
Estimating the fibre length
distribution in fibre reinforced

polymers

Jan Erik Niedermeyer

Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur
Verleihung des akademischen Grades Doktor der Naturwissenschaften (Doctor

rerum naturalium, Dr. rer. nat.) genehmigte Dissertation.

D 386

Erstgutachterin: Claudia Redenbach
Technische Universität Kaiserslautern

Zweitgutachterin: Aila Särkkä
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1. Introduction

1.1. Fibre reinforced polymers

The information presented here about polymers and fibre reinforcement are cited
from [2] and [11]. Fibre reinforced polymers are one of the newest and modern
materials that borrowed their idea from one of the oldest, wood. In wood, cellulose
fibres are embedded into a matrix made of lignin. The matrix is light and the
cellulose fibres are strong. The result is a material that is able to hold up a whole
tree without being crushed by its own weight. We use the same idea and reinforce
a mechanically weak but light polymer matrix with stiff fibres.

So the goal for fibre reeinforced polymers (FRP) is to get a low density material
with high mechanical strength and stiffness. For instance polyamide(PA-6) has a
modulus of elasticity in tension of 1200 N

mm2 and a density of 1.14 g
cm2 , by adding 30%

in mass of short glass fibres we get an elasticity in tension of 5500 N
mm2 while only

raising the density to 1.36 g
cm2 .

Possible polymers used are all kinds of polyamides, polypropylene etc. The fibres
can be made of carbon, aramid or glass. While glass fibres are most abundantly
used, carbon fibres lead to a stronger but more expensive material.

To produce parts made of FRP, there are many possible methods available. Ex-
amples are

• Hand-lay up: The fibres are manually placed in a mould and the polymer is
poured in afterwards

• Wet moulding: The fibres are placed in a mould, the polymer is applied and
then the mould closes under pressure

• injection moulding: The fibres and the polymer are premixed, molten and
pressed into a form

Here we will especially look into the injection moulding process. A sketch of an
injection moulding machine can be seen in Figure 1.1. For the injection moulding
the FRP are bought in a granulate form, which consists of fibres already in cased in
the polymer matrix. This granulate is put into a hopper which feeds into a screw
extruder. In this extruder the granulate is molten down. During the melting the
fibres are put under a large amount of stress, both thermal and mechanical. The
FRP mass is then pushed through a nozzle into the mould. In this nozzle the fibres
are put under large stress again. The stress endured during the melting in the screw
and the nozzle lead to fibres breaking.

9



Figure 1.1.: Injection moulding machinea

aImage by User:Brockey, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=

21365163

Besides the used materials the mechanical properties of FRP are governed by two
geometrical properties. The first is the orientation, FRP have a higher Young’s
modulus in direction with the fibres. The second is the length of the fibres, longer
fibres lead to stronger materials. That means that stress endured by the fibres and
the resulting fibre breaking will lead to worse mechanical performance.

1.2. Ashing

One standard method to investigate FRP is ashing. For the ashing process a sample
of the FRP is placed in an muffle furnace and heated such that the polymer burns
away, while the fibres do not burn and are left behind.

Be weighing the sample before and after the burning we can get an estimate of
the mass fraction of the polymer and the fibres. Furthermore these fibres can be put
into a liquid solution and their length can then be measured by using a microscope.

With this method it is possible to get an estimation of the fibre length distribution.
The problem with this method is, that it might affect the lengths of the fibres.
During the burning fibres might break due to thermal strain. When the fibres are
brought into solution and get divided up more of them might break. The fibre
length distribution estimated from an ashed sample is most likely biased toward
shorter fibres. Furthermore, during the ashing all information about the geometry,
especially the orientation distribution of the fibres is lost.

1.3. CT images

To get a better understanding of the 3d geometry inside of different materials µCT
is used. They work by projecting an X-ray beam through the sample onto a detector
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while the sample is turning, as seen in Figure 1.2. The data collected is then used

Detector

Source

Sample

Figure 1.2.: A sketch of a µCT. The source emits X-Ray beams through the turning
sample, the X-Ray beams are then detected by the detector.

to reconstruct a 3d image of the sample using the inverse Radon transformation.

The Radon transformation is known since 1917 in [16]. Further work focusing on
human tissue was done by Allen M. Cormack from 1957 to 1963. The first working
prototype was manufactured in 1969 by Godfrey Hounsfield. CTs where first used
in the medical field but where refined to also work on µm scales. The result is the
µCT.

1.4. Problem

By using a µCT we get a 3d image of a sample of FRP with intact orientational data.
We therefore observe these fibres in a bounded window W . We want to use this to
estimate the fibre length distribution. The estimation of the orientation distribution
from CT data has been studied in [3].

If we wish to estimate the length distribution, there are two main problems we have
to deal with. The first problem is censoring. If we look at the image we will directly
see that fibres will be cut off at the edge of the window. This censoring problem
is usually discussed in survival analysis. We will use the expectation maximization
(EM) algorithm to obtain a maximum likelihood (ML) estimator for the fibre length
distribution.

The second is a sampling problem. If we look at all fibres visible in the window
we will note that, if these fibres were observed completely, longer fibres will be
overrepresented in the sample since they have a higher probability to cut the window.
This sampling bias would lead to an over estimation of the length. We will propose
methods based on sampling rules and reweighing of the distribution to deal with
this bias.

The method using the EM algorithm will only work if we can fully segment the
fibres. This full segmentation is problematic, since the length of the fibres is big

11



Figure 1.3.: Here we see two slices from FRPs. On the left we see a FRP with 15%
mass of glass fibres and on the right with 50%.

compared to their radius. This leads to a problem of proper resolution. If we resolve
the full length of the fibres, the resolution will be low and fibres will be hard to
separate. If we have a good resolution of single fibres, the most if not all fibres will
be censored. In Figure 1.3 we see two samples with different fibre content. We see
that even a manual fibre segmentation would be hard for the low fibre content and
impossible for the sample with the high content.

If we follow the approach given in [10], we do not segment the fibres but the fibre
endpoints using local Gaussian curvature. These endpoints will then be interpreted
as an endpoint process. We may then use point process statistics to estimate the
length distribution.

1.5. State of the art in length estimation

Currently there are multiple works done on the fibre lengths estimation. In [14] an
algorithm based on the the constrained path opening is presented to estimate the
fibre length distribution. The constrained path opening is a morphological filter. Our
work extends the work done in [21]. They investigated the fibre lengths distribution
in wood cores. For this they had to deal with sampling bias and censoring as
well. They solved the censoring problem by using an EM algorithm. They proofed
consistency, asymptotic normality and convergence for their case in [22].

In their model they assumed that all fibres had the same orientation which es-
sentially turned it into a 2d problem. We will extend this to random orientations.
Furthermore they dealt with the sampling bias by first estimating the parameters
of their distribution and then reweighing this distribution. We will directly reweigh
the densities and then estimate the parameters. We will proof the consistency and
asymptotic normality of the obtained estimators.

For the end point estimation we will look at an approach in [12]. They modelled

12



the endpoint process and found a closed formula for Ripley’s-K function, which
depends on the length. We will investigate this estimator for its viability and also
propose an alternative minimum contrast estimator.
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2. Mathematical Introduction

In this chapter we will give an overview over the mathematical theory used in this
thesis. Namely these are basic stochastic, analysis regarding differentiation and inte-
gration, maximum likelihood (ML) and expectation maximization (EM) estimation.
We also introduce point processes and some summary statistics. At the end we
introduce random distributions on the sphere and two fibre models.

2.1. Basic Results

2.1.1. Probability theory

Definition 2.1. A σ-algebra A is a class of subsets of a set Ω that satisfies

• ∅ ∈ A

• If A1, A2, . . . ∈ A then
∞⋃
i=1

Ai ∈ A

• If A ∈ A ⇒ Ac ∈ A

with Ac being the complement of a set A.

The sets in A are called measurable, the pair (Ω,A) is called a measurable space.

Definition 2.2. Consider a measurable space (Ω,A). A function µ : A → R≥0 is
called a measure if

• For all A ∈ A : µ(A) ≥ 0

• µ(∅) = 0

• For all countable collections A1, A2, . . . ∈ A pairwise disjoint

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=0

µ(Ai)

Definition 2.3. Suppose (Ω,A) and (Ω′,A′) are measurable spaces. A function

X : Ω→ Ω′

is called measurable if X−1(A′) ∈ A for all A′ ∈ A′.

15



Definition 2.4. Consider a measurable space (Ω,A). The measure P is a proba-
bility measure if P (Ω) = 1.

With this we can define the probability space as a triple (Ω,A, P ). We call Ω the
sample space, the set of all possible outcomes of a random experiment. Elements
ω ∈ Ω are called events. We call sets A ∈ A events. We say P (A) is the probability
for the event A ∈ A.

Definition 2.5. Suppose A,B ∈ A and P (B) > 0. The conditional probability of
A given B is

P (A|B) =
P (A ∩B)

P (B).

The measure P (·|B) is a probability measure as well.

Theorem 2.1 (Bayes’ Theorem). Suppose A,B ∈ A and P (B) > 0. Then

P (A|B) =
P (B|A)P (A)

P (B)
.

2.1.2. Random Variables

Definition 2.6. Suppose (Ω,A, P ) is a probability space and (Ω′,A′) a measurable
space. A random variable X is a measurable mapping

X : Ω→ Ω′.

This introduces a measure PX on Ω′ as

PX(X ∈ A′) = P (X−1(A′))

If Ω′ = R we speak of a real valued random variable.

Definition 2.7. We define

FX(x) = P (X ≤ x)

as the cumulative distribution function (CDF).

Definition 2.8. A real valued random variable X is called continuous if there exists
a function fX such that fX(x) ≥ 0,

∞∫
−∞

fX(x) dx = 1

and

P (a < X < b) =

b∫
a

fX(x) dx.

We call fX the probability density function (PDF) of X.

16



These definitions can be directly expanded to the bivariate case as well. If we have
two real random variables X,Y their joint PDF is given by fX,Y (x, y) with the same
properties.

The corresponding marginal densities are given by

fX(x) =

∫
R
fX,Y (x, y) dy and fY (y) =

∫
R
fX,Y (x, y) dx.

Definition 2.9. The conditional probability density function is given by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

if fY (y) > 0. We further get

P (X ∈ A|Y = y) =

∫
A
fX|Y (x|y) dx.

We can get the density of X by marginalising

fX(x) =

∫
fX|Y (x|y)fY (y) dy.

Furthermore, Bayes theorem can be expanded to densities as well via

fX|Y (x, y) =
fY |X(y|x)fX(x)

fY (y)
.

2.1.3. Expectation

Definition 2.10. The mean or expected value of a random variable X is defined as

E[X] =

∫
x dFX(x) =

∫
xfX(x) dx

with the last equality holding only if X is continuous with density fX
The variance of X is defined as

var(X) = E[X − E[X]]2

Definition 2.11. The conditional expectation of X given Y = y is

E[X|Y = y] =

∫
xfX|Y (x|y) dx

Note that the conditional expectation E[X|Y ] itself is a random variable depending
on Y .
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2.1.4. Convergence

Definition 2.12. Let (Xn)n∈N be a sequence of random variables.

• Xn converges to X in p-th mean, Xn
Lp−−→ X, if

E [|Xn −X|p] −−−−→
n→∞

0.

• Xn converges to X in probability, Xn
p−−→X, of for all ε > 0

P (|Xn −X| ≥ ε) −−−−→
n→∞

0.

• Xn converges to X almost surely, Xn
a.s.−−→ X, if

P
(

lim
n→∞

Xn = X
)

= 1.

• Assume that X,X1, X2, . . . have the distribution functions F, F1, F2, . . . . Xn

converges to X in distribution, Xn
d−−→X, if

Fn(x) −−−−→
n→∞

F (x)

for all points of continuity of F .

2.1.5. Integration and differentiation

In this subsection we will give the basic results about switching the order of differ-
entiation and integration. These results are cited from Chapter 7 of [18].

Definition 2.13. Let f(x; θ) with x ∈ R and θ ∈ Θ ⊂ Rd. For all θ ∈ Θ let f(x; θ)
be integrable in x over the interval [a, b] with −∞ ≤ a < b ≤ ∞. Then

F (θ) =

b∫
a

f(x; θ) dx

is the parameter integral depending on θ.

Theorem 2.2. If −∞ < a < b < ∞ and f(x; θ) is continuous in (a, b) × Θ then
the parameter integral is continuous in θ.

If −∞ ≤ a < b ≤ ∞, if we have a majorant g0(x) such that

|f(x; θ)| ≤ g0(x) and

b∫
a

g0(x) dx <∞

then the parameter integral is continuous in θ.
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Definition 2.14. Let f(x; θ) with x ∈ R and θ ∈ Θ ⊂ Rd be integrable in x and n
times continuously differentiable in θ and −∞ ≤ a < b ≤ ∞. We say that we can
switch differentiation and integration for the parameter n times if

∂n

∂i1θ1 . . . ∂idθd

b∫
a

f(x; θ) dx =

b∫
a

∂n

∂i1θ1 . . . ∂idθd
f(x; θ) dx

holds for all combinations of ij ∈ N0 and 1 ≤ j ≤ d with i1 + . . .+ id ≤ n.

Theorem 2.3. Let f(x; θ) with x ∈ R and θ ∈ Θ ⊂ Rd be integrable in x and n
times continuously differentiable in θ.

If the integration bounds are bounded, i.e. −∞ < a < b < ∞, we can switch the
differentiation and integration for the parameter θ n times.

If one or both of the integral bounds are unbounded we can use a majorant criterion.

Theorem 2.4. Let f(x; θ) with x ∈ R and θ ∈ Θ ⊂ Rd be integrable in x and n
times continuous differentiable in θ. If we have majorants gi1,...,id(x) such that

∣∣∣∣ ∂n

∂i1θ1 . . . ∂idθd
f(x; θ)

∣∣∣∣ ≤ gi1,...,id(x) and

b∫
a

gi1,...,id(x) dx <∞

for all combinations of ij ∈ N0 and 1 ≤ j ≤ d with i1 + . . . + id ≤ n, then we can
switch differentiation and integration for the parameter θ n times for f(x; θ).

Theorem 2.5 (Leibniz integral rule). Let f(x; θ) with x ∈ R and θ ∈ Θ ⊂ Rd be
integrable in x and continuously differentiable in θ. Let a(θ) and b(θ) be continuously
differentiable in θ and a(θ), b(θ) <∞ for all θ, then

∂

∂θi

 b(θ)∫
a(θ)

f(x; θ) dx

 = f(b(θ), θ)
∂

∂θi
b(θ)− f(a(θ), θ)

∂

∂θi
a(θ) +

b(θ)∫
a(θ)

∂

∂θi
f(x; θ) dx.

Theorem 2.6. Let f(x; θ) with x ∈ R and θ ∈ Θ ⊂ Rd be integrable in x and contin-
uous differentiable in θ. Let a(θ) be continuously differentiable in θ. Is furthermore
g ∈ L1(R) a majorant with

|f(x; θ)| ≤ g(x)

then

∂

∂θi
lim
b→∞

b∫
a(θ)

f(x; θ) dx = lim
b→∞

∂

∂θi

b∫
a(θ)

f(x; θ) dx

holds.
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2.2. Statistical Inference

We will cite the basic results for ML estimators. We will also give the definition of
the EM algorithm and basic convergence results.

2.2.1. Maximum likelihood

Suppose we have n ∈ N random variables X1, . . . , Xn that are independent and
identically distributed (iid) with X1 ∼ FX(x; θ), with a parameter vector θ ∈ Rd.
To estimate the distribution FX we need to find an estimator θ̂. If we further assume
that FX(x; θ) is a continuous distribution with density f(x; θ), one classical method
to find such an estimator is to use the maximum likelihood method.

Definition 2.15. Given X1, . . . , Xn iid with PDF f(x; θ). The likelihood function
is defined by

L(θ|X) =
n∏
i=1

f(Xi; θ).

The log-likelihood function is defined by l(θ|X) = log (L(θ|X)).

The ML estimator is obtained by

θ̂ = arg maxθ L(θ|X) = arg maxθ l(θ|X).

Definition 2.16. Given a random variable X with PDF f(x; θ) and parameter vec-
tor θ ∈ Rd with θi being the ith component of the vector θ. The Fisher information
matrix is defined as

I(X; θ) = E
[
∇θ ln f(x; θ) (∇θ ln f(x; θ))T

]
,

where ∇θ ln f(x; θ) is the gradient in θ. If we can exchange the integration and
differentiation with respect to θi we can write

I(X; θ) = E [−H(ln f(X; θ))]

with H(ln f(X; θ)) being the Hessian matrix of ln f(X; θ) .

The Fisher information matrix is linked to the variance of an estimator.

Theorem 2.7 (Cramér-Rao inequality). Let X1, . . . , Xn be iid with PDF f(x; θ0).
with θ ∈ Θ ⊂ Rd with true parameter θ0 ∈ Θ. Let θ̂ be an estimator and ψ(θ) =
Eθ0(θ̂)− θ0 is the bias of this estimator. The Cramér-Rao bound is

covθ(θ̂) ≥ ∇θψ(θ) I(X; θ)−1∇θψ(θ)T ,

where ∇θψ(θ) is the Jacobian matrix of ψ(θ).
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If the estimator is unbiased the variance of the estimator is bounded from below by

var(θ̂i) = covθ(θ̂)i,i ≥
(
I(X; θ)−1

)
i,i
. (2.1)

That means that an unbiased estimator cannot be arbitrarily good in terms of its
variance.

Theorem 2.8. Let X1, . . . , Xn be iid with PDF f(x; θ) with θ ∈ Θ ⊂ Rd, Θ compact
with true parameter θ0 ∈ Θ and θ̂n the ML estimate. If these regularity conditions

R-1 The PDF are distinct, i.e. θ 6= θ′ ⇒ f(·; θ) 6= f(·; θ′) almost everywhere.

R-2 The PDF have common support for all θ ∈ Θ

R-3 There exists an open subset Θ0 ⊂ Θ such that θ0 ∈ Θ0 and all third partial
derivatives of f(x; θ) exist for all θ ∈ Θ0

R-4 There exist majorants like in Theorem 2.4 for all first and second derivatives
of f for θ ∈ Θ0

R-5 For all θ ∈ Θ0, I(X, θ) is positive definite

R-6 There exist functions Mi1,...,id(x) such that∣∣∣∣ ∂3

∂i1θ1 . . . ∂idθd
ln f(x; θ)

∣∣∣∣ ≤Mi1,...,id(x),∀θ ∈ Θ0 and ij ∈ N0,

d∑
j=1

ij = 3

and

Eθ0 (Mi1,...,id(X)) <∞, for ij ∈ N0,

d∑
j=1

ij = 3

hold, then

1. the likelihood equation

∇θl(θ|X) = 0

has a solution θ̂n such that

θ̂n
p−−→ θ0

2. For any sequence that satisfies 1

√
n
(
θ̂n − θ0

)
d−−→N(0, I−1)
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A proof of this result can be found in Chapter 6 of [6].

Remark
The condition R-4 implies that we can switch the order of differentiation and inte-
gration for the parameter 2 times. This implies that the equations

Eθ
[
∂

∂θj
ln f(x; θ)

]
= 0, for j = 1, . . . , d

Ij,k(X; θ) = Eθ
[
− ∂2

∂θj∂θk
ln f(x; θ)

]
for j, k = 1, . . . , d

(2.2)

hold, because of

1 =

∫
R
f(x; θ) dx

⇒ 0 =
∂

∂θi

∫
R
f(x; θ) dx

=

∫
R

∂

∂θi
f(x; θ) dx

=

∫
R

∂
∂θi
f(x; θ)

f(x; θ)
f(x; θ) dx

=

∫
R

∂

∂θi
ln f(x; θ)f(x; θ) dx

= E
(
∂

∂θi
ln f(X; θ)

)
.

If we take another derivative we get

0 =
∂2

∂θi∂θj

∫
R
f(x; θ) dx

=

∫
R

∂2

∂θi∂θj
f(x; θ) dx

=

∫
R

∂

∂θj

(
∂

∂θi
ln f(x; θ)f(x; θ)

)
dx

=

∫
R

∂2

∂θi∂θj
ln f(x; θ)f(x; θ) dx+

∫
R

∂

∂θi
ln f(x; θ)

∂

∂θj
ln f(x; θ)f(x; θ) dx

= E
(

ln
∂2

∂θi∂θj
ln f(x; θ)

)
+ E

(
∂

∂θi
ln f(x; θ)

∂

∂θj
ln f(x; θ)

)
⇒ I(X; θ) = E [−H(ln(f(X; θ)))] .

Note, for the theorem of consistency and the asymptotic normality to hold, it is
enough to demand that we may switch the order of differentiation and integration
two times. We demand the existence of majorants in R-4 for ease in later proofs.
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The asymptotic normality directly implies, that the estimator is asymptotically un-
biased and that its variance asymptotically reaches the Cramér-Rao bound given in
equation (2.1). Therefore we wish to estimate the Fisher information matrix to get
a bound for the variance of the estimator.

Theorem 2.9. Let X1, . . . , Xn be iid random variables with PDF f(x; θ) with θ ∈
Θ with Θ ⊂ Rd compact with true parameter θ0 ∈ Θ and θ̂ the ML estimator.
Furthermore let the conditions of Theorem 2.8 be fulfilled, then

Î(X; θ̂) = − 1

n

n∑
i=1

H(ln f(Xi; θ̂))

is a consistent estimator of the Fisher information matrix and

Î−1
(X; θ̂)

p−−→I−1(X; θ)

In later examples we will model the fibre length as a log-normal distribution. We
will therefore apply Theorem 2.8 to a log-normal distribution to show the consistency
and asymptotic normality of the ML estimator.

Theorem 2.10. Let X1, . . . , XN be iid random variables with a log normal distri-
bution. The density is given by

fX(x;µ, σ) =
1√

2πσ2x
exp

(
−(ln(x)− µ)2

2σ2

)
.

with parameters θ = (µ, σ). Let Θ ⊂ R2 compact be the parameter space. Let Θ0 ⊂ Θ
open with the true parameters θ0 = (µ0, σ0) ∈ Θ0. Then the ML estimator θ̂ = (µ̂, σ̂)
is consistent and asymptotically normal.

Proof. R-1 Follows by direct calculations

R-2 The support of fX(x;µ, σ) is always (0,∞).

R-3 The existence of the open subset Θ0 follows by assumption. fX(x;µ, σ) is
arbitrarily smooth in the parameters, therefore the third derivatives exist.

R-4 We choose µmax = max {|µ||µ ∈ Θ} and σmin and σmax similarly. To construct
the majorants we look at the first derivatives and get

∂

∂µ
fX(x;µ, σ) =

ln(x)− µ√
2πσ3x

exp

(
−(ln(x)− µ)2

2σ2

)
=

ln(x)− µ
σ2

fX(x;µ, σ)

≤ | ln(x)|+ |µ|
σ2

fX(x;µ, σ)

≤ | ln(x)|+ µmax
σ2
min

fX(x;µ, σ)

(2.3)
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for the derivative in µ and

∂

∂σ
fX(x;µ, σ) =

(ln(x)− µ)2 − σ2

√
2πσ4x

exp

(
−(ln(x)− µ)2

2σ2

)
=

ln(x)2 − 2 ln(x)µ+ µ2 − σ2

σ3
fX(x;µ, σ)

≤ ln(x)2 + 2| ln(x)||µ|+ µ2 + σ2

σ3
fX(x;µ, σ)

≤
(

ln(x)2 + 2| ln(x)|µmax + µ2
max

σ3
min

+
1

σmin

)
fX(x;µ, σ)

(2.4)

for the derivative in σ.

We see that if we can find a majorant for | ln(x)|kfX(x;µ, σ), k = 0, 1, 2 we
have the majorants for the first derivatives. To find a majorant for the density
fX(x;µ, σ) we start to look at the exponent of the density

−(ln(x)− µ)2

2σ2
=
− ln(x)2 + 2µ ln(x)− µ2

2σ2

≤ − ln(x)2 + 2µmax| ln(x)|
2σ2

=
−(| ln(x)| − µmax)2 + µ2

max

2σ2

=
−(| ln(x)| − µmax)2

2σ2
+
µ2
max

2σ2

≤ −(| ln(x)| − µmax)2

2σ2
max

+
µ2
max

2σ2
min

.

We get

fX(x;µ, σ) ≤ 1√
2πσ2

minx
exp

(
−(| ln(x)| − µmax)2

2σ2
max

+
µ2
max

2σ2
min

)

=
1√

2πσ2
minx

exp

(
−(| ln(x)| − µmax)2

2σ2
max

)
exp

(
µ2
max

2σ2
min

)

=
exp

(
µ2max
2σ2
min

)√
σ2
max√

σ2
min

1√
2πσ2

maxx
exp

(
−(| ln(x)| − µmax)2

2σ2
max

)

= c
1√

2πσ2
maxx

exp(
−(| ln(x)| − µmax)2

2σ2
max

) =: g0(x)

(2.5)

with c =
exp

(
µ2max
2σ2
min

)√
σ2
max

√
σ2
min

. We choose

gk(x) = | ln(x)|kg0(x) (2.6)
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as a majorant for | ln(x)|kfX(x;µ, σ). It is L1 since

∞∫
−∞

| ln(x)|kg0(x) dx =

∞∫
0

| ln(x)|kc 1√
2πσ2

maxx
exp(

−(| ln(x)| − µmax)2

2σ2
max

) dx

=

∞∫
−∞

|z|kc 1√
2πσ2

max

exp(
−(|z| − µmax)2

2σ2
max

) dz

= 2c

∞∫
0

zk
1√

2πσ2
max

exp(
−(z − µmax)2

2σ2
max

) dz <∞

where we substituted z = ln(x). We note that 1√
2πσ2

max

exp(−(z−µmax)2

2σ2
max

) is the

density of a normal distribution, for which all moments exist. Therefore the
last inequality holds.

