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Introduction

In 1982 J. Mather and S. Yau published the famous Mather–Yau theorem in [MY82].
The theorem yields a one-to-one correspondence between isomorphism classes of
germs of isolated hypersurface singularities and isomorphism classes of their respec-
tive so-called Tjurina algebras. Given the defining equation f ∈ C{x} = C{x1, . . . , xn}
of a hypersurface singularity, the Tjurina algebra Tf is defined as Tf = C{x}/〈f, Jf 〉,
where Jf = 〈∂x1f, . . . , ∂xnf〉 is the Jacobian ideal. A first version of the Mather–Yau
theorem in case of quasi-homogeneous isolated hypersurface singularities has been
shown six years earlier by A.N. Shoshitaishvili in [Sho76]. The result in the quasi-
homogeneous case was also announced by G.-M. Greuel in [Gre77], but has never
been published. Three years later, the result has been generalized to singularities of
isolated singularity type by T. Gaffney and H. Hauser in [GH85]. One year later, a fur-
ther generalization to so-called harmonic singularities has been shown by H. Hauser
and G. Müller in [HM86]. The purpose of the aforementioned theorems is to reduce
the classification of singularities to the classification of C-algebras. In the particular
case of isolated hypersurface singularities, the problem is reduced to the isomorphy
problem of finite-dimensional C-algebras. A classical example of an invariant associ-
ated to isolated hypersurface singularities is the C-dimension of the Tjurina algebra,
the so-called Tjurina number. In general the Mather–Yau theorem does not hold in
positive characteristic. G.-M. Greuel and T. H. Pham (see [GP17]) stated an analogous
result to the Mather–Yau theorem in positive characteristic, which replaces the Tju-
rina algebra by so-called higher Tjurina algebras Tf,k = K[[x]]/〈f,mkJf 〉, where K is
an algebraically closed field of positive characteristic and where k ∈ N has to satisfy

mb
k+ord(f)+ord(Jf )+1

2
c ⊆ m2Jf .

In the present thesis we focus on the case of complex singularities. The results by J.
Mather and S. Yau, as well as by T. Gaffney and H. Hauser indicate that, for certain
classes of singularities, all the information about the singularity is encoded in the Tju-
rina algebra. Unfortunately, neither the proof in [MY82] nor the proof in [GH85] is
constructive. This gives rise to two problems: the recognition problem and the recon-
struction problem. The recognition problem is to decide whether a given C-algebra
is isomorphic to the Tjurina algebra of a hypersurface singularity, whereas the recon-
struction problem is to reconstruct a defining equation for the hypersurface singularity
from which a given Tjurina algebra arises.

In case of a quasi-homogeneous isolated hypersurface singularity, S. Yau gave the
following theoretical answer to the recognition problem in [Yau87]:

Theorem. Let I = 〈f1, . . . , fk〉 ⊆ C{x} be an ideal with generators f1, . . . , fk, where 1 ≤
k ≤ n. Then there exists a g ∈ C{x} with Jg = I if, and only if there exist quasi-homogeneous

1
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polynomials F1, . . . , Fn ∈ C[x] and a matrix B ∈ Ck×n of rank k, such thatF1
...
Fn

 = B ·

f1
...
fk


and such that

∂xiFj = ∂xjFi for all 1 ≤ i, j ≤ n.

From a computational point of view the given answer by S. Yau is hard to verify if the
singularity is not homogeneous.

In the present thesis, we investigate the aforementioned problems by using the theory
of analytic gradings introduced by G. Scheja and H. Wiebe in [SW73]. Their theory
is a generalization of the classical theory of gradings of rings, see for example [Eis95,
Chapter 1], to analytic algebras. Their work yields a one-to-one relation between Z-
gradings of an analytic algebra A = C{x}/I and semi-simple logarithmic derivations
δ ∈ DerI(C{x}) (see Definitions 1.49 and 1.46).

Overview

The thesis is structured as follows:

Chapter 1

We present the basic theory of complex analytic spaces and we restate the proof of the
main theorem in [GH85] for hypersurface singularities. It leads to the following mild
generalization, involving so-called strongly Euler-homogeneous singularities:

Definition 1.100. Let X ⊆ Cn be a hypersurface singularity. Denote by fp ∈ C{x− p} the
local equation of X in p ∈ X. We call X Euler-homogeneous at p ∈ X if, and only if, there
exists a derivation χp ∈ Der(OX,p), such that χp(fp) = fp, where fp ∈ C{x− p} is the local
equation of X at p ∈ X. A derivation χp is called Euler-derivation of f at p. We call X
strongly Euler-homogeneous at p ∈ X if, and only if, there exists an Euler derivation χp
satisfying χp(p) = 0. We call X (strongly) Euler-homogeneous, if X is (strongly) Euler-
homogeneous at all p ∈ X. Let f ∈ C{x − p} be holomorphic on U ⊆ Cn. We say f is
(strongly) Euler-homogeneous, if X = V (f) ⊆ U is (strongly) Euler-homogeneous at p.
We call a complex space germ (X, p) (strongly) Euler homogeneous (at p), if there exists a
representant which is (strongly) Euler-homogeneous (at p).

We obtain the following result:

Theorem 1.101. Let f, g ∈ C{x} define singularities (X,0), respectively (Y,0), which are
strongly Euler-homogeneous at 0. Then the following are equivalent:

(1) (X,0) ∼= (Y,0).

(2) Tf
∼= Tg as C-algebras.

Theorem 1.101 combined with [HM86, Theorem 4] implies the following:
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Corollary 1.105. Let f, g ∈ C{x} define weighted-homogeneous hypersurface singularities
with weight-vector 0 6= w = (w1, . . . , wn) ∈ Zn and with weighted degree d := degw(f) =
degw(g). Denote the singularities defined by f and g by (X,0), respectively (Y,0).
Assume that either

(i) d 6= 0, or

(ii) d− wi 6= 0 for 1 ≤ i ≤ n.

Then the following are equivalent:

(1) (X,0) ∼= (Y,0).

(2) Tf
∼= Tg as C-algebras.

We show, by adapting [GH85, Example 4], that the statement of Corollary 1.105 is
sharp in the following sense:

Example 1.107. For t ∈ C\{−1}, consider the family of polynomials

Ft = x3
1x2 +x5

2x3 +x5
3x1 +x1x2x3 +x4x5 +(1+z+t) ·(y3

1y2 +y5
2y3 +y5

3y1 +y1y2y3 +y4y5)

as elements of C{x1, . . . , x5, y1, . . . , y5, z}. Define (Xt,0) = (V (Ft),0) ⊆ (C11,0) for t ∈
C\{−1}. The Ft are weighted-homogeneous with respect to
w = (0, 0, 0, 1,−1, 0, 0, 0, 1,−1, 0) ∈ Z11. Then degw(Ft) = 0 and (Sing(X0),0) ∼=
(Sing(Xt),0) for all t ∈ C\{−1}, but (X0,0) 6∼= (Xt,0) for t ∈ V \{0}, where V ⊆ C\{−1}
is an open neighborhood of 0.

Chapter 2

We first present the theory of analytic gradings by G. Scheja and H. Wiebe following
[SW73]. Next we investigate the relation between analytic Zk-gradings of an analytic
algebra A = C{x}/I, toral Lie subalgebras of the module of logarithmic derivations
of I Der′I(C{x}) = DerI(C{x}) ∩Derm(C{x}) and the subgroup AutI(C{x}) (see Def-
inition 2.38) of the automorphism group Aut(C{x}). We show that the dimension s
of the maximal algebraic tori contained in AutI(C{x}) is an invariant of A, and that s
corresponds to the maximal possible value of k such that A admits Zk-grading. The
integer s is called rank of maximal multihomogeneity of A and will be used in the
chapters 3 and 6.
We finish the chapter by generalizing [Sch07, Theorem 1] to the case of arbitrary ideals.

Theorem 2.80. Let either

(i) A = C[[x]] and I ⊆ A, or

(ii) A = C{x} and I ⊆ A be an algebraic ideal.

Define g := Der′I(A) ⊆ Der′(A) and let s ∈ N be the rank of maximal multihomogeneity.
Then there exist δ1, . . . , δs, ν1, . . . , νr ∈ g, such that

(1) δ1, . . . , δs, ν1, . . . , νr is a minimal set of generators of g as an A-module,

(2) if σ ∈ g with [δi, σ] = 0 for all i, then σS ∈ 〈δ1, . . . , δs〉C,

(3) δi is diagonal with eigenvalues in Q,

(4) νi is nilpotent, and

(5) [δi, νj ] ∈ Q · νj
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Chapter 3

In Chapter 3 we focus on the following problem given by H. Hauser and J. Schicho in
[HS11]:

Problem. Characterize all germs of hypersurface singularities (V (f),0) ⊆ (Cn,0), such that
〈f, Jf 〉 is monomial.

By modifying the proof of [XY96, Theorem 1.2] and by using the theory of analytic
gradings presented in Chapter 2, we show the following:

Theorem 3.11. Let f ∈ m ⊆ C{x} and assume that the Tjurina algebra Tf admits a positive
grading. Then f ∈ mJf . Equivalently, the germ (V (f),0) is strongly Euler-homogeneous at
0.

An immediate corollary of Theorem 3.11 is the fact that hypersurface singularities
with monomial Tjurina ideal 〈f, Jf 〉 are strongly Euler-homogeneous and thus also
satisfy Theorem 1.101. This indicates that combinatorial properties of the singular
locus yield information about the singularity itself. We consider so-called ideals of
Stanley–Reisner type:

Definition 3.23. Let A = C{x} or C[[x]]. Let I ⊆ A be an ideal. We say I is an ideal of
monomial type, if there exists an automorphism ϕ ∈ Aut(A), such that ϕ(I) is a monomial
ideal. We say I is an ideal of Stanley–Reisner type, if I is a radical ideal of monomial type.

The main result of this chapter is the classification of all hypersurface singularities
where the ideal 〈f, Jf 〉 is of Stanley–Reisner type.

Theorem 3.25. Let f ∈ C{x}. Then 〈f, Jf 〉 being of Stanley–Reisner type is equivalent to
the existence of an automorphism ϕ ∈ Aut(C{x}) and a partition of the x variables, denoted
by x(0),x(1), . . . ,x(l+1), such that

ϕ(f) =

r1∑
j=1

(
x

(0)
j

)2
+

l∑
i=1

gi,

where gi ∈ C[x(i)] is a normal crossing divisor for 1 ≤ i ≤ l. This means that all singularities
with Stanley–Reisner singular locus are of Sebastiani–Thom type where the summands are
A1-singularities or normal crossing divisors. In particular, the Sebastiani–Thom components
are unique up to isomorphism and permutation.

Due to the shape of the defining equation, we call the singularities with analytical
Stanley–Reisner Tjurina ideal generalized normal crossing divisors. Theorem 3.25
shows that every generalized normal crossing divisor is of Sebastiani–Thom type, that
is:

Definition 3.24. Let f ∈ C{x,y}. We say f is of Sebastiani–Thom type, if there exist
g ∈ C{x} and h ∈ C{y}, such that f = g + h. We say that a hypersurface singularity
X ⊆ Cn+m is of Sebastiani–Thom type at p = (p1, p2) ∈ X if there exists an isomorphism
such that (X, p) ∼= (V (f), p), where f ∈ C{x− p1,y − p2} is of Sebastiani–Thom type. We
call X a Sebastiani–Thom type hypersurface singularity, if it is of Sebastiani–Thom type
for all p ∈ X. We say a complex space germ (X,0) is of Sebastiani–Thom type , if there exists
a representant which is of Sebastiani–Thom type. Consider the germ (X,0) ∼= (V (f),0) with
f = g + h and g ∈ C{x}, h ∈ C{y}, We call the germs (X1,0) = (V (g),0) ⊆ (Cn,0) and
(X2,0) = (V (h),0) ⊆ (Cm,0) the Sebastiani–Thom components of (X,0).
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Chapter 4

This chapter is joint work with D. Pol (see [EP20]). In Chapter 2 we work with the
logarithmic derivation modules DerI(C{x}). In case I = 〈f〉 is a principal ideal, it
coincides with the notion of logarithmic derivations considered by K. Saito in [Sai75]
and [Sai80]. In these papers, K. Saito investigates a particular family of hypersurfaces
called free divisors. A hypersurface defined by I = 〈f〉 is called free if DerI(C{x}) is
a free C{x}-module. Several characterizations of freeness are known: X is free if and
only if the module of logarithmic 1-forms is free, where a form ω is logarithmic if ω
and dω have simple poles along X (see [Sai80]). Another characterization of freeness
is given by H. Terao (see [Ter80]) in case of quasi-homogeneous hypersurface and A.
G. Aleksandrov ([Ale88]) in general: a hypersurface (X, 0) ⊆ Cn defined by f ∈ C{x}
is free if and only if (X, 0) is smooth or Tf is Cohen–Macaulay of dimension n− 2.

Generalizations of logarithmic forms along complete intersections are introduced in
[AT01] and [Ale12]. The definition of multi-logarithmic forms in [Ale12] is then ex-
tended to Cohen–Macaulay spaces in [Ale14], inspired by a characterization of regu-
lar meromorphic forms given by M. Kersken in [Ker84]. Analogously, a generalization
of logarithmic vector fields is introduced in [GS12] for complete intersections by M.
Granger and M. Schulze, and then in [Pol16] for Cohen–Macaulay spaces by D. Pol.
These definitions extend verbatim to equidimensional subspaces (see [Pol20]). In this
chapter, we use the equivalent definition given by M. Schulze and L. Tozzo in [ST18]:

Definition 4.1. Let (X,0) ⊆ (Cn,0) be a Cohen–Macaulay subspace of codimension k de-
fined as the vanishing set of the radical ideal IX ⊆ C{x}. The module of multi-logarithmic
k-vector fields along X is defined by

Derk (− logX) =

{
δ ∈

k∧
Der(C{x}) | ∀(f1, . . . , fk) ∈ IkX , 〈δ, df1 ∧ · · · ∧ dfk〉 ∈ IX

}
.

A generalization of freeness is suggested in [GS12] for complete intersection, which is
inspired by the characterization of H. Terao and A.G. Aleksandrov mentioned before,
and afterwards extended by M. Schulze in [Sch16] to Gorenstein singularities. We use
the generalization of freeness for an equidimensional subspace (X,0) ⊆ (Cn,0) of
codimension k given in [Pol20]: X is free if

projdim Derk (− logX) = k − 1.

Using a perfect pairing between the multi-logarithmic k-forms and Derk (− logX),
one can show a characterization of freeness involving multi-logarithmic k-forms (see
[Pol16]). These results have been translated in terms of general commutative algebra
in [ST18], removing the singularity theoretical context.

The first main result in this chapter is the following:

Theorem 4.30. Let (X1,0) ⊆ (Cn1 ,0) and (X2,0) ⊆ (Cn2 ,0) be reduced Cohen–Macaulay
subspaces and (X,0) = (X1,0)× (X2,0) ⊆ (Cn1 ,0)× (Cn2 ,0). Then (X1,0) and (X2,0)
are free if and only if (X,0) is free.

Applying this result to the generalized normal crossing divisors considered in the
previous chapter gives us the following:
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Proposition 4.40. Let (X,0) ⊆ Cn be a generalized normal crossing divisor. Then
(Sing(X),0) is a free singularity.

We also give another approach to the following conjecture by E. Faber (see [Fab15]):

Conjecture. Let (X,0) ⊆ Cn be the germ of a hypersurface singularity. Denote by f ∈ C{x}
a local equation of (X,0). Then the following are equivalent:

(1) (X,0) is a normal crossing divisor.

(2) (X,0) is free and Jf is a radical ideal.

Proposition 4.42. Let (X,0) ⊆ Cn be the germ of a hypersurface singularity. Denote by
f ∈ C{x} a local equation of (X,0). Then the following are equivalent:

(1) (X,0) is a normal crossing divisor.

(2) (X,0) is free and Jf is of Stanley–Reisner type.

The last part of this chapter is devoted to another property related to logarithmic
derivations, that is the holonomicity in the sense of K. Saito (see [Sai80]). The main
result of this part is:

Theorem 4.43. Let (X,0) ⊆ (Cn+m,0) be a strongly Euler-homogeneous singularity of
Sebastiani–Thom type. We denote the Sebastiani–Thom components of (X,0) by (X1,0) ⊆
(Cn,0) and (X2,0) ⊆ (Cm,0). Then the following hold:

(1) (Y,0) ⊆ (Sing(X),0) is a logarithmic stratum if, and only if, there exists a loga-
rithmic stratum (X1,α,0) ⊆ (Sing(X1),0) and a logarithmic stratum (X2,β,0) ⊆
(Sing(X2),0), such that

(Y,0) = (X1,α,0)× (X2,β,0) =: (X(α,β),0).

(2) (X,0) is holonomic if, and only if, (X1,0) and (X2,0) are holonomic.

In particular, Theorem 4.43 implies that generalized normal crossing divisors are Saito
holonomic.

Chapter 5

In this chapter we present an algorithmic approach to the questions considered in
the previous chapters. In particular, we provide a Las Vegas algorithm solving the
recognition and reconstruction problem for quasi-homogeneous isolated hypersurface
singularities. A similar algorithm for the homogeneous case has been presented in
[IK14]. Our approach has been announced in [ERS17]. The algorithm is implemented
in the computer algebra system OSCAR (see [Tea20]) and can be downloaded at https:
//github.com/raulepure/reconstruction.jl.

https://github.com/raulepure/reconstruction.jl
https://github.com/raulepure/reconstruction.jl
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Chapter 6

Computations using the algorithms from Chapter 5 give rise to the following conjec-
ture for quasi-homogeneous isolated hypersurface singularities.

Conjecture 6.1. Let f ∈ C{x} define a quasi-homogeneous isolated hypersurface singular-
ity. Then (V (f),0) is of Sebastiani–Thom type with quasi-homogeneous Sebastiani–Thom
components if, and only if, the maximal multihomogeneity of Jf is at least 2.

We are able to show Conjecture 6.1 in some particular cases. The main result is the
following:

Theorem 6.2. Let f ∈ C{x} be a quasi-homogeneous isolated hypersurface singularity with
respect to the weight-vector w ∈ Nn>0. Assume that Jf is multihomogeneous with respect to
w and v ∈ Qn\{0}, where w and v are linearly independent, and that one of the following
properties holds:

(a) Jf is of monomial type.

(b) w satisfies, after possibly permuting the variables,

w1 > . . . > wn >
w1

2
.

(c) w satisfies, after possibly permuting the variables,

w1 ≥ . . . ≥ wn >
w1

2

and v = (1, . . . , 1).

(d) n ≤ 3.

Then (V (f),0) is of Sebastiani–Thom type with quasi-homogeneous Sebastiani–Thom compo-
nents.
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Conventions and Notations

In the following X denotes a complex space, A an analytic algebra and I ⊆ A an ideal.
The germ of X at p ∈ X is denote by (X, p). Boldface letters, for example x, represent
vectors x = (x1, . . . , xn) for some n ∈ N.

C[x] The polynomial ring in x over C.
C{x} The ring of convergent power series in x over C.
K[[x]] The ring of formal power series in x over K.
ord(f) The order of a power series f.
Jf The Jacobian ideal of f.
Mf The Milnor algebra of f, that is C{x}/Jf .
Tf The Tjurina algebra of f, that is C{x}/〈f, Jf 〉.

Der(A,B) The set of all C-linear derivations on A with values in B.
Der(A) The set of all C-linear derivations on A with values in A.
DerI(A) The set of logarithmic vector fields of I.
Der′I(A) The set of logarithmic vector fields of I and m.
OX The sheaf of holomorphic functions on X.

dimp(X) The dimension of X at p.
dim(A) The Krull dimension of A.
Sing(X) The singular locus of X.
V (I) The vanishing set of I.

9
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Chapter 1

Complex Spaces and Singularities

The following chapter serves as an introduction to the underlying topic of this thesis,
namely singularities. We begin with the basic definitions of analytic algebras, complex
spaces and singularities. The chapter will be finished by a proof of the analogous re-
sult to the Mather–Yau theorem by Gaffney and Hauser (see [GH85]) in case of hyper-
surfaces of isolated singularity type and strongly Euler-homogeneous hypersurface
singularities. We will follow the outline of this topic as presented in the literature, as
for example in [JP00], [Fis76], [GLS07] and [GR71]. Since we intend to focus on the
most important definitions and results, we omit an introduction to category theory
and sheaf theory at this point.

1.1 Analytic Algebras

In the following we will present the theory of analytic algebras exclusively over the
field of complex numbers C endowed with the standard absolute value. Although
every construction in this section would also work over complete real valued fields
of characteristic 0 (see for example [GLS07, Chapter I]), we omit it at this point, since
we want to consider singularities over the complex numbers. To keep notation short
we will write vectors using bold letters. For example x = (x1, . . . , xn). Using this
notation we can write any formal power series f =

∑
α∈Nn

cαx
α1
1 · . . . · xαnn shorthand

as f =
∑
α∈Nn

cαx
α. We denote by C[[x1, . . . , xn]] = C[[x]] the formal power series ring,

where the addition and multiplication are as usual. The first object we consider are
convergent power series.

Definition 1.1. Let f =
∑
α∈Nn

cαx
α be a formal power series. We call f a convergent power

series, if there exists a vector v ∈ Rn>0, such that
∑
α∈Nn

|cα|vα is a convergent series. We

denote the convergent power series ring by C{x}.

The main objects of interest in this thesis are quotients of the convergent or formal
power series ring.

Definition 1.2. Let A be a C-algebra. A is an analytic algebra, if A is isomorphic (as a
C-algebra) to C{x}/I for some ideal I ⊂ C{x}. We call A a formal analytic algebra, if A
is isomorphic to C[[x]]/I for some ideal I ⊆ C[[x]].

11
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Remark 1.3. From an algebraic point of view (formal) analytic algebras are interesting since
they are Noetherian local rings with maximal ideal m := 〈x〉. In particular the units of C[[x]]
are the elements with non-zero constant term.

The definition of convergence for convergent power series rings reduces to the analytic
notion of convergence. Next we will see an algebraic definition of convergence, which
turns the formal power series ring into a complete ring with respect to this notion.

Definition 1.4. LetA be either C{x} or C[[x]].A sequence (fk)k∈N ⊂ R is called convergent
in the m-adic topology to f ∈ A, if for each l ∈ N there exists a number K, such that
fk − f ∈ ml for all k ≥ K. It is called a Cauchy sequence if for each l ∈ N there exists a
number K, such that fk − fm ∈ ml for all k,m ≥ K.

One can show that C[[x]] is the completion of C{x} with respect to this notion of con-
vergence. Using this it is fairly easy to prove the following lemma.

Lemma 1.5. Let A be a (formal) analytic algebra and M a finite A-module. Then⋂
i≥0

mi
AM = 0.

Proof. See [GLS07, Chapter I, Lemma 1.3].

The next step is to define morphisms of analytic algebras. With these we obtain the
category of analytic algebras A. For more details on this topic see [GR71, Kapitel 2,
§0].

Definition 1.6. Let A and B be (formal) analytic algebras. We call ϕ : A→ B a morphism
of (formal) analytic algebras, if ϕ is a C-algebra morphism.

Remark 1.7. Let ϕ : C{x1, . . . , xn} → C{y1, . . . , ym} be a morphism of analytic algebras.
Then ϕ is determined by the values on a minimal generating set of the maximal ideal m =
〈x1, . . . , xn〉. This means that ϕ(xi) = fi for certain fi ∈ C{y1, . . . , ym} already determines
the morphism.

The most important feature of analytic algebras is the fact that we can apply tools from
analysis and obtain algebraic results.

Theorem 1.8 (Implicit Function Theorem). Let A = C{x1, . . . , xn, y1, . . . , ym}. Further-
more, let fi ∈ A for i = 1, . . . ,m satisfy fi(0) = 0 and

det


∂f1
∂y1

(0) . . . ∂f1
∂ym

(0)
...

...
∂fm
∂y1

(0) . . . ∂fm
∂ym

(0)

 6= 0.

Then A/〈f1, . . . , fm〉 ∼= C{x1, . . . , xn} and there exist unique power series Y1, . . . , Ym ∈
〈x1, . . . , xn〉 solving the implicit system of equations

fi (x, Y1(x), . . . , Ym(x)) = 0, i = 1, . . . ,m.

Moreover, 〈f1, . . . , fm〉 = 〈y1 − Y1, . . . , ym − Ym〉.
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Proof. See [GLS07, Chapter I, Theorem 1.18].

Using the implicit function theorem we can prove the inverse function theorem for
analytic algebras, which allows us to check whether a given morphism is an isomor-
phism. It even allows us to lift the information to a corresponding holomorphic map.
This is useful when we are dealing with complex spaces.

Theorem 1.9 (Inverse Function Theorem). Let f1, . . . , fn ∈ C{x1, . . . , xn} such that
fi(0) = 0 for i = 1, . . . , n. Then det

(
∂fi
∂xj

(0)
)
6= 0 if and only if the C-algebra morphism

C{x1, . . . , xn} −→ C{x1, . . . , xn}
xi 7−→ fi

is an isomorphism. This again holds if and only if there exist open neighborhood U and W of
0 such that F := (f1, . . . , fn) defines a holomorphic map F : U → W with and this map has
a holomorphic inverse.

The inverse function theorem is the main ingredient in the proof of the next result.
Before we state it we need to define the notion of lift of a morphism.

Definition 1.10. Let ϕ : C{x1, . . . , xn}/I → C{y1, . . . , ym}/J. We call
ϕ̃ : C{x1, . . . , xn} → C{y1, . . . , ym} a lift of ϕ if ϕ̃(I) ⊆ J or equivalently, if the following
diagram is commutative

C{x1, . . . , xn} C{y1, . . . , ym}

C{x1, . . . , xn}/I C{y1, . . . , ym}/J.

ϕ̃

ϕ

Lemma 1.11 (Lifting Lemma). Let ϕ be a morphism of analytic C-algebras, i.e.
ϕ : C{x1, . . . , xn}/I → C{y1, . . . , ym}/J. Then there exists a lift ϕ̃ : C{x} → C{y} of
ϕ which can be chosen as an isomorphism in the case that ϕ is an isomorphism and n = m,
respectively as an epimorphism in the case that ϕ is an epimorphism and n ≥ m.

Proof. See for example [GLS07, Chapter I, Lemma 1.23].

Remark 1.12. Theorem 1.8, Theorem 1.9 and Lemma 1.11 also hold, if we replace the conver-
gent power series ring by the formal power series ring.

We finish this section by defining the so-called analytic tensor product. It generalizes
the classical tensor product of rings to the context of power series rings.

Definition 1.13. Let A = C{x}/I , respectively A = C[[x]]/I , and B = C{y}/J , respec-
tively B = C[[y]]/J . Then we define

A⊗̂B := C{x,y}/ (IC{x,y}+ JC{x,y}) ,

respectively
A⊗̂B := C[[x,y]]/(IC[[x,y]] + JC[[x,y]]).

We call A⊗̂B the analytic tensor product.
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The analytic tensor product serves as the product in the category A. It will be useful
to us in the next section, when we deal with germs of complex spaces and products of
them.

Remark 1.14. One can show (see for example [GR71, Kapitel III, §5]) that the analytic tensor
product satisfies the expected universal property. Let A,B, T ∈ A and assume there exists
morphisms π1 : T → A and π2 : T → B. Then T ∼= A⊗̂B if and only if for every C ∈ A for
every morphism ϕ1 : A → C and ϕ2 : B → C there exists a unique morphism γ : T → C,
such that the following diagram commutes

T A

B C.

π1

π2
γ

ϕ1

ϕ2

As usual for objects satisfying universal properties, the analytic tensor product is unique up to
unique isomorphism.

1.2 Complex Spaces

In this section we are going to define the basic geometric objects of interest in complex
analytic geometry, namely complex spaces. To be able to define them, we need ele-
mentary results from sheaf theory. We intend to give only the most basic definitions,
as far as we need them in the following. For more details see for example [JP00] and
[GLS07]. The main difference between analytic geometry and algebraic geometry, is
the fact that we use the euclidean topology and not the Zariski topology, which allows
us to consider "small" open neighborhoods of points. This difference leads to the so-
called singularity theory. Using the same approach through ringed spaces shows that
nilpotent elements of the structure sheaf can tell us more about the geometric object,
than the reduced structure. See for example Theorem 1.83.

Definition 1.15. Let D ⊆ Cn be an open subset. Define OCn by O(U) := {f : U →
C holomorphic} for every open subset U ⊆ Cn. We call OCn the sheaf of holomorphic
functions on Cn. Denote by ι : D ↪→ Cn the canonical inclusion map. Then the sheaf of
holomorphic functions on D is defined by OD = ι−1OCn . We denote the stalk of OD at
p ∈ D by OD,p. The elements of OD,p are called germs of holomorphic functions.

Before we can define general complex spaces, we start with so-called complex model
spaces, which is just the special case of subsets of Cn.

Definition 1.16 (Complex Model Spaces). Let D ⊆ Cn be an open subset and let I ⊆ OD
be an ideal sheaf of finite type. Then OD/I is a sheaf of rings on D, and we define

V (I) := {p ∈ D | Ip 6= OD,p} = {p ∈ D | (OD/I)p 6= 0}

to be the analytic set in D defined by I. Let X := V (I) and set OX := (OD/I) |X . Then
(X,OX) = (V (I), (OD/I) |X) is an analytic ringed space, called a complex model space
(defined by I).
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Remark 1.17. The definition of V (I) can be reformulated as

V (I) = Supp (OD/I) .

Using this one can easily see that the V (I) are defined as vanishing sets in algebraic geometry.
Let fp ∈ OD,p be a germ. Then there exists an open neighborhood U of p and fp lifts to a
holomorphic function f : U → C. Then Ip 6= OD,p if and only if f(p) = 0 for all fp ∈ Ip.
This means that there exist holomorphic functions f1, . . . , fk defined on U, such that

V (I) ∩ U = {p ∈ U | f1(p) = . . . = fk(p) = 0} = V (f1, . . . , fk).

Next we need to define morphisms of complex model spaces.

Definition 1.18. Let (X,OX) and (Y,OY ) be complex model spaces. A morphism of com-
plex model spaces (f, f ]) : (X,OX) → (Y,OY ) is just a morphism of analytic ringed
spaces.

Now we can define complex spaces.

Definition 1.19 (Complex Spaces). Let (X,OX) be an analytic ringed space with X Haus-
dorff. We call (X,OX) a complex space, if for every p ∈ X there exits an open neighborhood
U, such that (U,OX |U ) is isomorphic to a complex model space. A closed complex subspace
of X is an analytic ringed space (Y,OY ), given by an ideal sheaf of finite type IY ⊆ OX such
that Y = V (IY ) := Supp (OX/IY ) and OY = (OX/IY ) |Y . Analogously, an open com-
plex subspace (U,OU ) of (X,OX) is given by an open subset U ⊆ X and OU = OX |U . A
subset A ⊆ X is called analytic at a point p ∈ X, if there exists an open neighborhood U of
p and f1, . . . , fk ∈ O(U) such that

A ∩ U = V (f1, . . . , fk) := Supp(OU/I),

where I := f1OU + . . .+fkOU . If A is analytic at every point p ∈ A, then it is called locally
closed analytic set inX. IfA is analytic at every p ∈ X, then it is called a (closed) analytic
set in X. To keep notation short, we usually write X instead of (X,OX).

In case we deal with coherent sheaves we can easily obtain analytic sets.

Proposition 1.20. Let X be a complex space. Then a closed subset A ⊆ X is analytic if and
only if there exists a coherent sheaf F such that A = Supp(F).

Proof. See for example [GLS07, Chapter I, Corollary 1.64].

Remark 1.21. The connection between complex spaces and analytic algebras lies in the fact
that every stalk of the structure sheafOX is an analytic algebra and, conversely, every analytic
algebra can obtained as the stalk of a structure sheaf of a certain complex space X. We make
this more precise. Let X be a complex space and p ∈ X. It follows from the definition that there
exist f1, . . . , fk ∈ C{x}, such that

OX,p ∼= OCn,0/I0 ∼= C{x}/〈f1, . . . , fk〉.

In this case we call x = (x1, . . . , xn) local coordinates and f1, . . . , fk local equations for
X at p. On the other hand, given convergent power series f1, . . . , fk ∈ C{x}, there is an open
neighborhood U ⊆ Cn of 0, such that each fi defines a holomorphic map fi : U → C. Set
I = f1OU + . . .+ fkOU , the complex model space

(X,OX) :=
(
V (I), (OU/I) |V (I)

)
satisfies OX,0 ∼= C{x}/〈f1, . . . , fk〉.
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Let us have a look at two examples for complex spaces.

Example 1.22.

(1) Let D ⊆ C be defined by D = V (f), where f ∈ C{x}. We want to see that closed
complex subspaces of C can have only a certain shape. In case f = 0, we get D =
C. So let us assume that f is not identically zero on D. By the identity theorem for
holomorphic functions in one dimension (see for example [JP00, Remark 3.1.10]), we
have that the zeros of f are isolated, since otherwise f would be identically zero on D.
Thus closed complex subspaces of C are path-connected. This simple statement will be
crucial for the proof of Theorem 1.101. We visualize this in the following picture. The
white points correspond to the zeros of the given holomorphic function f and the black
dots are arbitrary points on D.

D

Figure 1.1: Sketch of the path-connectedness of the non-zero locus of a one-dimensional
holomorphic function.

(2) The next object we want to visualize is the complex space defined by the polynomial
f = y2 − x3 − x2 ∈ C[x, y]. The zero-set looks as follows:

V (f)

Figure 1.2: Real picture of V (f).

We are going to use this curve in the following section to show that analytic geometry
and algebraic geometry yield different results, even if the input is the same.

Due to the fact that we are working with geometric objects we would like a notion of
dimension in order to have a simple invariant which allows us to distinguish complex
spaces.

Definition 1.23. Let X be a complex space, p ∈ X and mp the maximal ideal of OX,p. Then
we define

dimpX := Krull dimension of OX,p, the dimension of X at p,
dimX := sup

p∈X
dimpX, the dimension of X,

edimpX := dimCmp/m
2
p, the embedding dimension of X at p.
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Example 1.24. The dimension of a complex spaceX at a point p and the embedding dimension
at the same point do not necessarily need to coincide. Consider the complex space X defined by
the vanishing set of f = y2 − x3 − x2 ∈ C[x, y] and the points p = (0, 0) and q = (1,

√
2).

Using Taylor expansion we obtain

OX,p = C{x, y}/〈y2 − x3 − x2〉 and OX,q = C{u, v}/〈v2 + 2
√

2v − u3 − 4u2 − 5u〉.

A simple computation shows

dimpX = 1 < 2 = edimpX and dimqX = 1 = edimqX.

The observation from Example 1.24 leads to the following definition.

Definition 1.25. Let X be a complex space and p ∈ X a point. We say X is regular at
p, if dimpX = edimpX. Otherwise we say X is singular at p. We call p a regular point,
respectively a singular point. The set of all singular points of X will be denoted by Sing(X),
the so-called singular locus of X .

Proposition 1.26. Let X be a complex space. Then Sing(X) is a closed analytic set in X.

Proof. See for example [GLS07, Chapter I, Corollary 1.111].

Remark 1.27. We are going to see in Section 1.4.2 that we can use differential methods to
compute singular locus of given complex space X.

The next definition is the definition of morphisms of complex spaces.

Definition 1.28. Let (X,OX) and (Y,OY ) be complex spaces. A morphism (f, f ]) : (X,OX)→
(Y,OY ) of complex spaces is a morphism of analytic ringed spaces. Such a morphism is
also-called holomorphic map. We write Mor(X,Y ) for the set of morphisms (X,OX) →
(Y,OY ). An isomorphism of complex spaces is also-called biholomorphic map. To keep no-
tation short, we usually write f instead of (f, f ]).

Using morphisms of complex spaces we can define products of the latter.

Definition 1.29. Let f : X → T and g : Y → T be two morphisms of complex spaces. Then
the analytic fibre product of X and Y over T is a triple (X ×T Y, πX , πY ) consisting of a
complex space X×T Y and two morphisms πX : X×T Y → X,πY : X×T Y → Y such that
f ◦ πX = g ◦ πY , satisfying the following universal property: for any complex space Z and
any two morphisms h : Z → X,h′ : Z → Y satisfying f ◦ h = g ◦ h′ there exists a unique
morphism ϕ : Z → X ×T Y such that the following diagram commutes:

Z

X ×T Y X

Y T.

h′

h

ϕ

πY

πX

f

g

Lemma 1.30. Consider the setup of Definition 1.25. Then the analytic fibre product X ×T Y
exists and is unique up to unique isomorphism.
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Proof. For the existence see for example [Fis76, Proposition 0.29]. The uniqueness fol-
lows from immediately from the universal property.

Remark 1.31. As a topological space the analytic fibre product is nothing more than X ×T
Y := {(x, y) ∈ X × Y | f(x) = g(y).} The proof of existence relies on the observation, that if
T is a single point, then X ×T Y = X × Y and O(X×Y,(x,y))

∼= OX,x⊗̂OY,y.

1.3 Complex Space Germs

In this section we are going to define complex space germs. They turn out to be useful
in the study of the local behavior of complex spaces in the neighborhood of a fixed
point. In order to define these objects we need the notion of pointed complex spaces
and morphisms of the latter.

Definition 1.32. Let X be a complex space and x ∈ X a point. The pair (X,x) is called
pointed complex space. A morphism f : (X,x)→ (Y, y) of pointed complex spaces is a
morphism f : X → Y of complex spaces, such that f(x) = y.

Next we need to define germs of morphisms of complex spaces.

Definition 1.33. Let (X,x) and (Y, y) be pointed complex spaces, U, V ⊆ X open neighbor-
hoods of x and f : (U, x) → (Y, y) and g : (V, x) → (Y, y) morphisms of pointed complex
spaces. We say f and g are equivalent, if there exists an open neighborhood W ⊆ U ∩ V of x,
such that f |W = g|W . We call the equivalence class of a morphism with respect to this equiv-
alence relation holomorphic map germs. By abuse of notation we denote the holomorphic
map germs by f : (X,x) → (Y, y). We can define the composition of two holomorphic
map germs f : (X,x)→ (Y, y) and g : (Y, y)→ (Z, z) as follows: Consider representatives
f : (U, x) → (Y, y) and g : (V, y) → (Z, z). Than g ◦ f is the equivalence class of the mor-
phism g ◦ f |f−1(V )∩U . A map germ f : (X,x) → (Y, y) is called an isomorphism, if there
exists a map germ h : (Y, y)→ (X,x) such that f ◦ h = id(Y,y) and h ◦ f = id(X,x) .

Remark 1.34. From the definition of an isomorphic holomorphic map germ, we obtain that
any pointed complex space (X,x) is in this sense isomorphic to any pointed complex space
of type (U, x), where U is an open neighborhood of x, where the map germ is given by the
canonical inclusion ι : U ↪→ X. We call U in this case a representative of the germ (X,x).
Let (Y, y) be another complex space and f : (X,x) → (Y, y) a map germ. Assume V ⊆ Y is
an open neighborhood of y, with f(U) ⊆ V. Then we call f : U → V a representative of the
map germ f.

Since we are able to compose map germs, we can build the following category.

Definition 1.35. The category whose objects are pointed complex spaces and as morphisms
holomorphic map germs is called category of complex space germs and is denoted by G. We
call the objects of G complex space germs or singularities.

Definition 1.36. Let (X,x) be a complex space germ represented by the complex spaceX with
structure sheaf OX , then the stalk OX,x is called the (analytic) local ring of the germ (X,x)
and also denoted by O(X,x).

Next we need the notion of closed analytic subgerms.
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Definition 1.37. Let (X,x) be a complex space germ and I ⊆ OX,x be an ideal. Furthermore,
let (U,OU ) be a representative of (X,x) and f1, . . . , fk ∈ OU (U) such that I is generated by
the germs of f1, . . . , fk at x. The closed complex subspace of U defined by I = f1OU + . . . +
fkOU defines a closed analytic subgerm

(V (I), x) := (V (I), x) ⊆ (U, x) = (X,x)

of (X,x), called the closed analytic subgerm defined by I. In case I = 〈f〉 ⊆ OCn,p with
f 6= 0 the germ

(V (f), p) := (V (I), p) ⊆ (Cn, p)

is called a hypersurface singularity.

The last notions that pass on from complex spaces to germs are the notion of dimen-
sion and regularity.

Definition 1.38. Let (X,x) be a complex space germ represented by the complex space X. We
define

dim(X,x) := dimxX, the dimension of (X,x),

edim(X,x) := edimxX, the embedding dimension of (X,x).

We call a complex space germ regular, if dim(X,x) = edim(X,x), otherwise we call it sin-
gular.

After all these definitions we are able to state the most important result connecting
complex space germs and analytic algebras.

Proposition 1.39. The functor

Φ : G −→ A

(X,x) 7−→ OX,x
fx : (X,x)→ (Y, y) 7−→ f ]x : OY,y → OX,x

is an antiequivalence of categories.

Proof. See for example [Fis76, Proposition 0.21].

Proposition 1.39 is crucial for the work in this thesis. We want to classify certain hy-
persurface singularities up to isomorphism. The proposition now tells us, that it is
equivalent to study the corresponding analytic algebras. Due to this we can apply as
well methods from complex analysis as methods from abstract algebra.
We conclude this section by showing that analytic and algebraic geometry behave dif-
ferently.

Example 1.40. We consider the same equation as in Example 1.22, namely f = y2−x3−x2.
From the point of view of classic algebraic geometry, we see f as an element of the polynomial
ring C[x, y]. In this case f is an irreducible polynomial and we obtain the real picture of V (f)
as in Figure 1.3. From the point of view of analytic geometry we see f as a power series in
C{x, y}. In this case f is reducible, since it can be written as f = (y − x

√
x+ 1) · (y +
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x
√
x+ 1). This yields the real picture of the complex space germ (V (f), 0) in a small neigh-

borhood of 0 as in Figure 1.4.

V (f)

Figure 1.3: Real picture of the vanishing
set V (y2 − x3 − x2) ⊆ C2.

(V (f), 0)

Figure 1.4: Real picture of the complex
space germ (V (f), 0) ⊆ (C2, 0).

We can see, not only in the equations, but also in the (real) picture, that we obtain an irreducible
curve in algebraic case, but an intersection of two lines in the analytic case. This is a small
example where we obtain different results, although we start with the same equation.

1.4 Derivations on Analytic Algebras

This section deals with derivations and their applications to analytic algebras. We
start by presenting basic results. Afterwards we show how to use derivations in the
computation of singular points. The final subsection is concerned with detecting lo-
cal analytic triviality, this means we want to decide whether a complex space can be
considered locally as a product of a smaller complex space with Ck for some k ∈ N

1.4.1 Derivations on Analytic Algebras I: Basics

The following subsection is concerned with derivations and their relation to analytic
algebras, respectively complex space germs. We restrict our setup to the case of deriva-
tions between analytic algebras. The general case is treated in [Kun86].

Definition 1.41. Let A and B be (formal) analytic algebras. A C-linear map δ : A → B
satisfying the Leibniz rule, that is

δ(f · g) = δ(f) · g + f · δ(g)

is called a derivation of A with values in B. The set

Der(A,B) := {δ : A→ B | δ is a derivation}

is via (a · δ)(f) := a · δ(f) an A-module, the module of derivations of A with values in
B. In case A = B we define Der(A) := Der(A,A).

Remark 1.42. Let A be a (formal) analytic algebra. Then Der(A) is a vector space over C and
it is also a Lie algebra, if we define the multiplication as follows:

[δ, σ](f · g) := (δ ◦ σ − σ ◦ δ)(f · g),

with δ, σ ∈ Der(A), f, g ∈ A. A simple computation yields

[δ, σ](f · g) = [δ, σ](f) · g + f · [δ, σ](g),

hence the multiplication is closed. The other properties of a Lie algebra can also be verified by
simple computations.
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The most relevant case in our considerations will be the cases A = C{x} respectively
A = C[[x]]. In these cases the derivation module is free and its generators can be stated
explicitly.

Theorem 1.43. Let A = C{x} respectively A=C[[x]]. Then every δ ∈ Der(A) can be
uniquely written as

δ =

n∑
i=1

δ(xi)∂xi ,

where ∂xi denotes the partial derivation with respect to xi.

Proof. This follows for example from [GR71, Kapitel III, §4, Satz 2]

Our goal is to investigate complex space germs (X,x) using derivations on the cor-
responding analytic algebras OX,x, which are isomorphic to C{x}/I for some ideal
I ⊆ C{x}. Therefore we need to understand the derivation module Der(C{x}/I). A
first step towards this is the following proposition.

Proposition 1.44. Let A = C{x}/I be an analytic algebra. Then every derivation δ ∈
Der(A) lifts to a derivation δ̃ ∈ Der(C{x}) with the property δ̃(I) ⊆ I.

Proof. The result can be found in the standard literature. A specific proof of this result
for analytic algebras can be found in [SW73, (2.1)].

Remark 1.45. The result of Proposition 1.44 holds also in the case of formal analytic algebras.

It follows from Proposition 1.44 that it is helpful to consider the following set of deriva-
tions.

Definition 1.46. Let A be a (formal) analytic algebra and I ⊆ A an ideal. We call the module

DerI(A) := {δ ∈ Der(A) | δ(I) ⊆ I}

the module of logarithmic derivations of I. In the case I = m we write Der’(A) instead of
Derm(A). We denote the module DerI ∩Der’ by Der′I .

Corollary 1.47. Let A = C{x}/I be an analytic algebra. Then

Der(A) ∼= DerI(C{x})/I Der(C{x}).

Proof. Let π : C{x}� A denote the canonical projection. We consider the sequence of
C{x}-modules

0 I Der(C{x}) DerI(C{x}) Der(A) 0,
ι ϕ

where ι denotes the canonical inclusion and ϕ(δ) = π ◦ δ. We want to show that this
sequence is exact. It is clear by construction that ι is injective. Proposition 1.44 implies
the surjectivity of ϕ. Now it only remains to show that im(ι) = I Der(C{x}) = (ϕ).
The inclusion im(ι) ⊆ ker(ϕ) is clear.
Let δ ∈ ker(ϕ). Then π(δ(xi)) = 0 for all i = 1, . . . , n. By Theorem 1.43 we know that

δ =
n∑
i=1

δ(xi)∂xi , hence δ(xi) ∈ I for all i = 1, . . . , n. Thus δ ∈ I Der(C{x}). The claim

follows from the isomorphy theorem.
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Remark 1.48. Corollary 1.47 also holds, if we replace C{x} by C[[x]].

So far we have dealt with basic properties of derivation modules. Next we consider
properties of derivations which can be extended from classical linear algebra. LetA be
an analytic algebra. Then we have for every k ∈ N natural projections πk : Der(A) �
Der(A/mk

A) ⊆ EndC(A). Using these projections we start with the classical properties
of being diagonalizable and being nilpotent adapted to derivations.

Definition 1.49. Let A be an analytic algebra and δ ∈ Der’(A). We call δ semi-simple, if
the linear operator induced by πk(δ) in Der(A/mk) is semi-simple onA/mk

A for all k ∈ N. δ is
called nilpotent, if the linear operator induced by πk(δ) in Der(A/mk) is nilpotent on A/mk

A

for all k ∈ N. δ is called diagonalizable, if mA has a system of generators containing only
eigenvectors of δ.

Remark 1.50. Since we work over an algebraically closed field, semi-simple derivations are
diagonalizable.

Lemma 1.51. Let A be an analytic algebra and δ ∈ Der’(A). Then δ is nilpotent if and only
if the C-linear operator induced by π2(δ) on mA/m

2
A is nilpotent.

Proof. Assume δ is nilpotent, then it induces a nilpotent C-linear operator on mA/m
2
A

by definition. Now assume δ induces a nilpotent C-linear operator on mA/m
2
A. This

means, there exists some n ∈ N, such that δn(mA) ⊆ m2
A. Assume that we have an

n, such that δn(mk−1
A ) ⊆ δ(mk

A), for some k ∈ N. Our result for k + 1 follows by a
application of the Leibniz rule:

δn(mk
A) = δn(mk−1

A mA) = δn(mk−1
A )mA︸ ︷︷ ︸
⊆mk+1

A

+ mk−1
A δn(mA)︸ ︷︷ ︸
⊆mk+1

A

⊆ mk+1
A .

Thus, δ induces a nilpotent C-linear operator on mA/m
k
A for all k ∈ N. As δ(C) = 0

and A = C ⊕ mA, we get that it induces a nilpotent operator on A/mk
A for all k ∈ N.

Finally, δ is nilpotent, as we can always take m := n · k and get that δm(A) ⊆ mk
A.

Definition 1.52. Let A be an analytic algebra and δ ∈ Der’(A). We say that δ has a Cheval-
ley decomposition, if δ can be written as δ = δS + δN with [δS , δN ] = 0, where δS is a
semi-simple derivation, δN is a nilpotent derivation and δS , δN ∈ Der’(A).

Obviously the Chevalley decomposition from Definition 1.52 is analogous to the Jor-
dan decomposition known from linear algebra (see for example [Lan02, Chapter XIV,
Theorem 2.4]).

As in the linear algebra case, we cannot expect the Chevalley decomposition to exist
without any restrictions to the analytic algebra. The following three theorems are the
most important results regarding the linear algebra of derivations, which we are going
to use.

Theorem 1.53. Let A be an analytic algebra and δ ∈ Der’(A) admitting a Chevalley de-
composition δ = δS + δN . Then the Chevalley decomposition of δ is unique, that is, if
δ = δS + δN = δ′S + δ′N with [δS , δN ] = [δ′S , δ

′
N ] = 0, then δS = δ′S and δN = δ′N .

Proof. See [SW81, Remark after (1.1)].
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Theorem 1.54. Let A be an analytic algebra and δ ∈ Der’(A) admitting a Chevalley de-
composition δ = δS + δN . Furthermore let I ⊆ A be an ideal with δ ∈ DerI(A), then
δS , δN ∈ DerI(A).

Proof. See [SW81, Remark after (1.1)]

Theorem 1.55. Let A be a complete analytic algebra. Then every δ ∈ Der’(A) admits a
Chevalley decomposition.

Proof. See [SW81, (1.2)]. For a constructive approach, which will be turned to an algo-
rithm in Chapter 5, see [Sai71, Satz 3.1].

Let us take a look at an example for the Chevalley decomposition.

Example 1.56. Let A := C[[x, y]]. Consider the derivation δ := (x + y)∂x + y∂y. Then
δS = x∂x + y∂y is the semi-simple part of δ and δN = y∂x is the nilpotent part of δ. The first
statement follows, as δS(x) = x and δS(y) = y. The second statement follows from the fact
that δ2

N = 0.
Now consider δ := (x + y + xy)∂x + y∂y. We want to show that the semi-simple part of the
linear part of our derivation is not necessarily the semi-simple part of our derivation. Assume
that δS = x∂x + y∂y, then δN = (y + xy)∂x. Using the same argument as before, δS is
semi-simple, but [δS , δN ] = xy∂x 6= 0, hence δS cannot be the semi-simple part of δ. This
example shows that it is a non-trivial task to compute the semi-simple part of a derivation.

Proposition 1.57. Let A be a complete analytic algebra and δ, ε ∈ Der’(A). If [ε, δ] = 0, then
we have [ε, δS ] = 0 and [ε, δN ] = 0.

Proof. Denote by δ̄ and ε̄ the images of δ and ε to Der(A/mk
A), for any k ∈ N. As in

the proof of Theorem 1.54, we can write δS as a polynomial in δ̄. Due to the fact that
[ε̄, δ̄] = 0, we get that ε̄ commutes with any polynomial expression in δ̄, hence with δS .
The analogous result follows for δN . The result follows, as δS and δN can be considered
as sequences of the δS respectively δN .

The final theorem of this section is the analogon to a classical result from linear algebra.

Theorem 1.58. Let A be a complete analytic algebra and let δ1, . . . , δk ∈ Der’(A), k ∈ N≥2,
be pairwise commuting diagonalizable derivations. Then there exists a minimal generating
system x1, . . . , xn of mA consisting of common eigenvectors of the δi.

Proof. See [SW81, (2.1)].

We conclude this section with a criterion using commutators to check if a derivation
is nilpotent.

Lemma 1.59. Let A be an analytic algebra and δ ∈ Der’(A) diagonalizable. If ε ∈ Der’(A)
satisfies [δ, ε] = λ · ε for some λ ∈ C∗, then ε is nilpotent.

Proof. See [Epu15, Lemma 4.38].
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1.4.2 Derivations on Analytic Algebras II: Singularities

In this subsection we want to present one of the main application of derivations,
namely checking whether a point in a complex space is regular or not. We start with
an algebraic lemma motivating the following definitions.

Lemma 1.60. Let A be a (formal) analytic algebra. Then there is a canonical isomorphism

Der(A,C) −→ HomC(mA/m
2
A,C).

In particular, edim(A) = dimC(Der(A,C)).

Proof. See for example [GLS07, Chapter I, Lemma 1.107].

Lemma 1.60 motivates the following definition.

Definition 1.61. LetX be a complex space. We call the C-vector space TxX := Der(OX,x,C)
the tangent space of X at x.

We obtain the following corollary.

Corollary 1.62. Let X be a complex space and x ∈ X. Then X is regular at x if and only if
dimC TxX = dimOX,x.

Using methods from computer algebra we can compute dimOX,x.Our next result will
tell us how to compute TxX in case of closed complex subspaces of complex spaces.

Proposition 1.63. Let D ⊆ Cn be a complex model space and X a closed complex subspace
of D defined by the ideal sheaf I. Denote the local coordinates at a point p ∈ X ⊆ D by
x = (x1, . . . , xn). Then there is a C-vector space isomorphism

TpX −→ {(s1, . . . , sn) ∈ Cn | s1(∂x1f)(p) + . . .+ sn(∂xnf)(p) = 0 for all f ∈ Ip}.

Proof. See for example [Fis76, Chapter 2, Section 2].

Let us have a look at an example.

Example 1.64. We consider the same equation as in Example 1.22, namely f = y2−x3−x2,
and check the results from Example 1.24. The complex space is X = V (f) ⊆ C2. We consider
the points p = (0, 0) and q = (1,

√
2). A simple computation shows that TpX = {(s1, s2) ∈

C2 | s1 ·0+s2 ·0 = 0} = C2 and TqX = {(s1, s2) ∈ C2 | s1 · (−5)+s2 ·2
√

2 = 0} ∼= C.We
visualize the real pictures of TpX and TqX by dashed lines where TpX is visualized through
two dashed lines, since it would cover the whole picture.

p

Figure 1.5: Real picture of TpX .

q

Figure 1.6: Real picture of TqX .

From the picture we obtain a result we already know, namely that p is a singular point and q a
regular point.
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One can show that the defining equations for the tangent spaces can be checked on
generators of the given ideal. This yields the following criterion to check whether a
point is regular or not.

Definition 1.65. Let A = C{x} or A = C[[x]] and f := (f1, . . . , fk) ∈ Ak. We call the
matrix

Jf :=

∂x1f1 · · · ∂x1fk
...

. . .
...

∂xnf1 · · · ∂xnfk


the Jacobian matrix of f .

Theorem 1.66 (Jacobian Criterion). Let D ⊆ Cn be a complex model space, X a closed
complex subspace of D defined by the ideal sheaf I and x ∈ X a point. Assume Ix =
〈f1, . . . , fk〉 ⊆ OX,x. Then the complex space germ (X,x) is regular if and only if rk(Jf )(x) =
n− dimOX,x.

Proof. See for example [JP00, Theorem 4.3.6].

1.4.3 Derivations on Analytic Algebras III: Triviality

This final section about derivations is concerned with the question whether a given
complex space (germ) is a product or not. Let us make this more precise.

Definition 1.67. Let X be a complex space and x ∈ X a point. We say X is locally trivial
in x, if there exists an open neighborhood U of x, a complex space X ′ and an open set V ⊆ Ck
for some k ∈ N together with a biholomorphic map

ϕ : U −→ X ′ × V.

In case ϕ(x) = (x′,0) it is equivalent to say that there exists an biholomorphic map

ϕ : (X,x) −→ (X ′ × Ck, (x′,0)).

We call (X,x) a suspension of (X ′, x′).

Before we state a criterion to decide whether a complex space is locally trivial, we have
a look at an example.

