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Preface

Industry is increasingly relying on computer aided engineering for the development of
novel technologies. This is true for different applications such as the design of oil filters
in the automotive industry, soot filtration in diesel filters, air filtration etc. The complex
procedure of designing, testing and optimizing new processes and products usually has
to be carried out in an iterative and an experimental fashion by means of time consuming
trial and error steps with expensive prototypes. In order to reduce the design time and
production costs, computer simulation thus gains a growing importance. Nowadays,
simulation is not able to replace the experimental process entirely, but is able to assist
in such a way that principal design decisions can be made faster and less prototypes are
needed. Figure 1 shows a particular example of the extent to which simulation codes
and numerical algorithms can benefit the industry.

expensive lab testings

preparation

of prototype in the past

optimization loops
if necessary

(e

I CFD analyses

Figure 1: Design process of oil filters. Courtesy: IBS Filtran

This thesis deals with the numerical study of multiscale problems arising in the model-
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ing of processes of the flow of fluid in plain and porous media. On the pore level, the
porous media is represented as a connected domain of pore space filled with the fluid.
The fluid flows through the network of pores and channels, as shown in Figure 2. The
most commonly used porous media, such as soil, sand, ceramics, foam, rubber etc. have
very complicated solid matrix structures, for which the exact configuration of the micro
structure is not exactly known. Due to the heterogeneity of porous material at the pore
and particle level, it is very expensive to predict/observe the flow at that scale. In most
cases, this is not needed as well. The properties of interest exist at a much coarser scale
but are influenced by the processes at the pore level scale. Therefore, even though the
equations are principally described at the microscopic level, the description and solu-
tion of the transport problem becomes computationally very expensive. Additionally,
superflous information is often needed for smoothing and obtaining useful large scale
averaged data which can be verified at the measurement/experimental level. Hence, the
porous media description is sought at a coarser scale by the means of effective mate-
rial properties. These properties can be measured and problems can be solved on the
macroscopic scale (cf. [88], [2]). The macroscopic formulation has a cost attached to it,
such that it hides some small heterogeneities which are important for the microscopic
formulation. Nonetheless, due to solvability issues, description at the macroscopic level

merits further examination.

Figure 2: Porous Structure: Interconnected network of pores. Courtesy IBS Filtran

On the macroscopic level, one of the ways to describe porous materials is to homoge-
nize and average over the micro structure and obtain a macro model in the framework
of continuum mechanics. This is only true when the scales are distinctly separated. Av-
eraging techniques, such as local volume averaging or homogenization, aims to exclude
all the micro variables to have independent, closed macro systems containing the aver-
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aged unknown variables and material parameters, such as porosity! and permeability?
A comprehensive understanding of homogenization and averaging can be found in [63]
and [48]. For the scope of this thesis, we limit our discussions of porous media, mainly
to the macroscopic formulation where averaged/upscaled parameters are directly em-
ployed without derivations. However, in Chapter 4, we discuss the coupling of micro
and macro scales models.

The processes for flow in plain and porous media are mostly governed by nonlinear
partial differential equations (PDEs). Solutions are typically sought through some iter-
ation process (cf. [80], [41], [38]) where large matrix equations need to be solved. The
numerical solution of such systems require very large computational efforts. The speed
with which the fully resolved matrix equations are solved and the amount of memory
required to solve them pose serious bottlenecks in performing realistic large scale simu-
lations. Even modern computers are unable to meet the industrial demands of large scale
simulations which limits the problem size to the availibility of computer resources, rais-
ing a concern on the issue of solvability and accuracy. We take into consideration that
accuracy is a fundamental concern, in terms of the restricted problem sizes.

When dealing with flow in plain and porous media simultaneously, the Fictitious Re-
gions Method (FRM) permits using one system of Navier-Stokes-Brinkmann eqations
to treat the fluid and porous regions. Justification is given in [3]. In such a case, the
coefficients of the equations vary so that the single system is reduced to the Navier-
Stokes equations in the liquid zone and to a Brinkmann-like model in the porous media.
The varying coefficients increase the difficulty in solving the discrete problem. Special
averaging techniques (cf. [78], [23]) and the use of efficient preconditioners (cf. [80],
[23]) are a cure to such ill conditioned problems.

To add to the challenge, the process of filtration is mainly governed by two physical
processes, i.e. the flow of fluid and the transport of impurities/dirt particles that are
suspended in the fluid (cf. [13], [18]). The transport and capturing behaviour of par-
ticles within the filter> has an important influence on the efficiency and lifetime of the
filter. For example, the oil filters are one of the basic components for the automotive
industry. The life cycle pressure drop of the oil filters significantly impacts the cor-
rosive damage of the engines. Generally, the pressure drop is a direct function of the
filtration efficiency, such that high-efficiency filtration results in a high pressure drop.
This pressure drop depends on the filter media, the filter housing and the flow. When a

LPorosity, ¢, is a measure of the void spaces in a material, and is measured as a fraction between 0-1,
o= z—/ where v, is the volume of void-space (occupied by fluids) and v, is the total volume of material,
including the solid and void components.

2 Permeability relates to the ability of the fluid to flow through the porous medium and is most relevant
to flow computations.

3 A filter can be described shortly as a filter box (which could be of complicated shape) with inlet/s for
dirty oil and outlet/s for filtrated oil. The inlet/s and outlet/s are separated by a filtering medium, which is

usually a single layer or a multi layer porous media.



6 CONTENTS

filter is nearly clogged, the pressure drop is higher than in a new, clean filter. The signif-
icant parameters that affect filtration are the flow velocity, pressure drop, porosity and
the increasing blockage effect due to the deposited particles during the filtration period.
The flow transport, particle transport and capturing are different physical processes.
The governing equations are different for different processes and they happen on sev-
eral scales. Such a multi physics problem, where several processes interact at different
scales, is a challenge in itself. The computation of the particles transport normally takes
place in two steps. First the fluid flow profile needs to be determined and then depend-
ing on the geometrical, dynamical and material properties of the fluid flow, a suitable
model determines the particle transport. For such a case, the choice of a correct model
and the development of efficient algorithms becomes a crucial point of debate. In the
course of this thesis, we discuss models and numerical algorithms which are verified by
comparing the simulation results with measurements and analytical solutions, wherever
possible.

The overall task of modeling and simulating the filtration-related multiscale processes
becomes interdisciplinary as it employs physics, mathematics and computer program-
ming to reach its aim. Keeping the challenges in mind, we outline the goals of this thesis
followed by its structure.

Contents and Contributions of this thesis

This section will outline the main goals and contributions of this thesis. The main
focus is to overcome the limitations of accuracy, speed and memory and to develop
novel efficient numerical algorithms which could, in part or whole, be utilized by those
working in the field of porous media. This work has essentially four parts, each of which
is distributed into four separate chapters.

Parallelization

Chapter 1 discusses the single grid basic algorithm and a corresponding parallel algo-
rithm to solve the macroscopic Navier-Stokes-Brinkmann model (cf. [23, 83]). Section
1.3 includes a short description of the grid generator in the form of a computational
domain, the finite volume based discretization in space and time of the equations and
the modified Chorin-type fractional time stepping algorithm. Further on, the chapter
addresses the parallelization of the single grid version and improvements in terms of
memory requirement and speed for solving the problem. It aims to devise, analyze and
numerically test the different variants of parallel numerical algorithms for the Navier-
Stokes-Brinkmann equations. We discuss two types of parallelizations. The main aim
is to discuss the domain or data parallelization paradigm in Section 1.4 which is used to
build a parallel algorithm which employs the MPI library to implement the data commu-
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nication among processors. The numerical complexity of the algorithm is studied and
compared with the sequential algorithm developed by [55], [56]. Noting that the linear
solver is the most expensive part of the algorithm, we compare the domain paralleliza-
tion approach with another variant where only the linear solver is parallelized using
OpenMP. Performance on different hardware architectures/specifications is compared.
Numerical experiments are always done in comparison with the single grid algorithm.
As the algorithms are new, we provide the necessary formulation and report new results.

Subgrid method

As a second goal, we derive and numerically test an upscaling subgrid algorithm for
solving the Navier-Stokes-Brinkmann equations [53] in Chapter 2. A one-scale model
is shortly described in Section 2.2. In many complicated filters, the filter medium or the
filter element geometry are too fine to be resolved by a feasible computational grid. The
subgrid approach describes how the fine grid details are incorporated by solving aux-
iliary problems in appropriately chosen grid cells on a relatively coarse computational
grid. This is done via a systematic and a careful procedure of modifying and updating
the coefficients of the Navier-Stokes-Brinkmann system in the chosen cells. The key
ingredient to the proposed algorithm, besides employing the coarse and the fine grid, is
the usage of correct parameters, which becomes the critical part of this algorithm. Sec-
tion 2.3 introduces the concept of quasi-porous coarse cells and describes the subgrid
algorithm. In Section 2.4, the results are presented in such a way, that the efficiency
and accuracy of the subgrid method is compared with the results obtained by solving
the same problem on the coarse and fine computational grid. Results from the numer-
ical simulation of industrial filters are also presented in this Section. Since it is a new
algorithm, specific to filtration related flow models, new findings and results follow a
detailed formulation of the numerical algorithm.

Multiscale Finite Volume Method

Moving a step further in the line of multiscale methods, an iterative Mutliscale Finite
Volume (iMSFV) method is developed for the Stokes-Darcy system [66] in Chapter 3.
The standard iMSFV method, developed by Hadi et. al. (cf. [45]) is extended for
solving the momentum and pressure correction equations in a fractional time stepping
algorithm framework. Section 3.1 includes a short description of the coupled Stokes-
Darcy problem and a small note on the interface conditions used. Section 3.2 presents
the building blocks of our algorithm. These are the single grid algorithms for the Stokes
and the Darcy problems discretized on a staggered grid described in Subections 3.2.2
and 3.2.3. The MSFV and iMSFV method for the Darcy problem is described in Subec-
tion 3.2.4. Section 3.3 presents the multiscale finite volume algorithm for the coupled
Stokes-Darcy system. Similar to the subgrid algorithm, this method allows to simulate
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flow and transport in porous media with geometries that can be too complicated to be
resolved by a feasible computational grid. iMSFV method bears the advantage of re-
constructing the fine scale solution with a good precision at any desired time step. The
coarse scale ensures global coupling and the fine scale ensures appropriate resolution.
We discuss how this method performs and its potential development for further scien-
tific and industrial goals. In Section 3.4, results from the numerical simulations are
presented to validate the approach and to study its performance. Finally, some conclu-
sions are drawn.

Coupled flow and transport solvers on macro-meso-micro scales

Chapter 4 deals with ways to incorporate changes occurring at different (meso) scale
level. The flow equations are coupled with the Convection-Diffusion-Reaction (CDR)
equation, which models the transport and capturing of particle concentrations. The two
system equations are coupled and we try to understand and identify some of the un-
known parameters appearing in the model equations. In Section 4.3, we first formulate
the problem and discuss the different models, followed by its analytical solutions. Mod-
els for the Transmission Filter Effectiveness Method (TFEM) and Multipass efficiency
test (cf. [33]) and analytical solutions for the models are discussed. Section 4.4 con-
tains various ways to determine the unknown parameters in our model. A larger part of
the discussion includes parameter identification methods, which is done via analytical
solutions, measurement data, and micro simulations. The thesis opens new horizons to
incorporate the two-scale processes occurring at different scales, which is essential for
depicting the real loading of the porous media. By employing the numerical method for
the coupled flow and transport problem, we understand the interplay between the flow
velocity and filtration. Moreover, for filtrations problems, recognition of the importance
of accounting for variations in permeability is a challenge altogether. Permeability is
closely affected by the capturing of dirt particles on one scale which further affects the
flow field on another scale. However, this is still work in progress and the results are
not included in the content of this thesis. The last section includes validation of the
parameter identification methods and results of the complete simulations on filter ele-
ments, which are compared with measurements and with analytical solutions whenever

possible.

Finally in Chapter 5, we summarize the work of this thesis.



Chapter 1

A basic single grid algorithm for
the Navier-Stokes-Brinkmann
equations and its parallelization

1.1 Introduction and Goals

The numerical solution of PDEs, such as the porous media models or the Navier-Stokes
equations, require very large computational efforts due to the size stiffness. A signif-
icant step in reducing the CPU time and/or increasing the accuracy of the simulations
is the usage of parallel computers and clusters of workstations. The power of modern
personal computers is increasing constantly, but not enough to fulfill all scientific and
engineering computational demands. In such cases, parallel computing may be the an-
swer. Parallel computing not only gives access to increasing computational resources
but it also reduces computational time. This is mainly because clusters of workstations
can be used as local dedicated computational nodes or as a parallel computer, according
to momental needs of a department. A good review on the state of the art in numerical
solution of PDEs on parallel computers is given in [20]. This book surveys the major
topics that are essential to high-performance simulation on parallel computers, includ-
ing programming models, load balancing, mesh generation, efficient numerical solvers,
and scientific software.