For the second derivative in µ we get

∂2

∂µ2
fX(x;µ, σ) =

ln(x)2 − 2µ ln(x) + µ2 − σ2

σ4
fX(x;µ, σ)

≤ ln(x)2 + 2µmax| ln(x)|+ µ2
max + σ2

max

σ4
min

fX(x;µ, σ),

(2.7)

for σ we have

∂2

∂σ2
fX(x;µ, σ) =

(
ln(x)4 − 4µ ln(x)3

σ6

+
(6µ2 − 5σ2) ln(x)2 + (10µσ2 − 4µ3) ln(x)

σ6

+
µ4 − 5µ2σ2 + 4σ4

σ6

)
fX(x;µ, σ)

≤
(

ln(x)4 + 4µmax| ln(x)|3

σ6
min

+
(6µ2

max + 5σ2
max) ln(x)2

σ6
min

+
(10µmaxσ

2
max + 4µ3

max)| ln(x)|
σ6
min

+
µ4
max + 5µ2

maxσ
2
max + 4σ4

max

σ6
min

)
fX(x;µ, σ).

(2.8)
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and the mixed second derivative is

∂2

∂µ∂σ
fX(x;µ, σ) =

ln(x)3 − 3µ ln(x)2 + (3µ2 − 3σ2) ln(x)− µ3 + 3µσ2

σ5

fX(x;µ, σ)

≤
(

ln(x)3 + 3µmax ln(x)2

σ5
min

+
(3µ2

max + 3σ2
max)| ln(x)|+ µ3

max + 3µmaxσ
2
max

σ5
min

)
fX(x;µ, σ).

(2.9)

We see that we can use the majorants gk(x) for | ln(x)|kfX(x;µ, σ) derived
previously and get the desired majorants for the second derivatives.

R-5 If we calculate the Fisher information we get

I(µ, σ) =

(
1
σ2 0
0 2

σ2

)
.

This is a diagonal matrix where all entries are positive. Therefore the eigen-
values are positive as well and the matrix is positive definite.

R-6 For this we look at

∂3

∂µ3
ln fX(x;µ, σ) = 0

∂3

∂µ2∂σ
ln fX(x;µ, σ) =

2

σ3

∂3

∂µ∂σ2
ln fX(x;µ, σ) =

6(ln(x)− µ)

σ4

∂3

∂σ3
ln fX(x;µ, σ) =

−2σ2 + 12(ln(x)− µ)2

σ5

=
−2σ2 + 12 ln(x)2 − 24 ln(x)µ+ µ2

σ5

We can construct

M30(x) = 0,

M21(x) =
2

σ3
min

,

M12(x) =
6(| ln(x)|+ µmax)

σ4
min

and

M03(x) =
2σ2

max + 12 ln(x)2 + 24| ln(x)|µmax + µ2
max

σ5
min
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where µmax,σmax and σmin are defined like in the previous part of the proof.
All of these have finite mean and are majorants for their respective derivative.

We can therefore conclude, that the ML estimator for the log-normal distribution
is consistent and asymptotically normal.

Remark
1. If we look at the ML estimators for the log-normal distribution we get

µ̂ =
1

n

n∑
i=1

ln(Xi) and σ̂2 =
1

n

n∑
i=1

(ln(Xi)− µ̂)2 ,

since the Xi are log-normally distributed, the ln(Xi) are normally distributed
with parameters µ, σ. We see that the consistency and asymptotic normality
of these estimators follow directly by the law of large numbers and the central
limit theorem. We did the full proof of all properties of Theorem 2.8 since in
later examples we will model the fibre length with a log-normal distribution and
we will use the regularity conditions from Theorem 2.8.

2. In the above theorem we demanded that the parameter space Θ is compact. In
practical applications this is no problem, because will usually be able to bound
the parameter space. For the fibres for instance we could say that the expected
length should be bigger than a hydrogen atom and smaller than the diameter
of the observable universe. If we do something similar for the variance, we get
a bounded and closed parameter space for the parameters µ and σ.

3. We further demand the existence of the open subset Θ0 ⊂ Θ with θ0 ∈ Θ0. In
R2 this means that the parameters θ0 are not located on the boundary of Θ. If
we choose Θ big enough, this will not happen.

2.2.2. Expectation Maximisation algorithm

In some instances we may not observe all the interesting data, some of it might be
missing or latent. To get good estimations directly might be quiet cumbersome in
these situations. In these cases the application of the EM algorithm might be good
way to still get a ML estimator.

Suppose we observe data X with a distribution that results in a complicated log-
likelihood function. Instead of working with this log-likelihood function we augment
the observed data with latent data Y , such that the resulting log-likelihood l(θ|X,Y )
is easy to maximise.

This idea was described by [1], with a proof of convergence into a local maximum.
The proof for global convergence given in the paper has an error which was fixed in
[24].

For the basic idea, assume we observe X = (X1, . . . , Xn) with PDF f(x; θ). The
resulting likelihood is L(θ|X) = f(X; θ). Now let us assume that something of
the data is missing, i.e. the X could be censored. We augment the data X with
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Y , such that X,Y have the joint density f(X,Y ; θ). This Y is used to add the
missing information and is chosen in a way to make f(X,Y ; θ) simple. If we take
the conditional density from Definition 2.9 we get

f(Y |X; θ) =
f(X,Y ; θ)

f(X; θ)

⇒ ln f(Y |X; θ) = ln(f(X,Y ; θ))− ln(f(X; θ)) (2.10)

which is the basic identity of the EM algorithm. We use this to transform the
likelihood function

l(θ|X) = l(θ|X,Y )− l(θ|[Y |X])

where l(θ|X,Y ) is the complete-data log-likelihood. For any θ0 we can take the
conditional expectation with respect to Y |X and get

l(θ|X) = Eθ0 [l(θ|X,Y ]− Eθ0 [l(θ|[Y |X])|X] . (2.11)

The first part in this equality is called the expected complete-data likelihood

Q(θ|θ0) = Eθ0 [l(θ|Y,X)|X] ,

which we maximise via an iteration. For this we choose a starting value θ0. We
compute

θj = arg maxθQ(θ|θj−1)

in each step until convergence is reached. The estimator is given after n steps as
θ̂EM = θn.

Algorithm 1 The EM algorithm

Choose θ0, ε
j ← 1
repeat

Compute Q(θ|θj−1) = Eθj−1
[l(θ|Y,X)|X] {E-Step}

Maximise θj = arg maxθQ(θ|θj−1) {M-Step}
j ← j + 1

until ‖θj − θj−1‖ < ε {convergence}
return θj

If we look at Algorithm 1 we can clearly see that we have to do two steps in
each iteration. The E(xpectation) step calculates the mean of the complete-data log
likelihood, while the M(aximisation) step maximises this mean for the parameter.

Theorem 2.11. The EM sequence θ̂j defined by algorithm 1 satisfies

l(θj+1|X) ≥ l(θj |X)

with equality holding if and only if Q(θj+1|θj) = Q(θj |θj).
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This theorem assures that the likelihood will increase in each step and is shown by
[1]. An easily verifiable convergence result can be found in [17].

Theorem 2.12. If the expected complete-data log-likelihood Q(θ; θ0) is continuous
in both θ and θ0, then every limit point θ̂EM of an EM sequence θi is a stationary
point of L(θ|X) and L(θi|X) converges monotonically to L(θ̂EM |X).

For an EM sequence θi we now know, that the likelihood increases and that it
converges to a stationary point of the likelihood function. This stationary point
might only be a local maximum or saddle point. In practice it may be necessary to
start the EM algorithm for multiple start points to assure that a global maximum
is reached.

Global convergence is studied in [24]. The paper states that if the EM algorithm
does not get trapped in a stationary point, that is not a local maximum of the
likelihood function, it converges to a local maximum of the likelihood function. If
furthermore the likelihood function is uni modal with a unique stationary point and
the gradient ∇θ0Q(θ|θ0)is continuous in θ and θ0 then the EM algorithm converges
to the unique maximizer of the likelihood function. These conditions are hard to
verify, especially the uni modality of the underlying likelihood function cannot be
shown in many cases.

To estimate the variance of the EM estimator we need to calculate the Fisher
information matrix. An overview of different methods for this is given in [23, 74f].
We will use the so called Louis method. From Equation (2.10) we conclude

−H(ln f(X; θ)) = −H(ln f(X,Y ; θ)) +H(ln f(Y |X; θ)).

or in terms of likelihood we get

−H(l(θ|X)) = −H(l(θ|X,Y )) +H(l(θ|[X|Y ])).

We now take the mean with respect to Y |X; θ0 on each side and get

−H(l(X, θ)) = Eθ0 [−H(l(θ|X,Y ))|X] + Eθ0 [H(l(θ|[Y |X]))|X] (2.12)

The Louis method states that

Eθ0 [H(l(θ|[Y |X]))|X] = − covY |X;θ0 ∇θl(θ|X,Y ) (2.13)

where

covY |X;θ0 ∇θl(θ|X,Y ) = Eθ0 [(∇θl(θ|X,Y )− Eθ0 [∇θl(X,Y ; θ)|X])

(∇θl(X,Y ; θ)− Eθ0 [∇θl(θ|X,Y )|X])T |X
]
.

If we plug the covariance into Equation (2.12) we get

−H(l(X; θ)) = Eθ0 [−H(l(θ|X,Y ))|X]− covY |X;θ0 ∇θl(θ|X,Y )

= −H(Q(θ|θ0))− covY |X;θ0 ∇θl(θ|X,Y ).
(2.14)
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If we have a sample X and an EM estimator θ̂EM we can estimate the Fisher
information with

Î(X, θ̂EM ) = −H(Q(θ̂EM |θ̂EM ))− covY |X;θ̂EM
∇θl(θ̂EM |X,Y ). (2.15)

We will use the EM algorithm here to deal with the censoring of the fibres.

2.3. Stochastic Geometry

Here we will give a quick overview of stochastic geometry and spatial statistics used
in the following chapters. We will start with the definition of a point process and
the Poisson point process and give an overview of the used summary statistics.
Furthermore, we will give a definition of a particle process. The results here are
cited from [15].

2.3.1. Point Processes

Let E be a locally compact space with a countable base and Borel σ-Algebra B. Let
C be the set of all compact sets in B

A measure µ on (E,B) is called locally finite if µ(C) <∞, for all C ∈ C. The set

N = {µ| locally finite, µ(B) ∈ N0 ∪{∞} for all B ∈ B}

is the set of all locally finite counting measures. A counting measure ϕ is called
simple if ϕ({x}) ≤ 1 for all x ∈ E.

Definition 2.17 (Point Process). Let (Ω,A, P ) be a probability space. A point
process is a measurable mapping

Φ : (Ω,A, P )→ (N,N )

The distribution of the point process is the image measure PΦ := Φ(P ). The σ-
algebra N is defined as the smallest σ-algebra on N to make all mappings Φ 7→ Φ(B)
measurable, for all bounded Borel sets B.

A realisation of such a point process is a counting measure. A point process is called
simple if its realisations are almost surely simple.

Definition 2.18. Let E = Rd. A point process Φ is called stationary if Φ
d
= Φ + x

for all x ∈ Rd. It is called isotropic if Φ
d
=RΦ for all rotations R ∈ SOd.

Definition 2.19. The intensity measure Λ of a point process Φ is

Λ(B) = E [Φ(B)]

for all Borel sets B. So Λ(B) is the mean number of points in B.
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If the point process is stationary then the intensity measure is translation invariant
as well. This implies that

Λ(B) = λ ν(B)

for some constant 0 < λ <∞ and ν(B) the Lebesgue measure of B.
To estimate the intensity for an isotropic and stationary point process Φ observed

in a window W we use

λ̂ =
Φ(W )

ν(W )
. (2.16)

Definition 2.20. A simple point process Φ on Rd with intensity measure Λ is a
Poisson point process if

• for all A ∈ B with Λ(A) < ∞, the random variable Φ(A) has a Poisson
distribution with parameter E[Φ(A)] = Λ(A)

• for pairwise disjoint Borel sets A1, . . . , An ∈ B, n ∈ N, the random variables
Φ(A1), . . . ,Φ(An) are independent.

Remark
For a simple point process Φ we write

• x ∈ Φ means that the point x belongs to the point process Φ

• Φ(B) = n means that the set B contains n points of Φ

• Since Φ is a collection of points x1, x2, . . . we may also write Φ := {xn}

Definition 2.21. A Polish spaceM is a separable completely metrizable topological
space. Its σ-algebraM is induced by the topology, i.e. M is the smallest σ algebra
that contains all open subsets of M .

Definition 2.22 (Marked Point Process). Let M be a polish space with its σ-
algebra M. A point process Φ on Rd×M is called a marked point process. M is
called the mark space. We will write Φ = [{xn;mn}], where {xn} is a point process
in Rd and mn is the mark corresponding to its respective point.

Besides the distribution PΦ of a stationary point process there is also the Palm
distribution P 0

Φ. The Palm distribution can be interpreted as a point process con-
ditioned that 0 is part of the point process. For a simple stationary point process Φ
and a Borel set B we can write

P 0
Φ(S) =

E
∑

x∈Φ 1B(x)1S(Φ− x)

E
∑

x∈Φ 1S(x)
.
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With the Palm distribution we can define the reduced second moment measure

λK(B) = E0 [Φ(B\ {0})] (2.17)

for a stationary point process with intensity λ.
If we set B = B(0, r) we get Ripley’s K-function

K(r) = K(B(0, r)).

By just looking at the K function all anisotropic behaviour of point process is not
visible. We therefore also introduce a version which takes direction into account as
well.

For u ∈ Sd−1 we can define

S(u, ϕ) =
{
x ∈ Sd−1, acos(< x, u >) < ϕ or acos(< x,−u >) < ϕ

}
the set of all points on Sd−1 that have an angle smaller than ϕ to u or −u, which
we use to define

B(r1, r2, u, ϕ) =

{
x ∈ Rd, r1 < ‖x‖ < r2 and

x

‖x‖
∈ S(u, ϕ)

}
,

which is a part of an annulus, with all points with a norm between r1 and r2 and
with angle not greater than ϕ to u. If we plug B(0, r, u, ϕ) into the reduced second
moment measure we have the directed K-function

K(r, u, ϕ) = K(B(0, r, u, ϕ)). (2.18)

This function has a preferred direction u and only looks at points that are in a cone
with an angle ϕ around this direction. This can be used to investigate anisotropic
point processes.

For a stationary Poisson point process we get

K(B) = ν(B) and therefore K(r) = bdr
d,

where bd is the volume of the d dimensional unit sphere. For easier interpretation

L(r) = d

√
K(r)

bd

is used. This leads to L(r) = r in the stationary Poisson case, deviations from this
can be analysed easier. Additionally this transformation stabilises the variance in
the estimation of K(r).

For the estimation, we assume to have a stationary point process X with intensity
λ in a bounded window W . We use

κ̂(B) =

6=∑
x1,x2∈W

1B(x2 − x1)

ν(Wx1 ∩Wx2)
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as an unbiased estimator for λ2K(B) for a bounded subset B. In this estimator Wx

is the window W shifted by the vector x. The reweighing by ν(Wx1 ∩Wx2) deals
with the bias induced by working with a bounded window W . Since the window
is bounded we will see more points with a small distance to each other, for those
ν(Wx1∩Wx2) will be large and their influence is weight down. If the distance between
x1 and x2 is large, ν(Wx1 ∩Wx2) will be small and the impact on the estimator is
weight up.

For a point process Φ we use

λ̂2 =
Φ(W ) (Φ(W )− 1)

ν(W )2

to estimate λ2. This estimator is unbiased for a stationary Poisson point process.
We use

K̂(B) =
κ̂(B)

λ̂2
(2.19)

as an estimator for the reduced second moment measure. This estimator is ratio
unbiased. To get an estimator for Ripley’s K-function K̂(r) we use (2.19) and set
B = B(0, r).

Remark
Summary statistics like Ripley’s K-function are used to find spatial correlation and
interaction in a point process. An estimated K-function is usually compared to the
K-function of a Poisson point process, since for a Poisson point process case we
have total spatial randomness and no point interaction.

If we have a point process where the K function has regions where it is larger than
in the Poisson case we say we have attraction between points in these regions. A
classical example for this is clustering.

If the K function is smaller than for the Poisson case, we say we have repulsion
between points. A classical example for this are hardcore processes. In these each
point has a radius r where no other points are located.

2.3.2. Cluster Processes

Let Ψ be a point process. In a cluster process each point x ∈ Ψ is replaced by a
cluster Nx. These clusters are finite point processes. The union of all clusters

Φ =
⋃
x∈Ψ

Nx

is a cluster process. Note that x ∈ Nx is not necessarily true.
If the underlying process Ψ is a homogeneous Poisson point process with intensity

λ and the clusters are independent from each other we get a so called Neymann-
Scott process. It is stationary and if the clusters are isotropic, it is isotropic as well.
Its intensity is

λc = λc̄
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where c̄ is the mean number of points in the clusters. For the Palm distribution we
get

P0 = P ∗ c0

where c0 is the Palm distribution of the typical cluster N0. Assuming that pn is
the probability that N0 has exactly n points and F (r) is the CDF of the distance
between the points in N0 by [15, p172] we get

λK(Br) = bdr
d +

1

λc̄

∞∑
n=2

pnn(n− 1)F (r) (2.20)

as a closed formula for the reduced second moment measure.

2.3.3. Germ-grain Processes

In this part we will discuss germ-grain processes. It is a marked point process where
the mark space K is a subspace of all compact subsets of Rd. We will use germ-grain
processes to model fibre systems.

We will write the points of the underlying point process with small letters xi
and the marks as Ki. The points of the resulting germ-grain process is written
Xi = Ki + xi. Where the typical grain K0 ∈ K is distributed with distribution Q.

Remark
• Note that the points xi of the underlying point process are often not observable.

• If the underlying point process is stationary or isotropic the germ-grain process
is stationary or isotropic

A germ-grain process is always observed in a bounded windowW ⊂ Rd. We therefore
only see a subset of our whole process X. This subset is given by a sampling rule
I with I(Xi) = 1 if the grain is sampled and I(Xi) = 0 if not. The following about
sampling bias is cited from Chapter 2 of [9].

Classical sampling rules are

• plus-sampling: We keep every object Xi with Xi ∩W 6= ∅.

• minus-sampling: We keep every object Xi with Xi ⊂W .

• associated point rule: We choose a function a that selects a unique point
for each object Xi, we keep the object if a(Xi) ∈W

The quality of these sampling rules can be discussed in the terms of sampling bias.

Theorem 2.13. Let Xi be a stationary germ-grain process in Rd with germ intensity
λ and compact grains Ki with typical grain K0, which is Q distributed. Let I(X) be
a measurable sampling rule.
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Then for any translation-invariant, measurable f : K → R

E

[∑
i

I(Xi)f(Xi)

]
= λE0 [f(K0)π(K0)]

with

π(K) =

∫
Rd
I(K + x) dx

for every K. π(K) is the volume of the set of all vectors x such that K + x would
be included in the sample.

The objects sampled by a sampling rule are reweighed by

E [
∑

i f(Xi)I(Xi)]

E [
∑

i I(Xi)]
=

E0 [f(K0)π(K0)]

E0 [π(K0)]
(2.21)

for translation invariant f . This reweighing is only unbiased if π(K0) is independent
of K0. Also note that the right hand side of (2.21) is the expectation of f under the
π weighted distribution with respect to Q. We will call π the bias factor.

Theorem 2.14. The bias factors for the three sampling rules are

• For plus-sampling π+(K0) = |W ⊕K0|.

• For minus-sampling π−(K0) = |W 	K0|.

• For the associated-point rule πa(K0) = |W |.

So only the associated point rule is unbiased. Plus-sampling prefers bigger objects,
while minus-sampling leans towards smaller objects.

If we have an unbiased sampling rule, the distribution of the sample matches
the original distribution and we can do direct estimation from the sample. If the
distributionQ is parametric, we could use ML estimation to estimate the parameters.
For the other two we have to use the bias factor to weight the original distribution.

Theorem 2.15 (Horvitz-Thompson Estimator). Let X be a stationary germ-
grain model in Rd with germ intensity λ and compact grains Ki with typical grain
K0 and distribution Q and. Let I(Xi) be a measurable sampling rule with bias factor
π(K).

Then for any translation-invariant, measurable f : K → R

E
[∑

i
f(Xi)I(Xi)
π(Xi)

]
E
[∑

i
I(Xi)
π(Xi)

] = E0 [f(K0)]
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x1

x2

u

ϕ

Figure 2.1.: An orientation with u with the corresponding angle ϕ.

therefore ∑
i
f(Xi)I(Xi)
π(Xi)∑

i
I(Xi)
π(Xi)

is a ratio unbiased estimator for E0 [f(K0)]

Another way is to reweigh the complete distribution. Let us say the typical grain
K0 has the distribution Q with the density fQ(K; θ) and parameters θ ∈ Rd. The
biased sample we see in our window then has the distribution QI with density
fQI (K; θ) = π(K)

E0
θ[π(K0)]

fQ(K; θ). We can use this reweighed density to get an estimator

θ̂ for instance with the ML method.

We now have the tools to deal with the sampling bias of the fibres. To estimate
the fibre length we might either use Horvitz Thompson (HT) type estimators or we
reweighed their density to get an ML estimator.

2.4. Polar and spherical angles and their distributions

To model the fibres we need to look into their orientation u ∈ Sd−1. In the 2d case
we will identify this direction with an angle ϕ ∈ [0, 2π] with the parametrisation

u(ϕ) =

(
cos(ϕ)
sin(ϕ)

)
.

In this parametrisation the angle ϕ is between the direction vector of the fibre and
the x-axis, see Figure 2.1.
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Figure 2.2.: An orientation with u with the corresponding angle ϕ and ϑ.

In 3d we will use the angles ϕ ∈ [0, 2π] and ϑ ∈ [0, π] and the parametrisation

u(ϕ, ϑ) =

sin(ϑ) cos(ϕ)
sin(ϑ) sin(ϕ)

cos(ϑ)

 .

In this parametrisation the angle ϕ is the angle between the orthogonal projection
of the direction vector to the x1 − x2 plane and the x1-axis. θ is the angle between
the vector and the x3-axis, see Figure 2.2.

We will use

c1 = | cos(ϕ)|
c2 = | sin(ϕ)|

c1 = | sin(ϑ) cos(ϕ)|
c2 = | sin(ϑ) sin(ϕ)|
c3 = | cos(ϑ)|

in 2 and 3 dimensions as short hands.
Finding distributions for these angles can be seen as distributions on the unit

sphere Sd−1. Some known distribution are Mises-Fisher, Watson and angular cen-
tral Gaussian (ACG) which can be found in [13]. We will look here at the ACG
distribution.

Definition 2.23. Let X be a random variable on Sd−1 for d ∈ N. Let Σ ∈ Rd×d
be a symmetric and positive definite matrix. X is said to have a d-variate ACG
distribution if its density is given by

fX(x; Σ) = α−1
d (det Σ)−

1
2
(
xTΣ−1x

)− d
2
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Figure 2.3.: Axial distri-
bution with
β = 0.1

Figure 2.4.: Isotropic
distribution
with β = 1.0

Figure 2.5.: Girdle distri-
bution with
β = 10.0

where αd is the surface area of Sd−1.

This distribution is invariant under rescaling of the Σ, i.e. for a constant c ∈ R cΣ
and Σ will lead to the same distribution.

The ACG distribution is related to a d-variate normal distribution. If X is d-
variate normally distributed with mean 0 and covariance matrix Σ then X

‖X‖ has a d-
variate ACG distribution with parameter Σ. With this we also get a direct sampling
method, we sample from a multivariate normal distribution and then normalise the
sampled vector.

This distribution family is particularly suited for the modelling in fibres since it is
point symmetric. Since fibres usually have no main direction this is a good property
to have.

Using a full ACG is cumbersome, since estimating a full covariance matrix is hard.
Even if we assume we know the three main directions and only have to estimate a
diagonal covariance matrix we still have to estimate d parameters.

One particular distribution that has been used to model the orientation of fibres
in [19] is the Schladitz-β distribution with density

fU (ϕ, θ;β) =
1

4π

β sin(θ)

(1 + (β2 − 1) cos2(θ))
3
2

, θ ∈ [0, π), ϕ ∈ [0, 2π).

