we refer to
Table 4.14 which compares the different methods and shows the problems involved.

(i) Tt results by deducting the past contract term t from the accumulation phase T
of the classification:

Tt “ T ´
t

12
.

The simulation phase decreases each month by one month over the entire con-
tract term. However, the simulation phase Tt can significantly differ from the
actual remaining accumulation phase Tt. This is especially problematic at the
end of the accumulation phase of the contract where T12¨T “ T ´ T . T12¨T is
non-negative for T ă 40 and negative for T ą 40, while T12¨T is equal to zero.
No simulation can be performed for a negative simulation phase Tt which is
already the case for t ą 12 ¨ T and T ą 40. The difference between the simu-
lated and the actual remaining accumulation phase remains the same over the
contract term and can be up to 9 years for T ă 40 and larger for T ą 40. It is
only zero for T “ T and thus for T “ 12, 20, 30, 40.
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(ii) Tt results by deduction of the past contract term t from the actual accumulation
phase T of the contract:

Tt “ T ´
t

12
.

Tt is the actual remaining accumulation phase of the contract in contrast to the
first approach. However, there is a gap in the simulated accumulation phase of
the classification of PIA, T , and the simulation phase one month later, T1. It can
be up to 9 years for T ă 40 and larger for T ą 40. It is only zero in the case of
T “ T and thus for T “ 12, 20, 30, 40.

(iii) The past contract term is adjusted to the simulated accumulation by the pro-
portion of T to T and deducted from T . Tt results from

Tt “
T

T

ˆ

T ´ t

12

˙

.

This approach has the advantage that the simulated accumulation phase Tt
uniformly decreases from T to zero over the whole accumulation phase T of
the contract. We have no gap between the simulated accumulation phase T
and T1 and it holds that T12¨T is zero. Furthermore, the approach can deal with
T ă 40 and T ą 40. However, the difference between two successive simulated
accumulation phases Tt and Tt`1 are not equal to one month. This is only the
case if T “ T and thus if T “ 12, 20, 30, 40. Therefore most of the time, the
simulated accumulation phase is not a full month.

Passed time t in months
0 12 24 36 48 ¨ ¨ ¨ 120 132 144 156

Tt 13 12 11 10 9 ¨ ¨ ¨ 3 2 1 0
Tt as (i) 20 19 18 17 16 ¨ ¨ ¨ 10 9 8 7
Tt as (ii) 20 12 11 10 9 ¨ ¨ ¨ 3 2 1 0
Tt as (iii) 20 18.46 16.92 15.38 13.85 ¨ ¨ ¨ 4.62 3.08 1.54 0

Table 4.14: Comparison of the actual remaining accumulation phaseTt in years to
the simulation phase Tt in years based on the different approaches

In order to illustrate the different approaches, we consider a contract with an ac-
cumulation phase T of 13 years. Consequently, the accumulation phase T of the
classification is 20 years. Table 4.14 shows the simulated accumulation phase Tt
in years for different passed times t in months and the different approaches. The
above-mentioned problems of the approaches are highlighted.

Due to the uniform distribution of the accumulation phase over the simulated accu-
mulation phase at the time of purchase, we recommend the third approach. Further-
more, this approach does not lead to any inconsistencies in the CRC determination
over the contract term.
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After determining Tt, the simulation can be performed obtaining 10,000 final con-
tract values denoted by vkt , k “ 1, . . . , 10, 000. Based on these, the averaged final
contract values V

c
t and V

r
t are calculated by Equation (4.1) and (4.2). In the classifi-

cation by PIA, the CRC is determined by the chance and risk measure which represent
the annual constant interest rate over the accumulation phase T leading to the aver-
aged simulated final contract values. As in Section 4.3.3, T can be considered as the
entire accumulation phase as well as the remaining accumulation phase. Therefore,
the same possibilities for calculating the chance and risk measure and thus the CRC
as above consistent with the PIA classification exist.