This chapter aims to discuss parallelization of an existing numerical algorithm for the
Navier-Stokes-Brinkmann (NSB) system of equations (cf. [55, 56, 69]), which is ex-
tensively used for the simulation of fluid flows in industrial filters. Even though the
thesis specifically discusses and tests the algorithm for the NSB system, it can be gen-
erally applied to any system for incompressible Newtonian flows based on Cartesian
grids with a finite volume discretization. The domain or data parallelization paradigm
is used to build a parallel algorithm. The MPI library is used to implement the data
communication among processors.
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The chapter is organized as follows. In Section 1.2, we first formulate the problem.
Section 1.3 describes the finite volume methodology used for solving the flow prob-
lem, space discretization and fractional time step discretization, respectively. A parallel
algorithm based on the parallel domain (data) decomposition method is described in
Section 1.4. The systems of linear equations are solved by a parallel version of the pre-
conditioned BiConjugate Gradient Stabilized algorithm as shown in Subsection 1.4.1.
A theoretical model, which estimates the complexity of the parallel algorithm is pro-
posed. The results of computational experiments corresponding to the SP5! computer
and a cluster of workstations (the specific hardware architecture is mentioned later along
with the results) are presented and the efficiency of some popular parallel precondition-
ers is investigated. During computations, the diagonal and the incomplete LU (ILU)
factorization preconditioners are considered. A parallel version of ILU is obtained by
doing the factorization of a local part of the matrix at each processor. It is well known
that such strategy reduces the convergence rate of the iterative algorithm, however, the
parallelism of the obtained preconditioner is the same as the one obtained for the diag-
onal one. In Section 1.5, the computational results of experiments are presented, where
some industrial filters are simulated and flows in such filters are investigated. Some

final conclusions are given in Section 1.6.

1.2 Governing equations

The Brinkmann equations (cf. [14, 17]) are introduced as an extension of Darcy model
for flow in porous media for the case of highly porous media (note, that porosity of
the nonowen filtering media, which is our primary interest, is often more than 0.9).
Concerning the hierarchy of the models for the porous media flow, we refer to the recent
review in [76]. The Brinkmann model describing the flow in porous media, Qp, and
the Navier-Stokes equations (cf. [38, 41]) describing the flow in the pure fluid region,
Qp, together with the interface conditions for the continuity of the velocity and the
continuity of the normal component of the stress tensor, are reformulated such that a
single system of partial differential equations governs the flow in the pure liquid and in
the porous media. This is done using the fictitious regions method (FRM). Note that the
FRM allows the use of one system of equations in order to treat the fluid, porous and
solid regions simultaneously (cf. [3, 81, 86] and the references therein). The coefficients
of the equations vary in a way such that the single system is reduced to the Navier-Stokes
equations in the liquid zone, and to the Brinkmann-like model in the porous media. This
approach is only relevant when the interface conditions are chosen as mentioned above.
Moreover, some details on modeling and simulation of flow through oil filters using

IService Packs are a collection of software enhancements and fixes that is applied to an installed ver-
sion of an operating system. The fifth service pack particularly introduced to upgrade a major release of
software.
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Navier-Stokes-Brinkman system can be found in [23, 55, 69].

The Navier-Stokes-Brinkmann system of equations describing laminar, incompressible

and isothermal flow in the whole domain reads

Darcy

—

0 L
pa—l:—V-(uVﬁ)—k(pﬁ-V)ﬁ—l—uK

“i+Vp=Ff (1.1)
——

Navier—Stokes

V.i=0, (1.2)

where

7o fus nQp o1 [0 inQp
fg inQp K inQp
Vi

Here i, p stand for velocity vector and pressure respectively, and p, i denote the density,
viscosity and K is the permeability tensor of the porous medium.

The equations are equipped with the following boundary conditions relevant to filtration
processes. At the inlet, dirichlet inflow velocity i#;, is prescribed. Dirichlet pressure
P = Powr and Neumann velocity % = 0 is prescribed is at the outlet. Elsewhere, on the
solid walls, no-slip condition i = 0, p = 0 is specified.

1.3 A single grid algortihm for solving Navier-Stokes-Brinkmann
equations

The numerical algorithm can be decomposed into the following steps:
1. Grid initialization

2. Space discretization

3. Time stepping and numerical algorithm to compute i, p.

In the following sections, we discuss each of these steps in detail.

1.3.1 Grid Initialization and Notations

In this chapter and the following ones, we will use some standard notations. Consider a
set of non-overlapping finite control volumes (CVs) E = {E,|n = 1,..., N} which spans
over the 3D computational domain Q, where N denotes the number of finite volumes.
We have

Q= Un=1~Ep.

E, := E,(x) denotes a finite volume on an orthogonal gird, with its centre node denoted
by x with index (i, j,k). The neighbouring CVs in a certain space direction are denoted
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by indices
it = (i£1,j,k),
J= £ 1,k),
K= (i, j,k£1),

corresponding to the East/West, North/South, Top/Bottom neighbours. The set of finite
volumes containing E,’s neighbours is denoted by

M = {En(Xi), En(Xi ), En(Xj- ), En (X ), En(Xi- ) En (Xt ) }-
The size of each finite volume is denoted by

by = {5, 1 B}

n''ny"'n

Finally, the volume of the finite volume is denoted by v,,.

Implementation details: The geometrical information about the computational domain
is usually provided in a CAD format, for example, the .s#/ format. A pre-processor
based on the Level Set Method (cf. [64]), is used in order to process the given CAD
data for attaining the assembly of a filter housing. The output of the pre-processor is
a computational domain (i.e., the internal volume of the filter housing), along with a
generated grid. An example of a computational domain can be seen in Figure 1.1.

Figure 1.1: Computational domain of a filter housing and a snapshots of the visualiza-
tion tool

1.3.2 Space discretization

The collocated arrangement is used where all unknowns are related to the centres of the
control volumes/blocks. For the unknown ¢, being the velocity component or pressure,
the centre value for finite volume E, is denoted by

¢n = ¢(Xn)~

The terms in equations (1.1) and (1.2) have common operators, namely the divergence
and the gradient operators. The Navier-Stokes-Brinkmann system can be considered as
a general transport equation excluding the Brinkmann term (discretization of which is
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fairly straightforward), therefore discretization of a standard transport equation is con-
sidered. The discretization is considered to be local for each finite volume. After ap-
plying the Gauss divergence theorem (cf. [37]), discretization for the general transport
equation is obtained.

paa—?v,, + (1.3)
(oo % 2 mm] o~ (oo — 3 SOmAL o)+ (1)
{[(ow o~ S0 s~ oo - G o} + (1)
100 — 16 20 ] cos — o~ S0 Wi osk + (19
= Fyv, (1.7)

In the case of the momentum equations, the general transport variable ¢ is one of the
velocity components @ = (u*,u”,u), ¥y = p (dynamical viscosity) and Fy = —3—5 + 14,
d = (x,y,z). The equation also shows the way in which the velocity and pressure is
decoupled. The pressure field is considered to be known when the momentum equations
are calculated. The linearization of the momentum equation is of a fixed point type:
the convective terms are written in an equivalent non divergent form and the velocity
components are considered to be known. In each momentum equation one uses velocity
approximations of Gauss Seidel type, where the already computed velocity components,
denoted by i, are used within the scope of the same iteration when the next momentum

equations are linearized.

On each of the finite volumes E,, a seven point (for 3D) discretization stencil is used
and the equation has the following form

G + ;cw i= Oy + O O + O @j+ + O gt = Fy, (1.8)
where variable ¢ are the unknowns and o are the discretization coefficients correspond-
ing to the centre of the finite volume E, and its neighbours. The exact form of ¢’s will
be discussed shortly. We simplify the notation, for example o;+ := o(x;+). F,, is the con-
tribution of the source/sink term for the variable ¢ located at the centres. We see how
the values at each internal face are obtained through a linear interpolation of the neigh-
bour node values. The discretization of the convective, diffusive terms are discussed for
the case of an orthogonal grid.

Convective term discretization: For the convective term, two types of discretization
schemes are considered, namely a second order central difference scheme and an up-
wind difference scheme. Let us consider the convective term associated with the east
face of E,, i.e. p¢>h¥;h;”luf+(,45. If the east neighbour exists and the wall is internal, the
convective term contributes to ¢, and o;+. For the central difference scheme, the east
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wall value is linearly interpolated through the nodal values

h.\'
G0 = (1—0)¢, +0¢;+, where 6 = R (1.9)
Therefore, for the east wall, the convective term contributes to the following discretiza-

tion coefficients

Gy — (1—0)pEkw.s,

n'*n* i+

O+ < 9phyhzux(xs~

n'*n* i+

For the case of the upwind difference scheme, the contribution depends on the direction
of the flow velocity

¢i+0.5 - (Pn lf Lf;c_'_oj > 0 (1. 10)
¢i+0.5 - ¢i+ if M?_'_oj < O. (1. 1 1)

Therefore for case (1.10), we have

Op < Phyhzuxo,s

n''n*"+

O+ < 0.
Similarly for case (1.11), we have

o, «— 0

Oir  — Phyhyuos.
Diffusive term discretization: Let us consider the diffusive term y¢(g—ﬁ) soshyhs. A
second order central difference scheme is used for the derivatives of the type (‘3—2) 05,
In case of an internal wall the gradient is approximated by

i+ — - n+h
(P’f On where ;105 = ———"

i+0.5 2

(1.12)

The contribution of the diffusive flux is as follows

1 .
Op <« —= Y¢h21h;z7
i+0.5
1 1.7
O+ <« = }’q)h)h”

n'n*
hi+0‘5

1.3.3 Time Stepping and numerical algorithm

Here we formulate the numerical algortihm (cf. [55, 56]) for the macroscopic flow
equations (1.1) and (1.2) in a general framework for a collocated arrangement of discrete
variables. This algorithm serves as the basic algorithm for some of the subsequent
chapters and also as a building block for the parallel algorithm/s described in the next
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sections too. We first introduce some notations. The operators corresponding to the
discretized convective and diffusive term are denoted by C(i)i and Di respectively.
The particular form of these operators depend on the discretization, as discussed in
the Section 1.3.2. The discretization of the gradient and the divergence operator is
denoted by G and G”. Bii denotes the Darcy operator in the momentum equations. The
superscript “t1 and * denotes the new time level and the old time level. 7 denotes the

time step T =tk — ¢k,

Time discretization

Unsteady term discretization: The contribution of the unsteady term p %—‘fv,, is

o, — (pvn),
T
(pvn) k

F, - 0.

The fractional time step discretization scheme can be written as

(pit* — pii*) + T(C(id) — D+ B)ii* = —1Gp (1.13)
<Pﬁk+| —pﬁ*) + (B! — Bii*) = —1(GpF! — GpF) (1.14)
GTpit! = 0. (1.15)

The numerical algorithm is based on the popular idea of splitting the operators and
unknowns into different equations to divide the problem into easier substeps. Operator
splitting methods, projection methods, fractional time stepping methods are different
names associated with a similar concept (cf. [21, 41, 38, 37]). All these schemes solve
a pressure equation after the momentum equations. Therefore, in essence, our algorithm
can be viewed as a modification of the well known Chorin method for the Navier Stokes
equations. Summing up Equations (1.13) and (1.14) results in an implicit discretization
of the momentum equations. Equation (1.13) is solved with respect to the velocities
using the old value of the pressure gradient, thus obtaining a prediction for the velocity.
To solve the second equation for pressure correction one takes the divergence from it
and uses the continuity equation. The result is a Poisson type equation for the pressure
correction which will be discussed shortly.

Special treatment of the Darcy term

Brinkmann term discretization: The Brinkmann term ¥ K ~1¢ in Equation (1.1) con-
tributes to the discretization of the momentum equation as follows

Op ’}/¢K1_|la

Fo — WKp'@ + K5 .
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The Darcy term needs special treatment in the Navier-Stokes-Brinkmann case. The term
is taken into account for both equations (1.13) and (1.14). The pressure equation should
be carefully derived in this case. A naive application of the Chorin method would give

GT(pﬁk+l —Pﬁ*) +GTT(Bﬁk+l —Bﬁ*) — —GTT(pk+l _pk).

