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PARTICLE METHODS

H. Neunzert, Kaiserslautern

Introduction:

Particle Methods (also called "Finite Pointset Methods" = FPM in
pointing to some fundamental similarity with FEM or FDM, or Simulation
Methods or Monte Carlo Methods) are numerical methods for solving

evolution equations for functions f(t,P)
1 2y div (VI£IE) = QUf]
(1) at+d1VP(fo}_Qf’

where V and Q may depend on f in quite different kinds. P is from a
domain 0 in RK where k is in general quite big (k23, often k=6) - this
is the proper application field for particle methods.

For conserving boundary conditions like

J f<v,n>de = 0
a0

and for [{ QdP = 0 the equation (1) is a conservation law, i.e.

I f(t,P)dp = [ f(0,P)dP = 1 .

0 Q
If moreover the nonnegativity of f(0,P) is conserved during the
evolution, the solution f(t,’) is a normalized density, i.e.

f20 and [ f(t,P)dP =1

0

For numerically solving (1) we approximate these densities by particle
ensembles. Our first task will be to clarify this concept: In which sense
do particles approximate functions? This question can be answered in
the frame of 4 different settings:. There is a measure theoretic, a
number theoretic, a statistical and a functionalanalytical approach. All of
them contribute to the subject and supply techniques which can be
used. This will be the first part of the lectures. In the second part we
will describe applications for typical equations of type (1): Kinetic
questions occurring in plasmaphysics and stellardynamics, in semi
conductor technology and space flight; other applications in fluid

dynamics etc. will only be touched.



PART I: THE APPROXIMATION OF FUNCTIONS BY PARTICLESETS -
DIFFERENT ASPECTS

We consider for a domain ¢ in RK the class

M (0) = [f: 2 - IR+/£ f dp - 1}

of normalized densities. We want to approximate f by an ensemble of N
"particles" in 0 which is given by a family [(pi’ai}i=1,...,N] of
points Pj,...,Py and weights (ay,...,ay). Two such Tamilies are consid-
ered to be equal or equivalent, if they differ only by enumeration. (An
ensemble is not a set, since we allow two elements (Pj,xj) and (Pj,«j),
i*j, to be equal.) We normalize by assuming «j20 for i=1,...,N and
i=1ai=1. An ensemble is given by N(k+1) data, which can be used for
approximation. Sometimes, the points are fixed (for example by forming
a regular grid) and the weights vary, sometimes the weights are fixed

, i=1,...,N) and the points are chosen freely. We

(for example * = é

[
denote the ensemble by Oy = {(Pi’ai)i=l,...,N]' What do we mean by
saying that "u; approximates f"? We describe 4 possible concepts.

§ 1 The measuretheoretic interpretation

Let M(Q) be the set of all nonnegative Borel measures on 0 with u(0)=1.

Fach density f € h%c defines a Borel measure He by

(A) = J f dP for all Borel measurable sets A ,
A

K

where the integral is taken in the sense of Lebesgue.
Clearly ﬂf € M) and pf is absolutely continuous with respect to the
k-dimensional Lebesgue measure. This justifies the notations h%c(ﬂ).

The ensemble w; may also be interpreted as a measure by defining

« & ,
1 J P

Ua B
N J

(=2
|
=

é o is a discrete measure in M(0).

“N

Having identified densities and particle ensembles as mathematical
objects of the same kind, we have the possibility to define "conver-

gence of ensembles to densities" and distances between them.



Convergence:
(See for example P. Billingsley, Convergence of Probability Measures,
Wiley 1968.)

Definition 1.1:

A sequence (pN)NeN in M is said to "converge weakly" to p e M, if

) ¢d}1N — [ ¢dp for N@= and all bounded, continuous real
0 0

functions ¢ on 9, i.e. for all ¢ € Cb(Q).
Especially, if we have a sequence of particle ensembles with growing

particle number N, i.e. if we have

[Z;]M - [J-

« .6

IIMZ

ol

NeM

we say that w (or & ) converges weakly to f € Mac’ if for N2o

for all ¢ € C2(0).
One realizes that the problem to approximate an integral g ¢fdP by a

sum like ngah}o(lﬁ} is the classical problem of numerical quadrature.
Then PN are the knots and fo the integration weights and one can play
with the space of test functions ¢, which in our case is C (0). We come
back to this aspect in § 4.

We collect the most important facts about weak convergence in M(0).

A Borel measurable set M is called a p-continuity set, if w(aM) = 0 (M

is the topological boundary of M).

Theorem 1.2 (Portmanteau Theorem)
The statement (1) that p, converges weakly to u is equivalent to each

of the following statements

(2) 1lim sup pn(F} < u(F) for all (relatively) closed sets F in ©

(3) lim pn(M} = u(M) for all p-continuity sets M
n2e



Proof: (See Billingsley page 12)
(1) => (2). Let F be closed and é>0. For £>0 define

G = {P e @ / d(P,F) < 8], where d(P,F) = inf[“P—Q"/Q € F}

E

and W+l denotes the Euclidean distance in Rk.
Gs decreases to F for &40, and therefore u(Gs) ¥ u(F). For sufficiently

small ¢ we therefore get up(Gg) < p(F)+6.

1 if t<0
Define =m(t) := jl-t if 0<t€l and @ (P) := n(%d(P.F)}
0 if 1<t

QF is bounded and continuous,

¢F(P):1 for P e F, ¢F{P)=0

for P ¢ Gz and 0£¢F£1.

Especially, ¢ ¢ C(8). From (1) follows lim [ & du = [ o du .

F e 0 Q

By construction

pn(F) - é °den “f ¢den

and
i ¢de = é Ode € p(G,) £ n(F)+o .

E
This implies

lim sup g (F) € 1lim J ¢ _ds_ = [ ¢ _dp € p(F)+6 .
n e 0 F'n a F
Since é is arbitrary, we get (2)
(2) => (1). Assume (2) and take ¢ ¢ Cblﬂ). We show first
(1) lim sup J ¢dp_ s [ &du .
noe Q0 n 0
By linear transformation, we may reduce this problem to the case, where
0<¢(P)<1 (since [ (¢{P)+a)dpn = J odpn+a).
Choose k arbitrary but fixed and define
- i, C
Fo=(p/ e s(P)}, i20,... .k .

k-1
Fi is closed and since 0<4¢<1, we have 0 = U Fi' Therefore
i=0

- 4 -
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The right hand side gives

i s
1 CLu(F,_)-n(F,)]

I ==

i

1]

k
-1 1 1 1 =1 1
—kp(Fo}+ku[Fl}+k;4(F2)+ +k,u(Fk)_k+i§lk
L -
=1
1 k
The left hand side gives similarly i )} P(Fi), so that
i=1
L ; (F.) < [ odu < L + 1 % (F.)
ke M kTR
i=1 i=1
(2) means lim sup #n(Fi) < p(Fi); therefore
11 K 1 1 K
! ¢d'un y k * k .E pn(Fl) = lim sup [ 0dpn y k * k -E Ptpi
i=1 nJe i=1
4l+f¢d‘u
—k.v *

k was arbitrary, fixed. Let now k tend to =; we obtain (1’).
If we do the same with (-¢) we get lim inf | ¢du né I ¢dp.

This implies

I ¢dp £ lim inf [ ¢dyn £ lim sup [ Odpn £ [ odu

and therefore the weak convergence.

L u({pAAL < ep) < B},

e )-n(F )1+ EOuF on(F)] + 2, m(F) 4ot fa(F )

k-1

#(Fi)

)

(2) => (3). By complementation we see immediately that (2) is equiva-

lent to lim inf pn(G) 2 u(G) for all open sets G. If we denote the

[s] . —
interior of a set A by A, its closure by A, (2) implies

W

w(A) lim sup #n(z) 2 lim sup un[A) 2 lim inf #n{A)

W

[v] ]
lim inf Hn(A) = u(A)

_ o
If A is a pu-continuity set, u(3A)=0 and therefore p(A) = p(A) and we

get (3).



(3) = (2). Clearly a{P e 0/d(P,F) < ¢} < {P e 0/d(P,F) = ¢} ,

therefore these boundaries are distinct for different = and only

countably many of them may have positive measure. Therefore exists a

i M- 0 é
sequence {GR)RFN ’ 61{*0, such that (xk . {p € /d{PlF] < k} are

p-continuity sets. (3) implies 1lim sup un{F) £ lim pn{Gk) = ;J(Gk}

for each k. If F is closed, then GkJrF and #{Gk)irp(F}, such that (2)

holds. o

Besides the concept of weak convergence there is the concept of
"vague" convergence. (Since 0 ¢ RK is a metric space, Borel measures

are identical with Baire measures - see [Bauer, 40.4, Korollar 2].):
p 2 p vaguely if I edu = J ¢dp  for all ¢ € CO(“) )

i.e. for all continuous functions ¢ with compact support.

Since we have pn(ﬂ] = p(0) = 1, if follows from [Bauer, 45.7 Satz] that
B 2> 4 weakly if and only if it converges vaguely.

We may therefore add to theorem 1.2 a fourth equivalent statement

(4) lim p = g in the vague sense .

n2e
(4) tells us that testing a sequence for weak convergence it is enough
to use C, as class of test functions. Such a class of functions may be
called a "convergence determining class". This notion is used for
classes of measurable sets too: A class of measurable sets D is called
"convergence determining", if for all sequences 4, the weak

convergence pp < M is equivalent to

,un(M'.l 2 (M) for all p-continuity sets M e D.

In order to construct a simple and wuseful convergence determining

class, we define k-dimensional intervals, for example

o 0
R, . ={PE Q/Qi‘pi‘pi' i=1,...,k}
(Q,P]
a
or R, iz {Pe /P, £Q, i=1,...,k]
i i
Q
and R , , ect. correspondingly.
(Q,P)



Theorem 1.5: (Billingsley page 17)

The class

is a convergence determining class.

Proof':
Theorem 1.2(3) tells us that p = ¢ implies 4 (R , o ] > #(R 4 o ) for
(Q,P (Q,P]
all p—continuity sets R , , . Therefore we only have to prove the
(Q,P]

opposite direction.

Take now an interval R , , ; its boundary (with respect to 0) is made

(Q,P]
of at most 2k hyperplanes, each of dimension k-1. We denote by U the

class of those intervals, for which these hyperplanes have p-measure 0

R has altogether 2k vertices,

o o
(Q,P]
some of which may lay outside of 0.

For R , , € U, clearly
(Q,Pl]

BPRoo) ?HR
n®g o) THE e s

since the boundary is included in

these hyperplanes.

Now, U is closed under finite intersections. Therefore, if

R,y...,R_€ U, then
m

1
( o R) 3 N Y
r u R.{| = B {R.) - g (R.AR.) + ...
ntizg Yoy 2 =t Y
m m m
— ‘Z p(R.l) - 2 ,u(RinRJ.) + v.. = p[li Ri]
i=1 i,j=1 i=1

In this way, we come from U to the class of all finite union of elements
in U. We try to do the jump to open sets G and claim, that every open
set is a countable union of elements in U. Take a E € 0 and >0 suffi-
ciently small such that the ball K, (P) around P with radius ¢30 is

still in 0. In K, there exists an interval R o , E=(1,...,1),
(P-6E,P+6E]
which belongs to U; this follows from the fact that considering paral-

lel hyperplanes belonging to different 6 < ?:, only countably many can
k



have positive meassure; we may therefore select a é§ such that all these
hyperplanes have p-measure 0 and therefore belong to U.

Now, if G is an open set and E ¢ G arbitrary, there exists an R € U
such that E € ﬁ € R € G, These § form an open cover of the open set G.
In Rk (as in any separable space) one can select a finite or countably
infinite sequence (Ri]iem’ such that .3 ﬁi ? G; since all Ri € G, this

i=1
implies

m
Now, given £>0, choose m such that p{.ul Ri] > p(G)-=. Then

i=
m m
(@)= < p| R = limpu [ VR ¢ Lim inf 4 _(G)
. 1 nt., 1 n
i=1 noo 1i=1 noe

Since >0 was arbitrary, we get

#{G) £ lim inf p (G) for all open sets G
n
n—)m
which is, as we mentioned in the proof, equivalent to condition (2) in
theorem 1.3.
We conclude that B 2 p¢ weakly, i.e. U is a convergence determining in

R, therefore R is itself convergence determining. a

Remarks:

Since any p-continuity set R _jcan be constructed by finite unions or

Q

differences of elements of U, even k = [Rn / Q€ ﬂ] is convergence
Q
determining. One calls

o]
F(Q) = k(R,)
Q
the "distribution function of p". We know now that poo2 o Aff
[a] 4] o
Fn(Q) 2 F(Q) for all Q, for which R, is a p-continuity set. We may
Q

transform this condition:

Corol lary:
Q [s] ]
p ? p weakly iff Fn{Q) 2 F(Q) for all continuity points Q of F.

Proof :

[+]
We have to show that F is continuous at Q iff R, is a p-continuity set.

Q



o o}
Now: F continuous at @ = ¥&>(0 31 open d-cube R o around Q
such that (Q-SE,Q-E)

IF(P)-F(Q)! < ¢ for all P € R ,

o .

(Q-SE,Q+SE)
F is continuous from above (respectively from below), if this is true
for all Pe R , (respectively P € R o )+
(Q,Q+4E) (Q-SE,Q

Clearly, F is nondecreasing (with respect to the semiorder in IRk) and

therefore continuous from above if
[+] ]
F(Q) = inf{F(Q+¢E)/620)
The right hand side gives

int{u({p/PeqrsE} ) /630}

- p[620 (p/p<aser)) = u({p/p<q}] ,

Ly
which is F(Q); therefore F is always continuous from above.

Again, since F is nondecreasing, it is enough to show that additionally
F is continuocus from below.

o [+]
Continuity from below is equivalent to F(Q) = sup{F(Q—GE)/GLO}.

Now

sup{F(E}—éE)/“O] = P[éuo{P/P"‘a"éE}] = p[[P/péa}]

a
This last expression differs from F(Q) exactly by p[éRa] , which is zero
Q

iff R, is a p-continuity set.
Q w}

Now the question arises, which densities can be approximated by
ensembles or more general, which measures can be approximated by

discrete measures.

Theorem 1.3 (see [Bauer, 45.4]):

The discrete measures are dense in M(0).



Proof:

We may use the concept of vague convergence and have to show that for

any 2 € M and for an arbitrary finite set {¢ .,¢ni = CO(O) and for

1"
each >0 there exists
o N
& = Zot.ﬁp
o
N =1 Y5
such that
Jodi-70ds% | <&, i=l,...,n .
i iTey

n

Take a compact set K such that 'Ul supp ¢i ¢ K and choose 70 so that
o 1=

ni(K)<e. For each Q € K there exists a neighbourhood U(Q), such that

l¢i(Q’)—¢i(Q”)} £7n forQ,Q" € UWQ) , i=1,...,n .

{U{Q)FQ € K} is an open covering of K; K is compact and therefore

Keu@)c...c U(Qk] for certain Q;,...,qQ_ .
Put
A, = = A 1= \ . ;
\1 K n U(QIJ’AZ K n U(Qz) \A1$ ?Ak K n LT(Qk) Alu UAk_l ]
then Al,...,Ak are pairwise disjoint Borel sets with

K = Al u.,.,.u Ak

and |¢i(Q’)—¢i(Q")|5ﬂ if @7,Q" € Aj for arbitrary j=1,...,k, i=1,...,n.