(i) The chance and risk measure at time t is the annual constant interest rate over
the entire accumulation phase T leading to the current averaged final contract
values resulting from the simulation at time t. The chance and risk measure
µt at time t solve the following equation which corresponds to Equation (4.3)
with the appropriate V t as V and µt as µ:

V t “

$

’

’

’

&

’

’

’

%

100
ř12¨T
k“1

´

1`
µt
12

¯k

, regular premium

1200 ¨ T
´

1`
µt
12

¯12T

, single premium.

Based on µc
t and µr

t, the pension product is assigned to a CRC. Thereby, the CRC
of the pension product has to be determined by the current CRC boundaries
of the corresponding accumulation phase T since the pension product is sim-
ulated under the current capital market model parameters. The usage of the
CRC boundaries which were valid during PIA classification while simultane-
ously employing of the current model parameters would lead to an inconsistent
result. In addition, the qualitative criteria of CRC 1 and 2 have to be taken into
account for determining the CRC.

(ii) The chance and risk measure are defined as the annual constant interest rate
over the remaining accumulation phase leading to the current averaged final
contract values resulting from the current simulation. For this, Equation (4.3)
has to be modified. The chance and risk measure then solve the equation

V t “

$

’

’

&

’

’

%

rvt ¨
´

1`
µt
12

¯12Tt
` 100

ř12Tt
j“1

´

1`
µt
12

¯j

, regular premium

rvt ¨
´

1`
µt
12

¯12Tt
, single premium

with the appropriate averaged final contract value and measure at time t. Based
on µc

t and µr
t, the pension product is assigned to a CRC. Since CRC boundaries do

not exist for each accumulation phase Tt, we adapt the procedure of PIA using
the existing boundaries of the next larger accumulation phase. For Tt ą 40 no
such boundaries exist. The CRC boundaries of an accumulation phase of 40
years are used instead.
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Both approaches differ in the consideration of the past in the calculation of the
chance and risk measure. In the first approach, the pension product is classified by
its performance of the past as well as the future. In the second approach, the perfor-
mance of the past does not matter in the calculation of the measures. Only the future
performance is decisive for classification. Thus, using the second approach might
result into a low chance-measure, although the pension product had a tremendous
performance on the first t months and vice versa. The same statements as in Sec-
tion 4.3.3 apply here and we recommend the first calculation of the chance and risk
measure as return over the entire contract term for the same reasons. Nevertheless,
a final specification of the legislator about the valid approach is required.

The CRC will be decreasing over the contract term in the above introduced ap-
proaches. This is caused by the declining simulated remaining accumulation phase.
Thus, the variance of the prices of the underlying assets in the simulation also de-
creases over the contract term. This in turn reduces the variance of the simulated
final contract values. Thereby, the averaged final contract values V

c
t and V

r
t converge

towards each other. This also holds for µc
t and µr

t. At the end of the accumulation
phase the averaged final contract values are equal and correspond to the contract
value v12¨T . Thus, the chance and risk measure have the same value. Therefore, the
pension product has a CRC between 1 and 3 depending on the qualitative criteria
at the end of the accumulation phase of the contract. In a µc-µr-diagram, the con-
tract moves towards the straight line through the point (0,0) with slope of 1 over the
contract term.

We take a monthly view as a basis of the CRC determination of an existing pension
product. Equally, we can use an annual view and calculate the CRC after one year,
two years, and so on. This corresponds to t “ 0, 12, 24, . . . , 12 ¨ T . The customer
receives information of his contract value once a year from the insurance company.
This can be used for the determination of the contract values vt after t months with
t “ 0, 12, 24, . . . , 12 ¨ T .

It cannot be definitively answered which approach should be taken. All presented
approaches are conceivable and consistent with the PIA classification. The approach
following the legislator is easy to use but does not necessarily consider the correct
costs and paid premium payments. This is eliminated in the other introduced ap-
proaches albeit with a drawback: The requirement of a simulation. As long as all
approaches lead to the same CRC no miscounselings can happen regardless of the
used approach. The discrepancy in the CRC of the legislator approach compared to
the succeeding increases with the difference between the remaining accumulation
phase and the used accumulation phase according to the legislator’s approach. In
order to favor one approach, a specification of the legislator is required.