Denoting ¢ for the pressure correction, where g = p**! — p¥, one can derive the follow-
ing from Equation (1.14)

—G'1Gq =G (pi*! — pii*) + GT t(Bi ' — Bii*). (1.16)

Furthermore, using the continuity equation G” pi**! = 0 and assuming that G” Bu*+! ~
0, the above equation is reduced to

—G'tGq =G (pii* + tBii"). (1.17)

A drawback of the pressure correction equation is that its operator does not ’account
for’ the porous media and that the continuity equation is approximately satisfied in the
porous media. For a constant time step, its operator is equivalent to the Poisson equation
with constant coefficients. In order to achieve better convergence, lets consider another
approach in forming a pressure correction equation. Let us denote / as the identity
matrix 3 X 3 matrix. Rewriting Equation (1.14) gives

(I+ %B)pﬁ‘“rl —(I+ %B)pﬁ* = —1Gq. (1.18)

Keeping in mind that (7 + %B)_I always exists because B is positive definite, the above

equation can be transformed into

piit! — pii* = —(IJr%B)_IT(GP"+1 - Gph). (1.19)

Now applying the divergence operator G’ to this equation and using the continuity
equation, the following pressure correction equation is obtained

GT(1+ %B)—%Gq — G pii". (1.20)

It is easy to see that the pressure correction equation in the pure fluid region, where B =0
reduces to the standard Chorin scheme. The same equation for pure fluids is obtained
within the SIMPLEC approach (cf. [38]) or within the Schur complement approach (cf.
[84]). It is more important to see that equation 1.19 collapses to the well known Darcy
equation in the porous medium if / is much less than B. Thus, the equation describes
both, the pure and the porous zones equally well. The choice of the time discretization
influences the accuracy of the numerical solution and the stability of the algorithm. The
approximation for the velocity after the solution of the momentum equations does not
satisfy the continuity equation. Therefore using the continuity equation, one searches
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for corrections of the velocities. After the pressure correction equation is solved, the
pressure is updated

P =pr+q (1.21)

and the new velocity is calculated based on equation (1.19)
T
pict! :pﬁ*+(1+EB)_lth. (1.22)

It should be noted that one time step of the algorithm requires three linear system solves
for the velocities in three directions and a system solve for the pressure correction equa-
tion. BiCGSTAB method is used to solve the linear system. Details are given later in
Section 1.3.5. A sketch of the complete algorithm is given in Algorithm 1. A,; and A,

denote the discretization matrix for velocities and pressure correction.

Algorithm 1: Sequential numerical algorithm for Navier-Stokes-Brinkmann sys-
tem

1. Initiate computational domain

2. ok = true; k = 0;

3. while( ok ) do

4. k=k+l;ub =1 ph = phl

5. for (i=0; i < MaxNonLinearlter; i++) do
6. Compute velocities from momentum equations
A= fi—Gpr, j=1,2,3;
7. Solve equation for the pressure correction
Agq =3
8. Correct the velocities
Wb =5+ C(27'Gg)j,j=1,2,3;
9. Correct the pressure
Pk =+ G
end do
10. if ( final time step ) ok = false;
end do

So far we have discussed the finite volume discretization (cf. [38]) on the generated
Cartesian grid. Cell centered grid with collocated arrangement of the velocity and pres-
sure is used. The Rhie Chow interpolation (cf. [78]) is used to avoid spiral oscillations,
which could appear due to the collocated arrangement of the unknowns. Special atten-
tion is paid to the discretizations near the interfaces between the fluid and the porous
medium. To get an accurate approximation for the velocity and for the pressure on the
interface, a special modification of the discretizations near the interface is used. First
of all, it should be noted that the pressure gradient in the momentum equation is dis-
cretized in each cell separately. To do this, the pressure values from the cell centers are
interpolated to the cell faces. In the pure fluid region, this is done by linear interpolation



18 1. A BASIC SINGLE GRID ALGORITHM AND ITS PARALLELIZATION

where the pressure gradient is discretized via central differences. The more crucial part
is the interpolation of the pressure on the interface between the pure fluid and the porous
regions. Problem dependent interpolation is employed, using the operator from 1.20 to-
gether with the mass conservation assumption (i.e., continuity of the normal component
of the flux across the interface). For a detailed illustration of this approach, suppose
that py is a pressure value in a pure fluid cell located left from the interface, and pg is
a pressure value in a porous cell located right from the interface. The pressure at the
interface is assumed to be continuous, and the value there, p,,, in the case of isotropic
media (i.e. scalar permeability) is calculated from 1.20 as follows:
(14 2b). o+ (1+ £b)g ' pr

Pw = — — (1.23)
(I + (14 2!

where b is the component of B in the isotropic case.

1.3.4 Special implementation feature

In practice, a series of computations with different velocities and different viscosities
need to be performed for a fixed geometry. Particularly, in the case of oil filter simula-
tions, the performance of a filter is usually evaluated at different flow rates and different
temperatures (the last results in different viscosities and different densities). Also, re-
call that each single computation is performed for incompressible nonisothermal fluid.
In order to reduce the computational efforts, a start from previous procedure is briefly
discussed. This routine takes advantage of the fact that there exists a good initial guess
for all simulated cases except for the first one. The cases to be simulated are ordered
such that the parameter

_H
O

is increasing. Here Q stands for the prescribed flow rate at the inlet, and [ stands for the

Y (1.24)

current number of the set of input parameters. After the first case corresponding to
is computed, the computations corresponding to 74 start with reading the [-th steady
state solution, and thereby rescaling the pressure in accordance with the formula

G, =-"Gp,. (1.25)

Yi+1

Pi+1

1.3.5 Computational memory requirements

During each iteration at steps (6) and (7) of Algorithm 1, four systems of linear equa-
tions are solved. The non-symmetric linear systems of the form

A =f
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BiCGSTAB (Vec x, Vec f, Matrix A, double €)

begin

(1) Compute the precondinioner &Z;

(2) normf = ||f||;

(3) if (normf < €) normf = 1;

4) r=f—-Ax

(5) #F=r; ok=true; i=0;

(6) while (ok)do

@) i++,  p1=(Fr);

®) if (i==1) then

) p=r;
else

(10) B=(p1a)/(p20);

(an p=r+pB(p—ov):;
end if

(12) Pp=p;

(13) v=Ap;

(14) o =pi/(Fv);

(15) sS=r—aov;

(16) if (||s|| / normf < € ) then

17 X+ =ap;

(18) ok = false;
else

(19) PS=s;

(20) t = AS;

@1 o= (t,5)/(t1);

22) X+ =ap+ s, r=s— ot

(23) p2 = p1;

(24) if (||r||/ normf < € ) ok = false;
end if

end do
end BiCGSTAB

Figure 1.2: Serial BICGSTAB algorithm
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are solved using the preconditioned BiConjugate Gradient Stabilized method [12]. A
short description of the BICGSTAB method is given in Figure 1.2.

Solving such systems typically requires 70 to 90 % of computational time. The power of
modern computers is increasing constantly, but is still unable to fulfill all scientific and
engineering computational demands. Finer resolution implies greater computational
complexities, not only in terms of computational time but also memory that is needed
to solve the system. Parallel computing provides an answer to such computational bot-
tlenecks. A detailed review on the parallel version of the discussed algorithm is given
in the following section.

1.4 Parallel algorithm

The objective is to have an efficient solution on parallel machines, using finite volume
methods on problems with complex geometries which are approximated on very fine
grids. After discretization, to solve the obtained linear system is extremely time and
memory consuming. Development of effective parallel algorithms is a challenging task
for such a problem.

One of the possibilities is to parallelize only the linear system solver, for example by
using the well known parallel software package PETSc. Typically, the linear solver
works with the spatial discretization coefficients which are distributed among the num-
ber of parallel processes in a parallel matrix. The linear system is then solved using
parallel linear algebra solvers from PETSc on each process, and the solutions are then
collected from the various processes. Another way for parallelizing the linear solver is
using OpenMP parallelization. This is discussed in Subsection 1.5. We should keep in
mind that parallelization of the linear solver has the advantage of gaining in terms of

computational time.

Alternatively, in many cases the main goal of parallel computations is not only to solve
the problem faster, but also to increase the size of the simulated problems. Therefore the
distribution of the discretization part of the algorithm to scale the problem size accord-
ing to the increased number of processors becomes a crucial point to consider. Also,
when only the linear solver is parallelized, the discretization is done only on one master
processor while the linear systems of equations are solved in parallel. The drawback of
this practice becomes apparent with solving larger sized problems, when the additional
costs, pertaining to the distribution of the matrix and the right hand side vector among
processors and assembling the solution on the master processor are considered.

In effect, we are left with the following challenges for an optimal parallel algorithm:

1. Load balancing.
2. The costs incurred by the exchange of information, where we should define optimal
mapping to minimize overlapping regions.



1.4. Parallel algorithm 21

3. Parallelizing the linear solver.

Keeping in mind the above considerations, the essential details of the developed parallel
algorithms are described in the following sections. A theoretical model estimating the
complexity of the parallel problem is also proposed.

1.4.1 Domain decomposition Approach

Domain decomposition methods have demanded much attention over the past years, and
its success owes to the fact that they provide a high concurrency level and come with
easy implementation on complex modern parallel computers. The goal of the domain
decomposition approach is to split the original domain into smaller simple subdomains,
compute local solutions and use iterative solvers to appropriately interface the solutions.
Defining an optimal criteria to divide the domain into subdomains is not a trivial prob-
lem as it involves both numerical constraints and parallel implementation constraints.
The former arise from the complicated imbalanced shape of the domains, whereas the
parallel implementation constraints boil down to minimizing the information exchange
or communication between processors. We refer to this constraint as the load balancing
poblem, with the objective to partition the problem into well balanced subdomains and
minimal interaction with a good aspect ratio.

To understand the load balancing problem, we start with defining a suitable mapping
V=ViuWhUu...Vp

of all finite volumes onto the set of P processors. Here, V; defines the elements mapped
onto the j —th processor. The load balancing problem should be solved during im-
plementation of this step. First, it is essential that each processor has about the same
number of elements since this number will determine the computational complexity of
Algorithm 1. Depending on the stencil of discretization, the computational domains of
processors can overlap. The information belonging to the overlapped regions should be
exchanged between the processors. For distributed memory computers, the MPI library
is used to send explicit messages between the processors, contributing to the additional
costs of the parallel algorithm. Therefore the underlying goal of defining the optimal
data mapping is to minimize the overlapping regions.

Load Balancing

The p-way graph partitioning problem is N-P complete i.e. no polynomial time algo-
rithm is likely to be found to solve this problem. Therefore, heuristic algorithms have
been developed to find a good solution in a reasonable time. The multilevel partitioning
method is one of the most efficient partitioning methods with linear complexity. The
state of the art implementation of a family of multilevel partitioning methods for parti-
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tioning unstructured graphs and hypergraphs is available as a METIS software library
(cf. [62]).

A simpler domain decomposition approach has also been used for this particular case.
It takes into account that the orthogonal 3D structured grid is used as a reference grid
for the definition of the computational grid. Therefore, standard 3D decomposition of
the processors P; X P, X Pz can be used. Such a strategy simplifies the implementation
of the data exchange algorithms since it is very easy to define the neighbours of each
processor and the overlapping elements.

In order to solve the load balancing problem for a given number of processors, all com-
bination of 3D processors topologies is generated. A topology with the best load bal-
ancing that minimizes the number of overlapping elements is chosen.

In a series of computational experiments, the quality of the obtained partitioning was
tested and compared to the partitioning computed by METIS. Table 1.1 shows the values
of the load disbalance parameter dp and the number of overlapping elements wp (or
edges cutting the partitioned subsets of elements in the case of METIS partitioning) are
presented for the METIS and orthogonal 3D partitioning. The grid was generated for a
real industrial application, the graph of this grid has 596094 nodes and 1507732 edges,
the auxiliary grid has 5428000 nodes.

It is seen that the simple grid partitioning algorithm gives mappings with good load
balancing and the number of overlapped elements is also close to the number of similar
elements in the partitioning that was generated by METIS.

| P | dpmais | 2Weaeris dpsp | weap |
2 1.0 6090 1.05 5874
4 1.0 12164 1.19 16884
8 1.0 24162 1.21 34450
12 1.0 32836 1.22 60270

Table 1.1: Experimental investigation of the quality of partitioning algorithms

Data initialization

In this section, we estimate the costs of data initialization. The master processor reads
the information on the grid from a file and broadcasts it to other processors. The com-
plexity of the global broadcast operation strongly depends on the architecture of the
parallel computer (cf. [25, 44, 47]). The cost of broadcasting s data items between P
processors is estimated as

B(s,P) = R(P)(% + Bps)
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where R(P) depends on the algorithm used to implement the broadcast operation and
the architecture of the computer. For the simplest algorithm, R(P) = P. Taking into
account the time O(n) required to read data from the file and assuming that o, < Bps, a
bound on the costs of grid initialization is found as

Weinie = (co + BpP)s. (1.26)

Note that this part of the computations does not depend on the number of non linear iter-
ations and the number of time steps. Therefore, the initialization costs can be neglected

for problems where a long transition time is simulated.