Example 1.68. We consider the complex space X ⊆ C2 defined by the polynomial f = xy ∈
C[x, y] and the complex space Y ⊆ C3 defined by g = xy ∈ C[x, y, z].

V (f)

Figure 1.7: Real picture of the vanishing
set V (xy) ⊆ C2.

V (g)

Figure 1.8: Real picture of the complex
space V (xy) ⊆ C3.

From the pictures it easy to see, that (Y,0) is a suspension of (X,0).
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The equations in Example 1.68 are very simple, so we can immediately see that we
have a suspension. Our next results states a differential criterion to decide local trivi-
ality for hypersurfaces.

Theorem 1.69 (Local Analytic Triviality I). Let f ∈ C{x1, . . . , xn, y1, . . . , ym} and c ∈ N.
The following conditions are equivalent:

(1) ∂yif ∈ 〈x1, . . . , xn〉c 〈∂x1f, . . . , ∂xnf〉+ 〈f〉 for i = 1, . . . ,m.

(2) There exist ϕ1, . . . , ϕn, u ∈ C{x1, . . . , xn, y1, . . . , ym} such that

(a) u(x1, . . . , xn, 0, . . . , 0) = 1,

(b) ϕi(x1, . . . , xn, 0, . . . , 0) = xi,

(c) ϕi − xi ∈ 〈x1, . . . , xn〉c,
(d) f(x1, . . . , xn, y1, . . . , ym) = u · f(ϕ1, . . . , ϕn, 0, . . . , 0).

If moreover ∂yif ∈ 〈x1, . . . , xn〉c 〈∂x1f, . . . , ∂xnf〉 for all i, then we can choose u = 1.

Proof. The proof follows by induction from [JP00, Theorem 9.1.5].

A more general version is the following.

Theorem 1.70 (Local Analytic Triviality II). Let X be a complex space and x ∈ X. Then X
is locally trivial in x if and only there exists derivations δ1, . . . , δm ∈ Der(OX,x), such that
δ1(x), . . . , δm(x) are linearly independent. In this case (X,x) ∼= (X ′ × Cm, (x′,0)) for some
complex space germ (X ′, x′).

Proof. See [Fis76, Theorem 2.12].

We stated both versions of local analytic triviality, since we are going to need both
separately. We conclude this section by stating a lemma concerning isomorphisms of
suspensions.

Lemma 1.71 (Cancellation Lemma). Let (X,x) ∼= (X ′ × Ck, (x′,0)) and (Y, y) ∼= (Y ′ ×
Cm, (y′,0)) be complex space germs with k and m maximal. Then (X,x) ∼= (Y, y) if and only
if k = m and (X ′, x′) ∼= (Y ′, y′).

Proof. The if part follows from [Eph78, Lemma 1.5] and the only if part from the maxi-
mality of k and m, the fact that Der(OX,x) ∼= Der(OY,y) if (X,x) ∼= (Y, y) and Theorem
1.70.

1.5 Hypersurface Singularities

This section deals with the basics of hypersurface singularities. After introducing ba-
sic invariants of general hypersurface singularities, we define the notion of isolated
hypersurface singularities and state their properties. Next we consider basic results
regarding quasi-homogeneous isolated hypersurface singularities. We finish this sec-
tion by presenting harmonic hypersurface singularities and by showing that they are
determined, as well as isolated hypersurface singularities, by their singular locus fol-
lowing [GH85].
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1.5.1 Isolated Hypersurface Singularities

For a given holomorphic function f : U → C, U ⊆ Cn open, the singular locus is
defined by Sing(X) = {x ∈ U | f(x) = ∂x1f(x) = . . . = ∂xnf(x) = 0}. Locally the
information is stored in the ideal generated by the partial derivatives of f and f.

Definition 1.72. Let f : U → C be a holomorphic function and x ∈ U. We call (V (f), x)
an isolated hypersurface singularity if there exists an open neighborhood V of x such that
(Sing(X) ∩ V )\{x} = ∅.

Remark 1.73. For simplicity, all germs we consider will have base point x = 0.

This definition of isolated singularity is not easy to check, so we want to have an
algebraic argument to verify this property. To do so, we need some definitions

Definition 1.74. Let A = C{x} or A = C[[x]] and f ∈ A.

(1) We call the ideal
Jf := 〈∂x1f, . . . , ∂xnf〉

the Jacobian ideal of f .

(2) The analytic algebras

Mf := A/Jf and Tf := A/〈f, Jf 〉

are called Milnor and Tjurina algebra of f , respectively.

(3) The numbers
µf := dimC Mf and τf := dimC Tf

are called Milnor and Tjurina number of f respectively.

Example 1.75. We continue Example 1.68. From the pictures it is clear that (V (f),0) defines
an isolated singularity and (V (g),0) does not.

Pictures can be tricky, since we cannot picture the two or three dimensional complex
space. So we have develop an algebraic method to check this property.

Lemma 1.76. Let (X,0) be a hypersurface singularity defined by f ∈ C{x}. Then the follow-
ing are equivalent:

(1) (X,0) is an isolated hypersurface singularity.

(2) µf <∞.

(3) τf <∞.

Proof. See for example [GLS07, Chapter I, Lemma 2.3].

Using methods from computer algebra we can compute µf and τf in case f is a poly-
nomial. As it turns out next, we can always change coordinates in such a way, that an
isolated hypersurface singularity is defined by a polynomial. Let us make this more
precise.
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Definition 1.77. Let A = C{x} or A = C[[x]] and f, g ∈ A.

(1) We say f is contact equivalent to g, denoted by f ∼ g, if there exists an automorphism
ϕ ∈ Aut(A) and a unit u ∈ A∗, such that f = u · ϕ(g).

(2) Denote by f (k) the truncation of f up to degree k. Then we say f is k-determined if
f ∼ f (k) for some k ∈ N.

Remark 1.78. It is easy to see that f ∼ g is equivalent to (V (f),0) ∼= (V (g),0). There is
also a notion of so-called right equivalence, but we omit it at this point, since we do not use
it in the further course of the thesis. For more details see [GLS07, Chapter I, Definition 2.9].

For isolated hypersurface singularities we have the following statement.

Proposition 1.79. Let f ∈ C{x}, such that (V (f), 0) is an isolated hypersurface singularity.
Then f is τf -determined.

Proof. See for example [GLS07, Chapter I, Corollary 2.24].

Using Proposition 1.79 one can prove the following lemma.

Lemma 1.80 (Splitting Lemma). Let f ∈ C{x1, . . . , xn} define an isolated hypersurface
singularity and let H := (∂xi∂xjf) denote the Hessian matrix of f. Assume rkH(0) = k,
then there exists a polynomial g ∈ C[xk+1, . . . , xn] with ord(g) ≥ 3, such that

f ∼ x2
1 + . . .+ x2

k + g.

Proof. See for example [GLS07, Chapter I, Theorem 2.47].

Singularities which are sums of squares are a special type of singularities.

Definition 1.81. Let f ∈ C{x}. We call f an A1-singularity, if

f ∼
k∑
i=1

x2
i

for some k ≤ n.

Remark 1.82. The splitting lemma basically tells us that every isolated hypersurface singular-
ity is tight-equivalent to the sum of anA1-singularity and an isolated hypersurface singularity
g of order greater equal to 3.

Next to the fact that the dimension of the Tjurina algebra determines the determinacy
of an isolated hypersurface singularity, it also determines the isomorphism class as
follows:

Theorem 1.83 (Mather–Yau Theorem). Let f, g ∈ C{x} define isolated hypersurface sin-
gularities (X,0) respectively (Y,0). Then the following are equivalent:

(1) f ∼ g.
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(2) (X,0) ∼= (Y,0).

(3) Tf
∼= Tg as C-algebras.

(4) (Sing(X),0) ∼= (Sing(Y ),0).

Proof. See for example [GLS07, Chapter I, Theorem 2.26].

As mentioned in the introduction the goal of this thesis is to get a better understanding
of the explicit correspondence between the isomorphism class of the Tjurina algebra
and the isomorphism class of the complex space germ of isolated hypersurface singu-
larities.

We conclude this section with an example that shows the limits of the Mather–Yau
theorem.

Example 1.84. Consider the hypersurface singularities defined by f = x2 + y2 ∈ C{x, y}
and g = x2 − y2 ∈ C{x, y}. One can easily see that

Jf = 〈x2 + y2, 2x, 2y〉 = 〈x, y〉 = 〈x2 − y2, 2x,−2y〉 = Jg.

We see that dimC Tf = dimC Tg = 1, hence f and g define isolated hypersurface singular-
ities. With Jf = Jg, we obtain Tf

∼= Tg and the Mather–Yau theorem yields (V (f),0) ∼=
(V (g),0). Next we compare the real pictures.

(V (f),0)

Figure 1.9: Real picture of the hypersur-
face singularity (V (f),0).

(V (g),0)

Figure 1.10: Real picture of the hypersur-
face singularity (V (g),0).

From the real picture we can see that the hypersurface germ, if we would consider them as
subsets of (R2,0) are not isomorphic, since they have a different number of irreducible com-
ponents. This is a counterexample to the Mather–Yau theorem in the case of the real numbers.
Due to this we put our focus on the complex numbers.

1.5.2 Quasi-Homogeneous Isolated Hypersurface Singularities

In the underlying thesis we are going to focus on a special type of isolated hypersur-
face singularities, namely so-called quasi-homogeneous isolated hypersurface sin-
gularities (short: QHIS).

Definition 1.85. Let f ∈ C{x}. We say f is quasi-homogeneous power series if there
exists an integer d ∈ N≥1 and a w ∈ Nn≥1 such that all monomials m ∈ Supp(f) have
weighted degree d with respect to w.
Let (X,0) be an isolated hypersurface singularity. We call (X,0) a quasi-homogeneous
isolated hypersurface singularity if there exists a quasi-homogeneous power series f ∈
C{x}, such that (X,0) ∼= (V (f),0) .

Remark 1.86. Due to the positivity of the entries of w, f has to be a polynomial. So we will
assume from now on that (X,0) is defined by a quasi-homogeneous polynomial f ∈ C[x].
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We start with an elementary property regarding the monomial structure of a polyno-
mial defining the QHIS.

Lemma 1.87. Let f ∈ C[x] define a QHIS. Then for each 1 ≤ i ≤ n one of the following
statements holds:

(1) xmi ∈ Supp(f) for a certain m ∈ N.

(2) xmi xj ∈ Supp(f) for a certain m ∈ N and 1 ≤ j ≤ n.

Proof. See [Sai71, Korollar 1.6].

Lemma 1.87 implies the following result.

Corollary 1.88. Let f ∈ C[x] define a QHIS. Assume that ord(f) ≥ 3 and that f is quasi-
homogeneous with respect to the weight-vectors w = (w1, . . . , wn) and v = (v1, . . . , vn) with
weighted degrees dw respectively dv. Then

wi
dw

=
vi
dv

for all 1 ≤ i ≤ n.

We conclude this structural part with the following uniqueness result.

Theorem 1.89. Let f ∈ C[x] define a QHIS. Assume that ord(f) ≥ 3, f is quasi-homogeneous
with respect to the weight-vector w = (w1, . . . , wn) and f has weighted degree d. Then for all
1 ≤ i ≤ n the rational numbers wi

d are uniquely determined and satisfy 0 < wi
d < 1

2 .

Proof. See [Sai71, Satz 1.3].

Next we present relations between the Milnor number, the weight-vector and the
weighted degree. We begin with the definition of an auxiliary function.

Definition 1.90. Denote by (pn)n∈N≥1
the monotonously increasing sequence of prime num-

bers. We define the function l : N≥1 → Q, n 7→
n∏
i=1

pi
pi−1 .

Using this function we obtain the following theorem.

Theorem 1.91. Let f ∈ C[x] define a QHIS. Assume that f is quasi-homogeneous with
respect to the weight-vector w = (w1, . . . , wn) and has weighted degree d. Then the following
hold:

(1) µf = τf =
n∏
i=1

(
d
wi
− 1
)
.

(2) If n ≥ 2, then d ≤ l(n) · µf .

(3) If ord(f) ≥ 3 and n ≥ 2, then d ≤ l(n− 1) · µf .

Proof. See [HK12, Theorem 4.3].
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An interesting theoretical property of quasi-homogeneous hypersurface singularities
is the fact that being one is a generic property.

Let P = {p1, . . . , pm} ⊆ 〈x〉 be a finite set of polynomials. Define fi =
m∑
k=1

aijpj for 1 ≤

i ≤ k and aij ∈ C. We want to express the existence of aij such that C[x]m/〈f1, . . . , fk〉
is a complete intersection ring in more algebraic terms. Consider the rings C[y] and
C[x,y] with maximal ideals n = 〈y〉 and o = 〈x,y〉.
Define A = C[y]n, B = C[x,y]o and Fi =

∑m
k=1(yij + aij)pj for 1 ≤ i ≤ k. Moreover,

let C = B/〈F1, . . . , Fk〉. The canonical maps of A-algebras

A ↪→ B � C

induce isomorphisms

C[x]m/〈f1, . . . , fk〉 ∼= C/nC ∼= C ⊗A A/nA.

In particular the aij yield a complete intersection if and only if C ⊗A A/nA is isomor-
phic to a complete intersection ring. Now we have every ingredient for the proof of
the genericity result. A sketch of the proof has been communicated to us by Claus
Hertling.

Theorem 1.92. LetM = {m1, . . . ,ml} ⊆ C[x] be a finite set and I ⊆ C[x] an ideal gener-
ated by k ≤ n polynomials f1, . . . , fk which are linear combinations of elements ofM, that is

fi =
l∑

j=0
aijmj for certain aij ∈ C. If C[x]/I is a n − k dimensional complete intersection,

then C[x]/〈
∑l

j=0 ãijpj | 1 ≤ i ≤ k〉 is a n− k dimensional complete intersection for generic
ãij ∈ C.

Proof. The geometric idea behind this theorem is the following:
We consider the aij as values for variables of a polynomial ring, this means that we
consider the fi as elements of the polynomial ring C[x,y]. Define
R = C[x,y]/〈f1, . . . , fn〉 and S = C[y]. We obtain a morphism of schemes

f : Spec(R)→ Spec(S),

where the fibre of the maximal ideal p corresponding to the point P = (aij) ∈ Cn·m is
isomorphic to

C[x]〈x〉/〈
l∑

j=0

aijmj | 1 ≤ i ≤ n〉.

By assumption the fibre is isomorphic to a complete intersection ring. We apply
[Gro67, Théorème 6.9.1] in order to obtain an open U, such that f |U : U → Spec(S) is a
flat morphism. Since flat morphisms are open (see [Gro67, Théorème 2.4.6]), thus we
obtain that f(U) ⊆ Spec(S) is non-empty and open, hence dense in Spec(S), since S
is a domain. In our setup Krull’s Principal ideal theorem (see [BH93, Theorem A.1])
implies that each fibre is of dimension ≥ n − k. By Chevalley’s theorem (see [Gro67,
Théorème 13.1.3]) we know that locus where the fibres have dimension ≤ n − k is
open. We can shrink U such that the assumption on the dimension of the fibres hold.
Since U is non-empty, we obtain that generic fibres have dimension n− k.

The fact that being an isolated hypersurface singularity is equivalent to Jf being a
zero-dimensional complete intersection yields the following corollary.
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Corollary 1.93. Assume we are given a finite setM = {m1, . . . ,ml} ⊆ 〈x〉 ⊆ C[x] and a
polynomial f =

∑l
i=0 aimi for certain ai ∈ C. If f defines an isolated hypersurface singular-

ity, then f̃ =
∑l

i=0 ãimi defines an isolated hypersurface singularity for generic ãj ∈ C.

1.5.3 A General Mather–Yau Theorem

In 1985 Gaffney and Hauser generalized the Mather–Yau theorem to a larger class of
singularities, which are not necessarily hypersurface singularities (see [GH85]). There
are two types of singularities for which we can extend this result. The first type are
singularities defined by an f ∈ C{x} satisfying f ∈ mJf . These singularities are so-
called strongly Euler-homogeneous singularities and we consider this type of singularity
in more detail in Chapter 3. The result in this case for isolated hypersurface singulari-
ties has been proven by Shoshitaishvili in [Sho76]. The second type for which we can
extend the result are so-called harmonic singularities (see [HM86]). In this section we
state the proof of the aforementioned theorem in the hypersurface case, since it is the
theoretical foundation of the underlying thesis. Before we restate the proof, we need
to define basic notions.

Definition 1.94. Let (X,0) be a hypersurface singularity.

(1) We say (X,0) is of isolated singularity type, if there exists a representative U of
(Sing(X),0), such that

(U, x) 6∼= (U,0)

for all x ∈ U\{0}.

(2) We say (X,0) is a harmonic singularity if there exists a singularity (X ′,0) of isolated
singularity type and a k ∈ N, such that

(X,0) ∼= (X ′ × Ck, (0,0)).

Remark 1.95. We have the following chain of proper inclusions for hypersurface singularities:

{isolated} ( {isolated singularity type} ( {harmonic}.

Singularities with very simple defining equations suffice to show these proper inclusions. As
already seen in Example 1.68 and 1.75 the hypersurface singularity (V (xy),0) ⊆ (C2,0)
is isolated, whereas the singularity (V (xy),0) ⊆ (C3,0) is not. Nevertheless the latter is a
suspension of the first, hence it is a harmonic singularity. It is not of isolated singularity type,
since for any point p = (0, 0, t) ∈ C3 with t 6= 0, we have Sing(V (xy),0) ∼= Sing(V (xy), p).
At last we need a singularity, which is of isolated singularity type but not isolated. Therefore
we consider (V (xyz),0) ⊆ (C3,0). A simple computation shows that (Sing(V (xyz)),0) =
(V (xy) ∪ V (xz) ∪ V (yz),0) and one can see that (Sing(V (xyz)),0) 6∼= (Sing(V (xyz)), p)
for any p ∈ C3\{0}, hence (V (xyz),0) is of isolated singularity type, but not isolated. The
real picture looks as follows:
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(V (xyz),0)

Figure 1.11: Real picture of the complex space (V (xyz),0) ⊆ (C3,0) and of its singular
locus.

In the remainder of this section we want to prove a theorem similar to the Mather–Yau
theorem for harmonic singularities. We adapt the proof of [JP00, Theorem 9.1.8] to our
setup. In the case of hypersurface singularities it is the same as in [GH85], we just fill
in more details, since this thesis relies theoretically on this result.
We start our preparations with a lemma that allows us to assume equality of Jacobian
ideals.

Lemma 1.96. LetA = C{x} orA = C[[x]] and ϕ = (ϕ1, . . . , ϕn) ∈ Aut(A). Then for every
f ∈ A it holds that

ϕ(Jf ) = Jϕ(f).

Proof. First note that ϕ(∂xif) = (∂xif)(ϕ(x)), hence

ϕ(Jf ) = 〈ϕ(∂x1f), . . . , ϕ(∂xnf)〉 = 〈(∂x1f)(ϕ(x)), . . . , (∂xnf)(ϕ(x))〉.

Applying the chain rule to ϕ(f) = f(ϕ(x)) yields

∂xjϕ(f) =

n∑
i=1

(∂xif)(ϕ(x)) · ∂xjϕi =

n∑
i=1

ϕ(∂xif) · ∂xjϕi.

We can rewrite this as ∂x1ϕ(f)
...

∂xnϕ(f)

 = Jϕ ·

ϕ(∂x1f)
...

ϕ(∂xnf)

 . (1.1)

Due to the Inverse Function Theorem (Theorem 1.9) the Jacobian matrix Jϕ is invert-
ible. This means that we can rewrite Equation (1.1) as

(Jϕ)−1 ·

∂x1ϕ(f)
...

∂xnϕ(f)

 =

ϕ(∂x1f)
...

ϕ(∂xnf)

 . (1.2)

Equation (1.1) and (1.2) now imply ϕ(Jf ) = Jϕ(f).

The next lemma is concerned with equality of a special type of ideals.

Lemma 1.97. Let A = C{x, t} or A = C[[x, t]]. Furthermore, let k ∈ N≥1 and
f1, . . . , fk, g1, . . . , gk ∈ A. We define I := 〈f1, . . . , fk〉 ⊆ A and It := 〈f1 + t · (g1 −
f1), . . . , fk + t · (gk − fk)〉 ⊆ A. If I = 〈g1, . . . , gk〉, then I = It.
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Proof. The assumption I = 〈g1, . . . , gk〉 implies It ⊆ I. To prove the equality we con-
sider the quotient I := I/It ⊆ A/It =: B. Due to the definition of It, we obtain

fi = t · (fi − gi) ∈ mBI for all i = 1, . . . , k.

This implies I ⊆ mBI, hence I = 0 by Nakayama’s lemma. Thus I = It.

Our next result is a statement about path-connectedness of complex space germs.

Lemma 1.98. Let k ∈ N≥1 and f1, . . . , fk, g1, . . . , gk ∈ C{x}. Fix an open neighborhood
U ⊆ Cn of 0 such that fi, gj are holomorphic functions on U for all 1 ≤ i, j ≤ k. We define
the ideal sheaf I := f1OU + . . . + fkOU and assume that I = g1OU + . . . + gkOU holds.
Furthermore, we define for any t0 ∈ C the ideal sheaf It0 := (f1 + t0 · (g1 − f1))OU + . . .+
(fk + t0 · (gk − fk))OU . We define X := V (I) and Xt0 = V (It0) for any t0 ∈ C. Then the
following hold:

(1) There exists a path γ : [0, 1]→ C satisfying γ(0) = 0 and γ(1) = 1, such that

(X,0) ∼= (Xt0 ,0)

for all t0 ∈ γ([0, 1]).

(2) There exists an open neighborhood W ⊆ U of 0 and V ⊆ C of 0 with the property that
for all t0 ∈ V it holds that

W ∩X = W ∩Xt0 .

Proof. The idea for the proof of the first claim is to connect the ideals I0 := I0 =
〈f1, . . . , fk〉 = 〈g1, . . . , gk〉 =: I1 via the ideals It0 := (It0)0 = 〈f1 + t0 ·(g1−f1), . . . , fk+
t0 · (gk − fk)〉 by a complex line and check that there exists a path γ as in the claim. In
order to show the existence of γ we use sheaf theory. We define the ideal sheaves

J := f1OU×C + . . .+ fkOU×C = g1OU×C + . . .+ gkOU×C

and
Jt := (f1 + t · (g1 − f1))OU×C + . . .+ (fk + t · (gk − fk))OU×C.

By construction we have an inclusion of ideal sheaves Jt ⊆ J on the analytic set U×C
and in particular on the analytic subset {0} × C. We know by Proposition 1.20 that
Supp(J /Jt)∩({0}×C) is an analytic subset of {0}×C. By Example 1.22 we know that
the only closed complex subspaces of {0} × C are either unions of isolated points or
the whole space. If we can show that that (0, 0), (0, 1) /∈ Supp(J /Jt)∩ ({0}×C), then
there exists a path γ : [0, 1] → C, which avoids the isolated points and which satisfies
γ(0) = 0 and γ(1) = 1. So it only remains to show that the points (0, 0) and (0, 1) are
not in Supp(J /Jt).We only prove this for the stalk at (0, 0), as the stalk at (0, 1) works
analogously. Consider the ideal Jt := (Jt)(0,0) = 〈f1 + t(g1− f1), . . . , fk + t(gk− fk)〉 ⊆
C{x, t} and define J0 := I0 · C{x, t} = J(0,0). Since I0 = I1, we can apply Lemma 1.97
to J0 and Jt and obtain

J0 = J(0,0) = (Jt)(0,0) = Jt (1.3)

and hence (0, 0) /∈ Supp(J /Jt)∩ ({0}×C). This proves the first part of the statement.
Coherence of ideal sheaves and Equation (1.3) imply the existence of an open neigh-
borhood W ⊆ U of 0 and an open neighborhood V ⊆ C of 0, such that we obtain an
equality of ideal sheaves

f1OW×V +. . .+fkOW×V = (f1+t·(g1−f1))OW×V +. . .+(fk+t·(gk−fk))OW×V . (1.4)
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Setting the value of t in Equation (1.4) to an arbitrary but fixed t0 ∈ V yields the
equality of ideal sheaves

I|W = f1OW+. . .+fkOW = (f1+t0·(g1−f1))OW+. . .+(fk+t0·(gk−fk))OW = (It0) |W .
(1.5)

Equation (1.5) implies
W ∩X = W ∩Xt0

for every t0 ∈ V.

The next lemma shows how the isomorphy class of hypersurface singularities behave
if they lie on a line connecting two fixed hypersurface singularities.

Lemma 1.99. Let f, g ∈ C{x}. Fix an open neighborhood U ⊆ Cn of 0 such that f, g are
holomorphic functions onU.We define the ideal sheaves If := fOU+∂x1fOU+. . .+∂xnfOU
and Ig := gOU + ∂x1gOU + . . . + ∂xngOU . Furthermore, we assume (If )0 = 〈f, Jf 〉 =
〈g, Jg〉 = (Ig)0 .On U ×C we define the holomorphic function F := f + t · (g−f) ∈ C{x, t}
and on U we define for any t0 ∈ C the holomorphic function Ft0 := F (x, t0) ∈ C{x}. Then
the following hold:

(1) (V (f)× C, (0, 0)) ∼= (V (F ), (0, 0)).

(2) There exist an open neighborhood V of 0 ∈ C and a continuous family of points (pt)t∈V
with:

(a) lim
t→0

pt = 0, and

(b) (V (f),0) ∼= (V (Ft0), pt0).

(3) If f ∈ mJf and g ∈ mJg, then pt0 = 0 for all t0 ∈ V.

Proof. By coherence of ideal sheaves the equality (If )0 = (Ig)0 implies the existence
of an open neighborhood U ′ ⊆ U of 0 such that If |U ′ = Ig|U ′ .After possibly shrinking
U we can assume without loss of generality U = U ′ and hence If = Ig. We define the
ideal sheaf I := FOU×C+∂x1FOU×C+. . .+∂xnFOU×C. Since F = f+t·(g−f), ∂xiF =
∂xif + t · (∂xig − ∂xif) and If = Ig, we obtain the inclusion of ideal sheaves

I ⊆ fOU×C + ∂x1fOU×C + . . .+ ∂xnfOU×C =: I ′. (1.6)

Define I := I(0,0) and I ′ := I ′(0,0) = 〈f, Jf 〉·C{x, t}.Applying Lemma 1.97 to the ideals
I and I ′ implies I = I ′(0,0) = 〈f, Jf 〉·C{x, t} = I ′. In this setup we obtain ∂tF = g−f ∈
〈f, Jf 〉·C{x, t} = I and Theorem 1.69 implies the existence of ϕ1, . . . , ϕn ∈ C{x, t} and
a unit u ∈ C{x, t}∗, such that

u · F (ϕ1(x, t), . . . , ϕn(x, t), 0) = F (x, t). (1.7)

The morphism ϕ : C{x, t} → C{x, t}, defined by ϕ := (ϕ1, . . . , ϕn, t) is an isomor-
phism due to Theorem 1.69,2.(b) and the Inverse Function Theorem (Theorem 1.9).
Then there exist ψ1, . . . , ψn ∈ C{x, t}, such that ψ := (ψ1, . . . , ψn, t) is the inverse of ϕ.
Applying ψ to Equation (1.7) yields

f = F (x, 0) = ψ(u)−1F (ψ1(x, t), . . . , ψn(x, t), t). (1.8)
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This proves the first statement. Since ψ defines an automorphism of C{x, t}, there
must exist open neighborhoods W,W ′ ⊆ U of 0 and V, V ′ ⊆ C of 0, such that ψ : W ×
v → W ′ × V ′ is a biholomorphic map satisfying ψ(0, 0) = (0, 0). To prove the second
part of theorem we define for any t0 ∈ V the maps ψt0 := (ψ1(x, t0), . . . , ψn(x, t0)) :
W → W ′. Due to the Inverse Function Theorem the ψt0 are isomorphisms. De-
fine pt0 := ψt0(0). By construction the family (pt)t∈V depends continuously on t and
ψ(0, 0) = (0, 0) implies lim

t→0
pt = 0. Furthermore, setting t := t0 in Equation (1.8) im-

plies
(V (f),0) ∼= (V (Ft0), pt0)

for all t0 ∈ V. This proves the second statement.
To prove the third part of the theorem we carefully analyze the proof of the first part.
The assumptions f ∈ mJf and g ∈ mJg imply (If )0 = Jf and (Ig)0 = Jg. By assump-
tion we know that If = Ig = ∂x1fOU + . . . + ∂xnfOU . Applying Lemma 1.97 to the
ideals I and Jf ·C{x, t}we obtain I = Jf ·C{x, t}.We get ∂tF = g−f ∈ 〈x1, . . . , xn〉Jf ·
C{x, t} = 〈x1, . . . , xn〉I. In this case Theorem 1.69 yields ϕ(0, t0) = (0, t0). Then also
ψ(0, t0) = (0, t0) and by construction pt0 = 0.

Before we state the general Mather–Yau theorem, let us define the notion of (strongly)
Euler-homogeneous singularities:

Definition 1.100. Let X ⊆ Cn be a hypersurface singularity. Denote by fp ∈ C{x− p} the
local equation of X in p ∈ X. We call X Euler-homogeneous at p ∈ X if, and only if, there
exists a derivation χp ∈ Der(OX,p), such that χp(fp) = fp, where fp ∈ C{x− p} is the local
equation of X at p ∈ X. A derivation χp is called Euler-derivation of f at p. We call X
strongly Euler-homogeneous at p ∈ X if, and only if, there exists an Euler derivation χp
satisfying χp(p) = 0. We call X (strongly) Euler-homogeneous, if X is (strongly) Euler-
homogeneous at all p ∈ X. Let f ∈ C{x − p} be holomorphic on U ⊆ Cn. We say f is
(strongly) Euler-homogeneous, if X = V (f) ⊆ U is (strongly) Euler-homogeneous at p.
We call a complex space germ (X, p) (strongly) Euler homogeneous (at p), if there exists a
representant which is (strongly) Euler-homogeneous (at p).

Now we are able to state and prove the general Mather–Yau theorem by Gaffney and
Hauser in the hypersurface case. We combine the original proof of the main theorem
in [GH85] with the proof of the Mather–Yau theorem in [JP00]. As a byproduct we also
obtain a proof for singularities satisfying f ∈ Jf generalizing the result from [Sho76].

Theorem 1.101. Let f, g ∈ C{x} define singularities (X,0) respectively (Y,0). Assume
either

(a) (X,0) and (Y,0) are harmonic singularities, or

(b) (X,0) and (Y,0) are strongly Euler-homogeneous at 0.

Then the following are equivalent:

1. f ∼ g.

2. (X,0) ∼= (Y,0).

3. Tf
∼= Tg as C-algebras.
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4. (Sing(X),0) ∼= (Sing(Y ),0).

Proof. The equivalence of 1. and 2. and of 3. and 4. follow immediately from Proposi-
tion 1.39. In case f ∼ g the chain rule of differentiation implies Tf

∼= Tg as C-algebras.
So only the implication 3. to 1. has to be proven. We start with the proof in case (a).
Applying Lemma 1.71 we can reduce our setup to the case that f and g define singu-
larities of isolated singularity type.
We fix an open neighborhood U ⊆ Cn of 0 ∈ Cn, such that f, g are holomorphic
functions on U. If Tf

∼= Tg as C-algebras, then by Lemma 1.11 there exists an auto-
morphism ϕ ∈ Aut(C{x}) satisfying

ϕ(〈f, Jf 〉) = 〈ϕ(f), Jϕ(f)〉 = 〈g, Jg〉. (1.9)

Since f ∼ ϕ(f), we can replace by abuse of notation f with ϕ(f). Define the ideal
sheaves If := fOU + ∂x1fOU + . . . + ∂xnfOU and Ig := gOU + ∂x1gOU + . . . +
∂xngOU . Equation (1.9) is equivalent to saying that (If )0 = (Ig)0 . By coherence of
ideal sheaves there exists an open neighborhood U ′ ⊆ Cn of 0 ∈ Cn, such that If |U ′ =
Ig|U ′ . After possibly shrinking U we can assume without loss of generality U = U ′

and hence If = Ig. In the same way as in Lemma 1.99 we define F := f + t · (g− f) ∈
C{x, t} and Ft0 := F (x, t0) ∈ C{x} for t0 ∈ C. Since Ft0 is a holomorphic function
on U for every t0 ∈ C, we define for any t0 ∈ C the ideal sheaf IFt0 := Ft0OU +
∂x1Ft0OU + . . . + ∂xnFt0OU . Using this notation we have Sing(V (f)) = V (If ) and
Sing(V (Ft0)) = V (IFt0 ). Lemma 1.98 yields the existence of a path γ : [0, 1] → C such
that (Sing(V (f)),0) ∼= (Sing(V (Ft0)),0) for t0 ∈ γ([0, 1]). Furthermore, we know that
there exist open neighborhoods W ⊆ U of 0 and V ⊆ C of 0, such that

W ∩ Sing(V (f)) = W ∩ Sing(V (Ft0)) (1.10)

for any t0 ∈ V. Since (V (f),0) is of isolated singularity type, we can pick a represen-
tative U ′ of (Sing(V (f)),0), such that (U ′,0) 6∼= (U ′, x) for all x ∈ U ′\{0}. Due to the
fact that W ∩ U ′ is an open neighborhood of 0, we assume without loss of generality
that W = U ′. Lemma 1.99 implies the existence of a family of points (pt0)t0∈V ⊆ Cn.
(V (f),0) ∼= (V (Ft0), pt0). Then it holds that (Sing(V (f),0)) ∼= (Sing(V (Ft0)), pt0). Due
to lim

t0→0
pt0 = 0 we obtain pt0 ∈W for all t0 in an open neighborhood V ′ of 0. Again we

can assume without loss of generality that V = V ′. Using Equation (1.10), we obtain

(Sing(V (Ft0)), pt0) ∼= (Sing(V (f),0)) ∼= (Sing(V (Ft0)),0) (1.11)

for any t0 ∈ V. Combining the Equations (1.10) and (1.11) with the fact that f defines
a singularity of isolated singularity type yields pt0 = 0 for any t0 ∈ V. This results in

(V (f),0) = (V (Ft0),0).

So far we have shown that the isomorphism of the singular loci implies the existence
of a contact equivalent hypersurface for small values of t0. Iterating this process we
construct a sequence of open sets (Vk)k∈N with V0 = V and a sequence (tk)k∈N with
tk ∈ γ([0, 1]) ∩ Vk of points converging to 1, such that (V (Ftk),0) ∼= (V (Ftk+1

),0). The
final step of the proof is to show that this process stops after finitely many steps. Since
the Vk cover the compact set γ([0, 1]), we can pick a finite number of them, such that
they still cover the whole path as sketched in Figure 1.12.
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Figure 1.12: Sketch of the open covering of γ([0, 1]).

Then we have a finite subsequence (tkj )0≤j≤r, satisfying

(V (f),0) ∼= (V (Ftk0 ),0) ∼= . . . ∼= (V (Ftkr ),0) ∼= (V (g),0).

This finishes the proof in case (a).
To prove case (b) we have to assume f ∈ mJf and g ∈ mJg. In this case Lemma 1.99
yields pt = 0, so that we can proceed from this point on as in case (a).

Remark 1.102. The proof of Theorem 1.101 shows that, if we do not assume f ∈ mJf , the
property of being of isolated singularity type arises as a natural condition in order to show that
the isomorphy class of the singular locus determines the isomorphy class of the hypersurface
singularity. We show in Example 1.103 that this condition is necessary. The proof we presented
does not work if the defining ideal of the singularity has multiple generators, since the Local
analytic triviality theorem cannot be extended in such a way, that we can work with the usual
singular locus. Therefore Gaffney and Hauser defined a different singular locus in order to
keep the analogy with the hypersurface case.

Next we give an example of a family of hypersurface singularities, such that the sin-
gular loci are all isomorphic, but the singularities themselves are not. The example is
a specialized version of [GH85, 4. Example].

Example 1.103. Consider the polynomial f = x3
1x2+x5

2x3+x5
3x1+x1x2x3 ∈ C{x1, x2, x3}.

A SINGULAR computation (see [Dec+19]) shows f /∈ Jf . Define F := f(x) + (1 + z + t) ·
f(y) ∈ C{x,y, z, t}. Furthermore, we set Ft0 = F (x,y, z, t0) ∈ C{x,y, z}, X := V (F ) ⊆
C8 and Xt0 := V (Ft0) ⊆ C7 for fixed t0 ∈ C. By definition we have (X0,0) = (V (f),0). We
want to show that there exists an open neighborhood V ⊆ C of 0 ∈ C, such that:

(1) We have (Sing(V (F ),0) ∼= (Sing(V (F0))× V,0),

(2) but (X,0) 6∼= (X0 × V,0).

We start with the first claim. Computing the partial derivatives of F yields

∂xiF = ∂xif, ∂yjF = (1 + z + t) · ∂yjf and ∂zF = ∂tF = f(y)

for 1 ≤ i, j ≤ 3. Using that (1 + z + t) is a unit in C{x,y, z, t} we obtain

〈F, ∂xiF, ∂yjF, ∂zF, ∂tF |1 ≤ i, j ≤ 3〉 = 〈f(x), f(y), ∂xif, ∂yjf |1 ≤ i, j ≤ 3〉.

Thus the defining equations of the singular locus (Sing(V (F ),0)) do not depend on t and
we have shown the first claim. Next we prove the second claim. Assume the converse. Then
Theorem 1.69 yields

∂tF = f(y) ∈ 〈x,y, z〉〈∂xiF, ∂yjF |1 ≤ i, j ≤ 3〉+ 〈F 〉. (1.12)
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If we plug x = 0 and z = 0 into Equation (1.12), then there exist g1, . . . , g3, g ∈ C{y} such
that

f(y) =
3∑
i=1

gi∂yif(y) + g · (1 + t) · f(y). (1.13)

The partial derivatives of f(x) vanish, since f ∈ m2. If ord(g) ≥ 1, we can solve for f(y) in

Equation (1.13) and obtain either f(y) = (1− g · (1 + t))−1 ·
3∑
i=1

gi∂yif(y), hence f ∈ Jf ,

or, if ord(g) = 1, we obtain

f(y) ∈ 〈x,y, z〉〈∂xiF, ∂yjF |1 ≤ i, j ≤ 3〉+ (1 + 〈x,y, z〉) · 〈F 〉. (1.14)

In the second case we plug y = 0 and z = 0 into Equation (1.14) and a similar argument
as for f(y) yields f(x) ∈ 〈∂x1f(x), . . . , ∂xnf(x)〉, hence f ∈ Jf . Since both cases yield the
contradiction f ∈ Jf , the second claim is proven.

We conclude this chapter by pointing out that Theorem 1.101 combined with a re-
sult by Hauser and Müller classify weighted-homogeneous hypersurface singulari-
ties, which are determined by their singular locus. The result by Hauser and Müller is
the following.

Theorem 1.104. Let f ∈ C{x} be a weighted-homogeneous hypersurface singularity with
respect to the weight vector w = (w1, . . . , wn) ∈ Cn and with weighted degree d := degw(f).
Assume that d− wi 6= 0 for 1 ≤ i ≤ n, or, equivalently, that degw(∂xif) 6= 0 for 1 ≤ i ≤ n.
Then (X,0) := (V (f),0) is a harmonic hypersurface singularity.

Proof. See [HM86, Theorem 4].

Theorem 1.104 states that any generic weighted-homogeneous hypersurface singu-
larity is determined by its singular locus. With Theorem 1.101 we obtain that any
weighted-homogeneous singularity f with weighted degree degw(f) 6= 0 is deter-
mined by its singular locus, since these singularities satisfy f ∈ mJf .

Corollary 1.105. Let f, g ∈ C{x} define weighted-homogeneous hypersurface singularities
with weight-vector 0 6= w = (w1, . . . , wn) ∈ Zn and with weighted degree d := degw(f) =
degw(g). Denote the singularities defined by f and g by (X,0), respectively (Y,0).
Assume that either

(i) d 6= 0, or

(ii) d− wi 6= 0 for 1 ≤ i ≤ n.

Then the following are equivalent:

(1) (X,0) ∼= (Y,0).

(2) Tf
∼= Tg as C-algebras.

First we state an example of a singularity, which is weighted-homogeneous, but not
covered by Theorem 1.104, but by Corollary 1.105.
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Example 1.106. Consider the polynomial f = x2x3x5 + x6
1x

6
5 + x6

4x
6
5 + x12

5 + x2x
13
4 ∈

C{x1, x2, x3, x4, x5}. It is easy to see that f is weighted-homogeneous with respect to the
vector w = (1,−1, 12, 1, 1) with weighted degree d = 12 and that degw (∂x3f) = d−12 = 0.
Using Theorem 1.70 one can show that (V (f),0) is a harmonic singularity.

The next example shows that in case degw(f) = 0 and at least one of the weights
being 0, the isomorphy class of a singularity is not determined the isomorphy class of
its singular locus.

Example 1.107. Consider the polynomial g = x3
1x2 +x5

2x3 +x5
3x1 +x1x2x3 ∈ C{x1, x2, x3}

as in Example 1.103. We already know that g /∈ mJg. Then the polynomial f = g + x4x5 ∈
C{x1, . . . , x5} is weighted-homogeneous with respect to weight vector w = (0, 0, 0, 1,−1) ∈
Z5 and has weighted degree degw(f) = 0. It also holds that f /∈ mJf . Next we define the
polynomial F = f(x) + (1 + z + t) · f(y) ∈ C{x,y, z, t} as in Example 1.103. Then F is
weighted homogeneous with respect to the weight vector v = (w,w, 0, 0) ∈ Z12 and satisfies
degv(F ) = 0. Define Ft0 = F (x,y, z, t0), X := V (F ) ⊆ C12 and Xt0 = (V (Ft0)) ⊆ C11.
As seen in Example 1.103 we conclude thatF /∈ JF and that (Sing(V (F ),0) ∼= (Sing(V (F0))×
V,0), but (X,0) 6∼= (X0 × V,0), where V is an open neighborhood of 0 ∈ C.

Remark 1.108. The full relationship between harmonic singularities and strongly Euler-
homogeneous singularities is unclear to us. By considering a non-quasi homogeneous isolated
hypersurface singularity it easy to see that not every harmonic singularity is strongly Euler-
homogeneous in 0. We do not know if every singularity, which is strongly Euler-homogeneous
in 0, is harmonic.



Chapter 2

Gradings of Analytic Algebras and
Modules

In the upcoming chapter we are introducing the theory of grading of Zariski rings
and modules over Zariski rings by abelian groups as introduced by Scheja and Wiebe
(see [SW73]). Due to the fact that every analytic algebra is a Zariski ring we obtain a
grading theory for analytic algebras and analytic modules. The main purpose of this
thesis is to understand singularities that admit multigradings, that is they are (Cm,+)-
graded. To understand this grading we first need to understand the interplay between
(C,+)-gradings, diagonalizable logarithmic derivations and algebraic tori.

(Cm,+) multi grad-
ings of C{x}/I

Algebraic Tori
T ⊆ AutI(C{x})

Toral Lie algebras
t ⊆ DerI(C{x})

Figure 2.1: Visualization of the aim of this chapter.

We are going to make use of results regarding derivations presented in Section 1.4.1.
Parts of the upcoming chapter, in particular Section 2.1 and Section 2.2 have already
been presented in the author’s master thesis (see [Epu15]). For this thesis to be self
contained we restate them.

41
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2.1 Gradings of Rings and Modules

In the following section we state the classical definition of group gradings of rings
and modules. Building up on these we present the definition of grading for analytic
algebras and analytic modules due to Scheja and Wiebe. For the classical definition of
grading in the context of rings or modules, we refer the reader to [GP08, Chapter 2.2].
We start with the basic definition of finitely graded rings and modules:

Definition 2.1. Let (G,+) be an abelian group,R a ring andM anR-module. R is a finitely
graded ring, if we have a system of group homomorphisms πRg : R → R for g ∈ G with the
property πRg (R)πRh (R) ⊆ πRg+h(R) for all g, h ∈ G, such that R can be written as a direct
sum of the subgroups πRg (R), that isR =

⊕
g∈G π

R
g (R). Furthermore,M is a finitely graded

module , ifR is graded with respect to a system of group homomorphisms πRg , g ∈ G as before,
which is compatible with group homomorphisms πMg : M → M, that is πRg (R)πMh (M) ⊆
πMg+h(M) for all g, h ∈ G, such that M can be written as a direct sum of the subgroups
πMg (M), that is M =

⊕
g∈G π

M
g (M).

Remark 2.2. Definition 2.1 basically extends the well known idea of grading rings in the mul-
tivariate polynomial case. Consider for example the polynomial ring R := Q[x1, . . . , xn]. Us-
ing multi-indices α = (α1, . . . , αn) ∈ Nn, we can write any f ∈ R as
f =

∑|α|=m
|α|=0 cαx

α1
1 · · ·xαnn , where m is the total degree of f . To keep notation short, we

write f =
∑

α fα, where fα denotes the homogeneous degree |α| part of f . For more de-
tails on the grading of multivariate polynomial rings see [GP08]. Now R can be written as
R =

⊕
|α|≥0 Qx

α1
1 · · ·xαnn . If we consider the group (G,+) := (Z,+) and the group homo-

morphisms
πg : R→ R

f 7→
{

0, if g < 0
fα, with |α| = g

We directly get the desired properties of (πg)g∈G as in Definition 2.1.

The next interesting aspect is the general, not necessarily finite, grading of rings and
modules. We start with the definition of Zariski rings (see for example [AM69, Chapter
10, Exercise 6]), as this is the setup in which we are able to define general gradings.

Definition 2.3. Let R be a ring. We say R is a Zariski ring, if R is a commutative unitary
Noetherian topological ring whose topology is defined by an ideal m contained in the Jacobson
ideal of R.

Now we can define gradings for Zariski rings.

Definition 2.4. Let (G,+) be an abelian group, R a Zariski ring and M a finitely generated
R-module. R is a graded ring if we have a system of group homomorphisms πRg : R → R for
g ∈ G, which induce group homomorphisms πRg : R/mn → R/mn that define a finite grading
on R/mn for all n ∈ N. M is a graded module, if R is graded with respect to a system of
group homomorphisms πRg , g ∈ G as before, which is compatible with group homomorphisms
πMg : M →M which induce group homomorphism πMg : M/mnM →M/mnM that define a
finite grading on M/mnM as an R/mn-module for all n ∈ N.

Remark 2.5. The grading in the sense of Definition 2.4 is basically a grading of m-adic com-
pletions, as we reduce the grading of a ring R to gradings on all R/mk. The same holds also
for modules. We extend this idea to the grading of projective limits in Section 2.2.
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Example 2.6. Let us consider the ringR := Q[[x1, . . . , xn]],m := 〈x1, . . . , xn〉 and (G,+) :=
(Z,+). Define πg as in Remark 2.2, just extended to power series. We get that the πg induce
a finite grading on R/mk for all k ∈ N, as R/mk = Q[x1, . . . , xn]/〈x1, . . . , xn〉k.Thus R is
graded in the sense of Definition 2.4.

The following statements generalize basic results of graded modules, as stated for
example in [GP08].

Theorem 2.7. Let R be a graded Zariski ring and M be a graded R-module with system of
group homomorphisms (πMg )g∈G. Every m ∈ M can be written as m =

∑
g∈G π

M
g (m). If

m =
∑

g∈Gmg with mg ∈ πMg (M), then we already have mg = πMg (m) for all g ∈ G. mg is
called the g-th homogeneous component of m.

Proof. See [SW73, (1.1)].

Proposition 2.8. Let R be a graded Zariski ring and M a graded R-module with systems of
group homomorphisms (πRg )g∈G respectively (πMg )g∈G. Then for all g, h ∈ G it holds that:
π2
g = πg, πg ◦ πh = 0, if g 6= h, and πRg (R)πMh (M) ⊆ πMg+h(M).

Proof. See [SW73, (1.2)].

The next natural step is to consider submodules of graded modules.

Definition 2.9. Let R be a graded Zariski ring, M be a graded R-module and N a subgroup
of M . N is called homogeneous submodule of M, if πMg (N) ⊆ N for all g ∈ G.

The following three theorems characterize homogeneous submodules, resulting quo-
tient modules and their grading.

Theorem 2.10. Let R be a graded Zariski ring, M be a graded R-module and N a submodule
of M . N is homogeneous if and only if N can be generated by homogeneous elements.

Proof. See [SW73, (1.3)].

Theorem 2.11. Let R be a graded Zariski ring and M be a graded R-module with system
of group homomorphisms (πMg )g∈G and N a homogeneous submodule of M . Then the group
homomorphisms πMg |N : N → N , g ∈ G, induce a grading of N as an R-module.

Proof. See [SW73, (1.4)].

Theorem 2.12. Let R be a graded Zariski ring and M be a graded R-module with system
of group homomorphisms (πMg )g∈G and N a homogeneous submodule of M . Then the group
homomorphisms πMg : M/N →M/N , g ∈ G, induce a grading of M/N as an R-module.

Proof. See [SW73, (1.5)].

The next natural setup we can consider is the product of abelian groups, which yields
so-called multigradings.
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Definition 2.13. Let R be a Zariski ring and M an R-module. We say R is a multigraded
ring if there exists an m ∈ N≥1 and abelian groups G1, . . . , Gm, such that R is graded with
respect to G := G1 × . . . × Gm in the sense of Definition 2.1. We say M is a multigraded
module if there exists an m ∈ N≥1 and abelian groups G1, . . . , Gm, such that R and M are
graded with respect to G := G1 × . . .×Gm in the sense of Definition 2.1.

Our next results characterize the property of a Zariski ring R being multigraded.

Proposition 2.14. Let (G1,+), . . . , (Gm,+) be abelian groups, R a Zariski ring and m ∈
N≥1. Furthermore, we denote for any k ∈ n the natural projection R� R/mk

R by πk. Then R
is graded by (G1× . . .×Gm,+) with group homomorphism Ψ(g1,...,gm), (g1, . . . , gm) ∈ G1×
. . .×Gm, if and only if there exist pairwise commuting group homomorphisms πg1 , . . . , πgm ,
gi ∈ Gi, grading R, satisfying

R/mk
R =

⊕
g1∈G1

. . .
⊕

gm∈Gm

πRg1(R/mk
R) ∩ . . . ∩ πRgm(R/mk

R)

for all k ∈ N. In particular, Ψ(g1,...,gm) = πgm ◦ . . .◦πg1 for all (g1, . . . , gm) ∈ G1× . . .×Gm.

Proof. See [Epu15, Corollary 4.27].

The next proposition is the analogous result for multigraded modules.

Proposition 2.15. Let (G1,+), . . . , (Gm,+) be abelian groups,m ∈ N≥1, R a graded Zariski
ring andM anR-module. ThenM is graded by (G1×. . .×Gm,+) with group homomorphism
ΨM

(g1,...,gm), (g1, . . . , gm) ∈ G1 × . . . × Gm, if and only if there exist pairwise commuting
group homomorphisms πMg1 , . . . , π

M
gm , gi ∈ Gi gradingM and ψRg1 , . . . , ψ

R
gm the corresponding

gradings of R satisfying

R/mk
R =

⊕
g1∈G1

. . .
⊕

gm∈Gm

ψRg1(R/mk
R) ∩ . . . ∩ ψRgm(R/mk

R)

and
M/mkM =

⊕
g1∈G1

. . .
⊕

gm∈Gm

πMg1 (M/mkM) ∩ . . . ∩ πMgm(M/mkM)

for all k ∈ N. In particular, ΨM
(g1,...,gm) = πMgm ◦ . . . ◦ π

M
g1 and ΨR

(g1,...,gm) = ψRgm ◦ . . . ◦ψ
R
g1 for

all (g1, . . . , gm) ∈ G1 × . . .×Gm, where the latter is the corresponding grading of R.

2.2 (Cm,+) Gradings of Analytic Algebras and Derivations

In this section we present the connection of (Cm,+) gradings of analytic algebras and
derivations. We start with the classical results by Scheja and Wiebe connecting deriva-
tions to (C,+) gradings of analytic algebras and then state the analogous resutls for
(Cm,+) gradings. Before we start with the result we need to define the notion of lifted,
respectively projected, derivations.

Definition 2.16. LetA andB be analytic algebras and assume there exists a surjective map π :
A� B. Let δ ∈ Der(A) and δ̃ ∈ Der(B).We call δ a lifting of δ̃, respectively δ̃ a projection
of δ, if there exists x1, . . . , xn ∈ A with mA = 〈x1, . . . , xn〉 and mB = 〈π(x1), . . . , π(xn)〉,
such that δ̃ ◦ π(xi) = π ◦ δ(xi) for i = 1, . . . , n.
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Definition 2.17. Let A = C{x} or A = C[[x]] and let δ =
n∑
i=1

ai∂xi ∈ Der′(A). Denote by

aij ∈ C, 1 ≤ i, j ≤ n the uniquely determined complex numbers such that

ai −
n∑
j=1

aijxj ∈ m2
A for 1 ≤ i ≤ n.

We call the matrix A = (aij) ∈ Cn×n the representation matrix of δ and the derivation

δ0 :=
n∑
i=1

n∑
j=1

aijxj∂xi the linear part of δ.

In case we have two derivations which equal their linear part, we can compute their
Lie bracket by computing the Lie bracket of their respective representation matrices.

Lemma 2.18. Let A be an analytic algebra and δ, ε ∈ Der′(A). Assume mA has a minimal
set of generators x1, . . . , xn for some n ∈ N, δ =

∑n
i=1 λixi∂xi and ε = ε0. Then [δ, ε] =

x[Mδ,Mε]∂
T , where Mδ,Mε ∈ Cn×n are the representation matrices of the linear parts of δ

respectively ε.

Proof. See [GS06, Lemma 2.2].

The first two theorems are very important, as they state that every grading of an ana-
lytic algebra arises from a derivation and vice versa.

Theorem 2.19. Let A be an analytic algebra and δ ∈ Der′(A), such that mA has a system of
generators containing only eigenvectors of δ. Then there exits a unique (C,+) grading πg of
A, g ∈ C, such that each πAg (A) contains only g-eigenvectors of δ.

Proof. See [SW73, (2.2)].

Theorem 2.20. LetA be an analytic algebra and let πAg , g ∈ C, be a (C,+) grading ofA. Then
there exists a unique diagonalizable derivation δ ∈ Der′(A), such that each πg(A) contains
only g-eigenvectors of δ.

Proof. See [SW73, (2.3)].

Remark 2.21. By Theorem 2.19 and 2.20 the diagonalizable derivations are in one-to-one
correspondence with the (C,+) gradings of analytic algebras.

The next theorems are crucial in an application of the Formal Structure Theorem,
which we are going to state in Section 2.4.2.

Theorem 2.22. Let A be a (C,+) graded analytic algebra. Furthermore, let I be an ideal of
A and δ ∈ Der′(A) be the derivation corresponding to the grading. Then I is homogeneous, if
and only if I is δ-invariant.

Proof. See [SW73, (2.4)].

Theorem 2.23. Let A be an analytic algebra, I be an ideal of A and δ ∈ Der′(A). If I is
δ-invariant, then every associated prime ideal P of I is δ-invariant.

Proof. See [SW73, (2.5)].
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The next theorem in this section is a surprising result, which states that we can write
every diagonalizable derivation as a finite sum of diagonalizable derivations with ra-
tional eigenvalues.

Theorem 2.24. Let A be an analytic algebra and let δ ∈ Der′(A) be diagonalizable. Then
there exist diagonalizable δj ∈ Der′(A)\{0} and aj ∈ C, j = 1, . . . ,m for some m ∈ N, such
that δ =

∑m
j=1 ajδj , every δj has the same eigenvectors as δ and the δj have only rational

eigenvalues.

Proof. See [SW73, (3.2)].

The last lemma in this section characterizes diagonalizable and nilpotent derivations
by their linear part.

Lemma 2.25. Let A be an analytic algebra and δ ∈ Der′(A). Then δ is diagonalizable if
and only if there exists a set of coordinates such that δ = δ0 and the representation matrix is
diagonalizable. δ is nilpotent if and only if δ0 is nilpotent.

