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Abstract

Study aim: To find out, without relying on gait-specific assumptions or prior knowledge, which parameters are most important 
for the description of asymmetrical gait in patients after total hip arthroplasty (THA). 
Material and methods: The gait of 22 patients after THA was recorded using an optical motion capture system. The waveform 
data of the marker positions, velocities, and accelerations, as well as joint and segment angles, were used as initial features. The 
random forest (RF) and minimum-redundancy maximum-relevance (mRMR) algorithms were chosen for feature selection. 
The results were compared with those obtained from the use of different dimensionality reduction methods. 
Results: Hip movement in the sagittal plane, knee kinematics in the frontal and sagittal planes, marker position data of the 
anterior and posterior superior iliac spine, and acceleration data for markers placed at the proximal end of the fibula are highly 
important for classification (accuracy: 91.09%). With feature selection, better results were obtained compared to dimensional-
ity reduction. 
Conclusion: The proposed approaches can be used to identify and individually address abnormal gait patterns during the reha-
bilitation process via waveform data. The results indicate that position and acceleration data also provide significant informa-
tion for this task.

Keywords: Classification – Total hip arthroplasty – Feature selection – Dimensionality reduction

Introduction

The total hip arthroplasty (THA) is the most important 
surgery for the treatment of degenerative hip osteoarthri-
tis [26]. Postoperative changes in gait can not only affect 
the operated joint and the surrounding structures, but also 
influence the contralateral side. In addition, postopera-
tive gait patterns often display an asymmetric character 
[2, 17]. The possible consequences include increased joint 
loadings, which could lead to injuries and a failure of the 
implant, resulting in the need for further surgical interven-
tions [21].

Gait classification is an important tool for clinical di-
agnostic and illness identification [13, 14]. The classifi-
cation of the operated hip side could deliver knowledge 
about the best discriminative variables and is, therefore, of 

clinical relevance. With modern movement tracking sys-
tems, a huge amount of data are available (big data) [30], 
and machine learning models have gained importance 
compared to classical statistical approaches [6]. Feature 
selection and dimensionality reduction are important steps 
toward improving a model’s accuracy and interpretability, 
preventing overfitting, and reducing the necessary com-
puting power [25].

Joint angles at specific points in time and descriptive 
statistics, such as the total range of motion or peak values, 
are commonly used for classification [3]. However, it is 
questionable whether such features optimally map group 
differences or if meaningful information is discarded 
a priori. For example, acceleration data have been given 
relatively little consideration, although it has been shown 
that they map important information about gait patterns 
[16]. The dependence on prior knowledge, assumptions, 
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or subjective decisions is a further limitation. The use of 
entire gait waveforms that have been transformed using 
principal component analysis (PCA) could be a potential 
alternative [13, 30]. Comparative studies regarding differ-
ent dimensionality reduction methods and classification al-
gorithms have rarely been reported [14]. To the best of our 
knowledge, the use of feature selection on gait waveform 
data and classification in the context of THA (for classifi-
cation of THA patients and healthy subjects, see [12, 34]) 
has hardly been investigated so far. Therefore, this work 
applies feature selection to gait waveform data of THA 
patients to objectively deduce discriminative variables (in-
cluding discriminative time points in a gait cycle), which 
are most important for the description of asymmetrical 
gait. In order to do this, patients are classified according to 
the operation side after unilateral THA. The classification 
results were compared with those obtained through the use 
of different dimensionality reduction methods for feature 
extraction.

Materials and methods

Subjects and data acquisition
Motion data were collected from 22 subjects (P1–P22; 

7 males, 15 females; age: 56.90 ± 8.20; height: 1.74 ± 0.08; 
weight: 82.90 ± 18.85) after THA (11 left side, 11 right 
side). The adequate sample size was derived from previ-
ous gait classification studies [3, 10]. All subjects were 
recruited from among patients of the Klinik Lindenplatz 
(Bad Sassendorf, NRW, Germany). All measurements 
were conducted in the biomechanics laboratory of the in-
stitute of biomechanics of the Klinik Lindenplatz.