This distribution has only one parameter β. The β in this distribution controls the
type and degree of anisotropy. For β = 1 we get a uniform distribution on the
sphere like in Figure 2.4. For β < 1 we get an axial distribution like in Figure 2.3,
where the resulting vectors tend to be aligned with the z-axis. For smaller β we
get a bigger degree of alignment. For β > 1 we get a girdle distribution like in
Figure 2.5, where the vectors tend to lie around the equator of the sphere. This
distribution was introduced in [19] to model the orientation distribution in a non-
woven fibrous material. Estimation methods for the β parameter where studied in
[4]. The Schladitz-β distribution is a special case of an ACG distribution with a

diagonal covariance matrix Σ = diag
(

1, 1, 1
β2

)
.
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2.5. Fibre Models

In this section we will give an overview over the used fibre models. These are namely
a Boolean and a random sequentiel adsorption (RSA) model. For this we will first
give a model for the typical fibre. Then we give two models for the position of these
fibres in space. We will model the fibres as a germ-grain model. Where the grains
are cylinders or line segments. For the underlying point process we will use a Poisson
point process and an RSA process. In the Poisson case fibres might overlap, while
the RSA process introduces non overlapping fibres.

2.5.1. Germ Model

One possible model for fibres is the cylinder. A cylinder cyl is characterised by its
length l > 0, a radius r > 0 and an orientation u ∈ Sd−1. We will only use cylinders
with the midpoint at 0. For a cylinder with a length l, radius r and orientation u
we write cyl(l, r, u). With this we can identify the set of all cylinders

S(cyl) = R>0×R>0×Sd−1.

For the grain distribution we model the length L as a real positive random variable
with finite mean. The orientation U is modelled as a random variable on Sd−1. We
will assume that the length and orientation are independent. We assume the radius
r to be constant. We will therefore only write cyl(l, u).

For Ls ⊂ R>0, Us ⊂ Sd−1 and Ss(cyl) = {cyl(l, u) ∈ S(cyl)|l ∈ Ls, u ∈ Us} we can
write

P (K0 ∈ Ss(cyl)) = P ((L,U) ∈ Ls × Us)
= P (L ∈ Ls)P (U ∈ Us)

for the typical cylinder K0. With this we can model the individual fibre. If we speak
about the position of these we take the midpoint of these cylinders.

Since fibres are usually long compared to their radius we will ignore the cylinder
radius in later modelling. This leads to line segments lin, which are also characterised
by their length l > 0 and orientation u ∈ Sd−1. Line segments are cylinders with a
radius r = 0.

2.5.2. Boolean Model

The first approach for a fibre process is to go for a Boolean model. We therefore
model the position of the cylinders as stationary Poisson point process with an
intensity λ. This leads to a non interacting fibre model, i.e. the fibres may overlap.

Remark
To simulate the effects of cylinders that enter the window from outside, we propose
to use plus-sampling and to simulate in a bigger window W+. In the end we only
take those parts of the cylinders that are visible in the window W .
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We do not advocate the use of periodic boundaries . This will lead to a loss of the
independence of the visible objects.

Algorithm 2 Simulating a non interacting fibre system

Choose intensity λ, a window W , and distributions PL, PU
Sample n from a Poisson distribution with parameter λ · ν(W )
Sample n points in W
Sample n objects and set as marks for the points
return Collection of marked points

The upside of the Boolean model is the simple implementation and fast simulation.
Furthermore a lot of closed formulas exist for the Boolean model, for instance the
volume fraction is known to be

p = 1− exp
(
−λπr2 E(L)

)
.

The downside is that non interacting fibres are not a realistic model. A realisation
of this process can be seen in Figure 2.6 on the left..

2.5.3. RSA Fibres

A way to introduce interaction between the fibres, is to use an RSA approach. In
this approach we choose a window W and place one object in this window. We then
propose another object and check if it intersects with the first one. If it does we
choose a new position, otherwise we keep the new object. We repeat this until one
of the stopping condition from list 1 is met. Note that option 3 is a fall-back option
for the other two. If the algorithm failed too many times to add in a new object the
process will stop. Usually this is achieved by giving a maximum number of retries
to position the cylinder.

List 1 (Stopping conditions)
1. Stop when n objects have been added

2. Stop when a desired volume fraction has been reached

3. Stop when the window is full, i.e. the proposed object cannot be added to the
window-

Remark
• In the RSA case we propose using plus-sampling in window W+ as well. Ad-

ditionaly, we propose to use periodic edge treatment on the enlarged window,
i.e. a cylinder leaving an image on the left, enters it again on the right. Oth-
erwise we will lose stationarity, since the RSA algorithm will then put longer
cylinders at the edge of the window W+.
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• Keeping the sampled length and orientation is mandatory. If we re-sample a
new length with the new position we will bias our data towards short fibres or
suitable orientations.

• Instead of working with cylinders with flat tops, we check with capsules instead.
Since the radius compared to the length is small the error we make is small
and the check for the interaction with other objects is faster.

Algorithm 3 Simulating a non interacting fibre system

Choose a stop criterion from list 1
Choose a window W , and distributions PL, PU
repeat

Sample a point in W and set point for candidate c
Sample a cylinder with a length from PL and an orientation from PU and set
as mark in candidate c
while c intersects with existing objects do

Sample a new point in W and set for c
end while
Add c to collection of accepted points

until Stopping condition is met
return Collection of marked points

The RSA process leads to a non overlapping system of random fibres. It takes
exponentially longer the more fibres have to be added. The maximum achievable
volume fraction depends strongly on the orientation distribution and the variance
and mean of the length distribution. The achievable volume fraction rises the more
the fibres are directed in one direction. It also rises with a small variance and mean
of the length.

If we have an RSA cylinder process with intensity λ and constant radius r we can
calculate the volume fraction as

p = λE [ν (cyl(L,U))] = λπr2 E [L] .

A realisation of a RSA fibre process can be seen in Figure 2.6 on the right, the fibres
do not overlap.
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Figure 2.6.: Boolean and RSA fibres with a density of 1.99e−5 which leads to volume
content of 10% fibres for the RSA case, with a Schladitz β distribution
with β = 0.1 and log normal length distribution with µ = 4.6002 and
σ = 0.0998. The radius is 4. The view is on the x − y plane. The
window size is [0, 500]3 for the plus sampling a window of size [0, 800]3

was used. The Boolean model is on the left, the RSA process is on the
right.
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3. Estimation from fully segmented fibres

In this chapter we will investigate methods to estimate the fibre length distribution
using fully segmented fibres.

3.1. Problem

We model the fibre process as a germ grain process. The typical grain is a line
segment lin with random length L > 0 and orientation U ∈ Sd−1. We observe this
process in a bounded window W ⊂ Rd, as seen for 2d in Figure 3.1. We assume
that the length L has a parametric distribution with parameters θ ∈ Rp and density
fL(l; θ).

Segmenting the fibres in this image gives us an i.i.d. sample (L̃∗+i , Zi) with i =
1, . . . , n where Zi = 1 means that the fibre is censored and Zi = 0 means it is not.

If we do estimation with this sample we see two problems. The first one is cen-
soring, a lot of the fibres are cut off at the edge of the window. The second one
is sampling bias, since the sample of all fibres cutting the window is biased. The
underlying sampling rule is plus sampling. We will propose different methods to
deal with the sampling bias and censoring based on the EM algorithm and prove
their consistency and asymptotic normality.

In the following chapter we will look at examples and give closed formulas for the
models used. In these examples we assume the observation windows seen in figure
3.2 has a rectangular or cuboid form. In 2d this leads to W = [0,W1]× [0,W2] and
in 3d to W = [0,W1]× [0,W2]× [0,W3] where W1,W2 and W3 are the side lengths
of the cuboid window in the respective dimension.

W

Figure 3.1.: An example for a 2d line segment process.
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W

W1

W2

Figure 3.2.: Visualisation of the observation window W .

In this cuboid window we see a cylinder process with a log normally distributed
length L with density

fL(l;µ, σ) =
1√

2πσ2l
exp

(
−(ln(l)− µ)2

2σ2

)
. (3.1)

with E [ln(L)] = µ and var(ln(L)) = σ2. For the orientation distribution on S2 we
use the Schladitz-β distribution with density

fU (ϕ, θ;β) =
1

4π

β sin(θ)

(1 + (β2 − 1) cos2(θ))
3
2

, θ ∈ [0, π), ϕ ∈ [0, 2π)

Remark
In the following we will deal with sampling rules I and their the bias factor

π(l, u) =

∫
Rd
I(lin(l, u) + x) dx

for a line segment lin(l, u). The bias factor can usually be interpreted as an area of
a geometric object. We will use π(l, u) for this area and Π(l, u) for the geometric
object, such that

π(lin(l, u)) = |Π(lin(l, u))| .

3.2. Horvitz-Thompson type estimator

One classical method to do estimation with a particle process is to use a Horvitz
Thompson type estimator. The original idea in [7] was used to deal with sampling
bias in the case of drawing from a finite population.

For this approach we will ignore all fibres that are censored. Therefore only fibres
that are fully visible in the window W will be used. This leads to an uncensored i.i.d.
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W

π−(l, ϕ)

fibre

Figure 3.3.: Visualisation of the area Π−(l, ϕ) as , the window W is given as
. Following this sampling rule the example fibre is sampled and fully

visible in W .

sample L−i with i = 1, . . . , n. The sample is biased since using only the uncensored
fibres is minus-sampling.

To deal with the minus-sampling we use the bias factor

π−(L,U) = |W 	 lin(L,U)|,

since we assume the direction distribution to be known, we marginalise and get

π−(L) =

∫
Sd−1

|W 	 lin(L,U)|fU (u) du

as a weight. With this we get

M̂j =

n∑
i=1

Lji
π−(Li)

n∑
i=1

1
π−(Li)

as a ratio unbiased estimator of the jth moment of L.
One problem with this approach is, that we loose a lot of data, especially when

the the fibres are long compared to the window size.

HT-estimator 1:
Here we will give closed formulas for the bias factor π− in our example

setting. A visualisation of Π− can be seen in Figure 3.3. In [20, p247f] we
see that that the bias factor can be simplified to

π−(l, u) = |W 	 box(lin(l, u))|

where box is the axis aligned bounding box of the fibre. The bounding box
is given by the cuboid with a diagonal of length l and diagonal orientation
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u. Since W is a cuboid, this leads to the closed form

π−(l, ϕ) = (W1 − c1l)(W2 − c2l)

in 2d and

π−(l, ϕ, θ) = (W1 − c1l)(W2 − c2l)(W3 − c3l)

in 3d.

We marginalise this weight

π−(l) =

∫
Sd−1

|W 	 lin(l, u)|fU (u) du,

to get the bias factor for the length.

3.3. EM-Estimator

In this section we will propose an estimator that will deal with the censoring by
using an EM-algorithm. For this we assume that we use a sampling rule with the
bias factor π. The resulting biased sample is Lπi with i = 1, . . . , n of fibres. We
will reweigh the density of L to get a model for Lπ and deal with the introduced
sampling bias.

Since the sample is also censored we get (L̃∗πi , Zi)with i = 1, . . . , n of censored
lengths and Zi = 1 indicating that the lengths is censored and Zi = 0 indicating it
is not. We then use the EM-algorithm to deal with the censoring.

3.3.1. Reweighed Densities

We use the bias factor to reweigh the density of true length distribution fL and get

fLπ(l; θ) =
π(l)

Eθ[π(L)]
fL(l; θ)

the density of the biased Lπ.

Associated Point Rule 1: Density
Here we will discuss an associated point rule to get an unbiased sub-sample.
We first have to choose a unique and observable associated point.
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Definition 3.1. Let W be cuboid window. Let lin(l, u) be a line segment
with l > 0 and orientation u ∈ Sd−1. The two endpoints of this line
segments are given as x and y. We define the associated point as

a(lin(l, u)) :=

{
x, if x1 < y1

y, if x1 > y1

.

If the first components x1 and y1 are the same we compare the next com-
ponents x2 and y2 and so. The case that all components are equal is
impossible, since then x = y and the line segment is a point.

We use this point to define the associated point rule

Ia(lin(l, u)) =

{
1, if a(lin(l, u)) ∈W
0, otherwise

.

If the point a(lin(l, u)) is inside of the window W we keep the fibre in our
sample. This point is chosen because we can always decide if a line segment
is sampled, even in our censored sample.

Assume we have a line segment lin(l, u) which is censored, with the
endpoints x and y. Since it is censored one of the endpoints will be on
the border of the window, assume this endpoint is y. If a(lin(l, u)) = x
we will keep line segment, if a(lin(l, u)) = y we do not keep it. Since the
line segment is straight the true associated point of the uncensored line
segment will be outside of the window W .

The canonic choice for the associated point, the midpoint, cannot be
observed due to censoring and therefore cannot be used.

We know that the associated point rule is unbiased and that the bias
factor is πa(l, u) = |W |. A visualisation of the area Πa(l, u) can be seen in
Figure 3.4. We therefore get

fL(l; θ) =
|W |

Eθ[|W |]
fL(l; θ) = fL(l; θ),

as the density of the sample if the associated point rule is used.

Remark
If the used sampling rule is unbiased, the bias factor π is constant and the
reweighed density is equal to the old density.
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W

Πa(l, u)

fibre

Figure 3.4.: Visualisation of the area Πa(l, ϕ) as , the window W is given as .
Following this sampling rule the example fibre is sampled but only the
black part will be visible in the window W and the fibre will be censored.

Plus Sampling 1: Density
If we use all fibres visible in the window the sampling rule is plus-sampling.
The general formula for the bias factor for a line segment is

π+(l, u) = |W ⊕ lin(l, u)|.

In Figure 3.5 we see a visualisation of Π+(l, ϕ) for a given angle and length.
The area can be split into three parts, the window W and a parallelogram
on each side of the window. The parallelograms on the top and bottom
have the same area as well as the parallelograms at the sides. We will
denote these parallelograms p1 and p2. We conclude

π+(l, ϕ) = |W |+ 2|p1|+ 2|p2|.

In Figure 3.6 we see a visualisation of the upper parallelogram p1. The
area is given by

|p1| = W1 · h

where h is the height of the parallelogram. We know that the leg of the
parallelogram has a length of l

2 and an angle of ϕ, using basic trigonometry
we conclude

h = sin(ϕ) · l
2

and therefore

|p1| = W1 · sin(ϕ) · l
2

= W1 · c2
l

2
.

In Figure 3.7 we see a visualisation of the parallelogram p2 on the side of
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W

π+(l, u)

fibre

Figure 3.5.: Visualisation of the area Π+(l, ϕ) as , the window W is given as .
Following this sampling rule the example fibre is sampled but only the
black part will be visible in the window W and the fibre will be censored.

W

π+(l, u)

p1ϕ

l
2

w1

Figure 3.6.: Visualisation of the area p1 as , the window W is given as .
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W

π+(l, u)

p2

ϕ

l
2

w2

h

Figure 3.7.: Visualisation of the area p2 as , the window W is given as .
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the window W . In this case the height is given by

h = cos(ϕ) · l
2

and the base has the length W2. We conclude

|p2| = W2 · cos(ϕ) · l
2

= W2 · c2 ·
l

2
.

We get

π+(l, ϕ) = |W |+ 2|p1|+ 2|p2| = |W |+W1c2l +W2c1l

for the complete bias factor.
In 3d the parallelograms on the sides of W turn into parallelepipeds

denoted by pi,j with i, j = 1, 2, 3 and i 6= j. The parallelepiped pi,j has
the base on the Wi,Wj face of the window. To calculate each of the six
volumes we have to calculate the height of the parallelepipeds.

We look at the face with the side lengths W1 and W2 the height of the
corresponding parallelepiped is then given by the z component of the direc-
tion vector: | cos(ϑ)| times the length l

2 . The volume of the parallelepiped
is then given by

|p1,2| = W1W2 · cos(ϑ)
l

2
= W1W2 · c3

l

2
.

Analogue computations lead to the volumes of the other parallelepipeds

|p1,3| = W1W3 · sin(ϑ) sin(ϕ)
l

2
= W1W3 · c2

l

2

|p2,3| = W2W3 · sin(ϑ) cos(ϕ)
l

2
= W2W3 · c1

l

2
.

In conclusion we get

π+(l, ϕ, θ) = |W |+ 2|p1,2|+ 2|p2,3|+ 2|p1,3|
= |W |+W1W2 · c3l +W1W3 · c2l

+W2W3 · c3l

in 3 dimension.
We can now use the reweighed density

fL+(l) =
π+(l)

E[π+(L)]
fL(l; θ)

with

π+(l) =

∫
Sd−1

π+(l, u)fU (u) du
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to deal with the sampling bias. We note that π+(l, u) and π+(l) are linear
in l. For some ξ ∈ R we may write

π+(l) = ξl + |W |.

In conclusion we get

fL+(l) =
ξl + |W |

ξ exp
(
µ+ σ2

2

)
+ |W |

fL(l; θ) (3.2)

as a reweighed density in the case of plus-sampling.

We now have a density for the biased sample Lπi . We can use this density to do
maximum likelihood estimation to receive an unbiased estimator for the parameter θ.
We will now prove that if the density fL fulfils the properties of theorem 2.8 and fLπ

fulfils some mild additional conditions, the resulting ML estimator is asymptotically
normal and consistent.

Theorem 3.1. Assume we have a line segment process observed in a bounded win-
dow W with random length L with density fL(l, θ). The sampled line segments are
chosen according to a sampling rule I with bias factor π(l). This results in a sample
Lπi with i = 1, . . . , n and an reweighed density

fLπ(l, θ) =
π(l)

E [π(L)]
fL(l, θ).

let

θ̂ = arg maxθ

n∑
i=1

ln (fLπ(l, θ))

be the ML estimator.
If fL(l; θ) fulfils the properties of theorem 2.8 and

R-7 E[π(L)] is three times continuous differentiable in an open subset Θ0 ⊂ Θ.

R-8 There are functions gi(l) and gij(l) with

|π(l)
∂

∂θi
f(l; θ)| ≤ gi(l)

|π(l)
∂2

∂θi∂θj
f(l; θ)| ≤ gij(l)

and gi, gij ∈ L1.

R-9 The Hessian matrix H (ln(E [π(L)])) is positive semi definite
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Then the ML estimator θ̂ is consistent and asymptotically normal distributed with

√
n(θ̂ − θ0)

d−−→N(0, I(Lπ)−1).

Proof. We have to prove the conditions R-1 to R-6 from theorem 2.8.

R-1 To prove that the density is distinct we assume that θ 6= θ′ but fLπ(l; θ) =
fLπ(l; θ′). We get

π(l)

Eθ [L]
fL(l; θ) =

π(l)

Eθ′ [L]
fL(l; θ′)

⇒ 1

Eθ [L]
fL(l; θ) =

1

Eθ′ [L]
fL(l; θ′).

Since fL(l; θ) 6= fL(l; θ′) by assumption, we conclude Eθ [L] 6= Eθ′ [L] has to
hold for above equation to be true. We further get

fL(l; θ) =
Eθ [L]

Eθ′ [L]
fL(l; θ′).

If we integrate both sides we get have

1 =
Eθ [L]

Eθ′ [L]

⇒ Eθ [L] = Eθ [L]

which is a contradiction. We conclude that the reweighed density is distinct.

R-2 fLπ(l, θ) has common support for all θ since it has the same support as fL(l; θ),
which has common support for all θ.

R-3 Since fL(l; θ) fulfils R-3 we have an open subset Θ0 with θ0 ∈ Θ0. The
existence of all third derivatives follows since they exist for fL(l; θ) and R-7.

R-4 If we calculate the first derivative of the reweighed density we get∣∣∣∣ ∂∂θi fLπ(l, θ)

∣∣∣∣ =

∣∣∣∣∣ 1

E[π(L)]
π(l)

∂

∂θi
fL(l; θ)−

∂ E[π(L)]
∂θi

E[π(L)]2
π(l)f(l; θ)

∣∣∣∣∣
≤ 1

|E[π(L)]|

∣∣∣∣π(l)
∂

∂θi
fL(l; θ)

∣∣∣∣+

∣∣∣∣∣
∂ E[π(L)]
∂θi

E[π(L)]2

∣∣∣∣∣ |π(l)f(l; θ)|

using condition R-8 yields

| ∂
∂θi

fLπ(l, θ)| ≤ 1

|E[π(L)]|
gi(l) +

∣∣∣∣∣
∂ E[π(L)]
∂θi

E[π(L)]2

∣∣∣∣∣ g0(l)
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and since condition condition R-7 holds 1
|E[π(L)]| and

∣∣∣∣ ∂E[π(L)]
∂θi

E[π(L)]2

∣∣∣∣ are continu-

ous and take a unique maximum on the parameter space. Therefore we can
construct majorants for all first derivatives.

We get

| ∂2

∂θi∂θj
fLπ(l, θ)| =

∣∣∣∣∣∣ 1

E(π[L])
π(l)

∂2

∂θi∂θj
fL(l; θ)−

∂E[π(L)]
∂θj

E[π(L)]2
π(l)f(l; θ)

− ∂

∂θj

(
∂ E[π(L)]
∂θi

E[π(L)]2

)
π(l)fL(l; θ)−

∂ E[π(L)]
∂θi

E[π(L)]2
π(l)

∂

∂θj
f(l; θ)

∣∣∣∣∣
≤
∣∣∣∣ 1

E[π(L)]

∣∣∣∣ gij(l) +

∣∣∣∣∣∣
∂ E[π(L)]
∂θj

E[π(L)]2

∣∣∣∣∣∣ g0(l)

+

∣∣∣∣∣ ∂∂θj
(

∂ E[π(L)]
∂θi

E[π(L)]2

)∣∣∣∣∣ g0(l) +

∣∣∣∣∣
∂ E[π(L)]
∂θi

E[π(L)]2

∣∣∣∣∣ gj(l)
for the second derivatives since condition R-8 holds. We can therefore con-
struct majorants for the first and second derivatives and may switch the order
of integration of differentiation and integration two times.

R-5 The fisher information matrix for the reweighed density is

I(Lπ) = −E [H (ln(π(l)))−H (ln(E[π(L)])) +H (ln(fL(l; θ)))]

= E [H (ln(E(π(L))))]− E [H (ln(fL(l; θ)))]

= H (ln(E(π(L))))− E [H (ln(fL(l; θ)))] .

It is positive definite since −E[H (ln(fL(l; θ)))] is positive definite since fL(l; θ)
fulfils condition R-5 and H (ln(E(π(L)))) is positive semi definite by condition
R-9. Since the sum of a positive definite matrix and a positive semi definite
matrix is positive definite, the fisher information of the reweighed density is
positive definite.

R-6 By assumption we have functions Mijk(l) such that

∣∣∣∣ ∂3

∂θi∂θj∂θk
ln fL(l; θ)

∣∣∣∣ ≤Mijk(l)

with Eθ0 [Mijk(L)] <∞ for i, j, k = 1, . . . , d.
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For the reweighed density we get∣∣∣∣ ∂3

∂θi∂θj∂θk
ln fLπ(l; θ)

∣∣∣∣ =

∣∣∣∣ ∂3

∂θi∂θj∂θk
lnπ(l)− lnE (E(π(L))) + ln fLπ(l; θ)

∣∣∣∣
≤
∣∣∣∣ ∂3

∂θi∂θj∂θk
Eθ (π(L)))

∣∣∣∣+

∣∣∣∣ ∂3

∂θi∂θj∂θk
ln fL(l; θ)

∣∣∣∣
≤
∣∣∣∣ ∂3

∂θi∂θj∂θk
Eθ (π(L)))

∣∣∣∣+Mijk(l).

The first term in this formula does not depend on θ and is furthermore a
continuous function in θ by assumption R-7. Since the parameter space is
compact there exists a unique maximum mijk such that∣∣∣∣ ∂3

∂θi∂θj∂θk
ln fLπ(l; θ)

∣∣∣∣ ≤ mijk +Mijk(l) =: M̃ijk(l)

Therefore the ML estimator in regards to the reweighed density fLπ is consistent
and asymptotically normal.

Associated Point Rule 2: Consistency and asymptotic normality
In our example for the associated point rule we have seen, that the density
of the sample is the density of the log-normal distribution. We have shown
that ML estimators based on this density are consistent and asymptoti-
cally normal in chapter 2. We conclude that the estimator based on the
associated point rule will be consistent and asymptotically normal.

Plus Sampling 2: Consistency and asymptotic normality
Here we will prove that the estimator based on the reweighed density for
the plus sampled line segments are consistent and asymptotically normal.

Theorem 3.2. Let

fL+(l; θ) =
ξl + |W |

ξ exp
(
µ+ σ2

2

)
+ |W |

fL(l; θ)

for some ξ ∈ R be the reweighed density for the plus-sampling case. Then
the conditions of theorem 3.1 are fulfilled and the resulting ML estimator
is consisted and asymptotically normal.
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Proof. R-7 We have

E(π+(L)) = ξ E(L) + |W |.

The mean of a log normal distribution is given by E(L) = exp(µ+ σ2

2 ).
This function is smooth and therefore all third derivatives exist.