We choose now PJ e.AJ arbitrary and consider

(A )6
1 JFy

6’ is a discrete but not normalized measure since

k
§°(0) = I A(A.) = A(K)
=1 7
which may be less than ﬂ(ﬂ) = 1, if K0, In this (generic) case we
it MK :cl 1= r
choose an arbitrary Pk+1 € K, aj p(AJ], j=1,...,k and
Xl T 1—{al+ - +ﬂk). With k+l = N the discrete measure

- 10 -



has the property we want:

n
Since Pk+1 ¢ K and v supp ¢i € K we have oi(P ) = 0; therefore

- k+1
iJ‘ oidJu - "iddwN' = |f ¢idu - I oid6’|
|§ redt- Iamae )| =] L 1@ ))d8
= ¢.dp - H(A.)e, (P, = (¢.(P) - ¢.(P.))dn
=1 A. " =1 3 Y j=1 A, " td
J J
k o k o (4]
4 § J |¢i(P] - ¢1{PJ) du(P) € n E p{AJ.) = nu(K) < &
J=1 Aj J=1 g

How much do we loose, if we wish all weights to be equal: Which

. . 1 N
measures p can be approximated by discrete measures ¢ ==z L§¢

uN N j=1 Pj

A theorem of Niederreiter gives the answer (H. Niederreiter, Compo-

>

sitio Matematico 25, p. 93-99, 1972 - he proves it under the assump-

tion that @ is compact, but we don't need this assumption).

Lemma :
Let u = _Zl ajéQ be a discrete measure. Then there exists a sequence
J= J

(PJIJEN such that for all N € N and all measurable sets A ¢ 1 we get

1 N C(u)

= 5 - P

N L fp (A A= T

J=1

where for example C(u) = {M*l)[g].

Proof:
We show first that (PJ) exists such that

o, {ad) - #llad)

N

o M1
N

for all k, 1€k4M and all N. We do it by induction with respect to M.

If M=1, u=6_ and if we put PJ=Q’ we get a zero difference.

Q

Assume we have proved the lemma for all discrete measures whose support

- 11 -



) M+1 M+1
consists of M points. Take now u = § X6 (M0, ¥ Ax.=1).
J=1 J Q J j=1 J

Define

M A,

- —_
v = Y é
Ao+., #A !
j=1 Mty 9

by assumption we have a sequence (R , such that
n)nel

ne

N
1 M-1 .
I AL Lf(r.;)‘i)| N Ny J=L.oM
n=1 "n
Since A1+,,.+AM < 1, we get B := X;?f%f:i; > 1 and the equation n=[mg]

for given n has at most one solution m. If there is such m, we put
Pn:Rm - if not, we put Prl = QM+1’ This sequence [Pn]neN fulfills
Y for kel,...,Ml:

o, (o) - wifa b«

N

Consider first Qi for some i, 1€i4M. Then

N
) dP [{Qi}] is equal to the number of natural numbers m
n=1 n

with [mf] ¢ N and Rm = Qi; but this number is equal to

14 (o)

with L = maxim/(me] < Nt 1f Sb e W, then 1= Moy = (M
(since [Eglﬁ] = N+1 and not # N); if E%l g N, we get L = [Hﬁl].
Now
1 N M+1
= L 6, (%Q. ') - I XN (iQ.})
N n=1 Pn i =1 J Qj 1
L-—.V-_—_.J
Ai:(kl+.,,+xM)u(€Qi}}
E L L
= {3 T 6. (1Q.1) 2 = (A 4...4A)v(1Q.})
L k=1 Rk i N 1 M i

- 12 -



L

ci;"l - I.-'_J_
< NIL kE16 ({Qi}} ({Qi}) + v{{Qii} N {x1+,__+xM}
. M-1
L
[(N#1) (A +. .47 ) ]-2
JM-1 1 M _
£ 7N + ((Qi?) N {A1+...+XM)

where £=0 or 1.

We calculate that, if E%l € M, the last expression gives

A LU A - A . A A e A -
(N+1)( preeet M) 1 i N(A +e. ot M)I ) |{ 1t M) 1 )
N N - N

Zl—

and if Hﬁl ¢ N, we get again
[(N+1)(Kl+...+hM]] - N(A 4.4 )

M
N

I

Z—

(since {(N+l)(ll+...+kM)] = [N(R1+...+KM)] or [N(l1+...+XM)]+1);

we end up with

M-l 1M

1
N DR N TN

[T o B

n

It remains to show the same estimate for QM+1' We have Pn = QM+1

for N-L points Pn’ i.e.

N
1 _NL _ L
R Lo%p UQut) =g = I
n=1 n
and therefore
N
1 L
= = —==(1=(X
\N I oy (19, 1) = #(1Q,,! n| = E-(1=(A+onar))
n=1 n
- | L 1
“I'N N
as above.
So we have proved the lemma for A = lQi}’ where instead of C(p) we had
M_ll

- 13 -



Take now an arbitrary measurable set A ¢ 0, then for all discrete
measures p we have p(A) = p{A n supp(s)). We can restrict ourselves to
sets A © supp . Since p{supp #\A) = 1-p(A), we can restrict ourselves
even to those sets A with card A = [é]. Therefore

MiM-1
2° N °

Ik

M-1 card A £ [

6 (A)-u(A) N

n=1 Pn

=
Itz

Theorem 1.4:

To each p € M there exists a sequence (Pn)nEN such that

Zl—
ez
[

converges weakly to u.

Proof':

According to theorem (1.2) we have to show that

n o1z

6P (M) — u(M)
1 n

AT

n

for all p-continuity sets M.
From theorem 1.3 we know the existence of a sequence {pj)jem of

discrete measures, which converges to u:

#J 2> p weakly

The lemma tells us that for each Nj we have a sequence (pﬂ)neN

such that

;1 N C(r.)
S Lo (A)-p (A)| £ —L .
N n=1 Y N

= N +...4C. =0.
Set. Cj : C(pj) and choose a natural number rJ J(Cl +CJ+1), r. 0
To construct (Pn} we represent each n by

n=r+r.+...+r. .+s with O0<s4r.
o 1 J-1 J

- 14 -



For a p-continuity set M we have to calculate lim 1 ? & (M). We take
N»e N n=1 Pn

N>r1 and decompose

I = &
N rl+r2+...+rk+s, O<s WORE

Then
N
T 6 (M) =6 ,(M+...+46 . (M)+...46 (M)+...+6 (M)+
n=1 n Pi Pi | PII p‘;
1 k
...+6pk+1(M)+...+6pk+1(M)
1 s
: EJ ]+ 1 )
= 6 (M)| + J (M
j=1'i=1 P} i=1 Pt
and we get
N k r. J
1 —Jd (1
Loy oo msn] =1 (2 16 .0 - w00
|N n=1 Pn | |j=1 N [r‘j i=1 Pg J
s(1 % k fi s
+3[2 3 ™) - b M) ¢ T gl a0 & 00 - 60
i=1 i J=1
k r. C. C k
i, s k+l 1 -
< E N ot Ts ¢t IN[ P rJ.PJ.(M} + Sﬂk+l(M)] #(M)\
J=1 J J=1
k+1 k
1 1
£ — T C.+ |— I r.pu. (M) + sp (M)] -.U(M)\
r, j=1 J N[jzl J J k+1
—
r
cLk
Tk
with N2e, since then k2= and % 2 0.
1 k
In order to show that liml—[ T r.u.(M) + sp (M}] - P{M)l =0
oo N =1 JJ k+1

we realize the following: We restrict to N=r1+.. then

. +I‘k+l’k+l ’

- 15 -



k k+1

1 1
Sl L r.u. (M) + sp (M)| = I re.(M)
N[,j=1 JJ k+1 ] r1+"'+rk+l =1 J
k+1 r.
- ; - )
= 1 K ) with Ko .
j=1 J Y J 17 kel

We have to prove: If 4 (M) > k(M) and _El c? =1 for all k, then
J:
Ku (M) > p(M).
jgl i J( ) 2 p(M)
This is a generalization of the theorem of Cauchy about the convergence

of arithmetic means: If _JEIC?:C *I,Cgéo.a.ndCE&Ofork"w,

k

J:
then _§1 Cl;xj 2 x follows from xJ. = x. (K.Knopp, Theorie und Anwendung
J:
der unendlichen Reihe, 43, Satz 5).
This is, what we need and everything is done. a

We have defined, what we mean by (weak or vague) convergence, we
have given convergence criteria and we have discussed the density of
(special) discrete measures in M(?). What we need for numerical
purposes are distances of measures, especially distances of particle
ensembles to densities. Probability theory supplies us with some
different concepts of distances, who generate weak convergence. A

metric p(p,v) in M(?) generates weak convergence, if

po o= p iff p(pn,u) — 0.
The first metric of M(0) was introduced by Prohorov (see "Convergence
of Random Processes and Limit Theorems in Probability Theory", Theory
of Probability and its Applications 1 (1956), pp. 157-214). It generates
the convergence, is however not easy to handle and was therefore

never used (as far as we know) for numerical purposes. It may seem
that

dTv(p,v) := sup{lp(A)—v(A)l / A measurable set in ﬂ} s

which is called distance of total variation, is a simple choice. But this
distance doesn’t generate the weak convergence, which is easily seen

by choosing p=ép, v=6q, P+Q, which gives trivially

drvifpid) = 1

i.e. it doesn’t tend to zero when P-qQ.

- 16 -



Other ideas are needed and the tool for defining useful distances is the
notion of a uniformity class: A subset U of Cb(ﬂ) is called uniformity
class, if uy 2 # implies

sup!S ¢dp - [ edpl — 0 .
¢elU n

If U is large enough such that it is convergence determining (as a

class of functions, which means that

f¢dﬂn—’f¢dﬂ V¢ € U implies Pn')}-l} )

then

d(u#,v) = sup!f edu - [ edvl
$elU

is a possible choice as a convergence generating metric.

We cite a result by Ranga Rao ("Some Theorems on Weak Convergence of
Measures and Applications", Ann. of Math. Statistics 33 (1962), pp.
659-680). If U is an equicontinuous, uniformly bounded class of
functions in Cb(a), then U is a uniformity class. (We use that our basic
set ¢ with the Euclidean metric is a separable metric space.) For
example, the class of all Lipschitz continuous functions with a uniform

Lipschitz constant, i.e.
b ,
{" e C(0) / 1e(P)-¢(Q)! = L||P—Q||] , L fixed

is an equicontinuous set.

We define

le(P)-6(Q)!
(Y] 1= sup _(_L_(..QL_
L PiQ np-Qi

to be the infimum of all possible Lipschitz constants of ¢ and the

Lipschitz norm

(K'Y r= ]
¢ IBL . !‘Iollm + ¢ L
(where I Il denotes the usual Lm-norm}.
_ b . . )
Then D := {0 e C / "MBL £ 1] is a uniformity class and we may

define

dBL(#,V) = sup! [ ¢du - [ ¢dvl
deD
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Very similar are definitions using

- b P
D1 i= {o e C / max{ﬁQﬂm,H¢HL} £ 1]
or
D, := {6 € C®/ 0<6(Pi<1 and ten <1
2 " ! L ’
. (1) (2) . (1) (2)
which create L and L It is easy to prove that dBL’ L and L

are equivalent metrics. For example,

ey .
dpr, © dp’ # 2dpy,

¢ € D means ol + IIML € 1; it follows that e < 1 and koM = 1,

L
(1)

i.e. max{nou_,non | <1 and ¢ ¢ DX, Therefore b  p{!) and

dpp(#,v) = supl[ edy - [ edvl £ sup 1f edu - [ edvl = d]gi)(p,v}

%eD “D{l}
If ¢ € D(lj, we get "(Hlm £ 1 and “¢“L £ 1 such that M’HBL £ 2;
¢’ = % is therefore in D and

dBL(P,v) = suplf ¥dp - [ ¥dvi 2 I[ ¢'dy - [ ¢’dvit = %if odu - [ edvl
¥eD

It follows that % sup [ edu - [ edvl = dBL(P,V)-

¢ED(1}
Similar estimates hold for all distances. We are therefore free to use
the one of the three distances, which is most appropriate for our
purposes and we will denote it always by dpp.

We see for example that

dBL(dp‘dQ) = Wp-Qi, if ¥P-QW is small enough

- we have some hope that dBL generates the weak convergence.

Theorem 1.6:

dp () = sup{lf odu - [ edv! / ¢ e C° with hou_ + nen < 1}

is a metric in M(2), which generates the weak convergence.

Proof':

The usual proof uses the Prohorov metric, but we want to ... . We
follow therefore H.G. Kellerer ('"Markov-Komposition und eine
Anwendung
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auf Martingale", Math. Ann. 198 (1972), pp. 99-122), which is based on
dpi,(2). We use (without proof) a lemma:
If ¢ € C, 04441, then there exists an increasing sequence {un)

neN
and a decreasing sequence (On}nem with

non, p'2)

and u T¢, o V¢ .
n’'n n n

We have now to show that

J ¢dﬂn S J ¢du Ve € D{z) implies [ ¢d,un > [ odp Ve € Cb .

If ¢ € Cb we may assume that |41£]1 and decompose

® =6 -0 with 060,41, ¢, ¢ cP .

It is enough to show the convergence for ¢ . ¢ + may be approximated

+
from below and from above by (um) and {om):

J ¢+dpn -7 ¢+dp < [ omdun - fumdp
= (f omdﬂn - f omdp} + (J omd&1 - I udeJ)
The theorem of monotoneous convergence tells us that

&
P - z 2
0% [ Omdp J umdp < 5 for m=2M.

. M (2) (2)
Since v € D and dBL [,un,ﬂl 2> 0, we get
o o
M _r M E
I v dﬂn J v du| < oM for niN1

This shows that

I ¢+dﬂn -J ¢+du ¢ ¢ for n’-‘N]L

and similarly we get

[ — L £ S .
[edu-Jeds ¢ fornN, 0
We want to mention a completely different approach due to
Wasserstein,which was used for particle methods in some papers by
Dobrushin.

The definition runs as follows:

We consider Borel measure on (x0 and their projection onto M(a):

For P € M(0x0) define pup € M(0) by up(A) = P(A,0) and vp € M(Q) by
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For P e M(0xQ) define pup ¢ M(0) by bp(A) = P(A,0) and vp € M(0) by

vp(B) = P(2,B) for all measurable A,B © 0, Given u,v ¢ M(0) we denote by
Plu,v] the set of all measures in M((x0), whose projections are the
given p,v:

Plp,v] := {P € Moxn) / );p:p,:;p::/}
Plu,v] contains the product measure 4 & v, but certainly more.

The Wasserstein metric is now defined by
dw{;u,VJ 1= inf{f Ix-yidP(x,y) / P ¢ P[;u,If]} .

This definition seems quite complicated; it is however quite easy to use
in convergence proofs as mentioned - this was done by Dobrushin (...).
dw was also considered by Kantorovich and Rubinstein - it generates
the weak convergence in M(%). The relation between dpy, and dy is

investigated in a bock by Dudley.

