

 25.9.2013 Page 1 of 2

White Paper - Investigate the hardware description
language Chisel

A case study implementing the Heston model

Christopher Stumm, Christian Brugger, Norbert Wehn
 Microelectronics Research Group, University of Kaiserslautern, Kaiserslautern, Germany

stumm@rhrk.uni-kl.de, brugger@eit.uni-kl.de, wehn@eit.uni-kl.de

Abstract— This paper presents a case study comparing the
hardware description language „Constructing Hardware in a
Scala Embedded Language“(Chisel) to VHDL. For a thorough
comparison the Heston Model was implemented, a stochastic
model used in financial mathematics to calculate option prices.
Metrics like hardware utilization and maximum clock rate were
extracted from both resulting designs and compared to each
other. The results showed a 30% reduction in code size compared
to VHDL, while the resulting circuits had about the same
hardware utilization. Using Chisel however proofed to be
difficult because of a few features that were not available for this
case study.

Keywords—Chisel, VHDL, FPGA, Heston Model, Financial
Mathematics

I. INTRODUCTION

Hardware description languages like VHDL and Verilog
were initially designed for simulation, not synthesis. Therefore
these languages contain many constructs that are not
synthesizable in modern tools. Another problem is the lack of
common techniques that were developed for high-level
programming languages during the past decades, like
parameterized types, type inference and object orientation.

A. Chisel

In [1], a new hardware description language called
„Constructing Hardware in a Scala Embedded
Language“(Chisel) was presented. Chisel, being written in
Scala, utilizes high-level programming techniques like type
inference and object orientation to either create synthesizable
Verilog code or a cycle accurate C++-based software
simulator. All datatypes and constructs are compiled into an
open source library and made publicly available at [2]. For this
work Chisel 2.0 was tested. The authors showed a seven to
eight times faster simulation time compared to state of the art
simulation techniques, as well as only a third of the code size
of comparable VHDL designs. In order to use Chisel, one
needs only to install the “simple build tool” (SBT), the basic
build tool used for Scala projects. SBT mainly features a native
compiler for Scala code and manages dependencies between
libraries. A further look into the different features of Chisel and
a comparison with the feature set of VHDL can be found in [3].

In order to evaluate Chisel’s usability for a real world example
the Heston model was implemented in both Chisel and VHDL.

B. Heston model

The Heston Model was published in [4]. It is a stochastic
model widely used in financial mathematics to calculate option
prices. It describes the changes in an asset’s volatility through a
non-deterministic process. Non-determinism was in this case
achieved by implementing the model as a Monte-Carlo
simulation. During such a simulation several possible ways the
stock price could develop, or paths, are calculated in parallel
using pseudo-random number generators and a starting stock
price. During each time step one new value for the stock price
and the volatility are calculated corresponding to the data flow
graph (DFG) shown in figure 1. Repeating the DFG for a given
number of iterations (100-10000) yields one such path. The
implementation in this paper, as described in the following
chapter, calculates 15 paths in a pipelined fashion.

Fig. 1. Data Flow Graph (DFG) of Heston model

II. IMPLEMENTATION

A. Tools

The implemented DFG for the Heston model was emulated on
a XILINX Virtex6 FPGA. Therefore the Xilinx ISE Webpack
was used for the VHDL designflow and the Verilog code
generated by Chisel. As for the designflow in Chisel, a simple

 25.9.2013 Page 2 of 2

text editor and the aforementioned Scala build tool SBT were
employed.

B. Design

The DFG was implemented as a pipeline with fourteen
stages. Figure 2 shows an overview for said pipeline.

Fig. 2. Pipeline Overview

In order to calculate 15 different paths concurrently a
controller based on a finite state machine (FSM) was also
designed (not shown in figure 2). The FSM was implemented
in different ways for both languages. The VHDL FSM was
implemented in one large process. The controller written in
Chisel drives most of its outputs through large multiplexers
outside the FSM itself. The latter approach requires roughly the
same amount of logic as the former, except for the number of
registers/flipflops. Figure 3 shows the implementation results
for both languages, including the lines of code for the entire
design.

 Chisel VHDL

Clock / MHz 107 112

Flipflops 1199 1630

Lookup-Tables 1687 1646

Slices 586 621

DSP-Slices 28 28

Lines of Code 462 667

Fig. 3. Implementation Results

C. Evaluation

One can see in figure 3 that in terms of FPGA utilization
the only significant difference between Chisel and VHDL is
the number of used flipflops as described above. Considering
the codesize in terms of number of lines, one can see that the
Chisel code is about 70% the size of the VHDL
implementation. While this is nowhere near the 33%
mentioned in [1], one has to keep in mind that the design was
small to begin with, meaning that this claim might still be true
for larger circuits, where more code can be reused.

It is also worth mentioning that, while the Chisel code itself
is smaller than the VHDL code, the generated Verilog code
becomes very large. In this case study the resulting Verilog
code had 1425 lines of code, about three times the amount of
the Chisel code. This can become problematic when the
designer has to modify the Verilog code as it was necessary in
this work because of the following problem: For the “SROOT”
unit in figure 2 the CORDIC IP-Core from the XILINX Core
Generator was used for the VHDL design. Chisel can’t use an
external core like CORDIC, and does not yet feature a square
root function. Therefore that module had to be replaced by a
blackbox in the Chisel code. In Verilog, the code was changed
to use the CORDIC unit. Generating a C++ simulator also
becomes unavailable when a blackbox is employed in Chisel,
thus preventing one of Chisels core features from being used.

Another design choice influenced by a feature that Chisel
does not yet support was the datatype used throughout the
design. While the XILINX Core Generator can generate
circuits for floating point addition, multiplication and square
root, Chisel only features signed and unsigned integer types.
As a result, one can only implement fixed-point arithmetic (and
has to do so by hand as opposed to the automatic generation by
the Core Generator), leading to a longer design time.

However, Chisel is still in its early stage of development,
with features like support for floating point arithmetics and
more complicated math, among others already being in
production.

III. CONCLUSION

Several problems were encountered while implementing
the Heston model in Chisel. Some of those can be explained by
the early stage of development, like the lack of support for
floating point numbers. Others were due to the use of XILINX
IP cores in the VHDL design that had to be replaced by
blackboxes in Chisel, rendering the very promising C++
unusable. In its current state of version 2.0 Chisel is not very
well suited to implementing circuits for arithmetic-intensive
models like the Heston model. But given a few more years of
development, this language could be a very promising
alternative for a decades old language like VHDL.

IV. REFERENCES
[1] Jonathan Bachrach et al, “Chisel: Constructing Hardware in a Scala

Embedded Language”, DAC 2012, June 3-7, 2012, San Francisco,
California, USA

[2] https://github.com/ucb-bar/chisel

[3] Heilmann F., “Investigate the high-level HDL Chisel”

[4] "A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options", by Steven L. Heston, The
Review of Financial Studies 1993 Volume 6, number 2, pp. 327–3

X X

S
R
O
O
T

X

XX+

+

XX

++

C1 C2 C3+1 C4 C5 S VR1 R2

STAGE1

STAGE2

STAGE3

STAGES4-11

STAGE13

STAGE14

S+
V+

REG

REG

REG

REG

REG

REG

MAX

STAGE12