R-8 To construct the majorants for the derivatives we look at

|π(l)
∂

∂µ
fL(l;µ, σ)| =

∣∣∣∣(ξl + |W |) ln(l)− µ
σ2

fL(l;µ, σ)

∣∣∣∣
=

∣∣∣∣ξl ln(l)− ξlµ+ |W | ln(l)− ‖W |µ
σ2

fL(l;µ, σ)

∣∣∣∣
≤ ξl| ln(l)|+ ξl|µ|+ |W || ln(l)|+ ‖W |µ

|σ2|
fL(l;µ, σ)

similarly to the proof for the log normal distribution we can put in
the maximum or minimum allowed values for µ and σ. The only part
left to majorize is

l| ln(l)|kfL(l;µ, σ) ≤ l| ln(l)|kg0(l)

with g0(l) is from Equation (2.5). Similarly to the log normal case we
get

∞∫
−∞

l| ln(l)|kg0(l) dl ∝
∞∫

0

exp(z)zk
1√

2πσ2
max

exp(
−(z − µmax)2

2σ2
max

)

+

∞∫
0

exp(−z)zk 1√
2πσ2

max

exp(
−(z − µmax)2

2σ2
max

)

calculating these integral using Matlab Symbolic Toolbox we see that
they are finite for k = 1, 2, 3, 4.

Constructing the majorants for the other derivatives can be done in
a similar fashion.

R-9 We look at the Hessian

H(ln(E(π(L)))) = H(ln(ξ exp(µ+ σ2

2 + |W |)))

=


ξ|W | exp(µ+σ2

2
)(

exp(µ+σ2

2
)+|W |

)2

ξ|W |σ exp(µ+σ2

2
)(

ξ exp(µ+σ2

2
)+|W |

)2

ξ|W |σ exp(µ+σ2

2
)(

ξ exp(µ+σ2

2
)+|W |

)2

ξ exp(µ+σ2

2
)
(
ξ exp(µ+σ2

2
)+|W |

)
+|W |σ2(

exp(µ+σ2

2
)+|W |

)2


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Calculating the first principle majors yields

H(ln(E(π(L))))1,1 =
c|W | exp(µ+ σ2

2 )(
exp(µ+ σ2

2 ) + |E|
)2 > 0

detH(ln(E(π(L)))) =
c2|W | exp(2µ+ σ2)(

c exp
(
µ+ σ2

2

)
+ |W |

)3 > 0

both of them are bigger than 0 and the Silvester criterion yields that
the matrix is positive definite.

3.3.2. EM-Algorithm

Here we look at an i.i.d. sample (L̃π∗i , Zi) with i = 1, . . . , n where Zi = 1 means that
the fibre censored and Zi = 0 means it is not. They are sampled with sampling rule
I with bias factor π(l). We use the reweighing described in 3.3.1 to get a density

fLπ(l; θ) =
π(l)

E[π(l)]
fL(l; θ)

for the distribution of Lπ.
We group the sample L̃π∗i in an uncensored group Lπi i = 1, . . . , n1 and a censored

group L̃πi i = 1, . . . , n2 with n = n1 + n2. We use the EM-algorithm from algorithm
1 to get an ML estimator of the parameter θ.

We get

Q(θ|θ0) = Eθ0
[
l(θ|Lπ, L̃π∗)

]
=

n∑
i=1

Eθ0
[
log fL(Lπi ; θ)|L̃i

π∗]
=

n1∑
i=1

log fLπ(Lπi ; θ) +

n2∑
i=1

Eθ0
[
log fLπ(Lπi ; θ)|L̃πi

]
.

(3.3)

We can interpret the summands Eθ0 [log fLπ(Lπi )|L̃πi ] as the value of log fLπ(Lπi ) for
true length of a fibre given the censored length, as seen in Figure 3.8. Since for
the uncensored fibres the true length is already known we can drop the conditional
mean for the uncensored fibres.

To maximise Q(θ|θ0) we need to calculate the conditional mean
Eθ0(log fLπ(Lπi )|L̃πi ) in each step. We will therefore need the distribution of the true
length Lπ given some censored length L̃π.
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W

Figure 3.8.: The EM algorithm uses the visible part of the fibre inside the window
and ”adds” some length to it to get an estimate of the real length

Associated Point Rule 3: EM Algorithm
With the associated point rule we have a sample L̃∗i i = 1, . . . , n with Li
i = 1, . . . , n1 of uncensored and L̃i i = 1, . . . , n2 of censored lengths and
n = n1 + n2 samples overall.

To get an EM estimator we use Equation (3.3). We have to maximise

Q(θ|θ0) = Eθ0 [l(θ|L)|L̃]

=

n1∑
i=1

ln fL(Li; θ) +

n2∑
i=1

Eθ0 [ln fL(Li; θ)|L̃i]

=

n1∑
i=1

− ln(Li)− ln(
√

2πσ) +

(
−(ln(Li)− µ)2

2σ2

)

+

n2∑
i=1

−Eθ0 [ln(Li)|L̃i] + ln(
√

2πσ) +

(
−Eθ0 [(ln(Li)− µ)2|L̃i]

2σ2

)

and overall

Q(θ|θ0) =

n1∑
i=1

− ln(Li)− ln(
√

2πσ) +

(
−(ln(Li)− µ)2

2σ2

)

+

n2∑
i=1

−Eθ0 [ln(Li)|L̃i] + ln(
√

2πσ)

+

−Eθ0
[
ln(Li)

2|L̃i
]
− µEθ0

[
ln(Li)|L̃i

]
+ µ2

2σ2


(3.4)

for µ and σ using θ = (µ, σ) and θ0 = (µ0, σ0).

Plus Sampling 3: EM Algorithm
For this estimator we use all visible fibres and have a sample L̃∗+i for
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i = 1, . . . , n. We assume we see n1 uncensored fibres with length L+
i and

n2 censored fibres with visible length L̃+
i , with n = n1 + n2.

We use the reweighed density from Equation (3.2). Where the bias factor

π+(l) = ξl + |W |.

is linear in l. We take the reweighed density and use it for an EM estimator.
For this we have to iterate with the function

Q(θ|θ0) =

n1∑
i=1

ln fL+(L+
i ; θ) +

n2∑
i=1

Eθ0
[
ln fL+(L+

i ; θ)|L̃+
i

]
=

n1∑
i=1

ln(ξL+
i + |W |)− ln(ξeµ+σ2

2 + |W |) + ln(f(L+
i ; θ))+

n2∑
i=1

Eθ0
[
ln(ξL+

i + |W |)|L̃+
i

]
− ln(ξeµ+σ2

2 + |W |)

+ Eθ0
[
ln(fL(L+

i ; θ))|L̃+
i

]
(3.5)

with θ = (µ, σ) and θ0 = (µ0, σ0). We plug in the log normal density
fL(l;µ, σ)) and get

Q(θ|θ0) = −n1 ln(ξeµ+σ2

2 + |W |)− n1 ln(
√

2πσ)

+

n1∑
i=1

ln(ξli + |W |)− ln(Li) +

(
−(ln(Li)− µ)2

2σ2

)

+

n2∑
i=1

Eθ0
[
ln(ξL+

i + |W |)|L̃+
i

]
− Eθ0

[
ln(L+

i )|L̃+
i

]

+

−Eθ0
[
ln(L+

i )2|L̃+
i

]
− µEθ0

[
ln(L+

i )|L̃+
i

]
+ µ2

2σ2


(3.6)

as the function we iterate for the EM estimation.

3.3.3. Distribution of Lπ|L̃π

We want to deduce the distribution for the true length Lπ given a censored length
L̃π = l̃. By following the Bayesian theorem we get

fLπ |L̃π(l|l̃; θ) =
fL̃π |Lπ(l̃|l)fLπ(l; θ)

fL̃π(l̃; θ)
. (3.7)
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for the density. The density fLπ(l; θ) is already known by model assumption. We
can get

fL̃π(l̃) =

∫
R
fL̃π |Lπ(l̃|l)fLπ(l; θ) dl

by marginalisation if fL̃π |Lπ(l̃|l) is known. We therefore need the distribution of the

censored length L̃π given the true length Lπ = l.

3.3.4. Distribution of L̃π|Lπ

We wish to get the probability P (L̃π < l̃|Lπ). For this we will investigate the areas
where a fibre might be located to be completely visible and then we will look into
areas where it is censored and the visible length is less then l̃.

Assume we have the sampling rule I with bias factor π. We investigate a line
segment lin with length l and orientation u in a window W . We first look at the
area where the fibre has to be located to be be visible in the window W . This is
depended on the sampling rule and is the bias factor

w(l, u) = π(lin(l, u)).

For the fibre to be completely visible it has to be located in

v(l, u) = π−(lin(l, u)) = |W 	 lin(l, u)|,

since this is minus sampling. We know that a fibre cannot be located in this area,
since it is censored. Therefore a censored line segment with length l and orientation
u has to be located in the area w(l, u)− v(l, u).

A line segment with true length l and a visible length of more then l̃ will be in an
area of

a(l, l̃, u) = |π(cyl(l, u))	 box(cyl(l̃, u))|. (3.8)

We can therefore conclude that

P (L̃π ≤ l̃|Lπ = l, U = u) =
w(l, u)− a(l, l̃, u)

w(l, u)− v(l, u)
. (3.9)

with the density

fL̃π |L,U (l̃|l, u) =
− ∂
∂l̃
a(l, l̃, u)

w(l, u)− v(l, u)
. (3.10)

We marginalise the orientation to get

P (L̃π ≤ l̃|Lπ = l) =

∫
Sd−1

P (L̃π ≤ l̃|Lπ = l, U = u)fU (u) du

fL̃π |L(l̃|l) =

∫
Sd−1

fL̃π |L,U (l̃|l, u)fU (u) du.
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W

a(l, l̃, u)

fibre

Figure 3.9.: Visualisation of the area a(l, l̃, ϕ) as , the window W is given as .
In this case we have l̃ = l

3 .

With this we can calculate the density

fLπ |L̃π(l|l̃; θ) =
fL̃π |Lπ(l̃|l)fLπ(l; θ)

fL̃π(l̃; θ)
.

which we will in turn use to calculate the conditional means

Eθ0 [log fLπ(Lπ; θ)|L̃π = l̃] =

∫
R

log fLπ(l; θ)fLπ |L̃π(l|l̃; θ0) dl

for the EM algorithm.

Associated Point Rule 4: Distribution of L̃|L
Here we will give the formula for w(l, u), v(l, u) and a(l, l̃, u) for the asso-
ciated point rule.

For the bias factor we have

w(l, u) = |W |

and

v(l, u) = π−(cyl(l, u) =

{
(W1 − c1l)(W2 − c2l)(W3 − c3l) if Wi − cil > 0∀i
0 else

directly. So we have to deduce a formula for a(l, l̃, u) as seen in Figure 3.9,
the area where a cylinder of length l and orientation u might be located
such that we see at least a cylinder of length l̃ in the window.

For the area a(l, l̃, u) from Equation (3.8) we see that in this case we get

a(l, l̃, u) = |W 	 lin(l̃, u)|.
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this is just like the formula for π−(l̃, u) and we get

a(l, l̃, ϕ) = (W1 − c1 l̃)(W2 − c2 l̃)

a(l, l̃, ϕ, ϑ) = (W1 − c1 l̃)(W2 − c2 l̃)(W3 − c3 l̃)

in 2 and 3 dimensions where (Wi − ci l̃) ≥ 0 for i = 1, 2, 3.

We now have the formulae for w(l, u), v(l, u) and a(l, l̃, u =. In conclusion
we have

fL̃|L,U (l̃|l, u) =

c1(W2 − c2 l̃)(W3 − c3 l̃) + (W1 − c1 l̃)c2(W3 − c3 l̃) + (W1 − c1 l̃)(W2 − c2 l̃)c3

|W | − (W1 − c1l)(W2 − c2l)(W3 − c3l)

the density of L̃|L,U . It is a polynomial of order 2 in l̃. Note that this also
holds for the marginalised density

fL̃π |L(l̃|l) =

∫
S2

fL̃π |L,U (l̃|l, u)fU (u) du.

Remark
A simple sanity check for the correctness of these formulae is to look at the

limiting cases of a(l, l̃, u) for l̃. The case of l̃ = 0 means that we at least
see something of the fibre, so we expect a(l, 0, u) = πa(l, u) which is true
since

a(l, 0, ϕ) = (W1 − c10)(W2 − c20) = W1W2 = πa(l, u).

The case of l̃ = l means that we see the whole fibre, we expect a(l, l, u) =
π−(l, u) which is true since

a(l, l, ϕ) = (W1 − c1l)(W2 − c2l) = π−(l, u).

Remark
The condition (wi − ci l̃) ≥ 0 for i = 1, 2, 3 is not only a condition for l̃ it
also bounds the allowed orientation.

If we look at the case i = 3 we get

W3 − | cos(ϑ)|l̃ ≥ 0

| cos(ϑ)| ≤ W3

l̃

⇒ cos−1

(
W3

l̃

)
≤ ϑ ≤ π − cos−1

(
W3

l̃

)
(3.11)
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if W3

l̃
≤ 1 and no constrictions otherwise. If we look at i = 1, 2 we have

W1 − | sin(ϑ) cos(ϕ)|l̃ ≥ 0

W2 − | sin(ϑ) sin(ϕ)|l̃ ≥ 0

⇒ W1

l̃
≥ | sin(ϑ) cos(ϕ)|l̃

W2

l̃
≥ | sin(ϑ) sin(ϕ)|l̃

now we square both inequalities and sum them up, we get

W 2
1 +W 2

2

l̃2
≥ sin(ϑ)2(cos(ϕ)2 + sin(ϕ)2)√

W 2
1 +W 2

2

l̃
≥ | sin(ϑ)|.

Note that
√
W 2

1 +W 2
2 is the diagonal in the ground plane of the window.

If this diagonal is longer then l̃ we have no further condition on ϑ. If l̃ is
bigger than this diagonal we get the conditions

ϑ ≤ sin−1

(√
W 2

1 +W 2
2

l̃

)
or

ϑ ≥ π − sin−1

(√
W 2

1 +W 2
2

l̃

)

If we take these conditions and the one from Equation (3.11), we have the
full conditions on ϑ as

cϑ,l,1(l̃) := cos−1

(
W3

l̃

)
≤ϑ ≤ sin−1

(√
W 2

1 +W 2
2

l̃

)
=: cθ,u,1(l̃) or

cϑ,l,2(l̃) := π − cos−1

(
W3

l̃

)
≥ϑ ≥ π − sin−1

(√
W 2

1 +W 2
2

l̃

)
=: cϑ,2,u(l̃)

(3.12)

For ϕ we look at i = 1, 2 again and get

W1 − | sin(ϑ) cos(ϕ)|l̃ ≥ 0

W1

sin(ϑ)
≥ cos(ϕ)

⇒ ϕ ≥ cos−1

(
W1

sin(ϑ)

)
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and

W2 − sin(ϑ) sin(ϕ)l̃ ≥ 0

W2

sin(ϑ)l̃
≥ sin(ϕ)

⇒ ϕ ≤ sin−1

(
W2

sin(ϑ)l̃

)
gives a condition for each quadrant

cϕ,l,1(l̃, ϑ) := cos−1

(
W1

sin(ϑ)l̃

)
≤ϕ ≤ sin−1

(
W2

sin(ϑ)l̃

)
=: cϕ,u,1(l̃, ϑ) or

cϕ,l,2(l̃, ϑ) := π − sin−1

(
W2

sin(ϑ)l̃

)
≤ϕ ≤ π − cos−1

(
W1

sin(ϑ)l̃

)
=: cϕ,u,2(l̃, ϑ) or

cϕ,l,3(l̃, ϑ) := π + cos−1

(
W1

sin(ϑ)l̃

)
≤ϕ ≤ π + sin−1

(
W2

sin(ϑ)l̃

)
=: cϕ,u,3(l̃, ϑ) or

cϕ,l,4(l̃, ϑ) := 2π − sin−1

(
W2

sin(ϑ)l̃

)
≤ϕ ≤ 2π − cos−1

(
W1

sin(ϑ)l̃

)
=: cϕ,u,4(l̃, ϑ)

(3.13)

Plus Sampling 4: Distribution of L̃+|L+

We need formulae for the areas w(l, u), v(l, u) and a(l, l̃, u). Since w(l, u) =
π+(l, u) we already know this formula. The formula for v(l, u) = π−(l, u)
is also known. The area a(l, l̃, u) is the area where the midpoint of a fibre
with length l and orientation u might be located such that at least a fibre
of length l̃ is visible in the window W in regards to the plus sampling rule.

For this we have to look at two cases. The first case is l̃ < l
2 in Figure

3.10. We see that we have two parallelograms P1 at the top and bottom and
P2 at the two sides of the window W . Furthermore we see that that two
triangles T that belong to the observation window are outside of a(l, ,̃u).
We conclude that

a(l, l̃, ϕ) = |W | − 2|T |+ 2|P1|+ 2|P2|.

To calculate the are of the triangle we look at Figure 3.11. First we
notice that a fibre with length l and orientation u placed on the border of
a(l, l̃, u) is, by construction of a visible with a length of l̃ in the observation
window. Therefore the part of the border of a(l, l̃, u) that crosses through
the window has to have a length of l̃, this part of the border is also the
hypotenuse of the triangle T . Since we know the orientation of the fibre we
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W

a(l, l̃, u)

fibre

Figure 3.10.: Visualisation of the area a(l, l̃, u) as , the window W is given as .
For this case l̃ = l

3 .

T
ϕ

k1

k2

l̃

Figure 3.11.: Visualisation of the triangle T from a(l, l̃, u) as , the window W is
given as and a(l, l̃, u) as . For this case l̃ = l

3 .
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P1ϕ
k1

k2 b1

s1

Figure 3.12.: Visualisation of the parallelogram P1 from a(l, l̃, u) as , the window
W is given as and a(l, l̃, u) as . For this case l̃ = l

3 .

also know the angles in the triangle. We can therefore calculate the catheti
as

k1 = | cos(ϕ)|l̃ = c1 l̃k2 = | sin(ϕ)|l̃ = c2 l̃

and the overall area of the triangle is

|T | = 1

2
k1k2 =

1

2
c1c2 l̃

2.

To calculate the area of P1 we look at Figure 3.12. We see directly that
the base of the parallelogram is

b1 = W1 − k1 = W1 − c1 l̃.

The length of the leg s1 is not directly apparent. We place a fibre on the
border in Figure 3.13. Therefore the part of the fibre that extends into
a(l, l̃, u) has the length l

2 and the part of the fibre that is inside W has, by

construction of a(l, l̃, u), the length l̃, therefore

s1 =
l

2
− l̃.

In the end we conclude that

|P1| = | sin(ϕ)|s1 · b1

= c2(
l

2
− l̃) · (W1 − c1 l̃).

The other parallelogram on the side of W can be constructed the same
way as

|P2| = c1(
l

2
− l̃) · (W2 − c2 l̃).

We conclude that

a(l, l̃, ϕ) = |W | − 2|T |+ 2|P1|+ 2|P2|

= W1W2 − c1c2 l̃
2 + 2c2(

l

2
− l̃) · (W1 − c1 l̃) + 2c1(

l

2
− l̃) · (W2 − c2 l̃)
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P1

π+(l, u)

fibre

ϕ
s1

l̃

l
2

s1

Figure 3.13.: Visualisation of the parallelogram p1 from a(l, l̃, u) as , the window
W is given as and a(l, l̃, u) as . A fibre with length l has been
placed on the border of a(l, l̃, u. The midpoints of the fibre is marked
by For this case l̃ = l

3 .

for the case that l̃ < l
2 .

In 3 dimensions the parallelograms turn into parallelepipeds, as they did
for π+(l, u). The triangles T , turn intro prisms Ti for i = 1, 2, 3. For i = 1
it has a triangular base with area 1

2c2c3 l̃
2 and the height W1 we get

|T1| = 1
2c2c3 l̃

2W1

for its volume. The volumes of Ti, i = 2, 3 are constructed similarly. In
conclusion we get

a(l, l̃, ϕ, θ) = W1W2W3 − c1c2 l̃
2W3 − c1c3 l̃

2W2 − c2c3 l̃
2W1

+ 2c3(
l

2
− l̃) · (W1 − c1 l̃) · (W2 − c2 l̃)

+ 2c2(
l

2
− l̃) · (W1 − c1 l̃) · (W3 − c3 l̃)

+ 2c1(
l

2
− l̃) · (W2 − c2 l̃) · (W3 − c3 l̃)

(3.14)

for the 3d case.
For the case l̃ > l

2 we will start with the 2d case again, an example can

be seen in Figure 3.14. We see that a(l, l̃, u) resembles a rectangle with
two triangles missing. We will first calculate the area of the inner rectangle
and we will then subtract the area of the triangles.

In Figure 3.15 we placed a fibre on the upper edge of a(l, ,̃u). We see
that the distance to the border of W is

d2 = sin(ϕ)h2.

To calculate h2 we notice that the full visible length is l̃ by construction.
The part below the midpoint of the fibre is l

2 long, therefore

h2 = l̃ − l

2
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W
a(l, l̃, u)

Figure 3.14.: Visualisation of the area a(l, l̃, u) as , the window W is given as .
For this case l̃ = 2l

3 .

W

a(l, l̃, u)

ϕ d2

l̃

l
2

h2

Figure 3.15.: Visualisation of the area inner rectangle as , the window W is given
as and. For this case l̃ = 2l

3 .
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W

a(l, l̃, u)

ϕ

h2

h2

h

l̃

Figure 3.16.: Visualisation of the inner rectangle as , the window W is given as
and. For this case l̃ = 2l

3 .

and

d2 = c2

(
l̃ − l

2

)
.

With the same reasoning we get that the distance to the sides of W as

d1 = c1

(
l̃ − l

2

)
.

We now look at the triangle in Figure 3.16. To calculate the hypotenuse h
we place a line segment somewhere on the hypotenuse. The visible length
of this fibre is again l̃, the distances h2 have been calculated in the previous
step. We get

h = l̃ − 2h2 = l − l̃.

The area of this triangle is therefore

|T | = 1

2
c1c2h

2 =
1

2
c1c2

(
l − l̃

)2
.

In conclusion we get

a(l, l̃, u) = (W1 − 2d1)(W2 − 2d2)− 2|T |

= (W1 − 2c1

(
l̃ − l

2

)
)(W2 − 2c2

(
l̃ − l

2

)
)− c1c2

(
l − l̃

)2
.
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In 3 dimension we get similarly

a(l, l̃, u) =

(
W1 − 2c1

(
l̃ − l

2

))(
W2 − 2c2

(
l̃ − l

2

))(
W3 − 2c3

(
l̃ − l

2

))
− c1c2

(
l − l̃

)2
(
W3 − 2c3

(
l̃ − l

2

))
− c1c3

(
l − l̃

)2
(
W2 − 2c2

(
l̃ − l

2

))
− c2c3

(
l − l̃

)2
(
W1 − 2c1

(
l̃ − l

2

))
(3.15)

The full density is therefore given by

fL̃+|L+,ϕ,ϑ =
− ∂
∂l̃
a(l, l̃, ϕ, ϑ)

π+(l)

=



2(W1−c1 l̃)(W2−c2 l̃)c3+2(W1−c1 l̃)c2(W3−c3 l̃)+2c1(W2−c2 l̃)(W3−c3 l̃)

+4c1c2(W3−c3 l̃)( l2−l̃)+4c1(W2−c2 l̃)c3( l
2
−l̃)+4(W1−c1 l̃)c2c3( l

2
−l̃)

(W1+c1l)(W2+c2l)(W3+c3l)
l̃ < l

2
+2W1c2cz l̃+2c1W2c3 l̃+2W1c2c3 l̃

2(W1−2c1(l̃− l
2

))(W2−2c2(l̃− l
2

))c3+2(W1−2c1(l̃− l
2

))c2(W3−2c3(l̃− l
2

))

2c1(W2−2c2(l̃− l
2

))(W3−2c3(l̃− l
2

))

(W1+c1l)(W2+c2l)(W3+c3l
l̃ > l

2

Remark
Using these we can get conditions on the angles ϑ and ϕ again. We first

look at the case l̃ < l
2 and Equation (3.14). To make sure the the sides all

have positive lengths we demand

Wi − ci l̃ ≥ 0

for i = 1, 2, 3. These are the same conditions that lead to cθ,j(l̃), cϕ,k(l̃, θ)
in Equations (3.12) and (3.13) for the associated point rule case.