Parallel discretization

The sequential algorithm is decomposed into local computations supplemented with
corresponding communication operations. The matrices and right-hand side vectors are
assembled element by element. This can be done locally by each processor, if all ghost
values? (see Figure 1.3) of the vectors belonging to overlapping regions are exchanged
among processors. The data communication is implemented by an odd - even type
algorithm and can be done in parallel between different pairs of processors. Thus, we
can estimate the costs of data exchange operation as

Wexeh = O + ﬁema

where m is the number of items sent between two processors, ¢ is the message startup
time and f3 is the time required to send one element of data.

The time required to calculate all coefficients of the discrete problem is given by
s
WF’,coeff = CldP;a

where dp is a load disbalance parameter.

Parallel BiICGSTAB algorithm

The sequential BICGSTAB algorithm is modified in a way such that its convergence
properties are not changed during the parallelization process. The only exception is
due to implementation of the preconditioner &2. If & is a diagonal part of the matrix,
i.e. for Jacobi smoothing a parallel realization of the preconditioner is exactly the same
as for sequential one. In the case of ILU preconditioner, parallelization can reduce
the convergence rate of the parallel BICGSTAB algorithm. These questions will be
addressed in the following section. Here, it is assumed that the number of iterations
required to solve the systems of linear equations, at steps (6) and (7) in Algorithm 1 are
the same for the sequential and parallel versions of the BiCGSTAB algorithm.

2Ghost cells are an extra layer of cells added to local domain in the processor. These are the cells which
are contained in other processors but whose information is needed by the process for local discretization.
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Process 1 Process 2

o|o|lo|lOo|O|0O|0O
o|lo|lOo|lO|O|O|O

o|o|lo|Oo|O|O|O

o|lo|lo|le|o|o]|o
o|lo|lele|e|o|o
o|lo|o|le|o|o]|o

o|lo|lOo|lO|O|O|O

oO|0|O0|O0|O0O|0O|O

o|0|O0O|O|OC|O|0O
o|j|ojO0|O|O0O|O|O

For discretization of this cell, Process 1 needs to recieve
information from Process 2.

Process 1 creates an extra boundary layer of ghost cells
where it will hold the recieved information from Process 2.

Figure 1.3: An illustration of ghost cells and the information that needs to be exchanged
among processes.

Four different operations of the BICGSTAB algorithm require different data communi-
cations between processors:

1. Vector saxpy operations, at steps (11), (15) and (22) in Algorithm 1.2, can be
computed in parallel, when parameters o, 3, ® are given. No communication
between processors is needed, since all required data is locally available on each
processor. The complexity of all vector saxpy operations calculated during one

iteration is
s

WP.saxpy =0 dPP

2. Implementation of the matrix — vector multiplication, at steps (4), (13) and (20)
in Algorithm 1.2, requires additional information when boundary nodes of the
local part of the vector x are updated (note, that these nodes are inner nodes in
the global grid). Such information is obtained by exchanging data with neighbour
processors in the specified topology of processors. The amount of data depends
on the grid stencil, which is used to discretize the PDE model, i.e. on the overlap
of local subgrids. The communication step can be done in parallel. After ex-
change of the ghost elements the multiplication Ax is performed locally on each
processor. Taking into account that matrices are sparse, the complexity of two

matrix-vector multiplications during one iteration is estimated by

N
Wpmy = ¢3 dPﬁ + 2(053 + ﬁem)-

3. The computation of inner products of two vectors at steps (2), (7), (14), (21) and
(24) in Algorithm 1.2 require a global communication of all processors: first all
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processors compute inner products of local parts of vectors and then these local
products are summed up. Different algorithms can be used to implement the
global reduction step. In MPI, there exists a special function MPT_ALLREDUCE,
which computes a sum and distributes it to all processors. It is assumed that MPI
library is optimized for each type of super—computer, taking into account specific
details of the computer network. The complexity of computation of all inner
products and norms during one iteration is estimated as

N
Wpdor = C4dPF +5R(P)(ar+ﬁr)

For a simple implementation of MPT_ALLREDUCE function, when all processors
send their local values to the master processor, which accumulates results and
broadcasts the sum to all processors, R(P) = cP.

4. The computation of the preconditioner &2 is done locally by each processor with-
out any communication operation. The complexity of this step is given by

N
WP&Z = C5dP1—J.

The solution of linear systems “x = b also requires only local computations.
Thus the complexity of steps (12),(19) of Algorithm 1.2 is given by
s

WR:;Z—I == C6dPP

After summing up all the estimates, the theoretical model of the complexity of the par-
allel algorithm is achieved

Wp = (co+ ByP)s + K ((c1 + cS)dp% +c7(0 + Bom(P))) (1.27)
+N((C2 +ce +Cd0r>dP% + CSR(P)(ar + Br) +C9(ae +ﬁem(P)>)a

where K is the number of steps in the outer loop of Algorithm 1, and N is a total number
of BICGSTAB iterations. Note that the initialization costs (i.e. the first term of the total
costs) do not depend on the number of time steps K and they can be neglected in the
case when K is a large number.

1.5 Numerical Results and Conclusions

The accuracy of the theoretical complexity model developed above was tested experi-
mentally. Computations were performed on IBM SP5 computer at CINECA, Bologna
and on Virgo cluster of computers at ITWM, Kaiserslautern. Results of simulations are
presented in Figure 1.4.

The same industrial application, as in Section 1.4.1 for grid partitionaing, is used to test
the prediction accuracy of the theoretical model.
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P kg/(mm-s) OXZ: y=28.000000 P kg/mm-s)
OXZ: y=28.000000 115 115

0 50 100 150 200 250 300 350 400 450 500

Figure 1.4: Results of simulations: velocity (arrows) and pressure (colour) in a cross—
section of the filter

|P ‘ Tini | I ‘ I ‘ Lo ‘Texch | Tiotal | Sp ‘ Ep ‘

|1 | 1.66] 106 | 834 | 1173] 00 | 1059 | 1 | 1 |

2 324|545 | 435 | 63.0 | 47 |560.5 | 1.89 | 0.95
324 | 55.7 | 438 | 63.4 | 4.7 | 565.0

4 14233102525 | 36.1 | 6.6 |330.7 | 3.20 | 0.80
4.80 | 31.5 | 248 | 37.0 | 6.1 | 327.7

8 | 5121156 | 1262 | 207 | 7.3 | 175.0 | 6.05 | 0.76
6.50 | 16.0 | 126.1 | 21.0 | 6.4 | 176.0

12 1 7.39 | 10.7 | 849 | 153 | 5.1 | 1233 | 859 | 0.71
921 | 108 | 84.8 | 158 | 7.3 | 126.0

Table 1.2: Experimental results and theoretical predictions of CPU times for Virgo clus-
ter

In the following tables, experimental times and theoretical predictions of CPU time
s s
Tinie = (co+ PpP)s, T = K(cy +CS)dPFa T, =N(c2+ Cé)dPFa
s
Toxen = (KC7 +NCS)(ae + Bem)7 Tyor = C4dPF + CSR(P)(ar + ﬁr)

are presented. For each number of processors, the first line gives experimental values
of CPU and the second lines present theoretical predictions. In Table 1.2, the results of
computations are presented for the Virgo cluster of computers.

The presented results show that theoretical complexity model gives accurate predictions
of different parts of Algorithm 1. The efficiency of the parallel algorithm is also good.
‘We note that cluster Virgo uses a Myrinet communication network, therefore communi-
cation costs do not reduce seriously the efficiency of the algorithm for a given number
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of processors. Results of calculations done on SP5 computer are presented in Table 1.3.

|P ‘ Tinir | Tl ‘ T2 ‘ Tdor ‘ Texch | Troral ‘ SP ‘ EP ‘

|1 | 1.83|821] 735 [703| 00 | 889 | 1 | 1 |

2 312|441 | 381 |357 058 | 464 | 1.92 | 0.96
3.12 | 43.1 | 386 | 37.1 | 0.58 | 470

4 1358|233 203 |19.1 | 320 | 252 |3.52|0.88
5.16 | 244 | 218.7 | 214 | 1.2 | 271

8 [454 | 11.8 ] 932 | 10.2 | 3.06 | 122.7 | 7.25 | 0.91
6.66 | 124 | 111 | 11.6 | 1.9 | 143.6

12 1 6.65| 84 | 63.0 |6.61 | 3.1 | 87.8 | 10.1 | 0.84
878 | 82 | 73.8 | 81 | 2.7 | 101.5

Table 1.3: Experimental results and theoretical predictions of CPU times for SP5

It can be seen that the theoretical complexity model overestimates the CPU time. The
accuracy of the model can be increased if the well-known fact that efficiency of vector
operations increases is taken into account. Also, a superlinear speedup of the parallel
algorithm is obtained for larger numbers of processors due to the better cache memory
utilization in SP5 processors. A simple test was implemented, where matrix operations
A:=A+B, C:=C— £ were performed many times. The dimension of matrices were
taken to be 4 - 10°. The following results were obtained:

Ty =353, ,=153, Ty=7.18, Ty =2.83, Tis=1.29.

Data distribution using METIS library

In previous computations, a 3D data decomposition among processors was used. Since
the geometry of a computational region is quite complicated, such a decomposition
leads to an imbalance of the work-load between processors (up to 1.20 times). Ad-
ditionally, a general grid distribution algorithm was implemented, which was based on
graph distribution algorithms implemented in METIS library (cf. [62]). In Table 1.4, the
results of computations are presented and the two strategies of data distribution are com-
pared. The computations were performed on Virgo cluster of computers, but in this case
a Gigabit Ethernet network is used. The code was compiled with the full optimization
option O3 in order to make the ration between computation and communication speeds
more challenging. In order to get more realistic estimates of the speed-up and the effi-
ciency coefficients, the initialization time 7;,; was excluded from the computation time
Tp, since this time could be neglected for real simulations. During the computational
experiments, the solution was computed only for six time steps.
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| P | Tpsp | Seap | Epsp | | Tem | Sear | Epa |

885.7 | 1.00 | 1.00 893.0 | 1.00 | 1.00
4804 | 1.84 | 0.92 459.7 | 1.94 | 0.97
270.6 | 3.27 | 0.82 234.3 | 3.81 | 0.95
150.8 | 5.87 | 0.73 127.0 | 7.03 | 0.88
211044 | 848 | 0.70 90.2 | 992 | 0.83

—|oo| &0 —

Table 1.4: Experimental results for 3D and METIS data distributions

Parallel Preconditioners

There have been many studies of the use of various ordering techniques to overcome the
trade—off between parallelism and convergence in ILU factorization. Some new multi-
color orderings are proposed by D’Azevedo et al. [32], Doi and Washio [27], Monga—
Made and Van der Vorst [73], Ciegis [24]. The comparison of parallel preconditioners
for non-symmetric sparse linear systems is done by Ma [72].

A simple parallel version of ILU preconditioner was implemented, with each processor
computing the required factorization by using only a local part of the matrix A. Such a
Jacobi type ILU preconditioner is fully parallel, but the convergence rate of the obtained
iterations is decreased (cf. [11, 24]). It is very difficult to estimate the convergence rate
of the BICGSTAB algorithm with the Jacobi ILU preconditoner even for problems ob-
tained after discretization of the Laplace equation on uniform grids. The efficiency of
preconditioners also depends strongly on the given problem coefficients and the prop-
erties of the grid. Therefore mainly experimental investigations are used in the analysis
of simplified preconditioners. In Table 1.5, the performance of BiCGSTAB iterative
algorithm with the Jacobi ILU preconditioner is given. Here, Np is the total number
of BICGSTAB iterations calculated in solving all systems of linear equations by using
P processors, and Sp and Ep are the speed-up and efficiency coefficients, respectively,
of the parallel algorithm. Note that the number of iterations was exactly the same for
any number of processors in the previous experiments, i.e. the iterative process was
always stopped after computing the maximal number of iterations. The computations
were done on the ITWM cluster Virgo.

It can be seen that the number of iterations for the BICGSTAB algorithm with the Ja-
cobi ILU preconditioner increase when compared with the global ILU preconditioner.
Therefore, the efficiency of parallel algorithm is decreased (compare the new values of
Ep with the values given in Table 1.2). However, the quality of the Jacobi ILU precon-
ditioner is still quite satisfactory.