Patients were only considered fit to participate in the 
study if they were at least 14 days, but not more than 
21 days, after surgery. The subjects had to be able to walk 
steadily for at least six minutes without support on even 
ground to be included in the examination. All included pa-
tients received a standard cemented THA using a direct an-
terior or lateral approach [36]. The patients were allowed 
to bear their full weight by their attending physicians at 
the time of measurement.

After receiving all relevant study information, the pa-
tients signed an a form indicating their informed consent 
to the study, which included permission to publish the 
data. The study was approved by the responsible ethics 
commission and meets the criteria of the Declaration of 
Helsinki.

The gait data of the lower bodies of the THA patients 
were recorded during a  6 minute walking test using an 
OptiTrack® stereophotogrammetric motion capture sys-
tem (NaturalPoint, Inc., Oregon, USA). The accuracy of 
the OptiTrack motion capture system was shown in recent 
publications [9, 35].

The subjects were equipped with retroreflective markers 
attached to anatomical landmarks according to the recom-
mendations of Leardini et al. [23]. For hygienic reasons, 
the subjects had to wear shoes. Therefore, the markers cor-
responding to the foot had to be positioned on the surface 
of the shoe, approximating the underlying anatomical land-
marks. The 3D positions of the markers during movement 
were recorded with a frame rate of 60 Hz. The walking di-
rection was along the x-axis according to the defined global 
coordinate system, with the z-axis drawn vertically.

Data preparation
The following steps described below were performed 

separately for each subject: In addition to marker position 
data, the marker velocity and acceleration, as well as joint 
and segment angles, were calculated to check if those vari-
ables have higher importance. Missing data points were 
interpolated using spline interpolation (maximum gap = 
5 frames). Noise attenuation was performed using a low-
pass Butterworth filter (cutoff frequency = 6 Hz). With 
the marker position data, the marker velocity and accelera-
tion were calculated. The joint and segment angles were 
calculated using Visual3D (V6 professional, Germantown, 
Maryland, USA).

The turning movement at the end of the gait path as 
well as steps form gait initiation and stopping were re-
moved from the data. For direct comparison of the oper-
ated and non-operated legs, the raw data were split into 
gait cycles for each leg separately. The beginning of a gait 
cycle was defined as the point of the heel marker (LCA for 
the left body side, RCA for the right body side; all patients 
started contact for both legs with the heel) with the lowest 
z-axis position (initial contact). Incomplete cycles were 
dropped. Marker trajectories were rotated so that all move-
ments followed one direction along the x-axis. Trajecto-
ries along the y-axis were inverted for the right body side 
so that they fit to the trajectories of the contralateral side. 
The mean position for every determined cycle determined 
along each marker and its three axes was subtracted from 
the respective sequences for centering the position data 
and for elimination of anthropometric differences between 
subjects (see, e.g., [13]). Afterwards, the respective vari-
ables of each gait cycle were individually time-normalized 
to 101 time steps (from 0% to 100%) using cubic spline 
interpolation. The isolation forest algorithm was used for 
outlier removal. Outliers are defined as minority of all in-
stances with very different feature values compared to nor-
mal instances. With the algorithm, the respective instances 
are isolated and not detected by using distance or density 
measurements [24]. In the current case, most of the de-
tected outlying cycles showed very different gait patterns 
compared to the majority of cycles (e.g., due to visually 
visible compensatory movements to maintain the balance 
or abnormally shortened swing phases due to early contact 