For l̃ > l
2 we look at Equation (3.15) and get

Wi − 2ci

(
l̃ − l

2

)
≥ 0

for i = 1, 2, 3 as conditions for the orientations ϑ and ϕ. By doing the same
calculations as we did to get Equations (3.12) and (3.13) for the associated
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point rule we get

cϑ,l,1(l̃, l) := cos−1

 W3

2
(
l̃ − l

2

)
 ≤ϑ ≤ sin−1

√W 2
1 +W 2

2

2
(
l̃ − l

2

)


=: cϑ,u,1(l̃, l)

cϑ,u,2(l̃, l) := π − cos−1

 W3

2
(
l̃ − l

2

)
 ≤ϑ ≤ pi− sin−1

√W 2
1 +W 2

2

2
(
l̃ − l

2

)


=: cϑ,l,2(l̃, l)

as conditions for ϑ and the conditions

cϕ,l,1(l̃, l, ϑ) := cos−1

 W1

sin(ϑ)2
(
l̃ − l

2

)
 ≤ϕ
≤ sin−1

 W2

sin(ϑ)2
(
l̃ − l

2

)


:= cϕ,u,1(l̃, l, ϑ)

cϕ,l,2(l̃, l, ϑ) := π − sin−1

 W2

sin(ϑ)2
(
l̃ − l

2

)
 ≤ϕ
≤π − cos−1

 W1

sin(ϑ)2
(
l̃ − l

2

)


:= cϕ,u,2(l̃, l, ϑ)
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cϕ,l,3(l̃, l, ϑ) := π + cos−1

 W1

sin(ϑ)2
(
l̃ − l

2

)
 ≤ϕ
≤π + sin−1

 W2

sin(ϑ)2
(
l̃ − l

2

)


:= cϕ,u,3(l̃, l, ϑ)

cϕ,l,4(l̃, l, ϑ) := 2π − sin−1

 W2

sin(ϑ)2
(
l̃ − l

2

)
 ≤ϕ
≤2π − cos−1

 W1

sin(ϑ)2
(
l̃ − l

2

)


:= cϕ,u,4(l̃, l, ϑ)

for ϕ.

3.3.5. Properties of the estimator

If the EM described in Equation (3.4) converges we will obtain the ML estimator
for the parameters θ. The ML estimation is in respect to the sample of censored
fibres (L̃π∗i , Zi).

The density for L̃π∗ is

fL̃π∗(l̃; θ) =

 ∞∫
l̃

fL̃π |Lπ(l̃, l)fLπ(l; θ) dl

Zi + (1− Zi) · fLπ(l̃; θ). (3.16)

Note that this density has a bounded support. For a window W we say that Wmax

is longest straight line that can be drawn inside of W . It is impossible to observe
a lengths that is greater than this, therefore the density fL̃π∗(l̃; θ) has the support
(0,Wmax]

We have to prove the properties R-1 to R-6 from theorem 2.8 to proof the asymp-
totic normality of the resulting EM estimator.

Theorem 3.3. Assume we have a line segment process in W where the length is
distributed with density fL(l; θ) and the orientation is distributed with density fU .
We observe this process in a bounded window W with sampling rule I and bias factor
π. Let Wmax be the longest straight line in W . We observe L̃i

π∗
, Zi for i = 1, . . . , n

with a density from Equation (3.16).
Assume that fL(l; θ) fulfils the properties R-1 to R-6 from theorem 2.8 and

fLπ(l; θ) fulfils the properties R-7 to R-9 from theorem 3.1. Furthermore we need
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R-10 For all l̃ ∈ (0,Wmax] we have a cmax(l̃) such that for all l ∈ [l̃,∞) we have
fL̃π |Lπ(l̃, l) ≤ cmax(l̃) <∞

R-11 The function

fLπ(l̃, θ) =

 ∞∫
l̃

fL̃π |Lπ(l̃, l)fLπ(l, θ) dl

 ≤ c <∞
is bounded for l̃ ∈ (0,Wmax] and some c ∈ R.

R-12 For all l̃ ∈ (0,Wmax], n = 1, 2, 3 and i1 + . . .+ id = n we have a constant c∣∣∣ ∂d

∂i1θ1...∂
idθd

fL̃π(l̃)
∣∣∣

fL̃π(l̃)
=∣∣∣∣∣ ∂d

∂i1θ1...∂
idθd

(
∞∫̃
l

fL̃π |Lπ(l̃, l)fLπ(l) dl

)∣∣∣∣∣
fL̃π |Lπ(l̃, l)fLπ(l) dl

≤ c <∞

R-13 The fisher information matrix I(L̃) is positive definite.

then the ML estimator θ̂ using the density fL̃π∗(l̃; θ) is consistent and asymptotically
normal.

Proof. We have to proof that the regularity conditions from theorem 2.8.

R-1 We take two parameter vectors θ and θ′. We now look at Z = 0, the case for
an uncensored fibre and investigate

fLπ(l, θ) = fLπ(l, θ′),

since fLπ is distinct by assumption this can only be true if θ = θ′. For the
other case we look at

∞∫
l̃

fL̃π |Lπ(l̃, l)fLπ(l, θ) dl =

∞∫
l̃

fL̃π |Lπ(l̃, l)fLπ(l, θ′) dl

⇒
∞∫
l̃

fL̃π |Lπ(l̃, l)
(
fLπ(l, θ)− fLπ(l, θ′)

)
dl = 0.

Since this has to be true for all l̃ it follows that the integrand has to be 0 and
we get

fL̃π |Lπ(l̃, l)
(
fLπ(l, θ)− fLπ(l, θ′)

)
= 0

⇒
(
fLπ(l, θ)− fLπ(l, θ′)

)
= 0
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which can only be true for θ = θ′ since fLπ is distinct. Therefore fL̃π(l̃, θ) is
distinct.

R-2 The support of fL̃π∗(l̃, θ) is (0,Wmax] where Wmax is the longest straight line
that can be drawn in the window W . This does not depend on the parameter
θ.

R-3 To proof that the first three derivatives of fL̃π∗(l̃) exist, we look at

∂n

∂j1θ1 . . . ∂jdθd
fl̃π∗(l̃) = Z

∂n

∂j1θ1 . . . ∂jdθd

∫ ∞
l̃

fL̃π |Lπ(l̃, l)fLπ(l, θ) dl

+ (1− Z)
∂n

∂j1θ1 . . . ∂jdθd
fLπ(l, θ).

We see that if we could switch the differentiation and the integral in this equa-
tion the existence of the third derivatives follows since ∂n

∂j1θ1...∂
jdθd

fLπ(l, θ) ex-

ists by assumption. To show that we can switch differentiation and integration
3 times for fL̃π |Lπ(l̃, l)fLπ(l) we have to find majorants. The majorants are
given by∣∣∣∣ ∂n

∂j1θ1 . . . ∂jdθd
fL̃π |Lπ(l̃, l)fLπ(l, θ)

∣∣∣∣ R-10
≤ cmax(l̃)

∣∣∣∣ ∂n

∂j1θ1 . . . ∂jdθd
fLπ(l, θ)

∣∣∣∣
R-4
≤ cmax(l̃)gi1,...,id(l)

with 1 ≤ n ≤ 3 and i1,+ . . . + id = n. Where gi1,...,id(l) is a majorant for
∂n

∂j1θ1...∂
jdθd

fLπ(l, θ) such that∣∣∣∣ ∂n

∂j1θ1 . . . ∂jdθd
fLπ(l, θ)

∣∣∣∣ ≤ gi1,...,id(l).
gi1,...,id exist since fπl (l) fulfils assumptions R-4 andR-11 .

R-4 Since the function is bounded on (0,Wmax] by c, we set the needed majorants
as

g(l̃) =

{
c, l̃ ∈ (0,Wmax]

0, else

and get the needed result. where the last step is valid since gi1,...,id ∈ L1. We
know that fL̃(l̃; θ) is bounded by a constant. We set g̃i1,...,id(l) = c̃.

R-5 The fisher information is positive definite by assumption.

R-6 For this property we investigate the third derivatives of ln fL̃π(l̃). If we look
at the case Z = 0 we get∣∣∣∣ ∂3

∂θjθkθl
ln fL̃π(l̃, θ)

∣∣∣∣ =

∣∣∣∣ ∂3

∂θjθkθl
ln fLπ(l̃, θ)

∣∣∣∣
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since fLπ(l, θ) fulfils condition R-6 the majorant Mi1,...,id exist and∣∣∣∣ ∂3

∂θjθkθl
ln fL̃π(l̃, θ)

∣∣∣∣ < Mi1,...,id(l̃) and E(Mi1,...,id(L̃)) <∞

exists as well. For Z = 1 we look at∣∣∣∣ ∂3

∂θjθkθl
ln fL̃π(l̃, θ)

∣∣∣∣ ≤
∣∣∣∣∣∣

∂3

∂θj∂θk∂θl
fL̃π(l̃, θ)

fL̃π(l̃, θ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∂
∂θj
fL̃π(l̃, θ) ∂2

∂θk∂θl
fL̃π(l̃, θ)

f2
L̃π

(l̃, θ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∂
∂θk

fL̃π(l̃, θ) ∂2

∂θj∂θl
fL̃π(l̃, θ)

f2
L̃π

(l̃, θ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∂
∂θl
fL̃π(l̃, θ) ∂2

∂θj∂θk
fL̃π(l̃, θ)

f2
L̃π

(l̃, θ)

∣∣∣∣∣∣
+ 2

∣∣∣∣∣
∂
∂θj
fL̃π(l̃, θ) ∂

∂θk
fL̃π(l̃, θ) ∂

∂θl
fL̃π(l̃, θ)

f3
L̃π

(l̃, θ)

∣∣∣∣∣ .

(3.17)

We can split each of the summands into factors of the form∣∣∣ ∂d

∂i1θ1...∂
idθd

fL̃π(l̃, θ)
∣∣∣

fL̃π(l̃, θ)
=∣∣∣∣∣ ∂d

∂i1θ1...∂
idθd

(
∞∫̃
l

fL̃π |Lπ(l̃, l)fLπ(l, θ) dl

)∣∣∣∣∣
∞∫̃
l

fL̃π |Lπ(l̃, l)fLπ(l, θ) dl

for for d = 1, 2, 3 and i0 + . . . id = d. The existence of these fractions is given
by assumption R-12. We can therefore conclude that∣∣∣∣ ∂3

∂θjθkθl
ln fL̃π(l̃)

∣∣∣∣ ≤ c
where c is constant. We choose Mi1,...,id(l̃) = c,the mean of this is

E(Mi1,...,id(L̃)) = E(c) = c

and therefore finite.

We choose

M̃i1,...,id(l̃) = Zc+ (1− Z)Mi1,...,id(l̃)

as the majorant.
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Theorem 3.4. If fL̃π |Lπ ,U (l̃, l, u) has c(l̃, u) for all u ∈ Sd−1and l̃ ∈ (0,Wmax] such
that

fL̃π |Lπ ,U (l̃, l, u) < c(l̃, u)

for all l ∈ [l̃,∞), then

fL̃π |Lπ(l̃, l) < E(c(l̃, U)).

Proof. Follows directly by the monotony of the mean.

This means that when we deal with the boundedness of the marginalised density
fL̃π |Lπ(l̃, l) we can look at the easier density fL̃π |Lπ ,U (l̃, l, u).

Associated Point Rule 5: Consistency and asymptotic normality
and convergence

Theorem 3.5. Assume we have line segment process with a log-normal
length distribution with parameters θ0 = (µ0, σ0) ∈ Θ with Θ compact,
which is observed in a rectangular window W with the associated point rule
and orientation distribution with density fU (u). This leads to a censored
sample (L̃i, Zi), i = 1, . . . , n with density

fL̃(l̃; θ) = Z

2∑
i=1

4∑
j=1

cϑ,i,u(l̃)∫
cϑ,i,l(l̃)

cϕ,u,j(l̃,ϑ)∫
cϕ,l,j(l̃,ϑ)

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (θ, ϕ) dϕ dθ

+ (1− Z)fL(l̃;µ, σ).

If we furthermore assume that fisher information is positive definite, then
the resulting maximum likelihood estimator is consistent and asymptotically
normal.

Proof. We need to verify the conditions of theorem 3.3. We know that the
log normal distribution fulfils the conditions of theorem 2.8.

We first look at

fL̃|L,U (l̃|l, u) =
− ∂
∂l̃
a(l, l̃, u)

|W | − v(l)

and note that the denominator is always positive and the numerator only
depends on l̃ and not l. Therefore to investigate the behaviour in l̃ we only
have to look at the numerator. We take its derivative in l̃ and get

− ∂
2

∂l̃2
a(l, l̃, u) = −2c1c2(W3 − c3 l̃)− 2c1(W2 − c2 l̃)c3 − 2(W1 − c1 l̃)c2c3
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and since W1 − c1 l̃ > 0,W2 − c2 l̃ > 0 and W3 − c3 l̃ > 0 this is always
negative . Therefore fL̃π |L,U (l̃|l, u) will be decreasing in l̃ for all l and u.

Furthermore we we see that the denominator is increasing with l. We
therefore conclude that

cmax(l̃) = fL̃|L,U (l̃|l̃, u).

To investigate the boundedness on l̃ ∈ (0,Wmax] we only have to look at

lim
l̃→0

fL̃(l̃; θ) = lim
l̃→0

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (ϑ, ϕ) d

=

∞∫
0

fL̃π |L,U (0|l, ϑ, ϕ)fL(l;µ, σ) dl

due to continuity of the function. If we look at the integrand, that

lim
l→0

fL̃π |L,U (0|l, ϑ, ϕ) =∞

and the integral might be unbounded. We see that

lim
l→0

fL̃π |L,U (0|l, ϑ, ϕ)fL(l;µ, σ) = 0

therefore the integrand is bounded and the whole integral is bounded.
Therefore fL̃(l̃; θ) is continuous and bounded on (0,Wmax].

For condition R-12 we first note that if this property holds for each of
the summands in the densityfL̃ it holds for the whole density. We only
look at one summand and have to show that

∂d

∂i1µ∂i2σ

cϑ,u(l̃)∫
cϑ,l(l̃)

cϕ,u(l̃,ϑ)∫
cϕ,l(l̃,ϑ)

∞∫̃
l

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (ϑ, ϕ) dϕ dϑ


2∑
i=1

4∑
j=1

cϑ,u,i(l̃)∫
cϑ,l,i(l̃)

cϕ,u,j(l̃,ϑ)∫
cϕ,l,j(l̃,ϑ)

∞∫̃
l

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (ϑ, ϕ) dϕ dϑ

<∞.

where the angle boundaries of the numerator is one of the possible combi-
nation.

We note that for l̃ ∈ (0,Wmax) fL̃|L(l̃, l) > 0 and therefore the fraction

exists. The problem is at the limit of l̃ = Wmax. For l̃ = D the integration
boundaries cϑ,l(Wmax) = cϑ,u(Wmax) and therefore cϕ,l(Wmax, cϑ,l(Wmax)) =
cϕ,u(Wmax, cϑ,1(Wmax)), we are integrating over a null set and the integral
is 0 for numerator and denominator . We therefore use the rule of l’Hospital
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and compute for the numerator

∂

∂l̃

cϑ,u(l̃)∫
cϑ,l(l̃)

cϕ,u(l̃,ϑ)∫
cϕ,l(l̃,ϑ)

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l̃;µ, σ) dlfU (ϑ, ϕ) dϕ dϑ =

∂cϑ,u(l̃)

∂l̃

cϕ,2(l̃,cϑ,u(l̃))∫
cϕ,l(l̃,cϑ,u(l̃))

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (cϑ,2(l̃), ϕ) dϕ

−
∂cϕ,l,j(l̃)

∂l̃

cϕ,2(l̃,cϕ,l,j(l̃))∫
cϕ,1(l̃,cϕ,l,j(l̃))

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (cϕ,l,j(l̃), ϕ) dϕ

+

cϑ,2(l̃)∫
cϕ,l,j(l̃)

∂

∂l̃

cϕ,2(l̃,ϑ)∫
cϕ,1(l̃,ϑ)

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (ϑ, ϕ) dϕ dϑ

using Leibniz integral rule. This still converges to zero and we will still
integrate over a null set in the limit. If we apply the rule of l’Hospital
again and ignore all integrals over angles we get summands of the form

∂cϑ,l,i(l̃)

∂l̃

∂cϕ,j(l̃, cϑ,i(l̃))

∂l̃
fU (cϑ,i(l̃), cϕ,j(l̃, cϑ,i(l̃)))

∂

∂l̃

∞∫
l̃

fL̃π |L,U (l̃|l, cϑ,i(l̃), cϕ,j(l̃, cϑ,i(l̃)))fL(l;µ, σ) dl

where

∂cϑ,i(l̃)

∂l̃

∂cϕ,j(l̃, cϑ,i(l̃))

∂l̃
fU (cϑ,i(l̃), cϕ,j(l̃, cϑ,i(l̃)))

converges to a constant for l̃ → Wmax. We therefore have to investigate
the limit behaviour of

∂

∂l̃

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, σ)fL(l;µ, σ) dl =

∞∫
l̃

∂

∂l̃
fL̃|L,U (l̃, l, ϑ, ϕ)fL(l, µ, σ) dl

− fL̃|L,U (l̃, l̃, ϑ, ϕ)fL(l̃)

which still converges to 0 since l̃ = Wmax is a double root of fL̃π |L,U (l̃|l, ϑ, σ).
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We therefore differentiate again and get

∂2

∂l̃2

∞∫
l̃

fL̃π |L,U (l̃|l, ϑ, σ)fL(l;µ, σ) dl =

∞∫
l̃

∂2

∂l̃2
fL̃|L,U (l̃, l, ϑ, ϕ)fL(l, µ, σ) dl

− ∂

∂l̃
fL̃|L,U (l̃, l̃, ϑ, ϕ)fL(l̃)− ∂

∂l̃

(
fL̃|L,U (l̃, l̃, ϑ, ϕ)fL(l̃)

)
(3.18)

we see that

∂2

∂l̃2
fL̃|L,U (l̃, l, ϑ, ϕ) =

−6c1c2c3

|W |
6= 0

for l̃ → Wmax. We see that after differentiating the denominator 4 times
we have a limit that is constant and neither 0 of ∞ for l̃ → Wmax. If we
do the same for the nominator, we will get similar results. We therefore
conclude, that

∂d

∂i1µ∂i2σ

cϑ,u(l̃)∫
cϑ,l(l̃)

cϕ,u(l̃,ϑ)∫
cϕ,l(l̃,ϑ)

∞∫̃
l

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (ϑ, ϕ) dϕ dϑ


2∑
i=1

4∑
j=1

cϑ,u,i(l̃)∫
cϑ,l,i(l̃)

cϕ,u,j(l̃,ϑ)∫
cϕ,l,j(l̃,ϑ)

∞∫̃
l

fL̃π |L,U (l̃|l, ϑ, ϕ)fL(l;µ, σ) dlfU (ϑ, ϕ) dϕ dϑ

= c <∞

for a constant c ∈ R and all l̃ ∈ (0,Wmax].

Therefore the ML estimator is consistent and asymptotically normal. To
investigate the convergence of the EM algorithm we use theorem 2.12.

Theorem 3.6. The function Q(θ|θ0) from Equation (3.4) is continuous in
θ and θ0 and therefore the EM algorithm converges to a stationary point of
the likelihood of fL̃∗.

Proof. We look at the function

Q(θ|θ0) =

n1∑
i=1

− ln(Li)− ln(
√

2πσ) +

(
−(ln(Li)− µ)2

2σ2

)

+

n2∑
i=1

−Eθ0
[
ln(Li)|L̃i

]
+ ln(

√
2πσ)

+

−Eθ0
[
ln(Li)

2|L̃i
]
− µEθ0

[
ln(Li)|L̃i

]
+ µ2

2σ2



79



since σ > 0 this is continuous for all σ and also for µ. To proof continuity
in µ0, σ0 we have to look at

Eθ0
[
ln(L)k|L̃

]
=

∞∫
0

ln(l)kfL|L̃(l|L̃, µ0, σ0) dl

=

∞∫
0

ln(l)k
fL̃|L(L̃, l)fL(l;µ0, σ0)

fL̃(L̃, µ0, σ0)
dl

=
1

fL̃(L̃, µ0, σ0)

∞∫
0

ln(l)kfL̃|L(L̃, l)fL(l;µ0, σ0) dl

and show that it is continuous in θ0. To show the continuity of the integral
we need a majorant for

| ln(l)kfL̃|L(L̃, l)fL(l;µ0, σ0)| ≤ cmax(L̃)| ln(x)k|fL(l;µ0, σ0)

≤ cmax(L̃)gk(l)

where the majorant gk(l) is given in (2.6), since fL(l, µ, σ) is the density of
a log-normal distribution. cmax(L̃) exists since fL̃|L fulfils property R-10.
To show that

fL̃(l̃, µ0, σ0) =

∞∫
l̃

fL̃|L(l̃, l)fL(l, µ0, σ0) dl

is continuous we have to find a majorant. Using again the existence of cmax
and the existence of the majorant for the log-normal density we get

|fL̃|L(L̃, l)fL(l, µ0, σ0)| ≤ cmax(L̃)|fL(l, µ0, σ0)|

≤ cmax(l̃g0(l).

Therefore Q(θ|θ0) is continuous in θ and θ0 and the EM algorithm will
converge to a stationary point of the likelihood function.

Therefore the EM algorithm will converge to a stationary point of the
likelihood function of the censored fibres L̃.
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Plus Sampling 5: Consistency and asymptotic normality and con-
vergence

Theorem 3.7. Assume we have line segment process with a log-normal
length distribution with parameters θ0 = (µ0, σ0), which is observed in a
rectangular window W with plus sampling as the used sampling rule and
orientation distribution with density fU (u). This leads to a censored sample
(L̃∗+i , Zi), i = 1, . . . , n with density

fL̃+∗(l̃; θ) = Z
2∑
i=1

4∑
j=1

∞∫
l̃

cϑ,u,i(l̃,l)∫
cϑ,l,i(l̃,l)

cϕ,u,j(l̃,l,ϑ)∫
cϕ,l,j(l̃,l,ϑ)

fL̃|L+,U (l̃|l, ϑ, ϕ)fL+(l; θ) dlfU (ϑ, ϕ) dϕ dϑ dl

+ (1− Z)fL+(l̃; θ).

If the resulting fisher information matrix is positive definite, then the result-
ing maximum likelihood estimator is consistent and asymptotically normal.

Proof.R-10 If we look at the density we have

fL̃π |L,U (l̃|l, ϑ, ϕ) =

∂
∂l̃
a(l, l̃, ϑ, ϕ)

w(l, ϑ, ϕ)− v(l, ϑ, ϕ)
.

We first look at the denominator for v(l) > 0 we get

w(l, ϑ, ϕ)− v(l, ϑ, ϕ) = |W |+ (W1W2c3l) + (W1c2lW3) + (c1lW2W3)

− (W1 − c1l)(W2 − c2l)(W3 − c3l)

≥ |W |+ (W1W2c3 l̃) + (W1c2 l̃W3) + (c1 l̃W2W3)

− (W1 − c1 l̃)(W2 − c2 l̃)(W3 − c3 l̃)

since l > l̃. The numerator itself is continuous in l̃ and therefore
bounded for all l and l̃. We now look at the limit case

lim
l→∞

∂
∂l̃
a(l, l̃, ϑ, ϕ)

w(l, ϑ, ϕ)
=

2(W1 − c1 l̃)c2c3 + 2c1(W2 − c2 l̃)c3 + 2c1c2(W3 − c3 l̃)

W1W2c3 +W1c2W3 + c1W2W3

we note that we only need to look at the case for l̃ < l
2 since l →∞.

Also note that v(l, ϑ, ϕ) = 0 for l large enough. We see that the limit
in l is bounded. Since the function is continuous we conclude that it
is bounded for all l ∈ [l̃,∞). We therefore conclude, that there exists
a cmax(l̃) such that fL̃π |L,U (l̃|l, ϑ, ϕ) < cmax(l̃).
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R-11 Like for the associated point the boundedness of the integral is no
problem for l̃ > 0. We will look at the case for l̃→ 0

fL̃π |L,U (0|l, ϑ, ϕ)fL+(l;µ, σ) =
− ∂
∂l̃
a(l, 0, u)

w(l, u)− v(l, u)

ξl + |W |
ξ E(L) + |W |

fL(l;µ, σ)

=
1

ξ E(L) + |W |

(
−ξ ∂

∂l̃
a(l, 0, u)

w(l, u)− v(l, u)
fL(l;µ, σ)

−|W | ∂
∂l̃
a(l, 0, u)

w(l, u)− v(l, u)
fL(l;µ, σ)

)
We note that there is a possible singularity for l→ 0. We get

lim
l→0

w(l, u)− v(l, u) = 0

but since the density lim
l→0

fL(l;µ, σ) = 0 and converges faster then

w(l, u)− v(l, u) we get

lim
l→0

1

w(l, u)− v(l, u)
fL(l;µ, σ) = 0.

Therefore the integral

∞∫
l̃

fL̃|L(l̃, l)fL+(l, µ, σ) dl

is bounded on l̃ ∈ (0,Wmax].

R-12 For condition R-12 we have to show that

∂d

∂i1µ∂i2σ

∞∫̃
l

cϑ,2(l̃,l)∫
cϑ,1(l̃,l)

cϕ,2(l̃,l,ϑ)∫
cϕ,1(l̃,l,ϑ)

fL̃π |L,U (l̃|l, ϑ, ϕ)fL+(l;µ, σ)fU (ϑ, ϕ) dϕ dϑ dl


∞∫̃
l

cϑ,2(l̃,l)∫
cϑ,1(l̃,l)

cϕ,2(l̃,l,ϑ)∫
cϕ,1(l̃,l,ϑ)

fL̃π |L,U (l̃|l, ϑ, ϕ)fL+(l;µ, σ)fU (ϑ, ϕ) dϕ dϑ dl

<∞.

we first note that fL̃+|L,U (l̃|l, ϑ, ϕ) > 0 for all l̃ ∈ (0,Wmax] and

l ∈ [l̃,∞). Problematic is, that in the limit case l̃ → Wmax we will
integrate over null sets for the angles and both nominator and denom-
inator will be 0. We deal with this the same way as in the associated
point rule case, we apply the rule of l’Hospital multiple times using
the Leibniz integral rule until all integrals over null sets are gone and
since fL̃+|L,U (l̃|l, ϑ, ϕ) 6= 0 for all l̃ ∈ [0,Wmax] and l ∈ [l̃,∞) we know
that this fractions exists and are bounded by a constant c <∞ for all
l̃ ∈ [0,Wmax] and l ∈ [l̃,∞).
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R-13 The fisher information is positive definite by assumption.