One may ask about the possibility of really computing these distances
numerically - our aim is to develop numerical methods, and we should
therefore be able to compute the error. There are in fact some steps in
this direction concerning dpr; since we will - for practical purposes -
mainly use another distance concept originally from number theory we

omit a further discussion of dpy, and dy here.
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§ 2 Numbertheoretic aspects

Numbertheory supplies a completely different concept for the relation
between densities and particle ensembles: It is the concept of the
asymptotic distribution of a sequence and originated from a paper by
Herman Weyl in 1916: "Uber die Gleichverteilung von Zahlen modulo
Eins" (Math. Annalen 77, p. 313-352), which was concerned with
Kronecker’s approximation theorem, i.e. with diophantine approximation.
Our main sources are: L. Kuipers, H. Niederreiter: Uniform Distribution
of Sequences, Wiley 1974; I.M. Sobol: Punkte, die einen mehrdimensio-
nalen Wiirfel gleichmdBig ausfiillen, MIR 1985, Moskau (Russian).

We describe the concept first in the most simple case - k=1 and

f(x)=x[0,1](x), where x is again the characteristic function (4 is here
the Lebesgue measure restricted to [0,1]). The generalization to higher
dimenions and to more general f will then be relatively easy. We take a

sequence (wy) NeN

oy = (xl;, .. .,xlr:ll] , N e N (the weights are here always %)

and want to define the convergence of wy to X[O 11
We take an interval [a,b), where 0sa<b<l (if b=1, we take [a,b]l) and

count the number of points of «@y in [a,b)

Z

A(la,b);0y) = L X[a,b}{xlf) ;

the relative frequency of the points in [a,b) is given by

1 .
ﬁ h( [aﬂb)s“’N) ]

and we call the sequence (wN)Neny "uniformly distributed" (u.d.), if

[

1

lim N

A(la,b);w,) = b-a = [ x (x)dx
Noo N 0 [a,b)

for all O%a<b<l.

If (xi), g iS & sequence of points and @n=(x1,...,XN), we say that (wy)
is generated by (xj) and we call {Xi)ieN u.d., if (QN}NEN has this
property.

Examples:

1 3 ZN-1, . .
1) (ZN’ZN’ crerToN ) is a sequence of particle ensembles not generated

just by a sequence of points; we will soon see that it is u.d.
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1 13 1357 1 .
2) Let (xi)ie}ll be the sequence 0,§, 13’ 8°8°8'3’ 16" °" We consider
N =25 Lok ko1.2.... and [a,b) = [0,2).
Then
1.. _ 1 -
(t0dieg) - 2 s{0.dheg = 0
(t0, ) 2K k-1 k-1
A [0,—),&) a = =—+2 = 22
2 21{ 1+2k 2
and therefore
k-1
1 [ 1 22 2 1
—'_———‘ﬁ[O,——),U _ = — = = — =,
2k 1+2k 2 2k 1+2k] 3-2k 1 3 2

(Xi)iem is therefore not u.d. One realizes that the uniform
distribution is an asymptotic property - our sequence looks uni-
formly distributed for N=2k, but is asymmetric inbetween, for
N=2k—l +2k

3) If we define a sequence (Xi}ieN by using the dual representation of

1=£1+122+ +¢ 2 , :k=0,1
and put
. -1 -2 -m
= = ¢ .o+
Xi p(i) 12 +¢22 + . + m2 )

then p(i) is the so-called "van der Corput" series and is u.d. as we

shall soon see.

Remark:
Theorem 1.5 tells us that [(a,b] ,-—méa4b4w] is a convergence determin-
. 1 N
= = = A
ing class. If we put P OE R izléxlf and p 1[0’1}, we see that
By 2 iff
r’\((a.b],wN)

Since outside [0,1]1 wy vanishes as does 4, we may restrict our con-
sideration to 0<a<b€l; moreover, it doesn’t make a difference whether
we consider intervals (a,b] or [a,b). We can therefore easily connect

both concepts: {QN}NEN is u.d. iff 6“N converges weakly to 7\| [0,11"
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Consequence: (UN}NEN is u.d. iff

N N 1
1lim3 7 ¢(x.) = [ ¢(x)dx
™ i

Now i=] 0
for every real valued functions, continuocus on (0,11.
It is not complicated to extend the last convergence to all Riemann-
integrable functions. However, if we try to do the same for ¢ € 11[0,11]
we would fail. Extensions in this direction will be given in 83, where we
treat the functionalanalytic aspects.
If we consider ¢ as test function for convergence, we want to test as
few functions as possible. In this direction the Weyl criterion is famous:

2mikx

N
) is u.d. iff lim % I e J -0 Vket, kio .

(NI Ne
Proof:

Clearly, the u.d. of (wN)NEN implies that

1 Z

1
cos 2ﬂkx§ 5 [ cos 2mkxdx = 0
0

Zh—

J=1

and the same relation for sin 2nkx, which shows that the condition is
necessary.

To prove sufficiency, we take first a complex valued continuous func-
tion on R with period 1. For &30 arbitrary, the Weierstral approxima-—

tion theorem tells us that there exists a trigonometric polynomial

#(x) = ) Qhezﬂihx
Ihi<H
such that
sup If(x)-e(x)! € ¢ ;
0£x=<1
then
1 N
I fxdx - & T e |
0 =1
1 1 N N
e 5 e - eolax + |7 eax - 1 et + L T e - £
0 0 j=1 Y j=1
1 1 N N
£ 2: + lf ddx - X I #(x.)| = 3= for N sufficient large.
0 Ng=1 Y
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To get rid of the periodicity condition f(0) = f(1), we have to
approximate an arbitrary ¢ by a periodic f in L®[0,1] and do another
estimation of the above kind.

The Weyl criterion tells us that u.d. is equivalent to cancellation, if we

interpret X’j as frequencies of signals with amplitude 1.

It is now important that numbertheory gives a definition for another
distance - the discrepancy. We call
A(la,b) ;o)
sup [Ty - (b-a)| = D{“N)
O£a<b=1
the "discrepancy of wN". An important result tells us that (wN)Nen is
A(la,b) ;e )

N — (b-a)

u.d. iff lim D(wy) = 0, i.e. the convergence of

is automatically uniform.

Proof':
It is obvious that (wy) is u.d. if D(wy) 2 0. Vice versa, assume that
Il‘“:["T_l-vb}';c"“ )

N
with respect to a,b. Choose m*2 and I

2 (b-a); we want to show that this convergence is uniform
- kK k+l - -
o T {m’ o ), k=0,...,m-1.

By our assumption, there exists a NO:NO(m}, such that
AT o)

.:—él l = - =
) £ — £ = (1+2), k=0,...,m-1, N=N

11 :
m m (o]

Take 0O=a<b#l arbitrary, I=[a,b). We can certainly construct finite

unions of intervals Iy, namely J; and Jg such that

c 2 - 2
Jp T, and AMI)-A(J)) < 5, AMJ,)-M(I) < = .

For N‘—‘NO we get

AT e0)  AM(Ize ) A(T,e)
1, . 1"’ N° ? P 2° N, 1
M‘}l){l_ﬁ) £ N £ N £ N £ ?\(Jz}(l+m)
and therefore
.-‘\(I‘w }
2 1, ., "N, 2y14ly .
(MD=2)(1-0) & ——— < (M(1)+2)(143)
since A(I) £ 1, we get finally
AMIzw.)
3,2 N e 3,2
B I S C -y
m m
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and therefore

which can be made arbitrarily small.

D(wy)

3w

2
-I-""'z'1
m

Remarks:

1)

2)

] i ] A . A
D(wy) is a distance between oN and |[0'1], we have 6“N > |[0,1]
iff D(wy) 2 0, i.e. D(wN) generates the convergence — if the limit
function is XI[O 11°
We will later see that the discrepancy may be extended to a distance

between measures, for example by

D v) = su R - v(R .
(Byv) Qég #Riq,p)) = Y (Riq,p))
We know from theorem 1.5 that D(pp,t) 2 0 implies pp 2 4 the
opposite direction is however not true, the convergence is in
general not uniform. If however p is absolutely continuous with
respect to A, i.e. if it has a density f e 1! as in our cases,

then

B - g implies D(#n,P) - 0.

The definition may be changed a bit, for example by
ACL0,x) 50y )
D*{wN) = osup | " X| »

0£x41
i.e. by considering only intervals of the form [0,x).
It is trivial to see that
p* < D < 2p*

such that D*(wN) » 0 is equivalent to D(vy) 2 0 and therefore to
the fact that “N is u.d.
D* is easy to compute: Consider

n([oix);u )
S (x) = TN
N N ’
it jumps by 1 at any point x. of w
N J N

Kalsers|autem’
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The difference is maximal at x=xj, such that
D¥ = max maxj!S (x.+0)-x.l1,I§ ~0)-x.I
14 j4N {15 3OV S0 )

We therefore need only to take the maximum of 2N numbers. If we put

SSEREERE into order, i.e. if xlixzé - ‘xN, then (assuming first
that they are all different)

= J o) = J4=1
SN(xj+0) ol and SN(XJ 0) = N

and

D* = max max[fd:l-x.l,lg—x.i]

14 j<N N 7 J
Now
J'.._
d o, -T2 _ 1 _ 1
NN X5tonTztoy
51
J=1 -2 _ N SR
N "% TN "X TNTZT9N
. 1 1 1
lz—1} = | —_—

Since max{|z+5§|, 270N } zl + oN® We get

D¥ = %ﬁ + max |ﬂ§g - le.
1< j€N
This is a quite important formula, which we will often use. It is easy
to see that it is true even if some of the Xj are equal.
In order to compute D¥, if oy = {xl,...,xN] is ordered (which may
Create especially in higher dimensions a lot of computational effort),
then we have just to compute the largest of the distances

2i- .
—%ﬁl - xj|, J=1,...,N .

We see immediately that our first example
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- [_1._ 3 2N-1]

N 7 l2N'2N’"""* 2N

gives the optimal possible discrepancy D*{WN) = L and is therefore

2N
u.d.
Remarks:
1) We see that sequences (wN)NEN exist with
_C

2)

and that this convergence speed is the optimal one. The situation is
different, if (uN}NEN is generated by a sequence (Xi}ieN of points:
In this case there exists an absolute constant C such that

D*(UN] 5 C'Lﬁﬁ for infinitely many N € M

(Theorem 2.3 in [K,N1, p. 109). The proof is quite technical.

This seems to be a low convergence rate; however, one has to keep in
mind in discussing convergence rates for particle methods that using
discrepancy as a distance, 0(;§§) is the best order one can possibly
achieve, There are also upper bounds for D or D*, which are not so
easy to handle; it is however clear that for some concrete examples
O(lﬁﬁ) can be reached so that this convergence order is really
optimal.

The best example is the van der Corput series p(i). It was shown
(Haber, S. "On a sequence of points of interest for numerical
quadrature, J. Res. Nat. Bur. Standards, Sect. B70, pages 127-136,
1966) that for this sequence

* < 1 1nN
D (wN)

1 1
3z N O

and that the constant 5%55 cannot be improved.

We have defined D¥(w_) as WS -idH ; we may therefore call p*
N N 10,1

the Lm—discrepancy; there are also Lp—discrepancies defined by
(1ép<=)

. [} " lpdx]l/p
D w ) = WS -idH = 1S (x)=x .
(p)" N N""yPro,11 o N
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There are connections between D¥ ) and the bounded Lipschitz

(p

distance dBI we mentioned in chapter 1.

We shall now show how u.d. sequences (wN) may be used for numerical

integration. We mentioned already that u.d. is equivalent to

1 N N 1
lim N I f(x)) = J f(x)dx
. i

i=1 0
for Riemann integrable functions f. How fast can this convergence be
in dependence on the smoothness of f?
We consider functions f of bounded variation V[f]l, which can be repre-
sented as the difference of 2 monotoneous functions and can be used as

a distribution in Riemann-Stieltjes integrals.

Lemmna (KN, p. 143)

Let “y T {xl,...,le be ordered: xl£x2é...£xN and let f be of bounded
variation V[f]. Then (using X =0, XNe1™ )
LN 1 N “n+l N
N P flx ) -J f(lx)dx= % [ (t—ﬁ)df(t}
=1 " 0 n=0 x
n
Proof';
N *n+1 . 1 N
r J [t—ﬁ)df(tl = [ tdf(t) - ﬁ[f(xn+l}-f(xn1]
n=0 x 0 n=0
n
1 1 1 N 1 1 1
= tf(t) - J f(t)dt + = I f(x )=-f(1) (using [ gdf = gf 0~ I fdg)
0 N T n
0 n=0 0 0
1 N 1
= 5 I f(x ) - J f(t)dt
n=0 " 0 o

With this lemma we get easily the so-called Koksma inequality.

Theorem 2.1:

If f is of bounded variation V[f] in [0,1] and wy = (xl,...,xN), then
1 N 1 «
N I f(Xn) - J f(t)dt| <« VIfID (wN)
n=1 0
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Proof':

We may assume xléxzé...éxN; for fixed n we have

|5l < max[IXn"§|’|Xn+1‘§ | e D¥(e)  if xstex
Therefore
X
F glf(xn} y £(t)dt| « nga E+1|t-§||df(t)f
N *n+1
£ D*(wN) T Hdf(e)! = D*(wN}V[f] .
n=0 X

Remark:

If one allows f to be differentiable with f’ € L1[0,1], then

VIf] = } If’(t)!dt and the proof is a bit easier but uses essentially
the samg ideas. For continuous functions there are other estimates:

If f € C[0,1] and

M(h) = sup {I£()-£(y)1 / x,y € [0,1], Ix-y! < h]

denotes the "modulus of continuity”, then

1 N 1 X
5 ) f(xn] - [ f(t)dt| = Mf{D (wN]) .
n=1 0
Proof':
Again QN = {xl,...,xN), xlé...éxN. The mean value theorem gives us the
existénce of ¢ , H:lés <2 such that
n N n N
1 N n/N 1 N
Jf(t)dt = LT [ f(t)dt =3 ) f(fn)
0 n=1 n-1 =1
N
and
1 1 N 1 N
Edt - 2 T ex)| <& 3| R )£ )
0 n=1 n=1

n-1
N

- | £ p¥ imi i
If x ¢ , then Ix —¢ 1 < Ix D (wN) and similarly, if x < ,

then Ix -¢ | < Ix -2 = D*(w,.). The statement follows from the defini-
n n n N N

tion of Mf.
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Things are a bit different, if f is an unbounded function in [0,1], say

1
that f(x) @ « for x20 but 6 f(x)dx exists. Then % _glf(xi} doesn’t
1=
converge necessarily to é f dx for an u.d. sequence (xi)iE

e Sobol has

x. the following statement is true:

shown that with ay = OEiEN L %
4 l —

If
1
D*(wN) T If'(x)ldx » 0 for Now
ay
then
1 N 1
N ) f{xi} — [ f(x)dx .
i=1 0
Example:
Take p(i) = c12'1+...+zm2““‘ for i=c1+2¢2+...+2'“"1cm , then (¢ $0)
m-1
_ -m 2 _1
(N+1)aN = (N+1)2 X o =3 and
£ ET =1 such that ~ < .
o ! & N
. 1nN
Since D(wN) ~ —ﬁ—, we have to check, whether
InN 1
~ J If'(x)ldx — 0 ;
“ e/N
-A -A=1 1 C,=A
for f(x) = x , f'(x) = =-Ax we get [ If7(x)ldx = MI1-(3) )
c/N
1nN N, A 1
so that -ﬁ"(l_(al ) > 0, if X¢1, i.,e. if | f dx is convergent.
0

The construction of sequences with good discrepancy

We will first follow Sobol:

We take N=2" and consider Oy = {xl,...,xN). We divide [0,1] into N
segments of length % and call “y @ Po—grid, if each segment contains
exactly one point of ENG

+

i
s

ird
N

Zlir 1
+
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1

Ordering the points X{ we see that iﬁ-éxié;, i=1,...,N. Therefore
15 1 1

[_ﬁ__xi £ oN and D* < N (remember that only sequences w« . generated

by point sequences had always an order worse than lﬁﬂ, meanwhile 0(%)

was possible in the general case). P0~grids in one dimension are quite
trivial constructions, but will become more interesting in higher
dimensions.

