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Abstract 

Facility location problems in the plane are among the most widely used 
tools of Mathematical Programming in modeling real-world problems. In 
many of these problems restrictions have to be considered which corre
spond to regions in which a placement of new locations is forbidden . 

We consider center and median problems where the forbidden set is 
a union of pairwise disjoint convex sets. As applications we discuss the 
assembly of printed circuit boards, obnoxious facility location and the 
location of emergency facilities . 
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1 Introduction 

One of the most successful models in mathematical programming is 
the location model. A large body of literature (see, for instance, 
[Domschke and Drexl, 1984]) is witness to the history of the developir.ent of 
location theory and its various successful applications. 

In this paper we deal with planar location problems. We consider M existing 
loca.tions Exi, . .. , Ex M where each location is assumed to be a point in the 
plane with coordinates Exm = (a17} 1 , am2 ) Vm E M := {1, .. . , M}. The set of 
the existing facilites is often denoted Ex. 

We want to find N new locations Newi, . . . ,NewN, again assumed tobe 
points in the plane with coordinates Newn = (xn1 , Xn2 ) Vn E N := {1, ... , N}. 
The set of new facilities is denoted NEW. If N = 1, we drop the index 1 in 
NEW as weil as in the coordinates, such that New= (xi, x2) is a new facility 
in a single facility location problem in the plane. · 

In order to evaluate the quality of a set of new facilites, weights Wmn are 
given for all m E M and n E N which may, for instance, correspond to the 
frequencies of use between existing facility Exm and new facility Newn. Cor
respondingly, V/k axe weights for all pairs l, k E N of new facilities. Moreover 
a distance function d( R, S) is defined between any two points R, S E IR.2. Al
though some of the results of this paper are valid fo r more general distance 
functions we will restrict ourselves to the lp-metric defined by 

We consider the functions f and g defined by 

where 

a.nd 

where 

a.nd 

/(New) := /$ing/e(New) + fmulti(New) 

/aing/e(New) := L L Wmnd(Exm, New~) , 
mEM nEN 

/mu/ti(New) := L L Vnrd(Newn, Newr), 
mEM rEN,r>n 

g(New) := max{g~ng/e(New), 9mu/ti(New)} 

9aing/e(New) := max{wmnd(Exm,Newn): m E M,n E N} 

9mu/ti(New) :=max{ Vnrd(Newn, Newr): n, r E N} . 

The problem 
minimize{f(New): New E IR.2N} 

is the N-facility median problem (N-MP), whereas 

minimize{g(New): New E IR.2N} 
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is the N-facility center problem {N-CP). For N=l we omit N and use MP 
and CP, respectively. If we formulate results which hold for median a.s weil a.s 
for center problems we will often use the denotation N-LocP or LocP. 

The main issue of this paper are restrictions in N-LocP which often arise 
when facility location is used as a model in practice. In order to show the im
portance of this approach we discuss three examples which serve as motivation 
for the following. 

R 

• 
• 

• .. 
~ 
~ 

Figure 1.1: PCB with 6 pa.rts a.nd 4 pa.rt types. The 4 bins holding the 4 pa.rt typea can be 

placed anywhere in the shaded region . 

Example 1.1 {Assembly of printed circuit boards). Matbematical pro
gramming methods have been used by various researchers to model the assembly 
.ofprinted circuit boards (PCB) using robots. We restrict ourselves to discussing 
· the approach for a robot with a single robot arm (see {Francis et al., 1989} and 
{Foulds and Hamacher, 1990]). 

Consider PCBs represented by a rectangle R = [O, a] x [O, b] in which M 
parts m EM:= {1, ... ,M} have tobe inserted at fixed insertion points 
Pm= (Pm1 ,pml), respectively. 

Ea.ch of the parts belo11gs to ..,„c of N part types, for example transistors, 
capacitators, etc .. 

Different part types are stored in different bins and we denote with F the 
feasible region in wbicb the bins can be placed. In many situations F will bP. 
a non-convex set, for instance, the Euclidean plane without the interior of the 
rectangle R, F := nt2\int{R). 

In order to maximize the throughput of PCB through the assembly line it is 
necessary to find a location of the N bins in such a way that the resulting travel 
distance of the robot is minimized. Therefore one part of the robot d.Ssembly 
problem is the solution of a restricted location problem. 
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Example 1.2 (Obnoxious facility planning). An area within location the
ory which has attained considerable attention in the last years (see for instance 
{Erkut and Neuman, 1989}) is the location of undesirable locations (ob.a.oxious 
fa.cility planning). Tbe model which is mostly used in tbis context is tbe max
imization of overall distances between existing and new facilities. Anotber 
promissing model which, as far as we know, has never been applied is to exclude 
certain regions Ri, . .. , RL from placing tbe undesirable facility, and deal with 
the union R of tbese sets as restricting set of a facility location problem. 

Figure 1.2: Existing facilities (dots) a.nd forbidden regions R1 , R'J a.nd R3 for placing new 

f.acilitiea. The sha.ded region is fea.sible for pla.cing new fa.cilities . 

Tbis is obviously again a restricted facility location problem. From a math
ematical point of view it seems to be more complicated than the fi.rst example, 
since tbe set R in Example 2 which is excluded from placing new facilities is 
much less structured tban in Example 1. 

Example 1.3 (Location of emergency facilities). A well-known applica
tion of center problems is the placement of an emergency facility. Suppose 
tbat our first objective in locating a new emergency facility is to satisfy given 
response constraints in eacb existing facility, i.e. the maximal distance between 
Ezm and New should be bounded by a number M Dm, Vm EM. lf we draw 
d.rcles with radius M Dm around each Exm, we may want to find a location 
which is feasible with respect to the response time restictions, and optimal witb 
respect to the overall di.-:: tance traveled by the emergency vebicles. Such a bi
criteria facility location problem can be modeled by enforcing tbe intersection 
of tbe circles as region in which the facility has to be placed. 
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Figure 1.3: Three exiating facilities with circles corresponding to muima.l allowa.ble respond 

timea and aha.ded region u feasible region for pla.cing a.n emergency facility. 

This is again a restricted Jocation problem, but it seems to be of a different 
flavour than the previous two examp/es. The emphasis is on enforcing a region 
for placing new facilities instead of forbidding regions. 

We will come back to thls problem when we have discussed suitable choices 
of distance functions and algorithms for solving the corresponding restricted 
loctation problems. 

After having motivated the necessity of restrictions we now formally intro
duce restricted location problems. Let R be a subset of Ill2 (the restricting 
set), let int(R) be the interior of R, and let F := Ill2\int(R) (the feasible set). 