Proof. We prove the theorem for analytic algebras of type A = C{x}/I for some ideal
I ⊆ C{x}. The complete case works analogously. We start with the statement regard-
ing diagonalizability. First assume δ is diagonalizable. Then Theorem 2.22 implies
that there exists a lift δ̃ of δ in Der′(C{x}) satisfying δ̃(I) ⊆ I. Then there exists a set
of coordinates, say x1, . . . , xn, for some n ∈ N, such that mC{x} = 〈x1, . . . , xn〉with the
property that there exist λi ∈ C, such that δ̃(xi) = λixi. By Theorem 1.43 we get that
δ̃ =

∑n
i=1 λixi∂xi , hence δ̃ = δ̃0 and the representation matrix is obviously diagonaliz-

able. Passing toAwe obtain the same result for δ.Now if δ = δ0 and the representation
matrix is diagonalizable, then there exists a linear coordinate change, such that δ is of
type

∑n
i=1 λixi∂xi for a set of coordinates x1, . . . , xn, some λi ∈ C and some n ∈ N.

Then δ is obviously diagonalizable. The statement for nilpotency follows immediately
from Lemma 1.51.

In the last part of we want to exhibit the connection between multigradings and pair-
wise commuting diagonalizable derivations. The following theorems are the multi-
graded analogues to Theorem 2.19 and Theorem 2.20.

Theorem 2.26. Let A be an analytic algebra and δ1, . . . , δm ∈ Der′(A) pairwise commut-
ing diagonalizable derivations. Then there exists a grading of A with group homomorphisms
πAg , g ∈ Cm, such that each πAg (A) contains only common eigenvectors of δ1, . . . , δm.

Proof. [Epu15, Theorem 4.35]

Theorem 2.27. Let A be a (Cm,+) multigraded analytic algebra, where the grading is in-
duced by group homomorphisms πAg , g ∈ Cm. Then there exist pairwise commuting diag-
onalizable derivations δ1, . . . , δm ∈ Der′(A), such that each πAg (A) contains only common
eigenvectors of δ1, . . . , δm.

Proof. It suffices to consider the case m = 2. Proposition 2.14 translates to the fact that
A/mk

A decomposes as a direct sum of common eigenvectors of the induced deriva-
tions. In particular, it holds that δ1 ◦ δ2(x) = δ2 ◦ δ1(x) mod mk

A for all k ∈ N. This
implies that δ1 ◦ δ2 = δ2 ◦ δ1.
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Using these results we can define the following notions of graded objects using deriva-
tions.

Definition 2.28. Let A be an analytic algebra and δ ∈ Der′(A) diagonalizable. We call an
element f ∈ A δ-homogeneous of degree λ or quasi-homogeneous, if δ(f) = λ · f for
some λ ∈ C. If we have a set of diagonal and commuting derivations, say δ1, . . . , δm, for
some s ∈ N, we call f Λ-multihomogeneous, if for all 1 ≤ j ≤ m there exist λj ∈ C with
δj(f) = λj ·f,where Λ := (λ1, . . . , λm).We sayA is δ-graded or just graded, if δ ∈ Der′(A)
and δ is diagonalizable. We say A ∼= C{x}/I is multigraded with respect to δ1, . . . , δm if
δj ∈ Der′(A) are diagonalizable for j = 1, . . . , s and commute pairwise. We call a complex
space germ (X,0) graded, respectively multigraded, if the corresponding analytic algebra
OX,0 is isomorphic to a graded, respectively multigraded analytic algebra.

We finish this section by applying the theory of gradings through derivations to in-
vestigate the compatibility of gradings with suspensions.

We start with the following lemma.

Lemma 2.29. Let A := C{x,y} and A′ := C{x} and let I ⊆ A and I ′ ⊆ A′ be ideals.
Assume there exists an isomorphism ϕ ∈ Aut(A) with ϕ(I) = AI ′. Then the map Φ :
Der′I → Der′AI′(A), δ 7→ ϕ ◦ δ ◦ ϕ−1 is a bijection. In particular, Φ maps diagonalizable
derivations to diagonalizable derivations.

Proof. Consider the map Ψ : Der′AI′(A) → Der′I , δ 7→ ϕ−1 ◦ δ ◦ ϕ. In case Φ and Ψ are
well-defined, they are obviously inverse maps for each other. Thus we just have to
check well-definedness. It suffices to show the well-definedness in case of Φ, since Ψ
works analogously. The map δ̃ = ϕ◦δ ◦ϕ−1 is a derivation, as one can easily compute.
It only remains to show that δ(I) ⊆ I implies δ̃(AI ′) ⊆ AI ′. To show this, let f ∈ AI ′
be arbitrary. Then ϕ−1(f) ∈ I, hence δ ◦ ϕ−1(f) ∈ I and thus δ̃(f) = ϕ ◦ δ ◦ ϕ−1(f) ∈
AI ′.

Lemma 2.29 allows us to relate derivations in DerAI′(A) and DerI′(A
′). We capture

this in the following definition.

Definition 2.30. LetA := C{x,y} andA′ := C{x} and let I ⊆ A and I ′ ⊆ A′ be ideals. Let
δ ∈ Der′I(A) and δ̃ =

∑n
i=1 ai(x,y)∂xi +

∑m
j=1 bj(x,y)∂yj ∈ DerAI′(A) be the image under

the map Φ from Lemma 2.29. We call the derivation δ̄ =
∑n

i=1 ai(x,0)∂xi ∈ DerI′(A
′) the

projection of δ̃. Given a derivation δ =
∑n

i=1 ai(x)∂xi ∈ DerI′(A
′), we call the derivation

δ̃ =
∑n

i=1 ai(x)∂xi ∈ DerAI′(A) the suspension of δ.

Proposition 2.31. Let (X,0) ⊆ (Cn+m,0) be a complex space germ. Assume that (X,0) ∼=
(X ′,0) × (Cm,0). If (X ′,0) is graded by δ̃ ∈ Der′(OX′,0), then there exists a suspension
δ ∈ Der′(OX,0) of δ̃, such that (X,0) is graded by δ.

Proof. Define A := C{x,y} and A′ := C{x}. Assume OX,0 ∼= A/I, where I :=
〈f1, . . . , fk〉 ⊆ A and OX′,0 ∼= A′/I ′, where I ′ := 〈g1, . . . , gl〉 ⊆ A′. We consider the
lifted situation. Due to the fact that A/I ∼= A′/I ′⊗̂C{y}, we know by Lemma 1.11 that
there exists an isomorphism ϕ : A→ A satisfying ϕ(I ′A) = I.
Since (X ′,0) is graded by δ̃ ∈ Der′(OX′,0) there exists a diagonalizable δ̃′ ∈ Der′I′(A

′).
Denote by x′1, . . . , x

′
n a minimal generating system of mA′ satisfying δ̃′(x′i) = λix

′
i for

certain λi ∈ C. Define δ̃′′ =
n∑
i=1

λix
′
i∂x′i ∈ Der′(A). By Lemma 2.29 there exists a diago-

nalizable derivation δ ∈ Der′(A) with δ(I) ⊆ I, hence (X,0) is graded.
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The proof of Proposition 2.31 also works in the multigraded case, if we assume that the
pairwise commuting diagonalizable derivations can be simultaneously diagonalized.

Proposition 2.32. Let (X,0) ⊆ (Cn+m,0) be a complex space germ. Assume that (X,0) ∼=
(X ′,0)×(Cm,0). If (X ′,0) is multigraded by the diagonal derivations δ̃1, . . . , δ̃m ∈ Der′(OX′,0),
then there exists liftings δ1, . . . , δm ∈ Der′(OX,0) of the δ̃i, such that (X,0) is multigraded.

Proof. The proof for the multigraded case works in the same as the proof of Proposi-
tion 2.31 by using a multihomogeneous generating systems.

The converse of the previous propositions does not hold in general.

Example 2.33. Let f ∈ C{x, y} be any power series, which is not homogeneous and not a
unit. In this case (V (f),0) is not graded. In case we consider f extended to C{x, y, z}, then
f is homogeneous with respect to the derivation δ = z∂z, which implies that (V (f)× C,0) is
graded. This shows that Proposition 2.31 cannot hold in general.

Definition 2.34. Let A := C{x,y} and A′ := C{x} and let I ⊆ A and I ′ ⊆ A′ be ideals.
Let δ ∈ Der′I(A). We call δ suspension compatible, if δ̄ is not the zero derivation.

Using suspension compatible derivations we can state converse statements to Propo-
sition 2.31 and 2.32.

Proposition 2.35. Let (X,0) ⊆ (Cn+m,0) be a complex space germ. Assume that (X,0) ∼=
(X ′,0) × (Cm,0). If (X,0) is graded by a suspension compatible δ ∈ Der′(OX,0), then
(X ′,0) is graded by the projection δ̄ ∈ Der′(OX,0).

Proof. Define A := C{x,y} and A′ := C{x}. Assume OX,0 ∼= A/I, where I :=
〈f1, . . . , fk〉 ⊆ C{x,y} and OX′,0 ∼= A′/I ′, where I ′ := 〈g1, . . . , gl〉 ⊆ C{x}. We con-
sider the lifted situation. Due to our assumption, (X,0) is graded with grading in-
duced by δ ∈ Der′(A) with δ(I) ⊆ I. By Lemma 2.29, there exists a diagonalizable
derivation δ̃ ∈ DerAI′(A). The fact that δ̄ is not the zero derivation implies that ¯̃

δ is not
the zero-derivation, hence (X ′,0) is graded.

Proposition 2.36. Let (X,0) ⊆ (Cn+m,0) be a complex space germ. Assume that (X,0) ∼=
(X ′,0) × (Cm,0). If (X,0) is multigraded by the suspension compatible diagonal deriva-
tions δ1, . . . , δm ∈ Der′(OX,0), then (X ′,0) is multigraded by the respective projections
δ̄1, . . . , δ̄m.

Proof. The proof for the multigraded case works in the same way as the proof of Propo-
sition 2.35 by using a multihomogeneous generating systems.

2.3 Linear Algebraic Subgroups of Aut(A)

In the following section we present the connection between algebraic tori and the au-
tomorphism group of an analytic algebra A = C{x} or A = C[[x]], as well as the
connection to derivations. Therefore we are going to use the theory of linear alge-
braic groups and Lie algebras. A good reference for the theory of linear algebraic
groups is [Hum75] or for a more modern approach [Mil17]. In the theory of linear
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algebraic groups, it is a well known result that we can associate to each linear alge-
braic group a Lie algebra (see for example [Hum75]). In the following section we state
results about the subgroups AutI(A) := {ϕ ∈ Aut(A) | ϕ(I) = I} of Aut(A), where
I is an ideal of A. We show that we can associate, in a formal sense, the Lie algebra
Der′I(A) := Der′(A)∩DerI(A) to these algebraic groups. We also show that the canon-
ical projection to A � A/m2

A induces a bijection of reductive linear algebraic groups.
We use this bijection to prove the that the dimension of maximal algebraic tori is an
invariant of an analytic algebra A/I and that it is connected to the maximal possible
(Ck,+)-grading of A/I. Before we start with our results, we fix the notation for this
section.

Notation 2.37. From now on A either denotes C{x} or C[[x]]. The maximal ideal of A will
always be denoted by mA. We denote by πk the canonical projection A � A/mk+1

A . By
abuse of notation the induced projection Der′(A)→ Der(A/mk+1

A ) and the induced projection
Aut(A)→ Aut(A/mk+1

A ) are also denoted by πk.

2.3.1 Linear Reductive Subgroups of AutI(A)

The aim of this subsection is to understand linear algebraic subgroups of Aut(A).After
stating general result, we focus on algebraic tori. In order to have precise notion of the
latter we adapt [Mül86, Definition] to our setup.

Definition 2.38.

(1) The group AutI(A) := {ϕ ∈ Aut(A) | ϕ(I) = I} is called the group of I-invariant
automorphisms.

(2) Let G be an linear algebraic group. A homomorphism α : G → AutI(A) is called
rational action, if all πk ◦ α are morphisms of algebraic groups.

(3) A subgroup G ⊆ AutI(A) isomorphic to a linear algebraic group is called linear alge-
braic subgroup of AutI(A), if the injection G ↪→ AutI(A) is a rational action.

Remark 2.39. From now on we drop the term linear, since all algebraic groups that will
appear from now on are linear.

The first important result we need, is the fact that we can always find a coordinate
system for A, such that reductive algebraic groups act linearly. To prove this result we
need the following lemma.

Lemma 2.40. Let I ⊆ A be an ideal and let G ⊆ AutI(A) be a reductive algebraic subgroup.
Then there exists a minimal generating system f1, . . . , fm of I, such that the C-vector space
〈f1, . . . , fm〉C is G-invariant.

Proof. See [Mül86, Hilfssatz 2].

Proposition 2.41. Let I ⊆ A be an ideal and let G ⊆ AutI(A) be a reductive algebraic
subgroup. Then there exists a coordinate system x1, . . . , xn of A such that G acts linearly.
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Proof. We apply Lemma 2.40 to the ideal mA. Then we have a coordinate system
x1, . . . , xn, such that the C-vector space V := 〈x1, . . . xn〉C is G-invariant. Thus for
every g ∈ G there exists a matrix Ag, such that

g.x = Agx.

This defines a representation ρ : G → GL(V ), g 7→ Ag−1 . By construction this induces
a rational action α : G→ AutI(A), g 7→ ρ(g).

Since every representation of a reductive group is semi-simple (see [Mil17, Corollary
22.43]), we can use [Kau67, Satz] to obtain that π1 restricted to a linear reductive sub-
group of Aut(A) is injective.

Theorem 2.42. LetG ⊆ Aut(A) be an algebraic reductive subgroup. Then the map π1 : G→
Aut(A/m2

A) is an injection.

This result generalizes to πk for all k ∈ N.

Corollary 2.43. Let G ⊆ Aut(A) be a reductive algebraic subgroup. Then the map πk :
Aut(A)→ Aut(A/mk+1

A ) restricted to G is injective.

Proof. It follows from Theorem 2.42 that π1 restricted to G is injective. Due to the fact
that we are working with a projective system, we have π1 = πk1 ◦πk. Then πk restricted
to G is injective for any k ∈ N.

The next important result is the lifting of conjugacy of reductive algebraic subgroups
of AutI(A).

Theorem 2.44. Let I ⊆ A be an ideal andG,H ⊆ AutI(A) be reductive algebraic subgroups.
Assume there exists a ϕ1 ∈ π1(AutI(A)), such that π1(G) = ϕ1π1(H)ϕ−1

1 . Then there exists
a ϕ ∈ AutI(A), such that G = ϕHϕ−1.

Proof. See [Mül86, Satz 2].

From now on we will focus on algebraic tori. By [Mil17, Proposition 12.54] algebraic
tori are reductive. It is a classical result that so-called maximal algebraic tori are con-
jugated, see for example [Hum75, Corollary 21.3, A]. We want to prove the analogous
result in our setup.

Definition 2.45. Let I ⊆ A be an ideal and T ⊆ AutI(A) an algebraic torus. We call T
a maximal algebraic torus if for any algebraic torus T′ ⊆ AutI(A) containing T we have
T = T′ .

Theorem 2.44 implies the following result.

Corollary 2.46. Let I ⊆ A be an ideal and let T, T ′ ⊆ AutI(A) be maximal algebraic tori.
Then there exists a ϕ ∈ AutI(A), such that ϕT ′ϕ−1 = T.

In the case of algebraic tori we can make Proposition 2.41 even more explicit.

Proposition 2.47. Let I ⊆ A be an ideal. Furthermore, let T ⊆ AutI(A) be an algebraic
torus. Then there exists a coordinate system x1, . . . , xn, such that T acts via characters on A.
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Proof. Assume that we have T is a k-dimensional algebraic torus. To keep the notation
simple, we assume that T = (C∗)k. For any t ∈ T we denote by ti the i-th component of
t.Applying Lemma 2.40 to the maximal ideal mA,we know that there exists a minimal
generating set y1, . . . , yn of mA, such that the vector space V := 〈y1, . . . , ym〉C is T-
invariant. This implies the existence of a group representation ρ : T → GL(V ). By
[Mil17, Theorem 12.12] we can write

V =
⊕

χ∈X(T)

Vχ, (2.1)

where X(T) denotes the character group of T and Vχ the eigenspace for T with char-
acter χ ∈ X(T), see for example [Mil17, Chapter 4, g]. It is know that X(T) = Zk, see
for example [Mil17, Chapter 12, e]. Thus we can rewrite Equation 2.1 as

V =
⊕

Λ∈Zk
VΛ. (2.2)

Let Λ = (λ1, . . . , λk). Then t = (t1, . . . , tk) acts via ρ(t)(v) = t−λ11 · . . . · t−λkk v on VΛ.
Thus there exists a basis consisting of eigenvectors for V with respect to this action.
Let x1, . . . , xn be the basis vectors. Then mA = 〈x1, . . . , xn〉 and we obtain that T acts
via characters in these coordinates.

We finish this section by showing that algebraic tori induce (Zk,+) gradings of A/I.

Theorem 2.48. Let I ⊆ A be an ideal and let T ⊆ AutI(A) be a k-dimensional algebraic
torus. Then there exists a (Zk,+) grading of A/I. Equivalently, there exist k pairwise com-
muting diagonalizable derivations δ1, . . . , δk ∈ DerI(A) with integer eigenvalues.

Proof. By Proposition 2.47 we can choose coordinates for A such that T ∼= (C∗)k acts
via characters on them. This means that there exist λij ∈ Z with

t.xi =
k∏
j=1

t
−λij
j xi, (2.3)

for any t = (t1, . . . , tk) ∈ T . By Lemma 2.40 and [Mil17, Theorem 12.12] we obtain a
minimal generating system f1, . . . , fm of I such that there exist dlj ∈ Z with

t.fl =

k∏
j=1

t
−dlj
j fl, (2.4)

for any t = (t1, . . . , tk) ∈ T . Combining Equation 2.3 and Equation 2.4 we obtain

tj .fl = f(tj .x1, . . . , tj .xn) = f(t
−λ1j
j x1, . . . , t

−λnj
j xn) = t−dljfl(x1, . . . , xn). (2.5)

Equation 2.5 is equivalent so saying that the fl are multi-homogeneous with respect
to weights λi := (λi1, . . . , λin) for 1 ≤ i ≤ k. This again implies that I is (Zk,+)
graded.
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2.3.2 (Zm,+) Gradings, Algebraic Tori and Derivations

In this section we want to see an explicit correspondence between the Lie algebra g
generated by δ1, . . . , δm pairwise commuting diagonalizable derivations with integer
eigenvalues, that is (Zm,+) gradings, and algebraic tori contained in AutI(A). The first
step is to see that πk(AutI(A)) as an algebraic group with Lie algebra πk(Der′I(A)). This
result extends the classical result for Artinian algebras, which are finite dimensional
vector spaces. See for example [Hum75, Corollary 13.2].

Lemma 2.49. Let A be an analytic algebra and I ⊆ A an ideal. Then πk(AutI(A)) is an
algebraic group with Lie algebra πk(Der′I(A)).

Proof. See [Kra78, (4.32)].

We need some preparations before we can state the relation between algebraic tori
and pairwise commuting diagonalizable derivations with integer eigenvalues. This
section relies on the fact that we can find a coordinate system such that a set of pairwise
commuting diagonalizable derivations are in diagonal shape.

Remark 2.50. For the moment, we restrict ourselves to the case A = C[[x]].
To keep our computations as simple as possible we assume that our coordinate system is always

chosen in such a way that δi =
n∑
j=1

λijxj∂xj with λij ∈ Z.

We can consider any element of π1(Der′I(A)) as an element of gl(n,C) by considering
the linear part of the derivations. In particular, we have a representation π1 : g →
gl(n,C), δ 7→ δ0. Since we deal with pairwise commuting diagonalizable derivations,
we need the following definition.

Definition 2.51. Let g ⊆ gl(n,C) be a finite dimensional Lie subalgebra. We call t ⊆ g a
toral subalgebra of g if all elements of t are diagonalizable. We say t is a maximal toral
subalgebra of g, if for every toral subalgebra t′ of g with t ⊆ t′ it holds that t = t′. If g is clear
from the context, we call t a (maximal) toral Lie algebra.

Remark 2.52. It is easy to see that being a maximal toral Lie algebra is equivalent to the
following condition:
For every diagonalizable matrix D ∈ g with the property that [D,L] = 0 for all L ∈ t, implies
D ∈ t.

Example 2.53. Let I ⊆ A be an ideal. Consider the Lie algebra h generated by the pairwise
commuting diagonalizable derivations δ1, . . . , δm ∈ Der′I(A). The δi can be represented by
diagonal matrices Di = diag(λi1, . . . , λin). Let t = 〈D1, . . . , Dm〉C. By definition t is a toral
subalgebra of g = π1(Der′I(A)). In this setup we have t = π1(h).

We want to show that, in the formal case, every set of pairwise commuting diagonal-
izable derivations induces an algebraic torus T ⊆ AutI(A). Any toral Lie algebra t
generated by diagonal matrices over C gives rise to an algebraic torus T = et, since
for any two matrices A,B ∈ gl(n,C) with [A,B] = 0 it holds that eA+B = eA · eB.
To prove T ↪→ AutI(A), we need some preparations.

Definition 2.54. Let v1, . . . , vm ∈ Rn with m ≤ n be R-linearly independent vectors. We
call the Z-module L = 〈v1, . . . , vm〉Z a lattice of rank m. In case L = 〈v1, . . . , vm〉R ∩ Zn,
we say L is saturated.
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The toral Lie algebra t from Example 2.53 restricted to the real span of its generators
satisfies the condition of being a saturated lattice. We use this to show that T is iso-
morphic to (C∗)n as an algebraic group.

Proposition 2.55. Let t ⊆ gl(n,C) be a toral Lie algebra. Assume t admits a C-vector space
basis D1, . . . , Dm, such that all eigenvalues of the Di are integers. Denote the j-th diagonal
entry of Di by λij . Define vi := (λij)1≤j≤n ∈ Rn. Let L = 〈v1, . . . , vm〉Z be the lattice
spanned by the vi. If L is saturated, then T := et is isomorphic to (C∗)m as an algebraic
group.

Proof. Denote by D(n,C) the algebraic group of diagonal matrices (see for example
[Hum75, Section 7.1]). We define the map ϕ : (C∗)m → D(n,C) via

(t1, . . . , tm) 7→ diag(tλ111 · . . . · tλm1
m , . . . , tλ1n1 · . . . · tλmnm ).

It is obvious that ϕ satisfies ϕ(a · b) = ϕ(a) · ϕ(b) for any a, b ∈ (C∗)m. Since ϕ is
defined by rational functions, it also defines a morphism of algebraic varieties. So it
is a group homomorphism of linear algebraic groups. Our goal now is to show that ϕ
maps injectively onto T .
First we show im(ϕ) = T . We know that for every ti ∈ C∗ there exists a zi ∈ C with
ezi = ti. The surjectivity of the complex exponential map implies that we can write
diag(tλi1i , . . . , tλini ) as eziDi . By definition, ϕ maps (1, . . . , 1, ti, 1, . . . , 1) to this element.
Since the eziDi form a generating set of T and since ϕ is multiplicative, we obtain
im(ϕ) = T .
It remains to show that ϕ is injective. Denote the real part of zi by xi ∈ R and the
imaginary part by yi ∈ [0, 2π). Then we can write ϕ(t1, . . . , tm) = ez1D1+...+zmDm . Since
we are dealing with diagonal matrices ϕ(t1, . . . , tm) = id implies z1D1 + . . .+ zmDm =
2πidiag(k1, . . . , kn) for integers k1, . . . , kn. Thus we obtain

x1D1 + . . .+ xmDm = 0 and
y1

2π
D1 + . . .+

ym
2π
Dm = diag(k1, . . . , kn).

The fact that the Di are linearly independent implies xi = 0. The vi being a basis of
a saturated lattice translates to the fact that the yi

2π are integers. This implies yi = 0.
So we have zi = 0 and in particular ti = 1 for 1 ≤ i ≤ m. Thus ϕ is injective and we
obtain T ∼= (C∗)m.

Corollary 2.56. Let I ⊆ A be an ideal and let g be the Lie algebra generated by the pairwise
commuting diagonalizable derivations δ1, . . . , δm ∈ DerI(A) with integer eigenvalues. Define
t := π1(g) ↪→ gl(n,C) and T := et. For any diagonal matrix D = diag(d1, . . . , dn) with
di ∈ C we define the map ϕD : A→ A, xi 7→ dixi. Then the map

ψ : T ↪→ AutI(A), D 7→ ϕD

defines a rational action.

Proof. We keep the notation from Proposition 2.55. The map ϕD defines an automor-
phism, since det(D) 6= 0 for any D ∈ T . Let f ∈ A be multihomogeneous, that is
δi(f) = wif for some wi ∈ Z. Define Di := diag(t−λi1i , . . . , t−λini ) for i = 1, . . . ,m.

Then ϕDi(f) = f(t−λi1i x1, . . . , t
−λin
i xn) = t−wii f, since we assume that we are in a

multihomogeneous coordinate system. This implies ϕDi(I) ⊆ I, since I can be gen-
erated by multihomogeneous elements. Using that ϕDiDj = ϕDi ◦ ϕDj we obtain
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ϕD ∈ AutI(A) for all D ∈ T . Since any automorphism of A is uniquely determined
by its action on the xi we obtain an injection of groups α : T ↪→ AutI(A), D 7→ ϕD. It
remains to show that the maps πk ◦ α are homomorphisms of algebraic groups. For
any D = diag(λ1, . . . , λn) we have that (πk ◦ ϕD)(xi) = λixi. This implies that the
πk ◦ ϕD, considered as elements of EndC(m/mk+1), are diagonal matrices, where the
diagonal entries are polynomial expressions in the diagonal entries of D. This implies
that πk ◦α is a morphism of algebraic groups and thus T ↪→ AutI(A) defines a rational
action.

Corollary 2.56, combined with Theorem 2.48, yields a correspondence between (Zm,+)
gradings, algebraic tori and toral Lie algebras of derivations with integer eigenvalues
in the complete case. To our knowledge, these results cannot be proven for ideals of
the convergent power series ring in general. Nevertheless, it can be proven for ideals
I ⊆ C{x}, which are generated by algebraic power series. Let us make this notion
more precise.

Definition 2.57. LetR = C[x] and f ∈ C{x}.We call f an algebraic power series, if there
exists a polynomial p ∈ R[t], such that p(f) = 0. We say an ideal I ⊆ C{x} is algebraic, if
it can be generated by algebraic power series.

The following theorem is a crucial tool in passing to algebraic ideals.

Theorem 2.58. Let I ⊆ C{x} be an algebraic ideal and let G ⊆ GL(n,C) be a reductive al-
gebraic group. Define Î := IC[[x]]. Then G ⊆ AutI(C{x}) if and only if G ⊆ AutÎ(C[[x]]).

Proof. See [HM89, Theorem 2].

Theorem 2.58 combined with Corollary 2.56 implies:

Corollary 2.59. Let I ⊆ C{x} be an algebraic ideal and let g be the Lie algebra generated
by the pairwise commuting diagonalizable derivations δ1, . . . , δm ∈ DerI(A) with integer
eigenvalues. Define t := π1(g) ↪→ gl(n,C) and T := et. For any diagonal matrix D =
diag(d1, . . . , dn) with di ∈ C we define the map ϕD : A→ A, xi 7→ dixi. Then the map

ψ : T ↪→ AutI(A), D 7→ ϕD

defines a rational action.

2.3.3 Maximal Multihomogeneity

Our next objective is to see that there is a one-to-one correspondence between maximal
(Cm,+) gradings, maximal toral Lie algebras and maximal algebraic tori. So far we
have dealt with (Zm,+) gradings. Due to Theorem 2.24, we are able to reduce to the
complex case to the integer case.

Definition 2.60. Let A = C{x} or A = C[[x]] and I ⊆ A. Assume that A/I is (Cs,+)
multigraded. We say A/I is maximal multihomogeneous of rank s, if for all (Ck,+)
gradings of A/I it holds that k ≤ s. This can be equivalently reformulated using derivations.
There exist pairwise commuting diagonalizable derivations δ1, . . . , δs ∈ DerI(A) with the
following properties
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(a) For all diagonalizable derivations δ ∈ DerI(A) with [δ, δi] = 0 for i = 1, . . . , s it holds
that δ ∈ 〈δ1, . . . , δs〉C.

(b) s is maximal with respect to all sets of pairwise commuting derivations satisfying prop-
erty (a).

In order to prove that the maximal multihomogeneity is an invariant of the algebra,
we need some preparations.

Lemma 2.61. Let g ⊆ gl(n,C) be an abelian Lie algebra. Define G := eg ⊆ GL(n,C). If G
is connected and dim(G) = dimC(g), then Lie(G) = g.

Proof. Any linear algebraic group G ⊆ GL(n,C) can be considered as a Lie group (see
[OV90, Chapter 3, §1, Theorem 2]). We use [Hal15, Definition 3.18] and compute the
corresponding Lie algebra as

Lie(G) =
{
X ∈ gl(n,C) | etX ∈ G, for all t ∈ R

}
.

The inclusion g ⊆ Lie(G) is obvious. Our assumptions now imply:

dimC(Lie(G)) = dim(G) = dimC(g),

hence g = Lie(G).

Next we show that the Lie-functor commutes with the canonical projections πk in the
complete case.

Corollary 2.62. Let either

(i) A = C[[x]] and I ⊆ A, or

(ii) A = C{x} and I ⊆ A be algebraic.

Furthermore, let g be the Lie algebra generated by the pairwise commuting diagonalizable
derivations δ1, . . . , δm ∈ DerI(A) with integer eigenvalues. Define t := π1(g) ↪→ gl(n,C)
and T := et ⊆ AutI(A). Then Lie(πk(T)) = πk(t) for all k ∈ N.

Proof. It suffices to show the result in the complete case. By Corollary 2.43 we know
that πk : T→ πk(T) is an isomorphism of algebraic groups for all k ∈ N. Since we can
assume that our coordinates are chosen such that δ1, . . . , δm are diagonal, we know
that π1 : g → π1(g) is an isomorphism of Lie algebras. Using that π1 = πk1 ◦ πk, we
obtain that πk : g → πk(g) is an isomorphism of Lie algebras. The same result holds
for πk(T). Combining these results we also obtain that the maps πlk : πl(T) → πk(T)
and πlk : πl(g) → πk(g) are isomorphisms of algebraic groups, respectively Lie alge-
bras. Since we are working over characteristic zero, we know by [Hum75, Theorem
12.5] that the Lie functor is exact. Then the isomorphism πlk : πl(T) → πk(T) in-
duces the isomorphism dπlk : Lie(πl(T)) → Lie(πk(T)). For k = 1 Lemma 2.61 implies
Lie(π1(T)) = π1(g). The fact that the differential dπlk coincides with a restriction of the
map πlk : πl(Der′I(A))→ πk(Der′I(A)), implies πk(g) = Lie(πk(T)) for any k ∈ N.

The following theorem shows us that T = eg is a maximal torus in AutI(A), if the
grading induced by g is maximal.
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Theorem 2.63. Let either

(i) A = C[[x]] and I ⊆ A, or

(ii) A = C{x} and I ⊆ A be algebraic.

Furthermore, let g be the Lie algebra generated by the pairwise commuting diagonalizable
derivations δ1, . . . , δs ∈ DerI(A). Define t := π1(g) ↪→ gl(n,C) and T := et ⊆ AutI(A). If
δ1, . . . , δs induce a maximal multigrading on A/I, then T is a maximal torus in AutI(A).

Proof. We split the proof in two steps. First we show statement for the complete case,
then we reduce the algebraic case to the complete case.
Step 1: Let A = C[[x]]. Denote by T′ ⊆ AutI(A) an algebraic torus with T ⊆ T′ .
Since tori are reductive, Corollary 2.43 implies πk(T) ⊆ πk(T

′) for every k ∈ N. We
have isomorphisms of Lie algebras πmk : Lie(πm(T′)) → Lie(πk(T

′)). Define g′ :=
lim←−
k∈N

Lie(πk(T
′)). Lemma 2.49 combined with [Mil17, (10.14)] and [Hum75, Theorem

13.1] implies

Lie(πk(T)) ⊆ Lie(πk(T
′)) ⊆ Lie(πk(AutI(A))) = πk(Der′I(A))

for any k ∈ N. Passing to the projective limit this yields g ⊆ g′ ⊆ Der′I(A). By [Hum75,
Theorem 13.4(b)] we know that the Lie algebra of a connected commutative algebraic
group is abelian. Considering πk(T) as a subset of GL(m/mk+1) and using [Hum75,
Theorem 15.5], we obtain that Lie(πk(T)) is a toral Lie subalgebra of gl(m/mk+1). Then
g′ consists of pairwise commuting diagonalizable elements. Since g ⊆ g′, we also have
[δi, g

′] = 0 for all i = 1, . . . ,m. By assumption this implies g = g′ and in particular
π1(g′) = π1(g). Then [Hum75, Theorem 13.1] yields π1(T) = π1(T′). From Corollary
2.46 we obtain that T is a maximal algebraic torus.
Step 2: Let A = C{x} and I ⊆ A, be an algebraic ideal. Passing to the completion
Â, we can assume that the δi are in diagonal shape. By Corollary 2.56 they induce
an algebraic torus T ⊆ AutÎ(Â) with dim(T) = s. If T is not maximal, there exists a
maximal algebraic torus T′ ⊆ AutÎ(Â) with s′ := dim(T′) > s. By Theorem 2.58 we
have T,T′ ⊆ AutI(A). Then Theorem 2.48 implies that A/I is (Cs′ ,+) graded. This
contradicts the maximality of s and thus T is a maximal algebraic torus.

Combining Theorem 2.48 and Theorem 2.63 we obtain the following.

Remark 2.64. Let I ⊆ A be an ideal. Then there exists a correspondence between maximal
algebraic tori and maximal multigradings of A/I.

Remark 2.65. At the moment we cannot drop the assumption that I is an algebraic ideal,
since the proof of Theorem 2.58 makes use of an approximation theorem proven by Popescu in
[Pop86], which works only in the algebraic setup. For the convergent case of this approximation
theorem, a counterexample was given by Gabrielov in [Gab71].

Remark 2.66. Analyzing the proofs of Theorem 2.63 and Theorem 2.48 combined with the
fact that all maximal algebraic tori are conjugated and that all algebraic tori are contained in a
maximal torus, implies that the weights of all maximal multigradings are the same. Thus the
information regarding the weights of an ideal can be recovered from the eigenvalues of a toral
Lie algebra t ⊆ π1(DerI(A)) or from the characters of T ⊆ AutI(A). From a computational
point of view it turns out, that it easier to obtain the eigenvalues. Corollary 2.59 implies that
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if A/I is (Cm,+) graded, then m ≤ n. In particular the maximal value of k is given by the
dimension of the maximal tori. Thus the maximal multihomogeneity is an invariant which can
be computed from algebraic objects. This completes the picture presented in the beginning of
this chapter.

In Chapter 3 we are going to investigate the case when s = n, that is the maximal
multihomogeneity obtains its greatest possible value.

2.4 The Structure Theorem for Analytic Algebras

In this section, we extend the abstract definition of grading from the previous sections
to so-called Lie–Rinehart algebras and generalize the Formal Structure Theorem from
[GS06], [Sch07] and [Epu15] to certain Lie–Rinehart subalgebras of Der′(A), where
A ∼= C{x}/I is an analytic algebra and I is generated by algebraic elements or I is pos-
itively graded. Subsection 2.4.1 is an adapted version of [Epu15, Section 4.2], which
we included in order to keep the material self contained.

2.4.1 Lie–Rinehart Algebras

In the following section, we introduce the notion of Lie–Rinehart algebras, which com-
bine the structure of modules with the structure of Lie algebras and relate both to
derivation modules. We also define a notion of (multi-)grading for Lie–Rinehart alge-
bras.
Let us start with the definition of a Lie–Rinehart algebra. The definition is taken from
[Hue98] and is slightly modified to fit in our context.

Definition 2.67. Let A be an algebra over C, g be a Lie algebra over C and ρ : g→ Der(A) a
morphism of Lie algebras. Define α(f) := ρ(α)(f) for all α ∈ g and f ∈ A. We call the pair
(A, g, ρ) a Lie–Rinehart algebra, if the following conditions are satisfied:

(i) g is an A - module,

(ii) [α, fβ] = α(f)β + f [α, β] for all f ∈ A, α, β ∈ g, and

(iii) (fα)(g) = f(α(g)) for all f, g ∈ A, α ∈ g.

Remark 2.68. Condition ii) in the previous definition implies that the Lie algebra morphism
ρ is also A - linear.

The next topic we need to talk about is morphisms of Lie–Rinehart algebras. The
following definition is taken from [Hue90, Chapter 1].

Definition 2.69. Let (A, g, ρ) and (B, h, σ) be Lie–Rinehart algebras, whereA,B are algebras
over C. Then (ϕ,ψ) is a morphism of Lie–Rinehart algebras, if:

i) ϕ : A→ B is a morphism of C-algebras,

ii) ψ : g → h is a morphism of Lie algebras, which in the same time is a morphism of A -
modules, where A acts on B via ϕ, and
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iii) for all f ∈ A,α ∈ g it holds that

ϕ ◦ α(f) = ψ(α)(ϕ(f)).

Our standard example for a Lie–Rinehart algebra is the module of derivations of an
analytic algebra.

Example 2.70. Let A be an analytic algebra and g = Der(A). Then (A, g, id) is a Lie–
Rinehart algebra, since all properties are basic properties of the module of derivations.

Let us now define a notion of grading for a special type of Lie–Rinehart algebras.

Definition 2.71. Let (G,+) be an abelian group, A be an algebra over C and (A, g, ρ) a Lie–
Rinehart algebra, where g ⊆ Der(A) and ρ : g ↪→ Der′(A) the canonical inclusion map. We
say (A, g, ρ) is finitely graded, if the following conditions hold:

i) A is finitely graded in the sense of Definition 2.1,

ii) g is finitely graded as an A - module in the sense of Definition 2.1, and

iii) the group homomorphisms πg, g ∈ G, arising from Definition 2.1, have to satisfy
[πg(g), πh(g)] ⊆ πg+h(g) for all g, h ∈ G.

Next, we take a look at general gradings of Lie–Rinehart algebras. We restrict our-
selves to the case where A is an analytic algebra. We denote the natural projection
A � A/mk

A by pAk for k ∈ N. To keep notation short, we write Ak := A/mk
A. Let

g ⊆ Der(A) and ρ :↪→ Der′(A). The map pAk induces natural morphisms pk : Der(A)→
Der(Ak), which induce a natural projection of Lie algebras pgk : g → πk(g). Define
gk := pgk(g). This again induces morphisms (pAk , p

g
k) of Lie–Rinehart algebras.

Definition 2.72. Let (G,+) be an abelian group, A an analytic algebra and (A, g, ρ) a Lie–
Rinehart algebra, where g ⊆ Der(A) and ρ : g ↪→ Der′(A) is the canonical inclusion map.
We say (A, g, ρ) is a graded Lie–Rinehart algebra with respect to G, if the following hold:

i) For all g ∈ G there are group homomorphisms πAg : (A,+)→ (A,+) grading A in the
sense of Definition 2.4, and

ii) for all g ∈ G there are group homomorphisms πgg : (g,+) → (g,+), such that the
induced morphisms πgkg : gk → gk grade (Ak, gk, ρk) in the sense of Definition 2.71 for
all k ∈ N.

Our definition of a graded Lie–Rinehart algebra allows us to use our results regarding
graded modules. We can also switch the perspective from which we are looking at our
Lie–Rinehart algebra, as it is useful to consider it sometimes as a module, sometimes
as a Lie algebra. Before we go on with examples and the most important theorem of
this section, we have the following remark regarding the usual notion of grading of
finite Lie-algebras.

Remark 2.73. The usual grading of a finite Lie algebra g over C is a special case of Definition
2.71. If we let g operate trivially on C, that is, α(f) = 0 for all f ∈ C and α ∈ g, we
can satisfy all conditions from Definition 2.67, hence (C, g, ρ) is a Lie–Rinehart algebra, with
ρ : g → Der(K) being the trivial morphism. Now we can simply take A = C and grade it
trivially. Then condition i) in Definition 2.71 is superfluous and conditions ii) and iii) state
basically, that our Lie algebra can be written as a direct sum of graded components, which are
compatible with the Lie brackets, which is the usual definition of a graded Lie algebra.
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The following theorem shows, that gradings of analytic algebras induce gradings of
the corresponding Lie algebra of derivations.

Theorem 2.74. Let A be an analytic algebra and (A,Der′(A), id) a Lie–Rinehart algebra.
Denote the projections Der′(A) → Der(A/mk

A) by pk, where gk := pk(Der′(A)) for k ∈ N.
Assume thatA is (C,+) graded, where the grading is induced by δ ∈ Der′(A). Then δ induces
a grading on (A,Der′(A), id) in the sense of Definition 2.72. In particular, every homogeneous
ε ∈ Der′(A) satisfies adδ(ε) = λε, for some λ ∈ C.

Proof. Define g = Der′(A). In the following proof, we use that if δ ∈ Der′(A) is diag-
onalizable, also adδ̄ is diagonalizable on the finite-dimensional Lie algebras gk, where
δ̄ denotes the image of δ under pk. Next we show that this property on the finite-
dimensional Lie algebras induces our grading on g. The first property of Definition
2.72 is satisfied automatically, as we assume that A is graded. To show the second
property, we use that gk =

⊕
λ∈C gk,λ, where gk,λ denotes the eigenspace with respect

to the eigenvalue λ. Define πgkλ : (gk,+) → (gk,+) as the projection to gk,λ, for any
λ ∈ C. Next we show that the gk are finitely graded as Ak-modules. Consider any
k ∈ N, and λ, µ ∈ C, then we have for any homogeneous elements fµ ∈ Ak and
τλ ∈ gk,λ :

adδ̄(fµτλ) = µfµτλ + λfµτλ = (µ+ λ)fµτλ ∈ gk,µ+λ,

hence gk is a graded Ak-module. Next we need to prove the property of Definition
2.71, namely the finite grading as a Lie algebra, that is [gk,λ, gk,µ] ⊂ gk,λ+µ. Consider
any τµ ∈ gk,µ and τλ ∈ gk,λ, then

adδ̄([τµ, τλ]) = −[τµ, [τλ, δ̄]]− [τλ, [δ̄, τµ]] = λ[τµ, τλ]− µ[τλ, τµ] = (µ+ λ)[τµ, τλ],

hence [gk,µ, gk,λ] ⊆ gk,µ+λ.
Let ε ∈ g be homogeneous. Then adδ(ε) = λε follows by Lemma 1.5, since the equality
holds modulo every power of the maximal ideal.

The next corollary is an immediate consequence of Theorem 2.74.

Corollary 2.75. Let A be a graded analytic algebra with grading induced by a diagonalizable
derivation δ ∈ Der′(A) and (A, g, ρ) a Lie–Rinehart algebra, where g ⊆ Der(A) and ρ :
g ↪→ Der′(A) is the canonical inclusion map. If [δ, g] ⊆ g, then g is a graded Lie–Rinehart
subalgebra of Der′(A) with respect to δ.

Now we are able to extend the notion of multigradings to Lie–Rinehart subalgebras of
Der(A).

Definition 2.76. Let A be an analytic algebra and (A, g, ρ) a Lie–Rinehart algebra, where
g ⊆ Der(A) and ρ : g ↪→ Der′(A) is the canonical inclusion map. We say (A, g, ρ) is a multi-
graded Lie–Rinehart algebra, if there exists an m ∈ N≥1 and abelian groups G1, . . . , Gm,
such that (A, g, ρ) is graded with respect to G := G1 × . . . × Gm in the sense of Definition
2.72.

Next we state the analogous results to Proposition 2.14 and 2.15. We skip the proof for
the statement, since it works analogously to the proof of [Epu15, Lemma 4.26].
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Proposition 2.77. Let (G1,+), . . . , (Gm,+) be abelian groups, A a graded analytic alge-
bra and (A, g, ρ) a graded Lie–Rinehart algebra as in Definition 2.72, where m ∈ N≥1, g ⊆
Der(A) and ρ : g ↪→ Der′(A) is the canonical inclusion map. Keeping the notation and
conditions of Definition 2.72, we say (A, g, ρ) is graded by (G1 × . . . × Gm,+) with group
homomorphism Ψgk

(g1,...,gm), (g1, . . . , gm) ∈ G1 × . . .×Gm, if and only if there exist pairwise
commuting group homomorphisms πgkg1 , . . . , π

gk
gm , gi ∈ Gi grading gk and πAkg1 , . . . , π

Ak
gj the

corresponding gradings of Ak satisfying

Ak =
⊕
g1∈G1

. . .
⊕

gm∈Gm

ψAkg1 (Ak) ∩ . . . ∩ ψAkgm(Ak)

and
gk =

⊕
g1∈G1

. . .
⊕

gm∈Gm

πgkg1 (gk) ∩ . . . ∩ πgkgm(gk)

for all k ∈ N. Furthermore, Ψg
(g1,...,gm) = πggm ◦ . . . ◦ π

g
g1 and ΨA

(g1,...,gm) = πAgm ◦ . . . ◦ π
A
g1 for

all (g1, . . . , gm) ∈ G1 × . . .×Gm, where the latter is the corresponding grading of A.

Due to the fact that a set of pairwise commuting derivations induces a multigrading
on an analytic algebra A, we obtain, analogously to Theorem 2.74, that they induce a
multigrading on Der(A).

Theorem 2.78. Let A be an analytic algebra and (A,Der′(A), id) a Lie–Rinehart algebra.
Denote the projections Der′(A) → Der(A/mk

A) by pk and define gk := pk(Der′(A)) for k ∈
N. Assume that A is (Cs,+) graded, where the grading is induced by the pairwise commuting
diagonalizable derivations δ1, . . . , δs ∈ Der′(A). Then δ1, . . . , δs induce a multigrading on
(A,Der′(A), id) in the sense of Definition 2.76. In particular, every multihomogeneous ε ∈
Der′(A) satisfies adδi(ε) = λiε, for 1 ≤ i ≤ s some λi ∈ C.

Proof. The proof works analogously to the proof of Theorem 2.74. Due to Proposi-
tion 2.77 it only remains to show that for all 1 ≤ i, j ≤ s it holds that adδi ◦ adδj =
adδj ◦ adδi . This holds, since for any τ ∈ Der′(A)

adδi ◦ adδj (τ) = [δi, [δj , τ ]] = −[δj , [τ, δi]]− [τ, [δi, δj ]] = [δj , [τ, δi]] = adδj ◦ adδi(τ).

Now the group homomorphisms which grade Der(Ak) are the projections to the com-
mon eigenspaces of the adδi , so the proof of Theorem 2.74 also works in this case.

The following corollary follows from Theorem 2.78.

Corollary 2.79. Let A be an analytic algebra and (A, g, ρ) a Lie–Rinehart algebra, where
g ⊆ Der(A) and ρ : g ↪→ Der′(A) is the canonical inclusion map. Assume that A is (Cs,+)
graded, where the grading is induced by the pairwise commuting diagonalizable derivations
δ1, . . . , δs ∈ Der′(A). If [δi, g] ⊆ g, then the δ1, . . . , δs induce a multigrading on (A, g, ρ) in
the sense of Definition 2.76. In particular, every multihomogeneous ε ∈ g satisfies adδi(ε) =
λiε, for 1 ≤ i ≤ s some λi ∈ C.

2.4.2 The Structure Theorem

In this section we prove the structure theorem for logarithmic derivation modules. We
make use of the fact that Der′I(A) is a Lie–Rinehart algebra, thus we can use the notion
of grading introduced in Section 2.4.1 in order to prove a statement about the structure
of Der′I(A).
We present a new proof compared to [Epu15, Theorem 4.44] for the formal case:
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Theorem 2.80 (Structure Theorem). Let either

(i) A = C[[x]] and I ⊆ A, or

(ii) A = C{x} and I ⊆ A be an algebraic ideal.

Define g := Der′I(A) ⊆ Der′(A) and let s ∈ N be the rank of maximal multihomogeneity.
Then there exist δ1, . . . , δs, ν1, . . . , νr ∈ g, such that

(1) δ1, . . . , δs, ν1, . . . , νr is a minimal set of generators of g as an A-module,

(2) if σ ∈ g with [δi, σ] = 0 for all i, then σS ∈ 〈δ1, . . . , δs〉C,

(3) δi is diagonal with eigenvalues in Q,

(4) νi is nilpotent, and

(5) [δi, νj ] ∈ Q · νj

Proof. By assumption there exists an algebraic torus T ⊆ AutI(A). Proposition 2.41
allows us to choose the coordinates, such that T acts linearly . Due to Theorem 2.48
there exist s pairwise commuting diagonal derivations δ1, . . . , δs. By Corollary 2.79
they induce a multigrading on g. In particular, we can extend {δ1, . . . , δs} to a minimal
multihomogeneous generating system of g by adding multihomogeneous elements
ν1, . . . , νr, where r ∈ N. This proves the statements i), iii) and v). Denote by λi =
(λi1, . . . , λis) the multidegree of νi. If λij 6= 0 for a 1 ≤ j ≤ s, then Lemma 1.59 implies
that νi is nilpotent. Thus we assume λij = 0 for all 1 ≤ j ≤ s. Passing to the completion
Â, we decompose νi into its diagonal part νi,S and into its nilpotent part νi,N . Due to
Proposition 1.57, we obtain [δj , νi,S ] = 0 for all 1 ≤ j ≤ s. Since s is maximal we obtain
that νi,S ∈ 〈δ1, . . . , δs〉C. This implies that νi,S ∈ Der′I(A). Thus we can replace νi with
νi,N and obtain iv). Statement ii) follows directly from the maximality of s.

Next we present a small application of Theorem 2.80. In [Fab15] Faber gave a charac-
terization of being normal crossing via the logarithmic derivation module of the local
defining equation.

Proposition 2.81. Let f ∈ C{x} and U ⊆ Cn be an open neighborhood of 0, such that f is
holomorphic on U. Define X := V (f) ⊆ U. Let p ∈ X be arbitrary. We define hp ∈ C{x− p}
to be the Taylor expansion of f around p. Then the following are equivalent:

(1) X has normal crossings at p ∈ X.

(2) hp is squarefree, Der(OX,p) is free of rank n with basis δ1, . . . , δn and [δi, δj ] = 0 for all
1 ≤ i, j ≤ n.

Proof. See [Fab15, Proposition 6].

Before we can prove our version of Proposition 2.81, we need the following lemma.

Lemma 2.82. Let δ =
n∑
i=1

ai∂xi ∈ Der(C{x}) be a derivation with [δ, ∂xj ] = 0 for 1 ≤ j ≤ n.

Then for all 1 ≤ i ≤ n it holds that ∂xjai = 0.
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Proof. We assume, without loss of generality, that j = 1. Let δ =
n∑
i=1

ai∂xi , where

ai ∈ C{x}. Then we can write:

[∂x1 , δ] =

n∑
i=1

[∂x1 , ai∂xi ] =

n∑
i=1

∂x1(ai) · ∂xi = 0.

Comparing coefficients yields ∂x1(ai) = 0 for all 1 ≤ i ≤ n.

We can now prove the following:

Theorem 2.83. Let f ∈ C{x} and U ⊆ Cn be an open neighborhood of 0, such that f is
holomorphic on U. Define X := V (f) ⊆ U. Let p ∈ X be arbitrary. We define hp ∈ C{x− p}
to be the Taylor expansion of f around p, kp := dimC Der(OX,p)(p) and op := ord(hp). Then
the following are equivalent:

(1) X has normal crossings at p ∈ X.

(2) op = n − kp, hp is squarefree and Der(OX,p) is free of rank n, such that there exists a
basis consisting of n − kp diagonalizable derivations δ1, . . . , δn−kp and kp derivations
δn−kp+1, . . . , δn with non-constant term satisfying [δi, δj ] = 0 for all 1 ≤ i, j ≤ n.

Proof. If X has normal crossings at p ∈ X, then the second statement is obvious. Let
us assume that the second statement holds. Without loss of generality we can assume
that p = 0. Therefore we write h, k and o instead of hp, kp and op. We prove an even
stronger statement: we show that if the module DerI(C{x}), where I = 〈h〉, has the
desired structure, then h defines a normal crossing divisor after a suitable change of
coordinates. Due to Theorem 1.70 we can assume that our coordinates are chosen in
such a way, that δn−k+i = ∂xn−k+i for 1 ≤ i ≤ k. Due to order reasons, we know that
∂xih = 0 for all n−k+ 1 ≤ i ≤ n. Lemma 2.82 implies that the derivations δ1, . . . , δn−k
only depend on the variables x1, . . . , xn−k, hence we can assume without loss of gen-
erality that k = 0. In this case we know that we have as many simultaneously diag-
onalizable derivations as variables and h has to be a monomial. By assumption, h is
squarefree, so h = λ · x1, · . . . · xn for a certain λ ∈ C \ {0}. This implies that h defines
a normal crossing divisor.

Remark 2.84. If we drop the assumption that hp is squarefree, Theorem 2.83 states that hp is
a non-reduced normal crossing divisor.



Chapter 3

Positive Gradings and Monomial
Ideals

In this chapter we first want to show that the main results of Chapter 2, Section 2.3
hold in the presence of a positively graded analytic algebra C{x}/I. Furthermore,
we show that hypersurface singularities with positively graded Tjurina algebra are
strongly Euler-homogeneous at 0 and thus are determined by their singular locus due
to Theorem 1.101. Hypersurface singularities with monomial singular locus have a
positively graded Tjurina algebra. Using combinatorial results on monomial ideals
we are going to classify all hypersurface singularities with radical monomial Jacobian
ideal.

3.1 Positively Graded Analytic Algebras

We know from Remark 2.66 that once our analytic algebra A = C{x}/I admits a
positive grading induced by δ ∈ DerI(A), every multigrading of A contains a positive
grading induced by another derivation δ′ ∈ DerI(A) which has the same eigenvalues
as δ. If the maximal multigrading ofA is induced by say δ1, . . . , δs,with δ1 = δ, then the
main ingredient to prove Theorem 2.63 was to use that we were able to simultaneously
diagonalize the δi. In the presence of a positive grading we show that we are still able
to do this. The tool we need is the following approximation theorem due to Artin.

Theorem 3.1 (Artin’s Approximation Theorem). Let x = (x1, . . . , xn),y = (y1, . . . , yN )
and f1(x,y), . . . , fm(x,y) ∈ C{x,y} for certain m,n,N ∈ N≥1. Fix an integer c ∈ N. If
there exists a formal solution ŷ ∈ 〈x〉C[[x]]N of the system of equations

fi(x, ŷ) = 0, i = 1, . . . ,m, (3.1)

then there exists also a convergent solution ỹ ∈ C{x}N of (3.1) such that

ŷ = ỹ mod 〈x〉c.

Proof. See [Art68, Theorem 1.2].

Using Artin’s Approximation Theorem we can prove the following result regarding
ideal containment.

63
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Corollary 3.2. Let x = (x1, . . . , xn),y = (y1, . . . , yN ), I1, . . . , Ip ⊆ C{x} be ideals and
f1k(x,y), . . . , fmkk(x,y) ∈ C{x,y} for certain p,mk, n,N ∈ N≥1 and 1 ≤ k ≤ p. Fix an
integer c ∈ N≥1. If there exists a ŷ ∈ 〈x〉C[[x]]N , such that

fjk(x, ŷ) ∈ IkC[[x]] for all j = 1, . . . ,mk, k = 1, . . . , p

then there exists also a ỹ ∈ C{x}N such that

fjk(x, ỹ) ∈ Ik for all j = 1, . . . ,mk, k = 1, . . . , p

and such that
ŷ = ỹ mod 〈x〉c.

Proof. We can assume that the Ij have the same number of generators, since we can
add 0 functions to the generating sets. Denote this number of generators by l ∈ N.
Assume Ij = 〈g1j , . . . , glj〉 for certain gij ∈ C{x}. Again by adding 0 functions we can
assume that the mj have all the same value m ∈ N. Adding formal variables z(k)

ij we
consider the system of equations:

fjk(x,y) =

l∑
i=1

z
(k)
ij gik for all i = 1, . . . ,m, j = 1, . . . , l, k = 1, . . . , p. (3.2)

Then the ideal containment condition is equivalent to the existence of constants c(k)
ij ∈

C and formal power series ẑ(k)
ij ∈ 〈x〉C[[x]], such that

fjk(x, ŷ)−
l∑

i=1

(ẑ
(k)
ij + c

(k)
ij )gik = 0 for all i = 1, . . . ,m, j = 1, . . . , l, k = 1, . . . , p. (3.3)

Applying Artin’s Approximation Theorem to Equation 3.3 yields the existence of ỹ, z̃ ∈
C{x}, such that Equation 3.3 holds. This is equivalent to fjk(x, ỹ) ∈ Ik for all j =
1, . . . ,mk, k = 1, . . . , p. The equality of the formal and convergent solution up to de-
gree c follows also immediately from Artin’s Approximation Theorem.

