
1 nterner Bericht

Towards a Basic Reference Model
of Open Distributed Processing

Reinhard Gotzhein
Fachbereich Informatik

Universität Kaiserslautern

Nr. 247/94

Fachbereich Informatik

Universität Kaiserslautern · Postfach 3049 · D-67653 Kaiserslautern

Towards a Basic Reference Model
of Open Distributed Processing

Reinhard Gotzhein

Fachbereich Informatik

Universität Kaiserslautern

Nr. 247/94

Postfach 3049

D-67653 Kaiserslautern

Germany

phone: +49 631 205-3426

fax: +49 631 205-2640

email: gotzhein@informatik.uni-kl.de

Towards a Basic Reference Model of Open Distributed Processing

R. Gotzhein

University ofKaiserslautem, Postfach 3049, D-67653 Kaiserslautern, Gennany
Email: gotzhein@infonnatik.uni-kl.de

Abstract

The Basic Reference Model of ODP introduces a number ofbasic concepts in order to provide
a common basis for the development of a coherent set of standards. To achieve this objective, a
clear understanding of the basic concepts is one prerequisite. This paper makes an effort at
clarifying some of the basic concepts independently of standardized or non-standardized formal
description techniques. Among the basic concepts considered here are: agent, action, interaction,
interaction point, architecture, behaviour, system, composition, refinement, and abstraction. In a
case study, it is then shown how these basic concepts can be represented in a formal specification
written in temporal logic.

Keyword Codes: C.2.4; D.2.1

. ··- Keywords: Distributed Systems; Requirements/Specifications

1 Introduction

The objective of ODP is to address issues of cooperation between systems: "any task which
requires more than one application process to accomplish is within the scope of [ODP]", so "the
field of application of distributed processing is virtually unlimited" ([Gri89]). To make
distributed processing open, specific standards for all kinds of applications will have to be
developed. To achieve a coherent set of standards, the Basic Reference Model of Open
Distributed Processing (RM-ODP, [IS093,1-4]) is currently being developed. As part of this
reference model, a number of basic ODP conceptsl are informally introduced and formalized "by
interpreting each concept in terms of the constructs of the different standardized formal
description techniques" ([IS093,2]), called architectural semantics, in [IS093,4]. Following
[IS093,1], the objectives ofthis architectural semantics are:

to define the basic ODP concepts formally;

to provide the foundations for the development of ODP standards;

to act as a bridge between the basic ODP concepts and the FDTs;

called "ODP basic modeling concepts" in [IS093,2]

2

to provide the basis for a uniform and consistent comparison between formal descriptions

of the same standard in different FDTs.

While the purpose of formalizing the basic ODP concepts is to define their meaning uniquely and
unambiguously, it is by no means obvious that this can be achieved by interpreting each concept
in different FDTs. There are three main arguments:

There is no formal definition of the basic ODP concepts on which their interpretation in
different standardized FDTs can be based.

Some basic ODP concepts are elementary, i.e., they cannot be defined in terms of other
already defined concepts.

There is no formal relationship between concepts of different FDTs used to interpret basic
ODP concepts.

As a result, it is not possible to argue that the meaning of basic ODP concepts is defined uniquely
and unarnbiguously. In fact, from the contents of [IS093,4], it can be concluded that different
meanings are associated with some concepts in different FDTs. Furthermore, a formal basis for
the comparison between formal descriptions of the same standard in different FDTs is not
achieved.

A clear understanding of the basic ODP concepts is vital for the success of ODP as such. This
paper makes an effort at clarifying some of the basic ODP concepts independently of
standardized or non-standardized FDTs. To achieve this, a very small number of elementary
concepts, which are assumed to be sufficiently well-understood, are selected as a starting point.
Based on these elementary concepts, further concepts are then formally defined using a
mathematical notation. We emphasize that this treatment is independent of how these basic
concepts may be expressed in any of the standardized or non-standardized FDTs. In a case
study, it is then shown how they can be represented in a formal specification written in temporal
logic.

2 Basic ODP concepts

Following [IS093, 1-4], we will now address a number of concepts that we consider as basic for
the area of ODP. Some ofthese concepts are elementary in the sense that they cannot be defined
in terms of other, already known concepts. Together, these concepts can form the core of a Basic
Reference Model of ODP (RM-ODP). RM-ODP should be viewed as a common semantical

model which can be used to give a conceptual meaning to formal descriptions. By referring to a
single semantical model, formal descriptions written in different FDTs become comparable. The

degree of comparability depends on the richness of RM-ODP, i.e., on the number of basic
concepts that are incorporated, and on the expressiveness of the FDTs, i.e., to what extent the
basic concepts can be represented in formal descriptions. For two formal descriptions FD1 and
FD2 written in different FDTs, we have the situation shown in Figure 2.1. The meaning of FD1
and FD2 is defined in terms of semantical models Af1 and Af2, respectively (for instance,
acceptance trees and transition systems, with suitable refinement relations). Additionally, parts
of FD1 and FD2 represent concepts of RM-ODP. This also gives meaning to the formal

3

descriptions from another point of view. A necessary condition is that the meanings with respect
to Mi and RM-ODP must not be in contradiction. However, they may address different aspects
of a system. · For instance, the structure of a formal description can be used to represent a
conceptual system architecture, although it is not assigned a meaning in the FOT semantics itself.

FDt • • 11 · 11 • FD2
..

1 r

Mi •

. .. „„„ „. „„ „.
„„ •" „ „ • „ „

..•...... :::::::~·~-()~~~::;;:::•..

~ '

Figure 2.1: Comparison of formal descriptions in the context of RM-ODP

2.1 Elementary concepts

To lay the ground for the definition of basic ODP concepts, we start with the informal
introduction of a very small number of elementary concepts. They form the starting point for the
definition of further basic ODP concepts. Due to their elementary nature, these concepts cannot
be formally defined. All that can be stated at this point is that these concepts are disjoint.

Definition (elementary concepts):

An agent2 ay. E -Aq is a component performing actions.

An interaction point ip E !JP is a conceptual location where actions may occur.

An action3 a. E -Aci is something that happens.

• Agent, interaction point, and action are disjoint concepts, i.e. -Aq n !JP = -Aq n -Aci =
!JP n -Aci = {}.