In one dimension one may use the concept of LPO—sequences for u.d.
point sequences (xn)nem'

In each sequence a section x $X g X s with s=1,2,...
k2™ k27+1 (k+1)27-1

and k=0,1,2,... is called a binary section. Choose for example h=2%

and divide (xn) in sections of length h

[xo,...,xh_l], [Xh""’XZh—l]'

Now (xi}ieN is called a LPO-sequence, if any binary section is a PO—
grid.

If 25-1 ¢ N < 257121 then the dual representation of N contains at

most s times the digit 1. If the number of 1’s is t, we have
t £ s = [logz(N+1)]. where [z] = max[n € N/néz} is the Gauss bracket.

Now D*(QN) - % for a LPO—sequence and therefore

[1og2(N+1)]

£
D(wN} N .

It follows that Lpoﬂsequences have an optimal behaviour; especially
they are all u.d.

Sequences of a binary rational type

Let V be an infinite matrix

Vii Vig v

) ) Yoy Vg e
V = (VS.} aq T

Jj'sj Vap Vgg vce

PRI

with Vsj e 10,1!. Each column contains a finite non-empty set of ones;

then each column defines a rational number in its dual representation

VS 1= 0,vslv32...

V is called direction-matrix and the numbers Vl,Vz,... are called

direction numbers. A sequence (r(i]}i is called of binary rational

N
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type (shortly BR-sequence), if
(i) r(0) =0

(ii) r(2%) = Ve 590,1,2,. ..

(iii) for 2841423+1 we define r(i) = r{ZS)*r(i—ZS), where * denotes

the bitwise addition modulo 2 (exclusive or)

For example 5/16*%7/8 = 0.0101%0.1110 = 0.1011 = 11/16
13/16%19/32 = 0.11010%0.10011 = 0.01001 = 9/32.

It is easy to see that r(i) may also be expressed by

r(i) = elVl*ezvz*...*eme for i=em...e1 (dual);

for example r(25) = r(11001) = VI*V4*V%'

Sobol has shown that a BR-sequence is a LPO—sequence if V has only ones

in the main diagonal and above it only zeroes.

Example 1:
The van der Corput sequence p(i) is the most simple BR-sequence:
1 0 ...
v = 0O 1 0 ...

Then V =2_S, therefore V %V = V +V and
s s r s r
SN e -1 -2 -m
r(i) = p(i) = €12 “+e,2 toote 20

Therefore (p(i)) is a BR-sequence and consequently an LPo—sequence with

x . t
D™ = N
. . 1 1nN 1
this is for some N better than 3n2 N + O(N}.

The fact that (P(i)}ieﬂJ is an LP_-sequence implies also that every sec-
tion consisting of 2M points, i.e. every ensemble “om is a Po—grid and

has therefore optimal discrepancy.
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Example 2:
The matrix

s-1

C = (csj) with Csj = [j—l

] for s2j and c¢_.=0 for j>s
sJ

is called Pascal matrix (for quite obvious reasons).
We take now V = (v_.) with v_.=c_. mod 2 and get
8) 5] 8J

10 ... O
1 1 0 ...
v=14j1 0 1 0 ... , which fulfils Sobol’s condition.
1 111 0. ..
1 0 0 0 1

The sequence {q(i))iEN given by this V, i.e.

gq(i) = 0.1el*0.11e2*0.10193* - *Vhem for i=em...e

is therefore a LPo-sequence.

p(i) and q(i) are connected but at the same time independent. For
example: If p(i)=q(k) for some i,k, the p(k)=q(i). However,
{p(i},q{i))iEN defines a pointsequence in [0,1]2, which has good

properties as a 2-dimensional sequence.

The more dimensional case

We consider now the case of k>1, but choose as density still the uni-
form distribution in the k-dimensional unit cube, i.e.

f(P) = X1 1]k(P), P ¢ RK. We consider k-dimensional intervals
]

o o o o N
[P,Q) © [0,11K as in § 1, define A([P,Q);uy) = L X (P}), when
]

i=1 [3’&
oy = (Pl,.0 o B}) and call (o) o u.d., if
o o
A([PtQ);QN) O o0 0o 0
lim ——————— = A, ([P,Q)) for all intervals [P,Q).
N k
N-—)m
1 N
Again {QN)NEN is u.d. iff 1lim N L O(Pﬁ) — [ ¢dx for all Riemann
Noe =1 0,11k

integrable functions f and the Weyl criterion gives a sufficient and

necessary condition

LN ami<h, P>
lim 5 e J - 0 for every lattice point h € Zk, h#0 .
Nra ' j=1

The consequence is that (wN)NEN is u.d. iff
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are one-dimensional u.d. sequences,

We get now the generalization of the concept of discrepancy to higher

dimension
A(IP,Q) ;) o o
D(ey) := 0Sluxp — N - lk([P,Q))
0<P<Q<E
and
A(10,Q);0y) o
D*(QN} = . sup |—___7?H~——__ - Ak(EO,Q))
Qel0,11k

Again, it is easy to see that

D* £ p < 2Kpx
and the proof that the convergence is uniform, such that

(wN)NEN u.d., = D(wN) 20 for N3 @

is similar to the one-dimensional case.
However, for k>1 one may define other discrepancies, for example the
so-called "isotropic discrepancy"

A(c;w.)

J(w, ) := sup N - Kk{C} )

N ceC

where C is the family of all convex subsets of [O,I}k. One may (see
[K.N.], p. 94) restrict the consideration to all open and closed
convex polytops in [0,1]k and gets in using this fact

D < J < (4kik+1)pl/K

such that (wN} is u.d. iff J(UN) - 0.

The computation of D or D* is not as easy as in the one-dimensional
case: One cannot restrict the attention to the points themselves but
has also to consider the intersection points of all planes passing
through the N ensemble points; this set contains already Nk points -

see 2.1.
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w4 together with 4 2intersection points and the
the values of A([O,P);GN) for P ¢ [0,1]2.

It is easy to realize that A jumps also in the intersection points
which do not belong to “N
Niederreiter gives a formula, which generalizes the explicit expres-
sion to higher dimensions.

What are the best bounds for D*(WN)? As for k=1 we have to distinguish
between general sequences of point sets and those, who are generated
by point sequences. Here are still open questions; the conjectures are,

that

lnk-lN
D*(QN) 0[-—ﬁ—"] is optimal for general sequences (GN}

and

D*(GN) O[L;ﬁ] is optimal for sequences, which are

generated by point sequences.
One can construct sequences with this rate, however one cin prove only
for k=1 that they are optimal.
What is shown (see [K.N], page 105) is that

k-1
* lnzN
D (wN} > Ck——jE—- in the general case
and
lnk/2N
D*(wN) > Cé—v—ﬁ——— for infinitely many N in the case of

point sequences,

where Ck’ CL are constants only depending on the dimension. The upper
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bounds are as in one dimension not very helpful.

We shall give special constructions with corresponding convergence
rates quite soon; but first we shall present a generalization of the
Koksma inequality, which is now called "Koksma-Hlawka inequality". We
need a careful definition of the notion of "bounded variation'.

We are still in [0,1]K, consider k22 and a function

f(P) = f(pl,...,pk) defined there. A partition Z of [0,1]K is given
by partions z(J) on the coordinate axes
Z(j) = [zgj)} with 0 = z(j)iz(j)‘...‘z(J} =1,
i 0éiémj o 1 m.

The difference operator with respect to the j-th coordinate is

(J)

A‘jf(pll"'!pj_llzi ’pj-!'l"”’pk)
:= f(p p 209) b cos Py )
. 1,-.-, ‘j""l’ i+1| j+1}' ] k
(J)
f(pli LR lpj_l}zi !pj+l! * “"pk) ’
We denote by 4, . Just the composition 4. °,,.° &,
le---aJp Jl ‘Jp

(the operators commute). A straightforward generalization of the one-
dimensional variation is the variation "in the sense of Vitali"
(k) RI (1) (k)
V*VIfl =sup I ... I |a f[z. yeeesZ. ]I .
k i

A . 1,004, i
Z 11—0 1k—0 1

Realize that, since for example for k=2 we sum up terms like

(2) - +
Ziz+1
(1) (2)) _
A1,2f[zi1 %, ) -
(2)
Z.
i, + -
(1) (1)
Zil Zi1+1

the variation is zero if f is not depending on one of the variables.
V(k){fléw doesn’t mean high regularity. In order to get more smooth-

ness, one has to restrict the variation on the faces of [O,l]k, defined
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by the fact that one or more coordinates have the value 0 or 1.

We say that f: [0,1]k 3 R is of bounded variation in the sense of Hardy
and Krause, if f itself as well as its restrictions to all lower dimen-
sional faces of [0,1]k are of bounded variation in the sense of Vitali.

In 2 dimensions this means that

V@ e+ v te0,7 + viP1e, 91 + v e,001 + vV e, 11 <

In order to formulate the k-dimensional version of the Koksma-Hlavka
inequality we need some notations.
Given #£k and an ¢-tupel (il""’it) with 1‘111124...£i‘ék, we denote

by GN{il,...,it] the t-dimensional pointset given as projection of oy

to the ¢-dimensional face of [0,1]k defined by pj=1 for j({il,...,i‘].
Similarly we denote by f[il""’it] the restriction of a function f on
[0,1]k to the same face.

Theorem 2.1': (k-dimensional Koksma-Hlawka inequality)

If f is of bounded variation in the sense of Hardy and Krause and

oy = (Pl,...,PN), then

£(p If < § 5 vl e i 1]
( n) - (P)dP ipyeeendy

[0,1]k t=1 15114...4135k

Zi—
n 12

1
. D*(o. [ ;
D (QN[ll,...,I‘]}

We get a simplified version, if we define

k ()
V(f) := h) ) v [f[il,...,i‘]]

=1 14111...£i‘£k

as Hardy-Krause variation. Since it is obvious that

D¥(oyligyeeeri d) & D¥(eg)

we get
1 N
S Lf(p)- J f(P)dP‘ s V(£)D¥(w,) .
N n=1 " k N

[0,11
We shall prove a more general version, where we compare “N with a
general density f instead of just lk[[o 11k *

1)

We want to mention that there are estimates, if we restrict the inte-

gration to a Jordan measurable subset E of [O,I]k, i.e. for
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[ e o=t

f(P ) - [ f(P)dP
1 g

1
N

n
{see H. Niederreiter, Application of diophantine approximations to
numerical integration, Diophantine Approximation and its Application
(C.F. Osgood, ed.) Ac. Press, 1973, p. 129-199).
There is also an estimate using the modulus of continuity:
1

< Aka[D*[wN)E] .

I ==

f(P)- [ fdp
n Kk
[0,1]

Zl—

n=1

With A1=1 we get the one-dimensional result. For k22 it is shown by
Proinov ("Discrepancy and Integration of Continuous Functions", J. of

Appr. Theory) that Ak=4 is always possible.

We shall now try to construct particle ensembles with low discrepancy.
This is much harder than in the one-dimensional case.

Let’s begin with the "trivial" solution for N=Mk:

i 1 i _1 i 2l
(M2 273 k2) .. .
QN = [ MM T N ], 1—11,...,1k-M
One can check that Iﬂiigigll - Xk([O,P)}I is maximal for example for
. 1 1| _1 _1-1/k
P-PI—(I,...,I,ZM), namely |0 oMl = oM T 2N . (Forkejample for
b - 3 M3 1, 1M 1 MTl-M 1
P=Pp=(1,...,1,55) one gets IN 2M‘ ToatGin) Tt ) Yy )
Therefore D*(wN) = %Nﬂl/k: This set is optimal for k=1, but becomes

worse with growing k (already for k=2 we get only %ﬁ) and approaches
for k2= even the worst case. (For k=3 the result is worse than real
random effects! k23 are therefore sometimes called "damned

dimensions". )

Again we may define Po—grids as in the onedimensional case. We define
binary intervals as tlx...xtk where each ‘i is a onedimensional inter-
val of the form [(j-1)27",j2™™), 1£j¢2™, m=0,1,2,... Binary intervals
in 2 dimensions with volume |¢1|'f¢2| = % are shown in the following
4 pictures:
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We call o for N=2" a P_-grid, if each binary interval I of volume 5
contains just one point of “N° However, as one can realize by the case
N=23, k=2, there exist not only N different binary intervals but 32;

a Po—grid would have one point in each of these 32 intervals. This is

possible:

One can construct P0 grids in 2 and 3 dimensions, as we shall soon see,
but not in higher dimensions: For k=4 there exists no Po-grid with more
than 4 points. Since higher dimensions are important for particle

methods, we have to weaken the conditions: We call “N with N=2" a
T

PT-grid (r=0,1,2,...,v-1), if each binary interval of volume %—
contains 2 points.

P1-grid with 8 points
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It is easier to construct PT—grids and it is possible for arbitrary
dimensions if one increases 7 with k, i.e. if 7=7(k). One knows only
that =(1) = 7(2) = 7(3) = 0, 7(4) = 1 and 7(k) = O(k-lnk) is possible.
For PT—grids one can show that

D*(ay) = o[lﬂkéiﬁ] :

which is presumably the optimal rate. Here only the constants depend
on 7. We may now generalize the concept of LPo—sequences: We call a

sequence of points (pn)neN an LP_-sequence, if every binary section

with at least 2T+1 points is a PT—grid.

This gives a method to construct higher dimensional low discrepancy
sequences starting with lower dimensions:

If (Pn}nEN is an LP_-sequence in [0,l]k-1 (k22), then for any given N
the set

. 1 N-1
oy = (0,2, (,Py) e, (L p )]

is a P_-grid in [0,1]k (Sobol, p. 37).
A similar, but more general result is due to Niederreiter (Point sets
and Sequences with small Discrepancy, Monatshefte Math. 104 (1987),
p. 273-337, Lemma 8.9): .

-1

If {Pn,lnEN is a sequence in [0,1] and @ = (PI,...,PM] then for o

M N

constructed as above

ND¥(w. ) £ max MD*(Z»M) +1 .,
1=<M<N :

Therefore, if (;M} is a low discrepancy sequence, & _ is a low discrep-

N
ancy set. This can be used: We start with van der Corput (p(n})nEIu and

construct oy = [(g,p(l)),...,(Hii,p(N)}] - we get a <—dimensional PO—

grid. Moreover: Use p(i) and the sequence q(i) constructed in using the
Pascal matrix. Then (p(i),q(i)) defines an LP_-sequence in 2 dimensions
(we shall see that later) and

ey = [(Gp1,a),. ., L e ,a(v)]

is a Po—grid in 3 dimensions.

Constructions of LPr-sequences are quite often based on the idea that

each coordinate forms a one-dimensional LPg-sequence; however, these

LPy-sequences must be independent.