Recommendation for Customer Consulting. The CRC issued by PIA can be used
for determining the CRC of an existing pension product. In order to avoid the above-
mentioned drawbacks of this approach, simulations of the future contract values are
required. For this, a simulation application of the PIA model has to be provided to
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the consultant by the insurance company so that he can determine the CRC during the
consultation.

4.5 Conclusion

The classification of state-subsidized pension products by PIA is an important instru-
ment for consumer protection as it enables the customer to assess such a product in
terms of its chance potential and risk. Together with the procedure developed by
EI-QFM to determine the customer’s chance-risk profile, the customer consultant has
two useful instruments providing optimal and customer individual consulting with
regard to suitable pension products.

However, in order to provide suitable consulting to a customer who already has
pension products, a CRC determination of the resulting portfolio of existing and new
product is necessary. We developed an appropriate procedure for this. It is based
on an examination of the properties of the various chance and risk parameters and
their mappings. Only the mapping to the mean of the final contract values, i.e. the
contract values at the end of the accumulation phase, is linear in the combination of
two products, while all others are concave. We assume that – at least approximately
justified – the costs of the products are linear in the premium payment and the con-
tract value. Based on the properties, we showed that a diversification effect exists in
the classification according to PIA. It is also possible, for example, to include products
with a higher CRC than the customer’s in the portfolio by combining products and
still maintain the desired overall CRC while increasing the earnings potential at the
same time.

Another important result of our analysis is that the averaged final contract values
should be used as upper bound of the CRC of the portfolio. These must be interpo-
lated according to their proportions and the corresponding chance and risk measure
must be calculated. In the case of a portfolio consisting of two new pension products,
the proportions of each product can be determined so that the CRC of the portfolio is
not greater than a given CRC. We also applied our diversification results to the case
of a portfolio consisting of an existing and a new pension product where it is possible
to increase the premium of the existing pension product. If this is not the case, the
upper bound of the portfolio’s CRC must be determined for each proportion in the
new pension product until it has the desired CRC.

This results in the necessity for the legislator to create corresponding regulations on
how the consultant can use the final contract values without explicitly knowing them
since under the current regulation neither the explicit values of the chance and risk
measure nor the simulated final contract values of the products used by PIA may be
communicated externally by the provider. Only in this way our recommendations for
customer consulting derived from our theoretical results can actually be implemented
by the consultant.

Our results are not only useful for consulting but can also be interesting to the in-
surer in terms of cost-effective and customer-fit product development. For example,
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4.5 Conclusion

determining or restricting the CRC of a portfolio enables the provider to construct
(approximately) optimal products for the respective CRC from his existing products
by appropriate portfolio construction without development of completely new prod-
uct concepts. Moreover, in principle, our analysis can also include other assets of
the customer as state-subsidized pension products. However, these must be classified
according to the PIA model.

Finally, we suggested different approaches of the CRC determination over the con-
tract term since only the CRC at the beginning of the accumulation phase is obtained
by the PIA classification. The current legal situation is applied to the CRC determi-
nation over the contract term. Here, however, the pension product and the develop-
ment of its CRC is not considered correctly. Therefore, we developed an approach
that eliminates these disadvantages but requires further simulations.
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A Analysis of Bzpxq{x

Lemma A.1. Let be z ą 0 and Bzpxq
x

be defined as

Bzpxq

x
:“

1´ e´zx

zx
.

For x ą 0 it holds

• Bzpxq
x

is positive,

• the first derivative of Bzpxq
x

is negative,

• the second derivative of Bzpxq
x

is positive,

• the third derivative of Bzpxq
x

is negative.

Proof. Since e´zx is lower than 1 for z, x ą 0, the numerator of Bzpxq
x

is positive.
Consequently, Bzpxq

x
is positive for z, x ą 0.