An action is performed by an agent or a set of agents, it may be intemal or may occur at some
interaction point or a set of interaction points. An agent thus is the carrier of actions, it can be
characterized by its behaviour. This behaviour (a notion still to be defined) consists of actions
local to the agent. Actions may also be non-local, such as interactions or transactions. Non-local
actions may be performed by a set of agents and may occur at a set of interaction points.
Interactions and transactions may also be considered as high-level actions, i.e., actions that can be
decomposed into smaller units. Depending on what kind of action is taken as atomic on a given
level of abstraction, the behaviour of a system can be characterized in different ways.

2 Tue notion of agent is closely related to the notion of object in [ODP93,2] .

3 sometimes called action occurrence

4

2.2 Architecture

With the elementary concepts agent and interaction point, more complex structures termed
architectures can be composed:

Definition (architecture):

An architecture IJ'leli is a structure (IJQ,!JP,ll'lelilJ/.), where

IJQ is a non-empty set of agents,

- !JP is a set of interaction points, and

IJ't.Clt,IJ/.: IJQ ~ 2j/J is a total function called architecture function associating with each

agent a set of interaction points.

A fit IJQ• ~ IJQ of agents has one or more interaction points in common if and only if
• ll~IJ/.(GY) "# {}. We require as a rule of composition that a common interaction point is

idti~cYuced explicitly into the architecture whenever a group of agents has the capability to
interact directly. Depending on the kind of interaction, two or more agen!s may in general be
involved in interactions. Whether such interactions will actually take place also depends on the

behaviour. Also, interaction points will be used to interconnect different architectures (see
composition of architectures below).

Figure 2.2a shows a graphical representation of an architecture ./Jd = ({GY! ,ayi,ay3 }, { ip},
IJ'ICl.IJ/.(GYi)=ll'lelilJ/.(cun)=IJ'lelilJ/.(GY3)={ip}) consisting of three agents GY!> "92, and GY3 that have
a common interaction point ip. From this architecture we can infer that GY!, "92, and GY3 ha;ve the
capability to interact, however, we can not yet say whether they will actually do so. This can
only be derived from the behaviour of the agents and the interaction point.

GY3

a)

b)

Figure 2.2: Graphical representation of architectures

Figure 2.2b shows an architecture IJ'leli = ({GY},{'P1>'fl-2}, IJ'lelilJ/.(GY) = {'P1>'P2}) consisting of
an agent GY with two associated interaction points ip 1 and 'fl-2· From a global point of view, this
architecture could be considered as incomplete, because it does not show the agents which have

the capability to interact with GY through ;p1 and 'fl-2. However, such a situation is frequently
encountered in the context of open systems, which are incomplete in the same sense: although an

5

open system forms part of a larger system, the environment into which it is embedded later on is
not considered from the beginning. In most cases, it is not even known in advance, and it is the
task of the design to specify the open system such that it shows the intended behaviour in every
possible environment. With respect to Figure 2.2b, we can say that the agents not shown in the
architecture form the environme~t of ay. Following our rules of composition, we require that the
interaction points an agent has with its environment are introduced explicitly, but we allow that
the agents forming the environment may be omitted. They can, however, be added by composing
two architectures, as the following definition shows:

Definition (composition of architectures):

Let l/d = (llQ,!JP,ll1JCJ..~) and l/d' = (llQ',!JP',lld~') be architectures. The
composition of architectures lld and lld', written "l/11.e/iol/'tel.' ", · is defined as
(llQ°,!J~,11~~0), where

- llQ° =or 11q u llQ'

- 'J~ =or !JP u !JP'

- 11~~0 : llQ° ~ 21/Y' is defined as follows:

{
,t/~~(ay)

ll~df' (ay) =or II~~ ' (ay)

,t/~~(ay) u ,t/~~ '(ay)

<Uf E l/Q \ l/Q 1

if <Uf E l/Q 1
\ l/Q

Tue definition allows architectures that are composed to have some pc.rts in common. E.g., they
may share a number of interaction points and/or a number of agents. lf they have only interaction
points in common, i.e., if llQ n 11.Q' = {} holds, we have separate architectures that are
interconnected at these (external) interaction points. As a result, we obtain a high degree of
modularity, since each part of an overall architecture can be modeled separately and be merged
into the final architecture by composition. Also, composition of architectures can be used to
model architectural extension. From the definitions, it follows directly that l/'tel.ol/~' is an
architecture, i.e., the dual role of agent and interaction point is preserved, and that l/~ol/'Wli
=ll~and l/~ol/~'= ll~'ol/'Wlihold.

The architecture lld shown in Figure 2.2a can be obtained by composition of lld 1 =
({ay1},{ip}, l/d~(ay1) = {ip}), ll'tel.2 = ({ayi},{ip}, lld~(ayi) = {ip}), and l/~3 =
({<UjJ},{ip}, ,t/~6,Z(<UjJ) = {'fl-}), i.e., II~= 11~1ol/'Wli201/~3 .

2.3 Behaviour

With the elementary concept action , more complex structures termed behaviours can be
composed. We do not elaborate here on how this compositionmay be expressed in a specification
language, but define composition in terms of the underlying semantical model:

Definition (behaviour):

A behaviour Bekw is a structure (llci,BeluuJR), where

- llct is a set of actions,

6

- B.kwR c llci x llci is a partial order on the set of actions4.

A behaviour .. imposes explicit constraints on the possible sequences of actions. Further
constraints can be added by, e.g., composing behaviours. Behaviours can be composed if they are
mutually consistent, i.e. if there are no contradictions between the partial orderings of actions:

Def"mition (consistent behaviours):

A pair of behaviours ß.lu:w = (llci,ß.lu:wR) and ß.lu:w' = (llci',ß.lu:wR') is called
consistent if the following condition is satisfied:

- 'Va.,a'ellcinllci'. ((a,a')e&kwR /\a-:t;a 1
--::J (a',a)ri~').

As a special case, behaviours that have no actions in common are consistent. Consistency as
defined here is a reflexive and symmetrical relation on behaviours.

Def"mition (composition of behaviours):

Let 8.Juw = (llci,8~) and ßekw' = (llci',ß~') be consistent behaviours. The
composition of behaviours ß.kw and ß.luw', written "8.kwoße/uw' ", is defined as
(ll~ ,/J.kwR0

), where

- ll~ =nf llci u llci',

- ß.kwP.0 =nf el{ß.k:wP. U ßekwR.'), where e/(R) denotes the transitive closure ofR.