A method of construction is provided by the so-called monocyclic
- 40 -



operators. All our calculations are now done modulo 2, i.e. we are
working in the Galois field GF(2).
We consider infinite sequences u = (...,u-2,U-1,Uq,U],U2,...) € GFTZ)Z and

linear operators L: GF‘{Z]Z - GF{2)Z defined by

(Ru)y o= Uyt Yam-1t o Y8407
where a‘j e GF(2), j=1,...,m-1. m is called the order of L.
Denoting by 0 the sequence of zeroes in GF(2)Z, we may ask for solu-

tions of

Lu =0 .
This equation is easy to solve: Prescribe a section of length m of u
arbitrary - then the rest of u is uniquely defined by the equation. For
example prescribe [ul,...,um], then

u. = a u. + ... + u.
i+m m-1"i+m-1 1

can be recursively solved for i=1, then i=2,3 etc. (remember that we
are in GF(2), where + equals -) and similarly

YT Y P Yiemm-1t 0 PP
Proceeding in that way one gets a unique solution of Lu = 0 with m

can be solved for i=0,-1 etc.

"free parameters" Upyeeest . In GF(2) we have om possibilities to
choose Upy ooyl differently, i.e. we get 2™ different solutions of
Lu = 0. We consider sections of length m of a solution of Lu=0:

(Ul,---,um},[uz,... ),+.. . If two of these sections are identical,

u
"m+1

say (ul,...,um] and (uT,...u ), then the sequence u is periodic

T+m-1
with period length (7-1). At most o™ of these sections can be differ-
ent, therefore 7 is at most equal to 2™ and the longest period possible
. m

is 2 -1.

W~ call L monocyclic, if Lu = 0 has at least one solution of period
2m_lv

Examples:

(Lu)i = ui+uA

i+l (m=1, maximal period 1; Lu=0 has 2 solutions:

u=0 and u=1)

- - : ; 3_,_ -
[Lu}i = U atug Uy (m=3, maximal period 2°-1=7 and Lu=0 has a

solution ...,1, 0, 0,1,0,1,1, 1, 0,0,..., i.e. a solution of maximal
ui{ uz ug u7 uj=ug
period.)

It is easy to see that for monocyclic operators every nontrivial solu-

tion has period 2™-1 and they all differ from each other only by a
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shift. Therefore (Lu}i = u tu, doesn’t define a monocyclic

143 4241
operator, since we get different period lengths, for example through

u=¢(...,10,0,1,1,0,0,1,...) or (...,1,0,1,0,1,0,...)

+u,

Further monocyclic operators are given by u. il

+u, d
142 ; an
U, tu, .+u..
i+3 Ti42 i
Given a monocyclic operator we can construct LPT—sequences: First we

assign to L a direction matrix V = (vs J.) by
(i) the first m columns of V, i.e. {vs,l}sil""’(vs,m)sil are solu-
tions of Lu=0 (more precisely: solve (Lu}i = 0 for i=1,2,...).

(ii) each of the sequent columns of (vs k)sil’ k>m solves

1

LV.!k V. k-m

(iii) V fulfills the condition sufficient to give an LPO—sequence:

There are ones in the main diagonal and only zeroes above.

((iii) follows from (ii), if it is true for the first m columns.)
Therefore such a V defines an LPO-sequence "connected with the operator
L".

E le:
We consider the Pascal matrix which gave rise to (q(i)}.lelu and check

that it is connected with (Lu)i = ui+u. This operator has as we

i+l1°
know order 1 and one nontrivial solution u=l. Therefore the first

column of V consists of 1’s. Now we have to solve

= V.

Viel,k™Vik T Vi, k-1

recursively with respect to k. One checks easily that this is the

recurrence relation for binomial coefficients (modulo 2)

1)

Sobol has shown that the following is true:

i+l

k

(1) Let Ll""’Lk—l be different monocyclic operators with orders
MyseesMy ge If we construct for each j a LPq—sequence {Pj(l})iem

connected with Lj’ then the sequence (éi]iem with

Q = (py(i),.vuyp, (i)
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k-1
with == I (m.-1).
=1 7

defines an LP_-sequence in {O,Hk'—1

(2) If one adds one coordinate defined by the van der Corput sequence
(P(i)}iEN we get that

Q, = (p(i),Q(i))

is an LP_ sequence in [0,1}k with the same T.

Generalization of the Sobol constructions of Po-grid etc. to bases
b different from 2

We fix a base b € N, b22. We define (instead of binary intervals)

elementary intervals in base b as ¢1x...x£k, where each ti is a one-

dimensional interval of the form [(j-1)b ",jb ") with 1€jb" and
arbitrary m=0,1,2,...

We consider again point sets “y c [0,1]k with N=b" and call it Po—grid
in base b, if each elementary interval in base b of volume 1/N contains
exactly one point. The generalization to PT-grids is obvious - then

each such interval of volume bT/N =p

. T .
contains exactly b points.
(Niederreiter denotes such a PT—grid in base b as a (7,m,k)-net in
base b - see H. Niederreiter, Point Sets and Sequences with Small

Discrepancy, Monatshefte flir Mathematik 104, pages 273-337, 1987.)

In order to understand the consequence of changing the base b we
consider the question how many elementary intervals of volume 1/N=b-m
exist - if we fix N and change b. We take an example: k=4, N=b" and
construct intervals 7 of volume b-m; if m has edges of length

b-ml,...,b-m4, then the volume of 7 is

-m 111
b L ...p *=zp™

or m1+...+m4 = m. We need all nonnegative integer solutions of this
equation; elementary number theory tells us that we get
(m+1) (m+2) (m+3)/6 such solutions. Each solution defines a certain

"type" of elementary interval - and there are N intervals of each type.
Therefore, for N=27=128 (b=2, m=7), we have 720/6 = 120 types and
120x128 = 15.360 intervals. For a Po-grid this means 15.360 conditions |
for wy. If we choose N=53=125, we get 20 types and 2500 conditions, for

N=112 we get 10 types and 1210 conditions.
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We realize: If we fix N (at least approximately) and enlarge b, we get

less conditions for “N to be a Po—grid in base b; it is therefore

indeed possible to construct Po—grids in base b in all dimensions, if
b23,
We generalize c1150 the concept of LP ,-Sequences: A sequence of points

{Pi)ielﬂ

tion a (7,k) sequence in base b) if for all integers j*0 and m>T the

in[O0, 1] is called LP_-sequence (or - in Niederreiter'’s nota-

pointset [ijﬂ“+1""'p(,j+1)b1“} is a P,;grid (or (7,m,k)-net) in base b,

Remark :

Sobol’s original work was concerned with b=2; H. Faure (Discreépance
de suites associées a un systéme de numération (en dimension s), Acta
Arithm 41, 337-351, 1982) had considered the case =0, i.e. LPO—
sequences in arbitrary bases. Niederreiter has an upper bound for
(7,m,k)-nets in base b:

If “N is a (7,m,k)-net in base b23, then

T

ND(&JN) £ b

n‘M»O

i=0 [ki_l] [m;r] [g]l , when gq=min(m-7,k-1)

This gives, if we consider the behaviour with respect to m-7

ND(w.) < —L [b]k Umer 51 4 0( (mor ) K72

N (k 1)!

Since N=b™ or m:long this gives

D(w

[g]]k—l (i Ejk—l \ of k=2

) < —1 'T[
)12 In b

N (k-1

which is an optimal rate.

The first construction of Py-grids and LP,-sequences in base b are due
to Faure (see above), who showed that for b2k one can construct this
kind of LPg-sequences. He used a generalization of the (p(i),q(i))-idea
in 2 dimensions. (p(i)) and (q(i)) correspond to V=E and V=Pascal matrix
C(mod2). It is easy to realize that C2=E(mod2) - even more general
Cb=E(modb). This gives us Faure’s idea: Choose k matrices out of
E,C[modb},...,Cb"l(modb} (if b2k), use these matrices as direction
matrices, which define now "sequences of rational type in base b"
(instead of binary rational sequences). Use now these sequences as
coordinates of point sequences - this defines an LP5-sequence in base
b in [0,1]K. Faure has shown that for this sequence (Pp)peN and

wN=(P1,...,PN) we have
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< Iy

N ] for N=b" .

D*(wN) = O{LILL;—N] and even D*(NN) = 0[

Remark:

We are not aware of an investigation telling us, which way - along
LP--sequences or other bases - is the better one. It may depend on
the size of N: One should realize that not the asymptotic behaviour but

the smaller D*(wN) for given N is the most important fact.

There is a third idea to produce low discrepancy sequences in higher
dimensions, which is connected with the names of Hammersley & Halton:
Hammersley generalized van der Corput’s idea to other bases b - if
izepbM~14,, +eobteq (ej € 10,...,b-1%), then ®p(i) = e1b~l+...4eb™ M (or
simple ®p(epy...e1) = 0,e1€2...ey in base b). Clearly ¢2=p. Halton proposed
now the following: Take prime number ri,...,rx and construct
P(i) = (Orl(i),...,'brk{i)) , i e N ;
then

Do) = o8 |

which is the same asymptotic as for LP_ or LPo in base b. Halton’s
sequences are quite simple and widely used in particle methods.
A last attempt to compare the three possibilities to get low dis-

crepancy sequences: If we write

* _ lnkN lnkN
DHey) = A TR + o N] ,
then
1n Ak = 0(k In k) for k2«
for the best choice of Tiseves Ty in Halton,

1n Ak = 0(k 1n ln k) for minimal T

in LPT—sequences and

Ak 2+ 0 for LPO-sequences in minimal base b.

This is in favour of Faure's idea in high dimensions. LP_ and LP0 in
base b seem to be favourable since they have sections (szm) with the
better asymptotic 0[1_11__;}__] .
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Non_uniform distributions:

Until now we have compared wy with X[O,l]k' We take now more general
densities - we could even use measures p € M but restrict ourselves to
M (ﬂ) For 2 we may discuss compact and not compact sets in Rk, since
[0 1}k is a paradigm for compact sets and mk for non compact we shall
concentrate on 0=Rk. However, in our applications @ quite often is the
exterior of a compact set; we may treat this case by extending the
density of [ € A%C(ﬂ) to whole RE by putting f(P) = 0 for P € 0%, This
is certainly not an ideal solution, but easier than to care for bound-
ary terms.

Let therefore be f a density in Rk, i.e. f ¢ M’ (Rk), [P,Q) an interval
of R¥ and A([P, Q),w ) = number of points of “y in [P,Q). We call

(¢ ney "@symptotically f-distributed" or simply "f-distributed", if
n([PaQ);“N)
lim "'-"N— = f f dr .
N [P,Q)

Z

1
5 ‘E ¢(Pi) — [ of dP

i=1 IRk

for all bounded R-integrable functions ¢ on ﬁk.

Again, (wN} is f-distributed iff

We define
A [PsQ) ;“"N)
D(w N,f) i= sup l_____ﬁ__—_— - f dR|
P£Q (P,Q)

and call it discrepancy of “N with respect to f (or simply f-discrep-

A(R

ancy); similarly D*(wN; EI -Jf dPI with RQ={P/P£Q].

kQ

We shall now prove the most important theorems in this most general

setting.

Theorem 2.2:
. . . . * .
(QN}NEN is f-distributed iff D (wN,f) > 0.

Proof:
Sufficiency is trivial - we show necessity. Choose m ¢ N and a parti-
tion of the pl—axis by

o = (1)
pl ‘Pl

{ LR

o(m=1), (m) _
Py Py
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such that

(i+1)
1
)

I
P;i) IRk—l

p
£ dp = % for i=0,1,...,m-1

(this is possible since f € Ll and J f dP = 1.)
Then choose a partition of the p2~axis such that

P§i+1) Péj+1)
{ | ;] fdp-= 15 for i,§20,1,...,m-1 .
i (J) m
P} Py

Continuing in this way we get altogether mk rectangles Ra in Rk such
that

J fdP = lﬁ , a=1,...,mk .
R m
@
MR o) 1
We know that — J fdp = % such that
R m
X
A(R ;@)
1 1 «’ N 1 1
PSR £ = 2
k(l 2} & N k(1+—§) for NaN_ .
m m m m

Choose @ € Rk arbitrary but fixed and let I1 = [G/Ra = RQ}' 12 be the

smallest set of indices « such that RQ € u R = D2. With D1 we denote

&EIZ @
v R, such that D, € R. © D,.
xe I @ 1 Q 2

Clearly

I fdP« [ fdpe€ [ fdP.
D R D

1 Q 2
What about the difference [ f dP? The layer between.D1 and D2 is
DZ/D1
.-—/—/—-/—7-/—-/_—/_ essentiall i i i
v (k-1)-dimensional, i.e.
727777 RE 5 :

we need C+'m intervals Ra to fill
it up (C depends only on dimen-

9,1/
'/
4 //

sion); therefore

k-1 C
/ f fdP s C E—E— =0
I D2/D1 m

—— — — — —
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A £ A
Since also ﬁ(Dl,aN} (R o s ) {D N) we get
A(D, ;e ) A(D, ;@) A(D ,m_,)
Jtdap - —2N L rpgp 22N . ¢gp- N
D N R N D N
1 Q 2
The left hand side
A(D,50,,) A(D,500)  A(D,;e,)
ffdp-—ﬁ—ﬁ‘—=ffdp— iN— fIN
D Dy
. 1 1) k1Ll 1
2 #Il K - #1I 1 k(1+ ) - k(1+_§}
m m m
_ A1 ¢, 1,, 1 _¢c..1
= * T " alltg) 2 - - )
m m m
{here #I1 is the cardinality of 11, which is less than mk).
Similarly the right hand side may be estimated
A(D, ;9. )
Ftap - ——N ¢, 1
D N m 2
2
We arrive at
1 c, . .1 MR@’N) 1 C
-5 - ={l+=5) £ [ f dP - £ =— 4 = for N2
2 m 2 N 2 m
m m R
Q
For arbitrary ¢>0 we can find an m_ such that lE + %‘{1+l§) < ¢ and
m o
o

choose now NO corresponding to m_; then

AR ;@)
ffdP——%—N <& for N*N_ and all Q.

Rq

This proves the uniformity of the convergence with respect to Q.

We may continue as in the case of uniform distributions:

For k=1 we get an explicit expression for D(wN;f), if ©y = (xl,...,xN}
is ordered xléxzé . éxN:
xj XJ
DHegif) = max max{|=1— Iorax],]d -0 e ax|)
) ]_4 —o —m
1 X,
J

1

Lot ma [Z2-7 1o

N ‘.
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Since we cannot generalize this result to k1, we omit the proof;

however, we conclude that the smallest D*, which is again L is given

2N’
for xj, which are defined by
X . .1
J J_ﬁ
-}:mfdx——ﬁ—.
¥

We may rewrite this by introducing the distribution F(y) = [ f dx,

-

which is increasing and continuous: F(xj) = Yj’ where (yl,...,yN) = 5N
has the optimal discrepancy with respect to the uniform distribution.
This is a more general result, which is easily proved, if f>0 every-
where, i.e. F is strictly increasing such that F_1 exists. Then

* ) _ X : - .
D (wN,f) =D (FuN) with FwN = (F(xl),...,F(xN)].

p¥(Fa) = sup |& #{i/F(x;)ey) - v|

Osy€1

i

Oizzllé #{i/xiéF—l{Y}} - Yi

sup
—oSYE40

% #{i/xiéx} - F(x}|

"

(o, -
D*( N,f)

This is also true without the assumption that f>0 everywhere - we have
Jjust to be a bit more careful, since F-l doesn’t exist.