Now we are able to prove the following lemma.

Lemma 3.3. Let I1, . . . , Ip ⊆ C{x} be ideals with Ik = 〈f1k, . . . , flkk〉 for certain p, lk, n ∈
N. Let gjk ∈ C{x} for 1 ≤ j ≤ lk, 1 ≤ k ≤ p. If there exists an automorphism ϕ̂ ∈
Aut(C[[x]]), such that ϕ̂(Îk) = 〈g1k, . . . , gmkk〉C[[x]] for 1 ≤ k ≤ p, then there exists an
automorphism ϕ̃ ∈ Aut(C{x}), such that ϕ̃(Ik) = 〈g1k, . . . , gmkk〉 for 1 ≤ k ≤ p.

Proof. Define ŷi := ϕ̂(xi) ∈ 〈x〉C[[x]] for i = 1, . . . , n. By adding 0 functions, we can
assume that for all 1 ≤ k ≤ p it holds that mk = m, where m ∈ N is a constant. In the
same manner, we can assume that for all 1 ≤ k ≤ p it holds that lk = l, where l ∈ N is
a constant. Then ϕ̂(Îk) = 〈g1k, . . . , gmk〉C[[x]] is equivalent to the fact that ŷ solves the
ideal containment

fjk(ŷ) ∈ 〈g1k, . . . , gmk〉C[[x]] for all j = 1, . . . , l, k = 1, . . . , p.

By Corollary 3.2 we obtain the existence of ỹ ∈ C{x}n satisfying

fjk(ỹ) ∈ 〈g1k, . . . , gmk〉 for all j = 1, . . . , l, k = 1, . . . , p
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and
ŷ = ỹ mod 〈x〉2.

Define ϕ̃(xi) := ỹi for i = 1, . . . , n. Due to the fact that ỹ equals ŷ up to degree 1, we
know that ϕ̃ ∈ Aut(C{x}). Then this is equivalent to ϕ̃(Ik) ⊆ 〈g1k, . . . , gmk〉 for all 1 ≤
k ≤ p. By faithful flatness of C[[x]] over C{x} we obtain equality, since ϕ̃(Ik)C[[x]] =
〈gmk, . . . , gmk〉C[[x]].

Now we can prove that every positively graded ideal is algebraic.

Proposition 3.4. Let I ⊆ C{x} be an ideal. If there exits a diagonalizable derivation δ ∈ DerI
with positive eigenvalues, then there exists an automorphism ϕ ∈ Aut(C{x}), such that ϕ(I)
is generated by (δ - homogeneous) polynomials g1, . . . , gm ∈ C[x]. In particular, I is algebraic
after a suitable change of coordinates.

Proof. Applying Theorem 2.10 to the ideal I, we know that there exists a generating
set consisting of multihomogeneous elements. Applying Nakayama’s Lemma allows
us to reduce this to a minimal multihomogeneous generating set. There exists a for-
mal coordinate change ϕ̂ ∈ Aut(C[[x]]), such that δ is diagonal and the generators are
common eigenfunctions of δ. This implies that these generators have to be polynomi-
als. Denote them by g1, . . . , gm ∈ C[x]. Then ϕ̂(I) = 〈g1, . . . , gm〉C[[x]] and the result
follows from Lemma 3.3.

Theorem 2.63 implies the following:

Corollary 3.5. Let A = C{x} and I ⊆ A be an ideal. Assume that A/I is maximal multiho-
mogeneous of rank s and that A/I admits a positive grading. Denote by δ1, . . . , δs ∈ DerI(A)
the pairwise commuting diagonalizable derivations inducing this grading. Then there exists a
maximal algebraic torus T ⊆ AutI(A) with dim(T) = s.

Using positivity we obtain two sequences we can associate to an ideal. The first one
depends on the choice of coordinates, whereas the second one is independent of the
coordinates. Let us define the first sequence.

Definition 3.6. Let I ⊆ C{x} be an ideal and δ1, . . . , δm ∈ DerI(C{x}) be pairwise com-
muting diagonalizable derivations with integer eigenvalues. Assume that the eigenvalues of
δ1 are positive integers and that the coordinates are chosen in such a way, that the δi are
diagonal. Denote by wi ∈ Zs the weight-vectors arising from the δi. Let f1, . . . , fk be a min-
imal multihomogeneous polynomial generating set of I and define dij := degwj (fi) as well
as di := (di1, . . . , dis) ∈ Zs. Assume that d1, . . . ,dk are already ordered increasingly with
respect to the lexicographical ordering. Then we call the sequence

(d1, . . . ,dk)

the weight-sequence of I.

It remains to show that once a coordinate system is fixed, the weight-sequence does
not depend on the minimal generators of I.

Proposition 3.7. Let I ⊆ C{x} be an ideal and δ1, . . . , δm ∈ DerI(C{x}) be pairwise
commuting diagonalizable derivations with integer eigenvalues. Assume that the eigenvalues
of δ1 are positive integers and that the coordinates are chosen in such a way, that the δi are
diagonal. Let (d1, . . . ,dk) as well as (d′1, . . . ,d

′
k) be weight-sequences of I. Then it holds that

(d1, . . . ,dk) = (d′1, . . . ,d
′
k).
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Proof. Due to the fact that all multihomogeneous minimal generating systems con-
sist of polynomials the result follows from the statement in the polynomial case. For
details, see for example [KR05, Proposition 4.7.8].

The next sequence is independent of the chosen coordinate system.

Definition 3.8. Let I ⊆ C{x} be an ideal with minimal generating system f1, . . . , fk. Define
di := ord(fi). Assume that the di are ordered increasingly. Then we call the sequence

(d1, . . . , dk)

the order-sequence of I.

We finish this section with the proof that the order sequence is an invariant of the ideal
I.

Proposition 3.9. Let I ⊆ C{x} be an ideal with k minimal generators and let (d1, . . . , dk)
as well as (d′1, . . . , d

′
k) be order-sequences of I. Then it holds that

(d1, . . . , dk) = (d′1, . . . , d
′
k).

Proof. Being in a fixed coordinate system, the equality of the sequences follows from
Nakayama’s Lemma and the fact that ord(xi) = 1 > 0. The coordinate invariance
follows from the fact that every ϕ ∈ AutI(C{x}) satisfies ϕ(m) ⊆ m.

3.2 Positively Graded Tjurina Algebra

In this section we want to prove that every hypersurface singularity f with positively
graded Tjurina algebra is strongly Euler-homogeneous. From a computational point
of view, it is harder to check if the Tjurina algebra is positively graded, than to check
whether f ∈ mJf or not. The main importance for this result is the fact that we can
use it to classify a special type of singularities, so-called normal crossing divisors,
using only the Jacobian ideal Jf . Moreover, the class of hypersurface singularities
with monomial singular locus have a positively graded Tjurina algebra, hence they
are strongly Euler-homogeneous and thus their isomorphy class is determined by the
isomorphy class of their singular locus (see Theorem 1.101). The main property of
strongly Euler homogeneous singularities we are going to use is the following:

Lemma 3.10. Let X ⊆ Cn be a hypersurface singularity. Assume that X ∼= X ′ × Ck
for 1 ≤ k < n. Then X is strongly Euler-homogeneous if and only if X ′ is strongly Euler
homogeneous.

Proof. This follows from [GS06, Lemma 3.2].

We start with the main result of this section. The statement and proof are generalized
versions of [XY96, Theorem 1.2], where we use the analytic grading instead of the
classical grading.

Theorem 3.11. Let f ∈ m ⊆ C{x} and assume that the Tjurina algebra Tf admits a positive
grading. Then f ∈ mJf . Equivalently, the germ (V (f),0) is strongly Euler-homogeneous at
0.
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Proof. We assume that f is not analytically trivial, that is for every derivation ε ∈
Der〈f〉(C{x}) it holds that ε(0) = 0. Using Proposition 2.31 this does not change the
assumption on the positive grading of Tf .
In case f ∈ m\m2 we know that we can find a ϕ ∈ Aut(C{x}), such that ϕ(f) = x1. In
this case f is obviously strongly Euler-homogeneous. Due to this we assume from now
on that f ∈ m2. Define I := 〈f, fx1 , . . . , fxn〉. By assumption, we know that there exists
a diagonalizable derivation δ ∈ DerI(C{x}), such that δ(I) ⊆ I and δ has positive

integer eigenvalues. Due to Proposition 3.4 we can assume that δ =
n∑
i=1

wixi∂xi with

wi ∈ Z>0. In this case we can write I =
∑

d∈Z≥0

Id, where the Id are the homogeneous

components of I with weighted degree d. The positivity of δ implies the finiteness of
dimC Id. Since δ acts by multiplication with d on Id we can consider it as a bijective
linear operator on all Id with d > 0. By assumption f is a non-unit, hence we know
that I0 = {0}. This implies that δ acts bijectively on I. The inclusion δ(I) ⊆ I yields
the existence of ai ∈ C{x} and ai1, . . . , ain ∈ C{x} such that

δ (fxi) = aif +

n∑
j=1

aijfxj (3.4)

for all 1 ≤ i ≤ n. Due to the surjectivity of δ there exist di ∈ C{x} and di1, . . . , din ∈
C{x} satisfying

fxi = δ

dif +

n∑
j=1

dijfxj

 =

δ(di) +

n∑
j=1

dijaj

 f+

n∑
j=1

[
diwjxj + δ(dij) +

n∑
l=1

dilalj

]
fxj .

(3.5)
Define the derivations

τi =

n∑
j=1

[
diwjxj + δ(dij) +

n∑
l=1

dilalj − eij

]
∂

∂xj
∈ Der(C{x}),

where (eij)ij ∈ Rn×n is the unit matrix. Then Equation 3.5 implies τi(f) ∈ 〈f〉. Write

τi =
n∑
j=1

τij
∂
∂xj

. By assumption f is not analytically trivial, hence τi(0) = 0, or equiva-

lently τij(0) = 0 for 1 ≤ i, j ≤ n. This implies(
n∑
l=1

dilalj − eij

)
(0) = 0 (3.6)

for all 1 ≤ i ≤ n. Equation 3.6 is equivalent to the matrix (aij(0))ij being invertible.
Using the bijectivity of δ on I , there exist c, c1, . . . , cn ∈ C{x} such that:

f = δ

cf +
n∑
j=1

cjfxj

 =

δ(c) +
n∑
j=1

ajcj

 f +

n∑
j=1

[
cwjxj + δ(cj) +

n∑
i=1

ciaij

]
fxj

(3.7)
Define the derivation

η :=
n∑
j=1

[
cwjxj + δ(cj) +

n∑
i=1

ciaij

]
∂

∂xj
∈ Der(C{x}).
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Then η(f) =

[
1− δ(c)−

n∑
i=1

aici

]
f. By construction η(f) ∈ 〈f〉. Since f is not analyti-

cally trivial, we obtain (
n∑
i=1

ciaij

)
(0) = 0 (3.8)

for 1 ≤ i ≤ n. Equation 3.8 implies that the vector (ci(0))i is in the kernel of the matrix
(aij(0))ij . Since the latter is invertible, we obtain ci(0) = 0 for 1 ≤ i ≤ n. This implies

that u := 1 − δ(c) −
n∑
i=1

aici is a unit in C{x}. Now u−1η(f) = f, hence f is strongly

Euler-homogeneous.

Theorem 3.11 implies the following two corollaries.

Corollary 3.12. Let f ∈ C{x} and (X,0) := (V (f),0) ⊆ (Cn,0). If (Sing(X),0) is
positively graded, then the isomorphy class of (X,0) is determined by the isomorphy class of
Tf .

Corollary 3.13. Let f ∈ C{x} and (X,0) := (V (f),0) ⊆ (Cn,0). If (Sing(X),0) is defined
by a monomial ideal, then the isomorphy class of (X,0) is determined by the isomorphy class
of Tf .

The following lemma shows that the Tjurina ideal 〈f, Jf 〉 and the Jacobian ideal Jf
coincide in case they are positively graded and radical.

Lemma 3.14. Let f ∈ C{x}. If either 〈f, Jf 〉 is positively graded, or Jf is radical, then
〈f, Jf 〉 = Jf .

Proof. In case 〈f, Jf 〉 is positively graded and radical, Theorem 3.11 implies f ∈ mJf ,
hence 〈f, Jf 〉 = Jf . Now assume that Jf is radical. By [Fab15, Lemma 1] Jf being
radical implies f ∈ Jf and the statement follows.

The next aim of this section is to deduce a numerical characterization for normal cross-
ing divisors. First we need to define them.

Definition 3.15. Let X ⊆ Cn. We say X is normal crossing at p ∈ X , if there exists a
coordinate system x1, . . . , xn at p and an integer k ∈ N≥1 with k ≤ n, such that

(X, p) ∼= (V (x1 · . . . · xk), p).

If X is normal crossing at p we also call (X, p) a normal crossing divisor. If f ∈ C{x}
defines a normal crossing singularity in 0 we also say that f is a normal crossing divisor.

Example 3.16. We have already encountered an example for a normal crossing divisor in
Remark 1.95. We consider f = xyz ∈ C{x, y, z}. The real picture of (V (f),0) ⊆ (C3,0)
looks as follows:
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Figure 3.1: Real picture of the normal crossing divisor (V (xyz),0) ⊆ (C3,0).

To see an example of a non-normal crossing divisor at 0, we consider the equation g = xz(x+
z − y2) ∈ C{x, y, z}. The name of corresponding surface is Tülle. Tülle looks as follows:

Figure 3.2: Real picture of Tülle.

Outside of 0 Tülle has normal crossings, but in 0 it does not.

In [Fab15] Faber gave an algebraic characterization of being normal crossing. The
characterization given there needs the property of a hypersurface being free and it
uses the normalization. For the notion of normalization see [GLS07, Chapter 1.9]. The
notion of freeness is due to Saito (see [Sai80]) and looks as follows.

Definition 3.17. Let X ⊆ Cn be a divisor. We call X a free divisor at a point p ∈ X if the
module of logarithmic derivations Der(OX,p) is a free module. We say X is a free divisor if
X is free at any point p ∈ X. We say the complex space germ (X,0) is a free divisor, if there
exists a representant which is a free divisor.

Faber states the following criterion to decide whether a hypersurface singularity is
normal crossing at a point p ∈ X.

Theorem 3.18. LetX ⊆ Cn. For every p ∈ X we denote by fp ∈ C{x−p} the local equation
of X at p. Denote by π : X̃ → X the normalization of X. Then the following are equivalent:

(1) X has normal crossings at p ∈ X.

(2) X is free at p, Jf,p is radical and
(
X̃, π−1(p)

)
is smooth.
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Proof. See [Fab15, Theorem 1].

We want to give other criteria to check whether a hypersurface has normal crossings
at a point p or not, which do not use the normalization. The first one is the following.

Theorem 3.19. LetX ⊆ Cn. For every p ∈ X we denote by fp ∈ C{x−p} the local equation
of X at p. Furthermore, we define kp := dimC Der(OX,p)(p) and op := ord(hp). Then the
following are equivalent:

(1) X has normal crossings at p ∈ X.

(2) op = n−kp, Jf,p is radical, 〈fp, Jf,p〉 is, after a suitable change of coordinates, minimaly
generated by n− kp monomials of order op − 1.

Proof. The second statement follows by a simple computation in case X has normal
crossings at p, thus we only need to prove the converse. For simplicity we assume
p = 0 and we consider the complex space germ (X,0). Corollary 3.13 implies that
(X,0) is determined by (Sing(X),0), since the monomiality of 〈f, Jf 〉 implies that
Tf is positively graded. Before we prove the result, we reduce to the case k0 = 0.
By Theorem 1.70 it holds that (X,0) ∼= (X ′,0) × (Ck0 ,0). This implies the existence
of a f ′ ∈ C{x′} with (X ′,0) = (V (f ′),0). Then it also holds that (Sing(X),0) ∼=
(Sing(X ′),0)× (Ck0 ,0). In our case (Sing(X),0) corresponds to the algebra Tf , which
is generated by monomials. In particular, it has maximal multihomogeneity n. Thus,
by Proposition 2.32, (Sing(X ′),0) has maximal multihomogeneity n − k0 and Tf ′ is
also generated by monomials. Theorem 3.11 yields f ′ ∈ Jf ′ . Using [GR71, §5 Satz
17] we know that reducedness is preserved under analytic tensor products and since
Tf = Tf ′ ⊗̂OCk0 ,0, the ideal 〈f ′, Jf ′〉 = Jf ′ is radical. These considerations show that
we can replace f by f ′ or, equivalently, assume k0 = 0. Let g = x1 · . . . · xn. The
assumption on the monomial generators yields that

Jf =

〈
g

x1
, . . . ,

g

xn

〉
= Jg. (3.9)

Equation 3.9 is equivalent to saying that Tf = Tg, which by Theorem 1.101 is equiva-
lent to

(X,0) ∼= (V (x1 · . . . · xn),0).

By definition X has a normal crossing at 0.

Remark 3.20. The property of an ideal being generated by monomials is equivalent to having
maximal multihomogeneity n. Due to this all quantities respectively properties appearing in
Theorem 3.19 are invariants. Theorem 1.70 implies that k0 is an invariant, being radical is an
algebraic property, which does not depend on the chosen coordinate system, and the order of an
element respectively the order-sequence of a minimal generating system are invariants due to
Proposition 3.9. We are going to see in Chapter 5 how to compute these invariants.

Let us have a look at two examples.

Example 3.21. Let us have a look at a simple example to verify our criterion. Consider the
polynomial f = (x+y2)(y+xy) ∈ C{x, y, z}.We want to see whetherX := V (f) has normal
crossings in 0 or not. First we notice that k0 = 1 and that o0 = 2 = n − k0. In this simple
case both invariants can be read of from the defining equation. By SINGULAR computation we
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obtain 〈f, Jf 〉 = 〈x, y〉. Thus 〈f, Jf 〉 is a monomial ideal, which immediately implies that Tf
is positively graded. Due to this we know f ∈ mJf , hence Jf is also a radical ideal. The order
sequence of the Jacobian ideal is (1, 1) = (n− k0 − 1, n− k0 − 1). Then Theorem 3.19 yields
(X,0) ∼= (V (x · y),0) and X has normal crossings at 0.
Next we want to show that Tülle from Example 3.16 has no normal crossings at 0. Let g =
xz(x+ z − y2) ∈ C{x, y, z} and Y := V (g). A SINGULAR computation shows that

〈g, Jg〉 = 〈x2 + 2xz − xy2, 2xz + z2 − y2z, yz2 − y3z〉.

This generating system is minimal, hence we have the order-sequence (2, 2, 3). By Theorem
3.19 Y cannot have normal crossings at 0.

Remark 3.22. Theorem 3.19 has the advantage that, if the order sequence has different entries,
we are already done in disproving that the given hypersurface has normal crossings, whereas
all checks in Theorem 3.18 can be time consuming.

3.3 Stanley–Reisner Monomial Singular Loci

In the previous section we have seen, that we can characterize normal crossing di-
visors almost only by numerical properties of the Jacobian ideal. Motivated by the
second problem of Hauser and Schicho in [HS11] to classify all hypersurface singu-
larities f where the ideal 〈f, Jf 〉 is monomial, we investigate this setup for the special
class of ideals of so-called Stanley–Reisner type. We give a complete characterization
of hypersurfaces, where the ideal 〈f, Jf 〉 is of Stanley–Reisner type. The motivation
for question arises from the fact that monomial ideals in general admit combinatorial
descriptions, see for example [HH11, Part III]. In order to state the main result of this
section we need the following definitions:

Definition 3.23. Let A = C{x} or C[[x]]. Let I ⊆ A be an ideal. We say I is an ideal of
monomial type, if there exists an automorphism ϕ ∈ Aut(A), such that ϕ(I) is a monomial
ideal. We say I is an ideal of Stanley–Reisner type, if I is a radical ideal of monomial type.

Definition 3.24. Let f ∈ C{x,y}. We say f is of Sebastiani–Thom type, if there exist
g ∈ C{x} and h ∈ C{y}, such that f = g + h. We say that a hypersurface singularity
X ⊆ Cn+m is of Sebastiani–Thom type at p = (p1, p2) ∈ X if there exists an isomorphism
such that (X, p) ∼= (V (f), p), where f ∈ C{x− p1,y − p2} is of Sebastiani–Thom type. We
call X a Sebastiani–Thom type hypersurface singularity, if it is of Sebastiani–Thom type
for all p ∈ X. We say a complex space germ (X,0) is of Sebastiani–Thom type, if there exists
a representant which is of Sebastiani–Thom type. Consider the germ (X,0) ∼= (V (f),0) with
f = g + h and g ∈ C{x}, h ∈ C{y}, We call the germs (X1,0) = (V (g),0) ⊆ (Cn,0) and
(X2,0) = (V (h),0) ⊆ (Cm,0) the Sebastiani–Thom components of (X,0).

Theorem 3.25. Let f ∈ C{x}. Then 〈f, Jf 〉 being an ideal of Stanley–Reisner type is equiv-
alent to the existence of an automorphism ϕ ∈ Aut(C{x}) and a partition of the x variables,
denoted by x(0),x(1), . . . ,x(l+1), such that

ϕ(f) =

r1∑
j=1

(
x

(0)
j

)2
+

l∑
i=1

gi,

where gi ∈ C[x(i)] is a normal crossing divisor for 1 ≤ i ≤ l. This means that all singularities
with Stanley–Reisner singular locus are of Sebastiani–Thom type where the summands are
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A1-singularities or normal crossing divisors. In particular, the Sebastiani–Thom components
are unique up to isomorphism and permutation.

Theorem 3.25 is similar to the Splitting Lemma (see Lemma 1.80). It states that every
singularity with Stanley–Reisner singular locus is the sum of an A1-singularity and a
Sebastiani–Thom singularity whose summands are all normal crossing divisors.

Definition 3.26. Let f ∈ C{x}.We say f defines a generalized normal crossing divisor, if
there exists a coordinate changeϕ ∈ C{x} and a partition of x denoted by x(0),x(1), . . . ,x(l+1),
such that

ϕ(f) =
l∑

i=0

gi,

where g0 ∈ C[x] is anA1-singularity and gi ∈ C[x(i)] is a normal crossing divisor for 1 ≤ i ≤
l.We call a hypersurface singularityX ⊆ Cn a generalized normal crossing singularity at
p, if the local equation fp ∈ C{x− p} of X at p defines a generalized normal crossing divisor.
We call a complex space germ (X, p) generalized normal crossing, if there exists a representant
which is generalized normal crossing.

3.4 Proof of Theorem 3.25

This section is dedicated to the proof of Theorem 3.25. We start by fixing the notation
and certain standing assumptions.

In our setup, Theorem 3.11 implies f ∈ mJf , hence we can directly assume that the
Jacobian ideal of f is a Stanley–Reisner ideal. We fix a minimal generating system of
Jf consisting of partial derivatives, and order them increasingly with respect to their
order.

Notation 3.27. Denote by k the order sequence of Jf . We write k = (k1, . . . ,kl) where the
ki are constant sequences with entry ki ∈ N≥1 for i = 1, . . . , l.

Notation 3.28. We partition the x variables into l+ 1 blocks x(j), such that for 1 ≤ j ≤ l the
power series ∂

x
(j)
i

f appear as minimal generators of Jf and are of order kj . The x(0) variables
correspond to power series ∂

x
(0)
j

f, which do not appear as a minimal generators of Jf in our

fixed minimal generating system.

Notation 3.29. By ri we denote the number of variables in ki.

Let j ∈ N with 1 ≤ j ≤ l. We can further partition the x variables. We write u(j)
i for the

minimal monomial generators of Jf of order kj .

The first result we need is a statement from linear algebra.

Lemma 3.30. Let n ∈ N≥1 and M ∈ Cn×n be an invertible matrix. Then we can permute the
rows of M such that the resulting matrix B = (bij) ∈ Cn×n satisfies bii 6= 0 for 1 ≤ i ≤ n.

Proof. We do the proof by induction on n. For n = 1 the statement is trivial. In case
the first column of M does not contain any non-zero value, M does not have full rank,
which is not possible. Denote by Mi,j the (n− 1)× (n− 1) matrix which is obtained if
we delete the i-th row and j-th column of M. We have to show that Mi,1 has full rank
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for some i with mi1 6= 0. Assume this is not the case, this means for all i with mi1 6= 0
we have det(Mi,1) = 0. Then det(M) = 0 by Laplace expansion. Thus there exists an
index k with mk1 6= 0 and det(Mk,1) 6= 0. We swap the first row with the k-th row and
we obtain a new matrix B = (bij). By construction B has full rank and we can argue
by induction.

Now we can prove the auxiliary lemma we are going to use in every upcoming proof.

Lemma 3.31. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. Then, after possibly renumbering the variables x(j)
1 , . . . , x

(j)
rj , we can assume

u
(j)
i ∈ Supp

(
∂
x
(j)
i

f
)

for all 1 ≤ j ≤ l and 1 ≤ i ≤ rj .

Proof. Due to the fact that we have two minimal generating systems, there exists an
invertible matrix M ∈ C{x}n×n, such that

∂
x
(1)
1

f

...
∂
x
(l)
rl

f

 = M


u

(1)
1
...
u

(l)
rl

 .

In order to see which monomial is contained in the support of the partial derivatives
we consider the non-zero entries of the matrix M(0), which is also invertible, since
A is invertible. By our assumption on the order of the u(j)

i and ∂
x
(j)
i

f, we know that

u
(j)
i /∈ Supp

(
∂
x
(j′)
i′
f

)
for any j′ > j. This means that the shape of M(0) is as follows:

M(0) =


M1 ∗ ∗ . . . ∗
0 M2 ∗ . . . ∗
0 0 M3 . . . ∗
...

...
...

. . .
...

0 0 0 0 Ml

 ,

where Mj ∈ Crj×rj are invertible matrices. By Lemma 3.30 we can reorder the rows
of the Mj independently, such that the diagonal entries of the resulting matrices are
non-zero. This is equivalent to renumbering the variables x(j)

1 , . . . , x
(j)
rj , such that

u
(j)
i ∈ Supp

(
∂
x
(j)
i

f
)

for all 1 ≤ j ≤ l and 1 ≤ i ≤ rj .

Next we need an auxiliary lemma, which implies that a monomial of a certain type is
a minimal monomial generator of Jf .
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Lemma 3.32. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. Suppose that for all indices j with 1 ≤ j ≤ l and for all 1 ≤ i ≤ rj

u
(j)
i ∈ C[x(0),x(1), . . . ,x(j)].

Then, for fixed index j, the following holds:
If, after renumbering the minimal monomial generators, u(j)

1 = m · x(j′)
i ∈ Supp

(
∂
x
(j)
1

f
)
,

where m ∈ C[x(0),x(1), . . . ,x(j)] is a monomial, 0 ≤ j′ ≤ j, 1 ≤ i ≤ rj′ and i 6= 1 in case
j = j′, then the monomial u = m · x(j)

1 is a minimal monomial generator of Jf .

Proof. After renumbering the minimal monomial generators and the x(j′),x(j) vari-
ables, we can consider u(j)

1 = m·x(j′)
1 ∈ Supp

(
∂
x
(j)
1

f
)

or u(j)
1 = m·x(j)

2 ∈ Supp
(
∂
x
(j)
1

f
)
.

Let u(j)
1 = m · x(j′)

1 ∈ Supp
(
∂
x
(j)
1

f
)
. Then the monomial m · x(j′)

1 · x(j)
1 ∈ Supp(f) and

hence m · x(j)
1 ∈ Supp(∂

x
(j′)
1

f) ⊆ Jf . In case u(j)
1 = m · x(j)

2 it follows analogously that

m · x(j)
1 ∈ Supp(∂

x
(j)
2

f) ⊆ Jf . We consider two cases.

(1) In case x(j)
1 divides m, we know that m ∈ Jf , since Jf is radical. Due to the fact

that ord(m) ≤ kj − 1, we know that there exists a minimal monomial generator
u

(j′′)
i′ , where 1 ≤ j′′ < j and 1 ≤ i′ ≤ rj′′ , which divides m. Then u(j)

1 is divisible
by u

(j′′)
i′ . In this case u(j)

1 is not a minimal monomial generator, which yields a
contradiction to our assumption.

(2) In case x(j)
1 does not divide m, we obtain that m · x(j)

1 is another minimal mono-
mial generator of order kj , since no u

(j′′)
i′ for 1 ≤ j′′ < j and 1 ≤ i′ ≤ rj′′ is

divisible by x(j)
1 and since no u(j′′)

i′ can divide m, since u(j)
1 is a minimal genera-

tor.

The first application of Lemma 3.31 are the following two results.

Lemma 3.33. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. Suppose that for all for all indices j with 1 ≤ j ≤ l and for all 1 ≤ i ≤ rj

u
(j)
i ∈ C[x(0),x(1), . . . ,x(j)].

Then, for fixed index j, the following holds:
If, after renumbering the minimal monomial generators, u

(j)
1 = m · x(j′)

i , where
m ∈ C[x(0),x(1), . . . ,x(j)] is a monomial, 0 ≤ j′ < j and 1 ≤ i ≤ rj′ , then the mono-
mials u1 = m · x(j)

1 , . . . , urj = m · x(j)
rj are minimal monomial generators of Jf .

Proof. Assume that, after renumbering the minimal monomial generators, u(j)
1 = m ·

x
(j′)
1 for some 0 ≤ j′ < j ≤ l and m ∈ C[x(0),x(1), . . . ,x(j)] a monomial of order
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kj − 1. By Lemma 3.31 we can assume that u(j)
1 ∈ Supp

(
∂
x
(j)
1

f
)

after renumbering the

x(j) variables. At this point we apply Lemma 3.32 and obtain that u1 = m · x(j)
1 is a

minimal monomial generator of order kj . We denote this monomial by u(j)
2 . Assume

that we have constructed the minimal monomial generators u(j)
1 = m · x(j′)

1 , u
(j)
2 =

m · x(j)
1 , . . . , u

(j)
k = m · x(j)

k−1, where k ≤ rj . Lemma 3.31 implies that, after possibly

renumbering the variables x(j),we can assume that u(j)
i ∈ Supp

(
∂
x
(j)
i

f
)

for 1 ≤ i ≤ k.

Denote the permutation on the indices of the x(j) variables by σ. Then u
(j)
1 = m ·

x
(j′)
1 , u

(j)
2 = m · x(j)

σ(1), . . . , u
(j)
k = m · x(j)

σ(k−1). Denote by i the index, such that 1 ≤ i ≤ k
and i /∈ σ ({1, . . . , k − 1}) .
In the case i = 1 we use u(j)

1 = m · x(j′)
1 ∈ Supp(∂

x
(j)
1

f). In case i > 1 we use u(j)
i =

m · x(j)
σ(i−1) ∈ Supp(∂

x
(j)
i

f). After applying Lemma 3.32, we obtain in both cases that

m · x(j)
i is another minimal monomial generator of order kj . We denote this monomial

by u
(j)
k+1. This shows that we can construct the rj minimal monomial generators as

claimed.

Lemma 3.32 and Lemma 3.33 allow us to show that the u(j)
i can only be divisible by

the variables, where the partial derivative of f with respect to them has the same order
as u(j)

i .

Lemma 3.34. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. Then

u
(j)
i ∈ C[x(j)]

for all 1 ≤ j ≤ l and 1 ≤ i ≤ rj .

Proof. In order to prove the lemma we have to be able to apply Lemma 3.32 and
Lemma 3.33. We do so in two steps.
Step 1:
The first step is to show that the u(j)

i are not divisible by the x(j′) variables with j′ > j.

Assume the contrary, that is, after renumbering, we can assume u(j)
1 = m · x(j′)

1 for
some 1 ≤ j < j′ ≤ l and m ∈ C[x] a monomial of order kj − 1. By Lemma 3.31

we can assume that u(j)
1 ∈ Supp

(
∂
x
(j)
1

f
)
. Then m · x(j)

1 · x
(j′)
1 ∈ Supp(f) and hence

m · x(j)
1 ∈ Supp

(
∂
x
(j′)
1

f
)
. This contradicts the fact that ord

(
∂
x
(j′)
1

f
)

= kj′ > kj .

Step 2:
Let 1 ≤ j ≤ l.Due to Step 1 we already know that u(j)

i ∈ C[x(0), . . . ,x(j)] for all 1 ≤ i ≤
rj . Assume that, after renumbering the minimal monomial generators, u(j)

1 /∈ C[x(j)].
This is equivalent to saying that there exists a monomial m ∈ C[x(0), . . . ,x(j)] of order
kj − 1 and an index 0 ≤ j′ < j, such that after renumbering the x(j) variables, we can
assume u(j)

1 = m · x(j′)
1 . Lemma 3.33 implies that we have rj + 1 minimal monomial

generators of order kj , which contradicts our assumption on the maximal number rj
of minimal monomial generators of order kj . Thus u(j)

i ∈ C[x(j)] for all 1 ≤ j ≤ l and
1 ≤ i ≤ rj .
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So far we know that u(j)
i ∈ C[x(j)]. The next step is to show that the minimal monomial

generators arise as derivatives of normal crossing divisors. We need the following
auxiliary lemma.

Lemma 3.35. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. We fix an index j, such that kj ≥ 2. Let N ⊆ {1, . . . , rj} with |N | = kj

and assume that, after renumbering the minimal monomial generators, u(j)
1 =

∏
i∈N

x
(j)
i . Then

u
(j)
1 6∈ Supp

(
∂
x
(j)
i

f
)

for all i ∈ N.

Proof. Assume the contrary, that is, there exists an i′ ∈ N, such that u(j)
1 ∈ Supp

(
∂
x
(j)

i′
f

)
.

Then g :=
(
x

(j)
i′

)2
·

∏
i∈N\{i′}

x
(j)
i ∈ Supp(f). Since kj ≥ 2, there exists an index i′′ ∈

N \ {i′}. Then ∂
x
(j)

i′′
g =

(
x

(j)
i′

)2
·

∏
i∈N\{i′,i′′}

x
(j)
i ∈ Jf . This monomial is not squarefree

so it must be divisible by some u(j′)
i′′ with 1 ≤ j′ < j and 1 ≤ i′′ ≤ rj′ . Since, due to

Lemma 3.34, u(j′)
i′′ /∈ C[x(j)], this yields a contradiction.

Lemma 3.36. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. We fix an index j with kj ≥ 2. Let N ⊆ {1, . . . , rj} with |N | = kj and
assume that, after renumbering the minimal monomial generators, u(j)

1 =
∏
i∈N

x
(j)
i . Then there

exists an index i′ ∈ {1, . . . , rj} \N, such that:

(1) g := x
(j)
i′ ·

∏
i∈N

x
(j)
i ∈ Supp(f), and

(2) for all s ∈ N ∪ {i′}, we obtain that ∂
x
(j)
s
g ∈ Jf are minimal monomial generators of

order kj .

In particular, if u(j)
1 ∈ Supp

(
∂
x
(j)
k

f
)

for a k ∈ {1, . . . , rj}\N, then one can choose i′ = k.

Proof. Due to Lemma 3.31 we know that u(j)
1 ∈ Supp

(
∂
x
(j)

i′
f

)
for a certain 1 ≤ i′ ≤ rj .

By Lemma 3.35 we know that i′ /∈ N. Thus g := x
(j)
i′ ·

∏
i∈N

x
(j)
i ∈ Supp(f).Due to the fact

that, by Lemma 3.34, u(j′)
i′′ /∈ C[x(j)] for all 1 ≤ j′ < j and 1 ≤ i′′ ≤ r′j , the monomials

∂
x
(j)
s
g ∈ C[x(j)] are minimal monomial generators for all s ∈ N ∪ {i′}.

Lemma 3.37. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. We fix an index j with kj ≥ 2. Then for all 1 ≤ i ≤ rj there exists a mono-
mial m ∈ C[x(j)], such that u = x

(j)
i · m is a minimal monomial generator of Jf of order

kj .



Explicit and effective Mather–Yau correspondence in view of analytic gradings 77

Proof. Lemma 3.31 implies that, after renumbering the x(j) variables, u(j)
i ∈ Supp

(
∂
x
(j)
i

f
)

for all 1 ≤ i ≤ rj . By Lemma 3.36 we obtain that all partial derivatives of g = x
(j)
i · u

(j)
i

are minimal monomial generators of Jf of order kj , hence the claim follows.

Lemma 3.38. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. We fix an index j with kj ≥ 2. Assume that, after renumbering the x(j)

variables, the parts of partition x(j,1), . . . ,x(j,t) have been constructed for some t ≥ 1 and that
these parts of partition are containing precisely the variables x(j)

1 , . . . , x
(j)
a , where 1 ≤ a < rj .

Furthermore, we assume that, after renumbering the minimal monomial generators, it holds
that u(j)

1 , . . . , u
(j)
b ∈ C[x(j,1), . . . ,x(j,t)] for a 1 ≤ b < rj . Assume that, after renumbering

minimal monomial generators with index greater than b and after renumbering the x(j) vari-
ables with index greater than a, there exist an integer w ∈ N with 1 ≤ w ≤ kj , and two sets
S ⊆ {1, . . . , a} and T = {a+ 1, . . . , a+ w} with |S| = kj − w and |T | = w, such that

u
(j)
b+1 =

∏
i1∈S

x
(j)
i1
·
∏
i2∈T

x
(j)
i2
.

Assume that u(j)
b+1 ∈ Supp

(
∂
x
(j)
s
f
)

for some 1 ≤ s ≤ rj . Then one the following holds:

(1) If s ≥ a + 1, then the partial derivatives of g := x
(j)
s · u(j)

b+1 are minimal monomial

generators of Jf of order kj distinct from u
(j)
1 , . . . , u

(j)
b .

(2) If w = kj and s ≤ a, then there exists a minimal monomial generator u = x
(j)
s ·m of

order kj distinct from u
(j)
1 , . . . , u

(j)
b , where m ∈ C[x

(j)
a+1, . . . , x

(j)
a+kj

].

(3) If w < kj and s ≤ a, then at least kj of the partial derivatives of g := x
(j)
s · u(j)

b+1 are

minimal monomial generators of Jf distinct from u
(j)
1 , . . . , u

(j)
b .

Proof.

(1) Let s ≥ a+1. By Lemma 3.35 we can assume, after renumbering the x(j) variables
with index not contained in {1, . . . , a}, that s = a + w + 1. Then Lemma 3.36
implies that g = x

(j)
s ·u(j)

b+1 ∈ Supp(f) and all partial derivatives of g are minimal

monomial generators of Jf ,which are by construction distinct from u
(j)
1 , . . . , u

(j)
b .

(2) Let w = kj and s ≤ a. We can assume, after renumbering the x(j) variables with
index contained in {1, . . . , a} and the so far constructed parts of partition, that
s = 1. Then Lemma 3.36 implies that g = x

(j)
1 ·

∏
i∈T

x
(j)
i ∈ Supp(f) and all partial

derivatives of g with respect to the variables x(j)
i for i ∈ T are minimal monomial

generators of Jf ,which are distinct from u
(j)
1 , . . . , u

(j)
b . In particular, since kj ≥ 2,

we obtain a minimal monomial generator u = x
(j)
1 ·

∏
i∈T\{a+1}

x
(j)
i .

(3) Let w < kj and s ≤ a. We can assume, after renumbering the x(j) variables with
index contained in {1, . . . , a} and the so far constructed parts of partition, that
s = 1. Then Lemma 3.36 implies that g = x

(j)
1 · u

(j)
b+1 ∈ Supp(f) and all partial
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derivatives of g are minimal monomial generators of Jf . By construction at least
kj are distinct from u

(j)
1 , . . . , u

(j)
b .

Lemma 3.39. Let f ∈ C{x} and assume that Jf is a Stanley–Reisner ideal with order-
sequence k = (k1, . . . ,kr) ∈ (N≥1)n and minimal monomial generating system u

(j)
1 , . . . , u

(j)
rj ,

where 1 ≤ j ≤ l. Then for each 1 ≤ j ≤ l with kj ≥ 2 the following hold:

(1) There exists a partition of the x(j) variables denoted by x(j,1), . . .x(j,lj) for some lj ∈ N
with 1 ≤ lj ≤ rj , where each part of the partition contains kj + 1 variables.

(2) We define g(j,l′) :=
kj+1∏
i=1

x
(j,l′)
i ∈ C[x(j,l′)] for any 1 ≤ l′ ≤ lj . Then for all 1 ≤ l′ ≤ lj

and 1 ≤ s ≤ kj + 1 the monomials ∂
x
(j,l′)
s

g(j,l′) are minimal monomial generators of Jf .

Proof. Fix a j ∈ {1, . . . , l}with kj ≥ 2.Due to Lemma 3.34 we can assume u(j)
i ∈ C[x(j)]

for all 1 ≤ i ≤ rj . The upcoming proof is going to be constructive. Due to Lemma 3.31

we can assume that u(j)
1 ∈ Supp

(
∂
x
(j)
1

f
)
. By Lemma 3.35 we can assume that, after

renumbering the x(j) variables, u(j)
1 =

kj+1∏
i=2

x
(j)
i . Define x(j,1) = (x

(j)
1 , . . . , x

(j)
kj+1) and

g(j,1) =
kj+1∏
i=1

x
(j)
i . The statement for g(j,1) follows from Lemma 3.36. If x(j) contains

only kj + 1 variables the statement is proved. Assume x(j) contains more than kj + 1
variables and assume that, after renumbering the x(j) variables, the parts of partition
x(j,1), . . . ,x(j,t) have been constructed for some t ≥ 1 and that these parts of partition
are containing precisely the variables x(j)

1 , . . . , x
(j)
a , where 1 ≤ a < rj . Furthermore,

we assume that, after renumbering the minimal monomial generators, it holds that
u

(j)
1 , . . . , u

(j)
b ∈ C[x(j,1), . . . ,x(j,t)] for a 1 ≤ b ≤ rj . By construction the ideal Jf has

at most n minimal monomial generators. Due to our convention, there are exactly rj
minimal monomial generators of order kj of Jf . By Lemma 3.37 there exists a minimal
monomial generator u(j)

b+1 6∈ C[x(j,1), . . . ,x(j,t)]. In particular, b < rj . After renumber-
ing the x(j) variables with index greater than a, there exist an integer w ∈ N with
1 ≤ w ≤ kj , and two sets S ⊆ {1, . . . , a} and T = {a+ 1, . . . , a+ w} with |S| = kj − w
and |T | = w, such that

u
(j)
b+1 =

∏
i1∈S

x
(j)
i1
·
∏
i2∈T

x
(j)
i2
.

Due to Lemma 3.31 we know that u(j)
b+1 ∈ Supp

(
∂
x
(j)
s
f
)

for some 1 ≤ s ≤ rj . We are

now in the setup of Lemma 3.38. We construct the next part of partition x(j,t+1) and
minimal monomial generators u(j)

b+2, . . . , u
(j)
b+kj

, respectively u(j)
b+2, . . . , u

(j)
b+kj+1 distinct

from u
(j)
1 , . . . , u

(j)
b iteratively.

Case 1: Let w = kj and s ≥ a + 1. By Lemma 3.35 we can assume, after renumbering
the x(j) variables with index not contained in {1, . . . , a}, that s = a+ kj + 1. We define

x(j,t+1) :=
(
x

(j)
a+1, . . . , x

(j)
a+kj+1

)
and g(j,t+1) := x

(j)
s · u(j)

b+1. Lemma 3.38 implies that all
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kj + 1 partial derivatives of g(j,t+1) are minimal monomial generators of Jf of order
kj , which are distinct from u

(j)
1 , . . . , u

(j)
b .

Case 2: Let w = kj and s ≤ a. We can assume, after renumbering the x(j) variables
with index contained in {1, . . . , a} and the so far constructed partitions, that s = 1.

Then Lemma 3.38 implies that u = x
(j)
1 ·

∏
i∈T\{a+1}

x
(j)
i is a minimal monomial genera-

tor of Jf . Redefine u(j)
b+1 := u.

Case 3: Let w < kj and s ≥ a + 1. By Lemma 3.35 we can assume, after renumbering
the x(j) variables with index not contained in {1, . . . , a}, that s = a + w + 1. In this
case we define x(j,t+1) :=

(
x

(j)
a+1, . . . , x

(j)
a+w+1

)
and g(j,t+1) := x

(j)
s · u(j)

b+1. Lemma 3.38

implies that all kj + 1 partial derivatives of g(j,t+1) are minimal monomial generators
of Jf of order kj , which are distinct from u

(j)
1 , . . . , u

(j)
b .

Case 4: Let w < kj and s ≤ a. We can assume, after renumbering the x(j) variables
with index contained in {1, . . . , a} and the so far constructed partitions, that s = 1.

Define x(j,t+1) :=
(
x

(j)
a+1, . . . , x

(j)
a+w

)
and g(j,t+1) := x

(j)
1 u

(j)
b+1. Lemma 3.38 implies that

at least kj partial derivatives of g(j,t+1) are minimal monomial generators of Jf of or-
der kj , which are distinct from u

(j)
1 , . . . , u

(j)
b .

Note that Case 2 changes the input of our iteration so that we end up in either Case
3 or Case 4. In Case 3 and Case 4 we partition strictly less variables than minimal
monomial generators that are constructed. This implies that we can continue the it-
eration after a new part of the partition has been constructed in Case 3 or Case 4.
Since we deal with only finitely many variables this yields a contradiction. So every
part of the partition has been constructed in Case 1. The statement then follows by
construction.

Now we have all tools to prove Theorem 3.25.

Proof of Theorem 3.25. Due to Corollary 3.12, it suffices to find a partition of the vari-

ables x(0),x(1), . . . ,x(t) and a g ∈ C{x}, such that Tf = Tg and g =
r1∑
j=1

(
x

(1)
j

)2
+

t∑
i=2

gi,

where gi ∈ C[x(i)] is a normal crossing divisor for 2 ≤ i ≤ t. We define x(0), as before,
to be variables, whose partial derivatives do not appear in a fixed minimal generat-
ing system of Jf . First assume that ord(f) = 2. Define x(1) to be the variables which
are minimal monomial generators of Jf of order 1. We can partition the remaining
variables according to Lemma 3.39 into x(2), . . . ,x(t), where the minimal monomial
generators with respect to each set of variables arise as the partial derivatives of a

normal crossing divisor gi ∈ C[x(i)]. We define g :=
r1∑
j=1

(
x

(1)
j

)2
+

t∑
i=2

gi and obtain

Tf = Tg . In case ord(f) ≥ 3, the statement follows analogously, since we can drop the
sum of squares in the definition of g. The uniqueness statement follows immediately
from the uniqueness of the order-sequence.
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Chapter 4

Free Singularities and Generalized
Normal Crossing Divisor

This chapter is joint work with D. Pol (see [EP20]). Section 4.1 is common work with D.
Pol. Section 4.2 has been contributed by D. Pol, whereas the sections 4.3 and 4.4 have
been contributed by the author of this thesis. The purpose of this chapter is to give
new families of free singularities and to investigate properties of generalized normal
crossing divisors, which are related to the module of (multi-)logarithmic derivations.
We first show that a generic equidimensional subspace arrangement of codimension k
in Cn is free if the number of subspaces is lower than or equal to

(
n
k

)
(see Theorem 4.18).

Afterwards we show that a product of two Cohen–Macaulay subspaces is free if and
only if the two subspaces are free (see Theorem 4.30). In the particular case of divisors,
it follows that the product of two divisors is a free complete intersection of codimen-
sion 2 if and only if both divisors are free. All computations have been performed us-
ing the computer algebra system SINGULAR ([Dec+19]). In order to compute all men-
tioned algebraic objects we provide the SINGULAR-library logmodules.lib which can
be downloaded under https://www.math.univ-angers.fr/~pol/logmodules.lib.

We conclude this chapter by showing that singular loci of generalized normal crossing
divisors are free, as well as that these singularities are Saito holonomic.

4.1 Preliminaries

Let n ∈ N≥1. Throughout this section, if not stated otherwise, let A be either C[x] or
C{x}. For the rest of this section, we will also write Cn in the local case instead of
(Cn,0).

We denote by Der(A) the A-module of vector fields on Cn, which is a free A-module
of rank n, generated by the vector fields {∂x1 , . . . , ∂xn}.

For q ∈ N we denote by Ωq
Cn the module of differential q-forms on Cn and we consider

the usual pairing 〈·, ·〉 :
∧q Der(A)× Ωq

Cn → A.

A generalization of the module of logarithmic vector fields along singular hypersur-
faces (see [Sai80]) is introduced in [GS12] for complete intersections and in [Pol20] for
general equidimensional subspaces. We give here the equivalent definition as stated
in [ST18, Definition 3.19]:
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Definition 4.1. Let X ⊆ Cn be a Cohen–Macaulay subspace of codimension k defined as the
vanishing set of the radical ideal IX ⊆ A. The module of multi-logarithmic k-vector fields
along X is defined by

Derk (− logX) =

{
δ ∈

k∧
Der(A) | ∀(f1, . . . , fk) ∈ IkX , 〈δ, df1 ∧ · · · ∧ dfk〉 ∈ IX

}
.

Remark 4.2. Let {h1, . . . , hr} be a generating set of IX . Let δ ∈
∧k Der(A). Then δ ∈

Derk (− logX) if and only if for all (i1 < · · · < ik) ⊆ {1, . . . , r}, 〈δ, dhi1 ∧ · · · ∧ dhik〉 ∈
IX .

A hypersurface D is called free if and only if Der(− logD) := Der1 (− logD) is a free
A-module (see [Sai80]). A generalization of this notion to higher codimensional sub-
spaces is the following (see [Pol20, Definition 4.3]):

Definition 4.3. An equidimensional reduced subspace X ⊆ Cn of codimension k is called
free if and only if

projdim
(

Derk (− log X)
)

= k − 1.

In the case of hypersurfaces, the criterion of Terao and Aleksandrov ([Ter80], [Ale88])
gives a characterization of freeness in terms of a property of the singular locus. It is
shown in [Pol20] that this property can be extended to Cohen–Macaulay spaces.

Let X ⊆ Cn be a reduced equidimensional subspace. One can prove that there exists
a regular sequence (f1, . . . , fk) ⊆ IX such that the ideal IC generated by f1, . . . , fk is
radical (see [AT08, Remark 4.3] or [Pol16, Proposition 4.2.1] for a detailed proof of this
result). We fix such a sequence (f1, . . . , fk) and denote by C the complete intersection
defined by the ideal IC = 〈f1, . . . , fk〉.

Notation 4.4. Let X be a reduced equidimensional subspace of codimension k in Cn and C be
a reduced complete intersection of codimension k in Cn containing X . Let JX/C = JC + IX ,
where JC is the Jacobian ideal of C, that is to say, the ideal of A generated by the k× k minors
of the Jacobian matrix of (f1, . . . , fk).

Remark 4.5. The vanishing set of the ideal JX/C is the restriction of the singular locus of C
to X . If X is not a complete intersection, it does not describe the singular locus of X .

The following proposition generalizes [GS12, Definition 5.1]:

Proposition 4.6. Let X ⊆ Cn be a reduced Cohen–Macaulay subspace of codimension k in
Cn and C be a reduced complete intersection of codimension k containing X . Then X is free if
and only if A/JX/C = 0 or A/JX/C is Cohen–Macaulay of dimension n− k − 1.

Proof. See [Pol20, Proposition 4.2].

Remark 4.7. If C ′ is another reduced complete intersection of codimension k containing X ,
the modules A/JX/C and A/JX/C′ are isomorphic as A/IX -modules (see [Pol20, Remark
3.8]).

The module of multi-logarithmic k-vector fields of a union of reduced equidimen-
sional subspaces of the same codimension satisfies the following property:
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Proposition 4.8. Let X be a reduced equidimensional subspace of codimension k, with irre-
ducible components X1, . . . , Xs. Then:

Derk (− logX) =

s⋂
i=1

Derk (− logXi) .

Proof. See [Pol20, Proposition 5.1].

Before giving some basic motivating examples of free singularities, let us introduce
the following notation:

Notation 4.9. We denote by K(f) the Koszul complex of a sequence (f1, . . . , fk) in A:

K(f) : 0→
k∧
Ak

dk−→ · · · d2−→
1∧
Ak

d1−→ A→ 0. (4.1)

The maps dp are given by

dp(ei1 ∧ · · · ∧ eip) =

p∑
j=1

(−1)j+1fjei1 ∧ · · · ∧ êij ∧ · · · ∧ eip .

We also set K̃(f) the complex obtained from K(f) by removing the last A.

The complex 0→ A→ 0 is denoted by C.

Example 4.10. Let E0 = {i1 < · · · < ik} ⊆ {1, . . . , n} and let X be the vector subspace of
Cn defined by the regular sequence (xi1 , . . . , xik). Then a generating set of Derk (− logX) is

{xj ∧i∈E0 ∂xi | j ∈ E0} ∪ {∧i∈E∂xi | E 6= E0} .

A minimal free resolution of Derk (− logX) is then given by

K̃ ((xi)i∈E0)⊕
⊕

1≤i≤(nk)−1

C.

In particular, projdim
(
Derk (− log X)

)
= k − 1 so that X is free.

More generally, the following holds:

Proposition 4.11. Let X be an equidimensional union of coordinate subspaces. Then X is
free.

Proof. See [Pol20, Corollary 5.5]
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4.2 Generic Subspace Arrangements and Freeness

In this section we assume A = C[x].

Definition 4.12. An equidimensional subspace arrangement of codimension k in Cn is a finite
union of pairwise distinct vector subspaces of codimension k in Cn. We denote by IX ⊆ S the
ideal of vanishing polynomials on X .

Definition 4.13. Let δ ∈
∧k Der(A). We say that δ is homogeneous of degree p if there exist

homogeneous polynomials (aE)|E|=k,E⊆{1,...,n} of degree p such that

δ =
∑

E⊆{1,...,n}
|E|=k

(
aE
∧
i∈E

∂xi

)
.

Notation 4.14. Let M be a graded A-module. For p ∈ N we denote by Mp the submodule of
M composed of the homogeneous elements of M of degree p and 0 ∈M.

Definition 4.15. Let Λ be a finite index set and let X =
⋃
i∈ΛXi be an equidimensional

subspace arrangement of codimension k. We say that X is generic if for j = min
{
|Λ|,

(
n
k

)}
and for all I ⊆ Λ with |I| = j, it holds that

dimC

(⋂
i∈I

Derk (− logXi)0

)
=

(
n

k

)
− j.

Remark 4.16. The condition given in Definition 4.15 generalizes the usual definition of
generic hyperplane arrangement (see [OT92, Definition 5.22]), since for a hyperplane H ,
Der1 (− logH)0 is equal to the vector fields tangent to the hyperplane.

Remark 4.17. If the coefficients of the defining linear equations of the irreducible components
are chosen randomly, the condition of Definition 4.15 is satisfied. This remark can be used to
create examples in a computer algebra system such as SINGULAR.

Up to a change of coordinates, it is easy to see that a generic hyperplane arrangement
in Cn with at most n hyperplanes is isomorphic to a normal crossing divisor, and thus
is free. The purpose of this section is to prove the following generalization of this
result:

Theorem 4.18. Let X = X1 ∪ . . . ∪ Xs be an equidimensional subspace arrangement of
codimension k in Cn such that for all i ∈ {1, . . . , s}, Xi is a vector subspace defined by the
regular sequence (hi,1, . . . , hi,k).

If s ≤
(
n
k

)
and X is a generic subspace arrangement, then there exists a basis

(
δ1, . . . , δ(nk)

)
of
∧k Der(A) such that a minimal generating set of Derk (− logX) is given by

{hi,jδi | i ∈ {1, . . . , s} , j ∈ {1, . . . , k}} ∪ {δi | i ≥ s+ 1} . (4.2)

Corollary 4.19. Let X = X1 ∪ . . . ∪ Xs be an equidimensional subspace arrangement of
codimension k in Cn satisfying the hypothesis of Theorem 4.18. Then X is free.