Then 
minimize{f(New) : New E FN} 

is the N-facility restricted median problem (N-RMP), and 

minimize{g(New): New E FN} 

is the N-facility restricted center problem (N-RCP). lf N = 1 we often 
abbreviate 1-RMP a.nd 1-RCP by RMP and RCP. In cases were we dis
cuss results whlch hold both for center and median problems we also use the 
denotation N-RLocP or RLocP for the general restricted N-facility location 
problem and the general restricted 1-facility location problem, respectively. If 
we want to emphasize the distance function, which is used in the definition of 
the objective function, we sometimes write N-RLocP-d for the N-facility re
stricted location problem with respect to distance function d. N-RMP-11 is, for 
instance, an N-facility restricted median problem with respect to the rectilinear 
distance function. 
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With Opt• we denote the family of optimal location sets New = 
(New1 , .•• , NewN) of a given (unrestricted location problem, while Opt(R)* 
is the family of optimal location sets of N-RLocP with respect to restricting 
set R. 

Obviously, N-LocP is a rela.xation of N-RLocP such that we ca.n solve 
N-RLocP if the intersection of Opt• with F is non-empty. Any New taken 
from this intersection will be optimal. 

Example 1.4. Suppose we want to solve RMP-11 with respect to two existing 
fa.cilities, weights wu = W21 = 1, and R as shown in Figure 1.4 . 

R 
Opt* 

Figure 1.4: An instance of a. RMP-11 with 2 existing facilities. 

The optimal solution set Opt* of the unrestricted problem MP-li is given by 
tbe line between Ex1 and Ex2 • Its intersection Opt*(R) with F = IR2\int(R) is 
indicated in Figure 1.4 by the bold part of this line. Hence RMP-11 is trivially 
solvable in this case. 

Example 1.5. If we extend tbe previous example by just one more existing 
_fa.cility, then MP-11 bas a unique optimal solution Opt• which is no longer 
feasible for RMP-li (see Figure 1.5). 

R 
• Opt' I 

0 

Figure 1.5: An insta.nce of a. RMP-li with 3 existing facilities. 

I.n this situation it becomes apparent that we need algorithms for dealing 
with restricting sets. 
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The only literature on restricted location problems we are aware of is 
[Francis and White, 1974] in which a contour line approach is given. (We re
view this approach in Section 2.3), and [Hamacher and Nickel, 1991] in which 
a combinatorial algorithm to RMP is described. 

A related, but different problem is the location problem with obstacles in 
which travel barriers are considered ( see, for instance [Larson and Sadiq, 1983] 
and (Batta et al., 1989]). 

In the next section we will formulate some general results for N-LocP and 
N-RLocP. In Section 3 we will concentrate on N-RMP and develop combina
torial algorithms for RMP-l1 , RMP-l00 , and RMP-l~. These approaches can 
be extended to 2-RMP, and used for heuristic procedures for N-RMP. In par
ticular we will show how our approach improves current facility location models 
by taking the space into account which is used by existing and new facilities. In 
the fourth section we will de.tl with N-facility cenier problems. In Section 5 we 
come back to our motivational problems and show how the practical problems 
of Examples 1-3 can be tackled by the theory developed previously. Section 
6 concludes the paper with a short description of the public domain software 
which was developed based on the results of this paper. 

2 Mathematical Analysis of (Restricted) Location 
Problems 

In this section we will discuss some general properties of location problems. 
In particular, we address the relation between Opt* and Conv{Ex1, ... ,Exm}, 
the convex hull of Ex1 , ••. , Exm, and show that in the unrestricted case for 
center and median problems the optimal solution sets are contained in special 
rectangles which dependent on the coordinates of the existing facilities. For 
the restricted case we will prove the fundamental property that the optimal 
location is always contained in the boundary of the restricting set. This will 
give rise to a generic algorithm which reduces the restricted loca.tion problem 

·to a one-varia.ble optimization problem. 

2.1 Unrestricted Location Problems 

The following theorem is central for our theory and well-known from the liter
ature. (seP. for instance [Love et al., 1988] or [Nickel, 1991]) 

Theorem 2.1. f and g are convex funtions. 

2.1.1 Location of Optimal Solutions Sets 

The motivation for this subsection is as follows: If we find the solution set 
Opt• of the unrestricted problem and discover that Opt* n F #:- 0, the restricted 
location problem is solved. Therefore we wa.nt to know more about the structure 
of Opt•. 

We first a.ddress the rela.tion of Opt* and Conv{Exi, ... , Exm}· 
[Love et al., 1988, Property 2.3] claim that Opt* ~ Conv{Ex1, ... , Exm} for 
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median problems. In fact, they provide a proof for d = 12 which ca.n be gener
alized to d = lp for even p. For general p this result is wrang a.s the following 
example shows. (see also Figure 2.1) 

Example 2.1. M = 2, Ex1 = (3, 5), Ex2 = (3, 4), all weigbts are equal and 
d = 11 . In this example Opt• is the rectangle [3,5] x [3,4] ~ Conv{Exi,Exi}. 

We therefore state a.s our first therorem a weakend version of this result. 

Theorem 2.2. 1. Let p E IN U { oo} and Jet Opt• be the set of optimal 
loca.tions for MP-111 • Then 

(a) Opt• n Conv{Ex 1„ .. , ExM} f: 0, and 

(b) Opt• ~ Conv{Ex 1 , ••• , ExM} if p is even and p < oo. 

(c) Let Opt• be the set of optimal solutions of CP-12 and Jet all weigbts 
be equal. 
Then Opt• ~ Conv{Ex1, .. . , Exm}· 

Proof. 
ad la) We use the hyperbolic approximation of J(X) 

fe(X) := E Wm((xi - am 1 )
2 + €)! + (x2 - am 2 )

2 + €)~)~ 
mEM 

and the corresponding minimization problem, defined as 

(MP)e := minimize fe(X). 
XER2 

We will now list some properties of fe(X) which can be found in 
[Morris a.nd Verdini, 1979]. 

• /c(X) is strictly convex. i.e. (MP)e has an uniquely defined minimum 
x:. 

• x; E int(Conv{Xi, ... , XM }. 