We will use this result for generating f-distributed sequences later.

We shall now proceed to the second important result in the theory -
the Koksma-Hlawka inequality. Earlier we had defined the Hardy-Krause
variation etc. in [0,11K - we are now in RK, We need a bit more: The

functions ¢ we want to integrate are not only defined on RK, but even

on RK — $(x1,.+.,Xg) € R even if some of the coordinates have the value
+o or -o,

We consider again an ¢-tupel f = (11"°"ie}’ 1‘114...lic£k and denote
by iﬁ the (k-t)-tupel consisting of all components different from
xil,...,xi‘; further ¢[ﬁ](xil,...,xic} = ¢(x}/xﬁ = (+o,...,42), wN[ﬂ]

analogously and for f € R%C we put

4@ + @

f{ﬁ}(xil,...,x.e) =1 T faR,
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In the definition of the variations of ¢ we need now partitions
7 = (z(ll’.__,z(k)) with z(9) = (Z(J)l.."z(d})’ _sz(J)z.‘_zz(J)=+m’
o m. o m.

J J
J=1,...,k, so that V{k)[¢] is exactly defined as on page 36.

We get now

Theorem 2.1":
For f ¢ &gﬂ(ﬂk), ¢ of bounded Koksma-Hlawka variation in Rk and
©y = (Pl,...,PN) we have

N
|§ I #(B) - I e(P)e(p)ap
=1 [0,11k
K (¢)
£ g T v [°[il,...,i‘]]D*(wN[il,...,i‘],f{il,...,i‘})

=1 1£iq<...<is2k

LN

V[oJD*(wN,f)

Proof for k=2 (for general k the proof is more technical, but princip-
ally the same) and for the simpler version # V[°]D§(“st)=

We take a grid Z in R, defined by 2' 2«22}, where

(1)

VA P =X £, £ X = 7 ;-m:yé...dyJ:+w

o] I o]
so that the grid knots are Qi 3 = (xi,yj}, 0€i<I, 0€j«J.

We had already 51,2¢(Qij) = ¢(Q, )-4(Q.

i+, 41 41,5079y a9 o),

which we now denote also by ﬂlJ@. In this notation

(2) I-1 J-1 i
VITIIf]l =sup I I 187Vl ,
Z i=0 j=0

We need the following

Lemma 1:
Let ¢, h be defined in R%, then

I-1 J-1

¢ (Q. .
iEO jEO {Ql+1,J+1

yatdy
I-1 J-1 ij I-1
= I Ih(@ e+ Ih@  le@

)-¢(Q, )] -
i=0 j=0 i=0 1 1.0

i+1,0
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I-1 J-1
- Dh@ )y )@ )+ T (@, 0@, )G ;)
J-1
- L@ @ 5y)-4(@ )] + 0@ h(@y )

The proof of the Lemma is straightforward, applying twice Abel summa-

tion

k k
E ab = E Av{bv_bv+1) A b +Akbk+1’ where A =a_t...ta,

If ¢ is of bounded Koksma-Hlawka variation, we may write it as

© =9, -6 - o(-=,-=),

where ¢, ¢_ are monotonously increasing, bounded functions. We

consider therefore such functions ¥ and f € M (R ). We need a

Lemma 2:

For each £>0 there exists a partition Z, such that for

(Q 1+1,J+1]
the inequality
I-1 J-1
0< I L [v(Q. )\HQ )1 J fdpP <
i=0 j=0 i+l, j+1 i,J Rl ;
1
holds.
Remark :
The expressions
I-1 J-1
0(z) = T I v(Q, ) I £ dpP
-0 j=o *bJ +1R.1J.
and
I-1 J-1
u(z) = L Ev(Qi ) ] fdp
i=z0 j=0 "JRiJ.
L
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are a kind of upper and lower Riemann-Stieltjes sums for I2¢f dP and
R
the lemma shows that 0 ¢ [ ¥f dP - U(Z) £ ¢, 0 € O(Z) - [ ¥f dP £ =.

Proof of Lemma 2:

Let F(Q) = f f dP. Since f ¢ Ll(mz}, for any 6>0 there exists a parti-

Rq

tion Z such that

"

IF(P)-F(Q)! ¢ for P,Q ¢ Ri 3 where 0£i£I-1, 0£j£J-1 ;

this follows from

N

IF(P)-F(Q)! = TF(Q; 4 5,q)-F(Q ;)

= I f dP
R -R
Qi+1,j+1 Qi,j

6 &
< ! fdP+ 55320,
Rg[R, . -R, ]
Qi+1,j+1 Qi,j

+—=

[
where we have chosen a square R, such that 2f f dp < 5 and then the
R<-Rg
partition fine enough, such that

R ]

n (R -R
¢ Qi+1,j+1 Qi,j

has sufficiently small Lebesgue measure.

Now

I f£dp = aVF |, 0<is1-1, 04j<J-1 ;

R. .
1,J

(realize that F is defined in ﬁz, for example by F(Qi 0) = F(QO j)=0).
1 )

We use Lemma 1 to get

I-1 J-1

0 £ 0(Z2)-U(Z) = ¥ I [¥(Q

i=0 j=0 i1, 540V 58

1,J

I-1 J-1 -1

-1 jEO[F(Qi+1’j+1)—F{Qi’j}]di’jv D IRQ, )FQ )
J-1

)-¥(Q; ;1 + I [F(@Q
J=0

[v(Q,

I,j+1
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We remember that the F-differences are less than 6 and the ¥-expression
may be estimated by the one- and two-dimensional Vitali variations
v [y1 and v [y].

In this way we arrive at

02)-u(z) « sIv' 2 p1v D iy(- o)1 + v (e, )11 = 6viv]

o
h

For ¢

G%;T we get the result of Lemma 2. 0

We can now prove the theorem:
Assume first that ¢ is monotonously increasing and bounded and choose
for given >0 according to Lemma 2 a partition Z such that

I-1 J-1

0= I I [+(Q.

§20 j=0 1+1,3+1}_¢(Qi,j)]

J £dp £ ¢
R. .
1J

We mention that Rij contains even unbounded intervals including points

at infinity (for i or j=0 or I-1, J-1) so that

I-1,J-1 )
u R. .= Rz ;
i,J':O 1,J
moreover Ri .n Ri’ ! = ¢ for (i,j) * (i’,j’). Therefore
1] 1

I-1 J-1 ,

r 1 XR (P) =1 VvP e R® .

i=0 j=0 "ij

Now consider the stepfunctions

9,(Q) = E.¢(Q-

‘ lj}xR..(Q), OZIQ) = _E_¢(Qi+1,j+1]xR._(Q) ;
i,J i iJ

J 1,J
since ¢ is monotonously increasing, we have 01£¢£¢2 and

J ¢1f dP £ [ of dP < [ ¢2f dp .

Now consider oy = (Pl,...,PN) (for the first time in the proof);
we get

L Y e py el Top, «l Top,

N =1 1'¢ N e=1 4 N t=1 27 ¢
Put

1
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and realize that

I{¢l—¢2}f dP + L(ol} < L(¢o) < L{¢2) + I{¢2—¢llf dp .

This yields the estimation
IL{(¢)! £ max IL(¢ ) + [(e,.-¢_ )f dP
_ r 271
r=1,2

I-1 J-1
= max fL(¢r}| + I I [¢(q.

. -¢(Q. . J f .
s 20 550 1+1,J+1) (Ql'J)J dpP

R. .
1,J

We had constructed Z such that the last term is less or equal ¢ and

arrive at

IL(¢)! £ max IL(¢r)I +

It remains to estimate L(or]:

Since Qi+1,j+l € Rij we have @r(Q} = or(Qi+1,j+l) for Q « Rij’ r=1,2
and
I-1 J-1
L(e )= I I ¢ (Q. L L(x, )
r i=0 j=0 r'Uit+l, j+1 Rij

We want to apply Lemma 1 to this expression and have to express

L{XRij) as ﬂ.,jH for some H ;

xR{P}(Q) for Py (-o,-o)

with h(P;Q) := s
0 if P=(-=,y) or P=(x,-»)
we get
. _ = . _ A(P) )
&i,jh{ Q) = Xg (Q) and L{xR_ _) L(Ai,jh( yQ)) = Aij (LthP,Q))

i’J llJ

with a selfexplaining notation.
With

H(P) :

n

LQh(P;Q)
we get

L{¢r)

i

Lo (Q

1,J

A
i+l,j+1} i,jH ’

Before applying Lemma 1, we realize that

- 54 -



N

H@) = L(h(@)) = § I h(@P,) = [ h(QP)(P)dP
=1 iR
1 N
== I X (P,) - fdP
N2 R@QTET g

for @ (-»,-») and zero else, especially

N
H(QI,J} =N ‘Elxmz(P‘) - £2 fdp =20,

—

Now apply Lemma 1:

I-1 J-1 I-1
Lo ) = I T H@Q )8, o - %

i=0 jzo 1,J i’j r i OH(Qi,J}[‘F(Qi+l,J)-¢r{Qi,J)}

J-1
-1

j_OH(QI’j)[¢r(Q

1+ 0@ 1

Since 1H(Q)! = D*(uN;f) we conclude
< Tk . (2) (1) . ® (1) o -
'L(e )! €D (wN,f)IV [¢r]+v (o (+,2)14Vi 7710 (o, )11 .
Clearly the variations of ¢1, ¢2 are less than those of ¢, therefore
n¥* .
IL(¢r)l < V[e]-D {wN,f)

and

IL(#)1 & VIOID¥ (o ;f)+e

for arbitrary £>0.

We arrive at the final result, at least for monotonously increasing
bounded ¢; but by decomposition of an arbitrary ¢ of bounded Hardy-
Krause variation and by realizing L(¢(-=,=-=)) = 0, we get

IL(#)1 < D¥(ay;f)[VIe 1+VIe 11 & D*(uy;f)Vle]

for all ¢ of the considered class.
We can now turn to the question how to construct “N with small D(wN;f)
for given f. We know the answer for f=x[0 11k ~ how can we transform
3
uniformly distributed sequences (wN} into f-distributed ones? Or do

there exist direct methods for construction?
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The one-dimensional case is relatlvely simple: Take f € H’ (R) and
define as we did before F(x) = I f(t)dt; F maps R into (0, 1)

A
R

L - Take w

NERC
/”f’#?EE;%;___v_ and define

_ =1
__.,,ff”’/////, x5 = F lyg)

> X
F is monotonously increasing, but not necessarily invertible; if it is

.,yN) € (0,1) u.d.

not, we define

F"l(y) i= inf{x/F(x) 2 y] .

For = F "o we get
D*(w 1f) = D¥(uy)

- we have seen this already above at least if F“1 exists in the

classical sense

#lirxgse) = #{iFtiy))ee)

o = #{i/y =F ()]
X, %

G f) = |§ {i/x 2¢)-F (o) |

?EE|§#{i/yi£F{$)]—F(e}|

) 02:§1|$#{i(yi£”}'”| = D¥(ey)

Example:

-\
re X for x>0

f(x) = = F(x) = (1l-e

0 else

—lx)

F ' (y) = ~3In(1-y), i.e.

{('%ln{l‘ylj"""%1n(1_yN)}]NEN

is f-distributed, if (yl,...,yN) is uniformly distributed.
(Since with {yl,...,yN) also (I—yl,...,l—yN] is uniformly distributed,

we may also use (—%Jnyl,...,—%lnyN) as f-distributed sequence.)
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The problem is that the inversion of F may create problems - as it does

—~2
for example for f(x) = L e \ /2

e
Hlawka & Mick (A Transformation of Equidistributed Sequences - in

Zaremba, S.K. (Hrsg.) Appl. of Number Theory to Num. Analysis, Acad.

, an important special case.

Press 1972) made a proposal which is useful only in higher dimensions.
Assume that supp(f) ¢ [0,1], so that F(x) = 0 for x<0, F(x) = 1 for
x2]1 and assume moreover that f is strictly increasing such that F_1

exists.

For given y € (0,1) we have to find F_l(y). To zet it we take a uni-

formly distributed set “y = (zl,...,zN) ¢ [0,1) and realize that

(1=
=z

I x (z.) - «f & D¥(w)
N j=1 [0,«)})' 7 N

1 . . . | .
Take N ) XIO’Q)(Zj) as an approximation for «, if «=F “(y):

1 N

1.[. -1 1.(.
) = = . F = = F(z.) €
N Mo, ) wlive < o) = elirey <)

= t#{1/02y-F(z,))

Generally 0 < 1+y~F(zi) < 2 (since 0£y<1 and OéF(zi)él} and the Gauss
bracket [1+y—F[zi)] has the values 0 or 1, 1 just when y-Flzi}EO. This

1./. 1 N . .
= £y— = = -
leads to N#{i / Oy F(zi)] 5 i21[1+y F(zi)] as approximation for
F_l(y). If we use for y and z the same uniformly distributed sequence

(yl,---,yN) we get

2=

| x
x; = F (Yj)

n ez

- £ £
[1+y‘j F(y,)1 , 125%N

i=1

as an f-distributed sequence. If one looks a bit nearer to this idea

_ 2i-1

and take z, = Y50 » one realizes that the determination of F-l (y) is
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done just by testing whether F(i—} < vy, Ff%ﬁ <y ... until we find
the first j with F( J 2 y - then 2J-1 is a %—approximation for

2N
-1
F (y).

The regula falsi is certainly a
better choice - in one dimen-

sion!

—t—y
A

Another idea is given by the rejection method: Assume that

supp(f) < [a,b] and If(x)! £ C. We define a mapping

[0,11° — [a,blx[0,c] , (u,v) = (n,¢)

by n=atu(b-a}, ¢=cv y

C

—

G o ) A
Now choose {(UI’VI)’""(uN'VN)]NEN’ a uniformly distributed sequence
. 2 . . .
in [0,11%, compute (ni,éi) = Fi. oy = (Fl,...,FN) is uniformly dis-

tributed in [a,blx[0,c]. If éi & f(ni} choose X, =my - if {l > f(ni],

r @, = C ey X, cen
we forget i We get a subset Oy (xil,. ’le}MeN of (nl, ,nN]

which is f-distributed:

b!
I f(t)dt
{ N’G ) M_G’) _ a?
N c{bPa} ~ c(b-a)
0 Aoy ;6) A(G) .
/'/ N " c(b-a) - o(b-a)
& '45/ /C’ The number of points Fi with fi £ f(ﬂi) is
Bl b A{UN;G}; since M = A(uw;G], we get
Me3G')  Aw 3G b’
1 N _ N N
gﬁ(u ;a’,b’]) = Mo - N A (o.G) — f' f(t)dt
N N a
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Next we mention the Box-Muller method for generating f-distributed

1 —x2/2
sequences where f(x) = — e .
eq s X = e
The idea is to use
1 w2 L L PR
{2n fom em

and to transform it into polarcoordinates. Since (KR is the circle with
radius R)

2 2 R 2m 2
%— I e( X"+y")/2 dxdy = L 15 er /zr drde
bid 2mn
KR 00
it is equivalent to the densit re_r2/2 L (¢), i.e. the uniform
eq ity re o X[O,Zn] y 1.€. o]
-r2/2
distribution with respect to the angle and the re -distribution
2 r 2 2
with respect to r. re r/2 has a primitive [ se s/2 ds = 1-e ¥ /2, r20
0
and, starting with a uniformly distributed set (ul,...,uw), we get by
2 }
F(ri) =u; a re © /z—distributed set (rl,...,rN}; now r? = —21n(1—ui)

(ar —2ln{ﬁi) with an as well uniformly distributed sequence ﬁi}.