In order to prove Theorem 4.18, we need the following auxiliary lemmas.
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Lemma 4.20. Let h1, . . . , hk be k linear polynomials defining a vector subspaceX of codimen-
sion k. Let {i1 < . . . < ik} ⊆ {1, . . . , n}. We assume that the k×k minor of Jh relative to the
columns indexed by i1, . . . , ik is non-zero. Then a minimal generating set of Derk (− logX)
is of the form: {

hi∂xi1 ∧ · · · ∧ ∂xik | i ∈ {1, . . . , k}
}
∪
{
δ2, . . . , δ(nk)−1

}
, (4.3)

where for i ∈
{

2, . . . ,
(
n
k

)
− 1
}

, δi is homogeneous of degree 0 and such that{
∂xi1 ∧ · · · ∧ ∂xik , δ2, . . . , δ(nk)

}
is a basis of

∧k Der(A).

Proof. Let us consider new coordinates (y1, . . . , yn) such that for j ∈ {1, . . . , k}, yij =
hj and for all j /∈ {i1, . . . , ik}, yj = xj . The condition on the minor ensures that it is
indeed a change of coordinates.

Let S ∈ GL(C, n) be the matrix such that (y1, . . . , yn)T = S (x1, . . . , xn)T .

In the new system of coordinates, the subspace X is defined by yi1 , . . . , yik so that a
minimal generating set of Derk (− logX) is given by Example 4.10.

It holds that (∂y1 , . . . , ∂yn) = (∂x1 , . . . , ∂xn)S−1.

Let B = (bij)1≤i,j≤n = S−1.

Since for all j /∈ {i1, . . . , ik}, yj = xj , we have that for all (i, j) such that i /∈ {i1, . . . , ik}
and j 6= i, bij = 0. Therefore, for j ∈ {1, . . . , k}, ∂yij is a linear combination of
∂xi1 , . . . ∂xik . Thus, ∂yi1 ∧ · · · ∧ ∂yik can be expressed as a non-zero multiple of ∂xi1 ∧
· · · ∧ ∂xik .

Remark 4.21. With the same assumptions as for Lemma 4.20, for any 0 6= δ ∈
(∧k Der(A)

)
0
\

Derk (− logX)0 and B a basis of Derk (− logX)0, one can see that B∪{hiδ | i ∈ {1, . . . , k}}
is a minimal generating set of Derk (− logX).

Lemma 4.22. Let A be a graded ring and F be a free graded A-module of rank n ∈ N>0 with
bases B = {b1, . . . , bn} and C = {c1, . . . , cn}. For k ∈ {1, . . . , n − 1}, let I, I1, . . . , Ik ⊆ A
be homogeneous ideals. Define the graded modules V =

⊕k
i=1 Iibi ⊕

⊕n
j=k+1Abj and W =

Ic1 ⊕
⊕n

i=2Aci. If dimC(V0 ∩W0) = n− k − 1, then there exists a basis B′ = {b′1, . . . , b′n}
of F, such that:

V ∩W =
k⊕
i=1

Iib
′
i ⊕ Ib′k+1 ⊕

n⊕
j=k+2

Ab′j .

Proof. Let V ′ = 〈V0〉 and W ′ = 〈W0〉. After renumbering the bi with index i ≥ k + 1,
we can assume bk+1 /∈ V0 ∩W0. Then B = {bk+1} is a basis of F/W ′, which yields the
existence of ai ∈ A andwi ∈W ′, such that bi = aibk+1+wi for i ∈ {1, . . . , k, k+2, . . . , n}
and the existence of a unit ak+1 ∈ A and of wk+1 ∈ W ′ with c1 = ak+1bk+1 + wk+1.
This implies that B′ = {w1, . . . , wk, bk+1, wk+2, . . . , wn} is a basis of F. We obtain

V =

k⊕
i=1

Iiwi ⊕Abk+1 ⊕
n⊕

j=k+2

Awj

and

W =
k⊕
i=1

Awi ⊕ Ibk+1 ⊕
n⊕

j=k+2

Awj .
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Then

V ∩W =

k⊕
i=1

Iiwi ⊕ Ibk+1 ⊕
n⊕

j=k+2

Awj .

Proof of Theorem 4.18. Let us prove Theorem 4.18 by induction. The initialisation for
s = 1 is given by Lemma 4.20. Let N =

(
n
k

)
and s ∈ {1, . . . , N − 1}.

We assume that X1, . . . , Xs+1 are linear subspaces of Cn of codimension k which are
in generic position.

Let X =
⋃s
i=1Xi, V = Derk (− logX) ,W = Derk (− logXs+1) and F = AN . By the

induction hypothesis, dimC V0 = N − s and by Lemma 4.20, dimCW0 = N − 1. Then
dimC V0 ∩W0 = N − s − 1 follows from the genericity of the subspace arrangement.
By Proposition 4.8 it holds that

Derk

(
− log

(
s+1⋃
i=1

Xi

))
= V ∩W.

Then Lemma 4.22 yields the result.

Proof of Corollary 4.19. Let {δ1, . . . , δN} be a basis of
∧k DerCn such that a minimal gen-

erating set of Derk (− logX) is given by (4.2). Since for all i ∈ {1, . . . , s}, (hi,1, . . . , hi,k)
is a regular sequence, a minimal free resolution of the ideal 〈hi,1, . . . , hi,k〉 is given by
the truncated Koszul complex K̃i := K̃(hi,1, . . . , hi,k). Since

Derk (− logX) =

s⊕
i=1

〈hi,1, . . . , hi,k〉 δi ⊕
N⊕

i=s+1

Sδi,

we deduce that a minimal free resolution of Derk (− logX) is

K̃1 ⊕ · · · ⊕ K̃s ⊕
N⊕

i=s+1

C

where C is defined as in Notation 4.9. Thus, the projective dimension of Derk (− logX)
is k − 1 and X is free.

The following example shows that the genericity assumption cannot be dropped in
Theorem 4.18.

Example 4.23. Let us consider the subspace arrangement X defined by the equations h1 =
xy(x − y + z − t) and h2 = zt. It is the union of 6 planes in C4. Computations using
SINGULAR show that X is not free, since a minimal free resolution is given by:

0→ A→ A5 → A10 → Derk (− logX)→ 0.

Remark 4.24. The condition on the number of subspaces in Theorem 4.18 cannot be dropped,
as we observed by considering randomly generated examples with more than

(
n
k

)
subspaces

with SINGULAR.
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4.3 Constructing Free Singularities via Products

In this section we describe two ways of constructing new free singularities from known
free singularities via two kinds of products: scheme-theoretic products and a general-
ization of the product in the sense of hyperplane arrangements.

Notation 4.25. Let A1 = C{x} and A2 = C{y}.

We set A = A1⊗̂A2 ' C{x,y}.

Notation 4.26. The following notations are fixed in this section.

For i ∈ {1, 2} let (Xi,0) ⊆ (Cni ,0) be a reduced Cohen–Macaulay subspace of codimension
ki and (fi,1, . . . , fi,ki) ⊆ Ai be the equations of a reduced complete intersection (Ci,0) of
codimension ki containing (Xi,0).

The next lemma recalls basic properties of analytic tensor products which will be used
after.

Theorem 4.27. Let R1 and R2 be two analytic C-algebras and R = R1⊗̂R2. Let Mi be an
Ri-module for i ∈ {1, 2} and define MiR = Mi ⊗Ri R. Then

(1) depthR(M1R ⊗RM2R) = depthR1
(M1) + depthR2

(M2),

(2) dimR(M1R ⊗RM2R) = dimR1(M1) + dimR2(M2).

(3) R1 and R2 are reduced if and only if R is reduced.

Proof. See [GR71, Kapitel III §5 Satz 10], [GR71, Kapitel III §5 Satz 17] and [GR71,
Kapitel III §5 Satz 19].

It follows that:

Corollary 4.28. With the hypothesis of Notations 4.26, the product (X1,0) × (X2,0) ⊆
(Cn1 ,0)× (Cn2 ,0) is a reduced Cohen–Macaulay subspace.

Remark 4.29. We define (X,0) := (X1,0)×(X2,0). A reduced complete intersection (C,0)
containing (X,0) is defined by the regular sequence (f1,1, . . . , f1,k1 , f2,1, . . . , f2,k2) ⊆ A. In
particular, codim(X) = codim(C) = k1 + k2 and JC = AJC1 ·AJC2 .

The main result of this section is:

Theorem 4.30. Let (X1,0) ⊆ (Cn1 ,0) and (X2,0) ⊆ (Cn2 ,0) be reduced Cohen–Macaulay
subspaces and (X,0) = (X1,0)× (X2,0) ⊆ (Cn1 ,0)× (Cn2 ,0). Then (X1,0) and (X2,0)
are free if and only if (X,0) is free.

Remark 4.31. In particular, if (X1,0) and (X2,0) are hypersurfaces, then (X1,0) and
(X2,0) are free divisors if and only if (X1,0) × (X2,0) is a free complete intersection of
codimension 2.

We will need the following results.
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Lemma 4.32 (Depth Lemma). Let R be a local Noetherian ring and consider a short exact
sequence of R-modules :

0→M1 →M2 →M3 → 0.

Then
depth(M2) ≥ min (depth(M1),depth(M3)) .

In case this inequality is strict, we have depth(M1) = depth(M3) + 1.

Proof. See [JP00, Lemma 6.5.18].

Lemma 4.33. Let R1 and R2 be two analytic C-algebras and R = R1⊗̂R2. Let I ⊆ R1

and J ⊆ R2. We assume that depth (R1/I) < depth(R1) and depth (R2/J) < depth(R2).
Then:

(1) depth (R/(RI +RJ)) = depth (R1/I) + depth (R2/J),

(2) depth (R/(RI ∩RJ)) = depth (R1/I) + depth (R2/J) + 1.

Proof.

(1) The statement follows from Lemma 4.27 noticing that
R/(RI +RJ) ' (R1/I)⊗̂(R2/J).

(2) Let us consider the exact sequence

0→ R/(RI ∩RJ)→ (R/RI)⊕ (R/RJ)→ R/(RI +RJ)→ 0. (4.4)

Applying Lemma 4.27 to R/RI = (R1/I)⊗̂R2 yields

depth(R/RI) = depth(R1/I) + depth(R2).

By assumption depth(R2) > depth(R2/J), hence statement 1. and Lemma 4.27
imply

depth(R/RI) > depth(R/(RI +RJ)).

Analogously we obtain

depth(R/RJ) > depth(R/(RI +RJ)).

Since depth((R/RI)⊕ (R/RJ)) = min(depth(R/RI), depth(R/RJ)), we get

depth((R/RI)⊕ (R/RJ)) > depth(R/(RI +RJ)).

In this case the inequality in Lemma 4.32 is strict, hence

depth(R/(RI ∩RJ)) = depth(R/(RI +RJ)) + 1.

Proposition 4.34. Let R1 and R2 be two analytic C-algebras and R = R1⊗̂R2. Let I ⊆ R1

and J ⊆ R2. We assume that depth (R1/I) < depth(R1) and depth (R2/J) < depth(R2).
Then the following are equivalent:

(1) R/(RI ∩RJ) is Cohen–Macaulay,
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(2) R1, R2, R1/I and R2/J are Cohen–Macaulay, dim(R1/I) = dim(R1)− 1 and
dim(R2/J) = dim(R2)− 1.

Proof. By Lemma 4.33, we have:

depth (R/(RI ∩RJ)) = depth (R1/I) + depth (R2/J) + 1. (4.5)

Furthermore, Lemma 4.27 and our assumptions imply the following inequality:

dim(R/(RI ∩RJ)) = max (dim(R/RI),dim(R/RJ))

= max (dim(R1/I) + dim(R2), dim(R1) + dim(R2/J))

≥ min (dim(R1/I) + dim(R2),dim(R1) + dim(R2/J))

≥ min (depth(R1/I) + depth(R2),depth(R1) + depth(R2/J))

≥ depth(R1/I) + depth(R2/J) + 1. (4.6)

Assume first that the hypothesis of the second statement is satisfied. In this case In-
equality (4.6) becomes an equality. Then the first statement follows by using Equa-
tion (4.5).
Next we assume that R/(RI ∩ RJ) is Cohen–Macaulay. Due to Equation (4.5) and
Inequality (4.6) we obtain:

depth (R/(RI ∩RJ)) = depth (R1/I) + depth (R2/J) + 1

≤ dim(R/(RI ∩RJ))

Since R/(RI ∩RJ) is Cohen–Macaulay, equality holds everywhere, which yields that
R1, R2, R1/I and R2/J are Cohen–Macaulay and dim(R2/J) = dim(R2) − 1 and
dim(R1/I) = dim(R1)− 1.

Lemma 4.35. Let R1 and R2 be two analytic C-algebras and R = R1⊗̂R2. Let I ⊆ R1 and
J ⊆ R2 be ideals. Then the following equality holds in the ring R:

RI ·RJ = RI ∩RJ.

Proof. [GR71, Kapitel III, §5 Korollar zu Satz 5]

Proof of Theorem 4.30. We set for i ∈ {1, 2}, Ri = Ai/IXi and
R = A/IX = A1/IX1⊗̂A2/IX2 .

For i ∈ {1, 2}, let JXi/Ci ⊆ Ai and JX/C ⊆ A be defined as in Notation 4.4. We denote
by π : A → R, respectively πi : Ai → Ri the canonical surjections. Then, by Remark
4.29, JC = AJC1 ·AJC2 ⊆ A, hence Lemma 4.35 implies

π(JX/C) = π(JC)

= Rπ1(JC1) ·Rπ2(JC2)

= Rπ1(JX1/C1
) ·Rπ2(JX2/C2

)

= Rπ1(JX1/C1
) ∩Rπ2(JX2/C2

) (4.7)

First we assume JXi/Ci 6= Ai for i ∈ {1, 2}. Then, by Proposition 4.6, X is free if
and only if R/π(JX/C) is Cohen–Macaulay of R-codimension 1. By Equation (4.7)
and Proposition 4.34 we obtain that R/π(JX/C) is Cohen–Macaulay if and only if for



Explicit and effective Mather–Yau correspondence in view of analytic gradings 90

i ∈ {1, 2} it holds that Ri and Ri/πi(JXi/Ci) are Cohen–Macaulay and dim(Ri) =
dim(Ri/πi(JXi/Ci)) + 1. This is, again by Proposition 4.6, equivalent to the fact that X1

and X2 are free. Next we consider the case JXi/Ci = Ai for at least one i ∈ {1, 2}. In
case JX/C = A the statement is obvious, hence we assume without loss of generality
JX/C = AJX1/C1

. Then R/π(JX/C) ∼= R1/π1(JX1/C1
)⊗̂R2. In this setup the statement

follows from Theorem 4.27.

Remark 4.36. As a consequence, if (X1,0) and (X2,0) are free Cohen–Macaulay subspaces,
we have

projdim
(

Derk1+k2 (− log X1 ×X2)
)

=

projdim
(

Derk1 (− log X1)
)

+ projdim
(

Derk2 (− log X2)
)

+ 1

A different notion of product for hyperplane arrangements is considered in [OT92,
Definition 2.13]. We use the following notation.

Notation 4.37. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be two reduced equidimensional subspaces,
both of the same codimension k. Let X ′1 = X1 × Cn2 and X ′2 = Cn1 ×X2.

For i ∈ {1, 2} let ιi :
∧k DerCni →

∧k DerCn1+n2 be the canonical maps. By abuse
of notation we identify Derk (− logXi) with the submodule of

∧k DerCn1+n2 generated by
ιi
(
Derk (− logXi)

)
.

Consider the decomposition:

k∧
DerCn1+n2 = D1 ⊕D2 ⊕D1,2

where Di is the submodule generated by the image of
∧k DerCni in

∧k DerCn1+n2 and D1,2 is
the free submodule of

∧k DerCn+m generated by the elements of the form ∂xi1 ∧ · · · ∧ ∂xip ∧
∂yj1 ∧ · · · ∧ ∂yjk−p where p ∈ {1, . . . , k − 1}.

It can be generalized to subspaces of higher codimension as follows:

Definition 4.38. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be two equidimensional subspaces, both of the
same codimension k. We set X1 ∗X2 = X ′1 ∪X ′2.

A similar result as Theorem 4.30 is satisfied, which generalizes [OT92, Proposition
4.28]:

Proposition 4.39. Let X1 ⊆ Cn1 and X2 ⊆ Cn2 be two reduced equidimensional subspaces,
both of the same codimension k. Then, with Notation 4.37:

Derk (− logX1 ∗X2) = Derk (− logX1)⊕Derk (− logX2)⊕D1,2.

In particular, X1 ∗X2 is free if and only if both X1 and X2 are free.

Proof. We have:

Derk
(
− logX ′1

)
= Derk (− logX1)⊕D2 ⊕D1,2,

Derk
(
− logX ′2

)
= D1 ⊕Derk (− logX2)⊕D1,2.
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By Proposition 4.8, Derk (− logX1 ∗X2) = Derk (− logX ′1) ∩ Derk (− logX ′2). Thus
Derk (− logXi) ⊆ Di implies:

Derk (− logX1 ∗X2) = Derk (− logX1)⊕Derk (− logX2)⊕D1,2

A minimal free resolution of Derk (− logX1 ∗X2) is thus given as the direct sum of
minimal free resolutions of Derk (− logX1) ,Derk (− logX2) and D1,2. Since D1,2 is
free, the projective dimension of Derk (− logX1 ∗X2) is

max
{

projdim
(

Derk (− log X1)
)
, projdim

(
Derk (− log X2)

)}
.

Since by [Pol20, Proposition 4.2], projdim
(
Derk (− log Xi)

)
≥ k − 1, we have

projdim
(
Derk (− log X1 ∗X2)

)
= k − 1 if and only if

projdim
(

Derk (− log X1)
)

= projdim
(

Derk (− log X2)
)

= k − 1.

4.4 Properties of Generalized Normal Crossing divisors

4.4.1 Freeness and Generalized Normal Crossing divisors

In this section we investigate freeness of generalized normal crossing divisors respec-
tively their singular loci.

Theorem 4.30 implies directly that generalized normal crossing divisors have free sin-
gular loci:

Proposition 4.40. Let (X,0) ⊆ Cn be a generalized normal crossing divisor. Then (Sing(X),0)
is a free singularity.

Proof. By Theorem 3.25 we can assume that f =
∑l

i=0 gi, where g0 is an A1-singularity
and the gi are normal crossing divisors for 1 ≤ i ≤ l. Due to Proposition 4.11, we
obtain that Jgi defines a free singularity. The result follows from Theorem 4.30.

Next we want to investigate when generalized normal crossing divisors are free. In or-
der to do so, we need the following result from Aleksandrov-Terao, which is a special
version of Proposition 4.6.

Lemma 4.41. Let (X,0) ⊆ Cn be the germ of a hypersurface singularity. Denote by f ∈
C{x} a local equation of (X,0). Then (X,0) is free if and only if the OX,0/Jf is Cohen–
Macaulay of dimension n− 2.

Proof. See [Ter80, Proposition 2.4] and [Ale88, §2, Theorem].

Now we are able to show the following:

Proposition 4.42. Let (X,0) ⊆ Cn be the germ of a hypersurface singularity. Denote by
f ∈ C{x} a local equation of (X,0). Then the following are equivalent:

(1) (X,0) is a normal crossing divisor.
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(2) (X,0) is free and Jf is of Stanley–Reisner type.

Proof. In case (X,0) has normal crossings the freeness of (X,0) and Jf being a Stanley–
Reisner ideal follow immediately. Therefore only the converse has to be shown. Due

to Theorem 3.25 we may assume that f =
r∑
i=1

(
x

(1)
i

)2
+

l∑
i=1

gi,∈ C{x(0), . . . ,x(l+1)}

where r, l ∈ N, and gi ∈ C{x(i)} are normal crossing. For simplicity define g0 :=
r∑
i=1

(
x

(0)
i

)2
∈ C{x(0)}. Then

C{x}/Jf ∼= C{x(1)}/Jg1⊗̂ . . . ⊗̂C{x(l)}/Jgl . (4.8)

Applying Theorem 4.27 to C{x}/Jf and Proposition 4.6 to C{x}/Jgi , we obtain
dimC{x}/Jf = n − 2 · l − r. In order for f to be free, we must have either l = 1 and
r = 0 or l = 0 and r = 2. In the first this case we have that f defines a normal crossing

divisor, and the claim is shown. In the second case we have that f =
(
x

(1)
1

)2
+
(
x

(1)
2

)2
.

Define x := x
(1)
1 + i ·x(1)

2 and y := x
(1)
1 − i ·x

(1)
2 then the automorphism ϕ ∈ Aut(C{x})

defined by ϕ
(
x

(0)
i

)
= x

(0)
i , ϕ

(
x

(1)
1

)
= x+y

2 and ϕ
(
x

(1)
2

)
= x−y

2i satisfies ϕ(f) = x · y.
Thus f defines a normal crossing divisor.

4.4.2 Saito Holonomicity and Generalized Normal Crossing Divisors

In this subsection we investigate the holonomicity of strongly Euler homogeneous di-
visors of Sebastiani–Thom type. The notion of holonomicity as introduced by K. Saito
in [Sai80] is closely related to the module of logarithmic derivations of a hypersurface
singularity. We show the following theorem:

Theorem 4.43. Let (X,0) ⊆ (Cn+m,0) be a strongly Euler-homogeneous singularity of
Sebastiani–Thom type. We denote the Sebastiani–Thom components of (X,0) by (X1,0) ⊆
(Cn,0) and (X2,0) ⊆ (Cm,0). Then the following hold:

(1) (Y,0) ⊆ (Sing(X),0) is a logarithmic stratum if and only if there exists a loga-
rithmic stratum (X1,α,0) ⊆ (Sing(X1),0) and a logarithmic stratum (X2,β,0) ⊆
(Sing(X2),0), such that

(Y,0) = (X1,α,0)× (X2,β,0) =: (X(α,β),0).

(2) (X,0) is holonomic if and only if (X1,0) and (X2,0) are holonomic.

We start with the basic notions in order to define the term holonomic divisor, which
is based on the definition in [Sai80, (3.8)].

Notation 4.44. From now on let S ⊆ Cn be an n-dimensional complex manifold and X ⊆ S
a hypersurface singularity. Any given index set will be denoted by I.

Definition 4.45. Let DerS(− logX) be the sheaf of logarithmic vector fields alongX. For any
point p ∈ S we denote by DerS(logX)(p) the subspace of the tangent space TS,p at p, which
consists of the vectors δ(p) of the values of the vector field δ ∈ DerS(− logOX,p) at p.

We obtain the following lemma:
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Lemma 4.46. There exists a unique startification {Xα | α ∈ I} of S with the following
properties:

(1) Each stratum Xα, α ∈ I is a smooth connected immersed submanifold of S and S is a
disjoint union

⋃
α∈I Xα of the strata.

(2) Let p ∈ S belong to a stratum Xα. Then the tangent space TXα,p of Xα at p equals
DerS(− log(X))(p).

(3) If Xα ∩Xβ 6= ∅ for some α, β ∈ I and α 6= β, then Xα ⊆ ∂Xβ.

Proof. See [Sai80, (3.2)].

Now we are able to define the notion of logarithmic stratification.

Definition 4.47. The stratification of Lemma 4.46 is called logarithmic stratification of S.
The strata Xα are called logarithmic strata.

Using the notion of logarithmic strata we can define the notion of holonomic points,
holonomic strata and holonomic divisors.

Definition 4.48. A point p ∈ S is called holonomic, if there exists an open neighborhood
V of p, such that V intersects only finitely many logarithmic strata. A stratum Xα is called
holonomic stratum, if there exists an open neighborhood V ofXα, such that V intersects only
finitely many logarithmic strata. A divisor X is called holonomic divisor, if every p ∈ S
is holonomic. We say a complex space germ (X,0) is holonomic, if there exists a holonomic
representant.

In order to state criteria to determine the holonomicity of divisor, we need the follow-
ing notation.

Notation 4.49. We define Ip = {β ∈ I | p ∈ Xβ} for a point p ∈ S and Iα = {β ∈ I |
Xα ⊆ Xβ} for a stratumXα. For any r ≥ 0 we define Vr = {p ∈ S | rankC DerS(− logX)(p)}.

Remark 4.50. By definition the sets Vr are closed analytic subsets and it holds that Vr =⋃
dimXα≤r

Xα.

The following lemma gives us an algebraic tool to decide whether a divisor is holo-
nomic or not.

Lemma 4.51.

(1) Let p be a point of a stratum Xα. Then p is holonomic if and only if

dimp Vr ≤ r for dimXα ≤ r.

(2) Let S′ ⊆ S be an open subset and let X ′ = X ∩ S′. Then a point p ∈ S′ is holonomic
with respect to the logarithmic stratification byX ′ if and only if p ∈ S is holonomic with
respect to the logarithmic stratification by X.

(3) Let X = X ′ × Ck ⊆ S′ × Ck = S for some 1 ≤ k ≤ n. Then p = (p′, p′′) ∈ S is
holonomic if and only if p′ ∈ S′ is holonomic.
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Proof. See [Sai80, (3.13)] and [Sai80, (3.14)].

Lemma 4.51 allows us to verify algorithmically if a divisor is holonomic by comput-
ing the dimension of the varieties Vr, which are just radicals of minor ideals. Further-
more, Lemma 4.51 allows us to reduce to the case of unsuspended divisors. To make
the computational aspect more explicit, we consider two examples of divisors, one
holonomic the other one not holonomic.

Example 4.52.

(1) Let X = V (xyz) ⊆ C3. Then a SINGULAR computation yields that DerC3(logX) is
generated by the derivationsδ1

δ2

δ3

 =

x y z
x 0 −z
0 y −z


︸ ︷︷ ︸

=A

·

∂x∂y
∂z

 .

From the radicals of minor ideals of the matrix A we obtain

V0 = V (x, y, z)

V1 = V (xy, xz, yz)

V2 = V (xyz)

Vr = C3 for all r ≥ 3.

In particular, dim(Vr) ≤ r for all r ≥ 0, henceX is a holonomic divisor by Lemma 4.51.

(2) Let X = V (xy(x+ y)(x− y)(y − xz)) ⊆ C3. Then a SINGULAR computation yields
that DerC3(logX) is generated by the derivationsδ1

δ2

δ3

 =

x y 0
0 x2y − y3 2xy − x2z − 3y2z + 2xyz2

0 0 y − xz


︸ ︷︷ ︸

=A

·

∂x∂y
∂z

 .

In this particular case, we obtain V0 = V (x, y). This implies that X is not holonomic,
since dim(V0) = 1 > 0.

As we can see in the previous example, we need to compute the module of logarithmic
derivations of a given divisor to determine whether it is holonomic or not.

To keep the notation as simple as possible, we reduce to the unsuspended case.

Remark 4.53. By Lemma 3.10, we assume from now on that all divisors are unsuspended.

We introduce the following definition.

Definition 4.54. Let X ⊆ Cn define a hypersurface singularity. Let p ∈ X. Denote by fp ∈
C{x−p} the local equation ofX at p. The module DerX,p(− log fp) = {δ ∈ DerCn(− logOX,p) |
δ(fp) = 0.} is called the module of annihilating derivations of f at p.

In our particular case, we obtain the module of logarithmic derivations very easily
from the following lemma:
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Lemma 4.55. Let X ∈ Cn define an Euler-homogeneous hypersurface singularity. Denote by
fp ∈ C{x − p} the local equation of X at p ∈ X and by χp an Euler-derivation at the point
p ∈ X. Then

DerCn(− logOX,p) = 〈χp〉+ DerX,p(− log fp).

Proof. For every δ ∈ DerCn(− logOX,p) it holds that δ(fp) = g · fp for some g ∈ OX,p.
Then we can write δ as

δ = δ − g · χp︸ ︷︷ ︸
∈DerX,p(− log fp)

+g · χp.

Thus the claim follows.

In other words, Lemma 4.55 states that every logarithmic derivation of f can be writ-
ten as a sum of an Euler-derivation and an annihilating derivation.

Remark 4.56. Note that DerX,p(− log fp) is isomorphic to the module syzOX,p(Jfp). Hence
computing the module of annihilating derivations is reduced to computing the syzygies of the
Jacobian ideal.

The next proposition is crucial for the computation of the annihilating derivations.
The proof of Proposition 4.57 involves some basic computer algebra, in particular the
theory of standard bases over power series rings. We refer the reader for more details
on this topic to [JP00, Chapter 7] and [GP08, Chapter 6].

Proposition 4.57. Let A = C{x,y}, A1 = C{x} and A2 = C{y}. Let f ∈ A with f =
g1 + g2, where g1 ∈ A1 and g2 ∈ A2. Denote by e1, . . . , en+m the canonical basis vectors of
An+m. Then

syzA(Jf ) = R1 +R2 + J ⊆ An+m,

where R1 = syzA1
(Jg1)⊗A1 A ⊆ 〈e1, . . . , en〉, R2 = syzA2

(Jg2)⊗A2 A ⊆ 〈en+1, . . . , en+m〉
and J is generated by vectors of type

∑n
i=1 aiei +

∑m
j=1 bjen+j with ai ∈ Jg2 , bj ∈ Jg1 .

We need the following theorem to show Proposition 4.57.

Theorem 4.58. Let F = (f1, . . . , fs)
T ∈ C{x}s and G = (g1, . . . , gm)T ∈ C{x}m. Assume

that S = {g1, . . . , gm} is a standard basis of the ideal I = 〈f1, . . . , fs〉. Denote by Es the
s × s unit matrix, by R the matrix whose rows form a generating set of syzC{x}(〈S〉), by U
the matrix satisfying G = UF and by V the matrix satisfying F = V G. Then the rows of Q
form a basis of syzC{x}(I), where

Q =

(
Es − V · U
R · U

)
.

Proof. The result is shown in [Win96, Theorem 8.4.8] for the polynomial case and
works verbatim for the power series case.

Proof of Proposition 4.57. We fix an arbitrary local ordering >1 on A1 and an arbitrary
local ordering >2 on A2. On A we consider the local ordering >= (>1, >2). We prove
the result in two steps.
Step 1: We assume that S′ = {∂x1g1, . . . , ∂xng1, ∂y1g2, . . . , ∂ymg2} is a standard basis for
Jf . Using the Product Criterion (see [JP00, Exercise 7.2.19]) and [GP08, Theorem 2.5.9]
the result follows. In particular, J = 〈∂yjg2ei − ∂xig1ej | 1 ≤ i ≤ n, 1 ≤ j ≤ m〉.
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Step 2: We assume that S′ = {∂x1g1, . . . , ∂xng1, ∂y1g2, . . . , ∂ymg2} is not a standard
basis for Jf . By applying the Product Criterion it follows that, if S1 is a standard basis
for Jg1 ∈ A1 and if S2 is a standard basis for Jg2 ∈ A2, S = S1 ∪ S2 is a standard basis
for Jf . Let s1 = |S1|, s2 = |S2| and s = s1 + s2. Define F1 = (∂x1g1, . . . , ∂xng1)T ∈ An1 ,
F2 = (∂y1g2, . . . , ∂ymg2)T ∈ Am2 , G1 ∈ As11 be the vector containing the elements of S1

and G2 ∈ As22 be the vector containing the elements of S2. Furthermore, we denote
by U1 ∈ An×s11 the matrix satisfying G1 = U1F1, by U2 ∈ Am×s22 the matrix satisfying
G2 = U2F2, by V1 ∈ An×s11 the matrix satisfying F1 = V1G1 and by V2 ∈ Am×s22 the
matrix satisfying F2 = V2G2. Denote by R′1 the matrix whose rows form a generating
set of syzA1

(〈S1〉), by R′2 the matrix whose rows form a generating set of syzA2
(〈S2〉),

and by J ′ the matrox whose rows are the vectors (0, . . . , ∂yjg2, 0, . . . , 0, ∂xig1, 0, . . . , 0)
for 1 ≤ i ≤ n, 1 ≤ j ≤ m. This means that J =

(
J1 J2

)
, where the entries of J1 are in

Jg2 and the entries of J2 are in Jg1 . Then, by Step 1, syzA(〈S〉) is generated by the rows
of the matrix

R =

R1 0
0 R2

J1 J2

 .

Let F be the concatenation of F1 and F2, G the concatenation of G1 and G2, U =(
U1 0
0 U2

)
and V =

(
V1 0
0 V2

)
. Then G = UF and F = V G. The result follows from

Theorem 4.58 and the block structure of the involved matrices.

Remark 4.59. Proposition 4.57 shows that, in the setup of Theorem 4.43, every derivation
δ ∈ DerCn+m(− logOX,p) as

δ = χp + δ1︸︷︷︸
∈R1

+ δ2︸︷︷︸
∈R2

+ δ3︸︷︷︸
∈J

,

where the derivations δ1, δ2 and δ3 satisfy δ1(g1) = 0, δ2(g2) = 0 and δ3(p) = 0 for p ∈
Sing(X). This means that δ1 and δ2 are annihilating derivations of g1 respectively g2.

In our setup we obtain a block-matrix structure for the generating set of DerCn+m(− logOX,p),
as we can see in the following example:

Example 4.60. Let f = xyz + abcd ∈ C[x, y, z, a, b, c, d] and X = V (f) ⊆ C7. Then
DerC7(− logX) is generated by the columns of the following matrix, where we drop the partial
derivatives:


4x x 0 0 0 0 −bcd −acd −abd −abc 0 0 0 0 0 0 0 0
4y 0 y 0 0 0 0 0 0 0 −bcd −acd −abd −abc 0 0 0 0
4z −z −z 0 0 0 0 0 0 0 0 0 0 0 −bcd −acd −abd −abc
3a 0 0 a 0 0 yz 0 0 0 xz 0 0 0 xy 0 0 0
3b 0 0 0 b 0 0 yz 0 0 0 xz 0 0 0 xy 0 0
3c 0 0 0 0 c 0 0 yz 0 0 0 xz 0 0 0 xy 0
3d 0 0 −d −d −d 0 0 0 yz 0 0 0 xz 0 0 0 xy


.

Next we want to show, that it suffices to consider only the annihilating derivations of
f evaluated at every point p ∈ Sing(X).

Lemma 4.61. Let X ⊆ Cn be an Euler-homogeneous hypersurface singularity. Then for
every point p ∈ X and for every Euler-derivation χp ∈ DerCn(− logOX,p) it holds that
χp(p) ∈ DerX,p(− log fp)(p) if, and only if X is strongly Euler-homogeneous.

Proof. Denote the local equation of X at p by fp.
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Let p ∈ X be arbitrary and χp ∈ DerCn(− logOX,p) any Euler-derivation. The equa-
tion χp(p) ∈ DerX,p(− log fp)(p) implies the existence of δ ∈ DerX,p(− log fp) with
χp(p) = δ(p). Then the derivation χ′p = χp − δ is an Euler-derivation with χ′p(p) = 0,
henceX is strongly Euler-homogeneous at p.Now we assume thatX is strongly Euler-
homogeneous at p ∈ X. Denote by χp the Euler-derivation satisfying χp(p) = 0. By
Lemma 4.55 every Euler-derivation χ′p of fp can be written as

χ′p = χp + δ,

where δ ∈ DerX,p(− log fp). This implies χ′p(p) = χp(p) + δ(p) = δ(p), hence χ′p(p) ∈
DerX,p(− log fp)(p).

The final ingredient we need is the following lemma.

Lemma 4.62. Let (X,0) ⊆ (Cn+m,0) be a hypersurface singularity of Sebastiani–Thom type.
Then (X,0) is strongly Euler-homogeneous if and only if the Sebastiani–Thom components of
(X,0) are strongly Euler-homogeneous.

Proof. Let A = C{x,y}, A1 = C{x}, A2 = C{y}, (X,0) ∼= (V (f),0) ⊆ Cn+m, with
f = g + h ∈ A, where g ∈ A1 and h ∈ A2. If g and h are strongly Euler-homogeneous
with respect to the Euler-derivations χg =

∑n
i=1 ai∂xi and χh =

∑m
j=1 bj∂yj , then f

is strongly Euler-homogeneous with respect to the Euler-derivation χ =
∑n

i=1 ai∂xi +∑m
j=1 bj∂yj .Now we prove the converse. Assume (X,0) is strongly Euler-homogeneous.

If g = 0 or h = 0, we are in the case of Lemma 3.10, hence we can assume g 6= 0 and
h 6= 0. The fact that f is strongly Euler-homogeneous is equivalent tof ∈ mAJf . This
is equivalent to the existence of ai, bj ∈ mA for 1 ≤ i ≤ n, 1 ≤ j ≤ m, such that

f =
n∑
i=1

ai∂xig +
m∑
j=1

bj∂yjh. (4.9)

Since f defines a singularity, we know that f ∈ m2, hence g ∈ m2
A1

and h ∈ m2
A2
. This

implies that ∂xig(0) = 0 and ∂yjh(0) = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Equation 4.9
implies

g(x) = f(x,0) =
n∑
i=1

ai(x,0)∂xig(x).

By assumption g 6= 0, so for all 1 ≤ i ≤ n it holds that ai(x,0) 6= 0, hence g ∈ mA2Jg.
The result for h follows analogously.

Remark 4.63. The converse statement of Lemma 4.62 does not hold in general, if we replace the
property of being strongly Euler-homogeneous with the property of being Euler-homogeneous.
To see this, consider any g ∈ C[x], such that (X1,0) = (V (g),0) is not Euler-homogeneous.
Define f = g ∈ C[x, y] Then X = V (f) ⊆ Cn+1 has Sebastiani–Thom components (X1,0)
and (X2, 0) = (C, 0) at p = 0. Additionally, (X,0) ∼= (V (ey · g),0), so (X,0) is Euler-
homogeneous with Euler-derivation ∂z.

Now we are able to prove Theorem 4.43.

Proof of Theorem 4.43. Let A = C{x,y}, A1 = C{x}, A2 = C{y}, (X,0) ∼= (V (f),0) ⊆
Cn+m, with f = g + h ∈ A, where g ∈ A1 and h ∈ A2. Define (X1,0) = (V (g),0) ⊆ Cn
and (X2,0) = (V (h),0) ⊆ Cm. It holds that (Sing(X),0) = (Sing(X1),0)×(Sing(X2),0) .
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We fix a basic open neighbourhood U = U1 × U2 ∈ Cn+m of 0 and consider the repre-
sentants on U, respectively on U1 and U2. We start by proving the first statement. Due
to Lemma 4.62 we know that g and h are strongly Euler-homogeneous. Proposition
4.57 and Lemma 4.61 imply that for every p = (p1, p2) ∈ U it holds that:

DerCn+m(− log V (f))(p) ∼= DerCn(− log V (g))(p1)⊕DerCm(− log V (h))(p2). (4.10)

Let X1,α be a logarithmic stratum of X1 and X2,β be a logarithmic stratum of X2. De-
fineX(α,β) = X1,α×X2,β. By construction theX(α,β) are smooth, connected, immersed
submanifolds of U with Sing(X) =

⋃
(α,β)X(α,β) and

TX(α,β),p
∼= TX1,α,p1 ⊕ TX2,β ,p2 . (4.11)

Lemma 4.46, Equation (4.10) and Equation (4.11) imply that the X(α,β) are the unique
logarithmic strata of Sing(X), hence the statement follows. The second statement fol-
lows directly from the first statement, since by Lemma 4.51 only the logarithmic strata
contained in the singular locus have to satisfy the finiteness property.

Since generalized normal crossing divisors satisfy the assumptions of Theorem 4.43,
we obtain the following corollary:

Corollary 4.64. Let (X,0) ⊆ (Cn,0) be a generalized normal crossing divisor. Then (X,0)
is a holonomic divisor.



Chapter 5

Algorithms and Examples

In this chapter we present a Las Vegas algorithm, which can reconstruct the defining
equation f of a quasi-homogeneous isolated hypersurface singularity from a zero-
dimensional C-algebra isomorphic to C{x}/Jf . The algorithm can also be used to
check if a zero-dimensional C-algebra is isomorphic to C{x}/Jf , where f defines a
quasi-homogeneous isolated hypersurface singularity.
We focus on quasi-homogeneous isolated hypersurface singularities, because they
admit enough structure which makes it possible to obtain the needed information.
A similar algorithm for the homogeneous case has been presented in [IK14]. The
main obstacle we have to overcome is the fact that in the quasi-homogeneous case
the weights of f, which is uniquely determined if ord(f) ≥ 3, are not known. We
are going to use computational methods to not only recover the weights, but also to
show that maximal toral Lie algebras contained in DerJf (C{x}) contain the informa-
tion needed to find a suitable coordinate system in which our defining polynomial is
quasi-homogeneous.
For basic computational aspects we refer the reader to [GP08] for an introduction to
Computer algebra and to [Gra00] for an algorithmic treatment of Lie algebras. We
start by presenting methods from linear algebra for vector fields and continue with
basic results regarding quasi-homogeneous isolated hypersurface singularities. An
implementation, in particular of Algorithm 10, can be found at https://github.com/
raulepure/reconstruction.jl. Algorithm 10 has been announced in [ERS17].

5.1 Linear Algebra for Vector Fields

In this section we want to extend methods from linear algebra, such as Jordan de-
composition and simultaneous diagonalization of matrices, to vector fields. These
methods allow us to obtain information about a coordinate change into a coordinate
system in which a maximal multihomogeneous system of generators exists as well as
to give us the corresponding weights. The methods we present work theoretically for
any analytic algebra, but they do not necessarily terminate in case we do not deal with
a zero-dimensional analytic algebra.

Let I ⊆ C{x} be an ideal generated by f1, . . . , fk ∈ C{x}. Then we can use syzygies to
compute DerI(C{x}).

99
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Lemma 5.1. Let I = 〈f1, . . . , fk〉 ⊆ C{x} be an ideal. Then DerI(C{x}) is isomorphic to
the projection of the first n components of syz(A), where the matrix A is defined as follows:

A =

∂x1f1 . . . ∂xnf1 f1 . . . fk 0 . . . 0
...

...
. . . . . .

∂x1fk . . . ∂xnfk 0 . . . 0 f1 . . . fk

 ∈ Mat(C{x}, k × (n+ 1) · k).

Using SINGULAR we can compute the aforementioned syzygies and we obtain vectors
in C{x}n which represent our vector fields. The next operation we need to apply
coordinate changes to these vector fields. We denote different systems of coordinates
by x,y and z. Let ϕ : C{z} → C{y} and ψ : C{y} → C{x} be automorphisms and
denote by Jϕ and Jψ their respective Jacobian matrices. Using the chain rule we can
write

∂xi =

n∑
j=1

∂xiϕj(x) · ∂yj . (5.1)

Equation (5.1) yields
∇x = Jϕ · ∇y. (5.2)

Equation (5.2) implies the following lemma.

Lemma 5.2. A be an analytic algebra isomorphic to C{x}.Denote by x,y and z three systems
of coordinates and let ϕ : C{z} → C{y} and ψ : C{y} → C{x} be automorphisms. Then the
following hold:

(1) Jψ◦ϕ = ψ (Jϕ) · Jψ, and

(2) Jϕ−1 =
(
ϕ−1 (Jϕ)

)−1
.

Now we are able to transofrm vector fields which are represented by vectors.

Lemma 5.3. Let δ ∈ Der′I(C{x}) be represented by the vector V = V (x) ∈ C{x}n and let
ϕ : C{y} → C{x} be an automorphism. Then

V (y) =
(
ϕ−1(V (x))

)T · Jϕ−1 ∈ C{y}n.

Lemma 5.3 is formulated in this way, since the usual coordinate transformation is of
type yi = ϕi(x), but we want to express our vector field in terms of the y variables.
This show us that it is necessary to compute the inverse of an algebra morphism.
By the inverse function theorem we obtain that our morphism are invertible and the
inverse is a power series expression, even if the input is polynomial. At this point it
is important to work with a zero-dimensional algebra. Here, using the SINGULAR to
compute the highest corner of I, we obtain a bound k such that mk ⊆ I. The following
result gives us an algorithm to compute such inverse up to to a given bound.

Lemma 5.4. Let ϕ ∈ C[x]n and let I := 〈y1 − ϕ1(x), . . . , yn − ϕn(x)〉 + mk+1 ⊆ C[x,y],
where k ∈ N is a given bound. Denote by G a reduced Gröbner basis of I with respect to an
elimination ordering for x. Then ϕ induces an automorphism of C[x]/mk+1 if and only if there
exist ψ ∈ C[y]n and q1, . . . , qm ∈ C[y] such that

G = {x1 − ψ1(y), . . . , xn − ψn(y), q1, . . . , qm}.

In particular, if ϕ induces an automorphism of C[x]/mk+1, then ψ induces the inverse map.
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Proof. See [Ess00, Theorem 3.2.1].

The algorithm looks as follows:

Algorithm 1 Inversion of Algebra Morphism in C[x]/mk+1

INPUT: A C-algebra morphism ϕ(x) defined by ϕi = ϕ(xi) and a bound k ∈ N≥1.
OUTPUT: An automorphism ψ(y) which is an inverse of ϕ modulo mk+1.

1: Compute generating set Q = {q1, . . . , qm} of mk+1.
2: Compute a reduced Gröbner Basis G for the ideal I = 〈y1 − ϕ1(x), . . . , yn −
ϕn(x), q1, . . . , qm〉 ⊆ C[x,y] with respect to an elimination ordering for x.

3: return ψ1(y) := NF(xi | G), . . . , ψn(y) := NF(xn | G).

Lemma 5.4 implies the following proposition.

Proposition 5.5. Algorithm 1 terminates and works correctly.

Now we can describe how to compute the Chevalley decomposition of a vector field
and how to simultaneously diagonalize pairwise commuting diagonalizable vector
fields. We start with the simultaneous diagonalization. The theory for the Chevalley
decomposition will only be sketched, since it can be found in detail in [Sai71].

Remark 5.6. We assume from now on that all vector fields appearing in this section are con-
tained in Der′I(C[[x]]), where I ⊆ C[[x]] is an ideal.

We want to show how to algorithmically diagonalize a given finite set of pairwise
commuting and diagonalizable vector fields simultaneously. Define Vk := C[[x]]/mk

and denote the image of δ under the projection Der′I(C[[x]])→ EndC(Vk) by δk. In case
δ1, . . . , δm is a set of pairwise commuting and diagonalizable derivations, also their
linear parts are pairwise commuting and diagonalizable. It is well known from linear
algebra, that we can find a linear coordinate change, such that the linear parts of the δi
are diagonal. We assume this setup from now on. Our goal is to show, that we can find
iterative coordinate changes of type yi = xi + hi, where hi is homogeneous of degree
l, such that we can write δj in the new coordinate system as δj = δj,0 +

∑n
i=1 aj,i∂yi

with ord(ai) ≥ l + 1, where l denotes the number of iterations. In terms of linear
algebra, this is equivalent to saying that a common eigenvector of δ1,k, . . . , δm,k lifts
under the canonical projection πk : EndC(Vk+1)→ EndC(Vk) to a common eigenvector
of δ1,k+1, . . . , δm,k+1. We use the linear algebraic characterization to prove the result.

Lemma 5.7. Let I ⊆ C[[x]] be an ideal and δ1, . . . , δm ∈ Der′I(C[[x]]) be pairwise commuting
and diagonalizable derivations with diagonal linear parts δ1,0, . . . , δm,0. Write δj = δj,0 +∑n

i=1 aj,i∂xi and assume ord(aj,i) ≥ l for some l ∈ N≥1. Then there exists a coordinate
change yi = xi + hi with hi homogeneous of degree l, such that δj = δj,0 +

∑n
i=1 ãj,i∂yi and

ord(ãj,i) ≥ l + 1.

Proof. By assumption δ1,l, . . . , δm,l ∈ EndC(Vl) are diagonalizable. So it suffices to
show that the common eigenspaces of δ1,l+1, . . . , δm,l+1 map surjectively to the com-
mon eigenspaces of δ1,l, . . . , δm,l. To see this we consider the following commutative
diagram:
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Vl+1 Vl+1

Vl Vl.

δi,l+1

πl πl

δi,l

Let w be a common eigenvector of δ1,l+1, . . . , δm,l+1 with δi,l+1(w) = λiw. Then

δi,l ◦ πl(w) = πl ◦ δi,l+1(w) = λiπl(w).

This computation shows that, if πl(w) 6= 0, then πl(w) is a common eigenvector of
δ1,l, . . . , δm,l with δi,l(πl(w)) = λiπl(w). Since πl is a surjection, the claim follows

Lemma 5.7 yields the existence of a Cauchy sequence of coordinate systems (x(n))n∈N
(in the m-adic topology). Denote the limit by z. By construction we obtain the follow-
ing result:

Theorem 5.8. Let I ⊆ C[[x]] be an ideal and δ1, . . . , δm ∈ Der′I(C[[x]]) be pairwise com-
muting and diagonalizable derivations with diagonal linear parts δ1,0 = xD1∂

T , . . . , δm,0 =
xDm∂

T . Then there exists a coordinate system z, such that δi = zDi∂
T ∈ Der′I(C[[z]]) for

i = 1, . . . ,m.

It remains to state the algorithm on how to explicitly diagonalize a set of given vector
fields simultaneously up to a given degree bound k. In general the algorithm does
not terminate in a finite number of steps, because we have to consider our derivations
modulo all possible powers of the maximal ideal m. For the investigation in case of
zero-dimensional ideals a bound is sufficient, since we know that mk ⊆ I for some
k ∈ N≥1.
We keep the notation from Theorem 5.8. Let yi = xi + hi, where hi is homogeneous of
degree l ≤ k. Then

δj(yi) = δj(xi + hi) = δj,0(xi) + g
(i)
j (x) + δj,0(hi) mod ml+1, (5.3)

where g(i)
j is homogeneous of degree l. Lemma 5.7 now tells us that we can find hi

in such a way that all gj + δj,0(hi) = 0 for j = 1, . . . , s. Write Wl for the vector space
generated by all monomials of degree l and denote by A(l)

j the representation matrix

of δj,0 on Wl. Let r = dimC(Wl). From now on we consider the g(i)
j and hi as elements

of Wl. Define

A(l) =


A

(l)
1
...

A
(l)
s

 ∈ Csr×r

and

g(i) =


g

(i)
1
...
g

(i)
s

 ∈ Csr.

Equation 5.3 now implies that finding a coordinate change such that the δj are diago-
nal modulo ml+1 is equivalent to finding solutions hi of the linear systems of equations
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A(l)hi + g(i) = 0. The pseudo code of the algorithm to compute a simultaneous diag-
onalization of vector fields looks as follows:

Algorithm 2 Simultaneous Diagonalization of Vector Fields
INPUT: δ1, . . . , δs ∈ Der′I(C[[x]]) pairwise commuting and diagonalizable, a degree
bound k ∈ N≥1.
OUTPUT: An automorphism ϕ ∈ AutI(C[[x]]), such that δ1, . . . , δs are diagonal in the
coordinate system y = ϕ(x), and the δ1, . . . , δs transformed with respect to ϕ.

1: Compute a transformation matrix S ∈ Cn×n, such that δ1,0, . . . , δs,0 are diagonal.
2: Set ϕ(x) = Sx and transform δ1, . . . , δs into the coordinate system y = ϕ(x).
3: for l = 2 to k do
4: Compute the matrix A(l).
5: for i = 1 to n do
6: Compute the vectors g(i).
7: Compute solutions hi of A(l)hi + g(i) = 0.
8: end for
9: Define the map ψ via ψ(xi) = xi + hi.

10: ϕ = ψ ◦ ϕ.
11: Transform δ1, . . . , δs into the coordinate system y = ϕ(x).
12: end for
13: return ϕ and δ1, . . . , δs.

The previous discussion as well as Theorem 5.8 imply the following proposition.

Proposition 5.9. Algorithm 2 terminates and works correctly.

The idea for the Chevalley decomposition of a vector field δ is to write δ =
∑n

i=1 ai∂xi
with ai ∈ C[[x]] and to find coordinate changes such that ai is weighted homogeneous
with respect with respect to the weight vector λ = (λ1, . . . , λn) defined by the eigen-
values of the matrix M defining the linear part δ0 = xM∂T . We obtain this iteratively
by first applying a linear coordinate change to bringM into Jordan normal form. Saito
has shown the following:

Lemma 5.10. Let I ⊆ C[[x]] be an ideal and δ ∈ Der′I(C[[x]]) be a vector field with linear
part δ0, which is in Jordan normal form. Denote the weight vector defined by the eigenvalues
of δ0 by λ. Let l ∈ N≥2. Write δ =

∑n
i=1(ai + bi)∂xi and assume ord(aj,i) ≥ l for some

l ∈ N≥1.

(1) ai ∈ C[x] is weighted homogeneous with respect to λ and of degree ≤ l − 1, and

(2) bi ∈ C[[x]] is of order ≥ l.

Then there exists a coordinate change yi = xi+hi with hi ∈Wl, such that, after the coordinate
transformation yi = xi + hi, we can write δ =

∑n
i=1(a′i + b′i)∂yi where

(1) a′i ∈ C[y] is weighted homogeneous with respect to λ and of degree ≤ l, and

(2) b′i ∈ C[[y]] is of order ≥ l + 1.

Proof. This follows from [Sai71, Lemma 2.4].
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Lemma 5.10 yields a Cauchy sequence of coordinate systems in the m-adic topology.
Denote the limit by z and write δ =

∑n
i=1 ai∂zi . Let δ0 = zJ∂T , where J ∈ Cn×n is in

Jordan normal form. Let J = D+N,whereD is a diagonal matrix andN is a nilpotent
matrix. Keeping this notation we obtain the following theorem.

Theorem 5.11. Let I ⊆ C[[x]] be an ideal and δ ∈ Der′I(C[[x]]). Then there exists a coordi-
nate system z, such that:

(1) δ0 = zJ∂T ,

(2) δS = zD∂T ,

(3) δN = δ − δS , and

(4) [δS , δN ] = 0.

Proof. See [Sai71, Satz 3.1].

Now we present the algorithm. As in the case of the simultaneous diagonalization,
it suffices to use methods from linear algebra. We keep the notation of Lemma 5.10
and denote by Wl,λ the vector space of all monomials of degree l which are weighted
homogeneous with respect to λ. Fix an integer l ∈ N≥1. Due to the structure of the
Jordan normal form we have to distinguish the two cases

(1) δ0(xi) = λixi, and

(2) δ0(xi) = xi−1 + λixi.

In the first case we write

δ(yi) = δj(xi + hi) = ai + g(i)(x) + δ0(hi) mod ml+1, (5.4)

and in the second case we write

δ(yi) = δj(xi + hi) = ai + g(i)(x) + δ0(hi) + hi−1 mod ml+1. (5.5)

Our goal is to find hi, such that χi := δ(yi) − ai − δ0(hi) ∈ Wl,λ. Write U for a vector
space complement ofWl,λ inWl and write πU for the canonical projection πU : Wl → U.
Denote the representation matrix of δ0 on U by Al and the vector representing χi
on U by g(i). Note that the fact that diagonal and nilpotent part commute implies
A(l)Wl,λ ⊆ Wl,λ. Then χi is weighted homogeneous with respect to λ, if and only if
πU (χi) = 0. This yields the following algorithm:
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Algorithm 3 Chevalley Decomposition of Vector Fields
INPUT: δ ∈ Der′I(C[[x]]), a degree bound k ∈ N≥1.
OUTPUT: An automorphism ϕ ∈ AutI(C[[x]]), such that δS = δ0,S and δN = δ − δS
modulo mk+1 in the coordinate system y = ϕ(x).

1: Compute a transformation matrix S ∈ Cn×n, such that δ0 is in Jordan normal form.
2: Set ϕ(x) = Sx and transform δ into the coordinate system y = ϕ(x).
3: for l = 2 to k do
4: Compute the matrix A(l).
5: for i = 1 to n do
6: Compute the vectors g(i).
7: Compute solutions hi of A(l)πU (hi) + g(i) = 0.
8: end for
9: Define the map ψ via ψ(xi) = xi + hi.

10: ϕ = ψ ◦ ϕ.
11: Transform δ into the coordinate system y = ϕ(x).
12: end for
13: return ϕ, δ, δ0,S and δN .

The previous discussion and Theorem 5.11 imply the following proposition.

Proposition 5.12. Algorithm 3 terminates and works correctly.

Remark 5.13. Algorithm 2 and 3 have been implemented by Adrian Rettich under our super-
vision in the SINGULAR library VECFIELD.LIB. We can use this library to compute explicit
examples.