A behaviour can be understood as a set of restrictions on the possible execution sequences. The
definition allows behaviours that are composed to have some restrictions in common. The
composition of behaviours can then be interpreted as the union of sets of restrictions. As in the
case of architectures, we have a high degree of modularity, since each restriction can be modeled
separately and be merged into the overall behaviour by composition. Also, composition of
behaviours can be used to model behaviour extension. From the definitions, it follows directly
that ße/u;.1Joßelt.au' is a behaviour, and that ßeliauoße/uw. = ßekw. and ßeliauoße./iau' =
ß.Juu/ o ßek:w hold.

In specification languages, there exist several ways to compose behaviours, such as sequential or
parallel composition. We do not consider these kinds of composition basic modeling concepts,
but language dependent concepts. Also, we do not place any restriction on what actions are
chosen to be atomic actions in the language, thus allowing for different levels of abstraction.

2.4 Systems

Having introduced elementary concepts and some rules how we can use them to define
architectures and behaviours, let us now consider the notion of system.

Definition (system):

A system S is a structure (llltd.,&kw.,llcPI-), where

- llltdt. = (llQ,!JP,llltdt.tlJ.) is an architecture,

4 sometimes called action occurrences

7

- Bekw = (llct,~) is a behaviour,

- 11<:#4: llct ~ 21Jt;uJP is an action function associating with each action a set of agents and
interaction points,

- Va. E llct. llcM(a.) n llQ "# { },

- Va. E llct. Vip E l/ctq.(a) n !JP. 3cu; E l/ctq.(a). ip E ll~q.(cu;)

A system is modeled by its architecture and its behaviour. Both aspects are tobe respected when
a system is refined and implemented. Additionally, there is a relationship between architecture
and behaviour, which is expressed by the action function llcV/.. This relationship must satisfy the
constraint that an action must always be associated with some agent. Also, if an action is
associated with some interaction point, then it must also be associated with some agent that is
attached to that interaction point.

Definition (distributed system):

If a system is distributed, then it consists of several agents5, i.e., 1 llQ 1 > 1.

The notion of distribution does not refer to the extemal appearance, but to the intemal
organization of a system on a given level of abstraction.

With the preparations in previous sections, we define the composition of systems as follows:

Def"mition (composition of systems):

Let S = (llW,Beluw,llctq.) and S' = (11.tt.ch',Beluw',llctq.') be systems such that
II~ o II~' = (llQ0 ,!J P° ,ll~q.o) and Beluw. o Beluw.' = (II~ ,Beluw.R.0

) are defined. The
composition of systems Sand S', written "SoS' ", is <lefined as (ll,,d,,0 ,Beluw0 ,llctq.0

),

where:

- II~ o =or II~ o ll'lch,

- Bekw0 =or Bekw 0 Bekw'

- llctq.0
: II~ ~ 21Jq

0 uJP° is defined as follows:

{

,tJctq. (a) a E llct \ llct '

llcidf' (a.) =of IJctq_ 1
(a) if a E llci 1

\ llci

IJctq. (a) u llctq. ' (a) a E llct n llct '

From the composition of architectures and behaviours, we obtain a high degree of modu/arity.
Each system part can be modeled separately and be merged into the overall system by
composition. Also, composition of systems can be used to model system extension. From the
definitions, it follows directly that S oS' is a system, and that S oS = Sand S 0 S' = S' 0 S hold.

Based on the notion of system, we can define further basic concepts:

5 We only consider architectural aspects at this point. A behavioural characteristic of a distributed system is its
decentralized control.

8

Definition (agent behaviour, interaction point behaviour, interface behaviour, interaction):

Let S = (IJ'IClt,,Bekw.,IJci~) be a system with IJlfel,, = (IJQ,!JP,IJ'ICl..IJ/.) and Bel.au.= (IJci,BeluwP.).

An agent behaviour Bek:wa<; being part of the system S is a behaviour consisting of all
actions in which the agent ay. E IJQ participates. Formally: Beluw.a<; = (IJcia<;,Bekw.R.a;;.) is a
behaviour s. t. ay. E IJQ, IJcia;;. = {a 1 a E IJci /\ ay. E IJcM(a)}, and ~ = .B.kwRl,q~·

An interaction point behaviour Bekw;p being part of the system S is a behaviour consisting
of all actions occurring at the interaction point ip. Formally: &kw;p = (1Jci1p.~) is a
behaviour s. t. ip E 1P, IJci;p = {a 1 a E IJci /\ ip e IJclP/.(a)}, and BeluwP.;p = B.kwRl,Qct .

~
An interface behaviour &kw°'lr'P being part of the system S is a behaviour consisting of all
actions in which the agent ay. participates, and where the interaction point ip is among the
locations. Formally: B~'P = (IJ~,&kwR°'lr'P) is a behaviour s. t. 09 e IJQ, ip e !JP,
IJci°'lr'P = {a 1 a E IJci /\ ar; E IJcM(a) /\ ip E IJcM(a)}, and ~'P = B.kwRl,Qct ·

°'1r'P
An interaction Bekw., being part of the system S is a behaviour with two or more

participating agents occurring at a single interaction point that is associated with these

agents. Formally: Bekw, = (IJci,,Bekw.R.,) is a behaviour such that IJci, ~ IJci, B.Juw.R, ~

BekwR, 1 LJ IJcilJ/.(a) n IJQ 1 ;:::: 2, 3ip E !JP. Va E IJet,. IJetlJ/.(a) n !JP = {ip}, and
, q.ellci

Va e IJci,. var; E IJci~(a) n IJQ. IJcM(a) n !JP ~ IJlfel,,IJ/.(ay.)

lt is by means of interaction that agents can mutually influence each other. This influence consists
of exchange of information. If interactions are considered atomic actions on a high abstraction
level, i.e. the set !Jet, is a singleton, we obtain a simplified restriction. On a lower level of
abstraction, an interaction may consist of a set IJci, of more elementary actions, where each such
action is the portion a single agent has in the interaction. In general, it depends on the particular
model which actions form an interaction. The above restriction requires that these actions are
associated with two or more agents, that they occur at the same single interaction point, and that
this interaction point is associated with each interacting agent.

Since agent behaviour, interaction point behaviour, interface behaviour and interactions are
behaviours, they can be composed as defined in Section 2.3. As a result, we can model a complex
behaviour in a modular way and obtain the complete behaviour by composition of behaviours.
This also applies to the behaviour of a single component, say, an agent, where the behaviour may
be substructured into a number of partial orderings corresponding to different restrictions.