• max
2 

lft:(X) - f(X)I $ 8(€) = 2idc E wm) 
XER mEM 

An immediate consequence of these properties is that ft:(X) converges uni
formly to /(X). Hence there exists a p(e) such that for an appropriate small 

e 
1x; - Opt•I ~ p(e), 

holds, a.nd the p(e)-neighbourhood of x; is totally contained in 
Conv{Exi, ... , ExM}· 

8 



a.d lb) Because p is even we can rewrite f(X) as 

L Wm((x1 - am1 )P + (x2 - am2 )P)~ 
mEM 

In order to find candidates for elements of Opt• we compute the partial deriva
tives of /(X) in ffi.2\{Exi, .. . ,ExM}1. 

of - " l (X E )l-1( . )P-1 .. h . - 2 ~ . - L.J Wm p 1 Xm P X, - am; Wlt 1 - 1, 
uX, mEM 

and we get with 

af = 0 
ßxi 

L llj(Xi - Xm;)p-l = 0 
mEM 

L llj(Xi - Xm;)P-
2

Xi = L llj(Xi - Xm;)P-
2

Xm; 

mEM mEM 

lf EmeM llj (Xi - am; )P-2 = 0 for i = 1 or 2 all existing facilicties are lying on a 
horizontal or vertical line, respectively, and therefore in Conv{Exi, ... , ExM}· 
Otherwise we can express Xi as 

L llj(Xi - am;)P-
2

Xm; 

mEM Xi = ~~~~~~~~~~ 
L llj(Xi - am;)P-2 

mEM . 

~ XE Conv{Exi, ... ,ExM} 

a.d 3) This result is proved by [Nair and Chandrasekaran, 1971]. 

0 

Theorem 2.2 shows that only in special cases Conv{Ex1, ... , Exm} s;;; R can 
be used as criterion to exclude the trivial case that some X* E Opt• is feasible 
for RLocP. We therefore introduce two rectangles Rmin and R 00 which will be 
used to cha.racterize the optimal locations of any location pro'"'lem considered 
in this paper. 

Rmin 

.- min ai1 iEM 

.- maxai1 iEM 

min ai~ 
iEM • 

.- maxa,~ 
iEM • 

[ Xmin1' Xmax1] X [ Xmin2' Xmax2] 1 

1There i.t no need for examining the existing facilities because they &re of courae contained 
iD Corav{Ez:1, ... , Ez:w }. Hence the putial derivative exists. 
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Rm.in is the smallest rectangle with sides parallel to the x- and y-axis con
taining all existing facilities Exm, m EM. 

Correspondingly, R00 is the smallest rectangle with 45° and -45° sides. 
That is, R00 is defined by the leftmost and rightmost 45°, and the highest 
and lowest -45° lines through the points Exm, m E M, ro:?spectively. {see 
Figure 2.1) 

2 

o~~~~~~~~~~~~~~~~~~~~~~~~ 

1 3 5 

Figure 2.1: Rmin and R 00 for two existing fa.cilities. 

Using these rectangles we can prove the following results. 

Theorem 2.3. For p E IN the optimal set of locations for LocP-Z„ satisfi.es 

Opt* ~ Rmin • 

Moreover Rmin is the smallest possible set containing Opt*. 

Proof. Suppose X= (x1,z2) E Opt* with X r/. Rmin· 

Wlog Xmin1 $ XI $ Xmaz1 and X2 > Xmu2. 

Then we get for X':= (xi,Xma~2 ) E Rmin· 

l 
l„(X,Exm) = (lx1-am1 l"+(x2-am2 )"):P 

1 

> (lx1 - am1 I" + (x2 - Xmazl)P)i 

= d(X', Exm) form EM 

All other cases for X <I. Rm.in are tre<...ted similarly. Hence X' improves the 
objective value of X (for center as weil as for median problems) contradicting 
the optimality of X. The fact that Rmin is the smallest possible set is proved 
by Example 2.1. 

0 
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In order to extend the result of Theorem 2.3 to p = oo we consider the 
transformation T(X) defined by 

and consequently 

T-1(X) = (x1 - x2, x1 + x2). 

The reader may easily verify the following result which is also used in 
[Fra.ncis and White, 1974] 

loo(X, Y) 

li(X, Y) = 
l1(T(X), T(Y)) 

loo(T- 1(X), T- 1(Y)) . 

Using this transformation we obtain 

(2.1) 
(2.2) 

Corollary 2.4. For p = oo the optimal set of locations for LocP-lp satisfies 

and R 00 is the smallest set satisfi.ying this property. 

Proof. The result follows from (2.1), (2.2) and Theorem 2.3, since T(R00 ) = 
Rmin· 

In the following we will denote 

R { 
Rmin 

bor := R 
00 

p E 1N 
p = 00 

to avoid the clumsy distinction depending on p. 

0 

We will now discuss the case of N facilities and obtain analogous results to 
the ones obtained in the previous special case of a single facility. 

Theorem 2.5. For p E IN U { oo} the optimal set of locations for N -MP-lp 
satisfies 

Opt* ~ R~r . 

Proof. First we ignore the part f multi in f , which expresses the interactions 
between the new facilities. 
We solve N single location problems and get a feasible solution X' for N-MP-lp. 
By Theorem 2.3 we know that X' E R~r· 
The theorem is proved by observing that we only improve the objective value 
if we stay inside R~r· 
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We can use similar arguments as in Theorem 2.3 and Corollary 2.4 using 
the interpretation of X' and X as points in Rt[n andin IR2N\Rt;,:r, respectively. 
(More details can be found in (Nickel, 1991).) 

0 

In the case of center problems we can only prove a weaker result: 

Theorem 2.6. Let p E IN U { oo} and Jet {N ew1 , ••• , N ewN} be an optimal 
set of locations for N -CP-111 • Then 

New; E Rt;,x 

for at lea.st one i E {l, 2, ... , N} and Rbor is the smallest set with this property. 
In particular, this means tha.t if Rbox is a subset of the forbidden region the 
solution of the N -CP is never a solu tion of the N -RCP. 

Proof. First we ignore the part 9multi in g, which expresses the interactions 
between the new facilities. 
We solve N single center problems and get a feasible solution X' = 
{New1 , .•. ,NewN} for N-CP-l.,,. 
By Theorem 2.3 and Corollary 2.4 we know that X' E Rt;,:r. 
Since the objective function is convex the theorem is proved by observing that 
we only improve the objective value if at least one of the new locations stays 
inside R~:r. 

1. lf 9.tngle defines the maximum of g, then we can not improve the objective 
function by changing X', and at least the element in X' which defines this 
maximum must not leave Rbox to preserve optima.lity. In this ca.se we may 
however get alternative optima where all but one of the N new loca.tions 
lie outside Rbox· 

2. lf 9multi defines the maximum of g, an improvement of the objective func
tion can only be obtained by moving two of the new facilities towards 
each other. 
Since Rbox is convex at least the two moved facilities are still contained 
. RN m box· 

The minimality of Rbo:r follows from the special case N = 1 in Theorem 2.3. 