Gait classification in hip replacement patients 179

with the ground). Asymmetric sequences were calculated 
by subtracting the gait cycles (separately for each of the 
x, y and z movement directions of the marker trajectories, 
the marker velocities and accelerations as well as the joint 
and segment angles in each plane) of the right body side 
from those of the left. The corresponding sequences are 
denoted as a w-feature in the following. The resulting se-
quences were concatenated into a vector of 8,383 dimen-
sions, where each time step maps one dimension (Table 1). 
The dimensions were achieved through:
•	 x, y and z – movement directions of the 13 markers 

(3 × 13 × 101 time steps = 3939);
•	 marker-velocities as well as – accelerations of the 13 

markers (2 × 13 × 101 time steps = 2626);
•	 joint and segment angles in three planes of the six joint 

and segment angles (3 × 6 × 101 time steps = 1818).
Finally, 50 random samples (without replacement) 

were extracted from 70 to 120 gait cycles for every sub-
ject, resulting in a final vector with a size of 1,100 × 8,383 
(cycles × features), where one sample represents the 

difference between the left and right side during one gait 
cycle.

Feature extraction and classification
Feature extraction and classification were integrated 

into a  leave-one-group-out cross-validation (LOGO, 11 
folds) process to obtain an unbiased accuracy score (test 
data were not used for feature extraction) and to check if 
classification can individual differences take into account. 
The basic principal behind LOGO is that for each hold-out 
group, model fitting is performed, using the data of all the 
subjects except the hold out, which is only used for model 
evaluation [37]. A group of two subjects was formed – one 
on whom the operation was on the right side, and the other 
on the left side. Each resulting fold consists of 1000 train-
ing samples of 20 patients and 100 test samples of 2 pa-
tients. The initial input features were independently stand-
ardized (z-transform) based on the respective training sets 
before application of the different extraction methods. The 
methods are described below.

Location/Description Name Type Steps

Marker

anterior superior iliac spine ASIS

x-axis pos. (X)
y-axis pos. (Y)
z-axis pos. (Z)

velocity (v)
acceleration (a)

× 101 time  
steps

posterior superior iliac spine PSIS
lateral prominence of greater trochanter GT
midline of the thigh TH
lateral prominence of lateral femoral 
epicondyle LE

proximal tip of the head of the fibula HF
anterior border tibial tuberosity TT
midline of the shin SK
lateral prominence of the lateral 
malleolus LM

Achilles tendon insertion CA
dorsal margin of the fifth metatarsal 
head VM

dorsal margin of the first metatarsal 
head FM

distal phalanx hallux DP1

Joint angle
ankle angle ANKLE_ANGLE

flexion and extension in 
sagittal plane (X)

abduction and adduction 
in frontal plane (Y)

axial rotation in transverse 
plane (Z)

hip angle HIP_ANGLE
knee angle KNEE_ANGLE

Segment angle
foot angle FOOT_ANGLE

shank angle SHANK_ANGLE
thigh angle THIGH_ANGLE

Terminology: Feature labels are composed of marker/joint name _ type _ frame number, e.g., VM_a_46

Table 1.  Initial input features. The naming convention of the markers is according to [8]
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Two different ranking approaches were applied to find 
relevant features for classification: a) random forest (RF) 
feature ranking and b) a minimum-redundancy maximum-
relevance (mRMR) filter.

a) Random forest is a powerful algorithm for both re-
gression and classification tasks. It is based on the combi-
nation of many weak learners to create one strong learner 
(ensemble method) [5]. The algorithm enables the calcula-
tion of a feature importance (FI) score and was applied in 
the following with 100 trees. Gini importance – normal-
ized so that the total sum for all features used is one – was 
used as an importance score. 

The following procedure was repeated until no features 
were left: Features were ranked with the RF algorithm ac-
cording to their median feature importance based on 10 runs 
on bootstrap samples (80% of the dataset size). The feature 
with the highest importance was selected and ranked ac-
cording to the time at which it was included. Afterward, 
features related to the selected one (a whole w-feature cor-
responding to the selected feature), as well as features with 
zero FI, were excluded. With the reduced feature set, the 
process was repeated. The proposed approach should be 
able to reduce redundancy by only selecting one point in 
time (the most important feature) per w-feature.