Theorem 3.8. The function Q(θ|θ0) from Equation (3.6) is continuous in
θ and θ0 and therefore the EM algorithm converges to a stationary point of
the likelihood of fL̃.

Proof. We look at the function from Equation(3.6)

Q(θ|θ0) = −n ln(ξeµ+σ2

2 + |W |)− n ln(
√

2πσ)

+

n1∑
i=1

ln(ξLi + |W |)− ln(L+
i ) +

(
−

(ln(L+
i )− µ)2

2σ2

)

+

n2∑
i=1

Eθ0
[
ln(ξL+

i + |W |)|L̃+
i

]
− Eθ0

[
ln(L+

i )|L̃+
i

]

+

−Eθ0
[
ln(L+

i )2|L̃+
i

]
− µEθ0

[
ln(L+

i )|L̃+
i

]
+ µ2

2σ2


since σ > 0 we see that this is continuous in µ and σ.

To show the continuity in µ0, σ0 we look at

Eθ0
(

ln(L+)k|L̃+
)

=

∞∫
0

ln(l)kfL+|L̃+(l|L̃+, µ0, σ0) dl

=

∞∫
0

ln(l)k
fL̃+|L+(l̃|l)fL+(l, µ0, σ0)

fL̃+∗(l̃, µ0, σ0)
dl

=
1

fL̃+∗(l̃, µ0, σ0)

∞∫
0

ln(l)kfL̃+|L+(l̃, l)fL+(l, µ0, σ0) dl

To show the continuity of the integral we need a majorant for

| ln(l)kfL̃+|L+(l̃, l)fL+(l, µ0, σ0)| ≤ cmax(l̃)| ln(x)k|fL+(l, µ0, σ0)

≤ cmax(l̃)gk(l)

where the majorant gk(l) is the known majorant for the reweighed density
case from proof of theorem 3.2 and cmax(l̃ exists.

To show that

fL̃+∗(l̃, µ0, σ0) =

∞∫
l̃

fL̃+|L+(l̃, l)fL+(l, µ0, σ0) dl
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is continuous we have to find a majorant

|fL̃+|L+(l̃, l)fL+(l, µ0, σ0)| ≤ cmax|fL+(l, µ0, σ0)|

≤ cmaxg0(l).

where g0(l) is the known majorant for the reweighed case.

Remark
In our proofs for the consistency and asymptotic normality of our estimators we
assumed that the resulting fisher information matrix is positive definite. The prob-
lem is, that direct computation by using the density fL̃π∗(l̃) we get terms that are
analytically not tractable.

Whether the fisher information matrix is positive definite remains an open ques-
tion.

3.3.6. Variance of the estimator

To estimate the mean square error of the EM estimator we use the Louis method.
The first part of the Louis method is the Hessian of the complete data likelihood.

We calculate the Hessian of Equation (3.3) and get

H (Q(θ|θ0)) = −nH(ln (E [π(L)])) +

n1∑
i=1

H (ln(f(Lπi , θ)))

+

n2∑
i=1

HEθ0
[
(ln(f(Lπi , θ))) |L̃πi

]
For the covariance we need the gradient of the log-likelihood function and get

∇l(θ|L) = ∇
n∑
i=1

ln(π(l))− lnE [π(L)] + ln fL(Lπi , θ)

= −n∇ lnE [π(L)] +
n∑
i=1

∇ ln fLπ(Lπi , θ)

Calculating the covariance yields

covLπ |L̃;θ̂0
(∇l(θ|Lπ)) = covLπ |L̃;θ̂0

(
−n∇ lnE [π(L)] +

n∑
i=1

∇ ln fLπ(Lπi , θ)

)

= covLπ |L̃;θ̂0

(
n∑
i=1

∇ ln fLπ(Lπi , θ)

)
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Associated Point Rule 6:
The EM iteration leads to an estimator θ̂ = (µ̂, σ̂), to estimate the variance
we need the fisher information. To estimate it we use Equation (2.14). We
therefore need all first two derivatives of l(θ|L), we get

∂l(θ|L)

∂µ
=

n∑
i=1

ln(Li)− nµ

σ2

∂l(θ|L)

∂σ
=

n∑
i=1

(ln(Li)− µ)2 − nσ2

σ3

=

n∑
i=1

(ln(Li)
2 − ln(Li)µ) + nµ2 − nσ2

σ3

∂2l(θ|L)

∂µ2
=
−n
σ2

∂2l(θ|L)

∂µ∂σ
=

−2

(
n∑
i=1

ln(Li)− nµ
)

σ3

∂2l(θ|L)

∂σ2
=

−3

(
n∑
i=1

(ln(Li)− µ)2 + nσ2

)
σ4

=

−3

(
n∑
i=1

(ln(Li)
2 − 2µ ln(Li)) + nµ2 + nσ2

)
σ4

.

With this we get the components of H(Q(θ|θ0)) as

∂2Q(θ|θ0)

∂µ2
=
−n
σ2

∂2Q(θ|θ0)

∂µ∂σ
=

−2

(
n1∑
i=1

ln(Li) +
n2∑
i=1

E
[
ln(Li)|L̃i

]
− nµ

)
σ2

∂2Q(θ|θ0)

∂σ2
=

−3

(
n1∑
i=1

(ln(Li)
2 − 2µ ln(Li))

)
σ4

+

−3

(
n2∑
i=1

(
Eθ0

[
ln(Li)

2|L̃i
]
− 2µEθ0

[
ln(Li)|L̃i

])
+ nµ2 + nσ2

)
σ4

.

(3.19)
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The first diagonal component of cov(∇θl(θ|L)) is

var(
∂l(θ|L)

∂µ
) = var

n∑
i=1

ln(Li)− nµ

σ2

=
1

σ4

n∑
i=1

var (ln(Li))

=
1

σ4

(
n1∑
i=1

ln(Li)
2 −

n1∑
i=1

(ln(Li))
2

+

n2∑
i=1

Eθ0
[
ln(Li)

2|L̃i
]
−

n2∑
i=1

Eθ0
[
ln(Li)|L̃i

]2
)

We note that the influence of the uncensored fibres vanishes since the vari-
ance is in respect to the given censored length and we get

var(
∂l(θ|L)

∂µ
) =

1

σ4

(
n2∑
i=1

Eθ0
[
ln(Li)

2|L̃i
]
−

n2∑
i=1

Eθ0
[
ln(Li)|L̃i

]2
)
. (3.20)

The second diagonal component is

var(
∂l(θ|L)

∂σ
) = var


n∑
i=1

(ln(Li)
2 − ln(Li)µ) + nµ2 − nσ2

σ3


=

1

σ6
var

(
n∑
i=1

(ln(Li)
2 − ln(Li)µ)

)

=
1

σ6

n∑
i=1

(var
(
ln(Li)

2 − ln(Li)µ
)
)

The influence of the uncensored fibres vanishes as well and we get

var(
∂l(θ|L)

∂σ
) =

1

σ6

n2∑
i=1

Eθ0
[(

ln(Li)
2 − ln(Li)µ− Eθ0

(
ln(Li)

2 − ln(Li)µ
∣∣ L̃i))2

|L̃
]

=
1

σ6

n2∑
i=1

Eθ0
[
ln(Li)

4|L̃i
]

+ µ2 Eθ0
[
ln(Li)

2|L̃i
]

+
(
Eθ0

[
ln(Li)

2|L̃i
])2

+ µ2
(
Eθ0

[
ln(Li)|L̃i

])2

− 2µEθ0
[
ln(Li)

3|L̃i
]
− 2

(
Eθ0

[
ln(Li)

2|L̃i
])2

+ 2µEθ0
(

ln(Li)
2|L̃i

)
Eθ0

[
ln(Li)|L̃i

]
− 2µ2

(
Eθ0

[
ln(Li)|L̃i

])2
.

(3.21)
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The last component is given by

cov

(
∂l(θ|L)

∂µ
,
∂l(θ|L)

∂σ

)
= cov


n∑
i=1

ln(Li)− nµ

σ2
,

n∑
i=1

(ln(Li)
2 − ln(Li)µ) + nµ2 − nσ2

σ3


=

1

σ5
cov

(
n∑
i=1

ln(Li),
n∑
i=1

(ln(Li)
2 − ln(Li)µ)

)

using the bilinearity of the covariance we get

cov

(
∂l(θ|L)

∂µ
,
∂l(θ|L)

∂σ

)
=

1

σ5

n∑
i=1

n∑
j=1

cov
(
ln(Li), ln(Lj)

2
)
− µ cov (ln(Li), ln(Lj))

since the Li are independent we have cov
(
ln(Li), ln(Lj)

2
)

= 0 and
cov (ln(Li), ln(Lj)) = 0 for i 6= j. This leads to

cov

(
∂l(θ|L)

∂µ
,
∂l(θ|L)

∂σ

)
=

1

σ5

n2∑
i=1

cov
(
ln(Li), ln(Li)

2
)
− µ cov (ln(Li), ln(Li))

=
1

σ5

n2∑
i=1

E[ln(Li)
3|L̃]− E[ln(Li)|L̃i]E[ln(Li)

2|L̃i]

− µ
(
E[ln(Li)

2|L̃i]− E[ln(Li)|L̃i]2
)

(3.22)

We can calculate the observed fisher information for an EM estimator θEM
by using the Louis method and get

I(θEM , L̃) = −H(Q(θEM |θEM ))− cov (∇θl(θEM |L)) (3.23)

we can estimate the covariance of the estimator by

cov(θEM ) = I(θEM , L̃)−1.
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Plus Sampling 6:
The EM estimator leads to an estimator θ̂ = (µ̂, σ̂). we use the Louis
method to estimate the observed fisher information by

Î(L̃+, θ̂) = −H(Q(θ̂|θ̂)− covL+|L̃+,θ̂∇θl(L̃
+, L+; θ̂)

we look at

covL+|L̃+,θ̂∇θl(L̃
+, L+; θ̂) = covL+|L̃+,θ̂

n∑
i=1

ln(fL+(L+
i ;µ, σ))

which leads to the same formulae as in the associated point rule.
We further see

H(Q(θ|θ0)) = −nH ln(E(π(L))) +
n∑
i=1

HEθ0
[
ln fL(Li;µ, σ)|L̃i

]
and note that

n∑
i=1

Eθ0
[
ln fL(Li;µ, σ)|L̃i

]
is also known from the associated point rule. We get

H ln(E(π(L+))) =
xi|W | exp(µ+ σ2

2 )(
ξ exp(µ+ σ2

2 ) + |W |
) (1 σ

σ
ξ exp(µ+σ2

2
+|W |+|W |σ2)

|W |

)

for the last unknown part. We can now estimate the complete fisher infor-
mation with

Î(L̃, θ̂) = nH ln(E(π(L+)))−
n∑
i=1

E
[
fL(Li;µ, σ)|L̃i

]
+ covL+|L̃,θ̂

n∑
i=1

E(ln(f(l;µ, σ))).

(3.24)

Note that, even though a lot of the formula look similar as in the associated
point rule case, the conditional means are in regards to L̃+ and not L̃.

3.4. Simulation Study

In this section we will do a simulation study for the proposed EM estimator. In this
study we will investigate the EM estimator described before using the two sampling
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E[L] std(L) µ σ

100 10 4.6002 0.0998
100 30 4.5621 0.2946
100 50 4.4936 0.4772

Table 3.1.: Parameters of the length distribution.

rules. The associated point rule which leads to an unbiased sample but ignores some
of the available data and plus sampling which uses all the data but leaves us with
biased sample. We will use a reweighed density to deal with this problem.

We will directly compare these methods to the HT style estimators.
We will investigate the influence of window size and parameters of the length

distribution.

3.4.1. Geometrical Setting

We will investigate a boolean fibre process in a die of size [0,W ]3. We choose three
different sizes W = 100, 200, 300 to simulate different degrees of censoring. In a
smaller window more fibres will be censored. We will do this with a sample size of
n = 20, 50, 100, 500, chosen with the appropriate sampling rule.

For the length L we choose a log normal distribution with three sets of parameters
seen in table 3.1 to see the influence of different variances on the estimator. The
parameters were chosen to get round numbers in the mean and standard deviation.
For the orientation distribution we look at a bipolar distribution with β = 0.1. We
make 100 realisations for each case and calculate the estimators θ̂. We then calculate
their sample mean E θ̂ and sample variance var(θ̂). We investigate the estimators
in regards to bias and consistency in regards to the variance of the sample and the
window size.

All iterative methods were started at µ0 = µ+ 0.2 and σ0 = σ + 0.2.

3.4.2. HT estimator

In this section we have a sample of l−i for i = 1, . . . , n uncensored lengths. To
estimate the parameters we use an HT estimator with the ideas introduced in Section
3.2. The weights are

π−(L) =

∫
Sd−1

|W 	 lin(L,U)|fU (u) du

=

2π∫
0

π∫
0

|W 	 lin(L,U)|fU (ϕ, ϑ) dϑ dϕ.

The integral will be solved by using standard quadrature formulas The intervals
[0, π] and [0, 2π] were discretized using 50 steps.
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Since estimating µ is estimating the first moment of ln(L) we can directly use the
HT estimator and get

µ̂HT =
1

nHT

n∑
i=1

ln(l−i )

π−(l−i )
.

with

nHT =

m∑
i=1

1

π−(Li)

to normalise the sum.The estimator µ̂HT is ratio unbiased.

To estimate σ we have to estimate the standard deviation of ln(L). For a sample
li i = 1, . . . , n from a log-normal distribution, the standard ML estimator is

σ̂ =

√√√√ 1

n

n∑
i=1

(li − µ̂)2

where µ̂ = 1
n

∑n
i=1 li is the ML estimator of µ. We now reweighed this sum to get

σ̂HT1 =

√√√√ 1

nHT

n∑
i=1

(
ln(l−i )− µ̂HT

)2
π−(l−i )

as the HT estimator. We now assume that the weights 1
π−(l−i )

where independent of

l−i . In this case a correction for the bias is given by

σ̂HT2 =

√√√√ 1

nHT − mHT
nHT

n∑
i=1

(
ln(l−i )− µ̂HT

)2
π−(l−i )

with

mHT =

n∑
i=1

1

π−(l−i )2
.

For the simulation study results for the parameter µ̂HT we will look at Table
3.2, where we see the estimation results for EL = 100 and stdL = 30. We see
that for W = 100 the estimators seem to systematically underestimate the true
parameter. This underestimation vanishes with a bigger window size. If we look
at the estimation for results for stdL = 10 we see similar results, except that the
estimators have a lower variance overall and the underestimation is less severe. For
stdL = 50 we see the opposite effect. These results can be found in Tables A.1 and
A.3.
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E µ̂HT var(µ̂HT )
W = 100

n = 20 4.3842 0.0072
n = 50 4.4212 0.0079
n = 100 4.4462 0.0073
n = 500 4.4801 0.0034
W = 200

n = 20 4.5432 0.0044
n = 50 4.5556 0.0018
n = 100 4.5562 0.0016
n = 500 4.5585 0.0004
W = 300

n = 20 4.5803 0.0057
n = 50 4.5678 0.0022
n = 100 4.5668 0.0009
n = 500 4.5630 0.0002

Table 3.2.: Simulation study results for different window sizes W and sample sizes
n for µ̂HT , with true µ = 4.5621 and σ = 0.2936

For the results regarding the estimators σ̂HT1 and σ̂HT2 we look at Table 3.3.
We see that both tend to underestimate the true parameter as well. The estimator
σ̂HT2 seems to have a smaller bias especially for smaller sample sizes but it has a
higher variance. The difference in bias and variance vanishes for higher sample sizes.
We conclude that σ̂HT2 should be used to estimate σ. These results are similar for
stdL = 10 in Table A.2 and stdL = 50 in Table A.4, only the variance of the
estimator rises and falls with the variance in the sample.

Remark
One might ask why the estimator σ̂HT1 was even investigated, since it is dominated
by σ̂HT2. The reason is, that in the context of weighted statistics the estimator for
the mean is simply the reweighed sum. Estimating the variance is not as straight
forward.

Depending of what kind of weights one deals with, different estimators are pre-
ferred. In this part we are dealing with probability weights, in other cases we might
deal with frequency weights, where different estimator would be better. That being
said, implementing a general reweighed variance estimator needs to deal with multi-
ple cases. Some software packages do not do that, and will use the simple estimator
σ̂2
HT1 for all reweighed variances. A user of such software should keep this in mind.
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E σ̂HT1 var(σ̂HT1) E σ̂HT2 var(σ̂HT2)
W = 100

n = 20 0.1787 0.0006 0.1913 0.0011
n = 50 0.1937 0.0005 0.2058 0.0013
n = 100 0.2061 0.0005 0.2168 0.0014
n = 500 0.2276 0.0004 0.2325 0.0006
W = 200

n = 20 0.2636 0.0017 0.2716 0.0018
n = 50 0.2757 0.0011 0.2791 0.0011
n = 100 0.2822 0.0006 0.2840 0.0006
n = 500 0.2890 0.0003 0.2893 0.0003
W = 300

n = 20 0.2822 0.0020 0.2897 0.0022
n = 50 0.2897 0.0009 0.2930 0.0009
n = 100 0.2901 0.0005 0.2914 0.0005
n = 500 0.2946 0.0001 0.2949 0.0001

Table 3.3.: Simulation study results for different window sizes W and sample sizes
n for σ̂HT1 and σ̂HT2, with true µ = 4.5621 and σ = 0.2936

3.4.3. Associated point rule

In the setting for the associated point rule we have a censored sample l̃∗i with i =
1, . . . , n. We assume we have li with i = 1. . . . , n1 uncensored fibres and l̃i with
i = 1, . . . , n2 censored fibres. For the EM iterations we have to iterate with Equation
(3.4). For the maximisation in each step we calculate the gradient and get

∂

∂µ
Q(θ|θ0, l̃

∗) =

n1∑
i=1

2(ln(li)− µ)

2σ2
+

n1∑
i=1

2(Eθ0(ln(Li)|L̃i = l̃i)− µ)

2σ2

∂

∂σ
Q(θ|θ0, l̃

∗) =

n1∑
i=1

−1

σ
+

(ln(li)− µ)2

σ3

+

n2∑
i=1

−1

σ
+

Eθ0
(

ln(Li)
2|L̃i = l̃i

)
− µEθ0

(
ln(Li)|L̃i = l̃i

)
+ µ2

σ3

and calculate the roots. We get

µ =
1

n1 + n2

(
n1∑
i=1

ln(li) +

n2∑
i=1

Eθ0(ln(Li)|L̃i = l̃i)

)

σ2 =

n1∑
i=1

(ln(li)− µ)2 +
n2∑
i=1

Eθ0
(

ln(Li)
2|L̃i = l̃i

)
− µEθ0

(
ln(Li)|L̃i = l̃i

)
+ µ2

n1 + n2
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in each iteration.
The conditional means

Eθ0
[
ln(L)k|L̃ = l̃

]
=

∞∫
l̃

2π∫
0

π∫
0

ln(l)kfL|L̃,U (l|L̃, ϕ, ϑ, θ0)fU (ϕ, ϑ)

are calculated by using numeric quadrature. We first use b = 10 ·W as an upper
bound for L, we have

Eθ0
[
ln(L)k|L̃ = l̃

]
≈

b∫
L̃

2π∫
0

π∫
0

ln(l)kfL|L̃,U (l|L̃, ϕ, ϑ)fU (ϕ, ϑ)

and approximated this integrals with the composite 3
8 -rule. We discretize the angle

intervals [0, π] and [0, 2π] with fifty steps. The length interval [l̃, b] with 100 steps.
We do this iteration until we reach convergence. Convergence is reached if in the

jth-step |µ̂j − µ̂j−1| < 1e−6 and |σ̂j − σ̂j−1| < 1e−6. This iteration leads to an

estimator θ̂aEM = (µ̂aEM , σ̂
a
EM ).

To estimate the fisher information we use

I(θaEM , L̃) = −H(Q(θaEM |θaEM ))− cov (∇θl(θaEM |L)) ,

where the components of H(Q(θaEM |θaEM )) can be found in Equation (3.19) and the
components of cov (∇θl(θaEM |L)) in Equations (3.20),(3.22) and (3.21). Here we will

look at the estimators ˆI−1
a 1,1 and ˆI−1

a 2,2 which should estimate a lower bound for
the variances of µ̂aEM and σ̂aEM .

For the simulation study results we will first look at Table 3.4, where we see the
estimation results for EL = 100 and stdL = 30. We first note that the variance
of the estimator is lower with a higher sample size, this fits about the consistency
of the estimator. The variance is also lower for a higher window size. That means
that with less censoring we will have a better estimation result. Lastly we see that
with a larger sample size we will need fewer iterations to achieve convergence. The
influence of the sample size on the number of iterations is lowered with a bigger
window size.

If we compare these results to the ones seen in Table A.7 for µ = 4.5621 and
σ = 0.2936, we see the same results but note that the variance of the estimators is
higher since the variance in the data is higher. This is consistent with the results
seen in Table A.5 for µ = 4.6002 and σ = 0.0998, where the variance of the estimator
lower.

For the estimation of the inverse Fisher information we start with the case EL =
100 and stdL = 30 in Table 3.5. To quantify the quality of these estimators we
have to compare them the estimated variances var µ̂a and var σ̂a in Table 3.4. The
variances of these estimators should be bounded from below by their respective
component of the inverted Fisher information. If we look at the simulation study
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E µ̂a var(µ̂a) E σ̂a var(σ̂a) iterations
W = 100

n = 20 4.4227 0.0193 0.2230 0.0150 84.3
n = 50 4.4163 0.0057 0.2514 0.0072 72.42
n = 100 4.4131 0.0033 0.2549 0.0029 65.37
n = 500 4.4179 0.0006 0.2601 0.0005 57.23
W = 200

n = 20 4.4946 0.0107 0.2745 0.0032 18.23
n = 50 4.5007 0.0037 0.2844 0.0011 18.01
n = 100 4.5046 0.0019 0.2896 0.0006 16.83
n = 500 4.5049 0.0003 0.2951 0.0002 16.11
W = 300

n = 20 4.5532 0.0066 0.2707 0.0021 11.36
n = 50 4.5426 0.0026 0.2766 0.0009 10.52
n = 100 4.5357 0.0012 0.2804 0.0005 9.88
n = 500 4.5328 0.0003 0.2833 9.30e−5 9.21

Table 3.4.: Simulation Study Results for the parameters for the associated point
rule, with µ = 4.5621 and σ = 0.2936

results we see that this is true for a sample size between n = 200 or n = 500. Before
that the estimated value may still be used to get a general idea of the quality of the
estimator.