2.5 Refinement and abstraction

Tue concepts of agent, interaction point, action, architecture, behaviour, and system naturally lead
to the dual notions of refinement and abstraction. In general, it is desirable that the refinement of a
single component has no influence on the other components. Only then will it be possible to
perform incremental system design and modular verification, which is a prerequisite for the
development of large systems. By incremental system design, we mean that we can modify or
replace a part of the system without affecting the other parts. Modular verification means that
only the modified or replaced parts have to be verified, not the entire system. To allow for

9

incremental system design and modular verification, we have to make suitable restrictions with
respect to architecture and behaviour.

With respect to architectures, we require that agents and interaction points be refined separately.
In other words, a single component of the refinement (an agent or interaction point) is uniquely
related to a single component of the refined architecture. Also, we require that the number of
interaction points an agent is associated with remains the same. These and further architectural
constraints can be formalized as follows6:

Definition (architectural refinement):

Let IJ~ = (IJQ,!JP,IJ~P}) and IJ~' = (IJQ',!JP',IJ~PJ') be architectures. IJ~' is an
architectural refinement of IJ'te.h (written "IJl/.C.h' ~11..d. IJl/.C.h") if and only ifthere is a
refinement function IUl/11..d.: IJQ u !JP-t 211q'uJP' such that the following restrictions hold:

- Each component of IJ'te.h is refined, i.e., "'411-tc1. is a total function.

- The refinement of an agent must include at least one agent. Formally: Var; e IJQ.
IUl/11..d.(<Mi') (') IJQ 1 * {} .

- The refinement of an interaction point must include at least one interaction point:
V ip E !JP. IUl/11~ (ip) (') !JP' * {} .

- Each agent and each interaction point is refined separately, i.e., the refinement is disjoint:

V«-,'f e IJQ u !JP. («- =i= 'f implies ""'111~ («-) n IUl/11~ ('f) = {}).
- IJQ,' is the set of exactly those agents resulting from the refinement, i.e., ,qq' =

(LJ IUl/11.d. (~) u LJ IUl/11~ (if:'-)) \ !JP'.
'!tellq tpe1P

!Jp' is the set of exactly those interaction points resulting from the refinement, i.e.,

!JP' = (LJ ""'111~ (if:'-) u LJ 'Ulj11-tc1. (~)) \ IJQ'.
tpe1P "'!el1Q

- lf an agent ay e ,qq is associated with an interaction point ip e !JP, then exactly one
agent of the refinement of ~ must be associated with exactly one interaction point of the
refinement of ip. Formally:

'dip E !JP. 'l:;j~ E llq. ip E ,tJ,,diq.(~) implies

(1 IU!f 11'1d. (ip) \ llQ' n LJ IJ'leiiP} '(ay ') 1 = 1 and
a;;' E ~.,,;.(a;;)\JP'

1 { ~, e IUl/11.d. (~) \ !JP' 1 IJ'leiiPJ'(~ ') n IUl/11.d. (ip) \ llQ' * {} } 1 = 1)

Figure 2.3a shows the graphical representation of a possible refinement of the interaction point ip
(compare Figure 2.2a), which on a lower level of abstraction comprises an agent ar; that can
interact with <Ui-1' ayi , and ay3 through if:'-1> ipi, and ip-3, respectively. lt is necessary to introduce
interaction points in the refinement, because otherwise the rule of composition of architectures
about their explicit introduction would be violated. Also, we notice that the duality between
agents and interaction points is nicely carried into the refinement. On the other hand, when
moving from the composition of ip1, ipi , ip], and ~ to ip, we obtain an architectural abstraction.

6 In [Rei86], a different notion of architectural refinement is introduced, which is based on Petri nets. Here, the
refinement of a single component can have an influence on other components. Also, system behaviour can only
be introduced on the lowest level of refinement.

10

Figure 2.3b shows a possible refinement of the agent tu;- (compare Figure 2.2b), which now

consists of agents G.9- 1 and G.9-2 with a common interaction point 'f'-· T o retain the extemal
appearance as defined for agent aii'• subsets of the agents introduced in the refinement are
associated with the extemal interaction points of G.9-· As before, the duality between agents and

interaction points is nicely carried into the refinement.

a)

b)

Figure 2.3: Graphical representation of architectural refinement and abstraction

Clearly, the architectures shown in Figure 2.3a and 2.3b are architectural refinements of those
shown in Figures 2.2a and 2.2b, respectively. However, the architectures shown in Figure 2.4 do
not refine the architecture of Figure 2.2b. The reason is that such refinements would have an
impact on the remaining components, therefore preventing incremental system design and
modular verification. Note that both architectures violate the last restriction of the definition of
architectural refinement.

Definition (architectural abstraction):

Let II.tu:/,, and llllCI.' be architectures. llllCI.' is an architectural abstraction of II.tu:/,, (written
"llllCI.' ~II.de llllCI. ") if and only if llllCl.~11.di ll'ICI.'.

This definition formalizes the duality of architectural abstraction and architectural refinement: ·
~II~= ~11~-1. Note that both relations are preorders on architectures, i.e., reflexive
and transitive. Only preorders are suitable refinement relations in the stepwise design of systems.
lf, for instance, refinement would not be transitive, then for a sequence ,t/dt , ... ,,t/dn of

architectures, we could have ,t/'ICl.i ~II~ ,t/JU:,/,,i+t, for l~i~n-1, but ,(/.tu:/,,! ~II~ II~
can not be derived.

11

lntuitively, a behaviour Bekw' refines a behaviour Bekw, if Bel.au' is equivalent to or more
specific than Bel.au.. This requires the refinement relation to be reflexive and transitive. What we
can state about behavioural refinement is that actions be refined separately, and that Belu:wR be
respected by the refinement. Without making rather specific assumptions, it is not

· straightforward to define behaviour refinement more precisely.

a)

b)

Figure 2.4: Illegal architectural refinements

Definition (behavioural refinement and abstraction):

Let Bekw = (i4ct,BeliauR) and Beliau' = (i4ct',BekwR') be behaviours. Bekw' is a
behavioural rejinement of Bel.au. (written "Bel.au.' ~B.kw Bel.au.") if and only if there is
a refinement function lte/llcl i4ct ~ 21Jci' such that the following restrictions hold:

- Each action of i4ct is refined, i.e., ~IJci is a total function.

- Tue refinement of an action must consist of at least one action: V a. E i4ct. ~IJci (a.) -:t:. {} .

- Each action is refined separately, i.e. , the refinement is disjoint: v~,'f E i4ct.
(~ -:t:. 'f implies ~IJci (~) n ~IJci ('f) = {}).