Variations in the training data often lead to different 
feature preferences. The robustness to these changes is 
described as stability [20]. Ensemble feature selection is 
reported as a  promising approach for reducing instability 
[1]. The basic principal is that a  combination of different 
feature selection processes leads to increased stability [1]. 
Therefore, feature ranking was performed with the pro-
posed approach on different data samples (homogeneous 
feature selection) of each training fold during the LOGO 
process. Instead of bootstrap samples, which are commonly 
used for data variation, data of one group were excluded 
for each iteration. Due to the small number of subjects, this 
should lead to highly different data samples. Afterward, the 
different ranking lists were aggregated into one ensemble 
ranking. Minimum union (Min) aggregation was used to 
combine the ranking lists. Based on the ensemble rankings, 
final feature subsets were obtained with the following cut-
off thresholds: 1%, 5%, 10%, 20%, 50%, and 100%.

b) The proposed RF approach does not capture redun-
dancy between different w-features. In addition, redundan-
cy increases through the aggregation step [32]. To obtain 
a mutual information-based ranking of the most relevant 
and minimally redundant features, an mRMR filter [28] 
was applied to reduce the impact of redundant features. 
Therefore, the features of the final ensemble list of each 
fold were ranked according to the mRMR filter. The clas-
sification results were than compared with the results of 
the proposed RF approach.

Finally, the results obtained using feature selec-
tion were compared with the following dimensionality 

reduction methods: PCA, kernel PCA (kPCA), factor anal-
ysis (FA), and linear discriminant analysis (LDA). Due to 
the lack of comparative studies, various dimensionalities 
of input features and combinations with the support vector 
classifier (SVC) and RF were considered. Due to colline-
arity, PCA (99% variance threshold to select the number 
of components) was applied before LDA. The evaluation 
was performed using LOGO. 

Classification algorithm and further calculations
The support vector classifier (SVC) is a commonly used 

algorithm for gait classification [22, 34], and was applied 
with a linear kernel in the current study. Stability was evalu-
ated using the mean Jaccard similarity of the pairwise com-
parison between the different subsets and threshold values 
during the LOGO procedure (see e.g. [7]). The more similar 
the different subsets are, the higher the stability of the selec-
tion approach is. Calculations were made with the Python 
scikit-learn package (machine learning, data mining) [27]. 

Results

Feature selection
The classification results for the feature selection with 

different threshold values and the use of the SVC with 
a linear kernel are presented in Table 2. The best classifi-
cation performance was obtained without the application 
of a threshold value (threshold = 100%). The correspond-
ing subsets also showed the highest stability. Using other 
classification algorithms with the features of the 100% 
threshold also led to high classification performance (SVC 
with a radial basis function (rbf) kernel: 87.64 ± 18.81%, 
MAUC = 0.96 ± 0.07; logistic regression: 90.45 ± 16.78%, 
MAUC = 0.91 ± 0.25). In comparison with the use of all 
initial input features, higher accuracy was found for the 
use of the 100% and 50% thresholds. The receiver oper-
ating characteristic (ROC) curve for the classification us-
ing the 100% threshold value is presented in Figure 1a. 
The classification accuracy for one test set – consisting of 
P4 and P7 – was below average (Macc = 44.00%). Fur-
ther analysis showed that the incorrect classification was 
mainly relate to P4, where the wrong operation side was 
predicted for all cycles. For the remaining test sets, the 
classification accuracy was between 87.00% and 100.00% 
(Macc = 95.80 ± 4.58%). 