0 

Remark. The proof above has an interesting algorithmic application. lf we 
solve the N unrestricted center problems independently (i.e. ignoring 9multi) 

a.nd recognize tha.t 9•ingle defines the ma.ximum, we have also solvPd .V-CP. 
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2.2 Restricted Location Problems 

In this section we consider a restricting set R ~ IR 2 which is connected. 
We assume in the following that Opt* ~ int(R), which is, for insta.nce, 

sa.tisfied if Rboz ~ int(R). Hence we exclude the trivial case that a.n optimal 
solution of N-LocP-lp is feasible for N-RLocP-lp. 

Theorem 2.7. Let Opt*(R) be the set of optimal locations for N-RLocP-lp 
ud Jet lJR be the boundary of R. 
Then 

Opt*(R) ~ (oR)N 

Proof. Let Y E (F\oR)N, and let X*= (New1 , •.. ,NewN) be any optimal 
solution of N-LocP-lp. By our assumption on R Theorem 2.5 implies X"' E 
int(RN), and therefore XaRN E {)RN~ pN exists such that 

XaRN E {tY + (1 - t)X* : 0 < t < 1} . 

By Theorem 2.1 f (g) is a convex function, therefore J(Y) > J(XaRN) (the 
sa.me for g), i.e., Y is not an optimal solution of N-RLocP-lp. 

0 

Theorem 2. 7 can be generalized to restricting sets which are disjoint unions 
of connected subsets of IR2 (see Theorem 3.8). 

An immediate consequence of Theorem 2. 7 is the following algorithm for 
solving RLocP-lp, provided a parameter description {)R = {-y(t) : 0 $ t $ 1} 
is known for {)R. 

One-Variable Algorithm for RLocP-lp 

1. Find the set of optimal locations Opt* of the unrestricted problem LocP
lp. If some New E Opt* is feasib!e --+ STOP. 

2. Apply a one-variable algorithm to the problem 

min {h ("Y(t))} 
199 

For solvin~ Step 2 specialized algorithms can be applied ( see, for insta.nce 
(Miffin, 1991] a.nd references therein). 

2.2.1 Location Problems and Level Sets 

Although the result of Theorem 2.7 has - to the best of our knowledge - never 
been proved rigorously, it has been used in the level curve (or contour line) 
approach for solving restricted problems (see [Francis and White, 1974]). In 
this section we will introduce level curves and level sets and reformulate (re
stricted) location problems using these concepts. An immediate consequence 
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of this reformulation is the level curve algorithm for solving restricted loca.
tion problems. This generic algorithm is used to derive efficient procedures for 
RMP-l~, RLocP-'1 and RLocP-loo. 

For h=f or h=g and z E Ill+ the level curve L(z) and the level set L$(z) 
(both with respect to z and h) is defined by 

L(z,h) :={XE IR.2
: h(X) = z} 

a.nd 
L$(z,h) :={XE IR.2

: h(X) ~ z} 

respectively. In the following we will omit the reference to h whenever this is 
possible without causing any confusion. 

Using level curves and level sets we can reformulate LocP and RLocP. 

Theorem 2.8; 

a) z• is the optimal objective value of LocP 
~ z• = min{z: L(z) f= 0} 

b) zF is the optimal objective value of RLocP 
~ zF = min{z: L(z) n F i= 0} 

c) In a) and b) L(z) can be replaced by L$(z) 

d} Xis an optimal solution of RMP with h(X) = z if and nnly if tbere exists 
a z E Ill+, such tbat 

L(z) n aR i= 0 (2.3) 

and 
(2.4) 

The proof of a)-c) is obvious, whereas d) is proved in 
[Hamacher and Nickel, 1991). 

Ba.sed on Theorem 2.8 the following procedure can be used to solve RLocP. 
1 

Level Curve Approach for Solving RMP 

1. Find level curve L(z) satisfying (2.3) and (2.4) 

2. Identify XE Ln oR w'. th /(X)= z 

3. Output: Opt*(R) := set of all X of Step 2 

The level curve approach can be implemented by applying a search procedure 
to values of z until (2.3) and (2.4) are satisfied or any other stopping criterion 
terminates the procedure. This implem~ntation of the procedure is however 
quite unsatisfactory, since there is no finite bound on its time complexity for 
fi.nding the exact solution. 

On the other hand, tMs approach leads in some special cases to efficieLt pr<r 
cedures for solving restricted location problems, as we will see in the following 
aections. 
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3 Restricted Median Problems 

In this section we will use our theory stated in the previous section to develop 
efficient algorithms for the most important cases of restricted median problems. 

We will start with one facility problems and distance functions li, l~ a.nd 
loo. 

3.1 One Facility Problems 

3.1.1 Solving RMP-1~ 

In this section we consider the squared Euclidean distance iunction: 

We first state the following result the proof of which can be found, for instance, 
in [Francis and White, 1974]. 

Theorem 3.1. The optimal solution Opt• of l~-MP is uniquely defined. The 
level curves of f(X) are circles with center Opt•. 

Corollary 2.8 and Theorem 3.1 immediately yield the following result. 

Theorem 3.2. RMP-l~ can be solved by finding the maximal radius r• of a 
circle with center Opt•. 

Notice that the problem of finding r• in Theorem 3.2 can be solved if we 
a.re able to compute the minimal Euciidean distance between Opt• and öR. In 
pa.rticular, if R is a polyhedron the next result follows from Theorem 3.2. 

Corollary 3.3. Let R := {X E IR2 
: a1X ~ b,, a1, b, E IR, i = 1, ... , J} be 

a convex polyhedron. For i = 1, „., I Jet P, := (Piit p,2 ) be the orthogonal 
.projection point of Opt• on {X: a,X = bi}. Then 

Opt*(R) := argmin {f(P1): i = 1, ... ,I}2 

is the set of optimal solutions of RMP-l~. 

The resulting algorithm for solving RMP-l~ for polyhedra has a. time
complexity of O((I · C) ·log!) where C is the complexity for computing the 
projection of Opt• onto a. line. Hence RMP-l~ can be solved in polynomial 
time for this special case. 

H R has no polyhedral structure, we may approximate R by a polyhedron 
(see [Gruber, 1983], [Burkard et al., 1991] and [Rote, 1990]) and a.pply Corol
la.ry 3.3 to it. Since the distance between &R and the boundary of the approx
imating polyhedron can be ma.de abrita.ry small we ca.n produce solutions X 
which get arbitrarily close to the optimal solution of RMP-l~. 

2 With argmin {/(Pi) : i = 1, ... , J} we denote the set of argumenta in the 11et 
{Pi: i = 1„ „ ,J} in which min{/(Pi): i = l, ... , J} is attained. 
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3.1.2 Solving RMP-/1 and RMP-/00 

Now we consider the two distance functions 

and 

F'ust, the structure of the level curves will be examined. 