- ßekw.R is respected by the refinement, i.e. Va.1, ~ E i4ct. ((a1,a.i) E ßekw.R implies

V a{ E ~IJcJ(a.1) . V a.2 E ~IJci(a.i). Ca{ ,a.2) E B~~-

Let Bel.au. and Bel.au.' be behaviours. Bel.au.' is a behavioural abstraction of Beluw. (written
"~'~Bel-.~") if and only if Beluw~B.J.- ~·.

We do not require i4ct' tobe the set of exactly those actions resulting from the refinement. In fact,

this would be rather the exception, since further actions will in general be introduced as a
consequence of behaviour refinement. In cases where ~IJci is the identity function, such a notion

may be defined in terms of projection.

12

With respect to systems, we require that architectural and behavioural refinements exist, and that

the action function of the refinement respects the architectural refinement. These constraints can

be formally expressed as follows:

Definition (system rejinement and abstraction):

Let S = (./J-t.ch, BeJ..au, ./Jctq) and S' = (./Jd ', Beli<W ', ./Jctq') be systems, ./J-t.cJ.. =
(./JQ,!JP,./1-t.chq.), BeJ..au = (./Jct,BeJ..auR), ./J-t.cJ..' = (./JQ',!JP',./1-t.cJ..q'), Bel.au'=
(./Jct',&kwn.'). S' is a system refinement of S (written "$' ~g $'') if and only if there
are refinement functions IUl/1111C1.: ./IQ u !JP ~ 2llQ'uJP', and IUl/11ct: ./Jet~ 211ct' such that the

following restrictions hold:

- ,t./IJCI.' """'""II-tel. ./JIJCI. for the refinement function IUl/1111C1.;

_ ß.kw.' ~<- &kw. for the refinement function v/M.

- T/ a E ./Jet.
('V<JljE ./JcVl{a)n./JQ. 3"'1'' e ./IQ'. 3a' e v/11J..a). (at;'ev/1111C1.(at;) 11. at;' e ./JcV/.'(a }) 11.

'V ip e ./lcJdl.(a)n!JP. 3ip' e !JP'. 3a' e v/11J..a). (ip'e v/IJllC!. (ip) 11. ip' e ./JcV/.'(a }))

Let Sand S' be systems. $' is a system abstraction of S (written "$' ~g S ") if and

only if S ~s $'.

This definition formalizes the duality of system abstraction and system refinement: ~s
= aluJllacUg- 1. Note that both relations are reflexive and transitive.

3 A case study

We will now give a complete example of how the basic concepts introduced in Section 2 can be
represented in a formal description technique such that their meaning is preserved and specialized.
Tue FDT chosen for this purpose is many-sorted first-order temporal logic, which belongs to the
category of property-oriented techniques (see [Got93] for further details and references). With
respect to Figure 2.1 (Section 2), we select a semantical model M and define the meaning of so
called requirement specifications with respect to this model. The meaning of requirement
specifications in terms of RM-ODP is established by defining a structural relationship.

Figure 3.1: Graphical representation of the drink server architecture

13

A drink server OS takes orders for tea and coffee from customers at interaction point ipl. For
each tea order, one cup of tea is served at ip2. For each coffee order, one cup of coffee is served at
ip3. The abstract architecture of OS is shown in Figure 3.1. lts internal architecture is not
revealed. OS can later be embedded into an environment, for instance, a self-service restaurant or a
faculty club, by composition of systems. ·

Drink servers often work in rounds, i.e., when a drink is ordered, it is served before the next drink
can be ordered. More sophisticated drink servers might be able to take new orders while still
serving drinks. Such concurrent behaviour should not be excluded.

When the behaviour of OS is specified, no asswnptions about the environment are to be made.

This means that only the readiness of OS to take orders and to serve drinks can be described.
Whether orders will be taken when OS is placed into some environment depends on whether they
are actually given, and whether drinks will actually be served depends on the readiness of the
environment to accept them. We abstract from limitations of resources, i.e., tea and coffee are
always available, and from failures.

3.1 A temporal logic

In the temporal logic described below, a requirement specification RS will be a structure
(Arch,Behav), consisting of its architecture, its behaviours, and its action function. A
requirement specification RS will characterize a set of systems S = (./l-t.cl..,Beluw,./lctd/.) as
defined in Section 2. Arch = (AG,IP,ArchF) will be directly related to the architecture ./llld. =
(./IQ,!JP,./llld.d/.) from Section 2. The other components of a system S will be characterized by
Behav and the choice of atomic formulas.

In many-sorted first-order temporal logic, atomic formulas are fonned starting from the following
sets of symbols:

a denwnerable list S of symbols called sorts;

a denwnerable list V of symbols called individual variables; each x E V is attached to a sort
s E S, which is expressed by writing xs;

for each integer n ~ 0, a denumerable set F(n) of n-ary function symbols; eachf E F(n) is

associated with sorts s,s J.···,sn E S (written "fs,s 1, ... ,sn");
for each integer n ~ 0, a denwnerable set R(n) of n-ary relation symbols; each r E R(n) is

associated with sorts s 1'···,sn E S (written "r51 , ... ,sn").

With these preparations, the syntax of formulas can be defined as follows:

i) For all xs E V: xs is a term of sort s.

ii) For all n ~ O,fs,s1, ... ,sn E F(n), and terms t1, ... ,t0 of sorts s1, ... ,sn: fs,s 1, ... ,sn(t1, ... ,t0) is
a tenn of sort s.

iii) For all n ~ 0, r51 , ... ,sn E R(n), and terms t1, ... ,t0 of sorts s 1, ... ,sn: r51 , ... ,sn(t1, ... ,t0) is a
formula.

iv) Let cp be a formula, xs be an individual variable, then vxs.cp and 3xs.cp are fonnulas.

v) Let cp be a formula, then ---, cp is a formula.

vi) Let cp 1, cp2 be formulas, then (cp1 A cp2), (cp1 v cp2), (cp1 :J cp2), (cp1 = cp2) are fonnulas.

14

vii) Let <p be a formula, then 0 <p and 0 <p are formulas.

viii) Let <p be a formula, then [<p] (read "action of type <p") is a formula.

ix) Let <p be a formula, then #(<p] (read "number of actions of type <p") is a term of sort IN 0.