The calculations of the ILU factorization and the solution of problems &x = f are quite
costly. The efficiency of the sequential ILU preconditioner with the Jacobi diagonal pre-
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P [N | 7 |5 | B |

3304 | 1246 | 1.00 | 1.000
3741 | 742 | 1.68 | 0.840
4070 | 465.5 | 2.68 | 0.670
4137 | 248.6 | 5.01 | 0.627
2| 4181 | 175.6 | 7.10 | 0.591

—| 0 || —

Table 1.5: Iteration numbers Np, CPUtime 7p, speed-up Sp and efficiency Ep coeffi-
cients for the Jacobi ILU preconditioner

conditioner was compared. The same problem was solved by using N = 9849 iterations
and 77 = 2315 CPU time. Thus, the number of iterations increased 2.98 times, but the
CPU time increased by 1.85 times only.

Dependence on hardware of parallel computers

In this section, we present results of the developed parallel algorithm with new data
structures, that allow to significantly reduce memory requirements of the solver. The
auxiliary 3D reference grid that was used until now is removed, and METIS is used for
graph partioning. For the test problem, the same industrial filter is used as in previous
sections. The maximum number of BiICGSTARB iterations is taken to be 600. Although
it is not sufficient for the full convergence of the pressure correction equation, it suffices
as we seek to find only a stationary solution. This imposes a hard bound restriction
that the parallel linear solver for all tests perform the same number of iterations despite
possible differences in the overall convergence. Results are presented for the first three
timesteps of Algorithm 1.

Distributed memory vs Shared memory systems

Firstly, the performance of the DD algorithm is tested on a distributed memory par-

allel machine -Vilkus cluster at VGTU. It consists of Pentium 4 processors (3.2 GHz,

level 1 cache 16KB, level 2 cache 1MB, 800MHz FSB) interconnected via Gigabit

Smart Switch. Obtained performance results are prescribed in Table 1.6. Here, for each

number of processes P, the wall clock time 7p, the values of the algorithmic speed-up
T

coefficients Sp = 7., and the efficiency Ep = 87” are presented.

As we can see, the scalability of the DD parallel algorithm is robust. According to the
theoretical model of its complexity (1.27), it scales better for the systems with better
interconnect network: with smaller o, B, R(P). This can be seen from the results in
Table 1.7, which were obtained on ITWM Hercules cluster: dual nodes (PowerEdge
1950) with dual core Intel Xeon (Woodcrest) processors (2.3 GHz, L1 32+32 KB, L2 4
MB, 1333 MHz FSB) interconnected with Infiniband DDR. The superlinear speedup is



30 1. A BASIC SINGLE GRID ALGORITHM AND ITS PARALLELIZATION

| | P=1|P=2|P=4|P=8|P=12|P=16

Tp | 456 234 130 76.9 53.8 41.8
Sp 1.0 1.95 | 3.51 5.93 8.48 10.9
Ep| 10 0.97 | 0.88 | 0.74 0.71 0.68

Table 1.6: Performance results of DD parallel algorithm on VGTU Vilkas Cluster

explained also by the growing number of cache hits with increasing p.

| |P=1|P=2|P=4|P=8|P=12|P=16|

Tp | 335.3 | 164.0 | 79.1 37.4 23.9 17.6
Sp 1.0 204 | 424 | 896 14.3 19.05
Ep| 1.0 1.02 1.06 1.12 1.17 1.19

Table 1.7: Performance results of DD parallel algorithm on ITWM Hercules cluster
(one process per node)

Next, we performed computations with the same parallel algorithm on a shared parallel
machine - multicore computer. The system has an Intel(R) Core(TM)2 Quad processor
Q6600. Four processing cores are running at 2.4 GHz each and are sharing a 8 MB of L2
cache and a 1066 MHz Front Side Bus. Each of the four cores can complete up to four
full instructions simultaneously. The performance results are presented in Table 1.8.

| |P=1|P=2|P=3|P=4|

Tp | 281.9 | 186.3 | 183.6 | 176.3
Sp 1.0 1.51 1.54 | 1.60
Ep| 10 0.76 | 051 | 040

Table 1.8: Performance results of DD algorithm on the multicore computer: Intel Core
2 Quad processor Q6600 @ 2.4GHz.

The results of the test-runs show that the speed-up of 1.51 is obtained for two processes
and it saturates for a larger number of processes: algorithm is not efficient even for 3 or
4 processes. In order to get more information on the run time behaviour of the parallel
MPI code we have used a popular parallel profiling tool Intel(R) Trace Analyzer and
Collector. It showed that for P = 2 all MPI functions took 3.05 seconds and for P = 4
processes 8.93 seconds( 1.90, 2.50, 1.17, 3.36s). Thus the communication part of the
algorithm is implemented very efficiently. It scales/grows according to the predictions
of our theoretical model, but not linearly. Since the load balance of the data is also
equal to one, the bottleneck of the algorithm arises due to the conflicts in memory
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access between different processors.

The same tests on a better shared memory architecture -single node of ITWM Hercules
cluster (2x2 cores) gave us slightly better, but qualitatively the same results. From Table
1.9, we can see that the use of all 4 cores on the nodes is not efficient. The run-time is
almost the same as using two separate nodes with 2 processes (Table 1.7).

| |P=1|P=2|P=4|

Tp 3353 | 1859 | 153.2
Sp 1.0 1.80 2.19
Ep 1.0 0.90 0.55

Table 1.9: Performance results of DD parallel algorithm on the multicore computer:
ITWM Heclules cluster’s single node (PowerEdge 1950)

OpenMP parallel algorithm

The second approach is to use OpenMP application program interface to see if our
analysis in 1.5 is correct or we can get something better with special programming
tools for shared memory computers. Since for shared memory computers we expect
a more favorable ratio between computation and data exchange times, such a decrease
of the parallel algorithm efficiency is explained by the conflicts in memory access be-
tween different processors. The main part of the CPU time is spent in the realization
of BiCGSTARB iterations, and for sparse matrices frequent misses of L2 cache accesses
are expected. Therefore there is a possibility to parallelize only the linear system solver,
i.e. the BiCGStab routine. Parallel algorithm is obtained quite easily by putting special
directives in saxpy, dot product, matrix-vector multiplication and preconditioner oper-
ations. In this way, the discretization is done sequentially on the master thread only,
while the linear systems of equations are solved in parallel.

The first important result following from computational experiments is that a direct
application of OpenMP version of the parallel algorithm is impossible since the asyn-
chronous block version of the Gauss-Seidel preconditioner does not give converging
iterations. Therefore, we have used a diagonal preconditioner for all computational ex-
periments presented in this subsection. In Table 1.10, we compare the results obtained
by both algorithms, namely the DD parallel algorithm with MPI and the OpenMP par-
allel algorithm. As can be seen, the same conclusion can be drawn for both cases: we
obtain a reasonable speed-up only for 2 processors. The use of 3 and 4 processors is
inefficient on the multicore computer used in our tests.

Next, the information collected by the profiling of the OpenMP parallel algorithm is
presented. Our goal was to see and compare the performance of parallelization of dif-
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\ |P=1 |P=2|P=3 |P=4 |

Tp 198.0 | 1399 | 138.4 | 139.1
DD MPI | Sp 1.0 1.42 1.43 1.42
Ep 1.0 0.71 0.72 0.71
Tp 202.3 | 155.0 | 155.3 | 1519
OpenMP | Sp 1.0 1.31 1.31 1.33
Ep 1.0 0.65 0.65 0.66

Table 1.10: Performance results of DD and OpenMP parallel algorithms with the diag-
onal preconditioner on the multicore computer: Intel Core 2 Quad processor Q6600 @
2.4 GHz

ferent sections of the linear solver. In Table 1.11, the summary of execution times of
four constituent parts of the algorithm are given, here saxpy denotes for the CPU time
of all saxpy type operations, dot is the overall time of all dot products and norm compu-
tations, mult denotes the CPU time of all matrix — vector multiplications, and precond
is the time spent in the implementation of the diagonal preconditioner.

section | P=1|P=2|P=3|P=4|

saxpy 386 | 31.3 31.8 32.1
dot 17.8 13.6 13.3 12.9
mult 80.0 | 48.1 46.4 | 43.8
precond | 47.1 41.8 | 432 | 429

Table 1.11: Profiling results of the OpenMP parallel algorithm on the multicore com-
puter: Intel Core 2 Quad processor Q6600 @ 2.4 GHz

It follows from the results in Table 1.11 that the considerable speed-up is achieved only
for the matrix—vector multiplication part, but even here the speed-up is significant only
for two processors. Again, this can be explained by the memory access bottleneck.
The ratio of computations to data movement is better in matrix—vector multiplication,
therefore we get better parallelization for that operation.

1.6 Summary

A parallel algorithm is described for the Navier-Stokes-Brinkmann equations based on
Algorithm 1. The first parallelization approach is based on the data decomposition
method. The data is distributed among processors by using two approaches. A struc-
tured reference grid is distributed using the optimal decomposition topology. In the
second one, the general mesh is decomposed using the Metis library. A theoretical
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model is proposed for the estimation of complexity of the given parallel algorithm. The
theoretical and experimental results obtained are in very good agreement, and thus it
can be predicted that the proposed parallel algorithm scales well, and it can be used
efficiently for simulation of oil filters with complicated 3D geometries.

The results of the performance tests show that fine-tuned MPI implementation of the
domain decomposition parallel algorithm for the sequential Algorithm 1 performs very
well not only on distributed memory systems but also on shared memory systems. MPI
communications inside the shared memory are well optimized in the current implemen-
tations of MPI libraries.

The problems with scalability on some of the shared memory systems (e.g. multicore
computers) arise due to the hardware architecture and not due to the use of MPI. Unfor-
tunately, the use of simple shared programming tools cannot overcome this problem of
hardware architecture.

Despite the gains in parallel computing, it still requires expensive systems like clusters,
multi processor machines and complicated hardware. In the next chapter, we aim to
discuss the subgrid algorithm which benefits from solving problems on a coarse scale
with fine scale accuracy with significantly less computational resources.






Chapter 2

On a numerical subgrid upscaling
algorithm for Navier Stokes
Brinkmann equations

2.1 Introduction

The discussion in this Chapter is motivated by the fact that the demands from industry
regularly pose new challenging problems to applied mathematics. In many cases the
existing algorithms do not work, and new specialized algorithms for classes of industrial
problems are needed. In line with Chapter 1, we still focus our discussion on developing
algorithms for a class of filtration problems (filtering solid particles out of liquid). As
it was observed, numerical simulations allow significant reduction in time and costs for
design of new filter elements with proper flow rate - pressure drop ratio. Additionally,
it is observed that the CFD simulations assisting this design are characterized by two
peculiarities:

e High accuracy for the flow velocity within a filter element is not required, as long
as the pressure drop over the complete filter element is properly computed.

e 30-36 simulations with different flow rates and different viscosities have to be
performed for each geometry to evaluate the performance of the filter element at

different flow conditions.

For this chapter, our aim is to develop efficient algorithms for this particular class of
problems and to account for the peculiarities mentioned above.

In the case of liquid filtration, the flow is usually laminar, and it is described by (Navier-
)Stokes-Brinkman system of equations (1.1) discussed in Chapter 1.

Most of the filters are characterized by the complicated shape of the filtering media
(e.g. pleats and/or perforated porous layer/s), and/or by the complicated shape of the
filter element housing (e.g. ribs, perforated inner cylinder, etc.). Some examples are
illustrated in Figure 2.1.
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Figure 2.1: Some examples of the complex geometries and complicated shapes of the
filtering media.

The existing commercial (e.g. Gambit, http://www.fluent.de) and academic (e.g. Net-
gen, http://www.hpfem.jku.at/netgen/) grid generators, are often unable to generate grids
in such complicated domains, even when an experienced researcher is the user. In many
cases, the generated grid is either of very bad quality, or the grid cannot be generated
at all. Most engineers working on the design of filter elements are not experienced
in grid generation techniques, and an alternative approach is needed in this case. The
grid generation procedure works robustly if one restricts to voxel or brick elements, and
therefore we chose this approach. A pre-processor based on the level set method (cf.
[64]) is used to process the given CAD data for attaining the assembly of a filter hous-
ing in the form of a computational domain (union of voxel or brick control volumes).
Different conventions can be used to characterize a control volume by a certain material
type. Most commonly, the material type of its center point is assigned to the whole CV,
or the dominating material type in the control volume is assigned to it. This grid gener-
ation approach is stable, and a fluid flow solver using the aforementioned grid generator
is successfully used for a variety of industrial applications (cf. [31, 56, 57]). However,
in general, such types of grids contain more elements: in certain cases, a very fine grid
has to be used to accurately resolve all geometrical features, which in turn results in a
large number of elements.