Let a~ 1 , ••• , aJ.
1 

be the different values of the first coordinates of the existing 
fa.cilities in increasing order, such that 

holds. a~2 , ••• , aq
2 

are defined analogously with respect to the second coordi
nates of ExM form EM. 

Additionally we define a~1 = ab
2 

= -oo and af>+ 11 = aq+i
2 

= oo. 

Now we get a decomposition of the IR 2 into rectangles 

fort E 'Po:= {O, 1,2, ... ,P} and s E Qo := {O, 1,2, ... ,Q}. 
From our definition we know that 

LJ < t, s > = IR2 
. 

•EPo 
•E'2o 

Now we are ready to state a property of the level curves ( for a proof see 
_[Francis and White, 1974]) for RMP-/1. 

Theorem 3.4. The level curves of /(X) for d = li are linear in < t, s > for all 
t E t E 'Po, s E Qo. 

For the following we will use the denotation 

for the set of lines, determining the rectangles < t, s >. 
We call these lines in the following construction lines of the given RMP-

The next theorem shows that it is sufficient to consider only tho? at most 
4 X M many points lying on the intersection of R with the construction lines 
aa candidates for optimal solutions of RMP-/1• 
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Theorem 3.5. If the restricting set R is convex, RMP-11 has an optimal so
lution New* E Opt* such that 

1. New* E 8R and 

2. New• E 1f.. 

Proof. By Theorem 2.7 we can restrict ourselves to XE 8R. 
H X E (BR n < t, s >) does not lie on one of the construction lines, the level 
curve through X will not change its slope St. in X. 
Let Lu be the linear segment of the level curve through X with slope Si.. Since 
R is convex the following cases are possible. 

Case 1 Lt. crosses 8R in X, i.e. there exist U E Lt• n F\R and V E 
L,. n int(R). Therefore f(X) = f(U) and consequently, X cannot be 
optimal by Theorem 2.7. 

Case 2 Li. is a supporting hyperplane of R in X. 

1. If Li. ~ R, then there is also a point Y E Lh where the level curve 
changes its slope. Since X has the same objective value as Y we can 
replace X by Y. 

2. If L„ i R, then, by the same arguments as in Case 1, X cannot be 
optimal. 

0 

Summing up we get the following algorithm: 

Construction Line Algorithm for the RMP-11 

1. Compute 1f.. 

2. Determine {Y1, ... , YK} = 1f. n 8R. 

3. Let New* E argmin{f(Y1 ~, • .. , f(YK)} and L the level curve through 
New•. 

\ 

4. Output: Opt*( R) = L n 8 R. 

Notice that the construction line algorithm to solve RMP-/00 is an a.lgorithm 
with polynomial time complexity, provid.ed that R is encoded in such a way 
that the intersection of lines with 8R can be computed in polynomial time. In 
pa.rticular if R is a convex polyhedron given by I halfspaces, then Y1 ~ ... , YK 
ca.n be determinecl in O~J) and since K ~ 4 x M the overall complexity of the 
algorithm is 0(/ + M · log M). 
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Hd= 100 , the results of this section hold, mutatis mutandis, using Transfor
mation T (see Section 2). The construction lines are in this case 45° and -45° 
lines through the points Exm, m E M. 

In the special case where R is a rectangle, the construction line algorithm 
ca.n be further improved. 

Theorem 3.6. Let New• be an optimal solution of MP-'1, R = [ai,b1] X 

(a2,"2] and Jet Xi= (ai,x2), Xa. = (xi,b2), Xr = (b1,x2) and Xb = (xi,a2) be 
tbe projection of New• to the side of R which is left, above, right, and below 
New•, repectively. 
Tben any 

NewF E argmin {f(X1), J(Xa), J(Xr), J(Xb)} 

is in Opt*(R) of RMP-/1. 

For a proof see [Hamacher and Nickel, 1991]. 

Notice that the latter case is of particular importance in the PCB application 
introduced in Section 1. Since RMP is in this situation embedded in a larger 
problem, we are also interested in maintaining integrality of data. This question 
is addressed in the next result. ' 

Corollary 3. 7. If R is a rectangJe parallel to tbe x 1 and x2 axes and all input 
data is integer, then tbe procedure based on the construction line approacb will 
always find an integer optimum solution of RMP-/1 and RMP-100 • 

Proof. For d = '1 the result follows immediately from Theorem 3.6. For 
d = 100 the construction lines are 45° and -45° lines and therefore intersect the 
integral boundary of R in integer points. Hence the result holds for RMP-100 

as weil. 

0 

3.1.3 Extensions 

The algorithms of the previous sections can easily be modified to accomodate 
the case where R is the union of pairwise disjoint, convex sets Ri, ... , RK with 
K > 1. Notice that this is a more realistic model in most real-world problems. 

In this situation we will first solve the unrestricted problem MP-l„. Then 
the following result is an immediate consequence of the results of Se.ction 2. 

Theorem 3.8. Eitber an optimal solution New• E Opt• solves RMP-111 , or 
tbere exists some k such that Opt*(R) is a subset of 0R1c. 

Proof. ff the intersection of Opt* with the feasible solution set F of RMP-111 is 
empty, then the convexity of Opt* and the assumptions on the sets Ri, ... , R1c 
imply that there exists some k such that Opt* is a subset of R1c. Hence we ca.n 
duplica.te the proofs of Section 2, where R and {}R is replaced by R1c and 8R1c, 
respectively. 

0 
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Figure 3.1: A restricting set R with an infinite number of candidate points on 8R which 

e&11 lie on the interior of a linear piece of a level curve. 

The theory of RMP developed so far can be extended to more special ca.ses 
of non-convex restricting sets R. If we review the proof of Theorem 3.5 for 
RMP-'1 it becomes apparent that we can apply a combinatorial algorithm as 
in the case of convex sets whenever we have only a finite set of points on lJR 
which ca.n lie on the interior of linear pieces of a level curve. For arbitrary 
non-convex sets this situation is not given as is indicated by Figure 3.1. 

But in the following two special cases we can find a combinatorial algorithm: 

Convex sets with bumps: 
: ff R1 and R 2 are two convex sets in lR.2 such that R1 n R2 ::f. 0, and neither 
Rt ~ R'J. nor R'J. ~ Ri, and R := Ri U R2 is non-convex. (see Figure 3.2). We 
call R a bumpy set. 

Because of the convexity of R 1 and R2 there exist exactly two points ri a.nd 
r2 such that 

ri, r1 t= 8R1 n 8 R2 n 8 R . 