3.4.4. Plus-sampling

In this setting we will investigates the EM estimator if we use plus sampling and a
reweighed density. We have a censored sample l̃∗+i with i = 1, . . . , n. We assume
we have l with i = 1, . . . , n1 uncensored lengths and l̃ with i = 1, . . . , n2 censored
lengths with n = n1 + n2. For the EM algorithm we have to maximise Equation
(3.5) iteratively. For this we calculate the gradient

∂

∂µ
Q(θ|θ0) =

−nξeµ+σ2

2

ξeµ+σ2

2 + |W |
− µn

σ2
+

∑n1
i=1 ln(li) +

∑n2
i= Eθ0

[
ln(Li)|L̃i = l̃i

]
σ2

∂Q(θ|θ0)

∂σ
=
−nξσeµ+σ2

2

ξeµ+σ2

2 + |W |
− 1

σ
+

∑n1
i=1 ln(li)

2 +
∑n2

i=1 Eθ0
[
ln(Li)

2|L̃i = l̃i

]
σ3

−

2µ
(∑n1

i=1 ln(li) +
∑n2

i=1 Eθ0
[
ln(Li)|L̃i = l̃i

])
σ3

+
nµ2

σ3
.
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E ˆI−1
a 1,1 var( ˆI−1

a 1,1) E ˆI−1
a 2,2 var( ˆI−1

a 2,2)

W = 100

n = 20 0.0224 0.0019 0.01643 0.0010
n = 50 0.0066 3.45e−5 0.0062 4.93e−5
n = 100 0.0030 3.21e−6 0.0027 4.17e−6
n = 500 0.0006 1.67e−8 0.0005 1.86e−8
W = 200

n = 20 0.0071 8.67e−6 0.0038 2.35e−6
n = 50 0.0029 6.07e−7 0.0017 1.79e−7
n = 100 0.0015 7.60e−8 0.0008 2.32e−8
n = 500 0.0003 6.99e−10 0.0002 2.02e−10
W = 300

n = 20 0.0052 3.50e−6 0.0026 1.08e−6
n = 50 0.0021 2.14e−7 0.0010 6.04e−8
n = 100 0.0011 2.78e−8 0.0005 8.17e−9
n = 500 0.0002 2.34e−10 0.0001 6.42e−11

Table 3.5.: Simulation Study Results for the fisher information for the associated
point rule, with µ = 4.5621 and σ = 0.2936

We wish to find the roots of this gradient. We can reformulate this to finding the
roots of

gI(µ, σ) := −ξeµ+σ2

2 σ2 −
(
ξeµ+σ2

2 + |W |
)
µ

+ (ξeµ+σ2

2 + |W |)

∑n1
i=1 ln(li) +

∑n2
i=1 Eθ0

[
ln(Li)|L̃i = l̃i

]
n

and

gII(µ, σ) := −ξeµ+σ2

2 σ4 − (ξeµ+σ2

2 + |W |)σ2

+

(
ξeµ+σ2

2 + |W |
) n1∑
i=1

ln(li)
2 +

n2∑
i=1

Eθ0
[
ln(Li)

2|L̃i = l̃i

]
n

−
(
ξeµ+σ2

2 + |W |
) 2µ

(
n1∑
i=1

ln(li) +
n2∑
i=1

Eθ0
[
ln(Li)

2|l̃i = l̃i

])
n(

ξeµ+σ2

2 + |W |
)
µ2.
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To calculate the roots we will use a newton type method. Therefore we have to
calculate the derivatives and obtain

∂gI
∂µ

(µ, σ) = −ξσ2eµ+σ2

2 + ξeµ+σ2

2

n1∑
i=1

ln(li) +
n2∑
i=1

Eθ0
[
ln(L)|L̃ = l̃i

]
n

− ξeµ+σ2

2 (µ+ 1)− |W |

∂gI
∂σ

(µ, σ) = −ξσ(σ2 + 2)eµ+σ2

2 + ξσeµ+σ2

2

n1∑
i=1

ln(li) +
n2∑
i=1

Eθ0
[
ln(L)|L̃ = l̃i

]
n

− ξeµ+σ2

2 µσ

for gI and

∂gII
∂µ

(µ, σ) = −ξσ2(σ2 + 1)eµ+σ2

2 + cµ(µ+ 2)eµ+σ2

2 + 2µ|W |

+ ξeµ+σ2

2

n1∑
i=1

ln(li)
2 +

n2∑
i=1

Eθ0
[
ln(Li)

2|L̃i = l̃i

]
n

− 2

(
ξeµ+σ2

2 (µ+ 1) + |W |
) n1∑
i=1

ln(li) +
n2∑
i=1

Eθ0
[
ln(Li)|L̃i = l̃i

]
n

∂gII
∂σ

(µ, σ) = −ξσ3(σ2 + 4)eµ
σ2

2 − ξσ(σ2 + 2)eµ
σ2

2

+ ξσeµ
σ2

2

n1∑
i=1

ln(li)
2 +

n2∑
i=1

Eθ0
[
ln(li)

2|L̃i = l̃i

]
n

− 2ξµσeµ
σ2

2

n1∑
i=1

ln(li) +
n2∑
i=1

Eθ0
[
ln(li)|L̃i = l̃i

]
n

+ ξµ2σeµ
σ2

2 − 2σ|W |

for gII . With this we have the Newton iteration(
µn+1

σn+1

)
=

(
µn
σn

)
−

(
∂gI
∂µ (µn, σn) ∂gI

∂σ (µn, σn)
∂gII
∂µ (µn, σn) ∂gII

∂σ (µn, σn)

)−1(
gI(µn, σn)
gII(µn, σn)

)
which stops if the update∥∥∥∥∥∥

(
∂gI
∂µ (µn, σn) ∂gI

∂σ (µn, σn)
∂gII
∂µ (µn, σn) ∂gII

∂σ (µn, σn)

)−1(
gI(µn, σn)
gII(µn, σn)

)∥∥∥∥∥∥ < 10−6.

This Newton iteration yields a new set of parameters in each step of the EM Algo-
rithm.
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The conditional means

Eθ0
[
ln(L)k|L̃ = l̃

]
=

∞∫
l̃

2π∫
0

π∫
0

ln(l)kfL|L̃,U (l|L̃, ϕ, ϑ, θ0)fU (ϕ, ϑ)

calculated by using numeric quadrature like for the associated point rule. We first
use b = 10 ·W as an upper bound for L, we have

Eθ0
[
ln(L)k|L̃ = l̃

]
≈

b∫
L̃

2π∫
0

π∫
0

ln(l)kfL|L̃,U (l|L̃, ϕ, ϑ)fU (ϕ, ϑ)

and approximated this integrals with the composite 3
8 -rule. We discretize the angle

intervals [0, π] and [0, 2π] with fifty steps. The length interval [l̃, b] with 100 steps.

Convergence is reached if in the jth-step |µ̂j − µ̂j−1| < 1e−6 and |σ̂j − σ̂j−1| <
1e−6. This iteration leads to an estimator θ̂+

EM = (µ̂+
EM , σ̂

+
EM ).

For the variance estimation we use the Louis method and directly implement the
formula in (3.24).

The simulation study results are very similar to the associated point rule. We
will first look at Table 3.6, where we see the estimation results for EL = 100 and
stdL = 30. The variance of the estimator is lower with a higher sample size, fitting
the consistency of the estimator. The variance is also lower for a higher window
size. That means that with less censoring we will have a better estimation result.
Lastly we see that with a larger window size we will need fewer iterations to achieve
convergence. The influence of the sample size on the number of iterations is lower
than the sample size. We conclude that more censoring leads to more iterations
being necessary to achieve convergence.

If we compare these results to the ones seen in Table A.11 for µ = 4.5621 and
σ = 0.2936, we see the same results but note that the variance of the estimators is
higher since the variance in the data is higher. This is consistent with the results
seen in Table A.5 for µ = 4.6002 and σ = 0.0998, where the variance of the estimator
lower.

For the estimation of the inverse Fisher information we start with the case EL =
100 and stdL = 30 in Table 3.7. To quantify the quality of these estimators we
have to compare them the estimated variances var µ̂+ and var σ̂+ in Table 3.6. The
variances of these estimators should be bounded from below by their respective
component of the inverted Fisher information. If we look at the simulation study
results we see that this is true for a sample size between n = 200 or n = 500. Before
that the estimated value may still be used to get a general idea of the quality of the
estimator. Looking at Tables A.10 and A.12 we see the similar results for the other
parameter sets.
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E µ̂+ var(µ̂+) E σ̂+ var(σ̂+) iterations
W = 100

n = 20 4.4532 0.0291 0.2112 0.0184 92.52
n = 50 4.4641 0.0088 0.2471 0.0051 87.19
n = 100 4.4591 0.0034 0.2689 0.0026 72.75
n = 500 4.4575 0.0007 0.2800 0.0005 68.99
W = 200

n = 20 4.4755 0.01264 0.2779 0.0064 32.12
n = 50 4.4833 0.0073 0.3038 0.0019 29.64
n = 100 4.4810 0.0025 0.3073 0.0008 27.69
n = 500 4.4790 0.0005 0.3157 0.0002 25.24
W = 300

n = 20 4.5402 0.0073 0.2679 0.0031 16.47
n = 50 4.5302 0.0028 0.2700 0.0009 14.07
n = 100 4.5222 0.0014 0.2752 0.0004 13.41
n = 500 4.5175 0.0003 0.2792 0.0001 12.43

Table 3.6.: Simulation Study Results for the parameters for the plus sampling rule,
with µ = 4.5621 and σ = 0.2936

E ˆI−1
+ 1,1

var( ˆI−1
+ 1,1

) E ˆI−1
+ 2,2

var( ˆI−1
+ 2,2

)

W = 100

n = 20 0.0175 0.0005 0.0115 0.0002
n = 50 0.0073 1.56e−5 0.0058 1.43e−5
n = 100 0.0039 1.84e−6 0.0030 1.99e−6
n = 500 0.0008 1.36e−8 0.0006 1.55e−8
W = 200

n = 20 0.0105 4.12e−5 0.0059 1.97e−5
n = 50 0.0049 3.16e−6 0.0027 1.23e−6
n = 100 0.0024 3.17e−7 0.0013 9.05e−8
n = 500 0.0005 2.59e−9 0.0003 7.19e−10
W = 300

n = 20 0.0062 6.90e−6 0.0030 2.25e−6
n = 50 0.0024 2.99e−7 0.0011 9.29e−8
n = 100 0.0012 3.83e−8 0.0006 1.15e−8
n = 500 0.0002 3.11e−10 0.0001 1e−10

Table 3.7.: Simulation Study Results for the fisher information for the associated
point rule, with µ = 4.5621 and σ = 0.2936
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3.4.5. Influence of the orientation distribution on the estimator

Up to this point we have assumed that the orientation distribution is known perfectly.
That means that the bias factor, which depends on the orientation distribution, can
be computed exactly and the true distribution is known. To evaluate the robustness
of the estimators in regards to a wrong β we used the same data as above but used
β = 10 for the estimation. Note that this is an extreme choice, for a fibre sample
with a strong main direction such a strong miss estimation would be noticed. We
did the simulation study for the case E[L] = 100 and std(L) = 30. For the EM
estimators we see the results in Table 3.8. We see that both of them underestimate
µ and overestimate σ. But they still are close to the true value and the variance is
falling. The estimators seem to be robust under the misspecified β. In Table 3.9
we see the same results for the HT type estimators. They show a robust behaviour
as well. The underestimation of σ is a little stronger. Otherwise the results are
comparable to the correct specified case.

n E µ̂a var(µ̂a) E σ̂a var(σ̂a) E µ̂+ var(µ̂+) E σ̂+ var(σ̂+)

20 4.4963 0.01074 0.2746 0.0032 4.4800 0.0128 0.2792 0.0065
50 4.5025 0.0037 0.2846 0.0011 4.4886 0.0074 0.3048 0.0020
100 4.5064 0.0019 0.2899 0.0006 4.4860 0.0025 0.3082 0.0009
500 4.5066 0.0003 0.2953 0.0002 4.4839 0.0005 0.3167 0.0002

Table 3.8.: Estimation results with a misspecified orientation distribution for the EM
estimators, with window size W = 200 and true parameters µ = 4.5621
and σ = 0.2936

n E µ̂HT var(µ̂HT ) E σ̂HT2 var(σ̂HT2)

20 4.5429 0.0042 0.2701 0.0017
50 4.5545 0.0017 0.2771 0.0010
100 4.5544 0.0014 0.2814 0.0005
500 4.5554 0.0002 0.2855 0.0002

Table 3.9.: Estimation with a misspecified orientation distribution for the HT esti-
mators, with window size W = 200 and true parameters µ = 4.5621 and
σ = 0.2936

3.4.6. Alternative implementations

An alternative to this method is to sample from the distribution of L|L̃ and use
the Monte Carlo method to estimate the conditional means. The result would be
a so called Monte Carlo EM. We did not follow this approach because in the plus-
sampling case sampling from the distribution is computationally expensive. Also
we would have to make more EM iterations then strictly necessary, since in the
MCEM we have to take the mean of the last iterations to get a stable estimator. An
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implantation using a slice sampler and 1000 samples to estimate the means showed to
be significantly slower than the approach using numeric quadrature without leading
to better estimators.

3.4.7. HT weight or kernel density

In this part we wish to return to the setting of a Horvitz Thompson estimator. We
will ignore all censored lengths and have a biased sample L−i with i = 1, . . . , n. The
true length L has the density f(l). We will formulate a non-parametric estimator
using a kernel density estimator for this sample.

Assume K is a kernel and h is bandwidth. For a given sample L1, . . . , Ln the
kernel density estimator is then defined as

f̂h(l) =
1

nh

n∑
i=1

K

(
l − Li
h

)
.

If we plug in the biased L−i with i = 1, . . . , n directly we will have a biased estimator.
Instead we look at the weighted sample

(
L−i , π

−(L−i )
)

and follow the approach
given in [5]. This approach leads to a weighted kernel density estimator

f̂HT,h(l) =

n∑
i=1

K
(
l−L−i
h

)
/π−(L−i )

h
n1∑
i=1

1/π−(L−i )

.

The consistency and asymptotic normality where proven in [5] as well.
To investigate the quality of this estimator we made a small simulation study with

a line segment study E(L) = 100 and std(L) = 30 and a window size of W = 200.
We look at 100 realisations of this process with n = 20, 50, 100, 500 samples. We
compute the kernel density estimator using Matlab and the built in ksdensity

function. The bandwidth is automatically chosen by Matlab. We then compute
|f̂HT,h − fL|22 for each realisation and estimate the MSE. The results can be seen in
Table 3.10, we see that the error goes down with a higher sample size.
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E ‖f̂HT,h − f‖22
W = 200

n = 20 0.001027
n = 50 0.000499
n = 100 0.000311
n = 500 0.000097

Table 3.10.: Simulation Study Results for the weighted kernel density estimator,
where the true density is a log-normal density with parameters µ =
4.5621 and σ = 0.2936
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4. Estimation from fibre endpoints

The methods on fully segmented fibres described in the previous chapter show great
performance in simulation studies. The problem is, that a full fibre segmentation is
not possible, at least not for interesting window size to fibre length ratios.

A method to segment the fibre endpoints using Gaussian curvature was introduced
in [10]. In [12] a model based on a Neymann Scott cluster process for a fibre endpoint
process was introduced. They also developed an estimator for the length distribution
based on this model and the reduced second moment measure.

We will investigate this estimator and introduce a new estimator based on mini-
mum contrast estimation.

4.1. Fibre endpoint process

We will model the fibre endpoint as a cluster process. The germs of each cluster are
the midpoints of the fibres. We model these midpoints as a Poisson point process
X̃ with intensity γ̃. We then add two points two each germ as the endpoints. These
points have a random distance L > 0 and a random orientation U ∈ Sd−1. Note
that this model is closely related to the line segment model already discussed. If
you take a line segment process and take just the endpoints of each segment we will
have the proposed endpoint process here.

The resulting end point process has an intensity of γ = 2γ̃. It is only isotropic if
the orientation distribution is uniform on the sphere.

4.2. Summary Statistics

To investigate the endpoint process we will derive closed formulas for the reduced
second moment measure, Ripley’s K and the pair correlation function.

These results are cited from [12].

Theorem 4.1. Let X be a fibre endpoint process with intensity γ > 0. Let the
random variables L > 0 be the length of the fibres and U ∈ S2 be the orientation of
the fibres with the random angles ϕ ∈ [0, 2π), ϑ ∈ [0, π). Let IL ⊂ R+, Iϕ ⊂ [0, 2π)
and Iϑ ⊂ [0, π). Consider sets B(IL, Iϕ, Iϑ) ⊂ R3 of the form

B(IL, Iϑ, Iϕ) =
{
l · (sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ))T |l ∈ Il, ϑ ∈ Iϑ, ϕ ∈ Iϕ

}
.

if Iϑ = [0, π) and Iϕ = [0, 2π) we use

B(IL) = B(IL, Iϑ, Iϕ)
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Then following by Equation (2.20) we get

E0(X(B(IL, Iϑ, Iϕ))) = γ ν(B(IL, Iϑ, Iϕ)) + P (L ∈ IL, ϕ ∈ Iϕ, ϑ ∈ Iϑ)

since pn = 0 for all n 6= 2 and p2 = 1. If the orientation and the length are
independent we get

E0(X(B(IL, Iϑ, Iϕ))) = γ ν(B(IL, Iϑ, Iϕ)) + P (L ∈ IL)P (ϕ ∈ Iϕ, ϑ ∈ Iϑ)

By using the reduced second moment measure from Equation (2.17) we get

γK(B(IL, Iϑ, Iϕ)) = γ ν(B(IL, Iϑ, Iϕ)) + P (L ∈ IL)P (ϕ ∈ Iϕ, ϑ ∈ Iϑ) (4.1)

and for IL = [0, r], Iϑ = [0, π) and Iϕ = [0, 2π) we have

K(r) = K(B(IL))

we get

γK(r) = γ ν(B(IL)) + P (L < r) (4.2)

as a model for Ripley’s-K function or also

γK(r, u, ϕ) = γ ν(B(0, r1, u, ϕ)) + P (L < r)P (U ∈ S(u, ϕ)) (4.3)

for the directed K function.

4.3. Estimators

We will first discuss the non parametric estimator introduced in [12]. We will then
introduce a parametric minimum contrast estimator.

4.3.1. Non parametric estimation

Assume we have an endpoint process with intensity γ

The non parametric estimators work by taking Equation (4.1) and plugging in
concrete intervals IL, Iϑ and Iϕ. Since we are interested in the length distribution
of the fibres we transform the equation and get

P (L ∈ IL) =
γK(B(IL, Iϑ, Iϕ))− γ ν(B(IL, Iϑ, Iϕ))

P (ϕ ∈ Iϕ, ϑ ∈ Iϑ)
. (4.4)
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Isotropic estimator

The first idea is to take IL = [l1, l2] as an interval in R+. We set Iϑ = [0, π] and
Iϕ = [0, 2π). That means we look at the whole sphere. The resulting model is

P (L ∈ [l1, l2]) = γK(B(IL))− γ 4

3
π(l32 − l31)

=
γ2K(B(IL)

γ
− γ 4

3
π(l32 − l31),

since P (ϕ ∈ [0, 2π), ϑ ∈ [0, π]) = 1. To get an estimator for P (L ∈ [l1, l2]) we plug
in the estimator κ̂ for γ2K(B(IL, Iϑ, Iϕ) from Equation (2.19) and the intensity
estimator from Equation (2.16) to get

p̂IL,iso = γ̂κ̂(B(IL, [0, π], [0, 2π)))− γ̂ 4

3
π(l32 − l31) (4.5)

as an estimator of P (L ∈ [l1, l2]).

Anisotropic estimator

We assumed that the orientation distribution is known in the previous chapter. We
do the same here. Let us assume we have ascending ϑ0, . . . , ϑn with ϑ0 = 0 and
ϑn = π and ascending ϕ0, . . . , ϕm with ϕ0 = 0, ϕm = 2π. With this we have a
partition of the angles by Iϑi = [ϑi−1, ϑi] and Iϕj = [ϕj−1, ϕj ] for i = 1, . . . , n and
j = 1, . . . ,m. If we apply this to Equation (4.4) and plug in the same estimators as
for Equation (4.5) we get

p̂IL,i,j =
γ̂κ(B(IL, Iϑi , Iϕi))− γ 2

3(ϕj − ϕj−1)(cos(ϑi−1)− cos(ϑi))(l
3
2 − l31)

P (ϕ ∈ Iϕj , ϑ ∈ Iϑi)

n ·m estimators for P (L ∈ [l1, l2]).

In [12] it was proposed to use a weighted sum

p̂IL,aniso =

n,m∑
i=1,j=1

p̂IL,i,j
wi,j

where the weight is given by

wi,j =
var(p̂IL,i,j)
n,m∑

k=1,l=1

p̂IL,k,l

.

This approach is optimal if the p̂IL,i,j are independent. The variance was approxi-
mated by using a Poisson point process and numerical approximation.
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Simulation Study

To compare the isotropic estimator and the anisotropic estimator we made a simu-
lation study. For this we simulated a 3d process of line segments with a log-normal
length distribution with parameters µ = 4.6002 and σ = 0.0998 and a Schladitz β
distributed orientation with β = 0.1 in rectangular window W with the die lengths
Wl = 400 and 600. The intensity of the fibre process is 1.9895e−5.

For the estimation we divide the interval [0, 150] into IL,j = [(j − 1)5, j5] for
j = 1, . . . , 30. We estimated p̂IL,j ,iso and p̂IL,j ,aniso on each interval.

For the anisotropic estimator we have to discretise the angles as well. For ϕ ∈
[0, 2π] we follow the suggestion given in [12] and always work on the full interval,
i.e. ϕ0 = 0 and ϕ1 = 2π. For ϑ ∈ [0, π] we want to achieve an equisize partition
of the sphere. We will first discritise the interval [0, 1] with n points ui = 1 − i

n
for i = 0, . . . , n. We get a discretization of [0, π2 ] by setting ϑi = acos(ui) with
i = 1, . . . , n. We do not discretize the lower part of the sphere due to the point
symmetry of the orientation distribution.

We made 100 realisations of these processes and calculated the estimators. We
then estimated point wise 95% confidence bands by estimating the 2.5% and 95%
quantiles for both estimators.

For a window size with Wl = 400 we see the results for both estimators in Figure
4.1. We directly see both estimators have a higher variance the further to the right
we move on the length axis. Of both estimators the anisotropic estimator has a lower
variance. If we look at the same estimation for Wl = 600 Figure 4.2 we see that the
variance is smaller than for Wl = 400. This is not surprising since the estimator for
the reduced second moment measure is better for bigger window sizes. We conclude
to get a meaningful estimation, the window should have at least 4 times the size of
the lengths of interest.
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Figure 4.1.: Comparison of the isotropic estimator on the left and the anisotropic
estimator on the right for window size Wl = 400. The mean of the
estimator is solid, the true value is dashed and an estimated 95% region
is dotted. Note the different scale in the figures.
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Figure 4.2.: Comparison of the isotropic estimator on the left and the anisotropic
estimator on the right for window size Wl = 600. The mean of the
estimator is solid, the true value is dashed and an estimated 95% region
is dotted.

4.3.2. Minimum Contrast estimator

Here we will introduce estimators based on a minimum contrast approach.

Definition 4.1. Let Φ be a simple point process observed in a window W depending
on parameters θ ∈ Rd. Let T (r, θ) be a known statistic of this point process. Let
T̂ (r) be an estimator of this statistic. The minimum contrast estimator is defined
as

θ̂ = arg maxϑ

r2∫
r1

∣∣∣T (r, θ)− T̂ (r)
∣∣∣q dr

where q ∈ N and r1 < r2.

In this definition d(T, T̂ ) :=
r2∫
r1

∣∣∣T (r, θ)− T̂ (r)
∣∣∣q dr is the contrast function. A usual

choice is q = 2 which leads to distance in the L2 norm.

We wish to use the minimum contrast estimator to estimate the parameters of
the fibre length distribution. For this we assume that the length L has a parametric
distribution with parameters θ ∈ Rd. We choose the model for the directed Ripley’s-
K from Equation (4.3) as our summary statistic and get

θ̂ = arg maxθ

r2∫
r1

∣∣∣∣∣∣√K(r, u, ϕ, θ)−

√
K̂(r, u, ϕ)

γ̂2

∣∣∣∣∣∣
2

dr

as the minimum contrast estimator. We use
√
K in this approach, to control for the

variance in the estimator as described in [8].
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Here we will especially investigate for fibres with a strong main direction u ∈ Sd−1.
The bounds of the integration r1 and r2 are usually chosen on an ad-hoc basis.

Here we will present a method to chose r1 and r2 we first look at the Equation (2.18).
We note that the first part of the right hand side ν(B(0, r, u, ϕ)) is the formula for the
directed K function of a Poisson point process. All of our length estimator therefore
measure the defiance of the estimated K function and the analytically known K
function for the Poisson point process. Therefore if K̂(r) ≈ ν(B(0, r, u, ϕ)), we
cannot detect any influence of the length distribution and the process looks like a
Poisson point process. We therefore propose to choose r1 and r2 in a way that we
see the maximum influence of the length distribution on K(r, u, θ). Since the length
distribution is unknown, we propose to look at Poisson point processes instead.
We simulate np Poisson point processes with the estimated intensity γ̂ to estimate
a (1 − p) upper confidence band K̂1−p(r). We choose r1 as the smallest r where
K̂(r, u, ϕ) > K̂1−p(r) and r2 as the biggest r with K̂(r, u, ϕ) > K̂1−p(r). Our
reasoning is, that we will get the parts of K̂ that are significantly different from
a Poisson point process and will therefore find the largest influence of the length
distribution.

Simulation Study

In this example we look at a 3d line segment process in a window W = [0,Ws]
3 with

side lengths Ws = 400 and 600. The midpoint process is a Poisson point process. As
a length distribution we choose a log-normal distribution with parameters µ = 4.6002
and σ = 0.0998. For the orientation distribution we chose a Schladitz β-distribution
with β = 0.1. The intensity of the fibre process is 1.9895e−5. In the smaller window
we expect to see about 1254 fibres and 4232 fibres in the larger window. We ran 100
simulations for each window size. We get the model

γK(r, u, ϕ) = γ ν(B(0, r, u, ϕ)) + Pθ(L < r)P (U ∈ S(u, ϕ))

where Pθ is the CDF of the log-normal distribution. The function we wish to max-
imise is

D(θ) =

r2∫
r1

√ γ̂ ν(B(0, r, u, ϕ)) + Pθ(L < r)P (U ∈ S(u, ϕ))

γ̂2
−

√
K̂(r, u, ϕ)

γ̂2

2

dr.