Example 5.14. We consider the ideal I = 〈x2 + 2xy + y2, y2 − 2x2y + x4〉 ⊆ C[[x, y]]. A
SINGULAR computation shows that D = DerI(C[[x, y]]) is generated by the derivations

δ1 = (y − y2)∂x + (−y + y2 + 2xy2 + 2y3)∂y

δ2 = −(x2 + 2xy + y2)∂y

δ3 = (−y2 + y3)∂x + (2x2y + 2xy2 + y3− y4)∂y

δ4 = −(x+ y)∂x + (2xy + 2y2∂y)

Using the SINGULAR library VECFIELD.LIB we obtain that δ = 1 is diagonalizable, δ2 and
δ3 are nilpotent and that δ4 decomposes into a diagonalizable and nilpotent part. The explicit
computation of does not terminate, but since m3 ⊆ I, we obtain by truncation that the deriva-
tion δ with the following Jordan–Chevalley decomposition:

δS = (−x− y − 2xy − 2y2 − 4x2y − 12xy2 − 8y3)∂x + (2xy + 2y2 + 4xy2 + 4y3)∂y

δN = (2xy + 2y2 + 4x2y + 12xy2 + 8y3)∂x + (−4xy2 − 4y3)∂y

is contained in D. Diagonalizing δ1, up to degree 3, yields

δ̃1 = −x∂x

with respect to the coordinate transformation ϕ : C[[x, y]]→ C[[x, y]], x 7→ y + y2 + 2xy2 +
3y3, y 7→ x + y + xy2 + y3. We obtain ϕ−1(I) = 〈x2, y2〉. This means that I is monomial,
hence has maximal multihomogeneity 2. It holds that [δ1, δS ] 6= 0, so we are not able to simul-
taneously diagonalize both derivations. This shows that, in view of Theorem 2.80, more work
has to be put into finding the two pairwise commuting diagonalizable derivations in D. We
cover more details regarding this topic in the next section.
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5.2 Computing Weights and Monomiality

This subsection serves two purposes. On the one hand side we want to present an al-
gorithm, which is able to check, whether a given hypersurface singularity (V (f),0) is
isomorphic to a non-reduced normal crossing divisor, that is isomorphic to
(V (xa11 · . . . · xann ),0) for certain ai ∈ N. The second purpose is to give a simple method
to obtain the maximal multihomogeneity of any ideal I ⊆ C[[x]] which is defined by
polynomials. As a byproduct we also obtain a check if a given ideal is of monomial
type or not. We use the results from Chapter 2 and basic results regarding Lie algebras.

Remark 5.15. Consider the canonical projection π1 : Der(C[[x]])→ Der(C[[x]]/m2).
Throughout this section we define g := π1 (Der′I(C[[x]])) .

Due to Theorem 2.48 and Theorem 2.63 we obtain all possible weights of C[[x]]/I as
the eigenvalues of any maximal toral Lie subalgebra contained in g. Using one of the
corner stones of OSCAR, the computer algebra system GAP (see [19]), we are able
to perform computations with Lie algebras. The computation of a maximal toral Lie
subalgebra is based on [Gra00, Algorithm ToralSubalgebra]:

Algorithm 4 Maximal Toral Subalgebra
INPUT: A basis of a finite-dimensional Lie algebra L.
OUTPUT: A basis of a maximal toral subalgebra t ⊆ L.

1: Compute a Cartan subalgebra h ⊆ L.
2: Compute a basis B′ of the center of h.
3: Define L := ∅.
4: for x ∈ B′ do
5: Compute the semi-simple part xs of x.
6: L = L ∪ {xs}.
7: end for
8: Compute a basis B of the Lie algebra generated by L.
9: return B.

Proposition 5.16. Algorithm 4 terminates and works correctly.

Proof. The correctness follows from [Hum67, Proposition 15.2]. The termination fol-
lows from the fact that all algorithms which are used, terminate, see [Gra00].

We obtain the following algorithm to decide whether an ideal is of monomial type or
not.

Algorithm 5 Is of monomial type
INPUT: An ideal I ⊆ C{x} generated by polynomials.
OUTPUT: 1 if I is of monomial type, 0 else.

1: Compute a vector space basis of g = π1 (Der′I(C[[x]])) .
2: Use Algorithm 4 to compute a basis B of a maximal toral subalgebra t ⊆ g.
3: if |B| = n then
4: return 1.
5: else
6: return 0.
7: end if
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Proposition 5.17. Algorithm 5 terminates and works correctly.

Proof. The correctness follows from the fact that an ideal is monomial if and only if it
is invariant under a (C∗)n action, which is equivalent to dim(t) = n. The termination
follows from the fact that all algorithms, which are used, terminate.

Let us consider an example.

Example 5.18. We continue Example 5.14. The Lie algebra g is generated by the matrices

A1 =

(
0 1
0 −1

)
A2 =

(
−1 −1
0 0

)
It holds that [A1, A2] = 0 and that both matrices are diagonalizable, so we obtain that the ideal
I is of monomial type, as we have already seen in Example 5.14.

Algorithm 4 also allows us to compute a maximal set of weight vectors for a given
ideal I.

Algorithm 6 Maximal set of Weight Vectors
INPUT: An ideal I ⊆ C{x} generated by polynomials.
OUTPUT: A matrix M whose rows contain a maximal set of weight vectors for I.

1: Compute a vector space basis of g = π1 (Der′I(C[[x]])) .
2: Use Algorithm 4 to compute a basis B of a maximal toral subalgebra t ⊆ g.
3: Simultaneously diagonalize the matrices of B and store them in a list L.
4: Denote by A ∈ C|B|×n the matrix containing the diagonals of the matrices in L as

rows.
5: Compute M ∈ C|B|×n, the reduced row echelon form of A.
6: return M.

Proposition 5.19. Algorithm 6 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. The correctness up to Step 4 follows from the fact that we are considering
the eigenvalues of diagonalizable derivations. In order to obtain weights, we need
rational numbers. So it remains to show that M ∈ Q|B|×n. Due to Theorem 2.24, we
know that the vector space spanned by the rows of A has a basis consisting only of
vectors with rational entries. This is equivalent to saying that we can find a ma-
trix U ∈ GL(|B|,C), such that Q := U · A ∈ Q|B|×n. The matrices A and Q have
the same reduced row echelon form, which is given by the matrix M. Since comput-
ing the reduced row echelon form for Q involves only operations over Q, we obtain
M ∈ Q|B|×n.

Let us consider an example.

Example 5.20. Consider the ideal I = 〈x2, 3y2+z3, yz2, z5〉 ⊆ C[[x, y, z]].Using OSCAR we
obtain

M =

(
1 0 0
0 3 2

)
.

This shows us additionally that the ideal I cannot be of monomial type.
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5.3 Classifying Non-Reduced and Generalized Normal Cross-
ing Divisors

In the upcoming section we are going to state algorithms which classify non-reduced
normal crossing divisors and generalized normal crossing divisors. We start with the
algorithm for the classification of non-reduced normal crossing divisors, since it also
serves as a toy example to show how to perform computations over a finite algebraic
extension K of Q instead of C, since symbolic computations on a computer cannot be
performed over C. For this algorithm, we assume that our singularity is defined by a
polynomial f ∈ K[x].

Algorithm 7 Classify non-reduced normal crossing
INPUT: A polynomial f ∈ K[x].
OUTPUT: 0, if f does not define a non-reduced normal crossing divisor, or a polyno-
mial g = xa11 · . . . · xann ∈ L[x], where L is a finite extension of K.

1: Compute a vector space basis of g = π1 (Der′I(C[[x]])) .
2: Use Algorithm 6 to compute a basis B of a maximal toral subalgebra t ⊆ g.
3: if |B| < n then
4: return 0.
5: end if
6: Simultaneously diagonalize the matrices of B and denote the splitting field by L.
7: Denote by of the order of f.
8: Denote by h the of -jet of f.
9: Factor the polynomial h over L[x] and denote the exponents of the irreducible

factors by ai. If we have fewer exponents than variables we define the remaining
exponents to be 0.

10: return g = xa11 · . . . · xann .

Proposition 5.21. Algorithm 7 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, termi-
nate. For the correctness we note that f defines a non-reduced normal crossing divisor
if and only if |B| = n. It remains to show why the computations over the splitting field
L of K are sufficient to obtain the exponents a1, . . . , an. Note that Step 6 is the same as
the first step in Algorithm 2. From a theoretical point of view, we can use Algorithm 2
to compute a coordinate change ϕ ∈ Autf (C{x}), such that

〈ϕ(f)〉 = 〈xa11 · . . . · x
an
n 〉. (5.6)

All computations in Algorithm 2 take place over the field L, in particular all coeffi-
cients of the defining equations of ϕ are in L. The equality of ideals in Equation 5.6
implies the existence of a unit u = u0 + u1 ∈ C{x}, where u0 ∈ C\{0} and u1 ∈ m,
such that

ϕ(f) = u · xa11 · . . . · x
an
n . (5.7)

In order to pass to a statement about f, we have to apply the inverse of ϕ to Equation
5.7. Since Algorithm 1 also performs all its computations over the field L, we obtain
that the defining equations of ψ := ϕ−1 are contained in L. Denote by of the order
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of f and by h the of -jet of f. Furthermore write ψ1 for the linear part of ψ, that is
ψ(xi) = ψ1(xi) + gi, where gi ∈ m2. Applying ψ and comparing components of equal
degree yields

h = u0 · ψ1(x1)a1 · . . . · ψ1(xn)an . (5.8)

From Equation 5.8 we can read of, that the exponents of the factors of h are the expo-
nents ai.

Example 5.22. Consider the polynomial f = x2z2 + y2z2 + 2x5z + 2x3y2z + x8 + x6y2 ∈
Q{x, y, z}. Algorithm 6 implies that, after a coordinate change, f is defined by a monomial
over Q(i){x, y, z}. The order of f is 4, so it cannot define a normal crossing divisor. We obtain

h = z2x2 + z2y2 = (x+ iy) · (x− iy) · z2,

hence f defines a non-reduced normal crossing divisor.

Now we can state an algorithm to classify generalized normal crossing divisors.

Algorithm 8 Classify generalized normal crossing
INPUT: A polynomial f ∈ C[x].
OUTPUT: 0, if f does not define a generalized normal crossing divisor, or a polyno-
mial g defining a generalized normal crossing divisor.

1: Compute Jf , apply Algorithm 5 to Jf and store the result in m.
2: if m = 0 then
3: return 0.
4: end if
5: Compute a minimal generating set M of Jf .
6: Define ν : N→ N, x 7→ |{m ∈M | ord(m) = x}
7: Create a list of tuples L = {(a, ν(a)) | ord(m) = a for some m ∈M, }.
8: Define g := 0.
9: for (a, ν(a)) ∈ L do

10: Generate na := n(a)
a+1 normal crossing divisors ga,1 . . . ga,na of order a + 1 in

distinct sets of variables.
11: g = g +

na∑
i=1

ga,i.

12: end for
13: return g.

Proposition 5.23. Algorithm 8 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. Correctness follows from Theorem 3.25.

Example 5.24. Consider the polynomial f = −x2 + xy − xy2 + y3 + abc + b2c + a3b +
a2b2 ∈ C{x, y, a, b, c}.Using OSCAR, we obtain that Jf is indeed of monomial type and using
SINGULAR we obtain that Jf is radical. A minimal generating set of Jf is given by

{x, y, bc+ 3a2b+ 2ab2, ac+ 2bc+ a3 + 2a2b, ab+ b2}.

Considering the order of the elements, we obtain g = xy + abc as a normal form.
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5.4 Reconstructing QHIS from their Milnor Algebra

In this section we present a Las Vegas algorithm, which can reconstruct the defining
equation f of a quasi-homogeneous isolated hypersurface singularity from a zero-
dimensional C-algebra isomorphic to C{x}/Jf . The algorithm can also be used to
check if a zero-dimensional C-algebra is isomorphic to C{x}/Jf , where f defines a
quasi-homogeneous isolated hypersurface singularity.
We focus on quasi-homogeneous isolated hypersurface singularities, because they ad-
mit enough structure which makes it possible to obtain the needed information. A
similar algorithm for the homogeneous case has been presented in [IK14]. The main
obstacle we have to overcome, is the fact that in the quasi-homogeneous case the
weights of f, which are uniquely determined if ord(f) ≥ 3, are not known. From a
theoretical point of view, we can compute this information from a maximal toral sub-
group of Autf (C{x}), as presented in Chapter 2.

5.4.1 More about QHIS

Basic theoretical properties have been presented in Section 1.5.2. Here we continue
with more specific theoretical results.
Due to Theorem 1.91 we have a relation between the weight vector, the weighted de-
gree and the Milnor number of a QHIS. In our algorithm the main task is to find pos-
sible weight vectors for f. Knowing a weight vector and the corresponding weighted
degree we obtain the Milnor number. The Milnor number on the other hand side
gives us a bound on the weighted degree. This implies that if we are given any weight
vector, knowing the corresponding weighted degree would help us to decide if this
weight vector can be a possible one for f. The key ingredient for this is to use the socle
of Mf .

Definition 5.25. LetR be a local ring with maximal ideal m and residue field k. The we define
the socle of R as

Soc(R) = 0 : m.

Remark 5.26. Note that Soc(R) ∼= Hom(k,R).

In our setup we consider R = Mf , which is a zero-dimensional complete intersec-
tion ring. Due to [BH93, Proposition 3.1.20] R is a Gorenstein ring, so we obtain the
following result.

Proposition 5.27. Let f ∈ C[x] define an isolated hypersurface singularity.
Then dimC Soc(Mf ) = 1.

Proof. This follows from [BH93, Theorem 3.2.10].

Denote by w the weight-vector of f. Then Mf is quasi-homogeneous with respect to
the weight-vector w. Next we want to show that the socle of Mf can be generated by a
quasi-homogeneous element and that we can even compute its degree. Therefore we
need the following lemma.

Lemma 5.28. Let f ∈ C[x] define a QHIS. Denote the Hessian matrix of f by Hf . Then the
following hold:
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(1) det(Hf) /∈ Jf .

(2) For every g ∈ C{x}\Jf there exists an h ∈ C{x}, such that

h · g − det(Hf) ∈ Jf .

Proof. See [Sai74, Lemma 3.3].

In the upcoming statements we denote by g the image of g under the canonical projec-
tion C{x} →Mf . Now we can show the following.

Proposition 5.29. Let f ∈ C[x] define a QHIS. Assume that f is quasi-homogeneous with
respect to the weight-vector w = (w1, . . . , wn) and has weighted degree d. Denote the Hessian
matrix of f by Hf . Then det(Hf) generates Soc(Mf ). In particular, Soc(Mf ) is generated by

an element of weighted degree n · d− 2 ·
n∑
i=1

wi.

Proof. Let g ∈ C{x}\Jf be an element, such that Soc(Mf ) = 〈g〉C. By Lemma 5.28
there exists an element h ∈ C{x}, such that h · g = det(Hf). In case h ∈ m we obtain
h · g = 0, which contradicts det(Hf) /∈ Jf . Thus h is a unit and we can assume h ∈ C∗.
This implies that det(Hf) generates Soc(Mf ).
The formula for the degree follows from the Leibniz-formula to compute the determi-
nant.

The next object we introduce is the so-called highest corner of an ideal. This object
allows us to compute a bound for the determinacy of our isolated hypersurface sin-
gularity and it yields a monomial representative for the socle. We state the definition
only in the local case.

Definition 5.30. Let > be a local monomial ordering on the set of monomials Mon(x) and let
I ⊆ C[x]〈x〉 be an ideal. A monomial m ∈ Mon(x) is called highest corner of I , if

(1) m /∈ L(I), and

(2) m′ ∈ Mon(x) with m′ < m implies m′ ∈ L(I).

We obtain the following two results

Theorem 5.31. Let f ∈ C[x] define a QHIS and fix a local ordering on Mon(x). Denote by
mi ∈ Mon(x) the highest corner of miJf , i = 0, 1, 2. Then f is min(deg(mi) + 2 − i|i =
0, 1, 2) determined.

Proof. See [GP08, Corollary A.9.7].

Proposition 5.32. Let f ∈ C[x] define a QHIS, fix a local ordering on Mon(x) and denote by
m ∈ Mon(x) the highest corner of Jf . Then m generates Soc(Mf ).

Proof. First we note that m being a monomial means that m ∈ L(Jf ) if and only if
m ∈ Jf , hence by definition m 6= 0. Let m′ ∈ m be an arbitrary monomial. Since we
work over a local ordering we obtain m < 1, thus m′ · m < m′, hence by definition
m′ ·m ∈ Jf . This implies m ·m ⊆ Jf and thus m generates Soc(Mf ).
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The standing assumption of this section, so far, was that we have our coordinates
chosen in such a way that f is quasi-homogeneous. Our final theoretical result is to
show that we can always find such a coordinate system. In fact it turns out that any
coordinate system in which a maximal Torus is linear, is sufficient.

Proposition 5.33. Let f ∈ C{x} define a quasi-homogeneous isolated hypersurface singu-
larity. Let I ⊆ C{x} be an ideal, such that Mf

∼= C{x}/I. For every maximal algebraic
torus T ⊆ AutI(C{x}), which is linear with respect to the chosen coordinates, there exists a
quasi-homogeneous gT ∈ I ⊆ C{x}, such that :

(1) (V (gT),0) ∼= (V (f),0) , and

(2) JgT is T-equivariant.

Proof. SinceMf
∼= C{x}/I,we obtain the existence of an isomorphism ϕ ∈ Aut(C{x})

with ϕ(Jf ) = I. By Lemma 1.96 it holds that I = Jϕ(f). This means that we can
replace f with ϕ(f) and we can reduce to the case I = Jf . By quasi-homogeneity
of f we can assume that the coordinates x are chosen, such that f is defined by a
quasi-homogeneous power series. This implies the existence of an algebraic torus Tf ,
which is linear with respect to the chosen coordinate system. Due to the fact that the
partial derivatives of f are also quasi-homogeneous, we obtain Tf ⊆ AutJf (C{x}).
Let TJf ⊆ AutJf (C{x}) be a maximal algebraic torus containing Tf . Due to Corollary
2.46 any algebraic torus T ⊆ AutJf (C{x}) is conjugated to TJf , this means there exists
ψ ∈ AutJf (C{x}), such that

T = ψTJf ψ
−1.

Define gT := ψ(f) and TgT := ψTf ψ
−1. Using the definitions we obtain

TgT(gT) = ψTf ψ
−1(gT) = ψTf (f) ⊆ C∗gT.

This implies that gT is quasi-homogeneous with respect to the weights induced by the
characters of TgT . In particular, it holds that gT ∈ JgT = Jψ(f). Using Lemma 1.96 we
obtain that MgT

∼= Mf . The Mather–Yau theorem now implies V (gT,0) ∼= V (f,0). By
construction JgT is T-equivariant.

5.4.2 The Reconstruction Algorithm

After we prepared the theoretical foundation, we are able to show how an algorithmic
reconstruction works. The main idea is to recover candidates for the weight-vector
of the QHIS and to use Corollary 1.93. We start by presenting an algorithm to find
possible weight-vectors. The key to finding them is Algorithm 6 and some elementary
convex geometry, as it can be found in [Zie95].
We assume from now on, that we are in a coordinate system in which a maximal
torus T ⊆ AutJf (C{x}) is linear. This can be achieved by using Algorithm 2. After
changing the coordinate system we can find candidates for our weight-vectors. Let M
be the output of Algorithm 6. We write W for the vector-space generated by the rows
of M. The following are known about the weight-vector wf = (w1, . . . , wn) and the
weighted degree df :

(1) wf ∈ Zn>0 (see Theorem 1.89),



Explicit and effective Mather–Yau correspondence in view of analytic gradings 113

(2) If the class of the monomial m ∈ C[x] generates Soc(Mf ), then degwf (m) =

n · df − 2 ·
n∑
i=1

wi (see Proposition 5.32),

(3) df ≤ C · µf , where C can be computed explicitly (see Theorem 1.91) and

(4) µf =
n∏
i=1

(
df
wi
− 1
)

(see Theorem 1.91).

The first property of wf allows us to restrict our considerations to the convex cone

Cf = W ∩ Rn≥0. Assume m =
n∏
i=1

xaii , then the second property combined with the

third yields the inequation

w1 · (a1 + 2) + . . . wn · (an + 2) ≤ n · C · µf . (5.9)

Restricting Cf with inequation 5.9, we obtain a polytope P containing wf as a point.
For every point p = (p1, . . . , pn) ∈ P we can use Proposition 5.32 to compute a candi-
date for the weighted degree of f, which we denote by dp. We know that our weight-
vector can be chosen to be integral, so it suffices to consider weight-vectors, where the
gcd of the weights and the weighted degree is 1. Due to our previous arguments, it
suffices to consider the weights, which are in the following set:

A :=

{
p ∈ P | p ∈ Zn, gcd(p1, . . . , pn, dp) = 1 and µf =

n∏
i=1

(
dp
wi
− 1

)}
.

The algorithm to compute the set A looks as follows:
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Algorithm 9 Candidates for weight-vectors
INPUT: A zero-dimensional complete intersection ideal I ⊆ C{x} generated by poly-
nomials, a set L ⊆ DerI(C{x}) of simultaneously diagonal derivations, where |L| is
equal to the maximal multihomogeneity of I.
OUTPUT: A set A containing candidates for the weight-vectors of a possible polyno-
mial f satisfying Mf

∼= C{x}/I.
1: Let W be the vector space generated by the diagonals of the elements of L.
2: Compute µ = dimCC{x}/I.
3: Compute m, such that 〈m〉C = Soc(C[x]/I).
4: Denote the exponents of m by a1, . . . , an.
5: Compute a bound d for the weighted degree df using Theorem 1.91.
6: Compute the Polytope

P := W ∩ Rn≥0 ∩

{
(p1, . . . , pn) ∈ Rn |

n∑
i=1

pi · (ai + 2) ≤ n · d

}

7: A = ∅.
8: for p ∈ P ∩ Zn do

9: Compute dp =
degp(m)+2·

n∑
i=1

pi

n .

10: if gcd(p1, . . . , pn, dp) = 1 and µ =
n∏
i=1

(
dp
wi
− 1
)

then

11: A = A ∪ {(p1, . . . , pn, dp)}.
12: end if
13: end for
14: return A.

Proposition 5.34. Algorithm 9 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. Correctness follows from the discussion prior to the algorithm.

Example 5.35. We consider the ideal I = 〈x2, 3y2 + z3, yz2, z5〉 ⊆ C{x, y, z} as in Example
5.20. We already know that W is generated by the rows of

M =

(
1 0 0
0 3 2

)
.

Further OSCAR computations show that µ = 14, d = 53 is an upper degree bound and that
the polytope P ⊆ R3 is described by the equation

3x1 − 2x2 = 0

and the inequations

159 ≥ 6x1 + 2x2 + 3x3

0 ≤ x1

0 ≤ x2

0 ≤ x3

Reducing the integer points of P yields

A = {(2, 3, 3, 9), (2, 3, 4, 10)}.
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Using Algorithm 9 we are able to state our reconstruction algorithm, which is based
on Proposition 5.33 and Corollary 1.93. The proposition guarantees the existence of
a polynomial g, which is right-equivalent to f, in case we are in a coordinate system,
where a maximal torus T acts linearly on Jf . Algorithm 9 allows us the computation
of candidates for our weight-vector we are looking for. For each candidate p ∈ A, we
can compute the set of monomials

Mp = {m ∈ Mon(C[x]) | degp(m) = dp}.

Due to the positivity of the weight-vectors in A, the setMp is finite. Denote its car-
dinality by kp. Let Mp = {m1, . . . ,mkp} and Jf be generated by f1, . . . , fk. Using

syzygies, we can check for the existence of a1, . . . , akp ∈ C, such that gp :=
kp∑
i=1

ai ·mi is

right-equivalent to f. To see this, let π : C{x}kp+n·k → C{x}kp be the projection to the
first kp entries. We compute

Sp := π (syz(Ep)) ∩ Ckp ,

where

Ep =


m1 . . . mkp f1 . . . fk 0 . . . 0 . . . 0 . . . 0

∂x1m1 . . . ∂x1mkp 0 . . . 0 f1 . . . fk . . . 0 . . . 0
...

...
...

. . .
...

∂xnm1 . . . ∂xnmkp 0 . . . 0 0 . . . 0 . . . f1 . . . fk

 .

We know that for some p ∈ A, Sp cannot be empty, hence we can choose a generic
linear combination of a basis of Sp and denote the result by ap. By construction of A,
the resulting polynomial gp satisfies µgp = µf , and by construction of ap, we obtain
gp ∈ Jf and Jgp ⊆ Jf . The genericity in the choice of ap and Corollary 1.93 imply
that, if p is the correct weight-vector, gp defines an isolated hypersurface singularity.
Combining all these, we obtain an isomorphism of C-algebras between the Milnor-
algebras Mgp and Mf . Due to the Mather – Yau theorem, this is equivalent to gp being
right-equivalent to f. This leads to the following algorithm:
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Algorithm 10 Reconstructing QHIS from their Milnor-algebra
INPUT: A zero-dimensional complete intersection ideal I ⊆ C{x} generated by poly-
nomials.
OUTPUT: A quasi-homogeneous polynomial g ∈ C[x], such that Mg

∼= C{x}/I, or
false if none is found.

1: Compute g := Der′Jf (C[x]).
2: Compute a toral Lie algebra t of g.
3: Use Algorithm 2 to simultaneously diagonalize the basis of t and store the result

in a list L.
4: Denote the coordinate change for the simultaneous diagonalization by ϕ.
5: Define I := ϕ(I).
6: Compute the set A by applying Algorithm 9 to L.
7: Compute m, such that 〈m〉C = Soc(C[x]/I).
8: for p ∈ A do

9: Compute dp =
degp(m)+2·

n∑
i=1

pi

n .
10: ComputeMp = {m ∈ Mon(C[x]) | degp(m) = dp}.
11: LetMp = {m1, . . . ,mkp}.
12: Compute a basis for the vector-space Sp, which is defined as in the previous

discussion.
13: if Sp 6= ∅ then

14: Choose a generic 0 6= ap ∈ Sp and construct gp :=
kp∑
i=1

ai ·mi.

15: if gp defines an isolated singularity then
16: return gp.
17: end if
18: end if
19: end for
20: return false

Proposition 5.36. Algorithm 10 terminates and works correctly.

Proof. The termination follows from the fact that all algorithms, which are used, ter-
minate. Correctness follows from the discussion prior to the algorithm.

We consider three examples.

Example 5.37. We continue Example 5.35. We have seen already that |A| = 2, so only few
tests have to be done. In our case Algorithm 10 returns, for example,

g = −38x3 + 62 · (y3 + yz3).

This implies C{x}/I ∼= Mg.

Example 5.38. We consider the ideal I = 〈x2 + y2 + 3z2, 3y2 − 2xz + 9z2, 2xz + 2yz −
9z2, 4yz2 − 9z3, z4〉C{x, y, z}. We obtain µ = 8, d = 30 and A = {(1, 1, 1, 3)}. Algorithm
10 returns, for example,

g = 30x3 + 30y3 + 30x2z + 30y2z + 30z3.
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Example 5.37 and Example 5.38 have been positive results. The next example is going
to be a negative result, which shows that not all quasi-homogeneous zero-dimensional
complete intersections arise as Milnor algebras of QHIS. Before we state the example,
we consider the following theorem due to Yau.

Theorem 5.39. Let I = 〈f1, . . . , fk〉 ⊆ C{x} be an ideal with homogeneous generators
f1, . . . , fk, where 1 ≤ k ≤ n. Assume that f1, . . . , fk are of degree d ∈ N≥2. Then there exists
a g ∈ C{x} with Jg = I if, and only if there exist homogeneous polynomials F1, . . . , Fn ∈
C[x] of degree d and a matrix B ∈ Ck×n of rank k, such thatF1

...
Fn

 = B ·

f1
...
fk

 (5.10)

and such that
∂xiFj = ∂xjFi for all 1 ≤ i, j ≤ n. (5.11)

Proof. See [Yau87, Theorem 5].

Example 5.40. Consider the ideal I = 〈f1, f2, f3〉 ⊆ C{x, y, z}, where

f1 = 4x3 + x2y − 5xy2 + 2y3 − 3x2z − 3xyz + 4y2z + 2xz2 + 3yz2 − 2z3

f2 = x3 + x2y − 5xy2 − 5y3 − 4x2z + 5xyz − 3y2z + 5xz2 + yz2 + 3z3

f3 = −5x3 − 5xy2 + 3y3 − 2xyz − 2y2z + 4xz2 + 2yz2 − 2z3

As invariants we obtain µ = 27, d = 102 and maximal multihomogeneity s = 1. For this
example Algorithm 10 returns false. So far, this result does not mean too much, since our
algorithm is a Las Vegas algorithm. This implies that we need to prove that C{x}/I cannot be
the Milnor algebra of a QHIS. We apply Theorem 5.39. I is homogeneous, since it has three
homogeneous generators. Equation (5.10) and Equation (5.11) in Theorem 5.39 are equivalent
to solving a linear system of equations to determine, whether a matrix B ∈ C3×3 exists in
our case. Using for example OSCAR we obtain that such a matrix B cannot exist, hence there
exists no f ∈ C{x}, such that Mf

∼= C{x}/I.
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Chapter 6

On Singularities of
Sebastiani–Thom type

In the upcoming chapter we are going to establish a connection between the property
of being a Sebastiani–Thom singularity in case of quasi-homogeneous hypersurface
singularities and the maximal multihomogeneity of their singular locus. To be more
precise, we investigate the following conjecture:

Conjecture 6.1. Let f ∈ C{x} define a quasi-homogeneous isolated hypersurface singular-
ity. Then (V (f),0) is of Sebastiani–Thom type with quasi-homogeneous Sebastiani–Thom
components if, and only if, the maximal multihomogeneity of Jf is at least 2.

We show the following:

Theorem 6.2. Let f ∈ C{x} be a quasi-homogeneous isolated hypersurface singularity with
respect to the weight-vector w ∈ Nn>0. Assume that Jf is multihomogeneous with respect to
w and v ∈ Qn\{0}, where w and v are linearly independent, and that one of the following
properties holds:

(a) Jf is of monomial type.

(b) w satisfies, after possibly permuting the variables,

w1 > . . . > wn >
w1

2
.

(c) w satisfies, after possibly permuting the variables,

w1 ≥ . . . ≥ wn >
w1

2

and v = (1, . . . , 1).

(d) n ≤ 3.

Then (V (f),0) is of Sebastiani–Thom type with quasi-homogeneous Sebastiani–Thom compo-
nents.

The rest of this chapter is concerned with the proof of Theorem 6.2. We start at this
point by reducing first to the case that ord(f) ≥ 3.

119
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Proposition 6.3. Let f ∈ C{x} define a quasi-homogeneous isolated hypersurface singular-
ity. Assume ord(f) = 2. Then (V (f),0) is of Sebastiani–Thom type with quasi-homogeneous
Sebastiani–Thom components.

Proof. By the Splitting Lemma (see Lemma 1.80) we know that f is right-equivalent
to x2

1 + . . . + x2
k + g ∈ C[x], where g ∈ C{xk+1, . . . , xn} defines an isolated hyper-

surface singularity and ord(g) ≥ 3. We obtain the isomorphism of Tjurina-algebras
Tf ∼= Tg. In particular, Tg is positively graded, since f is quasi-homogeneous. It fol-
lows from [XY96, Theorem 1.2] and Theorem 1.83 that g is right-equivalent to a quasi-
homogeneous polynomial h ∈ C{xk+1, . . . , xn}. Thus (V (f),0) is of Sebastiani–Thom
type with quasi-homogeneous Sebastiani–Thom components.

Remark 6.4. Proposition 6.3 justifies to consider Theorem 6.2 only for the case ord(f) ≥ 3.

For the next result, we need the following definition.

Definition 6.5. Let f ∈ C{x}. We say f defines a Brieskorn–Pham singularity, if there
exists integers a1, . . . , an ∈ Nn>0, such that f is right-equivalent to xa11 + . . .+ xann .

Theorem 6.2 (a) follows from the following proposition.

Proposition 6.6. Let f ∈ C{x} define an isolated hypersurface singularity. Assume Jf is of
monomial type. Then f is a Brieskorn–Pham singularity.

Proof. Since Jf is of monomial type, there exists an isomorphism ϕ ∈ Aut(C{x}),
such that ϕ(Jf ) = Jϕ(f) is monomial. Since Jϕ(f) defines a zero-dimensional complete
intersection ideal, we obtain that it is generated by xa11 , . . . , x

an
n for certain a1, . . . , an ∈

Nn>0. Then g = xa1+1
1 + . . . + xan+1

n satisfies Jg = Jϕ(f). By Theorem 1.83 f is right-
equivalent to g, hence f defines a Brieskorn–Pham singularity.

6.1 Proof of Theorem 6.2 (b) and (c)

Before we prove our result, we state a characterization of a zero-dimensional algebra
to be the Milnor algebra of a quasi-homogeneous isolated hypersurface singularity.

To prove our result we need the following version of the Poincaré-Lemma:

Lemma 6.7. Let F1, . . . , Fn ∈ C{x} with

∂xjFi = ∂xiFj

for all 1 ≤ i, j ≤ n. Then there exists an f ∈ C{x}, such that Fi = ∂xif.

Furthermore, we need the following auxiliary lemma, which is part of the proof of
[Yau87, Theorem 2]:

Lemma 6.8. Let f ∈ m ⊆ C{x}.Assume that there exists a weight-vector w = (w1, . . . , wn) ∈
Qn
>0, such that the partial derivatives of f are w-homogeneous.

Then f =
∑n

i=1
wi

degw(∂xif)+wi
xi∂xif. In particular, f is weighted-homogeneous.
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Proof. The result follows immediately from the following computation:

f =

∫ 1

0

d

dt
f(tw1x1, . . . , t

wnxn)dt =

n∑
i=1

wi
degw(∂xif) + wi

xi∂xif.

Using the Poincaré-Lemma and Lemma 6.8, Yau (see [Yau87, Theorem 3]) proved the
following theorem:

Theorem 6.9. Let I ⊆ C{x} be an ideal and w = (w1, . . . , wn) ∈ Nn>0. Then A := C{x}/I
is the Milnor-Algebra of a w-homogeneous hypersurface singuarity f ∈ C{x} if and only if I
is generated by F1, . . . , Fn ∈ C{x} with the following properties:

(1) the Fi are weighted-homogeneous with respect to w,

(2) ∂xjFi = ∂xiFj for all 1 ≤ i, j ≤ n, and

(3) ∂xif = Fi for all 1 ≤ i ≤ n.

Remark 6.10. Let f ∈ C[x] define a quasi-homogeneous isolated hypersurface singularity,
which is weighted-homogeneous with respect to the weight-vector w = (w1, . . . , wn) ∈ Nn>0.
Furthermore, we assume that the partial derivatives of f are weighted homogeneous with re-
spect to w and to an additional weight-vector v = (v1, . . . , vn) ∈ Qn\{0}, where w and v
are linearly independent. By adding a sufficient multiple of w to v, we can assume vi ≥ wi
for all 1 ≤ i ≤ n. By choosing k with vk − wk ≤ vi − wi for all i 6= k and scaling v by wk

vk
,

we can additionally assume that vk = wk. This assumption implies, by using Lemma 6.8, that
degv f ≥ degw f for all f ∈ C[x].

Now we are able to prove a weak version of our result.

Proposition 6.11. Let I ⊆ C{x} be an ideal and w = (w1, . . . , wn) ∈ Nn>0. Then A :=
C{x}/I is the Milnor-Algebra of a w-homogeneous isolated hypersurface singularity f ∈
C{x} of Sebastiani–Thom type with quasi-homogeneous Sebastiani–Thom components if and
only if I is generated by F1, . . . , Fn ∈ m2 with the following properties:

(1) I is zero-dimensional and there exists a v ∈ Qn\{0}, where w and v are linearly inde-
pendent, such that the Fi are multihomogeneous with respect to w and v, and

(2) ∂xjFi = ∂xiFj for all 1 ≤ i, j ≤ n.

Proof. We show the "if" direction, since the other direction is trivial.
Due to Theorem 6.9 there exists a w-homogeneous f ∈ C{x} satisfying ∂xif = Fi for
1 ≤ i ≤ n. In particular, it holds that ord(f) ≥ 3. By assumption f defines an isolated
hypersurface singularity, since I is zero-dimensional. Due to Remark 6.10 we assume
that vi ≥ wi and that there exists an index k, such that vk = wk. By assumption,
the partial derivatives of f are w-homogeneous, as well as v-homogeneous. Due to
Lemma 6.8 and due to the uniqueness of the weights of f , see Theorem 1.89, we obtain

wi
degw(∂xif) + wi

=
vi

degv(∂xif) + vi
(6.1)
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for all 1 ≤ i ≤ n. For any index k with wk = vk Equation (6.1) implies

degw(∂xkf) = degv(∂xkf). (6.2)

Assume ∂2
xi,xk

f 6= 0. For any 1 ≤ i ≤ n with vi > wi Equation (6.2) yields

degw(∂2
xi,xk

f) = degw(∂xkf)− wi > degv(∂xkf)− vi = degv(∂2
xi,xk

f). (6.3)

Inequality (6.3) and Remark 6.10 yield a contradiction, hence

∂2
xi,xk

f = 0.

This means that the partial derivatives with respect to variables xk which satisfy wk =
vk do not depend on variables xi with vi > wi and vice versa. We reorder the x
variables together with the corresponding weights, such that vi = wi for 1 ≤ i ≤ r
and vi > wi for r + 1 ≤ i ≤ n. Under our assumptions, Lemma 6.7 and Lemma 6.8
imply the existence of w-homogeneous f1(x1, . . . , xr) and f2(xr+1, . . . , xn), such that
∂xif1 = ∂xif for 1 ≤ i ≤ r and ∂xif2 = ∂xif for r+1 ≤ i ≤ n. This proves the claim.

The main problem with Proposition 6.11 is that the statement is highly coordinate
dependent. We aim to prove a coordinate independent version, which holds under
stronger assumptions on the weights.

Theorem 6.12. Let f ∈ C{x} be a quasi-homogeneous isolated hypersurface singularity with
respect to the weight-vector w ∈ Nn>0. Assume that Jf is multihomogeneous with respect to
w and v ∈ Qn\{0}, where w and v are linearly independent, and that one of the following
properties holds:

(1) w1 > . . . > wn >
w1
2 .

(2) w1 ≥ . . . ≥ wn > w1
2 and v = (1, . . . , 1).

Then (V (f),0) is of Sebastiani–Thom type with quasi-homogeneous Sebastiani–Thom compo-
nents.

Proof. Denote by d = degw(f) the w-degree of f. Furthermore, we assume that degw(Fi) =
degw(∂xif) = d−wi for 1 ≤ i ≤ n.Write ∂xif =

∑n
j=1 aijFj .Due to the w-homogeneity,

we obtain
degw(aij) = wj − wi. (6.4)

The fact that w1 ≥ . . . ≥ wn together with Equation (6.4) imply that the matrix A =
(aij) ∈ C{x}n×n is an invertible, lower triangular matrix. Both assumptions imply

wj − wi < 2wn − wn = wn,

hence the matrix A has only constant entries.
In case w1 > . . . > wn, the matrix A is diagonal, so the partial derivatives of f are
already multihomogeneous and we can apply Proposition 6.11.
In case w1 ≥ . . . ≥ wn, the matrix A is block diagonal, where the size of the blocks
corresponds to the number of weights with the same value. Since A is invertible, the
linear coordinate change ϕ(x) = (AT )−1x combined with Lemma 5.3 implies that ϕ(f)
is w-homogeneous with v-homogeneous partial derivatives. Yet again we can apply
Proposition 6.11.
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6.2 Proof of Theorem 6.2 (d)

Theorem 6.13. Let f ∈ C{x, y, z} be quasi-homogeneous and of order ≥ 3. Assume f
defines an isolated hypersurface singularity. Then f is of Sebastiani–Thom type if and only if
the maximal multihomogeneity of Jf is at least 2.

The proof will be split into a rigorous case by case analysis taking into account possible
cases for the ordering of the weights of f. The following sections then will deal with
the respective proofs of the subcases.

Remark 6.14. Throughout this chapter, we will always assume that f is given in a coordinate
system, in which it is quasi-homogeneous with respect to the weights w1, w2, w3.

Notation 6.15. We assume that the Jacobian ideal Jf is generated by multihomogeneous poly-
nomials h1, h2, and h3. We can assume this, due to Proposition 5.33. The maximal multiho-
mogeneity of Jf will be denoted by s. Supp(f) denotes the monomial support of f.

The main idea of the upcoming computations is to consider the monomial diagram
of the monomial support Supp(f) for the defining equation f ∈ C[x, y, z]. We use the
fact that being quasi-homogeneous implies that the exponents of all monomials in
Supp(f), considered as points in R3 lie on one hyperplane H. In a next step we con-
sider the minimal multihomogeneous generating set {h1, h2, h3} of Jf . By assumption
we have maximal multihomogeneity s = 2, hence the exponents of the monomials
of the hi lie on lines Li in R3, with the feature, that the lines L1, L2, L3 are pairwise
parallel. We use this fact, to show that f cannot contain a monomial of type xaybzc for
a, b, c ∈ N>0, in a suitably chosen coordinate system. Since a line L in R3 is determined
by a point p ∈ L on the line and a vector v ∈ R3, determining the direction of the line,
we introduce the following definition.

Definition 6.16. Let h ∈ C[x, y, z] be a multihomogeneous polynomial with |Supp(h)| ≥ 2.
Assume that p = (p1, p2, p3) and q = (q1, q2, q3) in R3 are different exponents of monomials
of h. Then we say that the vector v = p− q is a direction vector of h.

The proof relies on a case by case analysis of the weights and of the exponents of f.

6.3 The case w1 = w2 = w3 = 1

The first case we are dealing with is the homogeneous case. We start with the follow-
ing auxiliary lemma.

Lemma 6.17. Let f ∈ C[x, y, z] define a homogeneous isolated hypersurface singularity with
deg(f) = d ≥ 3 and s = 2. Then the following hold:

(1) There exists a multihomogeneous set of generators h1, h2, h3 of Jf with deg(hi) = d−1.

(2) There exists an invertible matrix M ∈ C3×3, such thatfxfy
fz

 = M

h1

h2

h3

 .
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Proof. The first result follows immediately from Proposition 3.9. The second result
follows from elementary linear algebra.

In a first step we are going to reduce to the case that Jf is multihomogeneous with
respect to the weight vectors v1 = (1, 1, 0) and v2 = (0, 0, 1). If this were not the case,
we can assume that, after renumbering the variables, Jf is weighted homogeneous
with respect to the weight vectors v1 = (1, 1, 1) and v2 = (w, 1, 0) for a w ∈ Q>1. In
this case we are able to show the following:

Lemma 6.18. Let f ∈ C[x, y, z] be a homogeneous isolated hypersurface singularity with
deg(f) = d ≥ 3 and assume Jf is weighted homogeneous with respect to the weight vectors
v1 = (1, 1, 1) and v2 = (w, 1, 0) for some w ∈ Q>1. Then f is of Sebastiani–Thom type.

Proof. Lemma 6.17 implies that all monomials appearing in Supp(∂xf),Supp(∂yf) and
Supp(∂zf) are also appearing in Supp(h1),Supp(h2) and Supp(h3).Note that by Lemma
1.87 {xd−1, yd−1, zd−1} ⊆ Supp(∂xf)∪Supp(∂yf)∪Supp(∂zf), hence {xd−1, yd−1, zd−1} ⊆
Supp(h1)∪Supp(h2)∪Supp(h3).Due to this we can assume that degv2(h1) = degv2(xd−1) =
w(d−1), degv2(h2) = degv2(yd−1) = d−1 and degv2(h3) = degv2(zd−1) = 0.We show in
multiple steps, that no monomial of type xayb, ybzc, xaybzc with a, b, c ≥ 1 is contained
in the support of f. This shows, that f is of Sebastiani–Thom type.
Step 1: We show that no monomial of type ybzc with b, c ≥ 1 is contained in the sup-
port of f. Assume the contrary.
The assumptions imply in particular 1 ≤ b ≤ d − 1. Then yb−1zc ∈ Supp(∂yf) and in
particular yb−1zc ∈ Supp(hi) for some i = 1, 2, 3. It holds that

0 ≤ b− 1 = degv2(ybzc) < d− 1.

This implies b = 1 and c = d− 1, hence yzd−2 ∈ Supp(∂zf). Next it holds that

0 < degv2(yzd−2) = 1 < d− 1,

hence yzd−1 6∈ Supp(hi) for i = 1, 2, 3, which is a contradiction.
Step 2: We show that no monomial of type xayb with a, b ≥ 1 is contained in the sup-
port of f. Assume the contrary.
The assumptions imply in particular 1 ≤ b ≤ d−1. Then xa−1yb, xayb−1 ∈ Supp(∂xf)∪
Supp(∂yf) and in particular xa−1yb, xayb−1 are contained Supp(hi) for certain i =
1, 2, 3. It holds that

0 < w(a− 1) + b < wa+ b− 1.

This implies degv2(xayb−1) = w(d − 1), since we obtain a contradiction otherwise.
Using that a + b = d, we obtain a = d − 1 and b = 1. On the other hand, in order to
avoid a contradiction, we obtain

d− 1 = degv2(xa−1yb) = w(d− 2) + 1.

This equation implies w = 1, which contradicts w > 1.
Step 3: We show that no monomial of type xaybzc ∈ Supp(f) with a, b, c ≥ 1 is con-
tained in the support of f. Assume the contrary.
Then xaybzc−1 ∈ Supp(∂zf) and in particular xaybzc−1 ∈ Supp(hi) for some i = 1, 2, 3.
It holds that

degv2(h1) = w(d− 1) ≥ wa+ b = degv2(xaybzc−1) > 0.

We consider two subcases:
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(1) Assume that degv2(h1) = degv2(xaybzc−1). Then a + b ≤ d − 1 implies that a =
d− 1, b = 0 and c = 1. This contradicts b ≥ 1.

(2) Assume that degv2(h2) = degv2(xaybzc−1) = d − 1. Then xa−1ybzc ∈ Supp(∂xf)
and in particular xa−1ybzc ∈ Supp(hi) for some i = 1, 2, 3. It holds that

degv2(h2) = degv2(xaybzc−1) = wa+ b > w(a− 1) + b = degv2(xa−1ybzc).

This implies w(a− 1) + b = 0, hence a = 1, b = 0 and c = d− 1. This contradicts
b ≥ 1.

Due to Lemma 6.18 we can assume that Jf is multihomogeneous with respect to the
weight vectors v1 = (1, 1, 0) and v2 = (0, 0, 1).

Being weighted homogeneous with respect to v2 implies hi = zki · gi(x, y) with ki ∈ N
and gi ∈ C[x, y]. In order to prove that f is of Sebastiani–Thom type, we need the
following lemmas.

Lemma 6.19. Let f ∈ C[x, y, z] be a homogeneous isolated hypersurface singularity with
ord(f) ≥ 3, s = 2 and assume that Jf is weighted homogeneous with respect to the weights
v1 = (1, 1, 0) and v2 = (0, 0, 1). Furthermore, denote by h1, h2, h3 a multihomogeneous
system of generators of Jf . Then, after possibly renumbering the hi, h1 = h1(x, y) and h2 =
h2(x, y). In particular, it holds that k3 ≥ 2.

Proof. If ki > 0 for more than one index i, then f does not define an isolated singu-
larity, hence we can assume without loss of generality that h1 = h1(x, y) and h2 =
h2(x, y). The fact that f defines an isolated singularity also implies in this case that
k3 > 0. Furthermore, Lemma 1.87 implies that either zr+1, zrx, zry ∈ Supp(f) with
r ≥ 2. The fact that h1 = h1(x, y) and h2 = h2(x, y) implies together with Lemma 6.17
that k3 ≥ 2.

Lemma 6.20. Let f ∈ C[x, y, z] be a homogeneous isolated hypersurface singularity with
ord(f) ≥ 3, s = 2 and assume that Jf is weighted homogeneous with respect to the weights
v1 = (1, 1, 0) and v2 = (0, 0, 1). Furthermore, denote by h1, h2, h3 a multihomogeneous
system of generators of Jf . Then h3 = zk3 , zk3 /∈ Supp(fx) and zk3 /∈ Supp(fy).

Proof. By Lemma 6.19 we assume that h1 and h2 do not depend on the z-variable. Let
xiyjzk3 ∈ Supp(h3) for i, j ∈ N. We first show that xiyjzk3 /∈ Supp(fx) ∪ Supp(fy). We
consider two cases:
Case 1: xiyjzk3 ∈ Supp(fx).
Then xi+1yjzk3−1 ∈ Supp(fz). In this case fz is a sum of at least two elements with
non-zero v2-degree, since k3 ≥ 2 by Lemma 6.19. This contradicts Lemma 6.17.
Case 2: xiyjzk3 ∈ Supp(fy).
This case works analogously to Case 1.
Next we show that if either i > 0 or j > 0, then xiyjzk3 /∈ Supp(fz). We can assume
without loss of generality that i > 0. Assume the contrary, that is xiyjzk3 ∈ Supp(fz).
Then xi−1yjzk3+1 ∈ Supp(fx). In this case fx is a sum of at least two elements with
non-zero v2-degree. This contradicts Lemma 6.17. This shows that h3 = zk3 and that
zk3 /∈ Supp(fx) ∪ Supp(fy).
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The next step is to show that we can give more structure to the matrix M in Lemma
6.17 in case h1 and h2 do not depend on the z-variable and in case h3 = zk3 .

Lemma 6.21. Let f ∈ C[x, y, z] be a homogeneous isolated hypersurface singularity and
assume Jf is weighted homogeneous with respect to the weights v1 = (1, 1, 0) and v2 =
(0, 0, 1). Furthermore, denote by h1, h2, h3 a multihomogeneous system of generators of Jf .
Assume that h1 = h1(x, y), h2 = h2(x, y) and h3 = zk3 . Then, after a suitable linear change
of coordinates, fxfy

fz

 =

 1 0 0
0 1 0
β1 β2 β3

h1

h2

h3


for some βj ∈ C.

Proof. Due to Lemma 6.20 we can assume the matrix appearing in Lemma 6.17 to be

M =

m1 m2 0
m3 m4 0
m5 m6 m7

 . The submatrix M ′ :=

(
m1 m2

m3 m4

)
of M is invertible, since M

is invertible. We consider a linear coordinate change of type

ϕ(x, y, z) = (a1x+ a2y, a3x+ a4y, z)

with ai ∈ C. Note that this type of coordinate change does not affect the homogeneity
of f or the multihomogeneity of Jf . We show that we can determine certain values for
the ai ∈ C, in order to obtain the desired shape of the matrix. Define

A :=

(
a1 a2

a3 a4

)
and B :=

a1 a2 0
a3 a4 0
0 0 1

 .

We use that ϕ being a coordinate change is equivalent to A and B being invertible.
Applying the chain rule to f ′(x, y, z) = f ◦ ϕ = f(a1x + a2y, a3x + a4y, z) and using
Lemma 6.17, we obtain:f ′xf ′y

f ′z

 = BT

fx ◦ ϕfy ◦ ϕ
fz ◦ ϕ

 = BTM

h1 ◦ ϕ
h2 ◦ ϕ
h3 ◦ ϕ

 =

(
ATM ′ 0

m5 m6 m7

)h1 ◦ ϕ
h2 ◦ ϕ
h3 ◦ ϕ

 .

Choosing the ai such that AT = (M ′)−1 we can define β1 := m5, β2 := m6 and β3 :=
m7, and we obtain our desired result.

Now we can show that f is of Sebastiani–Thom type.

Proposition 6.22. Let f ∈ C[x, y, z] be a homogeneous isolated hypersurface singularity with
ord(f) ≥ 3, s = 2 and assume that Jf is weighted homogeneous with respect to the weights
v1 = (1, 1, 0) and v2 = (0, 0, 1). Then (V (f),0) is of Sebastiani–Thom type.

Proof. By Lemma 6.19 and by Lemma 6.20 can assume that h1 = h1(x, y), h2 = h2(x, y)
and h3 = zk3 . Due to Lemma 6.21 it holds that

∂yh1 = ∂xh2.

Then Lemma 6.7 implies that there exists a g ∈ C{x, y}, such that ∂xg = h1 and ∂yg =
h2. Define F = g(x, y) + zk3+1 Then JF = Jf , hence the Mather–Yau theorem implies
that (V (F ),0) ∼= (V (f),0) is of Sebastiani–Thom type.
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6.3.1 The case w1 > w2 > w3

Lemma 6.23. Let f ∈ C[x, y, z] be a QHIS with weights w = (w1, w2, w3), where w1 >
w2 > w3 and assume s = 2. Then the following hold:

(1) fx is multihomogeneous with respect to the weights of Jf .

(2) There exist g1, g2 ∈ C[y, z] and g3 ∈ C[z], such that

fy = g1fx + h2 and fz = g2fx + g3h2 + h3.

In particular we can always assume h1 = fx.

Proof. The inequality w1 > w2 > w3 combined with Proposition 3.7 implies

degw(fx) = degw(h1) < degw(fy) = degw(h2) < degw(fz) = degw(h3).

We also know that

degw(fx) + w1 > degw(fy),degw(fz) and degw(fy) + w2 > degw(fz). (6.5)

Using these inequalities we can prove the statements:

(1) Proposition 3.7 implies that there exists an a ∈ C\{0}, such that h1 = afx. This
immediately implies that fx is multihomogeneous with respect to weights of Jf .

(2) Proposition 3.7 also yields the existence of g1 ∈ m and a1 ∈ C\{0}, such that
fy = g1fx + a1h2. Equation (6.5) implies g1 ∈ 〈y, z〉 ⊆ C[y, z]. Since a1 6= 0, we
can assume a1 = 1 after a coordinate change of type ϕ(x, y, z) = λ(x, y, z),which
does not affect the quasihomogeneity of f and the multihomogeneity of Jf . Then
we obtain

fy = g1fx + h2,

with g1 ∈ C[y, z]. The same reasoning implies the analogous result for fz.

The first step is to show that no monomial of type xaybzc with a, b, c ≥ 1 occurs in f. In
order to do so, we prove some lemmas assuming such a monomial exists in Supp(f).

Lemma 6.24. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
assume that there exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f). Then the following statements
hold:

(1) If yq+1 ∈ Supp(f) for some q ∈ N, then yq ∈ Supp(h2).

(2) yqx /∈ Supp(f) for any q ∈ N.

(3) If yq+1z ∈ Supp(f) for some q ∈ N, then yqz ∈ Supp(h2).

Proof.
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(1) Let yq+1 ∈ Supp(f). Assume yq /∈ Supp(h2), then fy = g1(y, z)fx+h2 implies the
existence of an l ∈ N≥2, such that yl ∈ Supp(fx). Now we have to consider three
cases:

(a) If xp+1 ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and in the same way

u′ = (a− 1, b, c)− (0, l, 0) = (a− 1, b− l, c).

The vector u cannot be parallel to u′, since the last components are equal,
but b > b− l.

(b) If xp+1y ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)

and in the same way

u′ = (a− 1, b, c)− (0, l, 0) = (a− 1, b− l, c).

The vector u cannot be parallel to u′, since the last components are equal,
but b− 1 > b− l.

(c) If xp+1z ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and in the same way

u′ = (a− 1, b, c)− (0, l, 0) = (a− 1, b− l, c).

The vector u cannot be parallel to u′, since c > c − 1 and u = λu′ imply
1 > λ > 0, contradicting b > b− l.

All cases are impossible so yq ∈ Supp(h2).

(2) If yqx ∈ Supp(f), then yq ∈ Supp(fx), which is impossible due to the proof of
part (1).

(3) Let yq+1z ∈ Supp(f). Assume yqz /∈ Supp(h2), then fy = g1(y, z)fx + h2 implies
the existence of an l ∈ N≥1 with ylz ∈ Supp(fx).We are going to proceed as in the
proof of (1) by showing that direction vectors cannot be parallel. To assure that
the direction vectors we deal with are not equal to (0, 0, 0), we have to assume
l 6= b or a > 1 or c > 1. The case a = c = 1 and l = b is treated separately. We
have to consider three cases:

(a) If xp+1 ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and in the same way

u′ = (a− 1, b, c)− (0, l, 1) = (a− 1, b− l, c− 1).

Both vectors are different from (0, 0, 0), since l 6= b or a > 1 or c > 1. u can-
not be parallel to u′, since c > c− 1 and u = λu′ imply λ > 1, contradicting
a− 1 > a− 1− p.
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(b) If xp+1y ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)

and in the same way

u′ = (a− 1, b, c)− (0, l, 1) = (a− 1, b− l, c− 1).