The occurrence of the ten highest ranked features of 
every fold is presented in Figure 1b. Overall, ten features 
occurred in the top ten rankings in ten out of the eleven 
folds (from HIP_ANGLE_X_54 to HF_a_80). The feature 
HIP_ANGLE_X_54 occurred in every fold in the top ten 
rankings. The correlations of those features are presented 
in Figure 1c. High to very high correlations were present 
(mean correlation = 0.63 ± 0.23). 
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The rankings of all features selected by RF with the 
mRMR filter are presented in Figure 1d. The ten highest 
ranked features showed little correlation (mean correlation 
= 0.35 ± 0.34). Using the mRMR ranking for classification 
with the different thresholds resulted in lower classifica-
tion performance compared to that of the RF approach for 
the 1% and 5% thresholds. For the 10%, 20%, and 50% 
thresholds, the classification performance increased.

The gait waveforms of the highest ranked features and 
the selected discriminative time points are shown in Fig-
ure 2. Different gait patterns are prevalent for the operated 
and non-operated sides. Highly overlapping areas are no-
ticeable.

Dimensionality reduction
The results for the different dimensionality reduction 

techniques are presented in Figure 3. Only slightly higher 
accuracy compared to the use of all initial input features 
could be reached by using LDA after applying PCA (Macc 
= 89.00 ± 15.85%, MAUC = 0.93 ± 0.18).

Discussion

The current study demonstrates that the data-driven 
determination of parameters, which are most important 
for the description of asymmetrical gait in patients after 
THA, is possible. The basis for this is the classification of 

THA patients according to the operation side. The oper-
ated side was predicted with high accuracy (91.09%) us-
ing the features selected with the proposed approach and 
a linear SVC. A higher accuracy was obtained compared 
to modeling with all initial input features (88.55%). The 
elimination of noisy, meaningless, and redundant vari-
ables could be a reason for the difference, which under-
lines the quality of the selected predictors. Using differ-
ent classification algorithms (SVC with an rbf kernel, 
logistic regression) also leads to good classification re-
sults. Biases towards a  specific classification algorithm 
were, therefore, low, which highlights the generalizabil-
ity of the selected features.

Using 325.45 ± 5.04 features led to the best classifica-
tion results. However, for practical applications, it should 
be decided if a  less complex model could be sufficient. 
The use of only a few input variables could be especially 
beneficial for easier interpretation and, therefore, enhance 
the relevance in clinical contexts. In this regard, the results 
show that 87.36% of all cycles could be correctly classi-
fied with only three features.

Then, the predominantly occurring features in the top 
ten rankings were interpreted and validated using domain 
knowledge. Due to the initial centering of the marker posi-
tion data, the direct interpretation through a  comparison 
between the operated and non-operated sides for the mark-
er-position-based features PSIS_Z_97, PSIS_Z_96, and 
ASIS_Z_14 is misleading. 