To calculate the maximum we use a Newton method. We have to calculate the
gradient and the Hessian matrix. Straight forward calculations yields

∂

∂θi
D(θ) =

r2∫
r1

− 2

√
K̂(r, u, ϕ)

γ̂2

∂
∂θi
Pθ(L < r)P (u ∈ S(u, ϕ))√

γ̂ ν(B(0, r1, u, ϕ)) + Pθ(L < r)P (u ∈ S(u, ϕ))

+ 2
∂

∂θi
Pθ(L < r)P (u ∈ S(u, ϕ)) ν(B(0, r, u, ϕ))

+ 2Pθ(L < r)
∂

∂θi
Pθ(L < r)P (U ∈ S(u, ϕ))2 dr
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for θi = µ or θi = σ for the first derivatives. We further know

∂

∂θi
Pθ(L ≤ r) =

r∫
0

∂

∂θi
fL(l; θ) dl

where fL is the density of a log-normal distribution. The first derivatives are known
from Equations (2.3) and (2.4). For the Hessian we look at the second derivatives
and get

∂2

∂θi∂θj
D(θ) =

r2∫
r1

√
K̂(r, u, ϕ)

γ̂2

 ∂2

∂θi∂θj
Pθ(L < r)P (U ∈ S(u, ϕ))√

γ̂ ν(B(0, r, u, ϕ)) + Pθ(L < r)P (U ∈ S(u, ϕ))

−
∂
∂θi
Pθ(L < r) ∂

∂θj
Pθ(L < r)P (U ∈ S(u, ϕ))

2 (γ̂ ν(B(0, r, u, ϕ)) + Pθ(L < r)P (U ∈ S(u, ϕ)))
3
2

)

+ 2
∂2

∂θi∂θj
Pθ(L < r)P (U ∈ S(u, ϕ))γ̂ ν(B(0, r, u, ϕ))

+ 2P (U ∈ S(u, ϕ))2

(
∂2

∂θi∂θj
Pθ(L < r) +

∂

∂θi
Pθ(L < r)

∂

∂θj
Pθ(L < r)

)
for θi = µ,or σ and θj = µ or σ.

Again we know

∂2

∂θi∂θj
Pθ(L ≤ r) =

r∫
0

∂2

∂θi∂θj
fL(l; θ) dl

with fL the density of a log-normal distribution, where the second derivatives can
be found in Equations (2.7),(2.9) and (2.8).

We now have the complete gradient ∇D(θ) and Hessian HD(θ) we can now make
a Newton iteration with

θi+1 = θi +H(D(θi))
−1∇D(θi).

For the estimation the main direction is u = (0, 0, 1)T and a the cone angle used
for the directed K function is ϕ = 0.3176. With this ϕ we cover 20% of the sphere
around the main direction u. To estimate the integration boundaries we chose the
distance p = 0.05. The results can be seen in Table 4.1. We see that the estimation
for µ is at least close to the true parameter, while the results for the estimation of σ
show a significant underestimation for both window sizes. Furthermore we see that
in some cases we see no convergence to any parameter. At least for a log-normal
distribution the use of a minimum contrast estimator can not be recommended.

109



E(µ̂) var(µ̂) E(σ̂) var(σ̂) no convergence
W = 400 4.6854 0.5770 0.0296 0.0078 7
W = 600 5.2061 0.4510 0.0115 0.0025 1

Table 4.1.: Simulation Study Results for the minimum contrast estimator, with true
values µ = 4.6002 and σ = 0.0998
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5. Comparison and Applications

In this chapter we want to compare the presented estimators and discuss possible
application.

5.1. Interacting Fibres

To directly compare the estimators, we simulated RSA fibres processes. These intro-
duce non overlapping fibres, which is more realistic compared to the non interacting
systems used in the estimation before.

For the RSA we will model the fibres as cylinders with a random length L > 0
and a random orientation U ∈ Sd−1. We choose a constant radius of r = 4.

For the length we chose a log-normal distribution with parameters µ = 4.6002
and σ = 0.0998 and a Schladitz β-distribution with β = 0.1 for the orientation.
We simulated in a window W = [0, 800]3 with periodic boundary conditions. We
stopped the RSA simulation once we reached a fibre volume of 10%. We made 30
realisations with these parameters. All simulations discussed in this chapter are the
result of this RSA process.

5.2. Parametric estimation

5.2.1. Full Fibres

Here we will investigate the HT and EM estimators discussed in Chapter 3.

For the estimation from complete fibres we take a smaller sub-window from the
simulations, we will look into centred sub-windows of size W = 1003, 2003 and 3003.
In W = 1003 we expect to see 20 fibres, in 2003 we expect to see around 160 fibres
and in W = 3003 we expect to see 537 fibres.

The results can be seen in Table 5.1. We first note that for W = 100 the HT
estimator could not be computed, since usually there were no uncut fibres left. For
bigger window sizes the HT estimator gives good estimates of the parameters. The
estimators obtained using an unbiased associated point rule lead to an overestimation
of the parameter σ that grows with the window size. The estimator based on the
plus sampling rule leads to an even larger overestimation. For small window sizes
this overestimation vanishes.
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E µ̂ var µ̂ E σ̂ var σ̂
W = 100

HT - - - -
associated point 4.5432 0.0114 0.0908 0.0022
plus sampling 4.5818 0.0109 0.1080 0.0029
W = 200

HT 4.6001 0.0001 0.0974 6.76e−5
associated point 4.5875 0.0002 0.1192 6.34e−5
plus sampling 4.5752 0.0003 0.1355 7.21e−5
W = 300

HT 4.5996 2.64e−5 0.0998 2.26e−5
associated point 4.5892 6.30e−5 0.1447 3.21e−5
plus sampling 4.5662 9.74e−5 0.1730 2.83e−5

Table 5.1.: Simulation Study for HT and EM estimators with true parameters µ =
4.6002 and σ = 0.0998.

5.2.2. Fibre Endpoints

Here we will discus the estimators based on fibre endpoints. We will start with
the non parametric estimator. Here we will only look at the anisotropic estimator,
since the isotropic estimator has shown to have significantly worse results. For the
parametrization we used the same parameter as in the model with no interaction,
we discretised the interval [0, π] with 50 steps on the sphere. The length interval
was discretised with steps of 5.

The results in Figure 5.1 show that the estimator systematically underestimates
the true probabilities, especially for short lengths. This is due to the interaction
in the fibre process that leads to a repulsion of the underlying endpoint process of
the fibre. This directly leads to a negative correlation between the endpoints, which
in turn leads to a K function that is smaller than the K function in the Poisson
case. How strong this repulsion is directly connected to the volume fraction. If we
compare the window sizes Wl = 400 and Wl = 600 wee see that the variance is
higher for smaller window sizes.

To investigate the repulsion in the endpoints we made a small simulation study
with an RSA process with a volume fraction of 2.5% fibres. In Figure 5.2 we see
that the underestimation for small lengths is significantly smaller. This is explained
by the lower degree of interaction in lower volume fractions, i.e. the process with a
lower volume fraction is closer to a Boolean model.

In application on real data we expect to see this underestimation as well.

We now evaluate the minimum contrast estimator. We did a simulation study
with the same parameters as for the process with no influence. For Wl = 400 the
minimum contrast estimator never converged. For Wl = 600, the results in Table
5.2 show the same results as for the Boolean model. Problematic is, that for RSA
fibres the minimum contrast estimator only converges for 23 of the 30 simulations.
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Figure 5.1.: Comparison of the anisotropic length estimator on the left for window
size Wl = 400 and on the right for window size Wl = 600 for RSA
fibres. The mean of the estimator is solid, the true value is dashed
and an estimated 95% region is dotted. The RSA fibres had a volume
fraction of 10%

The problem is that for the RSA fibres, the estimated K function lies beneath the
K function for the Poisson case. Since we measure how far above the estimated K
function lies above the Poisson K function the minimum contrast estimator cannot
be used.

E(µ̂) var(µ̂) E(σ̂) var(σ̂) no convergence
W = 600 5.3024 0.0679 0.0255 0.0012 23

Table 5.2.: Simulation Study Results for the minimum contrast estimator on RSA
fibres, with true values µ = 4.6002 and σ = 0.0998

All of these estimation where done using the model that uses a Poisson midpoint
process. One might ask why no Monte Carlo simulation for the minimum Contrast
estimation was done. In this approach we do not know a closed formula for the K
function but instead use a Monte Carlo approach to estimate it. We could then do a
grid search or follow the nelder mead simplex approach to find an optimal parameter
set. In this case this cannot be done, since simulating one RSA sample of fibres takes
around 24 hours to complete. To do a full optimisation with this method we would
need to simulate hundreds or thousands of these, this is not simply not practically
possible.

5.2.3. Application to real data

The methods that work with fully segmented fibres could not be done, since a full
fibre segmentation is still not possible.

An application on real fibre endpoints was tried. A dataset of endpoints was
provided by M. Kronenberger from the Frauenhofer ITWM. They were segmented
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Figure 5.2.: Comparison of the anisotropic length estimator on the left for window
size Wl = 400 and on the right for window size Wl = 600 for RSA
fibres. The mean of the estimator is solid, the true value is dashed
and an estimated 95% region is dotted. The RSA fibres had a volume
fraction of 10%

using local Gaussian curvature as described in [10]. The result was a point process
with 6172 points in a window W = [0, 350] × [0, 1000] × [0, 900] with a resulting
intensity of δ = 6172

350·1000·900 = 1.96e−5. For the orientation distribution a Schladitz-

β distribution was used with an estimated β̂ = 0.102 with a main direction u =
(−0.0130315, 0.00281079,−0.999911).

Using this data set we tried to estimate the parameters of a log-normal and a
normal length distribution using the minimum contrast approach. But the minimum
contrast estimator did not converge.

For the non parametric estimator presented we chose a length interval of [0, 90]
since 0.25 ·350 = 87.5 ≈ 90, the maximum length where direct estimation of Ripley’s
K function is deemed feasible. The results can be seen in Figure 5.3. With this
estimator we can conclude, that 22% of all fibres are shorter than 90 pixels.

One the one hand these results look good. On the other we do not see the
expected results of the interacting fibres close to the origin, where the simulation
study suggests that it should be smaller than zero. Therefore something is pulling
the K function up. We see two possible sources for this effect.

The first is fibre bending. When a fibres is not perfectly straight the distance be-
tween the endpoints is less than the full length of the fibre. Therefore the endpoints
are closer together and we would see this attraction in the K function. But since
fibres usually only bend small amounts we do not expect this effect to be large.

The second effect is miss segmentation of the fibre endpoints. The main problem
here is false positives, i.e. points that are segmented without being endpoints. These
endpoints will be located on the fibre structure and are therefore correlated to the
true endpoints. This may add an attraction to the points that would lead to a higher
K function.

From those two effects we expect miss segmentation to have a larger influence.
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Figure 5.3.: Anisotropic length estimator for segmented end points provided by
Markus Kronenberger

In the end we cannot be sure if the estimated probabilities in Figure 5.3 are correct
our not but the missing dip at the beginning is at least cause for concern.

5.3. Conclusion

We presented multiple estimators to estimate the fibre length distribution in FRP.
For fully segmented fibres we presented methods based on the EM algorithm in
union with a reweighed distribution, first to deal with the censoring, the second to
deal with sampling bias. We have shown that these estimators are consistent and
asymptotically normal distributed under some mild conditions. Furthermore we
presented methods to estimate the Fisher information matrix for these estimators.
These estimators performed well in simulation studies, both for the parameters of
a log-normal distribution as well as for the estimation of the Cramer-Rao bound.
They have proven be robust under a misspecified orientation distribution and also
for non overlapping fibre systems.

Since a full fibre segmentation is currently not possible for interesting fibre volumes
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we investigated the estimator based on fibre endpoints presented in [12]. In simula-
tion studies we have seen, that the anisotropic estimator outperforms the isotropic
estimator. We have seen that these kind of estimator seems to underestimate the
true length distribution for RSA fibres.

We used the model for the Ripley’s K function to present a minimum contrast
estimator. The performance of this estimator in simulation studies was bad, it was
not able to estimate the parameters of a log-normal distribution and sometimes did
not converge at all. This behaviour gets even worse for the RSA fibres.

We applied the endpoint estimators to a real data set provided by Markus Kro-
nenberger from Frauenhofer ITWM. The anisotropic estimator showed a possibly
true estimation result, but did not show the underestimation that we expected from
the interaction of the fibres. We think that this might be due to possible miss
segmentation of endpoints. We could not get an estimate using minimum contrast
estimator.

In conclusion, the use of the EM estimator for full segmented fibres seems to be
a feasible method to get a consistent and asymptotically normal estimate of the
parameters of the length distribution. For the estimation from endpoints we think
that only the anisotropic estimator in [12] could possibly be used, if we keep in mind
that we expect an underestimation of the result. The minimum contrast estimator
should not be used at all.
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A. Simulation Study Results

A.1. HT estimator

E µ̂HT var(µ̂HT )
W = 100

n = 20 4.5797 0.0016
n = 50 4.5877 0.0010
n = 100 4.5908 0.0005
n = 500 4.5982 0.0002
W = 200

n = 20 4.5958 0.0005
n = 50 4.5958 0.0002
n = 100 4.5980 9.93e−5
n = 500 4.5998 1.92e−5
W = 300

n = 20 4.5992 0.0004
n = 50 4.5988 0.0002
n = 100 4.6004 0.0001
n = 500 4.5998 2.20e−5

Table A.1.: Simulation study results for different window sizes W and sample sizes
n for µ̂HT , with true µ = 4.6002 and σ = 0.0998

E σ̂HT1 var(σ̂HT1) E σ̂HT2 var(σ̂HT2)
W = 100

n = 20 0.0770 0.0003 0.0840 0.0005
n = 50 0.0850 0.0002 0.0884 0.0003
n = 100 0.0893 0.0001 0.0910 0.0002
n = 500 0.0964 0.0001 0.0970 0.0001
W = 200

n = 20 0.0956 0.0002 0.0981 0.0003
n = 50 0.0973 9.6e−5 0.0982 9.85e−5
n = 100 0.0981 5.74e−5 0.0986 5.80e−5
n = 500 0.0997 1.28e−5 0.0998 1.2865e−5
W = 300

n = 20 0.0942 0.0003 0.0965 0.0003
n = 50 0.0977 8.91e−5 0.0986 9.0243e−5
n = 100 0.0994 4.21e−5 0.0999 4.29e−5
n = 500 0.0996 1.18e−5 0.0997 1.18e−5

Table A.2.: Simulation study results for different window sizes W and sample sizes
n for σ̂HT1 and σ̂HT2 , with true µ = 4.6002 and σ = 0.0998
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E µ̂HT var(µ̂HT )
W = 100

n = 20 4.2239 0.0281
n = 50 4.2457 0.0204
n = 100 4.2791 0.0234
n = 500 4.3056 0.0094
W = 200

n = 20 4.4328 0.0129
n = 50 4.4475 0.0063
n = 100 4.4463 0.0035
n = 500 4.4709 0.0040
W = 300

n = 20 4.4670 0.0157
n = 50 4.4724 0.0076
n = 100 4.4761 0.0034
n = 500 4.4870 0.0006

Table A.3.: Simulation study results for different window sizes W and sample sizes
n for µ̂HT , with true µ = 4.4936 and σ = 0.4724

E σ̂HT1 var(σ̂HT1) E σ̂HT2 var(σ̂HT2)
W = 100

n = 20 0.2862 0.0022 0.3193 0.0040
n = 50 0.3054 0.0008 0.3268 0.0023
n = 100 0.3164 0.0005 0.3368 0.0021
n = 500 0.3403 0.0006 0.3483 0.0012
W = 200

n = 20 0.3960 0.0043 0.4093 0.0049
n = 50 0.4224 0.0021 0.4288 0.0022
n = 100 0.4265 0.0012 0.4301 0.0012
n = 500 0.4386 0.0015 0.4401 0.0017
W = 300

n = 20 0.4328 0.0056 0.4448 0.0062
n = 50 0.4500 0.0032 0.45477 0.0034
n = 100 0.4602 0.0019 0.4625 0.0019
n = 500 0.4622 0.0003 0.4629 0.0003

Table A.4.: Simulation study results for different window sizes W and sample sizes
n for σ̂HT1 and σ̂HT2, with true µ = 4.4936 and σ = 0.4724
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A.2. Associated point rule

E µ̂a var(µ̂a) E σ̂a var(σ̂a) iterations
W = 100

n = 20 4.5844 0.0175 0.1207 0.0129 131.67
n = 50 4.5827 0.0065 0.1210 0.0021 132.68
n = 100 4.5858 0.0023 0.1240 0.0010 143.1
n = 500 4.5905 0.0004 0.1279 0.0001 124.01
W = 200

n = 20 4.5828 0.0014 0.1129 0.0005 21.29
n = 50 4.5866 0.0006 0.1189 0.0002 21.19
n = 100 4.5866 0.0003 0.1190 8.92e−6 20.04
n = 500 4.5877 6.48e−5 0.1202 2.16e−5 18.67
W = 300

n = 20 4.5929 0.0014 0.1379 0.0007 14.85
n = 50 4.5914 0.0006 0.1210 0.0021 14.85
n = 100 4.5894 0.0003 0.1427 0.0001 14.13
n = 500 4.5905 9.00e−5 0.1447 3.08e−5 14.55

Table A.5.: Simulation Study Results for the parameters for the associated point
rule, with µ = 4.6002 and σ = 0.0998

E ˆI−1
a 1,1 var( ˆI−1

a 1,1) E ˆI−1
a 2,2 var( ˆI−1

a 2,2)

W = 100

n = 20 0.0419 0.0379 0.0008 0.0105
n = 50 0.0060 0.0004 0.0033 0.0002
n = 100 0.0022 7.14e−6 0.0015 1.45e−5
n = 500 0.0004 8.75e−9 0.0002 5.45e−19
W = 200

n = 20 0.0016 2.44e−6 0.0006 3.76e−7
n = 50 0.0006 8.15e−8 0.0003 1.03e−8
n = 100 0.0003 7.85e−9 0.0001 1.22e−9
n = 500 6.15e−5 7.64e−11 2.44e−5 1.11e−11
W = 300

n = 20 0.0019 2.46e−6 0.0007 2.27e−7
n = 50 0.0007 1.40e−7 0.0003 1.74e−8
n = 100 0.0003 1.09e−8 0.0001 8.94e−10
n = 500 7.43e−5 1.18e−10 2.67e−5 8.59e−12

Table A.6.: Simulation Study Results for the fisher information for the associated
point rule, with µ = 4.6002 and σ = 0.0998
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E µ̂a var(µ̂a) E σ̂a var(σ̂a) iterations
W = 100

n = 20 4.2614 0.0480 0.3809 0.0231 57.69
n = 50 4.2770 0.0152 0.4084 0.0105 48.97
n = 100 4.2832 0.0049 0.4226 0.0052 45.92
n = 500 4.2864 0.0009 0.4348 0.0011 44.42
W = 200

n = 20 4.4009 0.0179 0.4200 0.0105 15.36
n = 50 4.4018 0.0057 0.4338 0.0034 13.75
n = 100 4.4016 0.0031 0.4419 0.0017 13.36
n = 500 4.3974 0.0006 0.4399 0.0003 13.12
W = 300

n = 20 4.4298 0.0135 0.4191 0.0082 10.51
n = 50 4.4405 0.0064 0.4353 0.0029 9.89
n = 100 4.4414 0.0030 0.4448 0.0016 9.62
n = 500 4.4462 0.0005 0.4452 0.0003 8.96

Table A.7.: Simulation Study Results for the parameters for the associated point
rule, with µ = 4.4936 and σ = 0.4724

E ˆI−1
a 1,1 var( ˆI−1

a 1,1) E ˆI−1
a 2,2 var( ˆI−1

a 2,2)

W = 100

n = 20 0.0308 0.0015 0.0241 0.0010
n = 50 0.0113 6.45e−5 0.0093 3.94e−5
n = 100 0.0054 4.42e−6 0.0047 3.14e−6
n = 500 0.0011 3.58e−8 0.00010 2.72e−8
W = 200

n = 20 0.0143 4.26e−5 0.0087 2.37e− 5
n = 50 0.0056 1.96e−6 0.0033 1.01e−6
n = 100 0.0020 2.73e−7 0.0017 1.47e−7
n = 500 0.000 1.88e−9 0.0003 9.23e−10
W = 300

n = 20 0.0118 2.82e−5 0.0067 1.10e−5
n = 50 0.0049 1.39e−6 0.0027 5.52e−7
n = 100 0.0025 2.06e−7 0.0014 7.90e−8
n = 500 0.0005 1.70e−9 0.0003 6.56e−10

Table A.8.: Simulation Study Results for the fisher information for the associated
point rule, with µ = 4.4936 and σ = 0.4724
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A.3. Plus Sampling

E µ̂+ var(µ̂+) E σ̂+ var(σ̂+) iterations
W = 100

n = 20 4.5261 0.0227 0.1280 0.0085 116.66
n = 50 4.5598 0.0087 0.1296 0.0024 141.98
n = 100 4.5870 0.0050 0.1272 0.0019 164.61
n = 500 4.6023 0.0013 0.1242 0.0005 253.52
W = 200

n = 20 4.5620 0.0058 0.1408 0.0023 37.74
n = 50 4.5752 0.0012 0.1313 0.0004 40.16
n = 100 4.5759 0.0006 0.1330 0.0002 36.06
n = 500 4.5776 0.0001 0.1352 4.87e−5 34.37
W = 300

n = 20 4.5592 0.0042 0.1702 0.0010 21.56
n = 50 4.5677 0.0014 0.1704 0.0003 22.22
n = 100 4.5663 0.0008 0.1724 0.0002 21.4
n = 500 4.5639 0.0002 0.1734 5.28e−5 20.96

Table A.9.: Simulation Study Results for the parameters for the plus sampling rule,
with µ = 4.6002 and σ = 0.0998

E ˆI−1
+ 1,1

var( ˆI−1
+ 1,1

) E ˆI−1
+ 2,2

var( ˆI−1
+ 2,2

)

W = 100

n = 20 0.0126 0.0004 0.0091 0.0009
n = 50 0.0047 1.80e−5 0.0023 6.43e−6
n = 100 0.0026 8.29e−6 0.0009 1.50e−6
n = 500 0.0007 3.77e−7 0.0002 1.02e−7
W = 200

n = 20 0.0042 2.48e−5 0.0016 5.42e−6
n = 50 0.0014 1.91e−6 0.0006 6.73e−7
n = 100 0.0006 7.44e−8 0.0002 1.20e−8
n = 500 0.0001 6.61e−10 5.01e−5 1.41e−10
W = 300

n = 20 0.0037 5.31e−6 0.0011 6.40e−7
n = 50 0.0015 3.01e−7 0.0005 2.50e−8
n = 100 0.0007 5.34e−8 0.0002 2.16e−9
n = 500 0.0001 5.07e−10 4.37e−5 2.05e−11

Table A.10.: Simulation Study Results for the fisher information for the associated
point rule, with µ = 4.6002 and σ = 0.0998
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E µ̂+ var(µ̂+) E σ̂+ var(σ̂+) iterations
W = 100

n = 20 4.3453 0.0446 0.3606 0.0350 67.29
n = 50 4.3381 0.0210 0.4029 0.0116 64.8
n = 100 4.3340 0.00972 0.4284 0.0053 52.87
n = 500 4.3380 0.0016 0.4431 0.0010 48.1
W = 200

n = 20 4.3986 0.0195 0.4307 0.0106 22.54
n = 50 4.3952 0.0078 0.4479 0.0032 18.99
n = 100 4.3931 0.0025 0.4549 0.0012 18.35
n = 500 4.3903 0.0007 0.4577 0.0004 18.23
W = 300

n = 20 4.4158 0.0161 0.4081 0.0078 14.96
n = 50 4.4320 0.0060 0.4241 0.0029 13.52
n = 100 4.4381 0.0035 0.4342 0.0018 13.3
n = 500 4.4429 0.0006 0.4361 0.0005 12.2

Table A.11.: Simulation Study Results for the parameters for the plus sampling rule,
with µ = 4.4936 and σ = 0.4724

E ˆI−1
+ 1,1

var( ˆI−1
+ 1,1

) E ˆI−1
+ 2,2

var( ˆI−1
+ 2,2

)

W = 100

n = 20 0.0292 0.0005 0.0183 0.0002
n = 50 0.0141 0.0001 0.0100 6.25e−5
n = 100 0.0070 5.93e−6 0.0052 3.00e−6
n = 500 0.0015 4.80e−9 0.0011 2.55e−8
W = 200

n = 20 0.0181 5.03e−5 0.0103 2.34e−5
n = 50 0.0072 2.49e−6 0.0041 1.17e−6
n = 100 0.0036 2.60e−7 0.0020 1.08e−7
n = 500 0.0007 2.87e−9 0.0004 1.21e−9
W = 300

n = 20 0.0129 4.07e−5 0.0074 1.98e−5
n = 50 0.0053 1.84e−6 0.0030 6.53e−7
n = 100 0.0027 2.90e−7 0.0016 1.05e−7
n = 500 0.0005 2.90e−9 0.0003 1.13e−9

Table A.12.: Simulation Study Results for the fisher information for the associated
point rule, with µ = 4.4936 and σ = 0.4724
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[16] J. Radon. Über die Bestimmung von Funktionen durch ihre Integralwerte längs
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