The first derivative of Bzpxq
x

is

BBzpxq{x

Bx
“
p1` zxqe´zx ´ 1

zx2
.

p1` zxqe´zx is lower than 1 for z, x ą 0 since 1` zx ă ezx for z, x ‰ 0. Consequently,
the first derivative of Bzpxq

x
is negative for z, x ą 0.

The second derivative of Bzpxq
x

is

B2Bzpxq{x

Bx2
“

2 p1´ p1` zxqe´zxq ´ z2x2e´zx

zx3
.

We consider the numerator and denominator separately. The denominator is always
positive because of z, x ą 0. We denote the numerator by fpxq. For x going to 0 we
have

lim
xÓ0

fpxq “ 0.

Furthermore, the first derivative of fpxq is

Bfpxq

Bx
“ z3x2e´zx
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and is positive for z ą 0. Therefore, the numerator increases from zero on and is
always positive. Due to fpxq ą 0 and zx3 ą 0, the second derivative of Bzpxq

x
is

positive for z, x ą 0.
The third derivative of Bzpxq

x
is

B3Bzpxq{x

Bx3
“

6 pp1` zxq e´zx ´ 1q ` 3z2x2e´zx ` z3x3e´zx

zx4
.

We consider the numerator and denominator separately. The denominator is always
positive because of z, x ą 0. We denote the numerator by gpxq. For x going to 0 we
have

lim
xÓ0

gpxq “ 0.

Furthermore, the first derivative of gpxq is

Bgpxq

Bx
“ ´z4x3e´zx

and is negative for z, x ą 0. Therefore, the numerator decreases from zero on and
is always negative. Due to gpxq ă 0 and zx4 ą 0, the second derivative of Bzpxq

x
is

negative for z, x ą 0.
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B Descriptive Statistics of the Yield
Increments with Different
Time-Lags

Time to Mean Std. Dev. Min Max Skew Kurt Autocorrelation Lag-2 partial
maturity Lag-1 Lag-21 Lag-256 autocorr.
(in years) (10´2) (10´2) (10´2) (10´2)

0.5 -0.0005 0.0167 -0.1545 0.1707 0.0890 16.4943 0.0108 0.0035 0.0228 -0.0005
1 -0.0006 0.0189 -0.2637 0.1799 -1.0828 25.0857 0.0861 0.0289 0.0195 0.0220
3 -0.0010 0.0298 -0.3295 0.1894 -0.7038 12.0425 0.0533 0.0462 0.0261 0.0205
5 -0.0013 0.0336 -0.2258 0.1773 -0.0493 4.0109 0.0405 0.0299 0.0230 0.0237
7 -0.0015 0.0356 -0.1772 0.1770 0.1585 2.3174 0.0414 0.0208 0.0204 0.0184

10 -0.0017 0.0376 -0.1930 0.1775 0.2229 2.0838 0.0458 0.0147 0.0191 0.0048
20 -0.0018 0.0419 -0.2410 0.2403 0.1043 3.1072 0.0619 0.0028 0.0257 -0.0169

Table B.1: Increments of 1 trading day

Time to Mean Std. Dev. Min Max Skew Kurt Autocorrelation Lag-2 partial
maturity Lag-1 Lag-21 Lag-256 autocorr.
(in years) (10´2) (10´2) (10´2) (10´2)

0.5 -0.0101 0.0932 -0.5859 0.3183 -0.9473 6.2709 0.9680 0.1447 0.1257 -0.0323
1 -0.0128 0.1024 -0.6374 0.4495 -0.8694 7.6962 0.9666 0.1106 0.1162 -0.1017
3 -0.0222 0.1389 -0.7565 0.6057 -0.3475 4.1167 0.9558 0.0345 0.0546 -0.0864
5 -0.0283 0.1563 -0.7468 0.5421 -0.0509 1.5862 0.9550 0.0162 0.0508 -0.0808
7 -0.0323 0.1668 -0.6907 0.5577 0.1852 0.8623 0.9554 0.0192 0.0593 -0.0830

10 -0.0360 0.1764 -0.6732 0.5930 0.3012 0.7540 0.9553 0.0297 0.0527 -0.0875
20 -0.0387 0.1928 -0.7717 0.8101 0.1795 1.4881 0.9531 0.0056 0.0358 -0.1090