If we use another uniformly distributed sequence Vi, we get a
1

o X[O,zﬁ] distributed sequence (01,...,¢N} through ¢i:2ﬂvi.

Therefore

NIt

(-2 1In G.)l/z cos 2mv, and
i i i

x!2) = (-2 1n ﬁ.)l/z sin 2mv,
1 1 1

are normally distributed sequences.

In more than one dimension there are not so many ideas on the market -
if the density doesn’t factorize as the Maxwell distribution does.

We use here the idea of Hlawka & Miick ("Uber eine Transformation von
gleichverteilten Folgen II", Computing 9, 127-138, 1972) and consider
a nonuniform distribution in [0,1]k, more precisely one with a

positive continuous density f ¢ &gc([o,llk).
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We define now T: [0,1]k - {O,llk by

T. =T, A
J(P) TJ{pl pJJ
Pj1 1
Jf...J f P o Ly dr., ....dr, )dr,
0 (0 Ei; (Pl’ pJ—I’TJ’ )Ty ) TJ+1 Tk) TJ
1 1 1
J(J...J f(pl’""pj—l’Tj"'"Tk}drj+1'°'d7k)de
0 0 O
for 14j%¢k. We realize that P, = Tj(pl""’pj—l’pj) is strongly increas-

ing (since f>0!). It follows that T is injective: If PtQ, say pS £ q3

and p. = q‘j for 1€j<J, then To,(P) ¥ T,(Q). T is also surjective:
J

J 3
Ti(Pyres B0 = 0 and Tlpgse.oopygpl) = 1.
If f € C1([0,1]k), then T is a regular transformation, i.e. a bijective

differentiable mapping with nonvanishing Jacobian

a(Tl,...,Tk} ) aT aT aT,

Jp = o op) 35% - 35§ (since ;Ej = 0 for iyj) ,
jEJ = Ei“— where I. = } } f(p T T )dr dr
apj Ij_l , j ! - ! l"""pj’ FFCERRERLINL LS VORRRRTL LY
and I0 = [£,1]k f(P)dP = 1 and Ik = . We get

This is the essential idea: T is a transformation, whose Jacobian is

1

the given f. It follows that T : [0,1]k - [0,1]k is a regular trans-

formation too, whose Jacobian JT-l is %. We therefore get

1
J L(P) =
71 f(T-l(P))

and

I ¢(Q)f(Q)dQ
t0,11¥ [0,11¥

roerT i ene e (pyap
T

5 et Hp))ap
to,11¥
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and realize that T_1 transforms uniform distribution into
k
f- dlstrlbutlon Let QN = (Ql,...,QN) c (0,1) and PJ = T(QJ),

Qj (P )y j=1,...,N and ¢ R-integrable, then

(T HP.)) - f eor lap| ;

j=1 J 0,11k

T e B
Nz

= |1
ARSI aq| = |3

AT

J

we see: If o = (P

N is uniformly distributed, then

17 Pdnen

-1

FAS
il =12

oT_l(Pj) — [ ¢oT ldP for all ¢oT

1 t0,11¥

and therefore

Wz

¢(QJ} — [ ¢f d@ for all ¢

1
N
J=1 (0,11¥

In order to get some information about D*("l"m1

ogif) if D*(uN) is given,
we use the Koksma-Hlawka inequality once more.
We know that

- * oT 1
¢(Qj) J ¢f dP| € D (wN}V(o T ) .

Zi—
T e =

Jj=1

If %T_Jl is smooth enocugh, one may substitute the Hardy-Krause varia-
tion by

E I__.(_‘.‘_'L.)_dp .
1s2€k [o, 11k ' J!
(Jpseeerdy)

One can manipulate this expression: Assume that

B‘T.

i
4q. ...9q.
Jq Jg

£ M

for all derivations up to order k and all components i.
Using the fact that T '=S fulfills

Ti(Sl(P),...,Sk(P)} =

or
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k aT, 3S.
] — —l -

3q. 2 i
g=1 95 “Pr 1r

we get by Cramer’s rule

i L tem1) ]

f ’

apr

where as before f is the density, which we assumed to be positive.
If we now care for that f(P) 2 m ¥P ¢ [O,I]k, then

R
[Ehl < C (k}ﬂﬁ .
pr 1 m

From this one gets by induction

£
l a S.
-  J
dip_ ...9p
r r
1 ¢

Ca

< C,(k) —

and finally an estimate for the difference:

N 2k-1
é I 6(Q.) - [ efap| =« c'k [Mk] D*{w ,
. J
J=1
if
a ¢ r “ =
aqy * 'aqy | =K (1 1 .’Ve_k)
1 ¢
What about D*(SwN;f) compared to D*(wN)?
It is not as easy as in one dimension, where D*(SwN;f] = D*(wN).
We mention that for k=1 from
1 N
S L 6(S(Q.)) - J of dP| € D¥(w_)V(40S)
N j=1 J N

follows that D*(SMN;f} £ 2D*(GN), since for characteristic functions
¢ even ¢oS is characteristic and V(¢oS) =

The estimate for k>1 is worse:

D¥(se;f) = c(D¥(a ) /K
for the proof we refer to Hlawka/Miick.
The disadvantage of the method lies again in the need of computing

S=T_1. We had already a method in one dimension which we now transfer
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to k>1.
We start with a (uniformly distributed) sequence {QN)NEN’ where

oy = p(ll’_,.,p(N)j’ pld) _ (pij)’__.,pﬂj}}’ denote QN - Suy and
define

;N - (é(l)’.. *(N)] ”(J) - ("{J},.."aéJ))' =1, N
by

“G) _ 1Y () 2G50 50

Y t=1 +pi S SRR ) S

1£i<k, 1£j<4N.

wy may be used instead of &

the estimate

N @S f-distributed sequence since one gets

2k-1
(%) > c(k}K[m“—k] (1+2M)"D* (@)

N
3 0@ty - [ of ap
£=1

2=

(3,4

The idea is similar to the onedimensional case: We know that Oépi
Consider P, i F(pl,...,p. 1,p.) for fixed PyseesPy_q° This function is

strongly monotonously increasing and takes the values 0 and 1 for p; =0

(J)

and P; =1 respectively. For each P, there exists exactly one

;gJ} € (0,1) such that Ti(qu),.. qui,a(J}} = p(J), the construction

of Q(J) reads now as

“(J) _1
4G TN

~ 2

(14T, (q(J),-qu{Jisa{J)) ("i,]]’ :a(‘}i,p )]

i=1

L ]

The terms in the brackets are between 0 and 2, so that the summands

are O or 1; 1, if Ti(...,;gj))—Ti(...,pit)] 2 0, i.e, if q(J] gzl.
Therefore
N
-(j) _1 (¢)
Q""" == I x = (p; )
LNz el
and we arrive at
o~ N
~“(J) = _ |2 (¢) (J) < k., (1)
a7 -] = | Z o2, P T DRey )
lqi
where w&i) is the one-dimensional set (pil),...,piN])

- 63 -



It is now easy to show the estimate - if one uses a little result about
the continuity of the discrepancy:

If By = TO = RNy

= 1@l ,...,agj’) , 14i€k, 1€jéN

then
=(J)_ (J)} _ ~(J) ~(J) ~(J)
lpl -pl ' = 'Tl(qlJ ”"]qu )-Tl‘qlJ

yeee 1aiﬂ{s;§J})

4 1E26) 2 (5) (i)

S - Tk Tk
Il <] < el < wpria
The continuity lemma runs as follows: Let wéll,

wéz) be two sets
(Q(l)!"'!Q{N))I (P(l}!‘

..,P{N)} respectively and

Q§1)~P§1) f ey i=l00N, o,k

then

k
ID*(uéI})—D*(méZ})I < n

(1+2si)—1 .
i=1

Proof of the Lemma:
Let «,f € [0,1]k, R=R

[oa,p) and A(R,0\ V) defined as before,

rRY .= [a-2,B+2) n [0,1]k s

R = [a+£'ﬂ‘—£) (2=¢ if

x.+23f.-¢. for some i).
1 1 1

Since lqﬁl)—pgl)l < &8, Vi,

J J
N-ES T T T we learn that

MR o(P)) < ar,0ll)) aR*,al?))

Since

aR*,0(2))

- ,(2)
A(R ,w )
+ (2) !
N = AR | £ DX,

- (2)
N ~ (R £ D*(”N )

we get
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(1))

AR, oy (2),
N

(O (R)A (R7))-D¥ (el 2)) s - A (R) & (N (RN)-A, (R))+D¥(0

But
AR (R) = (B - 426 )-M(B ;) £ (142¢)-1
since the maximal distance is obtained for maximal ﬁi—ai i.e. for
f.-x.=1.
it

Since lk(R}—lk(R-) £ lk(R+}—%k(R) for the same reason we arrive at
x, (1) x, (2) 1 .
D (“N ) €D (ON ) + H(1+2€i} 1

(1) )

changing the roles of “N o

For al = MD*(w ) we can compa

é one gets the result.
re HN and SNE
In¥ T * k_
D¥(wy)-DT (8 )1 £ (142MD™ (@ ))"-1

= D*(R) < (420 D¥(ey)  (¥)

Remembering that QN = TwN we get the estimate (%),

A similar but simpler method {compared to the inversion of T) is used
by H. Moock (PhD-thesis). We consider first k=1.

Then we may get a f-distributed sequence in just using as uniformly

. . _ (12 3 _
distributed sequence oy = (N,N,...,N) = (yl,...,yN). Then
.. = F—lw = (x ) with
N N 170N
X.
- J :
x.=F (y.) orby | f(t)dt = Q, J=1,...,N .
J J 0 N

A better idea to construct xJ is to put F_l(y ) = X3 ﬁj is now a

J

partition of [0,1] into segments [0, x 1, [xl,x 1,..., {ﬁN 1,11, each
carrying the mass % and we choose xJ as geometric centre or as centre
of gravity of [x l’xJ]

R _ ¥R, %5

X, = —J-E"-J' or x.=N [J f(t)dt .
J 3
Jj-1

In higher dimensions we treat the coordinates s%ccessiyely: We choose
i,- i
N=N1...Nk, divide [0,1]k first into layers qII éqléﬁll through
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i 1
1
= 4 oo fla,mh,e,T )dT, ... dT, )da, ;
Nl 0 0 0 1" 2 2 k 1
each layer carries a mass of %—.
1

Now we consider the il—th layer and divide it into "bars" of mass

1, 1 . Li1-1 LA il 2
(ﬁ)-%, given by § “q14q 7, 4, “q,%G, with
A1 12
i, 94 [qz 1 1 ]
= [ I I fla;,ays7q,000,7 )d7, .. d7 )|da,dg, .
NNy T i-1l g o o 19273 3 k') 9929
9
Continuing in that way we get at the end "such" intervals P(il,...,ik}
defined by
Ji1-1 g Jdg-1 i k-1l ik
{ql ’ql ] x [qz !q2 ] X s0e X {qk !qk ]
each of mass 1 = ——-l-—. We may now define ©.. as centre (of gravity)
N Nl...Nk N
of these intervals Q(i i) © N i) Pf(P)dP.
Lyeeestk P(ig,...,ik)
The advantage of this construction is that for 6“N = % ) 6Q
(i1y+00,1K)

the error [ ¢ déwN - J ¢f dP is zero not only for ¢=1 (as always) but
also for ¢(P)=P i.e. the first moment is exact.
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§3 The functionanalytic aspect

I follow here an article by P.A. Raviart "An Analysis of Particle
Methods" in F. Brezzi (ed.) "Numerical Methods in Fluid Dynamics",
Springer Lecture Notes 1127 (1985).
The difference to the previous approach is that one plays with the
smoothness of f and on the other hand more with the weights than with
points in the approximating discrete measure 'gl adei; moreover one
allows countably many instead of finitely many points. We denote by J
the index set for the points. So, given f € CO{Rk], we want to approx-
imate it by I «.8 and this means to compare

jed J Pj

J fedP with [ «.¢(P.) for some ¢ € cz(mk} for example.
K jeJ J
We interprete this now as the classical problem of numerical quadra-

ture. The construction of («,,P.) may run as follows: Cover mk with

JJJed Kk
a uniform mesh of mesh size h>0: For all j = (jl,...,jk) € I denote by
Bj the cell
= . '_144‘_]_- —
Bj = {P € Pk, (Ji 2}h—pi—(,)i+2)h} =R

[(j-3)h, (j+3)h]

and by Pj = jh the centre of Bj'

With J:Zk, szjh and aj some approximation for é fdP, for example
J
aj = hkf(PJ) (remember that f € C°) we may try L aj¢(PJ} as approxima-

tion for [ fedP.

Now

JfedP - T «.6(P.) = I [ fedP - £ h(f-e)(P.) = I E.(f-e)
jed 49 ey B, j I geg Y

where

E(g) = J gdP - hkg(Pj)
B.
J

As a measure for smoothness one may use Sobolev spaces. for example
whP(a) = {g e 1P(0), D"g ¢ 1P for Iaiém}

where 1£p£e and m20. For p=2 we call Wm’2 also H". The norm in Wm’p(ﬂ}
is defined by
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1/p
ngh = | ¢ wp%geP ,
m,p, 0 [lalém Lp(n}]

a seminorm by

Ig = [ I wp°geP ]1/p .

Ll P LP(0)

A classical result is due to Bramble & Hilbert:

If 0 is bounded and open in Rk with a Lipschitz-continuous boundary and
if L is a linear continuous functional on Wm’p(ﬂ), m*1, l4€pée with norm
LI and

L(g) = 0 for all polynomials of degree less or equal m-1 ,

then

IL(g)! = cuLwigl vg ¢ WwP(n)

P9

1

with a fixed constant C.
(Please realize that the right hand side contains the seminorm, not the
norm, which would be trivial with C=1.)

As a consequence we get

Lemma 3.1:
There exists a C>0 (independent of g,h and J) such that

1+§ L
Izl v '
h g 1,p,B. geW (BJ), pk
lE.(g)! £ C
J 2+§ 2,p K
Il ! pay
h g z'p’Bj Vg e W (BJ), P35
and 3+% = 1
Pq
Proof':

Consider the cube B = [-1,1]k and put

E() = [ adp - 252(0), & ¢ C°(B)
B

Clearly, ﬁ(g) = 0 for first order polynomials, therefore E is a bounded
linear functional on Co(ﬁ} vanishing on T the set of polynomials of

degree €1,

- 68 -



We now use Sobolev’s imbedding theorem telling us that for sufficiently

smooth @ (and B is sufficiently smooth) we have

WhP) v O(F)  ifm s E ,

where the injection of Wm’p{ﬂ) in CO(H} is not only continuous but even
compact, since ? is bounded. We use the cases m=1, for which

WOP o ¢° if pk, and m=2, for which W'P = HP > ¢° for p3.

(See for example R. Dautray, J.L. Lions: Math. Analysis and Num.
Methods for Science and Technology, Vol. 2, page 139.)