The semantics of the temporal operators is defined with respect to a model Af = (E,Q,I.,Q0),

where

E = (E 1,„.,E 0) is a family of non-empty sets of objects (containing agents, interaction
points, natural numbers, etc.);

Q is a set of states, where each state is given by a set F of functions and a set R of relations
on E (the states are not states in the ordinary sense with state variables, but contain only

what will be necessary to characterize architecture and behaviour);

Q0 ~ Q is a non-empty set of initial states;
I. ~ Q00 is a set of infinite state sequences cr = (cr0cr 1„.cr0 „.) with initial states from Q0,

i.e., cr0 e Q0 for all cr e I.;

Formulas of many-sorted first-order logic are interpreted in a model Afby associating/or each
state CJj e Q sort symbols with sets of objects, function symbols with functions, relation
symbols with relations as follows:

to every sort symbol s e S, a set OS e {E1,„.,E0 } is attached; for notational convenience,
we will use the same identifiers as sort symbols and to refer to the attached object sets, i.e.:
E· e Sand oEi = E„ 1 l•

for each integer n ~ 0: to each n-ary function symbol fs,si,.„,sn e F(0), a function
f OS Ix„.xosn ~ os is attached;

for each integer n ~ 0: to each n-ary relation symbol rs 1, ... ,sn e R(0), a relation
r \;;;;; osix„.xosn is attached.

The propositional operators (-,, /\., v, ::::>, =), existential and universal quantification (3, V) are

interpreted as usual. The semantics of the temporal operators and the function #(<p] are defined
with respect to the satisfaction relation I=. Fora model '),{, I= is a relation between '),{, a sequence
CJ e I., a position j and a formula cp (written "Af,(crj) I= cp").

i) '),{,(crj) I= o cp iff Vk ~j. '),{,(cr,k) I= <p

ii)

iii)

iv)

0 <p =or, o -,cp

'),{,(crj) I= [<p] iff '),{,(crj) I= <p and (j>O implies '),{,(crj-1) l;t= cp)

Af.(crj) F= #(cp] =or

0 j = 0 and '),{,(crj) I= --,[<p]

?r!CcrJ-1) F= #[<p]

'),{,(crj-1) I= #(<p] + 1

if
j = 0 and Af,(crj) I= [<p]

j > 0 and 9ri;(crj) f=-,[<p]

j > 0 and '),{,(crj) I= [<p]

When we use temporal logic to characterize a system, we require that a specification must hold in

the initial state of execution (properties holding throughout the execution can be defined using the
'henceforth' operator 'D'). To express this formally, we use the notion of initial validity. A for

mula <p is initially-satisfied in a model Af for a sequence cr e I., written Af,cr l=i cp, iff Af,(cr,O) I=

15

<p is true. <!> is initially-valid in Af iff <p is initially-satisfied for all cr E I:. Finally, <p is initially
valid, written l=i <p, iff cp is initially-valid in all models Af.

3.2 Specification of the drink server

To specify the drink server, we first explain how some of the basic concepts in Section 2 are

represented in the temporal logic in Section 3.1. We introduce sort symbo!s AG, IP, 2IP, and a

function symbol Archf which is associated with sorts 2IP and AG. The intention is to interpret
the sort symbols as the set of agents, interaction points and power set of interaction points, and

the function symbol as the architecture function. lt will then be straightforward to specify
architectures.

Next, we decide to use elementary actions that can be composed into interactions. An interaction

may occur between two agents at a common interaction point and consists of offer and accept,
denoted by abstract operations ! and ?, respectively. lt has an interaction type p (order or serve)

and an interaction parameter x (tea or coffee). We write "ag.ip.!(p(x))" to denote that the agent ag

offers an interaction of type p with parameter value x at interaction point ip. Similarly,
"ag.ip.?(p(x))" denotes that entity ag accepts an interaction, where p and x will have values of a

previous interaction offer.

Tue formula "at ag.ip.!(p(x))" holds when the entity ag is prepared to offer an interaction oftype

p with parameter value x at interaction point ip; "after ag.ip.!(p{x))" holds immediately after

completion of the offer. Note that in the first-order framework, at and after are relations. We

overload these relations by demanding at ag.ip.!(p{x)) ::> at ag.ip.! (i.e. (ag,ip,!,p,x) E at implies
(ag,ip,!) E at), so the formula "at ag.ip.!" holds when the agent ag is prepared to offer some

interaction at ip. Similarly, after ag.ip.!(p(x)) => after ag.ip.!. Tue forrnula "at ag.ip.?" holds when

ag is prepared to accept an interaction at ip, "after ag.ip.?(p(x))" holds just after ag has accepted
p(x) at ip. As above, after ag.ip.?(p(x)) ::> after ag.ip.?.

With the temporal logic in Section 3 .1, we can refer to the occurrence of an action of type <p by
writing [<p]. If cp is an atomic formula, then [cp] refers to an atomic action, i.e. an action that cannot

be refined on the given level of abstraction. Given the set of formulas, this defines the set Act of
action types. Together with a particular model Af, this determines the set of actions. Also, we

can refer to the number of action occurrences oftype <p by #[<p]. In the following, we will focus
on atomic actions only. For the atomic formulas described in the previous paragraph, we also
have the action function ActF (defined on action types), since agent and interaction point are
explicitly associated with each action type and thus with each action: ActF ([r ag.ip.op(p(x))])

=or {ag,ip}, where r E {at,after} and op E {!,?}.

Based on Section 3. l , we now define a particular temporal logic by filling in sort symbols,
function symbols and relation symbols. This logic will then be used to specify the architecture

and the behaviour of the drink server.

AG, IP, 21P, OP, P, X, IN0 are sort symbols, interpreted as the set of agents, the set and the

power set of interaction points, the set of abstract operations, the set of interaction types,

the set of parameter values, and the set of natural numbers;

DS is a constant of sort AG;

ip l, ip2, ip3 are constants of sort IP;

! and ? are constants of sort OP;
order and serve are constants of sort P;
tea and coffee are constants of sort X;
ArchF is a function symbol of arity l, associated with sorts 2 IP and AG;

16

at and after are relation symbols of arity 5, associated with sorts AG, IP, OP, P, X; we
overload at and after to be also relation symbols of arity 3, associated with sorts AG, IP,
OP.

RSos = (Archos,Behavos)

Archos = ({DS},{ipl,ip2,ip3},ArchF) with ArchF(DS) = {ipl,ip2,ip3}

Behavos = /\ DSi
l~i~5

DS1. D 0 at DS.ipl.?