Table B.2: Increments of 21 trading days

Time to Mean Std. Dev. Min Max Skew Kurt Autocorrelation Lag-2 partial
maturity Lag-1 Lag-21 Lag-256 autocorr.
(in years) (10´2) (10´2) (10´2) (10´2)

0.5 -0.0295 0.1717 -0.9794 0.6237 -1.1834 7.1673 0.9907 0.7486 -0.1831 0.0387
1 -0.0382 0.1859 -0.9677 0.7995 -0.7924 6.8138 0.9899 0.7480 -0.2363 -0.0620
3 -0.0668 0.2500 -1.1645 1.0069 -0.2235 3.6195 0.9862 0.7252 -0.1415 -0.0707
5 -0.0844 0.2778 -1.0957 0.8702 0.1009 1.3621 0.9858 0.7099 -0.0448 -0.0681
7 -0.0955 0.2946 -1.0513 0.8555 0.3534 0.4725 0.9858 0.7000 -0.0045 -0.0713

10 -0.1052 0.3128 -1.0268 0.8256 0.4994 0.2287 0.9859 0.6969 -0.0082 -0.0719
20 -0.1117 0.3410 -0.9746 1.1690 0.3951 0.7889 0.9850 0.6935 -0.0357 -0.0765

Table B.3: Increments of 64 trading days
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Time to Mean Std. Dev. Min Max Skew Kurt Autocorrelation Lag-2 partial
maturity Lag-1 Lag-21 Lag-256 autocorr.
(in years) (10´2) (10´2) (10´2) (10´2)

0.5 -0.0571 0.2584 -1.2996 0.8041 -0.9825 4.9503 0.9957 0.8449 -0.2715 -0.0149
1 -0.0737 0.2833 -1.3480 0.8512 -0.5677 3.7765 0.9953 0.8497 -0.3430 -0.0920
3 -0.1310 0.3729 -1.3205 1.2814 0.2045 2.1300 0.9933 0.8427 -0.2561 -0.0550
5 -0.1642 0.4074 -1.4424 1.3571 0.3275 1.1683 0.9931 0.8324 -0.1581 -0.0470
7 -0.1844 0.4253 -1.4217 1.2826 0.3246 0.2222 0.9930 0.8289 -0.1268 -0.0446
10 -0.2016 0.4456 -1.3094 1.1368 0.2561 -0.4732 0.9930 0.8310 -0.1274 -0.0409
20 -0.2117 0.4829 -1.4947 1.0533 0.0509 -0.2739 0.9927 0.8331 -0.1501 -0.0523

Table B.4: Increments of 128 trading days

Time to Mean Std. Dev. Min Max Skew Kurt Autocorrelation Lag-2 partial
maturity Lag-1 Lag-21 Lag-256 autocorr.
(in years) (10´2) (10´2) (10´2) (10´2)

0.5 -0.1267 0.3469 -1.3116 1.0237 -0.2295 2.2305 0.9976 0.9300 -0.4886 0.0053
1 -0.1558 0.3753 -1.4208 1.1403 -0.3440 2.7763 0.9973 0.9268 -0.5365 -0.0654
3 -0.2646 0.4745 -1.7613 1.2126 -0.4406 0.9804 0.9958 0.9104 -0.5332 -0.0362
5 -0.3237 0.5075 -1.6993 0.9654 -0.3092 -0.3919 0.9955 0.9029 -0.4620 -0.0203
7 -0.3585 0.5223 -1.6392 0.6775 -0.2144 -0.9988 0.9953 0.8987 -0.4209 -0.0168
10 -0.3879 0.5415 -1.7044 0.8099 -0.2495 -0.8526 0.9951 0.8961 -0.3956 -0.0231
20 -0.4039 0.5782 -2.1340 0.9790 -0.3829 -0.0473 0.9947 0.8916 -0.3880 -0.0523

Table B.5: Increments of 256 trading days
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