We call r 1 a.nd r2 the roots of the bumpy sets. 
Any level curve touching 8R = 8(R1 U R2) from within has linear pieces 

which have 

a) both endpoints in the interior of R, or 

b) one or both endpoints on {} R, or 

c) pass through one of the roots of R 1 U R2 • (see Figure 3.2) 

Hence the construction line algorithm ' will work if we extcnd the set of 
1t n lJR by the set of root nodes. 
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Figure 3.2: A bumpy set with root nodes ri and r1 a.nd the optimal level curve paaaing 

through ri and r1. 

Obviously this extension also works if a given convex set R' ha.s more than 
one bump, i.e. bumps R1 , •.. , RK, where R, n R; = 0 for i f. j. Then we ha.ve 
to find the set { ri, ... , r2K} of root points and compare the objective values of 
the 0( M + K) many points 

(11 n 8 R) U { r1, ... , r2K} 

Notice that the bumpy set approach can be used to solve N independent 1-
facility problems in which the space of the new facilities is taken into consider
.a.tion. 

Complement of polyhedra: 
If R is the complement of a. polyhedron we get 8R = 8R, where 1i. := m.2\R. 
Then the linear pieces of any level curve touching 8 R from within ha.ve 

a) both endpoints in the interior of R, or 

b) one or both endpoints on {} R, or 

c) pass through one of the corner points of 1l.. (see Figure 3.3) 

Aß in the ca.se of bumpy sets the construction line a.lgorithm can be used 
by extending the set (11 n lJR) by the set of all corner points of Jt We will use 
this a.pproa.ch to solve the problem of loca.ting ~mergency facilities (see Section 
5). 
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R aR=aR 

Figure 3.3: A restricting set R which is the complement o{ & convex polyhedron 1l. and a 

level curve touching 8R from within. 

3.2 Multi.Facility Problems 

Although no complex.ity results are known yet the problem of locating more 
than one new facility seems to be much more difficult than the case of a single 
facility. The only efficient algorithm we are aware of is for 2-RMP-li and 
rectangles as restricting sets ( see (Nickel, 1991]) . 

We will extend a linear programming approach of the unrestricted case to 
fit our needs and give some interesting heuristics. 

:3.2.1 Solving N-RMP-/1 and N-RMP-/00 

Aß denotation we use in the following 

and 

We restrict ourselves to the case where R is a. convex polyhedron (i.e. R 
can be described a.s AX $ b, where Ais a. (2 x L)-ma.trix, XE m.2 and b E JtL) 
in order to apply a linear programming based approach. Only the li-case is 
trea.ted explicitly but with the Transformation T of Section 2 we get also a 
BOlution method for the 100-case. 

[Francis and White, 1974] gave the following linear programming formula
tion which solves N-MP-11 a.nd to which we refer in the following as N-MP
'1-(LP): 
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N-1 r=N 

minimize L L Wnm(d~ml + d~ml) + L L Vnr(e~rl + e~rl) + 
nEJI mEM n=l r=n+l 

N-1 r=N 

L L Wnm(d~m2 + d~m2) + L L Vnr(e~r2 + e~r2) (3.1) 

und er 

a.nd 

nE)/ mEM n=l r=n+l 

am.1c nEJl,meM,k=l,2 

0 n=l, ... ,N-1,r=n+l, ... ,N,k=l,2 

d+ d- + - > 0 
nmk' nmk' enrk' enrk - · 

(3.2) 

(3.3) 

(3.4) 

Since d!mk + d~mk = lxn1c - am1cl and v~rk + v;;rk = lxn.1c - Xr1cl, (3.1) coincides 
with the original objective function . 

Let n be the set of all N-tupels over {1,2, ... ,L}. We denote with Ai the 
i-th row of the matrix A and with b; the i-th component of the vector b. 

Now we get for every 0 E n tlie following N conditions for solutions of 
N-RMP-11: 

Ao(n)Xn ~ bo(n) neJI .
3 

The following algorithm is straightforward. 

Algorithm for N-RMP-/i 

(3.5) 

1. Let N-RMP-li-(LP)o be defined as the N-MP-li-(LP) with the addi
tional N conditions from (3.5) . 

2. Opt•(Ro) := Optima Solution of li-(RMP-N)-(LP)o for all 0 E n. 

3. Output: Opt•(R) := argmin{f(Opt*(Ro)): 0 E n}. 

Aß one ~asily recognize;; the trn1e complexity of this alg0rit '..i.m is not poly
nomial and so it is neccessary to add a subsection with two useful heuristics. 

S.2.2 Two heuristics for the N-RMP 

The firat heuristic consists of a sequential solution of N single-facility problems. 
Whenever one of the new facilities is placed we add the space Rn occupied by 
thia facility to the restricting set R. In each step of the algorithm R U R1 U 
..• U RN is a bumpy set such that we can apply the algorithm of Sect~on 3.1.3 
to solve the single facility problems. Moreover we treat all of the new facilities 

3 Here O(n) mea.na the n-th component o{ the N-tupel 0 . 
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which ha.ve a.lrea.dy been placed as ex.isting facilites for the next single facility 
problem. Thus in each of these problems the approx.imation of the objective 
function /(New) is improved. In the last step the objective functions of N
RMP a.nd of the single facility problem coincide. 

Heuristic for N -RMP considering space constraints for the new facilities 

1. n := 1 

2. Find the optimal location New n for the single facility n with re
spect to the restricting set R and ex.isting facilities Exi, ... , ExM, 
New1, ... , Newn-1· 

3. Extend R by a bump corresponding to the space occupied by the new 
facility n, i.e. define R : = R U Rn. 

4. n := n + 1 

5. If n $ N, then goto Step 2; otherwise --+ STOP. 

Further improvements of the objective function /(New) can be obta.ined by 
reiterating Steps 1 through 5 where all Newi for i -::fi n are treated a.s ex.isting 
facilities. These iterations can be repeated until no improvment of /(New) is 
obta.ined during a.n iteration. Notice that this heurstic can also be applied to 
the unrestricted N-facility problem. 

For the second heuristic we assume that Opt• ~ int(R) such that Opt*(R) ~ 
(lJR)N by Theorem 2.7. 

Heuristic for N -RMP with search on the boundary 

1. n := 1 

2. Solve the RMP for new facility n. 

3. n := n + 1 

4. If n $ N, then goto Step 2; otherwise continue. 

5. Choose two new facilites and move them closer together until no more 
improvements can be achieved. 

6. Trea.t all pa.irs of new facilites in this way. 

7. Repeat the Steps 5 and 6 with n-subsets ( n = 3, ... , N) if needed. 

If our assumption is not sa.tisfied and some of the new facilities are in int( R) 
we restrict ourselves in Step 5 and 7 to pa.irs and n-subsets, respectively, of new 
facilities on 8 R. 