DS2. O ((#[after DS.ipl.?(order(tea))] > #[after DS.ip2.!(serve(tea))])

:::> 0 at DS.ip2.!(serve(tea)))

DS3. O (-, (#[after DS.ipl.?(order(tea))] > #[after DS.ip2.!(serve(tea))])

:::>-, at DS.ip2.!(serve(tea)))

DS4. O ((#[after DS.ipl.?(order(coffee))] > #[after DS.ip3.!(serve(coffee))])

:::> 0 at DS.ip3.!(serve(coffee)))

DS5. O (-, (#[after DS.ipl.?(order(coffee))] >#[after DS.ip3.!(serve(coffee))])

:::>-, at DS.ip3.!(serve(coffee)))

Table 3.1: Specification of the drink server DS

Tue requirement specification RSos of the drink server is listed in Table 3.1. Tue behaviour
specification is composed of a number of properties, each stating a restriction on the allowed
behaviour of DS. Property DS 1 expresses that DS is ready to take an order at ip 1 from time to
time. DS2 states that if there is an unsatisfied tea order, DS will eventually be ready to serve tea
at ip2. DS3 covers the complementary situations, where it is required that DS is not ready to
serve tea. DS4 and DS5 state analogous requirements in case of coffee orders.

As mentioned before, the requirement specification RSos characterizes a set of systems S =
(llJU:l,,,Bekw.,llcPI-) (see Section 2). Note that the restrictions on the composition of elementary
concepts into more complex structures (architectures, interactions, behaviours) given in Section 2
are observed.

17

3.3 Refinement of the drink server

In the following design step, the intemal architecture of the agent DS is revealed. DS is
decomposed into a waiter W, a tea girl TG, a coffee boy CB, and intemal interaction points ip4
and ip5 (see Figure 3.2). The behaviour of these agents and the semantics of the interaction points
shall be defined such that the resulting specification RSos· refines RSos·

Figure 3.2: Refined architecture of the drink server

Infonnally, the waiter takes orders for tea and coffee from customers at interaction point ip 1. If
tea is ordered, the waiter asks the tea girl at ip4 to serve tea. If coffee is ordered, the waiter asks
the coffee boy at ip5 to serve coffee. When asked to serve tea, the tea girl serves tea at ip2. When
asked to serve coffee, the coffee boy serves coffee at ip3.

As before, we define a particular temporal logic by filling in sort symbols, function symbols and
relation symbols:

AG', IP', 2IP', OP', P', X', and IN0 are sort symbols, interpreted as the set of agents, the set
and the power set of interaction points, the set of abstract operations, the set of interaction
types, the set of parameter values, and the set of natural numbers;
W, TG, and CB are a constants of sort AG';
ip 1, ip2, ip3, ip4, ip5 are constants of sort IP';
! and? are constants of sort OP';
order, serve, request and tea, coffee are constants of sorts P' and X', respectively;
p and x are individual variables of sorts P' and X', respectively;
ArchF' is a function syrnbol of arity 1, associated with sorts 2IP' and AG';
at and after are relation symbols of arity 5, associated with sorts AG', IP', OP', P', X'; we
overload at and after to be also relation symbols of arity 3, associated with sorts AG', IP',
OP'.

The specification RSns· of the drink server refinement is listed in Table 3.2. The behaviour
specification is composed of a number of properties stating restrictions on the allowed behaviour
of W, and TG. The specification of the coffee boy CB is very sirnilar to the specification of TG

and therefore omitted.

RSos· = (Archos,Behavos,ActF os)

Archos· = ({W,TG,CB},{ipl,ip2,ip3,ip4,ip5},ArchF') with

ArchF'(W) = {ipl,ip4,ip5}, ArchF'(TG) = {ip2,ip4}, and ArchF'(CB) = {ip3,ip5})

Behavos· = /\. Wi /\ /\. TGi /\ /\. CBi /\ /\. ip4i /\ /\. ip5i
1SiS5 ISiS3 lSiS3 1SiS3 ISiS3

W1. D 0 at W.ipl.?

W2. O ((#[after W.ipl.?(order(tea))] > #[after W.ip4.!(request)])

::::> 0 at W.ip4.!(request))

W3. o (-, (#(after W.ipl.?(order(tea))] > #(after W.ip4.!(request)])

::::>...., at W.ip4.!(request))

W4. D ((#[after W.ipl.?(order(coffee))] > #[after W.ip5.!(request)])

::::> 0 at W.ip5.!(request))

W5. O (-, #[after W.ipl.?(order(coffee))] > #[after W.ip5.!(request)]

::::>...., at W.ip5.!(request))

TG1. D 0 at TG.ip4.?

TG2. O ((#[after TG.ip4.?(request)] > #[after TG.ip2.!(serve(tea))])

::::> 0 at TG.ip2.!(serve(tea)))

TG3. O (-,(#[after TG.ip4.?(request)] > #(after TG.ip2.!(serve(tea))])

::::>...., at TG.ip2.!(serve(tea)))

ip41. 0 Vp,x. (#(after W.ip4.!(p(x))] ~ #(after TG.ip4.?(p(x))])

ip42. 0 (at W.ip4.! /\ at TG.ip4.? ::::> 0 [after W.ip4.!] /\ 0 [after TG.ip4.?])

ip43. 0 (at TG.ip4.? /\ #(after W.ip4.!] > #[after TG.ip4.?] ::::> 0 (after TG.ip4.?])

Table 3.2: Specification of the drink server refinement

18

In addition to properties restricting the behaviour of the system's agents, we have properties

defining the semantics of interaction points ip4 and ip5 (see [Got92d], (Got93]). Property ip41
determines that interactions p(x) accepted by TG at ip4 must have been previously offered by W
at ip4. Recall that an interaction is modeled to consist of offer (denoted by !) and acceptance
(denoted by ?), p is the interaction type, and x denotes a parameter value. ip41 ensures that ip4
does not create, duplicate or corrupt interactions. ip42 requires that if W is prepared to offer and
TG is prepared to accept an interaction, then both agents will -eventually proceed. ip43 states that
if TG is prepared to accept, and more interactions have been offered than accepted, then TG will

19

eventually proceed. Tue semantics of ip5 is analogous to that of ip4 and therefore not listed in
Table 3.2.

Tue specification RSos· characterizes a set of systems S' = (lld. ',ß~',llcVI-') (see Section 2).
Note that the restrictions on the composition of elementary concepts into more complex
structures (architectures, interactions, behaviours) given in Section 2 are observed. As in the

specification of DS, we define ActF' ([r' ag' .ip'.op'(p'(x'))]) =or {ag',ip'}, where r e {at,after} and
op E {!,?} .