Threshold n feature
RF mRMR

Macc [%] MAUC MJacc CM Macc [%] MAUC MJacc CM

1% 3.00 ± 
0.00

87.36 ± 
0.20

0.87 ± 
0.26

0.64 ± 
0.31

474 76 77.36 ± 
25.51 

0.79 ± 
0.31

0.21 ± 
0.13

456 94
63 487 155 395

5% 15.82 ± 
0.40

83.27 ± 
24.27

0.82 ± 
0.36

0.78 ± 
0.24

453 97 76.73 ± 
25.80

0.83 ± 
0.30

0.23 ± 
0.08

397 153
87 463 103 447

10% 31.91 ± 
0.54

83.82 ± 
22.34

0.87 ± 
0.25

0.78 ± 
0.13

428 122 86.27 ± 
16.73

0.89 ± 
0.28

0.34 ± 
0.06

461 89
56 494 62 488

20% 64.55 ± 
1.13

85.55 ± 
18.83

0.90 ± 
0.19

0.84 ± 
0.06

446 104 88.73 ± 
15.55

0.92 ± 
0.21

0.46 ± 
0.05

492 58
55 495 66 484

50% 162.36 ± 
2.98

89.55 ± 
15.02

0.91 ± 
0.22

0.85 ± 
0.04

494 56 90.73 ± 
15.57

0.92 ± 
0.23

0.61 ± 
0.04

512 38
59 491 64 486

100% 325.45 ± 
5.04

91.09 ± 
16.28

0.91 ± 
0.25

0.87 ± 
0.02

511 39

–
59 491

All initial 
features 8383 88.55 ± 

18.13
0.91 ± 
0.25 –

486 64
62 488

Table 2.  Model performance as mean accuracy (Macc) and mean area under the curve (MAUC) for the different approaches 
evaluated during leave-one-group-out cross-validation (LOGO). The 100% threshold refers to the use of all selected features. 
The true positives and true negatives are highlighted with a gray background color in the confusion matrix (CM). Similarity is 
reported as the mean Jaccard similarity (MJacc): 0 = no similarity, 1 = completely similar
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HIP_ANGLE_X_54 and HIP_ANGLE_X_48 high-
light the importance of hip movement in the sagittal plane. 
HIP_ANGLE_X_54 was selected in the top ten rankings 
of every fold, and was also ranked as the feature with the 
highest relevance by the mRMR algorithm, which addi-
tionally highlights the discriminative power of the feature. 
Indirectly, due to the reduction of the minimal value for 
hip flexion/extension, a lower range of motion is relevant 
for classification. The effect has also been mentioned in 
previous studies [11, 29]. 

KNEE_ANGLE_X_51 and KNEE_ANGLE_X_50 
represent knee movement in the sagittal plane. The knee 
shows increased flexion during the late stance phase. 
The predictors KNEE_ANGLE_Y_39 and KNEE_
ANGLE_Y_57 show that, for class discrimination, knee 
abduction and adduction are important (movement in fron-
tal plane). An altered varus has been reported in the litera-
ture [11]. The data revealed a bilateral valgus (abduction) 
for most patients, which was significantly increased for the 
operated side. A possible reason for the lateral difference 

Figure 1.  a) Receiver operating characteristic for each fold (gray lines) and for the mean (blue line). b) Numbers of times that 
features occurred in the top ten rankings of the LOGO folds (eleven folds in total). c) Correlation head map of the ten most 
stable features selected. d) Ranking of all selected features with the minimum-redundancy maximum-relevance filter, starting 
with the highest ranked feature at the top. The respective joint mutual information maximization (JMIM) scores [4] are plotted 
on the x-axis. Labelling: for the features representing joint and segment angles, X refers to movement in sagittal plane, Y to 
movement in frontal plane, and Z to movement in transverse plane
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Figure 2.  Asymmetric gait patterns (mean and standard deviation) in total hip arthroplasty (THA) patients. The points in time 
marked with a vertical line represent the most stable and highest ranked features. Note: Marker position data are centered
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is the reduced hip muscle strength on the operated side 
[31]. Furthermore, a  general limitation of postoperative 
gait analysis is the potential influence of an abnormal pr-
eoperative status, which has to be kept in mind as a pos-
sible bias. Moreover, the use of optical markers depends 
on the experience of the investigator and is therefore not 
free of errors when being placed on the anatomical land-
marks through palpation [18]. Therefore, future studies 
should aim to verify these results with a  higher sample 
size. Looking at feature HF_a_80, altered acceleration for 
the operated side is noticeable. Detailed biomechanical 
backgrounds for the marker-position – and acceleration-
based features are not present and should be evaluated in 
the future. The rankings with the proposed RF approach 
as well as the rankings with the mRMR algorithm indicate 
that not only classical features, like joint angles, but also 
alternatives, like marker-position – or acceleration-data-
based features, carry large amounts of information and 
show discriminative power. 