The two heuristics can also be cornbined rmch that the first one is a. prepro
cessing heuristic and the second one (without Steps 1 - 4) is a postprocessing 
routine. 
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4 Restricted Center Problems 

As we have shown in Section 2.3, level sets and lines of LocP play a crucial role 
in developing algorithms for solving restricted location problems. Therefore we 
will fust show how a careful analysis of these sets leads to efficient algorithms 
for solving RCP-11 and RCP-100 • 

In the case of single facility unrestricted center problems with respect to 
rectilinear distance function we can write the objective function as 

where New = (xi, x:l) is the location of the new facility. For any z > 0 we can 
characterize the level set L~(z) as follows (see [Francis and White, 1974]). 

~ g(X) :S z 
z 

~ XJ + x2 :S Am(z) := - + Xm1 + Xm2 
Wm 

and 
z 

Xi+ X2 ~ Bm(z) := -- + Xm 1 + Xm 2 
Wm 

and 
z 

-Xi + X2 :S Cm(z) := - - Xm 1 + Xm2 
Wm 

and 
z 

-xi+ X2 ~ Dm(z) := -- - Xm 1 + Xm2 
Wm 

<=* B(z) S X1 + X2 S A(z) 
and 

D(z) :S -x2 + x2 :S C(z), (4.1) 

where the functions A(z), B(z), C(z), and D(z) are defined by 

A(z) min Am(z) 
mEM 

B(z) .- max Bm(z) 
mEM 

C(z) min Cm(z) 
mEM 

D(z) max Dm(z) 
mEM 

Using this characterization we can prove the following result. 
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Theorem 4.1. 1. Either L<(z) = 0 or L<(z) is a - possibly degenerate -
rectangle with corner points · -

1 
2(A(z) - C(z), A(z) + C(z)) 

1 
.- 2(A(z) - D(z), A(z) + D(z)) 

1 
·- 2(B(z) - D(z), B(z) + D(z)) 

p_.(z) 1 
2(B(z) - C(z), B(z) + C(z)). 

2. Let ZA,B and zc,D be positive real numbers such that A(zA,B) = B(zA,B) 
and C(zc,v) = D(zc,D) . Then 

is the optimal ovjective value z* of CP-/1 . 

Moreover the optimal solution set of CP is 

Proof. 
ad 1) By condition (4.1) we know that Ls(z) is either empty or a rectangle 
with pairwise parallel sides given by 

Xt + X2 A(z) 

Xt + X2 B(z) 

-X1 + X2 = C(z) 

-X1 + X2 = D(z) 

ad 2) The funcions A(z) and B(z) have the following oroperties. 

• A(O) < B(O) ( where we exclude the trivial ca.se of a single ex.isting faci1ity) 

• A( z) is strictly increa.sing and B( z) is strictly decrea.sing 

• A( z) and B( z) are continous, piecewise linear functioT\s 

Therefore ZAß > 0 with A(zAB) = B(zAB) is uniquely defined, and is the 
smallest z such that A(z) $ x1 + x2 $ B(z) for some X= (xi, x2). 

Correspondingly, these three properties are also satidied by the functions 
C(z) and D(z), i.e. zcv > 0 with A(zcv) = B(zcv) is uniquely defined, and 
is the smallest z with C(z) < x1 + x2 < D(z) for some X= (xi, x2). 

Therefore z* = max{zAs,zcD} is the optimal objective value of CP-li by 
Theorem 2.8. 

Notice that by the definition of z* the rectangle L<(z*) is always degenerate 
such that L~(z*) = L(z*) a.s claimed in Theorem 4.1~ 

0 
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In order to compute ZAB we compute for all i i j the number ZA;B; with 
Ai(ZA;B;) = B;(zA;B;), provided the two lines corresponding to the functions 
Ai(z) and B;(z) intersect. This can be done in 0(1) time complexity. Then, 
ZAB is the la.rgest of these numbers. The same approach is used to compute 
ZCD and we get the following O(M 2 ·log M 2 ) algorithm for solving CP-'1. 

Algorithm for CP-'1 

1. Compute for all i,j EM with i i j and Wi i 0 i w;: 

and 

2. Compute 

ZAB max{ZA;B, : i i j} 

zcv = max{zc;v1 : i i j}, and 
z* .- max{zAs, zcv} 

3. Output: Opt• = L~(z*) = L(z*) 

Notice tha.t we can speed up the algorithm by restricting ourselves in Steps 
1 and 2 to i < j ( since ZA;Bi = -zA1B, a.ud zc;v1 = -zc,v;). 

Using Theorem 4.1 we ca.n efficiently test whether a.ny of the optimal solu
tions of the unrestricted center problem is fea.sible for the restricted one. We 
assume therefore in the following tha.t Opt• ~ int(R). 

The result of Theorem 4.1 together with the cha.ra.cteriza.tion of opti:::na.1 so-
1utions sets of restricted location problems (Theorem 2.8) implies the following 
result which will lead to a.n efficient a.lgorithm for solving restricted 1-facility 
center problems with respect to rectilinea.r dista.nce functions. 

Corollary 4.2. Let R be a restricting set which is convex. 

z_R is the optimal objective value of RCP-11 if and only if 

1. {P1(z.R) 1 ••• ,P4(z.R)} ~ R and 

2. Pi(zit) E 8R for at least one i E {1, 2, 3, 4}. 

Moreover Opt*(R) is the intersection of 8R with the rectangle Ls(z_R). 

Proof. Immediate consequence of Theorem 4.1 and Theorem 2.8. 

0 
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~(z) 

~(z) 

Figure 4.1: Computation of zR by considering the four intersections of piecewise linear 

fundiona Pi(z} with 8R. 

Since Pi(z) is for ea.ch i E { 1, 2, 3, 4} a piecewise linear function, the compu
ta.tion of zk ca.n be reduced to checking Pi(z) for the O(M2 ) ma.ny brea.kpoints 
of Pi(z). Let {(i, ... , (L} be the set of breakpoints of A(z), B(z), C(z), a.nd 
D(z) sorted by increa.sing value. By Theorem 4.1 all brea.kpoints of the func
tions Pi(z) a.re conta.ined in {(i, ... ,(L}. If (1 E {(i, ... ,(L} is the brea.kpoint 
with smallest index such tha.t Pi((1) </. int(R), for some i E {1,2,3,4} the::i 
zß E [(1-1, (l] ca.n be found by computing the intersections of the lines given by 
the linear functions P;(z) , j = 1, 2, 3, 4, on the intervall [(1, (1+i] with {)R. lf 
this intersection is atta.ined in Zi, then zR = max{zi, z2, z3, z4}. (see Figure 4.1) 

Since the brea.kpoints of A(z) are points a.t which functions Ai(z) inter
:sect functions A;(z), a.nd a.nalogously for B(z), C(z), a.nd D(z) the following 
algorithm will solve RCP-li. 