As discussed earlier, a system S' refines a system S, if S' is equivalent to or more specific than

S. To apply this definition to requirement specifications, we define a corresponding relation
between RS' and RS, called "refinesrep". such that RS' refinesrep RS implies that the systems
characterized by RS' refine the systems characterized by RS. For the architecture, the relationship

is straightforward. For the behaviour part, we define a representation function rep mapping the
behaviour specification of RS to a formula on the abstraction level of RS'. lt is then sufficient to
show that the result of this mapping is logically implied by the behaviour of RS', which leads to
the following definition:

Let RS = (Arch,Behav) and RS' = (Arch' ,Behav') be requirement specific~tions. RS' is a
refinement ofRS under the representation function rep (written "RS' refinesrep RS") if and
only if the following is satisfied7:

- Arch' refines Arch Arch

- Fi Behav' :::) rep(Behav)

With the refinement function re/Arch(DS) = {W,TG,CB,ip4,ip5}, re/Arch(ipl) = {ipl},

re/Arch(ip2) = {ip2}, and re/Arch(ip3) = {ip3}, it follows that Arch' refinesArch Arch holds (for
the definitions of refinesArch and refArch, see ~.4..d. and 'UJ/.11-tcJ. in Section 2.5). In particular,
this architectural refinement respects the restriction that if an agent ag E AG is associated with an
interaction point ip E IP, then exactly one agent of the refinement of ag must be associated with
exactly one interaction point of the refinement of ip. Thus, the extemal appearance of the system
characterized by RSos is preserved in the refinement.

To prove Fi Behav' :::) rep(Behav), we define the representation function rep shown in Table 3.3.
This function is defined recursively, following the formation rules of formulas. In particular, each

atomic formulas of the logic applied to RS is mapped to a formula of the logic applied to RS'.
From rep, it can be derived that an atomic action of RS corresponds to an atomic action of RS',
i.e., we have a one-to-one-relationship. Also, non-atomic actions of RS are mapped to actions of
RS' via rep. Thus, rep gives us the action refinement introduced in Section 2.5. lt is clear that the
restrictions on action refinement are observed, i.e., each atomic action of RS is refined, and each
action is refined separately. In addition, the action function of the refinement respects the
architectural refinement (compare Section 2.5).

Defining rep is a crucial step in the verification process, because it can cause bad results.
Therefore, rep has been kept simple. In case of the drink server, it is then straightforward to
prove that Behav':::) rep(Behav) is initially-valid.

7 Refinement as defined here has been tenned conformance in [Got93].

rep (at DS.ipl .?)

rep (after DS.ipl.?(p(x)))

rep (at DS.ip2.!(p(x))

rep (after DS.ip2.!(p(x))

rep (at DS.ip3.!(p(x))

rep (after DS.ip3.!(p(x))

rep (-i<p) = --, rep(cp)

rep (<p1 1dp2)

rep (V'x. <i>t)

rep (0 cp)

rep ([cp])

rep (#[cp])

rep (cp 1) " rep(<p2)

V'x. rep (cp)

D rep(cp)

[rep (cp)]

#[rep (cp)]

at W.ipl.?

after W.ipl.?(p(x))

at TG.ip2.!(p(x))

after TG.ip2.!(p(x))

at CB.ip3.!(p(x))

after CB.ip3 .!(p(x))

Table 3.3 : The representation function rep

4 Conclusion

20

In this paper, we have made an effort at clarifying several basic ODP concepts. Since the
definitions given here may affect the standardization process of ODP as a whole, the concepts
have been chosen and defined very carefully. Also, they have been kept very general in order to
allow for a broad spectrum of representations and specializations in formal descriptions. The
intention of this work is to lay the grounds for a more substantial discussion about the meaning of
basic ODP concepts. lt is expected that in the course of this discussion, some of the concepts
treated here will be specialized, and further concepts will be added.

Based on the results of this work, FDTs currently considered for the area of ODP should be
evaluated. For each FOT, it should be investigated what basic concepts can be formally expressed
in that language, and how this could be done. Every choice will have to respect the meaning of the
basic ODP concepts, and may specialize their meaning where necessary. As a result,
specifications written in different FDTs or at different design stages should become better
comparable. As a further result, this should improve the basis for the development of !arge
systetns with a variety of components specified in different FDTs, and for their verification.

Acknowlegements. Special thanks go to C. Andrae, J. Bredereke, K. Madlener, and my
colleagues in the Computer Science Department of the University of Kaiserslautern for valuable
comments and discussions.

21

References

[Got92d] Gotzhein, R.: Format Definition and Representation of Interaction Points, Computer
Networks and ISDN Systems 25 (1992) 3-22
[Got93] Gotzhein, R.: Open Distributed Systems - On Concepts, Methods and Design from a Logical
Point of View, Vieweg Wiesbaden, 1993
[Gri89] van Griethuysen, J. J.: Open Distributed Processing, in: E. Brinksma, G. Scollo, C. Yissers
(eds.), Protocol Specification, Testing, and Yerification IX, Proceedings, June 6-9, 1989
[IS093, 1] ISO/IEC JTC 1 /SC2 I: Information Technology - Open Distributed Processing - Basic
Reference Model of Open Distribut~d Processing - Part 1: Overview and Guide to Use, ISO/IEC
10746-1, 1993

[IS093,2] ISO/IEC JTC 1/SC21: Information Technology - Open Distributed Processing - Basic
Reference Model of Open Distributed Processing - Part 2: Descriptive Model, lSO/IEC 10746-2,
1993
[IS093,3] ISO/IEC JTC 1 /SC2 l: Information Technology - Open Distributed Processing - Basic
Reference Model of Open Distributed Processing - Part 3: Prescriptive Model, ISO/IEC 10746-3,
1993
[IS093,4] lSO/IEC JTC 1 /SC21: Information Technology - Open Distributed Processing - Basic
Reference Model of Open Distributed Processing - Part 4: Architectural Semantics, ISO/IEC 10746-4,
1993
[Rei86] Reisig, W.: Petri Nets in Software Engineering, in: W. Brauer, W. Reisig, G. Rozenberg (eds.),
Petri Nets: Applications and Relationships to Other Models of Concurrency, Lecture Notes in
Computer Science 255, 1986, pp.63-96

„