For cases where geometrical features are at different scales, adopting approaches for
multiscale problems can provide an increase in efficiency of flow algorithms. Recall
that Darcy equation can be rigorously derived as a macroscopic model for flow in porous
media in the case of periodic or statistically homogeneous porous media, starting from
Stokes system of equations at pore scale (cf. [48]). Depending on the the porosity,
Allaire [2] homogenizes Stokes problem to Darcy or to Brinkman system. Clearly, the
homogenization approach works under very strong restrictions, i.e. periodic or statisti-
cally homogeneous porous media, Stokes (and not Navier-Stokes) system at pore scale.
The homogenization theory works in the case of scale separation, and it allows for a
drastic reduction of the computational costs: for example, only one auxiliary problem
is solved in a periodicity cell on the fine scale, its solution is post-processed to compute
the coefficients of the macroscopic equation, and further the macroscopic equation is
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solved at the coarse scale. The coefficients of the macroscopic equation in this case are
called upscaled, homogenized, or effective coefficients. In the cases when the homoge-
nization theory does not work, its ideas are still often used within numerical upscaling
approaches, such as Multiscale Finite Element Method [49], Mixed Multiscale Finite
Element Method, Mixed MsFEM, [43], Multiscale Finite Volume Method [16, 45, 59],
Subgrid Method [5, 6, 54, 87]. Another approach which serves as a building block for
numerical upscaling procedures is the volume averaging approach combined with Rep-
resentative Elementary Volume, REV, concept (cf. [63]). Unlike the homogenization
theory, this approach is not based on asymptotic expansions, but on volumetric averag-
ing of functions and their derivatives. For example, if a block of porous medium is large
enough (i.e. representative), its Darcy permeability is defined from the requirement that
the macroscopic pressure drop is equal to the microscopic pressure drop computed by
solving Stokes problem at pore level.

In the case of saturated flow in porous media, homogenization is studied either in con-
nection with the mesoscopic and macroscopic Darcy models (upscaling elliptic equa-
tion with oscillating coefficients to macroscopic elliptic equation, i.e. upscaling Darcy
to Darcy (cf. [60]), or in connection with impermeable porous matrix and fluid flow in
the (connected) pore space, i.e. upscaling Stokes to Darcy (cf. [48]). To the best of
our knowledge, upscaling of Stokes-Brinkman system at mesoscale to some macroscale
system of equations is not studied in the literature. In this respect, it is worthwhile to
note that for the case of industrial filters under consideration, the appearing multiscale
problems contain fluid, solid, and porous regions.

In this chapter, we discuss a subgrid upscaling algorithm for the flow equations. Essen-
tially we are working with slow flows, namely Stokes-Brinkman regimes at mesoscale,
but also Navier-Stokes regimes are carefully computed in some cases. The subgrid
approach was recently used in some simpler applications, namely the Darcy problem
(single phase flow in porous medium) (cf. [9], [26], [87]). In the subgrid approach one
solves a problem on a coarser grid, but accounts for the unresolved geometrical fea-
tures by solving local auxiliary problems on finer grid in all, or in some of the coarse
cells. This chapter deals with applying a similar approach in solving the incompress-
ible Stokes-Brinkman equations in highly complex domains. The numerical solution
for such systems is computationally expensive in terms of memory usage and computa-
tional time, and the subgrid approach is developed to compute a reliable pressure drop
at reasonable computational costs.

The remainder of the chapter is organized as follows. A one-scale model (it can be also
called single grid model), i.e. the Stokes-Brinkman system of equations, is described in
Section 2.2. It includes a short description of the Finite Volume discretization, and the
Chorin projection method employed for solving the model numerically. Section 2.3 is
devoted to introducing the concept of quasi-porous coarse cells and to the description
of the subgrid algorithm for the Stokes-Brinkman system. Due to lacking theoretical
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Figure 2.2: Illustration of an example of quasi porous cell/s where the fine scale resolves
the geometrical details and the coarse scale does not.

results for the upscaling of the Stokes-Brinkman system, we perform a numerical study
of this approach. In Section 2.4, we present validation results for the developed subgrid
upscaling procedure. Results from numerical simulation of industrial filters are also
presented in this Section. Finally, some conclusions are drawn.

2.2 Governing equations and single grid algorithm

The fine scale system includes the Stokes-Brinkman system of equations, as described
in detail in Chapter 1, in a complicated 3D domain £, consisting of porous, solid and
fluid subdomains, i.e. Q = QpU QgU Q.

Darcy
al? —\ = ~—1 2
p—= — V- (uVid)i+uK i@+Vp=f (2.1)
ot SN——

Stokes

V-i=0.

The notations follow from Chapter 1. The flow domains considered in the current work
are of different geometric characteristics, as shown in Figure 2.1. The governing equa-
tions are solved subject to the following boundary conditions which are typical in filtra-
tion problems. At the inlet of the free flow region, a velocity profile is specified. At the
outlet, zero pressure is imposed. No slip boundary conditions are imposed elsewhere on
walls.

The coarse scale system also employs the Stokes-Brinkman system of equations but
with upscaled permeability for a specified coarse grid, such that the Equation (2.1) is
replaced with

. . -1, 5
poh - (uViig) + K, ;o + Vo = fo 2.2)

where iy, po denote the coarse scale velocity and pressure respectively. Here chf
stands for the effective upscaled permeability, and the details of its computations are

given in Section 2.3.
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Single grid algorithm

Lets recall from Chapter 1 that the computational domain is a connected union of con-
trol volumes (CVs), where each CV is a brick. The equations are discretized by a
finite volume method. Collocated arrangement of the unknowns i and p is used, i.e.
the unknowns are assigned to the centres of CVs. Chorin method [21] for (Navier-
)Stokes equations [38, 41], with a proper modification for (Navier-)Stokes-Brinkman
case [23], is used as a projection method decoupling velocity and continuity equations.
Momentum equations are solved to obtain an approximation for the velocities. Pressure
correction system is then solved as a projection step after which further corrections are
found to fulfill the continuity equation. To accelerate the computations, the algorithm
is also parallelized, as discussed in Chapter 1. A detailed description of the sequential
and parallel numerical algorithm was given in Chapter 1.

2.3 Subgrid Algorithm

In this section, a subgrid algorithm for the Stokes-Brinkman system is discussed. The
developed algorithm is also (carefully) used, in some cases, for the Navier-Stokes-
Brinkman system of equations. This is done in the sense of iterative upscaling or local-
global iterations (cf. [30] for the iterative upscaling for the Darcy problem). The goal
is to develop an algorithm which computes not only the pressure drop across a filter
element on a relatively coarse grid, but also preserves the pressure drop accuracy cor-
responding to a finer grid. The idea is to account for a subgrid resolution on the coarse
grid by solving proper local auxiliary problems on the fine grid. The solution is further
processed to calculate the permeability of the quasi-porous coarse cells.

For a given computational domain, 2, we consider a fine grid and a coarse grid. The
fine grid is assumed to contain all important geometrical details, but solving the Stokes-
Brinkman system of equations on this grid is memory and CPU intensive, or even im-
possible. As discussed in the Introduction, a material type (in our case fluid, solid, or
porous) is assigned to each fine grid cell during the pre-processing stage. The coarse
grid has a size, such that the problem is solvable at acceptable computational costs.
Each coarse cell is a union of fine grid cells. Each coarse cell is considered, and the
coarse grid cells containing mixture of solid & liquid, or liquid & porous, or solid &
porous, or solid & liquid & porous, fine grid cells, are defined as quasi-porous cells, for
which effective (upscaled) permeability tensors have to be computed. It is assumed that
the Stokes-Brinkman equations describe the flow on the fine grid and the coarse grid.
In the latter case, the coarse scale permeability is the effective (upscaled) permeability
tensor K, rr- Currently, the diagonal permeability tensor i.e. Keff = {K11,K2,K33} is
considered, and the extension to the full tensor is ongoing work.

The computation of upscaled coefficients requires solving the local fine scale problem
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in some coarse grid cells. Two approaches are considered:

e The upscaled (effective) permeability is computed for each individual quasi-porous
coarse grid cell. Similar to the block-permeability upscaling procedure for single
phase flow in porous media (cf. [88]), the localization boundary conditions are
specified on its boundary (see discussion below for more details; possible over-
sampling is also discussed below);

e Alternatively, certain union of coarse cells is considered as a single block for
which auxiliary problem is solved on the underlying fine grid. Thereafter, the
upscaled (effective) permeability is assigned to each of the coarse cells forming
the block. This approach is motivated by the Representative Elementary Volume
concept, where a reasonably large heterogeneous (at a fine scale) volume has to
be considered, in order to assign effective (upscaled) coarse scale properties to it.

The upscaling approach considered here is similar to the one used by Durlofsky et
al.[30] for the elliptic pressure equation. The Darcy law is used there to compute the
effective (upscaled) permeability of a coarse cell from the averaged fine grid pressure
and velocity. The different types of (localization) boundary conditions can be specified
for the auxiliary problems. Periodic boundary conditions suit very well for periodic
geometries. The pressure drop in one of the directions, and no flow (or symmetry) in
the remaining directions, are often used. In the homogenization approach considered in
[2], the constant velocity at infinity is prescribed as the boundary condition for the aux-
iliary problem. It is wellknown that the choice of the localization boundary conditions
plays an important role in numerical upscaling methods, and we are currently working
on comparing results for different (localization) boundary conditions. This work, how-
ever, will be reported elsewhere. Currently, the following local boundary conditions are
considered for the auxiliary problems for the Stokes-Brinkman system:

¢ inflow velocity U, at the inlet face (for the current direction);
e outflow b.c. at the outlet face: p = P,,,, % =0;

e symmetry b.c. elsewhere.

The auxiliary problems are solved for each direction d with the numerical algorithm 1
in Chapter 1. Next, the average inlet pressure P, is computed from the local fine scale
solution and is used to obtain the effective permeability K, of the quasi-porous cell in
direction d from the Darcy law [63]:

UL,
Ky = UUinlLaq

= - 2.
Pin_Pout, ( 3)

where L, is the distance between the inlet and outlet faces. The use of this approach
is motivated by the fact that we are interested in computing the accurate pressure drop
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of the complete filter element. By calculating the effective permeability using Equation
(2.3), we account for the resistance of the geometrical features which were otherwise
unresolved on the coarse computational grid.

Implementation of the subgrid method

Here, we shortly discuss the Subgrid method. The algorithm consists of four main

components:
1. Selection of the quasi-porous coarse cells

2. Solution of the auxiliary problems with a fine grid resolution on selected coarse
cells using Algorithm 1 with boundary conditions, as specified above

3. Computation of the effective permeabilities for the quasi-porous cells

4. Solution of the full coarse scale problem with Algorithm 1, using the calculated
effective permeabilities.

Step (1) includes a mapping of each coarse cell onto the underlying union of fine grid
cells. If the composition of fine grid cells contains a mixture of fluid and/or porous
and/or solid, it is marked with a ’quasi-porous’ flag. Alternatively, at this stage, a block
of coarse cell can be specified as quasi-porous.

Step (2) defines the local auxiliary problem on the quasi-porous coarse cells. The same
space discretization, i.e. the finite-volume method, is considered on the fine scale and
a solution is computed. Note, that the additional layers can be added to a quasi-porous
cell. In upscaling techniques, this is known as oversampling. Mostly, the domain is
extended by a ’border ring’ with fine grid cells. We consider additional fine scale bor-
dering layers of type ’fluid’ on a specified boundary. The number of additional layers
is denoted by / in the next section. If / = 0, it is a purely local auxiliary solve. If / =1,
it means that the auxiliary problem is solved in coarse cell extended with the boundary
layers in the specified direction, as shown on Figure 2.5(d).

Step (3) assigns the effective permeability tensors to the coarse cells, postprocessing the
auxiliary fine grid solution computed from step (2). Steps (2) and (3) are performed
for every quasi-porous cell selected in step (1). Note, that in the case when the coarse
cells/blocks are periodic (e.g., this is the case when each coarse quasi-porous block
contains one pleat), the auxiliary problem needs to be solved once for each type of
quasi-porous coarse cells. Furthermore, the once computed permeabilities are reused
in the computations with the same geometry, but with a different flow rate or viscosity
(recall that 30-36 simulations have to be performed for each filter element geometry).

Step (4) includes the implementation of the standard algorithm (1) which solves the
Stokes-Brinkman system of equations on the coarse grid.
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Remark I: (1) The same solver can be used for solving global coarse scale problem and
auxiliary problems on the fine grid. (2) Different stopping criteria can be specified for
the local and global problems.

Remark 2: 1f the number of quasi-porous blocks are too large, Steps (2)-(3) become the
most time consuming. Implementation is modular-based and current work in progress
includes parallelizing the subgrid method, such that the auxiliary problems are dis-
tributed to different processes for faster computations.