Algorithm for RCP-11 

1. Compute the brea.kpoints with positive values 

a.nd 
lzciCj 1 = 1 - ZDiDj 1 = 1((-x;l + Xi:J) - (-Xi1 + Xi2 ))1 

for functions A a.nd B, a.nd C a.nd D, respectively. Let { (i, ... , (L} be 
the set of these numbers with 

(o := Z* < (1 < · · · < (L < (L+t := 00 

(where z• is the optimal objective value of the unrestricted problem). 
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2. Find the smallest index l such that Pi(z1) E int(R), Vi = 1,2,3,4, and 
P1((1+1) '/. R, for at least one i E 1,2,3,4. 

3. Compute the real numbers Zi E [(i, (1+d such that P1(z1) E öR. 

4. Output: the optimal objective value zh = max{zi, z2, z3, z4} and the op
timal solution set Opt•(R) = L(z) n öR. 

The number L of breakpoints to consider is O(M2). Sorting of the brea.k
points requires O(M2 • log(M2 )) time. The algorithm performs O(M2 ) checke 
whether P1((1) E R. ff the answer to this check is for the first time negative 
(Step 2), then 4 computations of the intersection of a line with öR are needed 
in Step 3. In the case where R is given as a polyhedron with K facetes this 
results in a O(M2 • log(M2 ) + K) algorithm for solving RCP-/i. 

Using transformation T introduced in Section 2.1 we can solve RCP-l00 

by applying the algorithm for RCP-/1 to T(R) and the transformed existing 
facilities T(Ex,). 

The only solution method for N-CP-/1 is the transformation into a linear 
program (see [Francis and White, 1974]). 

5 Applications of the Theory to PCB Assembly, 
Undesirable Facilities and Emergency Facilities 

In this section we will corne back to the exarnples introduced in Section 1. 

5.1 PCB assembly 

In the assembly of printed circuit boards the existing facilities correspond to the 
fixed insertion points Pm = (Pm 1 ,pm2 ), i.e., we set am1 = Pm1 and am2 = Pm2 , 

Vm E (M). Each of the parts belongs to one of N part types n E N := 
{ 1, ... , N}. ff t( m) is the type of part m , we denote Mn : = { m E M : t( m) = 
·-n}. The new facilities correspond to the (unknown) locations Xn = (xnp Xn2 ) 

of the bin holding the parts of typen, Vn E N. 
Suppose the insertion sequence of the parts is given (an optimal se

quence with respect to given locations of the bins can be found by 
applying a traveling salesman algorithrn, see [Francis et al., 1989] and 
[Foulds an\! Hamacher, 1990]). Without loss of general.ity we a: sume that this 
sequence is (1,2, ... ,M). For given locations Xn of the bins, this sequence defines 
in a unique way a robot tour 

tour = (Xt(l)• Pi, Xi(2)> P2, ... , Xt(M)• PM, Xt(1)) 

given by the insertion points and the locations of bins which have tobe visited 
to pick up the corresponding part. Then the length of a robot tour can be 
written as 

l(tour) = L L (d(Xt(m)• Pm]+ d(Pm-1> Xt(m))), 
nEllmEMn 
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where we define Po := PM. Obviously, this is the objective function of a.n N
facility median problem witho'Jt interaction between the new facilities. Hence 
we solve N Independent facility problems with weights 

where we define M + 1 := 0. 

m E Mn and (m + 1) E Mn 
m E Mn and (m + 1) <t Mn 
m <t Mn and (m+ 1) <t Mn 

H we solve the N independent loca.tion problems MP with respect to these 
data we conclude from Theorem 2.3 a.nd Corollary 2.4 that any solution of 
the unrestricted location problems will find locations for the bins which a.re on 
the PCB - obviously a solution which is not feasible in the practical context. 
We therefore introduce a rectangle [O, a] x [O, b] with a, b > 0 containing the 
PCB including a. security distance on the border of the PCB (see Figure 1.1). 
Depending on the production environement which defines which of the sides of 
the recta.ngle are allowed to place the bins, the restricting set may be 

• R = [O, a] X [O, b] , if all four sides are fea.sible, or 

• R = [O, a] x [O, oo] , if the upper side is not feasible, or 

• R = [O, oo] X [O, b] , if the right-hand side is not fea.sible, or 

• R = [O,a] X [-oo,b], if the lower side is not feasible, or 

• R = [-oo,a] x [O,b], if the left-hand side is not fea.sible. 

Correspondingly, one may exclude any combination of sides of the recta.ngle 
by a suita.ble defintion of R. 

For all possible choices of R, we can solve the problem of finding the location 
of the bins by solving N independent RMP with the algorithms of Section 3. H 

_. the robot arm has two independent motors such tha.t it can move simulta.nously 
in x a.nd y direction we choose the Chebyshev distance 100 • If on the other ha.nd 
only one motor is availa.ble (implying the robot arm moves sequentially in x 
and y direction) the rectilinear distance function '1 is appropiate. 

5.2 Obnoxiouci facility planning 

In order to deal with the case of a restricting set 

R = Ri U R2 U ... U RK , 

which is the union of connected, pairwise disjoint sets of IR.2 we use the result 
of Theorem 3.8. 

Consequently, the obnoxious facility planning problem introduced in Section 
1 can be solved with the same complexity a.s RLocP with respect to a single 
connected restricting set. 
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5.3 Location o7 emergency facilities 

In this example which was introduced in Section 1 the restricting set R is the 
complement of a convex set R. From Section 3.1.3 we know that we can dea.l 
with this problem if R is a convex polyhedron. Depending on the type of 
distance function we may have to approximate R by a suitable polyhedron to 
apply the a.lgorithm introduced in Section 3.1.3. (The approximation can, for 
instance, be done by the Sandwich approach of [Burkard et a.l., 1991].) 

6 Computer Implementation 

The ideas of this paper have been implemented in a software package RLP 
(see (Nickel and Hamacher, 1992]). lt runs in the MS-Windo,vs environment 
on PCs with MS-DOS or OS/2 2.x. lt is available through ftp under 
uranus.mathematik. uni-kl.de. 
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