Both vectors are different from (0, 0, 0), since since l 6= b or a > 1 or c >
1. u cannot be parallel to u′, since c > c − 1 and u = λu′ imply λ > 1,
contradicting a− 1 > a− 1− p.

(c) If xp+1z ∈ Supp(f), then the direction vector of fx is

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and in the same way

u′ = (a− 1, b, c)− (0, l, 1) = (a− 1, b− l, c− 1).

Both vectors are different from (0, 0, 0), since l 6= b or a > 1 or b > 1. u
cannot be parallel to u′, since the last components are equal, but b > b− l.

Next we consider the case a = c = 1 and l = b. We assume that xylz is the
only monomial of f of type xiyjzk for i, j, k ∈ N≥1, otherwise we are in the
previous case. Since all monomials of fx = h1 lie on a line, only ylz and one of
the monomials xp, xpy or xpz can appear in Supp(fx). If another monomial were
to appear, then it would be of type xiyj or xizj for some i, j ∈ N and a simple
computation as in (a) - (c) shows that the monomials of fx would not lie on a
line.
The weighted homogeneity of f yields:

degw(yq+1z) = (q + 1)w2 + w3 = degw(xylz) = w1 + lw2 + w3 > (l + 1)w2 + w3.

This implies q > l + 1. Since fy = g1(y, z)fx + h2 and ylz divides yqz, we know
that yq−l ∈ Supp(g1). We use this in the following three cases:

(a) If xp+1 ∈ Supp(f), then a direction vector of fx is

u = (0, l, 1)− (p, 0, 0) = (−p, l, 1).

We have {xp, ylz} = Supp(fx), which implies yq−lxp ∈ Supp(g1fx). We con-
sider two different subcases:

i. Assume yq−lxp ∈ Supp(h2). We know that xyl−1z ∈ Supp(fy). The
structure of fx and g1 yields xyl−1z /∈ Supp(g1fx). This implies xyl−1z ∈
Supp(h2). Then a direction vector of h2 is

u1 = (1, l − 1, 1)− (p, q − l + 1, 0) = (1− p, 2l − q − 2, 1).

u cannot be parallel to u1, since the last components are equal, but 1−
p > −p.

ii. Assume yq−lxp /∈ Supp(h2). Then yq−lxp ∈ Supp(fy), which implies
yq−l+1xp−1 ∈ Supp(fx). Thus another direction vector of fx is given by

u2 = (p, 0, 0)− (p− 1, q − l + 1, 0) = (1, l − q − 1, 0).

u cannot be parallel to u2, since 1 6= 0 in the last component.
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(b) If xp+1y ∈ Supp(f), then a direction vector of fx is

u = (0, l, 1)− (p, 1, 0) = (−p, l − 1, 1).

Since fy = g1(y, z)fx + h2 and xp ∈ Supp(fy), we obtain xp+1 ∈ Supp(h2).
We know that yq−l+1xp ∈ Supp(yq−lfx).We consider two different subcases:

i. Assume yq−l+1xp ∈ Supp(h2). Then a direction vector of h2 is

u1 = (p+ 1, 0, 0)− (p, q − l + 1, 0) = (1, l − q − 1, 0).

u cannot be parallel to u1, since 1 6= 0 in the last component.
ii. Assume yq−l+1xp /∈ Supp(h2). Then yq−l+1xp ∈ Supp(fy), which im-

plies yq−l+2xp−1 ∈ Supp(fx). Thus another direction vector of fx is
given by

u2 = (p, 1, 0)− (p− 1, q − l + 2, 0) = (1, l − q − 1, 0).

u cannot be parallel to u2, since 1 6= 0 in the last component.

(c) If xp+1z ∈ Supp(f), then a direction vector of fx is

u = (p, 0, 1)− (0, l, 1) = (p,−l, 0).

We know that {xp+1z, yq+1z, xylz} ⊂ Supp(f). By our assumption on fx
and since z is not allowed to divide f, if f defines an isolated hypersurface
singularity, we obtain ym+1 ∈ Supp(f) for some m ∈ N≥2. By (1) we know
ym ∈ Supp(h2). We know yq+1 ∈ Supp(fz). The proof of (1) excludes yq+1 ∈
Supp(g2fx), so we only have to consider two cases:

i. If yq+1 /∈ Supp(h3) then, there must exist a k ∈ N with yk ∈ Supp(h2)
and k < q + 1. The multihomogeneity of h2 implies m = k < q + 1.
Then yq+1z, ym+1 ∈ Supp(f) and the weighted homogeneity of f imply
(q + 1)w2 + w3 = (m+ 1)w2. This implies

w3 = (m− q)w2 ≤ 0,

which contradicts w3 > 0.

ii. If yq+1 ∈ Supp(h3), then fz = g2(y, z)fx + g3(z)h2 + h3 and degw(fx) <
degw(h2) < degw(h3) imply xp+1 ∈ Supp(h3). A direction vector of h3

is
u′ = (p+ 1, 0, 0)− (0, q + 1, 0) = (p+ 1,−q − 1, 0).

u cannot be parallel to u′, since p+ 1 > p and u = λu′ imply 1 > λ > 0,
contradicting −l > −q − 1.

All cases are impossible so yqz ∈ Supp(h2).

Now we prove a similar statement for the monomials close to the z-axis.

Lemma 6.25. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
assume that there exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f). Then the following statements
hold:
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(1) If zr+1 ∈ Supp(f) for some r ∈ N, then zr ∈ Supp(h3).

(2) zrx /∈ Supp(f) for any r ∈ N.

(3) zry /∈ Supp(f) for any r ∈ N.

Proof.

(1) Let zr ∈ Supp(fz). With fz = g2(y, z)fx + g3(z)h2 + h3, we have to exclude
zr ∈ Supp(g2fx) and zr ∈ Supp(g3h2) in order to show zr ∈ Supp(h3).

(a) Assume zr ∈ Supp(g2fx). Then there exist an l ∈ N≥2 with zl ∈ Supp(fx).
Now we have to consider three possible cases:

i. If xp+1 ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and in the same way

u′ = (a− 1, b, c)− (0, 0, l) = (a− 1, b, c− l).

u cannot be parallel to u′, since the second components are equal, but
c > c− l.

ii. If xp+1y ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)

and in the same way

u′ = (a− 1, b, c)− (0, 0, l) = (a− 1, b, c− l).

u cannot be parallel to u′, since b > b− 1 and u = λu′ imply 1 > λ > 0,
contradicting c > c− l.

iii. If xp+1z ∈ Supp(f), then a direction vector of fx is

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and in the same way

u′ = (a− 1, b, c)− (0, 0, l) = (a− 1, b, c− l).

u cannot be parallel to u′, since the second components are equal, but
c− 1 > c− l.

This computation implies zl /∈ Supp(fx) and thus zr /∈ Supp(g2fx).

(b) Assume zr ∈ Supp(g3h2). Then there exists an l ∈ N≥2 with zl ∈ Supp(h2).
Using Lemma 6.24, we know that either yq ∈ Supp(h2) or yqz ∈ Supp(h2)
for some q ∈ N. We also know that the monomials of h1 and h2 have to lie
on parallel lines. We consider both cases separately:

i. Assume yq ∈ Supp(h2) for some q ≥ 2. Again we have to distinguish
all cases with monomials close to the x-axis.
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A. If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is
given by

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and a direction vector of h2 is given by

u′ = (0, q, 0)− (0, 0, l) = (0, q,−l).

Since a, b, c ≥ 1 and degw(xaybzc) = degw(xp+1) we obtain aw1 +
bw2 + cw3 = (p + 1)w1, hence p + 1 > a. Then u cannot be parallel
to u′, since a− p− 1 < 0.

B. If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is
given by

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)

and a direction vector of h2 is given by

u′ = (0, q, 0)− (0, 0, l) = (0, q,−l).

Since a, b, c ≥ 1 and degw(xaybzc) = degw(xp+1y) we obtain aw1 +
bw2 + cw3 = pw1 +w2, hence p > a. Then u cannot be parallel to u′,
since a− p− 1 < 0.

C. If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is
given by

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and a direction vector of h2 is given by

u′ = (0, q, 0)− (0, 0, l) = (0, q,−l).

Since a, b, c ≥ 1 and degw(xaybzc) = degw(xp+1z) we obtain aw1 +
bw2 + cw3 = pw1 +w3, hence p > a. Then u cannot be parallel to u′,
since a− p− 1 < 0.

ii. Assume yqz ∈ Supp(h2).

A. If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is
given by

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and a direction vector of h2 is given by

u′ = (0, q, 1)− (0, 0, l) = (0, q, 1− l).

Since a, b, c ≥ 1 and degw(xaybzc) = degw(xp+1) we obtain aw1 +
bw2 + cw3 = (p + 1)w1, hence p + 1 > a. Then u cannot be parallel
to u′, since a− p− 1 < 0.

B. If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is
given by

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)
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and a direction vector of h2 is given by

u′ = (0, q, 1)− (0, 0, l) = (0, q, 1− l).

Since a, b, c ≥ 1 and degw(xaybzc) = degw(xp+1y) we obtain aw1 +
bw2 + cw3 = pw1 +w2, hence p > a. Then u cannot be parallel to u′,
since a− p− 1 < 0.

C. If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is
given by

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and a direction vector of h2 is given by

u′(0, q, 1)− (0, 0, l) = (0, q, 1− l).

Since a, b, c ≥ 1 and degw(xaybzc) = degw(xp+1z) we obtain aw1 +
bw2 + cw3 = pw1 +w3, hence p > a. Then u cannot be parallel to u′,
since a− p− 1 < 0.

These computations imply zr /∈ Supp(g2fx) and zr /∈ Supp(g3h2), so we
must have zr ∈ Supp(h3).

(2) Let zrx ∈ Supp(f) for some r ∈ N. Then zr ∈ Supp(fx), which is impossible due
to the proof of (1), (a).

(3) Let zry ∈ Supp(f) for some r ∈ N. Then zr ∈ Supp(fy), which is impossible due
to the proof of (1), (a) and (1), (b), since fy = g1(y, z)fx + h2 implies that either
zr ∈ Supp(h2) or zl ∈ Supp(fx) for some l ∈ N≥2.

Our next goal is to prove that xayb−1zc ∈ Supp(h2), if xaybzc ∈ Supp(f). Before we can
do so, we need a lemma excluding a very special case.

Lemma 6.26. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
assume that there exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f). Furthermore, we assume the
following:

(1) a, b, c are chosen with maximal a, i.e. if xa′yb′zc′ ∈ Supp(f) with a′, b′, c′ ∈ N≥1, then
a ≥ a′.

(2) bw2 + cw3 = w1.

(3) xp+1 ∈ Supp(f) for some p ∈ N≥2.

(4) No monomial of type xiyjzk is contained in Supp(h2) for any i, j, k ∈ N≥1.

Then a = p and

(a) f is right-equivalent to xp+1 + yq + zr or xp+1 + yqz + zr for some q, r ∈ N, or

(b) xpzc ∈ Supp(h2), if b = 1 and (a) does not hold.
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Proof. First we show that a = p. Since xp+1, xaybzc ∈ Supp(f) and bw2 + cw3 = w1 the
weighted homogeneity of f implies

(p+ 1)w1 = aw1 + bw2 + cw3 = (a+ 1)w1,

which yields a = p.Next we proof the second part of the statement for b > 1.Deriving
yields xpyb−1zc ∈ Supp(fy). Since no monomial of type xiyjzk is contained in Supp(h2)
for any i, j, k ∈ N≥1, we know that xpyb−1zc ∈ Supp(g1fx) with g1 = g1(y, z). The
only possibility to obtain xpyb−1zc as a multiple of a monomial of fx is to multiply xp

with yb−1zc. Otherwise multiplication of xpyb−1−szc−t with yszt for some s, t ∈ N with
s ≤ b − 1 and t ≤ c contradicts w2b + w3c = w1. Multiplying fx with yb−1zc implies
xp−1y2b−1z2c ∈ Supp(g1fx). With no monomial of type xiyjzk in Supp(h2) we have
xp−1y2bz2c ∈ Supp(f). Continuing this argument we obtain

{xypbzpc, . . . , xp−1y2bz2c, xpybzc} ⊆ Supp(f).

We also have y(p+1)bz(p+1)c ∈ Supp(f).Assume this were not the case, then yb−1zcypbzpc =
y(p+1)b−1z(p+1)c ∈ Supp(g1fx) and y(p+1)b−1z(p+1)c ∈ Supp(h2), because the corre-
sponding monomials need to cancel each other. In this case, using Lemma 6.24, it
easy to see that the resulting direction vectors of fx and h2 cannot be parallel, since a
direction vectors of fx is given by

u = (1,−b,−c)

having 1 as the first component and the possible direction vectors of h2 have 0 as their
first component.
Next we show that the only monomial of type yuzv ∈ Supp(f) with u, v ≥ 2 is
y(p+1)bz(p+1)c. Assume the contrary. Then yu−1zv ∈ Supp(fy). If yu−1zv /∈ Supp(h2),
then there exist i, j ∈ N with yizj ∈ Supp(fx) and yizj divides yu−1zv. Since fx is mul-
tihomogeneous we must have i = pb and j = pc. In particular, u > pb and v ≥ pc.
This yields xpyu−1−pbzv−pc ∈ Supp(g1fx). If xpyu−1−pbzv−pc ∈ Supp(h2), we have to
consider four cases:

(1) If u− 1 > pb and v > pc we have p, u− 1− pb, v − pc ≥ 1 and xpyu−1−pbzv−pc ∈
Supp(h2), contradicting assumption (4).

(2) Assume u − 1 = pb and v = pc. Using Lemma 6.24, we have to consider two
subcases:

(a) Assume yq ∈ Supp(h2). Then a direction vector of h2 is given by

u1 = (p,−q, 0).

u cannot be parallel to u1, since −c < 0.

(b) Assume yqz ∈ Supp(h2). Then a direction vector of h2 is given by

u2 = (p,−q,−1).

u cannot be parallel to u1, since p > 1 and u = λu2 imply 1 > λ > 0,
contradicting −c ≤ −1.

(3) Assume u − 1 > pb and v = pc. Using Lemma 6.24, we have to consider two
subcases:
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(a) Assume yq ∈ Supp(h2). Then a direction vector of h2 is given by

u1 = (p, u− 1− pb− q, 0).

u cannot be parallel to u1, since −c < 0.

(b) Assume yqz ∈ Supp(h2). Then a direction vector of h2 is given by

u2 = (p, u− 1− pb− q,−1).

u cannot be parallel to u1, since p > 1 and u = λu2 imply 1 > λ > 0,
contradicting −c ≤ −1.

(4) Assume u − 1 = pb and v > pc. Using Lemma 6.24, we have to consider two
subcases:

(a) Assume yq ∈ Supp(h2). Then a direction vector of h2 is given by

u1 = (p,−q, v − pc).

u cannot be parallel to u1, since p > 1 and u = λu2 imply 1 > λ > 0,
contradicting v − pc > 0 > −c

(b) Assume yqz ∈ Supp(h2). Then a direction vector of h2 is given by

u2 = (p,−q, v − pc− 1).

u cannot be parallel to u1, since p > 1 and u = λu2 imply 1 > λ > 0,
contradicting v − pc− 1 ≥ 0 > −c

All the cases contradict xpyu−1−pbzv−pc ∈ Supp(h2). This implies xpyu−1−pbzv−pc ∈
Supp(fy), hence xpyu−pbzv−pc ∈ Supp(f). The multihomogeneity of fx implies u−pb =
b and v− pc = c, hence u = (p+ 1)b, v = (p+ 1)c. Thus only monomials close to the y-
or z-axis and y(p+1)bz(p+1)c are allowed to appear in f, if x were not to appear in them.
Applying Lemma 6.24 and Lemma 6.25 we know, after a suitable coordinate change
of type x 7→ αx, y 7→ βy and z 7→ γz for certain α, β, γ ∈ C\{0}, that

f = xp+1 + yq + zr + λ1x
pybzc + . . .+ λpy

(p+1)bz(p+1)c

or
f = xp+1 + yqz + zr + λ1x

pybzc + . . .+ λpy
(p+1)bz(p+1)c

with λi ∈ C. Considering the structure of f we see that the only way of eliminating the
monomials in fy containing an x is by multiplying fx with λyb−1zc for some λ ∈ C\{0}.
Comparing coefficients in the equation

fy − λyb−1zcfx = qyq−1

or
fy − λyb−1zcfx = qyq−1z

yields λi =
(
p+1
i

) (
λ
b

)i
. Using the binomial formula we get

f =

(
x+

λ

b
ybzc

)p+1

+ yq + zr,
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or

f =

(
x+

λ

b
ybzc

)p+1

+ yqz + zr.

After the coordinate change x 7→ x− λ
b y

bzc, y 7→ y, z 7→ z we obtain the claimed form
for (a). Next we assume b = 1. Either we have xpzc /∈ Supp(h2) and we can argue
precisely as before or we obtain xpzc ∈ Supp(h2).

The next step is to prove xayb−1zc ∈ Supp(h2)

Lemma 6.27. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
assume that there exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f). Then xayb−1zc ∈ Supp(h2).

Proof. Similar to the previous proofs we assume that xayb−1zc /∈ Supp(h2) for any
a, b, c ∈ N≥1 with xaybzc ∈ Supp(f). For fixed a, b, c, due to w1 > w2, w3, there must
exist k, l ∈ N with xaykzl ∈ Supp(fx) and xaykzl divides xayb−1zc. We consider differ-
ent cases.

(1) Assume k, l ≥ 1. Choose a, b, c ∈ N≥1 with xaybzc ∈ Supp(f) and a maximal, i.e.
if xa

′
yb
′
zc
′ ∈ Supp(f) with a′, b′, c′ ∈ N≥1, then a ≥ a′. Then xa+1ykzl ∈ Supp(f),

contradicting the maximality of a.

(2) Assume k = 1 and l = 0. This implies that xa+1y ∈ Supp(f) and xa+1 ∈
Supp(fy). With w1 > w2, we have xa+1 ∈ Supp(h2). By Lemma 6.24 we have
yq ∈ Supp(h2) for some q ≥ 2 or yqz ∈ Supp(h2) for some q ≥ 1. We have to
compare possible direction vectors of fx and h2 in both cases. A direction vector
of fx is

u = (a− 1, b, c)− (a, 1, 0) = (−1, b− 1, c).

For a direction vector of h2 we have two possibilities:

(a) Assume yq ∈ Supp(h2). Then a direction vector of h2 is

u1 = (a+ 1, 0, 0)− (0, q, 0) = (a+ 1,−q, 0).

u cannot be parallel to u1, since c > 0.

(b) Assume yqz ∈ Supp(h2). Then a direction vector of h2 is

u2 = (a+ 1, 0, 0)− (0, q, 1) = (a+ 1,−q,−1).

u cannot be parallel to u2, since a+ 1 > −1 and u = λu2 imply 0 > λ > −1,
contradicting c > 1.

This contradicts xay ∈ Supp(fx).

(3) Assume k = 0 and l = 1. This implies that xa+1z ∈ Supp(f) and xa+1 ∈
Supp(fz).Withw1 > w3,we have xa+1 ∈ Supp(h3). By Lemma 6.25 zr ∈ Supp(h3)
for some r ≥ 2. We have to compare possible direction vectors of fx and h3. A
direction vector of fx is

u = (a− 1, b, c)− (a, 0, 1) = (−1, b, c− 1)

and a direction vector of h3 is

u′ = (a+ 1, 0, 0)− (0, 0, q) = (a+ 1, 0,−q).

u cannot be parallel to u′, since b > 0. This contradicts xaz ∈ Supp(fx).
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(4) Assume k ≥ 2 and l = 0. This implies that xa+1yk ∈ Supp(f) and xayk ∈
Supp(fx). Considering all possibilities of monomials close to the x-axis we have
three different monomials of fx and we can check if the corresponding direction
vectors are parallel:

(a) Assume xp ∈ Supp(fx) for some p ≥ 2. The first direction vector we obtain
is

u1 = (a− 1, b, c)− (a, k, 0) = (−1, b− k, c)

and the second one is

u2 = (a− 1, b, c)− (p, 0, 0) = (a− p, b, c).

u1 cannot be parallel to u2, since the last components are equal, but b > b−k.
(b) Assume xpy ∈ Supp(fx) for some p ≥ 1. The first direction vector we obtain

is
u1 = (a− 1, b, c)− (a, k, 0) = (−1, b− k, c)

and the second one is

u2 = (a− 1, b, c)− (p, 1, 0) = (a− p, b− 1, c).

u1 cannot be parallel to u2, since the last components are equal, but b− 1 >
b− k.

(c) Assume xpz ∈ Supp(fx) for some p ≥ 1. The first direction vector we obtain
is

u1 = (a− 1, b, c)− (a, k, 0) = (−1, b− k, c)

and the second one is

u2 = (a− 1, b, c)− (p, 0, 1) = (a− p, b, c− 1).

u1 cannot be parallel to u2, since b > b − k and u1 = λu2 imply 1 > λ > 0,
contradicting c > c− 1.

This contradicts xayk ∈ Supp(fx).

(5) Assume k = 0 and l ≥ 2. This implies xa+1yl ∈ Supp(f) and xayl ∈ Supp(fx).
Considering all possibilities of monomials close to the x-axis we have three dif-
ferent monomials of fx and we can check if the corresponding direction vectors
are parallel:

(a) Assume xp ∈ Supp(fx) for some p ≥ 2. The first direction vector we obtain
is

u1 = (a− 1, b, c)− (a, 0, l) = (−1, b, c− l)

and the second one is

u2 = (a− 1, b, c)− (p, 0, 0) = (a− p, b, c).

u1 cannot be parallel to u2, since the second components are equal, but
c > c− l.
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(b) Assume xpy ∈ Supp(fx) for some p ≥ 1. The first direction vector we obtain
is

u1 = (a− 1, b, c)− (a, 0, l) = (−1, b, c− l)

and the second one is

u2 = (a− 1, b, c)− (p, 1, 0) = (a− p, b− 1, c).

u1 cannot be parallel to u2, since b − 1 < b and u1 = λu2 imply λ > 1,
contradicting c > c− l.

(c) Assume xpz ∈ Supp(fx) for some p ≥ 1. The first direction vector we obtain
is

u1 = (a− 1, b, c)− (a, 0, l) = (−1, b, c− l)

and the second one is

u2 = (a− 1, b, c)− (p, 0, 1) = (a− p, b, c− 1).

u1 cannot be parallel to u2, since the second components are equal, but
c− 1 > c− l.

This contradicts xazl ∈ Supp(fx).

(6) Assume k = l = 0. This case is an application of Lemma 6.26. If we are in
case (a) of Lemma 6.26, we can perform a coordinate change, which does not
change the multihomogeneity of f and no monomial of type xaybzc appears in
Supp(f), contradicting the assumption. If we are in case (b) of Lemma 6.26 we
have xpzc ∈ Supp(h2) and xp ∈ Supp(fx). This yields

u = (p, 0, 0)− (p− 1, 1, c) = (1,−1,−c)

as a direction vector of fx. For h2 Lemma 6.24 yields two possibilities:

(a) Assume yq ∈ Supp(h2). Then a direction vector of h2 is

u1 = (p, 0, c)− (0, q, 0) = (p,−q, c).

u cannot be parallel to u1, since the last entries and u = λu1 imply λ = −1,
contradiction p > 1.

(b) Assume yqz ∈ Supp(h2). Then a direction vector of h2 is

u1 = (p, 0, c)− (0, q, 1) = (p,−q, c− 1).

u cannot be parallel to u1, since −q < −1 and u = λu1 imply 1 > λ > 0,
contradiction c− 1 < c.

This contradicts xpzc ∈ Supp(h2).

The assumption that no monomial of type xaybzc satisfies xayb−1zc ∈ Supp(h2) leads
only to contradictions, so h2 must contain such a monomial.

Now we are in the position to prove that no monomial of type xaybzc can be contained
in Supp(f), if we know that Jf is multihomogeneous and w1 > w2 > w3.
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Proposition 6.28. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
with s = 2. Then there do not exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f).

Proof. Assume the contrary. Then by Lemma 6.27 there exist a, b, c ∈ N≥1 with xayb−1zc ∈
Supp(h2). Lemma 6.24 states that yq ∈ Supp(h2) or yqz ∈ Supp(h2) for some q ∈ N.
Next to these two cases we have to consider all cases of monomials close to the x-axis.

(1) Assume yq ∈ Supp(h2) for a q ≥ 2. A direction vector of h2 is given by

u = (a, b− 1, c)− (0, q, 0) = (a, b− 1− q, c).

Next we consider all possible cases of monomials close to the x-axis:

(a) If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is given by

u′ = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c).

u cannot be parallel to u′, since the last components are equal, but a >
a− 1− p.

(b) If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is given
by

u′ = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c).

u cannot be parallel to u′, since the last components are equal, but a >
a− 1− p.

(c) If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is given
by

u′ = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1).

u cannot be parallel to u′, since c > c − 1 and u′ = λu imply 1 > λ > 0,
contradicting b > b− 1− q.

(2) Assume yqz ∈ Supp(h2) for a q ≥ 1. A direction vector of h2 is given by

u = (a, b− 1, c)− (0, q, 1) = (a, b− 1− q, c− 1).

Next we consider all possible cases of monomials close to the x-axis:

(a) If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is given by

u′ = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c).

u cannot be parallel to u′, since c > c − 1 and u′ = λu imply λ > 1, contra-
dicting a > a− 1− p.

(b) If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is given
by

u′ = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c).

u cannot be parallel to u′, since c > c − 1 and u′ = λu imply λ > 1, contra-
dicting a > a− 1− p.

(c) If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is given
by

u′ = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1).

u cannot be parallel to u′, since the last components are equal, but a >
a− 1− p.
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Remark 6.29. Proposition 6.28 allows us to assume from now on that no monomials of type
xaybzc appear in Supp(f) for a, b, c ∈ N≥1.

The next step is to consider all possibilities for the structure of the monomial diagram
of fx, knowing that no monomial of type xaybzc appears in Supp(f). The fact that fx
is multihomogeneous leaves us with only four possibilities:

(1) fx is a monomial, or

(2) fx only contains monomials of type xiyj for i, j ∈ N, or

(3) fx only contains monomials of type xizj for i, j ∈ N, or

(4) fx contains one monomial of type xiyj and one monomial of type xkzl for certain
i, j, k, l ∈ N.

We prove for each case that either f is of Sebastiani–Thom type or that such an f
cannot exits. Let us begin with the first case.

Lemma 6.30. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and s ≥ 2.
Let fx be a monomial, then the following hold:

(1) If fx = xp for some p ∈ N, then f is of Sebastiani–Thom type.

(2) If fx = xpy for some p ∈ N, then f is of Sebastiani–Thom type.

(3) If fx = xpz for some p ∈ N, then f is of Sebastiani–Thom type.

Proof.

(1) By integration we obtain f(x, y, z) =
∫
xpdx = 1

p+1x
p+1 + h(y, z) for some poly-

nomial h ∈ C[y, z].

(2) By assumption the only possible monomials close to the y-axis are yq+1 or yq+1z.
Using that fx = xpy we have xp+1 ∈ Supp(fy), which implies xp+1 ∈ Supp(h2),
since w1 > w2. Now we have two possible pairs:

(a) xp+1, yq ∈ Supp(h2) or

(b) xp+1, yqz ∈ Supp(h2).

With s = 2 the monomials of h2 have to lie on a line. This implies that no
monomial of type yizj for i ≥ 1 and j ≥ 2 is contained in Supp(fy), as it could
not be canceled by a multiple of a monomial contained in Supp(fx) and it would
contradict the fact that the monomials in Supp(h2) lie on a line. This implies that
the only monomial close to the z-axis is zr+1 for some r ∈ N. Due to our results
so far we have two possible cases for Supp(f) :

(a) The first case is {xp+1y, yq+1, zr+1} = Supp(f). In this case f is of Sebastiani–
Thom type.
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(b) The second case is {xp+1y, yq+1z, zr+1} = Supp(f). In this case zr, yq+1 ∈
Supp(h3), since no monomial of fx or h2 could divide any of these mono-
mials. But in this case h3 lies in the y-z plane. We obtain a contradiction to
the parallelity of the direction vectors of h2 and h3, since one monomial of
h2 lies in the y-z plane and the other one does not.

(3) By assumption fy = fy(y, z). Then fy = g1(y, z)xpz + h2 implies that we can
choose h2 = fy. With w1 > w3 we obtain xp+1 ∈ Supp(h3). Here we have to
differentiate two possible cases:

(a) The first case is Supp(h3) = {xp+1}. Our assumptions allow two possibili-
ties for monomials close to the y-axis. If yq+1z ∈ Supp(f) for some q ∈ N≥1,
then yq+1 ∈ Supp(h3), since fz = g2(y, z)fx + g3(z)fy + h3 and w2 > w3.
This means that the only possibility is yq+1 ∈ Supp(f) for some q ∈ N≥2.
Next we consider monomials of type yizj ∈ Supp(f) with i, j ∈ N≥1. As-
sume such a monomial with j ≥ 2 minimal is contained in Supp(f). Then
there must exist yiza ∈ Supp(h2) dividing yizj−1 ∈ Supp(fz). The mini-
mality assumption on j implies a = 0, so zj−1 ∈ Supp(g3). yq ∈ Supp(fy)
yields yqzj−1 ∈ Supp(fz), hence the weighted homogeneity of fz implies
i = q. With yq−1zj ∈ Supp(fy), we obtain yq−1z2j−1 ∈ Supp(fz). Iterating
this process we obtain that, after a suitable change of coordinates, as in the
proof of Lemma 6.26,

f = xp+1z + yq+1 + λ1y
qzj + . . .+ λqyz

qj + λq+1z
(q+1)j ,

with λi ∈ C. Since fz = g2(y, z)fx+g3(z)fy+h3, the previous computations
imply

fz = λzj−1 · fy + xp+1

for some λ ∈ C\{0}. Comparing coefficients yields λi =
(
q+1
i

) (
λ
j

)i
. Then

f =

(
y +

λ

j
zj
)q+1

+ xpz.

Using the coordinate change x 7→ x, y 7→ y − λ
j z

j , z 7→ z we get that f is
right-equivalent to xpz+ yq+1, which does not define an isolated hypersur-
face singularity.

(b) The next possible case is that h3 contains more than one monomial. We
know that the direction vectors fy and h3 have to be parallel. Since h3 is not
contained in the y-z plane, this implies that fy contains only one monomial.
Then the only monomial close to the z-axis is zr for some r ∈ N. We have to
consider two cases for monomials close to the y-axis:

i. If Supp(fy) = {yq} for some q ∈ N≥2 we immediately have that f is of
Sebastiani–Thom type.

ii. The case Supp(fy) = {yqz} is impossible, since our assumptions on f
yield {xp+1z, yq+1z, zr+1} = Supp(f). In this case z divides f, so the fact
that f defines an isolated hypersurface singularity implies the existence
of yi ∈ Supp(f), which contradicts the assumptions.
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In the next steps we assume that the monomials of fx lie on a line in the x-y or x-z
plane. First we consider the case where they lie in the x-y plane.

Lemma 6.31. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
s = 2. Assume | Supp(fx)| ≥ 2 and the monomials of fx lie in the x-y plane. Then f is of
Sebastiani–Thom type.

Proof. Due to our assumption we have either {xp+1, xayb} ⊆ Supp(f) for a, b ≥ 1 or
{xp+1y, xayb} ⊆ Supp(f) for a ≥ 1 and b > 1. Assume we are in the first case. We have
to consider two possible cases:

(1) Assume xayb ∈ Supp(h2) with a, b ≥ 1. Then h2 = h2(x, y) since the direction
vectors of fx and h2 have to be parallel. Assume now there exist monomials of
type yizj ∈ Supp(f) for some i, j ∈ N≥1. Then yi−1zj ∈ Supp(fy) and by assump-
tion yi−1zj ∈ Supp(g1fx), since fy = g1(y, z)fx + h2. Now fx = fx(x, y) implies
yk ∈ Supp(fx) for some k ∈ N. Using this we see that xpyi−1−kzj ∈ Supp(g1fx)
and thus xp−1yi−kzj ∈ Supp(fx) contradicting the fact that the monomials of fx
lie in the x-y plane, since j ≥ 1. So no monomial of type yizj with i, j ∈ N≥1

exists and f has to be of Sebastiani–Thom type.

(2) Assume no monomial of type xayb is contained in h2. Consider such a monomial
in Supp(f) with minimal b. Then xayb−1 is in Supp(g1fx), hence there exists a k ∈
N with xayk divides xayb−1. The minimality of b and the fact that fx is weighted
homogeneous imply k = 0 and a = p. Thus we must have xpy2b−1 ∈ Supp(fy).
Iterating this process, and using a suitable change of coordinates we obtain

f = xp+1 + λ1x
pyb + . . .+ λpxy

pb + λp+1y
(p+1)b + h(y, z)

with λi ∈ C and h ∈ C[y, z] and

fy = λyb−1fx + hy(y, z)

for some λ ∈ C. Using the same argument as in the proof of Lemma 6.26, we get
that f is right-equivalent to

xp+1 + r(y, z)

for some polynomial r ∈ C[y, z]. Then f is of Sebastiani–Thom type.

In the case {xp+1y, xayb} ⊆ Supp(f) for a ≥ 1 and b > 1 we see that xp+1 ∈ Supp(h2).
Due to this h2 lies in the x-y plane and we can argue as in (1).

Next we consider the case where fx lies in the x-z plane.

Lemma 6.32. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
s = 2. Assume | Supp(fx)| ≥ 2 and the monomials of fx lie in the x-z plane. Then f is of
Sebastiani–Thom type.

Proof. Due to our assumptions we have fy ∈ C[y, z]. Since fx ∈ C[x, z] we can assume
that fy = h2. The fact that the direction vectors of fx and h2 have to be parallel implies
Supp(fy) = {yq} or Supp(fy) = {yqz}. So we have to consider two cases:

(1) Let Supp(fy) = {yq}. Then integration yields that f is of Sebastiani–Thom type.
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(2) Let Supp(fy) = {yqz}. Then yq+1 ∈ Supp(h3), since the monomial cannot be
divided by any monomial of fx or yqz. This implies Supp(h3) = {yq+1}, since
the direction vectors of fx and h3 have to be parallel. This also implies xp+1 ∈
Supp(f), since the same argument would yield xp+1 ∈ Supp(h3), if xp+1z ∈
Supp(f). Any monomial of type xizj ∈ Supp(fz) for i ≥ 1 and j ≥ 2 has to be
a multiple of a monomial of fx. Taking such a monomial with minimal j, which
must exist since fx = fx(x, z) and |Supp(fx)| ≥ 2, we can argue similar to the
proof of Lemma 6.30, (3), (a) and after suitable change of coordinates we obtain
that f is right equivalent to

xp+1 + yq+1z

for some p, q ∈ N. In this case f does not define an isolated hypersurface singu-
larity.

Finally we consider the case where fx lies in the x-y plane and in the x-z plane.

Lemma 6.33. Let f ∈ C[x, y, z] be a polynomial with unique weights (w1, w2, w3), ord(f) ≥
3 and s = 2. Assume |Supp(fx)| ≥ 2 and the monomials of fx lie in the x-y plane and in the
x-z plane. Then f cannot define an isolated hypersurface singularity.

Proof. Assume f defines an isolated hypersurface singularity. Then Supp(fx) = {xpy, xizj}
or Supp(fx) = {xpz, xiyj} for i, j ∈ N≥1.

(1) Assume Supp(fx) = {xpy, xizj}. Then xp+1 ∈ Supp(h2), since no monomial of fx
divides xp+1. By the same argument we obtain yq ∈ Supp(h2) or yqz ∈ Supp(h2)
for some q ∈ N. A possible direction vector of fx is given by

u = (p− i, 1,−j).

We have to consider two different cases:

(a) Let yq ∈ Supp(h2), then a possible direction vector of h2 is given by

u1 = (p+ 1,−q, 0).

u cannot be parallel to u1, since −j < 0 in the last component.

(b) Let yqz ∈ Supp(h2), then a possible direction vector of h2 is given by

u2 = (p+ 1,−q,−1).

u cannot be parallel to u2, since −j ≤ −1 < 0 and u = λu2 imply λ > 0
contradicting −q < 0 < 1 in the second component.

Both cases contradict our assumptions.

(2) Assume Supp(fx) = {xpz, xiyj} with j ≥ 2. Then xi+1yj−1 ∈ Supp(h2), since
this monomial cannot be divided by any monomial of fx. As in (1) we must
have yq ∈ Supp(h2) or yqz ∈ Supp(h2) for some q ∈ N. A possible direction
vector of fx is given by

u = (p− i,−j, 1).

We have to consider two different cases:
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(a) Let yq ∈ Supp(h2), then a possible direction vector of h2 is given by

u1 = (i+ 1, j − 1− q, 0).

u cannot be parallel to u1, since 1 > 0 in the last component.

(b) Let yqz ∈ Supp(h2), then a possible direction vector of h2 is given by

u2 = (i+ 1, j − 1− q,−1).

u cannot be parallel to u2, since −1 < 0 < 1 and u = λu2 imply λ = −1
contradicting −q < −j in the second component.

Both cases contradict our assumptions and an isolated hypersurface singularity
defined by f cannot exist.

Combining the previous lemmas we obtain the following result:

Proposition 6.34. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
s = 2, then f is of Sebastiani–Thom type.

6.4 The case w1 > w2 = w3

The following Lemma can be proven using the same techniques that appeared in the
proof of Lemma 6.23. Due to this we omit the proof.

Lemma 6.35. Let f ∈ C[x, y, z] be a QHIS with weights w = (w1, w2, w3), where w1 >
w2 = w3 and assume s = 2. Then the following hold:

(1) fx is multihomogeneous with respect to the weights of Jf .

(2) There exist g1, g2 ∈ C[y, z] and a1, b1 ∈ C, such that

fy = g1fx + h2 + a1h3 and fz = g2fx + b1h2 + h3.

In particular we can always assume h1 = fx.

The first step is to show that no monomial of type xaybzc with a, b, c ≥ 1 occurs in f.
In order to do so, we first prove results assuming such a monomial exists in f. Let us
start with the first result:

Lemma 6.36. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3, s = 2
and assume that there exist a, b, c ≥ 1 with xaybzc ∈ Supp(f). Then the following statements
hold:

(1) If yq+1 ∈ Supp(f) for some q ∈ N, then yq ∈ Supp(h2) ∪ Supp(h3).

(2) yq+1x /∈ Supp(f) for any q ∈ N.

(3) If yq+1z ∈ Supp(f) for some q ∈ N, then yqz ∈ Supp(h2)∪ Supp(h3) or there exists a
k ∈ N≥2 such that yk ∈ Supp(h2) ∪ Supp(h3).
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Proof.

(1) Let yq+1 ∈ Supp(f). Then yq ∈ Supp(fy). If yq /∈ Supp(h2)∪ Supp(h3), then there
exists some l ≥ 2, such that yl ∈ Supp(fx). Using xa−1ybzc ∈ Supp(fx) we need
to consider the following three cases:

(a) If xp+1 ∈ Supp(f), then a direction vector of fx is

u1 = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and in the same way

u2 = (a− 1, b, c)− (0, l, 0) = (a− 1, b− l, c).

These cannot be parallel, since the last components are equal, but a−1−p <
a− 1. This gives a contradiction to fx having monomials on a line.

(b) If xp+1y ∈ Supp(f), then a direction vector of fx is

u1 = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)

and in the same way

u2 = (a− 1, b, c)− (0, l, 0) = (a− 1, b− l, c).

These vectors cannot be parallel, since their third component is equal to c,
but b− l < b. This gives a contradiction to fx having monomials on a line.

(c) If xp+1z ∈ Supp(f), then a direction vector of fx is

u1 = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and in the same way

u2 = (a− 1, b, c)− (0, l, 0) = (a− 1, b− l, c).

These vectors cannot be parallel, since 0 ≤ c− 1 < c implies λu2 = u1 only
if 1 > λ > 0, but then b = λ(b− l) < b− l < b. This gives a contradiction to
fx having monomials on a line.

All cases are impossible so yq ∈ Supp(h2) ∪ Supp(h3).

(2) If yq+1x ∈ Supp(f), then yq+1 ∈ Supp(fx), which is impossible due to the proof
of (1).

(3) If yq+1z ∈ Supp(f), then yqz ∈ Supp(fy). If yqz /∈ Supp(h2) ∪ Supp(h3), then,
as in the proof of (1), there must exist an l ≥ 1 with ylz ∈ Supp(fx). In order to
use the same arguments as in (1) we need to assure that the appearing direction
vectors are all different from (0, 0, 0). To obtain this, we first assume a > 1 or
b 6= l or c > 1. Using xa−1ybzc ∈ Supp(fx) we need to consider the following
three cases:
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(a) If xp+1 ∈ Supp(f), then a direction vector of fx is

u1 = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c)

and in the same way

u2 = (a− 1, b, c)− (0, l, 1) = (a− 1, b− l, c− 1).

These vectors cannot be parallel, since 0 ≤ c − 1 < c and λu2 = u1 imply
λ > 1, contradicting a−1 > a−1−p. This gives a contradiction to fx having
monomials on a line.

(b) If xp+1y ∈ Supp(f), then a direction vector of fx is

u1 = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c)

and in the same way

u2 = (a− 1, b, c)− (0, l, 1) = (a− 1, b− l, c− 1).

These vectors cannot be parallel, since 0 ≤ c − 1 < c and λu2 = u1 imply
λ > 1, contradicting a−1 > a−1−p. This gives a contradiction to fx having
monomials on a line.

(c) If xp+1z ∈ Supp(f), then a direction vector of fx is

u1 = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1)

and in the same way

u2 = (a− 1, b, c)− (0, l, 1) = (a− 1, b− l, c− 1).

These vectors cannot be parallel, since their last components equal c − 1,
but a− 1− p < a− 1. This gives a contradiction to fx having monomials on
a line.

Next we consider the monomial xaybzc ∈ Supp(f) with the property that a is
maximal, i.e. for any xa

′
yb
′
zc
′ ∈ Supp(f) with a′, b′, c′ ≥ 1 we have a ≥ a′. Only

the case a = c = 1 and b = l remains to be considered. The maximality of a
implies that xylz is the only monomial of f of type xiyjzk for i, j, k ∈ N≥1. Since
all monomials of fx lie on a line, only ylz and one of the monomials xp, xpy or
xpz can appear in Supp(fx). If another monomial were to appear, then it would
be of type xiyj or xizj for some i, j ∈ N and a simple computation as in (a) - (c)
yields a contradiction on the parallelity of the direction vectors of fx. Using the
weighted homogeneity of f we obtain

w2(q + 1) + w3 = w1 + w2l + w3 > w2(l + 1) + w3.

This implies q ≥ l + 1. Since fy = g1fx + h2 + a1h3 and ylz ∈ Supp(fx) divides
yqz, we know that yq−l ∈ Supp(g1).

(i) If xp+1 ∈ Supp(f), then a direction vector of fx is

u = (0, l, 1)− (p, 0, 0) = (−p, l, 1).
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We know xyl−1z ∈ Supp(fy). If xyl−1z /∈ Supp(h2) ∪ Supp(h3), then there
exists a monomial of type xyizj ∈ Supp(fx) dividing xyl−1z. Supp(fx) =
{xp, ylz} implies i = j = 0, thus x ∈ Supp(fx) contradicting ord(f) ≥ 2.
Thus xyl−1z ∈ Supp(h2) ∪ Supp(h3). We know that yq−lxp ∈ Supp(yq−lfx).
If yq−lxp /∈ Supp(h2) ∪ Supp(h3), then yq−lxp ∈ Supp(fy). In this case
yq−l+1xp−1 ∈ Supp(fx), which is not possible. So yq−lxp ∈ Supp(h2) ∪
Supp(h3). Having three different monomials from Supp(h2) ∪ Supp(h3) we
know that two of them must be in h2 or h3, so we obtain three possible
direction vectors of h2 or h3. Then possibilities are

u1 = (1, l − 1, 1)− (p, q − l + 1, 0) = (1− p, 2l − q − 2, 1)

u2 = (1, l − 1, 1)− (0, q + 1, 0) = (1, 2l − q − 2, 1)

u3 = (p, q − l + 1, 0)− (0, q + 1, 0) = (p,−l, 0)

u cannot be parallel to u1 since−p < 1−p, but the last entries of the vectors
are equal. u cannot be parallel to u2 since 1 > −p but the last entries of the
vectors are equal. u cannot be parallel to u3 since 1 6= 0 in the last entry.

(ii) If xp+1y ∈ Supp(f), then a direction vector of fx is

u = (0, l, 1)− (p, 1, 0) = (−p, l − 1, 1).

We know xp+1 ∈ Supp(fy). If xp+1 /∈ Supp(h2) ∪ Supp(h3), then xp+1 ∈
Supp(fx), contradicting degw(fx) < degw(fy). Thus xp+1 ∈ Supp(h2) ∪
Supp(h3). We know that yq−l+1xp ∈ Supp(yq−lfx). If yq−l+1xp /∈ Supp(h2)∪
Supp(h3), then yq−l+1xp ∈ Supp(fy). In this case yq−l+2xp−1 ∈ Supp(fx),
which is not possible. So yq−l+1xp ∈ Supp(h2) ∪ Supp(h3). Having three
different monomials from Supp(h2) ∪ Supp(h3) we know that two of them
must be in h2 or h3, so we obtain three possible direction vectors of h2 or
h3. Then possible ones are

u1 = (p+ 1, 0, 0)− (p, q − l + 1, 0) = (1, l − q − 1, 0)

u2 = (p+ 1, 0, 0)− (0, q + 1, 0) = (p+ 1,−q − 1, 0)

u3 = (p, q − l + 1, 0)− (0, q + 1, 0) = (p,−l, 0)

u cannot be parallel to u1, u2 or u3 since 1 6= 0 in the last entry.

(iii) If xp+1z ∈ Supp(f), then {xp+1z, yq+1z, xylz} ⊆ Supp(f). Considering that
we need a monomial close to the z-axis, we have only monomials, which
are divisible by z, hence we need a monomial of type xiyj for some i, j ∈ N.
Due to Supp(fx) = {xpz, ylz} this implies i = 0 and we obtain ym ∈ Supp(f)
for some m ∈ N≥3. Now (1) implies ym−1 ∈ Supp(h2) ∪ Supp(h3). Thus we
obtain our result by setting k = m− 1.

Lemma 6.37. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3, s = 2
and assume that there exist a, b, c ≥ 1 with xaybzc ∈ Supp(f). Then the following statements
hold:

(1) If zr+1 ∈ Supp(f) for some r ∈ N, then zr ∈ Supp(h2) ∪ Supp(h3).

(2) zrx /∈ Supp(f) for any r ∈ N.
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(3) If zr+1y ∈ Supp(f) for some r ∈ N, then zry ∈ Supp(h2)∪ Supp(h3) or there exists a
k ∈ N≥2 such that zk ∈ Supp(h2) ∪ Supp(h3).

Proof. The result follows from Lemma 6.36 by applying the automorphism defined by
x 7→ x, y 7→ z, z 7→ y, which does not affect the multihomogeneity of Jf .

Before we can prove that xayb−1zc ∈ Supp(h2)∪ Supp(h3) for some a, b, c ≥ 1 we need
a lemma excluding a very special case.

Lemma 6.38. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 > w2 = w3, ord(f) ≥
3, s = 2 and assume that there exist a, b, c ≥ 1 with xaybzc ∈ Supp(f). Furthermore, we as-
sume the following:

(1) a, b, c are chosen with maximal a, i.e. if xa′yb′zc′ ∈ Supp(f) with a′, b′, c′ ∈ N≥1, then
a ≥ a′.

(2) bw2 + cw3 = w1.

(3) xp+1 ∈ Supp(f) for some p ∈ N≥2.

(4) No monomial of type xiyjzk is contained in Supp(h2)∪Supp(h3) for any i, j, k ∈ N≥1.

Then a = p and

(a) f is right-equivalent to xp+1 + yq + zr or xp+1 + yqz + zr or xp+1 + yq + zry or
xp+1 + yqz + zry for some q, r ∈ N, or

(b) xpzc ∈ Supp(h2) ∪ Supp(h3), if b = 1 and (a) does not hold.

Proof. From now on we denote the weighted degree degw(f) by d. The equality a = p
follows as in the proof of Lemma 6.27. First we assume b > 1. Now we also know that
xp−1ybzc ∈ Supp(fx) and xpyb−1zc ∈ Supp(fy). Assumption (4) implies xpyb−1zc ∈
Supp(g1fx). Since g1 = g1(y, z) we must have yb−1zc ∈ Supp(g1). Thus we obtain
xp−1y2b−1z2c ∈ Supp(g1fx). Assumption (4) then implies xp−1y2b−1z2c ∈ Supp(fy) and
thus xp−1y2bz2c ∈ Supp(f). Continuing this argument we obtain

{xypbzpc, . . . , xp−1y2bz2c, xpybzc} ⊆ Supp(f).

Furthermore, we have y(p+1)bz(p+1)c ∈ Supp(f). If this were not the case, then ypbz(p+1)c ∈
Supp(h2) ∪ Supp(h3) in order to cancel the corresponding monomial from a multiple
of fx. In this case, using Lemma 6.36 and Lemma 6.37, a simple computation shows
that the direction vectors of fx and h2 or h3 cannot be parallel.
Next we show that the only monomial of type yuzv ∈ Supp(f) with u, v ≥ 2 is
y(p+1)bz(p+1)c. Assume the contrary. Then yu−1zv ∈ Supp(fy). If yu−1zv /∈ Supp(h2) ∪
Supp(h3), then there exist i, j ∈ N with yizj ∈ Supp(fx) and yizj divides yu−1zv. Since
all monomials of fx lie on a line we have i = pb and j = pc. In particular u > pb and
v ≥ pc. Now we have yu−1−pbzv−pc ·xp is a multiple of a monomial of fx. If this mono-
mial were in h2 or h3 this contradicts our assumptions, since either u−1 > pb or v > pc
as the monomial is different from ypbzpc. This implies yu−1−pbzv−pc · xp ∈ Supp(fy)
and hence yu−pbzv−pc · xp ∈ Supp(f). Now the structure of fx implies u − pb = b and
v − pc = c, hence u = (p+ 1)b, v = (p+ 1)c, again a contradiction. So only monomials
close to the y- or z-axis and y(p+1)bz(p+1)c are allowed in the support of f , if x does not
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divide them.
Applying Lemma 6.36 and Lemma 6.37 we know, after a suitable coordinate change,
that

f = xp+1 + yq + zr + λ1x
pybzc + . . .+ λpy

(p+1)bz(p+1)c

or
f = xp+1 + yqz + zr + λ1x

pybzc + . . .+ λpy
(p+1)bz(p+1)c

or
f = xp+1 + yq + zry + λ1x

pybzc + . . .+ λpy
(p+1)bz(p+1)c

or
f = xp+1 + yqz + zry + λ1x

pybzc + . . .+ λpy
(p+1)bz(p+1)c

for λi ∈ C. Checking the proof so far we see that the only way of eliminating the
monomials in fy divisible by x is by multiplying fx with λyb−1zc for some λ ∈ C\{0}.
Comparing coefficients in the equation

fy − λyb−1zcfx = qyq−1

or
fy − λyb−1zcfx = qyq−1z

yields λi =
(
p+1
i

) (
λ
b

)i
. Using the binomial formula we get

f =

(
x+

λ

b
ybzc

)p+1

+ yq + zr,

or

f =

(
x+

λ

b
ybzc

)p+1

+ yqz + zr

or

f =

(
x+

λ

b
ybzc

)p+1

+ yq + zry

or

f =

(
x+

λ

b
ybzc

)p+1

+ yqz + zry.

After the coordinate change x 7→ x− λ
b y

bzc, y 7→ y, z 7→ z we obtain the claimed forms.
Next we assume b = 1. In case xpzc /∈ Supp(h2) ∪ Supp(h3), then we can argue in the
same way as above. Otherwise we obtain xpzc ∈ Supp(h2) ∪ Supp(h3).

The next step is to prove xayb−1zc, xaybzc−1 ∈ Supp(h2) ∪ Supp(h3).

Lemma 6.39. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3, s = 2
and assume that there exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f). Then the following hold:

(1) {xayb−1zc, xaybzc−1} ⊆ Supp(h2) ∪ Supp(h3),

(2) {xayb−1zc, xaybzc−1} 6⊂ Supp(h2) and

(3) {xayb−1zc, xaybzc−1} 6⊂ Supp(h3).
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Proof. First we prove (1) for xayb−1zc. Similar to the previous proofs we assume that
xayb−1zc /∈ Supp(h2) ∪ Supp(h3) for any a, b, c ≥ 1 with xaybzc ∈ Supp(f). Due to
w1 > w2, w3, there must exist k, l ∈ N with xaykzl ∈ Supp(fx), such that xaykzl divides
xayb−1zc. We consider different cases for k, l :

(1) Assume k, l ≥ 1. Choose a maximal with the property that xaybzc ∈ Supp(f).
Then xa+1ykzl ∈ Supp(f), contradicting the maximality of a.

(2) Assume k = 1 and l = 0. This implies that xa+1y ∈ Supp(f) and xa+1 ∈
Supp(fy).Now w1 > w2 implies xa+1 ∈ Supp(h2)∪Supp(h3). By Lemma 6.36 we
have yq ∈ Supp(h2) ∪ Supp(h3) for some q ≥ 2 or yqz ∈ Supp(h2) ∪ Supp(h3) for
some q ≥ 1 and by Lemma 6.37 we have zr ∈ Supp(h2)∪Supp(h3) for some r ≥ 2
or zry ∈ Supp(h2) ∪ Supp(h3) for some r ≥ 1. Since f is quasi-homogeneous we
obtain

w3(r + 1) = w2 + w3r = w1a+ w2b+ w3c > w2 + w3c,

which implies r > c, a fact we are going to need in the following proof. We
have to compare direction vectors of fx and h2 or h3 in these cases. A possible
direction vector of fx is

u = (a, 1, 0)− (a− 1, b, c) = (1, 1− b,−c).

We consider four different cases:

(a) Assume yq, zr ∈ Supp(h2) ∪ Supp(h3). Having three different monomials
from Supp(h2)∪Supp(h3) we know that two of them must be in h2 or h3, so
we obtain three possible direction vectors of h2 or h3, which are not equal
to (0, 0, 0) :

u1 = (0, q, 0)− (0, 0, r) = (0, q,−r)
u2 = (a+ 1, 0, 0)− (0, q, 0) = (a+ 1,−q, 0)

u3 = (a+ 1, 0, 0)− (0, 0, r) = (a+ 1, 0,−r)

u cannot be parallel to u1 since 1 6= 0 in the first entry. u cannot be parallel
to u2 since −c 6= 0 in the last entry. u cannot be parallel to u3 if b > 1 since
1− b 6= 0 in the second entry. If b = 1, then 0 < 1 < a + 1. u = λu3 implies
1 > λ > 0, contradicting −c > −r. In this case u is also not parallel to u3.

(b) Assume yq, zry ∈ Supp(h2) ∪ Supp(h3). Having three different monomials
from Supp(h2)∪Supp(h3) we know that two of them must be in h2 or h3, so
we obtain three possible direction vectors of h2 or h3, which are not equal
to (0, 0, 0) :

u1 = (0, q, 0)− (0, 1, r) = (0, q − 1,−r)
u2 = (a+ 1, 0, 0)− (0, q, 0) = (a+ 1,−q, 0)

u3 = (a+ 1, 0, 0)− (0, 1, r) = (a+ 1,−1,−r)

u cannot be parallel to u1 since 1 6= 0 in the first entry. u cannot be parallel
to u2 since −c 6= 0 in the last entry. u cannot be parallel to u3 if b 6= 2, since
0 < 1 < a + 1 and u = λu3 implies 1 > λ > 0 contradicting −c > −r. If
b = 2, then 1 6= a+ 1 contradicts parallelity.
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(c) Assume yqz, zr ∈ Supp(h2) ∪ Supp(h3). Having three different monomials
from Supp(h2)∪Supp(h3) we know that two of them must be in h2 or h3, so
we obtain three possible direction vectors of h2 or h3, which are not equal
to (0, 0, 0) :

u1 = (0, q, 1)− (0, 0, r) = (0, q,−r + 1)

u2 = (a+ 1, 0, 0)− (0, q, 1) = (a+ 1,−q,−1)

u3 = (a+ 1, 0, 0)− (0, 0, r) = (a+ 1, 0,−r)

u cannot be parallel to u1 since 1 6= 0 in the first entry. u cannot be parallel
to z2 since 0 < 1 < a + 1 and u = λu2 implies 1 > λ > 0, contradicting
−1 ≥ −c. u cannot be parallel to u3 if b 6= 1 since b − 1 6= 0 in the second
entry. If b = 1, then 0 < 1 < a + 1 and u = λu3 implies 1 > λ > 0,
contradicting −c > −r. In this case u is also not parallel to u3.