2.4 Results and validation

The results from numerical simulations are presented in this section. The performed
simulations can be divided into three groups:

e Validation for the upscaled permeability computation and for thin porous layer
(Subsections 2.4.1 and 2.4.2). Stokes flow around a spherical obstacle is con-
sidered in the Subsection 2.4.1 to check the influence of the used voxel grid as

well;

e Numerical study of Brinkman to Brinkman upscaling. As mentioned earlier, the
upscaling approaches for the Stokes and Darcy flows are theoretically considered
in the literature, and due to the lack of theoretical results for the upscaling of
Brinkman equation, we perform a numerical study here;

e Simulations for the industrial filters with complicated geometry of the porous
media (perforated layer in one case, pleats in the other case), and complicated ge-
ometry (solid mesh supporting the perforated layer in one case, and complicated
filter element housing in the other case).

Whenever possible, the results from the simulations with the upscaled equations are
compared with the results obtained with the fine grid problem for the same geometry.
This is the methodology employed for the validation of the developed subgrid algorithm.
It should be noted that the single grid simulations have already been validated against
measurements (cf. [69]).

The computations and CPU time measurements were performed on dedicated node of
Fraunhofer ITWM cluster Hercules’ with dual Intel Xeon 5148LV ("Woodcrest’) pro-
cessor (2.33 GHz).

2.4.1 Permeability for a periodicity cell: flow around a sphere

For better understanding of the subgrid algorithm, an example of an auxiliary problem
for a quasi-porous coarse cell is considered. Consider a cube occupied by the fluid with
a sphere-shaped solid obstacle inside, as shown in Figure 2.3. Suppose that we consider
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a domain which is a periodic arrangement of such cells. Permeability for such a geom-
etry is computed many times via homogenization and other upscaling approaches, and
it is also measured. Our goal for solving the Stokes flow in this geometry is twofold. i.)
From one side, we want to check if the boundary conditions for the auxiliary cell prob-
lems and REV type approach for calculating the upscaled permeability, as described
above, gives good results; ii) Additionally, we want to check the influence of the voxel-
based discretization grid that is used to discretize the sphere.

The auxiliary problem is solved on the fine grid resolution scale of 0.25mm with
the following input data: cube size - L = 12mm, with different sized spheres with
radius r; inflow velocity U;, = 1.1574mm/s, P,,, = Okg/(mms?), density(p) = 1.0 -
10~ 7kg/mm?, viscosity(it) = 1.0-10~*kg/(mms). Table 2.4.1 shows the results ob-
tained by our algorithm with permeability computed using Darcy law, denoted by Kpgcy.
The computed values are compared with the results on unit cell problem reported by
Griebel and Klitz [42] and Sangani and Acrivos [82], denoted by Kc.;; and Ky periment
respectively. It is observed that the computed results are in good comparison with the
cited results. A systematic study on grid resolution was performed, and it concluded that
the error reduces with finer grid resolutions where the voxel-based disretization better
approximates the solid sphere.

OXZ: y=28.000000 media

Figure 2.3: Cube with solid sphere inside. Inlet, outlet and symmetry walls are marked
with blue, green and red colors respectively.

| r ‘ Kparey ‘ K¢, (Griebel, Klitz) ‘ KExperimens (Sangani, Acrivos) ‘
02 | 1.18x107" | 1.23x 107! 1.23x 107!
0.25 | 7.34x 1072 | 7.40 x 1072 7.46 x 1072
03 | 435x1072 | 4.46x 1072 4.45 % 102
0.35 | 248 x 1072 | 2.52 x 1072 2.52%x 1072

Table 2.1: Comparison of permeability in a 3D array of spheres (cell problem) for
different radii
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2.4.2 Channel filter with the single porous layer

This example is chosen to be a simplified filter element geometry (parallelepiped) with
a thin layer of porous media. The computational domain is {(x,y,z) : 0 < x < 12,
0 <y<24, 0<z<?24 mm}, with a single porous layer {(x,y,z) : 4.5 <x <5.5,
0 <y<24,0<z<24 mm}, as shown in Figure 2.4. On coarse grids, when the step
size of the grid is bigger than the thickness of the layer, the latter can not be correctly
resolved. The thickness of the filtering medium is correctly resolved on 0.5mm grid.
However, on grid 2mm, the pre-processor provides a porous layer with 2 mm thickness
(recall that the pre-processor assigns to a grid cell the material type of its centre point).
Solving problem (2.1) with U;, = 28.935185mm/s, p = 1.0- 10~ kg/mm?>, u = 1.0-

2 we obtain (correct)

10~*kg/(mms), and isotropic permeability K = 1.0 - 10~*mm
pressure drop of 28.95kg/(mms?) on 0.5mm grid, and a twice bigger (wrong) value,
i.e. 57.88kg/(mms?) on 2mm grid. Note, that the considered flow is essentially one-

dimensional one and one can easily find its solution.

OXZ: y=12.000000

OXZ: y=12.000000
OXZ: y=12.000000

24 O 24 24
18 18 18
12 12 12
6 6 6
0 1 0 — 0

0 456 12 ]

0 456 12
0 2 4 6 8 10 12
(a) 0.5mm grid (b) 1mm grid (c) 2mm grid

Figure 2.4: Channel filter with the single porous layer.

Application of the subgrid algorithm for 2mm coarse and 0.5mm fine grids gives 144
(12 x 12) quasi-porous cells, which are all identical in this case, as shown in Figure 2.5
(a). Solution of the auxiliary problem in X direction gives the value of permeability
K11 =2.0-10~* (the other components of the permeability tensor are not important in
this case). Using the obtained permeability for the quasi-porous cells, we solve the
problem on the 2mm coarse grid, and get the correct pressure drop, i.e. 28.95.
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Figure 2.5: Auxiliary problems for 2 and 1 mm quasi-porous cells in X direction for
channel filter with the single porous layer.

Including additional layers at inlet and outlet

Using 1 mm size for the coarse grid, we get two different geometries of quasi-porous
cells in X direction, as illustrated in Figure 2.5 (b) and (c). Solving auxiliary problems
for these geometries gives wrong values of the upscaled permeability in X direction:
Ki1 = 1.60- 107 for left cell and K;; = 2.67 - 10~ for right cell. This is because the
fine porous cells are touching the outlet of auxiliary problem in first case, and the inlet in
the second, which does not allow full development of the flow. To deal with this issue,
we have an option of adding ’border rings’, which are a specified number of layers
of fine fluid cells before the inlet and/or outlet of the actual domain in any specified
direction. Figure 2.5 (d) shows the auxiliary problem for the right 1 mm cell with 1
additional fluid layer before the inlet. Solving this auxiliary problem gives correct value
of upscaled permeability: Ki; = 2.0- 10~*. The same value is obtained for the left cell
with additional fluid layer before the outlet. Finally, solving the global problem on
the coarse 1 mm grid with the upscaled permeabilities gives correct value of the global
pressure drop, i.e. 28.95.

2.4.3 Channel filter with single porous layer with hole

As a next example, the same filter geometry is considered as in subsection 2.4.2 but with
a small hole in the porous layer - {(x,y,z) : 4.5 <x<5.5,105<y<11.5,105<z<
11.5 mm} and with U;, = 2.8e — 03. This hole is correctly resolved on 0.5mm grid. On
2mm grid, this 1 x 1 x 1 mm hole is exactly in the center of 2 x 2 X 2mm coarse cell, as
illustrated in Figure 2.6 (a) and (b). Figure 2.6 (a) is a view along the channel, whereas
Figure 2.6 (b) is a view across the channel. Therefore, as opposed to the previous case,
this cell is fluid on 2mm grid, and the cross section of the hole as well as the thickness of
the porous layer are wrongly depicted. On 1 mm grid, all 8 1 x 1 x 1 mm cells, covering
the hole, have a porous center and therefore remain porous, as shown in Figure 2.6.
Hence, 1 mm grid resolution remains the same as shown in Figure 2.4(b) in Section
24.2.

In Table 2.2, results for the different grid resolutions using the single grid Algorithm 1
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Figure 2.6: Auxiliary problems for 2 and 1 mm quasi-porous cells in X direction for
channel filter with the single porous layer with a hole.

are presented. On the 2mm grid, the hole is too big, therefore we get relatively small
pressure drop. The grids with stepsize 0.5 and 0.25mm resolve the hole exactly (see
Figure 2.6 (b)). Clearly it is expensive to compute accurate solution on a single coarse
grid, and a subgrid approach is the remedy for efficient simulations.

Grid Number | Memory | CPU time | Pressure drop
resolution | of CVs | [MB] [s] [kg/(mms?)]
2mm 864 0.80 2 0.00353
0.5mm 55296 33.73 206 0.01486
0.25mm | 442368 247.1 2489 0.01669

Table 2.2: Simulation results for channel filter with single porous layer with hole (ob-
tained with numerical algorithm 1).

Next, we discuss the results of the subgrid algorithm for this problem. In Table 2.3,
we present the results obtained for 2mm coarse and several (0.5, 0.25mm) fine scale
combinations. Calculations were done with different number of additional fluid layers
[ used for the solution of the auxiliary problems. We show the computed values of the
upscaled permeability K;; for the quasi-porous cell with hole and the global pressure
drop dP. Also, the CPU time T5; of preprocessing step only is given, because the
subsequent solution of system on the coarse 2mm grid was taking less than 10 seconds
for all shown cases. The maximal memory used by the solver in all cases was 1.08 MB
(coarse grid solver + upscaled permeability tensors).

2.4.4 Channel filter with periodic porous layer

The next example is a channel/parallelepiped filter {(x,y,z) : 0 <x <75,0 <y <15,
0 <z <15 mm} with porous layer (30 < x < 45) consisting of two porous materials
with a periodic structure, as shown in Figure 2.7.

The first porous material(in yellow) in Figure 2.7 has permeability K = 1.0- 10~* mm?.

The second porous material (in red color) is more permeable with permeability K =
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| Scales | l ‘ K“ ‘ TSG ‘ dpP ‘

2/0.5mm | 0 | 0.0226 | 14 | 0.0168
2/0.5mm | 2 | 0.0272 | 140 | 0.0156
2/0.5mm | 4 | 0.0273 | 203 | 0.0156
2/0.25mm | 0 | 0.0198 | 155 | 0.0177
2/0.25mm | 2 | 0.0217 | 345 | 0.0172
2/0.25mm | 4 | 0.0218 | 516 | 0.0171

Table 2.3: Simulation results for channel filter with single porous layer with hole (ob-
tained with Subgrid algorithm). [ is the number of additional fluid layers. Kj; is the
upscaled permeability obtained for quasi-porous cell with hole. Tgss is CPU time of
preprocessing step. dP is the obtained global pressure drop.

OYZ: x=40.000000

15
OXZ: y=3.000000 H H
12' — 10 g e
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0 20 40 60 = g
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(a) (b) (3x3:8x78)

Figure 2.7: Channel filter with two peridic porous layers (3 x 3) represented in yellow
and red. (a) and (b) represent two different cross sections of x — z axis and y — z axis of
the filter.

2.0-10~*mm?. The problem (2.1) is solved with the same parameters as before.

For Figure 2.7, the results from the Algorithm 1 on the fine scale, 24 x 24 x 24, are
obtained. The pressure drop dP = 80.005 is obtained in 9.42 seconds. The grid is
further coarsened 8 times, such that 8 x 8 x 8 fine cells comprises of one coarse cell and
the results using the coarse and the fine grid are obtained using the subgrid algorithm.
The results obtained are dP = 80.008 in 4.55 seconds.

Figure 2.8 (a) shows a geometry with a fine scale discretization containing 30 x 30 x 30
finite volumes. Compared to Figure 2.7(b), there is 1.5% more of the less permeable
porous material and we expect a greater pressure drop across the filter element. Using
the Algorithm 1, results in dP = 86.212 in 21.65 seconds. The grid is then coarsened 3
times, such that 10 x 10 x 10 fine cells constitutes one coarse cell. Using both, fine and
coarse scales, the subgrid algorithm results in dP = 86.215 in 8.39 secondss.
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Figure 2.8: Channel filter with peridic porous layer.

Figure 2.8 (b) illustrates five, instead of three, periods of the second type of the porous
material which has a higher permeability. The geometry compares with the geometry
shown in Figure 2.7. We see that pressure drop dP = 80.012 is obtained in 52.67 sec-
onds using Algorithm 1 using the fine scale discretization of 40 x 40 x 40 cells. The
coarse discretization contains 5 x 5 x 5 cells. Subgrid algorithm results in dP = 80.015
in 21.82 seconds.

Lastly, instead of three, periods of the second type of the porous material which has a
higher permeability for the geometry that compares with the geomtery shown in Figure
2.8. We see that pressure drop dP = 86.249 is obtained in 124.96 seconds using Algo-
rithm 1 using the fine scale discretization of 50 x 50 x 50 cells. The coarse discretization
contains 5 x 5 x 5 cells. Subgrid algorithm results in dP = 86.224 in 41.23 seconds.