Therefore g = é(g) is continuous even in these Sobolev spaces, and the

Bramble-Hilbert lemma tells us that

~ 1,p,2 .
|§|1'p‘B for all 8¢ € W ''5(B), if pk
IE()! £ C
181 - for all 8 € WP(B), if po&
2,p,B ’ 2’
We now consider a function g on B. and transform B. = R 1 1
J [(j=3)h, (j+3)h]
£,
k s i, .
onto [-1,1]" by X, = [Ji+§_}h.
g(¢) := g({j+§}h) varies on B

and belongs to wP(B), if g € wm’p(Bj) .

Most important, we get (remember that the definition of |g|m D, 0
L 1

includes only the highest, i.e. the m-th derivative of g)

- (hym-k/p
8] .= (3) 's m,p,B.

m,p,B J
(the exponent m comes from the differentiation, the Jacobian of the
transformation ¢ 2 X gives {%)_k, which, together with the exponent %
for LP gives —%). If we realize that

Ej{g) = [ gdP - hkg(Pj} - (g)k({ §dP—2k§(O)} = (%]ké(g)
Bj B
we get
_ hk,z . o hk . - . ~hk h 1-k/p
Ejle)l = (QUIEQRI € CEINRY 5= NG T
_ = 1+k/q
=Ch IgII!PIBJ
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which is lemma 3.1 for m=1. For m=2 we get the result correspondingly.
A stronger result can be obtained in using an asymptotic expansion

with respect to h.

Lemma 3.2:
There exist constants C>0 and da € R, l«xl22, independent of h and j,
such that
(m+5)
q

lal
[Efg) - 1 dn'" ro%dp| <ch
J 21l 4m-1 B.
J

for g ¢ Wm’p(Bj), where m23, p{;{‘ .

Proof':

First we determine of aa, - Nk, lxl22, such that

X

L (8) := E(8) - L d [ D gdp
m « a
2€lal £q-1 B
vanishes for all polynomials of degree #m-1, i.e. on nm—l'
We know that E vanishes on T put therefore £2 = E. We make now an

induction with respect to m. Assume that we found constants &a for
lel=m such that

o

lne1 (@ = Lp@) - 1 d, [ 0%adp
x| =m B
vanishes on 7_. Clearly, £ vanishes on 7 . We therefore have to
m m+1 m-1

check only homogeneous polynomials of degree m, i.e. &(P) = Pﬁ with
1g1=m,

Since

2ka! = 2 ., L ! for a=g
X l k

I (0°P*)ap =
B 0 else

(remember that l«l Il = m), we have to find aa, lal=m such that

Lm(Pﬁ}

oK. g1

i (F%) = 2Kea

I8l = ‘,_,H:
n g’ B m, i.e dﬁ
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We now choose m23, pBE, such that Wm’p(ﬁ} — Co(é}; therefore im is

defined on W*'P and vanishes on ﬂm—l' Bramble-Hilbert gives

- < -~ !p -
L@ £ cigl o v e whP(B)

The transformation from Bj to B as in lemma 3.1 assigns to any

g € wm’p{Bj) a 8 € Wm’P(ﬁ} and since

~

d

E(g) - I = % f p%edp = (D)5 L (@)
J 2¢lal$m-1 2 j
B
aﬂ
we get the result of lemma 3.2 by putting da =
2

The preceding lemmata now allow to prove the approximation theorem for

f by ajép- in the sense that we estimate
J

J fredP - ¥ o ¢(P.)
jedJ J

We choose J=Zk, Pj=jk and aj = hkf(Pj), such that the difference is

[ fodp - hk{f-o](Pj}

jeZk

Let m21, p>§, l+l=1. Then there exists a constant C (independent of h),

P g
such that

. m+E
|I fédP - h* § (f¢){Pj) cch 4¢3 Ifel

RL jEZk jEZk

for all f+¢ in wm’p(mk) n wm_l’l(Rk} if m®3, for all f+¢ in
WhPRE) o Ll RE) it me2.

mspiBj

Remark 1:

In this result infinitely many points are involved; however, if f or ¢
has compact support, there are only finitely many, say N, where N"h_k.
The estimate is now of order N_m/k-N_l/q (mlg) which is certainly
better than our discrepancy estimates; it depends on the smoothness of

f*¢ and is of infinite order for infinitely smooth f:¢. The constants
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however include still f which is not the case in Koksma-Hlawka-
inequality. It may be that this method has a better asymptotic but need
— as a minimum - quite many points to give a reasonable result, if the

support is not very small. A careful comparison is still missing.

Proof of theorem 3.1:
) L. o Rk 1 Rk
Denote f+¢ by g; if g € C (R") n L7 (I ), then

—_ k =
J gdP - h" [ g(Pj) = 1 Ej(g)

mk jeZk jEZk

If m€2, lemma 3.1 gives us immediately the result of theorem 3.1 just
by summing up. If m23 and g € Wm_l’l, i.e., if Dag € Ll(Rk) for lel£m-1

and Dag e LP for lal€m, it is easy to see that

J D%gdP = 0 for 24l«l<m-1

R

We may therefore add

|
) dh'*" 1 p%dp , i.e.
2<lal2m-1 mk
lal
I Eig) =t [Ejtg) - ) dh % J D“gdp] ;
£lxl €q-
JEZk JEZk 2 x m-1 Bj
Lemma 3,2 now gives the result. a

Remark 2:

As a consequence hk‘Z f(PJ}dp_ converges vaguely (i.e., for ¢ ¢ Cg -
see §1) to f - and i;grefore a;so weakly.

So far the approximation theory in the papers of Raviart and his
school.

There is another functionalanalytic aspect, which seems appropriate but
was not used until now. We need the concept of Ws’z = HS{Rk) even for
negative s and define therefore (see Dautray-Lions):

Let s € R, then Hs(mk} is the subspace of s'(mk) (the space of tempered

distributions), whose elements u have the property that

(1+0602)52 ey ¢ 12(RY) |

where (i(¢) is the Fouriertransform of u (in the sense of distribution).
If s=m ¢ N, then HS=Hm:Wm’2 defined as above. H® is even a Hilbert
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space with scalarproduct w,v> o= J {1+H€ﬂ2)5/2ﬁ{$)0(éld€ and

S1 ¢ uS2 . s
H H if Sl sz.
k

It is now easy to see that ¢ € H® for sd—é, since 6=1 and

roasen®)Siage)%ae = o 5 (1085 lar £ o

IRk 0
if 2s+k-1<1 or sé—g {uk is the surface measure of the k-dimensional
unit sphere). Certainly f belongs to the same space and we can define
a distance between f and § «.*6_ = 6 by
J Py “N

2 gl -i<P.,¢>
d(f’dw ) = ||f--6c|J "s = (f (1+nen™) |f{g) -1 aje

N N IRk

S £ =5 .

2 /2

ae)/? |

This reminds of the Weyl criterion, where we had already considered

1 2ni<EJPJ> ’ . ‘

N ; e (the factor 27 instead of -1 is adopted to the unit
iniervals).

This concept might be useful since it provides us with a scalarproduct
and makes optimal constructions easier. For example if f is given and
we look for the best ¢, to approximate it, if NN we may try to find
the orthogonal projection of f on the set of these discrete measures
(which is not a linear subspace!). But nothing is yet done in this
direction.

We mention that H® is the dual of H ° and that one may define it in
this way; but there has been no use for this fact either.

- 73 -



§4 Statistical aspects

Until now our particle sets were given for each N and we asked what
happens for N9, In statistical physics one may start with a probabil-
ity distribution for N T here in general one asqumes that all parti-
cles are equal (especially have the same mass —) and undistinguishable.
Then w _ = (P ...,P ) € me and we start with a probability density

N
FN(Pl,...,PN), such that for measurable A © me, we have

i F(Pl,...,PN)dpl,...,dPN = Probability for wy € A .
Since the particles are undinstinguishable, F(Pl,...,PN) does not
change its value if we permute (Pl,...,PNJ.

There are now several possibilities to connect Oy with f € A%C
1) We may consider the one-particle density

f. (P

N ) = I F(P

v PP, ... ,dP
R(N-1)k N2

1 2 N

and can ask for the convergence of fN to f for example in a weak

sense 1i.e,

J £#dP — [ fedP for all ¢ ¢ C°

2) For given f, “N = D(UN,f) is now a stochastic variable and we may
consider as convergence the convergence of this variable to zero
in probability

Prob{w: D(wN,f) > a] = { I FN(wN)dwN 2 0 for all & ;
wNID(uN,f)Lz}

here the distribution "concentrates" more and more around f.

4) If we assume that the particles Pl,...,PN are independent, iden-
tically distributed random variables with density f, then

F, (P

N IP ) = f(Pl)’..‘,f(PN}

ly-ao- N

Normally one takes a sequence (Pn=Pn(ﬂ)}nEN of independent, iden-

tically distributed random variables with distribution f; then

Probability [Ul(Pn{O})nEN is f—distributed} = 1.
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FOLGENDE BERICHTE SIND ERSCHIENEN:

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

10

1

1983

FORSCHUNG
W.G. Eschmann und Ralph Gétz
Optimierung von Gelenksechsecken

1984

WEITERBILDUNG
H. Neunzert, M. Schulz-Reese
Mathematische Weiterbildung

FORSCHUNG
W.
The Trippstadt Problem

WEITERBILDUNG

H. Neunzert, M. Schulz-Reese, K.E. Hoffmann
Mathematics in the University and Mathematics
in Industry - Complement or Contrast?

FORSCHUNG

A.K. Louis

The Limited Angle Problem in Computerized
Tomography

FORSCHUNG

W. Kruger
Regression far Elipsen in achsenparalleler Lage

FORSCHUNG
Th. Mietzner
Umstrémung von Ecken und Kanten, Teidl 1

1985

FORSCHUNG

W. Krager, J. Petersen

Simulation und Extrapolation von Rainflow-
Matrizen

FORSCHUNG

W. Kriiger, M. Scheutzow u. A. Beste, J. Petersen
Markov- und Rainflow-Rekonstruktionen
stochastischer Beanspruchungszeitfunktionen

FORSCHUNG
Th. Mietzner
Umstrémung von Ecken und Kanten, Teil 2

FORSCHUNG

H. Ploss

Simulationsmethoden zur LOsung
der Boltzmanngleichung

1986

FORSCHUNG

M. Keul

Mathematische Modelle far das Zeitverhalten
stochastischer Beanspruchungszeitfunktionen

AUSBILDUNG
W. Krager, H. Neunzert, M. Schulz-Reese
Fundamentals of Identification of Time Series

FORSCHUNG

H. Moock

Ein mathematisches Verfahren zur
Optimierung von Nocken

FORSCHUNG

F.-J. Pfreundt

Berechnung und Optimierung des
Energiegewinnes bei Anfagen

zur Lufterwdrmung mittels Erdkanal

Nr. 16

Nr. 17

Nr. 18

Nr. 19

Nr. 20

Nr. 21

Nr. 22

Nr. 23

Nr. 24

Nr. 25

Nr. 26

Nr. 27

Nr. 28

Nr. 29

Nr. 30

FORSCHUNG

F.-J. Pfreundt

Berechnung einer 2-dimensionalen
Kanalstromung mit parallel eingeblasener Luft

FORSCHUNG

G. Alessandrini

Some remarks on a problemn of sound
measurements from incomplete data

AUSBILDUNG

W. Diedrich

Einflu eines Latentwarmespeichers auf den
Warmeflu8 durch eine Ziegelwand

FORSCHUNG

M. Stohr

Der Kalman-Filter und seine Fehlerprozesse unter
besonderer Berlicksichtigung der Auswirkung von
Modelfehiern

FORSCHUNG

H. Babovsky
Berechnung des Schalldrucks im Innem eines

Quaders

FORSCHUNG
W.G. Eschmann
Toleranzuntersuchaungen fir Druckmessgeréte

1987

FORSCHUNG

G. Schneider

Stratification of solids, a new perspective in three
dimensional computer aided design

FORSCHUNG

H.-G. Stark

Identifikation von Amplituden und
Phasensprangen im Intensitatsveriauf eines-
Nd-YAG Festkdrperiasers

FORSCHUNG

M. Scheutzow

Einfache Verfahren zur Planung und Auswertung
von Navigationsversuchsfahrten

FORSCHUNG

G.R. Dargahi-Noubary

A Parametric Solution for Simple Stress-Strength
Model of Failure with an Application

FORSCHUNG

U. Helmke, D. Pritzel-Wolters

Stability and Robustness Properties of Universal
Adaptive Controllers for First Order Linear
Systems

FORSCHUNG

G. Christmann

Zeitreihen und Modalanalyse
1988

FORSCHUNG

H. Neunzert, B. Wetton
Pattern recognition using measure space metrics

FORSCHUNG

G. Steinebach

Semi-implizite Einschrittverfahren zur
numerischen Lasung differential-algebraischer
Gleichungen technischer Modelle

FORSCHUNG
M. Brokate
Properties of the Preisach Model for Hysteresis



Nr. 31

Nr. 32

Nr. 33

Nr. 34

Nr. 35

Nr. 36

Nr. 37

Nr. 38

Nr. 39

Nr. 40

Nr. 41

Nr. 42

Nr. 43

Nr. 44

Nr. 45

Nr. 46

FORSCHUNG

H.-G. Stark, H. Trinkaus, Ch. Jansson

The Simulation of the Charge Cycle in a Cylinder of a
Combustion Engine

FORSCHUNG

H. Babovsky, F. Gropengiefier, H. Neunzert,
J. Struckmeier, B. Wiesen

Low Discrepancy Methods for the Boltzmann
Equation

FORSCHUNG

M. Brokate

Some BV properties of the Preisach hysteresis
operator

1589

FORSCHUNG

H. Neunzert

Industrial Mathematics: General Remarks and
Some Case Studies

FORSCHUNG

M. Brokate

On a Characterization of the Preisach Model for
Hysteresis

FORSCHUNG
C.-P. Fritzen, P. Hackh
Optimization of a Spring for Dental Attachments

FORSCHUNG

U. Helmke, D. Pritzel-Wolters, S. Schmid
Adaptive Synchronization of Interconnected
Linear Systems

FORSCHUNG

U. Helmke, D. Pratzel-Wolters, S. Schmid
Sufficient Conditions for Adaptive Stabilization and
Tracking

FORSCHUNG

U. Helmke, D. Pratzel-Wolters, S. Schmid
Adaptive Tracking for Scalar Minimum Phase
Systems

FORSCHUNG
F.-J. Pfreundt
Nd&hen als dynamisches System

1990

FORSCHUNG
H.-G. Stark
Multiscale Analysis, Wavelets and Texture Quality

FORSCHUNG

I. Einhormn, H. Moock

A Deterministic Particle Method for the Simulation of
the Boltzmann Transport Equation of
Semiconductors

FORSCHUNG

F. Gropengieler, H. Neunzert, J. Struckmeier
Computational Methods for the Boltzmann
Equation

FORSCHUNG

S. Nikitin, S. Schmid

Universal Adaptive Stabilizers for One-
Dimensional Nonkinear Systems

FORSCHUNG
P. Hackh
Quality Control of Artificial Fabrics

FORSCHUNG

S. Kbrber, B. Wiesen

A Comparison of a Microscopic and a
Phenomenological Model for a Polyatomic Gas

Nr. 47

Nr. 48
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