(d) Assume yqz, zry ∈ Supp(h2)∪ Supp(h3). Having three different monomials
from Supp(h2)∪Supp(h3) we know that two of them must be in h2 or h3, so
we obtain three possible direction vectors of h2 or h3, which are not equal
to (0, 0, 0) :

u1 = (0, q, 1)− (0, 1, r) = (0, q − 1,−r + 1)

u2 = (a+ 1, 0, 0)− (0, q, 1) = (a+ 1,−q,−1)

u3 = (a+ 1, 0, 0)− (0, 1, r) = (a+ 1,−1,−r)

The vector u cannot be parallel to u1 since 1 6= 0 in the first entry. u cannot
be parallel to u2 since 0 < 1 < a + 1 and u = λu2 implies 1 > λ > 0,
contradicting−1 ≥ −c. u cannot be parallel to u3 if b > 2 since 0 < 1 < a+1
and u = λu3 implies 1 > λ > 0, contradicting −1 > b − 1. If b = 2, then
0 < 1 < a + 1 but the second entries are equal. In case b = 1 the we have
−1 6= 0 in the second entry. In all these cases u is also not parallel to u3.

This implies that xay /∈ Supp(fx).

(3) Assume k = 0 and l = 1. We perform the coordinate change x 7→ x, y 7→ z, z 7→ y
and use (2). Afterwards we use the same coordinate change to obtain xaz /∈
Supp(fx).

(4) This proof works in the same way as in the proof of Lemma 6.27 (4).

(5) This proof works in the same way as in the proof of Lemma 6.27 (5).

(6) Assume k = l = 0. This implies w2b + w3c = w1 and xa+1 ∈ Supp(f). Now
Lemma 6.38 yields that after a suitable coordinate change no monomial of type
xaybzc for a, b, c ∈ N≥1 appears in Supp(f) or xazc ∈ Supp(h2)∪Supp(h3). Let us
consider the latter. By Lemma 6.36 we have yq ∈ Supp(h2) ∪ Supp(h3) for some
q ≥ 2 or yqz ∈ Supp(h2) ∪ Supp(h3) for some q ≥ 1 and by Lemma 6.37 we have
zr ∈ Supp(h2) ∪ Supp(h3) for some r ≥ 2 or zry ∈ Supp(h2) ∪ Supp(h3) for some
r ≥ 1. We obtain four possibilities for direction vectors of h2 :

(a) Assume yq, zr ∈ Supp(h2) ∪ Supp(h3). Then we obtain

u1 = (a, 0, c)− (0, q, 0) = (a,−q, c)
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and
u2 = (a, 0, c)− (0, 0, r) = (a, 0, c− r)

as direction vectors of h2. The vector u1 is not parallel to u2, since−q 6= 0 in
the second components.

(b) Assume yqz, zr ∈ Supp(h2) ∪ Supp(h3). Then we obtain

u1 = (a, 0, c)− (0, q, 1) = (a,−q, c− 1)

and
u2 = (a, 0, c)− (0, 0, r) = (a, 0, c− r)

as direction vectors of h2. The vector u1 is not parallel to u2, since−q 6= 0 in
the second components.

(c) Assume yq, zry ∈ Supp(h2) ∪ Supp(h3). Then we obtain

u1 = (a, 0, c)− (0, q, 0) = (a,−q, c)

and
u2 = (a, 0, c)− (0, 1, r) = (a,−1, c− r)

as direction vectors of h2. The vector u1 is not parallel to u2, since the first
components are equal, but −1 > −q in the second components.

(d) Assume yqz, zry ∈ Supp(h2) ∪ Supp(h3). Then we obtain

u1 = (a, 0, c)− (0, q, 1) = (a,−q, c− 1)

and
u2 = (a, 0, c)− (0, 1, r) = (a,−1, c− r)

as direction vectors of h2. The vector u1 is not parallel to u2, since the first
components are equal, but −1 > −q in the second components.

Since all cases are impossible, we obtain xazc /∈ Supp(h2) ∪ Supp(h3).

Combining all cases, there must exist a monomial of type xiyjzk in Supp(h2)∪Supp(h3)
with i, j, k ∈ N≥1. Having this result, we can obtain xaybzc−1 ∈ Supp(h2) ∪ Supp(h3)
very easy. We apply the coordinate change x 7→ x, y 7→ z, z 7→ y. This does not change
our setup. Applying the previous result we obtain xayc−1zb ∈ Supp(h2) ∪ Supp(h3).
Applying the same coordinate change again, we obtain xaybzc−1 ∈ Supp(h2)∪Supp(h3).
In order to prove (2) we assume xayb−1zc ∈ Supp(h2). If xaybzc−1 ∈ Supp(h2), then a
direction vector of h2 is (0, 1,−1). In all cases of monomials close to the x-axis, we
obtain that the first entry of the direction vector is not equal to 0, so they cannot be
parallel. This implies xaybzc−1 ∈ Supp(h3). (3) follows analogously.

Now we are in the position to prove that no monomial of type xaybzc can be contained
in Supp(f), if we know that Jf is multihomogeneous and w1 > w2 = w3.

Proposition 6.40. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
s = 2. Then there do not exist a, b, c ∈ N≥1 with xaybzc ∈ Supp(f).
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Proof. Assume the contrary. Then by Lemma 6.39 there exist a, b, c ∈ N≥1 with xayb−1zc ∈
Supp(h2) ∪ Supp(h3). Lemma 6.36 states that yq ∈ Supp(h2) ∪ Supp(h3) or yqz ∈
Supp(h2) ∪ Supp(h3) for a certain q ∈ N and Lemma 6.37 states that zr ∈ Supp(h2) ∪
Supp(h3) or zry ∈ Supp(h2)∪Supp(h3) for certain r ∈ N. In all cases we have q > b and
r > c, since f is quasihomogeneous. Next to these four cases we have to consider all
cases of monomials close to the x-axis. In the following we always have p > a, since
w1 > w2, w3.

(1) Assume yq, zr ∈ Supp(h2) ∪ Supp(h3) for r, q ≥ 2. Having three different mono-
mials in Supp(h2) ∪ Supp(h3) we know that two of them must be in Supp(h2) or
Supp(h3), so we obtain three possible direction vectors of h2 or h3 :

u1 = (0, q, 0)− (0, 0, r) = (0, q,−r)
u2 = (a, b− 1, c)− (0, q, 0) = (a, b− q − 1, c)

u3 = (a, b− 1, c)− (0, 0, r) = (a, b− 1, c− r)

(a) If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is parallel to

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c).

i. u cannot be parallel to u1, since a− 1− p < 0 in the first entry.
ii. u cannot be parallel to u2, since a > a − 1 − p but the last entries are

equal.
iii. u cannot be parallel to u3, since b > b− 1 ≥ 0 and u = λu3 imply λ > 1

contradicting a > 0 > a− 1− p.
(b) If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is parallel

to
u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c).

i. u cannot be parallel to u1, since a− 1− p < 0 in the first entry.
ii. u cannot be parallel to u2, since a > a − 1 − p but the last entries are

equal.
iii. u cannot be parallel to u3, since a > 0 > a−1−p, but the second entries

are equal.

(c) If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is parallel
to

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1).

i. u cannot be parallel to u1, since a− 1− p < 0 in the first entry.
ii. u cannot be parallel to u2, since c > c − 1 ≥ 0 and u = λu2 imply

1 > λ > 0 contradicting a > 0 > a− 1− p.
iii. u cannot be parallel to u3, since b ≥ b− 1 ≥ 0 and u = λu3 imply λ > 1

contradicting a > 0 > a− 1− p.

(2) Assume yqz, zr ∈ Supp(h2) ∪ Supp(h3) for q ≥ 1 and r ≥ 2. Having three dif-
ferent monomials in Supp(h2) ∪ Supp(h3) we know that two of them must be in
Supp(h2) or Supp(h3), so we obtain three possible direction vectors of h2 or h3 :

u1 = (0, q, 1)− (0, 0, r) = (0, q, 1− r)
u2 = (a, b− 1, c)− (0, q, 1) = (a, b− q − 1, c− 1)

u3 = (a, b− 1, c)− (0, 0, r) = (a, b− 1, c− r)
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(a) If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is parallel to

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c).

i. u cannot be parallel to u1, since a− 1− p < 0 in the first entry.
ii. u cannot be parallel to u2, since c > c− 1 ≥ 0 and u = λu2 imply λ > 1

contradicting b > 0 > b− q − 1.

iii. u cannot be parallel to u3, since b > b− 1 ≥ 0 and u = λu3 imply λ > 1
contradicting a > 0 > a− 1− p.

(b) If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is parallel
to

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c).

i. u cannot be parallel to u1, since a− 1− p < 0 in the first entry.
ii. u cannot be parallel to u2, since c > c− 1 ≥ 0 and u = λu2 imply λ > 1

contradicting b > 0 > b− q − 1.

iii. u cannot be parallel to u3, since a > 0 > a−1−p, but the second entries
are equal.

(c) If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is parallel
to

u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since a > 0 > a − 1 − p, but the last entries
are equal.

iii. u cannot be parallel to u3, since b > b− 1 ≥ 0 and u = λu3 imply λ > 1
contradicting a > 0 > a− 1− p.

(3) Assume yq, zry ∈ Supp(h2) ∪ Supp(h3) for q ≥ 2 and r ≥ 1. Having three dif-
ferent monomials in Supp(h2) ∪ Supp(h3) we know that two of them must be in
Supp(h2) or Supp(h3), so we obtain three possible direction vectors of h2 or h3 :

u1 = (0, q, 0)− (0, 1, r) = (0, q − 1,−r)
u2 = (a, b− 1, c)− (0, q, 0) = (a, b− q − 1, c)

u3 = (a, b− 1, c)− (0, 1, r) = (a, b− 2, c− r)

u3 has to be replaced in the following proofs if b = 1. We need to take the mono-
mial xayzc−1 into account. Assuming that xazc, yzr ∈ Supp(h2) we can assume
by Lemma 6.39 xayzc−1, yq ∈ Supp(h3). The corresponding direction vector is

u4 = (a, 1− q, c− 1).

(a) If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is parallel to

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since b > b − q − 1 but the last entries are
equal.

iii. u cannot be parallel to u3, if b > 1, since b > b − 2 ≥ 0 and u = λu3

imply λ > 1 contradicting a > 0 > a− 1− p.
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iv. u cannot be parallel to u4, since c > c− 1 ≥ 0 and u = λu4 imply λ > 1
contradicting a > 0 > a− 1− p.

(b) If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is parallel
to

u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since b− 1 > b− q− 1 but the last entries are
equal.

iii. u cannot be parallel to u3, if b > 1, since b− 1 > b− 2 ≥ 0 and u = λu3

imply λ > 1 contradicting a > 0 > a− 1− p.
iv. u cannot be parallel to u4 if b = 1, since c > c − 1 ≥ 0 and u = λu4

imply λ > 1 contradicting a > 0 > a− 1− p.
(c) If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is parallel

to
u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since c > c − 1 ≥ 0 and u = λu2 imply
1 > λ > 0 contradicting a > 0 > a− 1− p.

iii. u cannot be parallel to u3 if b > 1, since b > b − 2 ≥ 0 and u = λu3

imply λ > 1 contradicting a > 0 > a− 1− p.
iv. u cannot be parallel to u4 if b = 1, since a > a−1−p and the last entries

are equal.

(4) Assume yqz, zry ∈ Supp(h2) ∪ Supp(h3) for q ≥ 1 and r ≥ 1. Having three
different monomials in Supp(h2) ∪ Supp(h3) we know that two of them must be
in Supp(h2) or Supp(h3), so we obtain three possible direction vectors of h2 or
h3 :

u1 = (0, q, 1)− (0, 1, r) = (0, q − 1, 1− r)
u2 = (a, b− 1, c)− (0, q, 1) = (a, b− q − 1, c− 1)

u3 = (a, b− 1, c)− (0, 1, r) = (a, b− 2, c− r)

u3 has to be replaced in the following proofs if b = 1. We need to take the mono-
mial xayzc−1 into account. Assuming that xazc, yzr ∈ Supp(h2) we can assume
by Lemma 6.39 xayzc−1, yqz ∈ Supp(h3). The corresponding direction vector is

u4 = (a, 1− q, c− 2).

(a) If xp+1 ∈ Supp(f), then xp ∈ Supp(fx). A direction vector of fx is parallel to

u = (a− 1, b, c)− (p, 0, 0) = (a− 1− p, b, c).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since c > c− 1 ≥ 0 and u = λu2 imply λ > 1
contradicting b > 0 > b− q − 1.

iii. u cannot be parallel to u3 if b > 1, since b > b − 2 ≥ 0 and u = λu3

imply λ > 1 contradicting a > 0 > a− 1− p.



Explicit and effective Mather–Yau correspondence in view of analytic gradings 156

iv. u cannot be parallel to u4 if b = 1 and c > 1, since c > c − 2 ≥ 0 and
u = λu4 imply λ > 1 contradicting a > 0 > a− 1− p.

v. u cannot be parallel to u4 if b = c = 1, since u = λu4 implies λ = −1.
Thus p = 2a− 1 ≥ 2 and q = 2. Then a ≥ 2 and

3w1 ≤ 4w1 ≤ 2aw1 = 2w2 + w3 < 2w1 + w2

implies w2 > w1, which is a contradiction.
(b) If xp+1y ∈ Supp(f), then xpy ∈ Supp(fx). A direction vector of fx is parallel

to
u = (a− 1, b, c)− (p, 1, 0) = (a− 1− p, b− 1, c).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since c > c− 1 ≥ 0 and u = λu2 imply λ > 1
contradicting b− 1 ≥ 0 > b− q − 1.

iii. u cannot be parallel to u3 if b > 1, since b − 1 > b − 2 ≥ 0 and u = λu3

imply λ > 1 contradicting a > 0 > a− 1− p.
iv. u and u4 cannot be parallel if b = 1 and q > 1, since 1− q < 0.

v. u and u4 cannot be parallel if q = 1, since y2z, xayzc ∈ Supp(f) implies

2w2 + w3 = aw1 + w2 + cw3 ≥ w1 + w2 + w3 > 2w2 + w3,

which is a contradiction.
(c) If xp+1z ∈ Supp(f), then xpz ∈ Supp(fx). A direction vector of fx is parallel

to
u = (a− 1, b, c)− (p, 0, 1) = (a− 1− p, b, c− 1).

i. u cannot be parallel to u1, since a− 1− p < 0.

ii. u cannot be parallel to u2, since a > a − 1 − p but the last entries are
equal.

iii. u cannot be parallel to u3 if b > 1, since b > b − 2 ≥ 0 and u = λu3

imply λ > 1 contradicting a > 0 > a− 1− p.
iv. u cannot be parallel to u4 if b = 1 and q = 1, since 1 6= 0 in the second

entry.
v. u cannot be parallel to u4 if b = c = 1 and q > 1, since −1 6= 0 in the

third entry.
vi. u cannot be parallel to u4 if c > 1 = b, since c − 1 > c − 2 ≥ 0 and

u = λu4 imply λ > 1 contradicting a > 0 > a− 1− p.

From now on we can assume that f has no monomials of type xaybzc for any a, b, c ∈
N≥1. In the next steps we have to consider all possibilities for fx. The first possibility
is that fx is a monomial.

In the following proof we will make explicit use of the additional weights of the Jaco-
bian ideal Jf . We denote them by v = (v1, v2, v3). The main technique we are going
to use is the fact that we can compute linear combinations of v and w to obtain new
weight vectors, which by abuse of notation will be denoted again by v. Since switch-
ing the y and z variable does not affect the multihomogeneity of Jf , we can always
assume that v2 ≥ v3.

This technique is being used in the next proof.
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Lemma 6.41. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and s ≥ 2.
Let fx be a monomial, then the following hold:

(1) If fx = xp for some p ∈ N, then f is of Sebastiani–Thom type.

(2) If fx = xpy for some p ∈ N, then f is of Sebastiani–Thom type.

(3) If fx = xpz for some p ∈ N, then f is of Sebastiani–Thom type.

Proof.

(1) By integration we obtain f(x, y, z) =
∫
xpdx. = 1

p+1x
p+1 + h(y, z) for some poly-

nomial h.

(2) With ord(f) ≥ 3 the only possible monomials close to the y-axis are yr+1 or yrz
for some r ∈ N and the only possible monomials close to the z-axis are zr+1 or
zry. If {xpy, yr+1, zry} ⊆ Supp(f) or {xpy, yrz, zry} ⊆ Supp(f), then we know
that there exists an i ∈ N≥1 with zi ∈ Supp(f), otherwise f would not define an
isolated hypersurface singularity, since y would divide all monomials of f. With
f being quasihomogeneous we know that i = r + 1. So we can always assume

(a) {xpy, yr+1, zr+1} ⊆ Supp(f) or

(b) {xpy, yrz, zr+1} ⊆ Supp(f).

The next step is to show that no monomial of type yizj is contained in Supp(f)
for any i, j ∈ N≥1.Assume the contrary. Using that Supp(fx) = {xpy},we obtain
fy = h2 + a1h3, fz = a2h2 + h3 for a1, a2 ∈ C and {xp, yi−1zj , yizj−1, zr} ⊆
Supp(h2)∪Supp(h3). The idea is to use the second weight vector v of Jf . Since we
can perform linear operations on v usingw and since switching y with z does not
change the multihomogeneity, we can assume that v = (0, v2, v3) with v2 ≥ v3.
In case v2 = v3, we modify v again and obtain v = (1, 0, 0), since w1 > w2 = w3.
First we assume v2 > v3. We consider both cases (a) and (b) assuming that a
monomial of type yizj with i, j ≥ 1 is contained in Supp(f) :

(a) Assume {xp, yr, yi−1zj} ⊆ Supp(fy). Obviously

0 = degv(x
p) < degv(y

r).

The equality w2 = w3 implies r = i− 1 + j. This yields

v2r = v2(i− 1) + v2j > v2(i− 1) + v3j.

In case degv(y
i−1zj) 6= 0 we obtain

degv(x
p < degv(y

i−1zj) < degv(y
r),

which is a sequence of three elements appearing in Supp(fy) with different
v-degrees. This is not possible, since fy is a linear combination of at most
two weighted homogeneous elements. For the case degv(y

i−1zj) = 0 we
have to consider two subcases:
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i. If i ≥ 2 we have

0 = (i− 1)v2 + v3j > (i− 1 + j)v3 = rv3 = degv(z
r).

In particular, v3 < 0. Since {xp, yr, zr} ⊆ Supp(h2) ∪ Supp(h3) we have
three elements with

degv(z
r) < 0 = degv(x

p) < degv(y
r)

which is impossible. Hence a monomial of type yizj with i ≥ 2, j ≥ 1
cannot be contained in Supp(f).

ii. If i = 1, then v3 = 0, since j ≥ 1. In this case we can assume without
loss of generality {xp, zr} ⊆ Supp(h2), since degv(x

p) = degv(z
r) = 0 6=

degv(y
r). This means that yr ∈ Supp(h3). Since zr ∈ Supp(fz) and xp /∈

Supp(fz),we must have xp ∈ Supp(h3) as well, since otherwise it could
not be canceled from fz. In this case h3 is not homogeneous with respect
to v, which contradicts the assumption that h3 is multihomogeneous.

(b) Assume {xp, yr−1z, yr, zr} ⊆ Supp(h2) ∪ Supp(h3). Obviously

0 = degv(x
p) < degv(y

r).

We have to consider two subcases:

i. If v3 6= 0 we have
0 6= degv(z

r) < degv(y
r).

We obtain a sequence of three elements appearing in Supp(h2)∪Supp(h3),
with different v-degrees. This contradicts the multihomogeneity of h2

and h3.

ii. If v3 = 0, then we can assume without loss of generality {xp, zr} ⊆
Supp(h2), since degv(x

p) = degv(z
r) = 0 6= degv(y

r). This implies
yr−1z, yr ∈ Supp(h3). With r ≥ 2 we obtain

0 < degv(y
r−1z) < degv(y

r).

This yields a contradiction to h3 being weighted homogeneous with
respect to v.

From both cases we see that in both the cases no monomial of type yizj with
i, j ≥ 1 can exist. Thus {xpy, yr+1, zr+1} = Supp(f) and f is of Sebastiani–Thom
type, if v2 > v3. To finish the proof we have to consider the case v = (1, 0, 0) in
the cases (a) or (b):

(a) Assume {xp, yr, yi−1zj} ⊆ Supp(fy). With out loss of generality we can
assume {yr, yi−1zj} ⊆ Supp(h2), since degv(y

r) = degv(y
i−1zj) = 0 6=

degv(x
p). This implies xp ∈ Supp(h3). Since xp does not appear in Supp(fz),

we must have xp ∈ Supp(h2), which contradicts the multihomogeneity of
h2.

(b) Assume {xp, yr−1z, yr, zr} ⊆ Supp(h2) ∪ Supp(h3). With out loss of gener-
ality we can assume {yr, zr} ⊆ Supp(h2), since degv(y

r) = degv(z
r) = 0 6=

degv(x
p). This implies xp ∈ Supp(h3). Since xp does not appear in Supp(fz),

we must have xp ∈ Supp(h2), which contradicts the multihomogeneity of
h2.
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This shows that the case v = (1, 0, 0) is not possible.

(3) The result follows immediately from (2) if we apply the coordinate change x 7→
x, y 7→ z and z 7→ y.

In the next steps we assume that the monomials of fx lie on a line in the x-y or x-z
plane. First we consider the case where fx lies in the x-y plane.

Lemma 6.42. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
s = 2. Assume | Supp(fx)| ≥ 2 and the monomials of fx lie in the x-y plane. Then f is of
Sebastiani–Thom type.

Proof. Due to our assumption we have either {xp+1, xayb} ⊆ Supp(f) for a, b ≥ 1 or
{xp+1y, xayb} ⊆ Supp(f) for a ≥ 1 and b > 1. Assume we are in the first case, then a
possible direction vector of fx is

u = (p− a+ 1,−b, 0).

We have to consider two cases:

(1) Assume that a monomial of type xlym with l,m ∈ N≥1 is contained in h2, then
h2 = h2(x, y) since its direction vector has to be parallel to a direction vector
of fx. We assume this without loss of generality, since the case of h3 = h3(x, y)
works analogously. Next we assume that there exists a monomial of type yizj ∈
Supp(f) with i, j ∈ N≥1 and that j is chosen maximal, i.e. if yi

′
zj
′ ∈ Supp(f)

with i′, j′ ∈ N≥1, then j ≥ j′. This setup yields yi−1zj ∈ Supp(fy). We have to
consider three cases.

(a) Assume yi−1zj ∈ Supp(h3). We know that yizj−1 ∈ Supp(fz).

i. Assume yizj−1 ∈ Supp(h3), then a possible direction vector of h3 is

u1 = (0, 1,−1),

which is obviously not parallel to u.
ii. Assume yizj−1 ∈ Supp(h2). Then h2 = h2(x, y) implies j = 1. Since j

is maximal and fx = fx(x, y), and we know immediately that the only
possible monomial close to the z-axis is zr+1 for some r ∈ N≥2. The
quasihomogeneity of fx implies r + 1 = i+ 1, thus r = i. The structure
of fx and h2 also imply zr ∈ Supp(h3). In this case a possible direction
vector of h3 is

u2 = (0, 1,−1),

which is not parallel to u.
iii. Assume yizj−1 ∈ Supp(g2fx). Then there exists yk ∈ Supp(fx) for some

k ∈ N≥2. This implies xpyi−kzj−1 ∈ Supp(g2fx). Now we have to con-
sider three cases for this monomial:
A. If xpyi−kzj−1 ∈ Supp(h2), then j = 1 and we know immediately

that the only possible monomial close to the z-axis is zr+1 for some
r ∈ N≥2. Hence we are in case (ii).
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B. If xpyi−kzj−1 ∈ Supp(h3), then a possible direction vector of h3 is

u3 = (p, 1− k,−1),

which is obviously not parallel to u.
C. If xpyi−kzj−1 /∈ Supp(h2) ∪ Supp(h3), then xpyi−kzj−1 ∈ Supp(fz)

and in particular xpyi−kzj ∈ Supp(f), which is impossible, since
p ≥ 2 implies xp−1yi−kzj ∈ fx and j ≥ 1 implies fx = fx(x, y, z).

(b) If yi−1zj /∈ Supp(h3), then h2 = h2(x, y) implies the existence of a k ∈ N≥2

with yk ∈ Supp(fx) and this implies xpyi−1−kzj ∈ Supp(g1fx). If xpyi−1−kzj /∈
Supp(h2)∪Supp(h3), then xpyi−1−kzj ∈ Supp(fy) and in particular xpyi−kzj ∈
Supp(f), which contradicts fx = fx(x, y). So the only remaining possibility
is xpyi−1−kzj ∈ Supp(h3), since h2 = h2(x, y). Let us assume this from now
on. As before we know that yizj−1 ∈ Supp(fz). We have to consider three
different cases:

i. Assume yizj−1 ∈ Supp(h3). Then a possible direction vector of h3 is
given by

u1 = (p,−1− k,−1),

which is not parallel to u.
ii. Assume yizj−1 ∈ Supp(h2). Then j = 1 and, since j is maximal, we

have zr+1 ∈ Supp(f) for some r ∈ N≥2. The structure of fx and h2

implies zr ∈ Supp(h3). In this case a possible direction vector of h3 is

u2 = (p, i− 1− k, 1− r),

which is not parallel to u, since r ≥ 2. So this case is impossible.
iii. Assume yizj−1 ∈ Supp(g2fx). This implies xpyi−kzj−1 ∈ Supp(g2fx).

Now we have to consider three cases for this monomial:
A. If xpyi−kzj−1 ∈ Supp(h2), then j = 1 and we know immediately

that the only possible monomial close to the z-axis is zr+1 for some
r ∈ N≥2. The structure of fx and h2 then implies zr ∈ Supp(h3). In
this case a possible direction vector of h3 is

u3 = (p, i− 1− k, 1− r).

This vector is not parallel to u, since r ≥ 2 implies 1− r 6= 0.

B. If xpyi−kzj−1 ∈ Supp(h3), then a possible direction vector of h3 is

u4 = (0, 1,−1),

which is obviously not parallel to u.
C. If xpyi−kzj−1 /∈ Supp(h2) ∪ Supp(h3), then xpyi−kzj−1 ∈ Supp(fz)

and in particular xpyi−kzj ∈ Supp(f), which is impossible, since
p ≥ 2 implies xp−1yi−kzj ∈ fx and j ≥ 1 implies fx = fx(x, y, z).

All theses cases imply that no monomial of type yizj for i, j ∈ N≥1 can be con-
tained in Supp(f). Thus f is of Sebastiani–Thom type.

(2) Assume no monomial of type xlym, l,m ∈ N≥1, is contained in Supp(h2) ∪
Supp(h3). Consider a monomial of this type in Supp(f) with minimal m. If m ≥
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2, then xlym−1 is in Supp(g1fx), hence we must have l = p, since only xp can
divide xlym−1 due to the minimality of m. Due to our assumption we must have
xp−1y2m−1 ∈ Supp(fy), hence xp−1y2m ∈ Supp(f). Iterating this process we see
that fy = λym−1fx + h(y, z) for some λ ∈ C\{0} and h ∈ C[y, z] a polynomial.
Using the same argument as in the proof of Lemma 6.26, we get that f is right-
equivalent to xp+1 + y(p+1)m + r(y, z) for some polynomial r ∈ C[y, z] and this
is of Sebastiani–Thom type, if m ≥ 2. The case m = 1 remains. In this case
we have xl ∈ Supp(fy). The structure of fy and w1 > w2 = w3 implies xl ∈
Supp(h2) ∪ Supp(h3). Without loss of generality we can assume xl ∈ Supp(h2),
which implies h2 = h2(x, y), hence we can argue as in (1).

In the case {xp+1y, xayb} ⊆ Supp(f) for a ≥ 1 and b > 1 we see that xp+1 ∈ Supp(h2)∪
Supp(h3). Due to this we can assume that the monomials of h2 lie in the x-y plane and
we can argue as in (1).

Next we consider the case where fx lies in the x-z plane.

Lemma 6.43. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), ord(f) ≥ 3 and
s = 2. Assume |Supp(fx)| ≥ 2 and the monomials of fx lie in the x-z plane. Then f is of
Sebastiani–Thom type.

Proof. This result follows from Lemma 6.42 by applying the coordinate change x 7→
x, y 7→ z and z 7→ y.

Finally we consider the case where the monomials of fx lie in the x-y and in the x-z
plane. In the following proof we will again make explicit use of the additional weights
of the Jacobian ideal Jf . We denote them by v = (v1, v2, v3). Since we can perform
linear combinations of weights to obtain new ones, we assume from now on that v1 =
0 and v2 ≥ v3. Switching the y and z coordinate does not affect the quasihomogeneity
of f or the multihomogeneity of Jf .

Lemma 6.44. Let f ∈ C[x, y, z] be a polynomial with unique weights (w1, w2, w3), ord(f) ≥
3 and s = 2. Assume |Supp(fx)| ≥ 2 and that the monomials of fx lie in the x-y and x-z
plane. Then f is of Sebastiani–Thom type.

Proof. In the case where the monomials of f lie in the x-y plane as well as in the x-z
plane we know that Supp(fx) = {xpy, xizj} or Supp(fx) = {xpz, xiyj} for i, j ∈ N with
i+ j ≥ 2.

(1) Assume Supp(fx) = {xpy, xizj}. Then xp+1 ∈ Supp(h2) ∪ Supp(h3), since no
monomial of fx divides xp+1. Using that either yq+1 or yqz are in Supp(f) for
some q ∈ N and using that either zr+1 or zry are in Supp(f) for some r ∈ N,
we can apply the previous argument to see that yq, zr ∈ Supp(h2) ∪ Supp(h3).
Assuming that the monomials of fx do not lie completely in the x-y plane, we
can assume j ∈ N≥1. In the case p 6= i checking possible direction vectors shows
that h2 or h3 cannot be parallel to fx. So let us consider the case p = i in more
detail, since this case is non-trivial. In this case a direction vector of fx is given
by u = (0, 1,−1). The weights of f imply that {xpy, xpz} = Supp(fx). Checking
the possible direction vectors we see that the only non-trivial case is q = r, xp ∈
Supp(h2) and yr, zr ∈ Supp(h3), but yr, zr /∈ Supp(h2). If v2 > v3, then yr and zr
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do not have the same multidegree and thus cannot be monomials of h3, hence
v2 = v3.Using our information so far we know that f = λxpy+µxpz+h(y, z) with
λ, µ ∈ C\{0}. Then the coordinate change ϕ defined by x 7→ x, y 7→ y−µz

λ , z 7→ z
is multihomogeneous and keeps the quasihomogeneity of f and the multihomo-
geneity of Jf . We obtain ϕ(f) = xpy+ϕ(h(y, z))) and we can apply Lemma 6.41
to obtain that f is of Thom Sebastiani type.

(2) Assume Supp(fx) = {xpz, xiyj}. Apply the coordinate change x 7→ x, y 7→ z and
z 7→ y and we can argue using (1).

Combining the previous lemmas we obtain the following result:

Proposition 6.45. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3) satisfying w1 >
w2 = w3, ord(f) ≥ 3 and s = 2. Then f is of Sebastiani–Thom type.

6.5 The case w1 = w2 > w3

In this section we will make explicit use of the additional weight of the Jacobian ideal.
We denote it by v = (v1, v2, v3). Since we can perform linear combinations of weight
vectors w and v to obtain new ones, we assume from now on that v3 = 0. In the
previous sections we made use of the fact that fx = h1. In this case we do not get this
result immediately. Proposition 3.7 yields only the following result:

Lemma 6.46. Let f ∈ C[x, y, z] be a QHIS with weights w = (w1, w2, w3), where w1 =
w2 > w3 and assume s = 2. Then there exist g1, g2 ∈ C[z] and α, β ∈ C such that:

(1) fx = h1 + αh2 and fy = βh1 + h2, and

(2) fz = g1h1 + g2h2 + h3.

In our setup we can prove now that we can assume h1 = fx and h2 = fy.

Lemma 6.47. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 > w3, ord(f) ≥
3 and s = 2. If there exists a second weight vector v for Jf with v1 6= v2, then fx and fy are
multihomogeneous with respect to the weights w and v. In particular, we can choose h1 = fx
and h2 = fy.

Proof. We keep the notation of Lemma 6.46. The case α = β = 0 is trivial. So we as-
sume α 6= 0 or β 6= 0. In case Supp(h1) ∩ Supp(h2) 6= ∅, we know degv(h1) = degv(h2).
Then fx and fy form part of a system of multihomogeneous minimal generators of Jf
and we can assume fx = h1, fy = h2. Thus we can assume Supp(h1) ∩ Supp(h2) = ∅.
We bring this to a contradiction by considering three different cases for the values of
α and β. We can assume without loss of generality v1 > v2, since switching the x and
y variable does not affect the multihomogeneity of Jf .

(1) First we consider the case α 6= 0 6= β. Then fx and fy contain the same monomi-
als, as the monomials cannot cancel each other. We need to consider two cases to
show that no monomial close to the x-axis can be contained in Supp(f) in order
to construct a contradiction.
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(a) Let us assume xiyj ∈ Supp(f) for i, j ∈ N and i + j ≥ 3. Deriving yields
xi−1yj ∈ Supp(fx) = Supp(fy). Integrating yields xi−1yj+1 ∈ Supp(f). We
can iterate this process and obtain

xi+j−1, xi+j−2y, . . . , xyi+j−2 ∈ Supp(fx)

Now we have

degv(x
i+j−1) > degv(x

i+j−2y) > . . . > degv(xy
i+j−2),

which is impossible since this implies that fx has to contain at least 3 mono-
mials of different multi-degrees.

(b) Let us assume xpz ∈ Supp(f) for some p ∈ N. In case p ≥ 3 deriving and
integrating yields xp−1z, xp−2yz, xp−3y2z ∈ Supp(fx), since fx and fy share
the same monomials. With degv(x

p−1z) > degv(x
p−2yz) > degv(x

p−3y2z),
we see that fx has to contain at least 3 monomials of different multi-degrees,
which is impossible, since fx can contain at most 2. If p = 2 we see that z is
contained in all monomials that we can obtain by deriving and integrating
so far. We know, since f defines an isolated singularity, that this implies the
existence of a monomial of type xiyj with i+ j ≥ 3. This case is covered by
(a).

(2) Now we consider the case α = 0 6= β. In this case fx = h1 and fy = βh1 + h2.
Then all monomials of fx also appear in fy and they cannot cancel each other.
Consider any monomial close to the x-axis. This monomial is of type xpyizj

with p, i, j ∈ N, p ≥ 2 and i, j ∈ {0, 1}. Deriving and integrating as in (1) yields
xp−1yi+1zj ∈ Supp(f). This implies {xp−1yizj , xp−2yi+1zj} ⊆ Supp(fx). Since
degv(x

p−1yizj) > degv(x
p−2yi+1zj) we obtain that fx = h1 cannot be multiho-

mogeneous, which is a contradiction.

(3) The case α 6= 0 = β works in the same way as case (2) considering the monomials
close to the y-axis.

Lemma 6.48. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 > w3, ord(f) ≥
3 and s = 2. If v1 6= v2, then no monomial of type xaybzc with a, b, c ∈ N≥1 is contained in
Supp(f).

Proof. The idea is to assume the existence of a monomial of type xaybzc with a, b, c ∈
N≥1 in Supp(f) and bring this to a contradiction. For the first part of the proof we
assume without loss of generality v1 > v2 and v1 > 0, since v can be multiplied by a
non-zero constant and since the coordinate change x 7→ y, y 7→ x and z 7→ z does not
affect the quasihomogeneity of f and the multihomogeneity of Jf . We show that the
only monomial close to the x-axis can be xpz for some p ∈ N and the only monomial
close to the y-axis can be ypz. For the monomials close to the x-axis we consider two
different cases:

(1) If xp+1 ∈ Supp(f) for some p ∈ N≥2, then w1 = w2 > w3 and c ≥ 1 imply
p+ 1 > a+ b, which is equivalent to p > a− 1 + b. Using v1 > 0 and v1 > v2 we
obtain

v1p > v1(a− 1) + v1b > v1(a− 1) + v2b.
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This implies degv(x
p) > degv(x

a−1ybzc) and contradicts the multihomogeneity
of fx.

(2) If xpy ∈ Supp(f) for some p ∈ N≥1, then w1 = w2 > w3 and c ≥ 1 imply
p+ 1 > a+ b, which is equivalent to p > a+ b− 1. Using v1 > 0 and v1 > v2 we
obtain

v1p > v1a+ v1(b− 1) > v1a+ v2(b− 1).

This implies degv(x
p) > degv(x

ayb−1zc) and contradicts the multihomogeneity
of fy.

For the statement about the monomials close to the y-axis we first consider the case
v2 6= 0. Since multiplying by a non-zero constant does not change the multihomogene-
ity of the hi we get another weight vector v′ = (v′1, v

′
2, v
′
3) with v′2 > 0.

(1) If yq+1 ∈ Supp(f) for some q ∈ N≥2, then w1 = w2 > w3 and c ≥ 1 imply
q+1 > a+ b, which is equivalent to q > a+ b−1. We have to consider two cases:

(a) If v′2 > v′1 we obtain

v′2q = v′2a+ v′2(b− 1) > v′1a+ v2(b− 1),

which implies degv′(y
q) > degv′(x

ayb−1zc).

(b) If v′2 < v′1 we obtain

v′2q = v′2a+ v′2(b− 1) < v′1a+ v′2(b− 1),

which implies degv′(y
q) < degv′(x

ayb−1zc).

Both possibilities contradict the multihomogeneity of fy

(2) If yqx ∈ Supp(f) for some q ∈ N≥1, then w1 = w2 > w3 and c ≥ 1 imply
q+1 > a+ b, which is equivalent to q > a−1+ b. We have to consider two cases:

(a) If v′2 > v′1 we obtain

v′2q > v′2(a− 1) + v′2b > v′1(a− 1) + v′2b,

which implies degv′(y
q) > degv′(x

a−1ybzc).

(b) If v′2 < v′1 we obtain

v′2q > v′2(a− 1) + v′2b > v′1(a− 1) + v′2b,

which implies degv′(y
q) < degv′(x

a−1ybzc).

Both possibilities contradict the multihomogeneity of fx.

So far we have shown that v1 6= v2 and v2 > 0 implies that only xpy respectively
yqz are close to the x-axis respectively y-axis. The remaining case is v2 = v3 = 0.
In this case we can assume v1 = 1. Then fx being multihomogeneous implies fx =
xkg(y, z) for some k ∈ N and g ∈ C[y, z]. In this setup, no matter which one of the
monomials xp+1, xpy or xpz are close to the x-axis, w3, b, c ≥ 1 imply p > a. Using
{xpyizj , xa−1ybzc} ⊆ Supp(fx), we see that fx cannot be multihomogeneous, contra-
dicting our assumptions.
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The proof so far implies {xpz, yqz} ⊆ Supp(f).Now w1 = w2 and the quasihomogene-
ity of f imply p = q. In particular we obtain {xp, yp} ⊆ Supp(fz). With degw(fx) =
degw(fy) < degw(fz) and g1, g2 ∈ C[z],we obtain {xp, yp} ⊆ Supp(h3). This contradicts
the multihomogeneity of h3, since these monomials have different weighted degrees
with respect to v due to v1 6= v2.All these results combined yield a contradiction, if we
assume that a monomial of type xaybzc for any a, b, c ∈ N≥1 is contained in Supp(f).

Lemma 6.48 implies that the monomials of f can lie only on the x-y, x-z and the y-z
plane, thus fx can only lie on the x-y and/or the x-z plane. We consider all possible
cases of the position of fx, starting with fx being a monomial.

Lemma 6.49. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 > w3, ord(f) ≥
3 and s = 2. Assume v1 6= v2 and let fx be a monomial, then the following hold:

(1) If fx = xp for some p ∈ N≥3, then f is of Sebastiani–Thom type.

(2) If fx = xpy for some p ∈ N≥2, then f is of Sebastiani–Thom type.

(3) If fx = xpz for some p ∈ N≥2, then f is of Sebastiani–Thom type.

Proof.

(1) By integration we obtain f(x, y, z) =
∫
xpdx. = 1

p+1x
p+1 + h(y, z) for some poly-

nomial h.

(2) With ord(f) ≥ 3 the only possible monomials close to the y-axis are yq+1 or yq+1z
for some q ∈ N and the only possible monomials close to the z-axis are zr+1 or zry
for some r ∈ N. If {xp+1y, yq+1, zry} ⊆ Supp(f) or {xp+1y, yqz, zry} ⊆ Supp(f),
then there exists an i ∈ N≥1 with zi ∈ Supp(f), otherwise f would not define an
isolated hypersurface singularity, since y would divide f . Thus we have

(a) {xp+1y, yq+1, zr+1} ⊆ Supp(f) or

(b) {xp+1y, yq+1z, zr+1} ⊆ Supp(f).

The next step is to show that no monomial of type yizj is contained in Supp(f)
for any i, j ∈ N≥1.Assume the contrary. We need to consider two different cases:

(a) If {xp+1y, yq+1, zr+1} ⊆ Supp(f), then {xp+1, yq, yi−1zj} ⊆ Supp(fy). Two
possible direction vectors of fy are

u1 = (p+ 1,−q, 0)

and
u2 = (0, q + 1− i,−j).

u1 and u2 are not parallel since p + 1 6= 0. So no monomial of type yizj for
i, j ∈ N≥1 can exist in Supp(f) and f is of Sebastiani–Thom type.

(b) If {xp+1y, yq+1z, zr+1} ⊆ Supp(f), then {xp+1, yqz} ⊆ Supp(fy) and {yq, zr} ⊆
Supp(fz). w1 = w2 > w3 implies yq ∈ Supp(h3). For zr we have two pos-
sibilities. Either there exists an l ∈ N≥2 with zl ∈ Supp(fy) and zr−l ∈
Supp(g2) or zr ∈ Supp(h3).
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i. If zl ∈ Supp(fy) for some l ∈ N≥2, then two possible direction vectors
of fy are

u1 = (p+ 1, 0,−l)
and

u2 = (0, q, 1− l).
u1 and u2 are not parallel since p+ 1 6= 0.

ii. If zr ∈ Supp(h3), then a possible direction vector of h3 is

u1 = (0, q + 1,−r)

and a possible direction vector of fy is

u2 = (p+ 1,−q,−1).

u1 and u2 are not parallel since p+ 1 6= 0.

(3) With ord(f) ≥ 3 the only possible monomials close to the y-axis are yq+1 or yq+1z
for some q ∈ N and the only possible monomials close to the z-axis are zr+1 or
zry for some r ∈ N. If {xp+1z, yq+1z, zr+1} ⊆ Supp(f) or {xp+1z, yqz, zry} ⊆
Supp(f), then there exists an i ∈ N≥1 with yi ∈ Supp(f), otherwise f would
not define an isolated hypersurface singularity, since z would divide f . Thus we
have

(a) {xp+1z, yq+1, zr+1} ⊆ Supp(f) or
(b) {xp+1z, yq+1, zry} ⊆ Supp(f).

The next step is to show that no monomial of type yizj is contained in Supp(f)
for any i, j ∈ N≥1.Assume the contrary. We need to consider two different cases:

(a) Assume {xp+1z, yq+1, zr+1} ⊆ Supp(f). Then {yq, yi−1zj} ⊆ Supp(fy) and
{xp+1, zr} ⊆ Supp(fz). w1 = w2 > w3 implies xp ∈ Supp(h3). For zr we
have two possibilities. Either there exists an l ∈ N≥2 with zl ∈ Supp(fy)
and zr−l ∈ Supp(g2) or zr ∈ Supp(h3).

i. If zl ∈ Supp(fy) and v2 6= 0 then degv(y
q) = qv2 6= 0 = degv(z

l). This
implies that fy contains two monomials with different v-degree, con-
tradicting the multihomogeneity of fy.
If v2 = 0, then we can assume v1 = 1 and the multihomogeneity of Jf
implies Supp(fx) = {xpz} and Supp(h3) = {xp+1}. Now we consider a
monomial of type yazb ∈ Supp(f) with a, b ∈ N≥1, with a being maxi-
mal. Then yazb−1 ∈ Supp(fz) implies yazb−1 ∈ Supp(g2fy). This yields
the existence of a k ∈ N with yazk ∈ Supp(fy). The maximality of a
implies k = 0 and thus a = q, since fy is quasihomogeneous. Due to
yq /∈ Supp(h3) and w2 > w3 we must have b ≥ 2. The fact that fx and
h3 are monomials divisible by x imply that {zb−1} = Supp(g2). In order
to see this assume zt ∈ Supp(g2) with t 6= b − 1. In this setup Supp(fz)
contains yqzb−1 and yqzt,which contradicts the quasihomogeneity of fz
with respect to w. This implies {yqzb, yq−1z2b, . . . z(q+1)b} ⊆ Supp(f).
Applying the same argument as in Lemma 6.26, we obtain, after a suit-
able change of coordinates, f = xp+1z+yq+1, thus f does not define an
isolated hypersurface singularity. In this case no monomial of type yizj

for any i, j ∈ N≥1 can be contained in Supp(f) and f is of Sebastiani–
Thom type.
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ii. If zr ∈ Supp(h3), then a possible direction vector of h3 is

u1 = (p+ 1, 0,−r)

and a possible direction vector of fy is

u2 = (0, q + 1− i,−j),

which are obviously not parallel. Thus no monomial of type yizj for
i, j ∈ N≥1 can exist in Supp(f) and f is of Sebastiani–Thom type.

(b) Assume {xp+1z, yq+1, zry} ⊆ Supp(f). Then {yq, zr} ⊆ Supp(fy) and {xp+1, yqz} ⊆
Supp(fz). If v2 6= 0, then degv(y

q) = qv2 6= 0 = degv(z
r). This implies that

fy contains two monomials with different v-degree, contradicting the mul-
tihomogeneity of fy.
Now we can assume v1 = 1 and v2 = v3 = 0. In this setup we know that
Supp(fx) = {xpz} and Supp(h3) = {xp+1}. Consider a monomial of type
yazb ∈ Supp(f) with a, b ∈ N≥1 with a being maximal. Then yazb−1 ∈
Supp(g2fy), hence there exists a k ∈ N with yazk ∈ Supp(fy). The maximal-
ity of a implies k = 0 and thus a = q, since fy is quasihomogeneous. Due to
yq /∈ Supp(h3) and w2 > w3 we must have b ≥ 2. The fact that fx and h3 are
monomials divisible by x imply that {zb−1} = Supp(g2). In order to see this
assume zt ∈ Supp(g2) with t 6= b− 1. In this setup Supp(fz) contains yqzb−1

and yqzt, which contradicts the quasihomogeneity of fz with respect to w.
This implies {yqzb, yq−1z2b, . . . z(q+1)b} ⊆ Supp(f) and we are in the setup
of (a).

Next we consider the cases where fx lies in the x-y plane or the x-z plane.

Lemma 6.50. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 > w3, ord(f) ≥
3 and s = 2 Assume v1 6= v2 and assume that the monomials of fx lie in the x-y plane. Then
f is of Sebastiani–Thom type.

Proof. By assertion the monomials of fx are of type xiyj for i, j ∈ N with i + j ≥ 2.
Define dw := degw(fx), dv := degv(fx) and

A :=

(
w1 w1

v1 v2

)
.

A has full rank, since v1 6= v2. Then (i, j) has to satisfy (i, j)AT = (dw, dv)
T . Since A

has full rank, there exists precisely one solution for (i, j). Thus fx is a monomial and
we can apply Lemma 6.49.

Next we consider the case where fx lies in the x-z plane.

Lemma 6.51. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 > w3, ord(f) ≥
3 and s = 2. Assume v1 6= v2, |Supp(fx)| ≥ 2 and assume that the monomials of fx lie in the
x-z plane. Then f is of Sebastiani–Thom type.
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Proof. If v1 6= 0 = v3, then we can argue as in the proof of Lemma 6.50 and we obtain
that fx is a monomial. Then Lemma 6.49, (c) yields that f is of Sebastiani–Thom type.
Now we assume v1 = v3 = 0 and v2 = 1. This implies that Supp(fy) = {yq} or
Supp(fy) = {yq−1z} for some q ∈ N≥2. Applying the coordinate change x 7→ y, y 7→
x, z 7→ z does not change the facts that f is quasi homogeneous and that Jf is multi-
homogeneous. After the coordinate change we are in the case of Lemma 6.49 and the
result follows.

Lemma 6.52. Let f ∈ C[x, y, z] be a polynomial with unique weights (w1, w2, w3), w1 =
w2 > w3, ord(f) ≥ 3 and s = 2. Assume v1 6= v2, | Supp(fx)| ≥ 2 and assume that the
monomials of fx lie in the x-y plane and in the x-z plane. Then f is of Sebastiani–Thom type.

Proof. In the case where f lies in the x-y plane as well as in the x-z plane we know that
Supp(fx) = {xpy, xi−1zj} or Supp(fx) = {xpz, xi−1yj} for certain i, j ∈ N with i+j ≥ 3
and i ≥ 1. We have to consider these two cases:

(1) Assume Supp(fx) = {xpy, xi−1zj}. In this setup only yq+1 or yq+1z can be the
monomials in Supp(f) close to the y-axis. If j = 0 fx lies in the x-y plane and
this case has already been covered in Lemma 6.50. From now on we assume
j ≥ 1. A possible direction vector of fx is

u1 = (p+ 1− i, 1,−j).

Using xp ∈ Supp(fy) we have to consider two cases:

(a) Assume yq+1 ∈ Supp(f). Then a direction vector of fy is given by

u2 = (p,−q, 0).

u1 is not parallel to u2, since −j 6= 0 in the last component.

(b) Assume yq+1z ∈ Supp(f). Then a direction vector of fy is given by

u3 = (p,−q,−1).

u1 is not parallel to u3, since j ≥ 1 and u1 = λu3 imply λ ≥ 1, which
contradicts −q < 1.

(2) Assume Supp(fx) = {xpz, xi−1yj}. In this setup all monomials yq+1, yq+1x or
yq+1z can be monomials in Supp(f) close to the y-axis. If j = 0 fx lies in the x-y
plane and this case has already been covered in Lemma 6.50. From now on we
assume j ≥ 1. A possible direction vector of fx is

u1 = (p+ 1− i,−j, 1).

Using xiyj−1 ∈ Supp(fy) we have to consider three cases:

(a) Assume yq+1 ∈ Supp(f). Then a direction vector of fy is given by

u2 = (−i, q + 1− j, 0)

u1 is not parallel to u2, since 1 6= 0 in the last component.
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(b) Assume yq+1x ∈ Supp(f). Then a direction vector of fy is given by

u3 = (i− 1, j − 1− q, 0).

In case i > 1 or j 6= q + 1 we have u3 6= (0, 0, 0). In this case we see that
u1 is not parallel to u3, since 1 6= 0 in the last component. We consider
the case i = 1 and j = q + 1 separately. In this case we have Supp(fx) =
{xpz, yq+1}. Due to the fact that the monomials of fy have to lie on a line
only one monomial of type yazr+1 can be contained in Supp(f) for certain
a, r ∈ N. Since we need a monomial close to the z-axis, we obtain a ∈ {0, 1}.
This yields

{xp+1z, xyq+1, yazr+1} = Supp(f).

Then Supp(fz) = {xp+1, yazr}. This implies fz = h3, since no monomial of
fx or fy divides any monomial of fz.We have to consider some possibilities:

i. Assume a = 0. Then the multihomogeneity of fz implies v1(p+ 1) = 0,
hence v1 = 0. Thus we can assume v2 = 1. This contradicts the multi-
homogeneity of fx since degv(x

pz) = 0 6= q + 1 = degv(y
q+1).

ii. Assume a = 1. Then the multihomogeneity of fx implies v1 + v2q = 0
and the multihomogeneity of fz implies v1(p + 1) = v2. Combining
both results yields v1 = 0, hence we obtain v2 6= 0. In this case we
obtain q = 0, which contradicts ord(f) ≥ 3.

(c) Assume yq+1z ∈ Supp(f). Then a direction vector of fy is given by

u4 = (−i, q + 1− j, 1)

u1 is not parallel to u4, since the last components are equal, but −i 6= p− i.

This concludes the case v1 6= v2. Next we consider the case v1 = v2.

Lemma 6.53. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 > w3, ord(f) ≥
3 and s = 2. If v1 = v2, then, after a suitable change of coordinates, we can assume fx = h1

and fy = h2.

Proof. Given a system of coordinates (x, y, z) our goal is to find a coordinate change
ϕ(x, y, z), such that we can assume fx = h1 and fy = h2. With w1 = w2 > w3 and
v1 = v2 6= 0 = v3 we obtain v′ = (1, 1, 0) as well as v′ = (0, 0, 1) as possible weight
vectors for Jf . This implies that the coordinate change

ϕ(x, y, z) = (ax+ by, cx+ dy, z)

for certain a, b, c, d ∈ C is multihomogeneous. We know that fx = h1 + αh2 and
fy = βh1 + h2 for certain α, β ∈ C. Define

A :=

(
a b
c d

)
and B :=

(
1 α
β 1

)
.

The fact that ϕ is a coordinate change yields that A is invertible. The fact that fx
and fy, as well as h1 and h2, form part of a minimal system of generators of Jf and
have minimal weighted degree with respect to w implies that B is invertible. Define
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f ′ = f ◦ϕ, i.e. f ′(x, y, z) = f(ax+yb, cx+dy, z). In this setup we only need to consider
f ′x and f ′y. Applying the chain rule yields:(

f ′x
f ′y

)
= AT

(
fx ◦ ϕ
fy ◦ ϕ

)
= ATB

(
h1 ◦ ϕ
h2 ◦ ϕ

)
.

We can choose a, b, c, d in such a way that AT := B−1. Then we obtain f ′x = h1 ◦ ϕ
and f ′y = h2 ◦ ϕ. This means we can find a linear coordinate change such that we can
assume fx = h1 and fy = h2.

With these preparations we can prove the following.

Proposition 6.54. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 >
w3, ord(f) ≥ 3 and s = 2. If v1 = v2, then f is of Sebastiani–Thom type.

Proof. Using Lemma 6.53, we can assume fx = h1 and fy = h2. We know that Jf
is homogeneous with respect to v′ = (0, 0, 1), which implies hi = zkih′i(x, y) for some
ki ∈ N and h′i ∈ C[x, y].We obtain fx = zk1h′1(x, y) and fy = zk2h′2(x, y). If k1 6= 0 6= k2,
then z divides f, which is not allowed for isolated hypersurface singularities. Hence
we can assume without loss of generality that k1 = 0, which implies fx = fx(x, y). We
have to consider two cases:

(1) Assume k2 = 0. Then fx and fy do not depend on z, so the only monomial
containing z is zr for some r ∈ N. In this case f = g(x, y)+zr for some g ∈ C[x, y]
and f is of Sebastiani–Thom type.

(2) Assume k2 ≥ 1.Assume that xiyjzk2 ∈ Supp(fy) for some i ≥ 1. Then xi−1yj+1zk2 ∈
Supp(fx), which contradicts fx = fx(x, y). This means fy does not depend on x.
Now any monomial of type xiyj ∈ Supp(fx) for j ≥ 1 leads to a similar contra-
diction, so fx can only depend on x, hence Supp(fx) = {xp} for some p ∈ N≥3.
By integration we obtain that f = xp+1 + h(y, z) for some h ∈ C[y, z] and f is of
Sebastiani–Thom type.

Combining the previous Lemmas and Proposition 6.54 we obtain:

Proposition 6.55. Let f ∈ C[x, y, z] be a QHIS with weights (w1, w2, w3), w1 = w2 >
w3, ord(f) ≥ 3 and s = 2. Then f is of Sebastiani–Thom type.
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