The consideration above focuses on average character-
istics, but individual patterns sometimes diverge (e.g., in-
creased varus in patient 15). In line with the work of Cho-
pra and Kaufman [11], the current study indicates a high 
variability in gait patterns (also see standard deviation) 
and possible subject-related differences and adaptions in 
patients after THA. Furthermore, the results for the single-
subject analysis show that for P4, the wrong side was pre-
dicted as the operated side. The single-case analysis for 
P4 points out that when several variables were used as in-
put features, altered inverted gait characteristics (e.g., for 
HIP_ANGLE_X and KNEE_ANGLE_Y) were prevalent 
compared to those of the remaining subjects. Therefore, 

application of the classification algorithm could also be 
useful in identifying and individually addressing abnormal 
gait patterns in groups of patients after THA.

Several investigations demonstrated the potential 
of dimensionality reduction before gait classification 
[13, 14, 19]. In the present case, the combination of PCA 
and LDA showed similar classification results compared 
to the use of all initial inputs. The other methods applied 
showed considerably lower performance. However, com-
pared to dimensionality reduction, better results were ob-
tained with feature selection. Another advantage of the 
selection approach is that features can be immediately 
interpreted. The interpretation of principal components 
would require an additional interpretation step to analyze 
the components themselves. Nevertheless, dimensionality 
reduction allows the determination of dependencies be-
tween different parameters [30], which may be addition-
ally relevant in clinical contexts. If only classification is 
important, application of the present combination of PCA 
and LDA seems especially promising because it is inde-
pendent of a specification of a number of features to use.

Limitations arise from each patient wearing his or her 
own shoes instead of walking barefoot during gait analy-
sis. It was shown, that different types of shoes influence 
the gait [33] and therefore introduce a  bias during gait 
analysis. Moreover, placement of markers on the shoes in-
stead of anatomical landmarks as well as relative motion 
of the shoes in respect to the feet might have influenced 
the study. Barefoot gait analysis should be considered for 
future analysis. To further evaluate the results, future re-
search should also focus on a  replication using different 
and increased numbers of subjects. The additional use of 

Figure 3.  Model performance after dimensionality reduction; comparison of different techniques and different numbers of 
input features. Algorithms: FA = factor analysis, LDA = linear discriminant analysis, PCA = principal component analysis, 
kPCA = kernel PCA, RF = random forest, SVC = support vector classifier; kernels: poly = polynomial, rbf = radial basis 
function
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kinetic data, as well as consideration of the sex – due to 
sex-specific differences in gait recovery after THA [15] – 
should also be analyzed. High variability in gait patterns 
and highly overlapping areas between the groups for the 
determined predictors may be limiting factors for accuracy. 
The development of an optimal experimental design that 
better maps group differences may be useful for increas-
ing classification performance. With the use of waveforms 
as a starting point for feature selection, promising results 
could be obtained. However, further feature engineering 
could be profitable for an improvement of performance 
and should, therefore, be evaluated in future works.

Conclusions

The aim of the study was to find out, without relying 
on gait-specific assumptions or prior knowledge, which 
parameters are most important for the description of 
asymmetrical gait in patients after THA. In order to do 
this, meaningful features for classification of the side of 
the body that received a hip replacement were extracted 
from gait waveform data using a data-driven approach. 
The proposed RF approach seems promising for finding 
relevant features and their corresponding time points on 
the basis of high-dimensionality waveform data. This 
might be useful in identifying and individually address-
ing abnormal gait patterns during the rehabilitation proc-
ess. For the present THA patients, the importance of fea-
tures that represent hip movement in the sagittal plane 
and knee kinematics in the frontal and sagittal planes is 
emphasized. The use of marker position data of the an-
terior and posterior superior iliac spine, as well as accel-
eration data for markers placed at the proximal end of the 
fibula, is of further importance. The results indicate that 
studies should not only focus on variables like joint and 
segment angles because position and acceleration data 
also provide significant information.
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ing to the guidelines of the Declaration of Helsinki and ap-
proved by the Ethics Committee of Universität Paderborn. 
Informed consent was obtained from all subjects involved 
in the study.
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