2.4.5 Channel filter with the combi layers

The next example is chosen to serve the needs of the design of new generation of filters
as shown in Figure 2.9 (a) . It should be noted that oil filters are often equipped with a
so called bypass option. The bypass prevents the oil to filter through the porous media,
especially at cold temperatures (i.e. high viscosity ). The idea behind such design was
to prevent the destruction of the filter due to the high pressure in such cases. Instead, the
oil bypasses the filtering medium via some small pipe. Obviously, the bypassed oil is
not filtered in this situation. Alternatively, the new league of filters are designed without
the bypass option, but with an additional layer of a fine perforated filter layer that allows
the oil to flow through the holes at cold temperatures. Additionally, a coarse filter layer
in the form of a solid mesh is added to filter out the large particles. With the support of
the numerical simulations, the size of the holes and the distance between the two porous
layers are designed such that most oil flows through the porous part of the first layer
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at high temperature, and not through the holes. It is common understanding that the
porous layers are the primary cause of the pressure drop across the filter. This is true
only when the filter element is designed in a way that there is enough space between
the inlet(bottom) and the porous layer, and between the porous layer and the outlet(top).
Therefore, we study this filter in a simplified geometry, i.e. a simple channel geometry
as shown in Figure 2.9 (b). The considered filter element is parallelepiped {(x,y,z) :
2<x<67,—11 <y < -2, —-67 <z< —2mm} with two filtering porous layers and a
supporting solid mesh between them, as shown in Figure 2.9 (b). Additionally, the first
porous layer (—8 <y < —7) has a set of 6 x 6 holes, as shown in Figure 2.10 (a), where
each hole is a cube: 1 x 1 x 1 mm, as illustrated in Figure 2.11 (a).

OYZ: x=10

-2

-11-8-5-2

(b)

Figure 2.9: (a) A real industrial filter with multiple porous media layers. (b) Chan-
nel filter with the multiple porous layers (a simplified variant of the industrial filter to
understand real processes).
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Figure 2.10: Cross sectional view of the complicated structure of the multiple porous
layers in the channel filter.
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When using the 2mm resolution, the mesh layer is not captured at all and both porous
layers have the wrong, doubled thickness, on this grid: —8 <y < —6and —6 <y < —4,
respectively. The 1 mm grid represents the channel and all three layers (including the
solid mesh) correctly except for the holes in the first porous layer. As shown in Fig-
ure 2.11, all 4 1 x 1 x 1 mm cells, covering the hole, have a porous center and therefore
are represented as porous in 1 mm grid. The 0.5 and 0.25mm grids resolve the whole
geometry of the filter exactly.
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Figure 2.11: Resolution of one of the holes in first porous layer

System 2.1 is solved with the following flow parameters: U;, = 3.944773mm/s, p =
1.0- 10~ 7kg/mm?, u = 1.0-10~*kg/(mms), isotropic permeability of first porous
layer, K = 4.2- 1079 mm?, and isotropic permeability of second porous layer, K =
7.5-10~*mm?. Note that in this test case the main flow is in Y direction.

In Table 2.4, the results from the numerical algorithm 1 for different grid resolutions
are presented. It is due to the aforementioned errors in the geometry resolution for 2
to 1 mm grids, that the resulting pressure drop is over estimated. As one goes to finer
resolutions, i.e. 0.5 to 0.25mm, the geometry is resolved more accurately resulting in
a more accurate pressure drop. However, computation on the finer grids come with the
cost of extensive CPU time consumption and memory usage.

Grid Number | Memory | CPU time | Pressure drop
resolution | of CVs [MB] [s] [kg/(mms?)]
2mm 5445 4.42 63.54 16.762
I mm 37400 26.49 465.02 11.627
0.5mm 299200 | 182.70 | 28271.47 1.579
0.25mm | 2393600 | 1338.37 | 518425.0 1.762

Table 2.4: Simulation results for channel filter with multiple porous layers (obtained
with Algorithm 1).

Next, we present the results from the subgrid algorithm for this problem. 2 mm resolu-
tion is too coarse to be used even as the coarse scale, where the 1 mm scale seems to be
an appropriate choice. Alternatively, a bigger block of coarse cells can be used as an
auxiliary problem for computing permeability. As discussed above, for 1 mm grid the
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only cells, which will be detected as quasi-porous, are the cells covering the holes in
first porous layer (see Figure 2.11 (a)). It means that the total of 4 x 6 x 6 = 144 quasi-
porous cells will be detected. As can be seen from Figure 2.11 (c) and (b), solving the
auxiliary problem for the main component of upscaled permeability tensor - Ky, the
flow will be almost aligned with the Y axis and we can expect good results even without
the use of full permeability tensor. It is also clear that the additional fluid layers are
needed for the auxiliary problems.

| Scales | | ‘ K22 ‘ TSG ‘ Troral ‘ dP ‘
1/0.5mm | 1] 0.01092 | 54.8 781.5 | 1.6919
1/0.5mm | 2| 0.01177 | 93.4 838.3 | 1.6289
1/0.25mm | 1 | 0.00588 | 883.3 | 1502.9 | 2.3862
1/0.25mm | 2 | 0.00863 | 787.7 | 1464.8 | 1.9173
1/0.25mm | 3 | 0.00960 | 993.0 | 1692.1 | 1.8101
1/0.25mm | 4 | 0.00972 | 1126.3 | 1829.4 | 1.7984

Table 2.5: Simulation results for channel filter with combi layers (obtained with Subgrid
algorithm). / is the number of additional fluid layers used for auxiliary problems. Kj3; is
the upscaled permeability in flow direction obtained for one of the quasi-porous cells.
Tsc is CPU time of preprocessing step. Tioq is the total CPU time. dP is obtained
global pressure drop.

In Table 2.5 we present the results obtained for two coarse/fine grids combination: 1/0.5
and 1/0.25mm. Calculations were done with different number of additional fluid lay-
ers [, Reynolds number Re, and accuracy € used for solution of auxiliary problems.
We show the obtained values of upscaled permeability K>, for one of the quasi-porous
cells, CPU time T of preprocessing step and the total solver time 7;,4 (i.e. including
the CPU time of subsequent solution on the coarse 1 mm grid), and finally the global
pressure drop dP. The maximal memory used by the solver in all cases was 26.68 MB
(coarse grid solver + upscaled permeability tensors).

The results show that the additional number of layers (oversampling) is an essential
parameter in our case. Also, the choice of the coarse grid is important for the selection
of quasi-porous cells.

2.4.6 Simulation of real industrial Filters - Pleated filter

Lastly, another example of a real filter with complicated filter media is considered. Fig-
ure 2.12 shows a pleated filter geometry on coarse and fine grids. The coarse grid does
not resolve the shape of the filtering medium properly. Our aim is to solve the problem
using Equation (2.2) on the coarse grid, and employ the subgrid algorithm described in
Section 2.3 to compute the K, 7; for selected quasi-porous cells. Figure 2.12 (c) also
illustrates the quasi-porous block on which fine scale auxiliary problem is solved. It
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Figure 2.12: Pleats in the filter on different grids. Fine grid resolves the geometrical
shape of the filter and the pleats, where as the coarse grid does not. Subgrid treats all
pleats as a block of filtering medium with upscaled permeability computed using fine
scale.

should be noted that the number of cells in this block are fairly less compared to solving
the fine scale problem on the complete filter element. In fact, computing permeability
from simulation in a significantly smaller block gives the same results. If all the pleats
are of the same size, and the distances between them are equal, it is possible to consider
only one small block containing one pleat. The permeability is computed for this block
and then assigned to each coarse cell in the quasi-porous block from Figure 2.12 which
contains all the pleats.

In Table 2.6, we present the results of solving this problem with the numerical algo-
rithm 1 for two different grid resolutions. The coarse scale is of 1mm size and fine
scale resolution is 0.5mm. The results illustrate the extent to which the computational
time for solving a complete problem could increase with finer grid resolutions. Almost
100 times more computational time is required for a problem that is twice finer in grid
resolution. Note that different resolutions result in different geometries. For the coarse
grid, not only are the shapes of the pleats not correctly accounted for, but also the inlet
and outlet are not separated by the porous medium. In fact, the solution is sought for
different geometries and for obvious reasons, the pressure drop on the coarse grid is an

over estimation.

Note that the subgrid algorithm is employed as a preprocessing step for Algorithm 1.
Moreover, in industry, the subgrid method benefits from the fact that for each fixed ge-
ometry, many simulations are done using different physical parameters, such as density,
viscosity, inflow velocities etc. for assessing the filter performance. In this case, the
subgrid method can be used only once and precomputed upscaled permeabilities for the
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| Grid | dP (mbar) | Tsg | Tiora (5) |
Imm 2700 - 1421
0.5mm 1874 - 149102
subgrid-1mm-0.5mm 1760 63580 1420

Table 2.6: Results for geometries described in Figure 2.12.

quasi-porous cells/blocks can be further used in subsequent simulations.

2.5 Summary

A subgrid method is introduced and further developed as a computational method for
achieving acuurate solutions for our problem. It is mainly employed for cases where the
coarse computational grid is unable to accurately account for the complicated geometry
and filter media. Algorithm 1 discussed in Chapter 1 is used as the building block for
solving auxiliary problems on the quasi porous cells and for solving the global coarse
scale problem, with special emphasis based on reusability of solvers. The method em-
phasizes on the determination of upscaled quantities for use in subsequent coarse scale
global simulations. Fine scale solution is sought only on some quasi porous cell/s or
collectively on a block (a collection of coarse cells). The results were presented for
computer simulation experiments using three dimensional models of oil filters. It is
observed that the cell/block permeability is strongly influenced by the resolving grid.
CPU time and memory usage is reduced significantly using the subgrid method with the
resulting desired accuracy of the pressure drop, which characterizes the flow through
filters. In the next chapter, we propose another multiscale finite volume method for
solving flow in porous media using the Stokes-Darcy system of equations. As opposed
to upscaling of coarse scale operators, fine scale influences are captured via basis func-
tions. It also addresses the limitation of the subgrid method related to its inability to

resconstruct fine scale solutions.






Chapter 3

On a multiscale finite volume
method for the Stokes-Darcy
equations

3.1 Introduction

This chapter concerns another algorithm for the multiscale problems, namely the Mul-
tiscale Finite Volume (MSFV) method, which provides not only an accurate solution at
the coarse scale, but also allows to reconstruct good approximations to the fine scale
velocity. A number of industrial and environmental problems are characterized by fine
scale heterogeneities and/or fine scale features of the geometry. The classical simulation
techniques lack the potential to account for the fine scale heterogenities, and it is almost
impossible or very expensive to solve such problems on feasible grids. To deal with this
resolution gap, a variety of numerical multiscale approaches were developed in the last
two decades. In the field of flows in heterogeneous porous media, these include Mul-
tiscale Finite Volume (MSFV) Method [59], Multiscale Finite Element Method (Ms-
FEM) [49] and the references therein, Mixed MsFEM [1, 43], Heterogeneous Multi-
scale Method (HMM) [35], Subgrid approach [5, 6, 54, 87], etc. Iterative versions of
some of these methods are suggested, aiming at achieving better accuracy, e.g., iterative
MSFV (iMSFV) [16, 45], local-global iterations [30], etc. In fact, some of these iter-
ative approaches can be considered as variants of domain decomposition method with
special choice of the coarse space (cf. [74]). On the other hand, in the last decade,
significant attention was devoted for developing efficient algorithms for coupled flows
in plain and porous media, mainly in the case when the flow in the pure fluid (plain) re-
gion is described by the Stokes equations, and the flow in the porous media is described
by Darcy equations. (cf. [28, 29, 79]). Most of these papers deal with flow tangential
to the porous media, when the coupling is incorporated via the so called Beavers-Josef
interface condition (cf. [58, 63]. The coupled Stokes-Brinkman system of equations
were earlier considered in [55, 69]. The paper by Ehrhardt et. al. [36] also presents a
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short summary on available models and interface conditions for coupled flows in plain
and porous media.

In this chapter, the coupled steady state Stokes-Darcy system is considered. Note
that the approach can easily be extended to the unsteady problems and to the Stokes-
Brinkman model. However, this extension is not part of this thesis.

The coupled Stokes-Darcy equations:

Consider a computational domain Q, which is occupied by the pure fluid region, denoted
by QF, and the porous region, denoted by Qp, such that Q = Qp U Qp. The boundary
of Q is denoted with dD, so that Q = QU dQ. The porous-plain interface is denoted by
T'rp, where Trp = QpN Q.

The flow in the porous region is governed by the Darcy equation and the continuity
equation:
ii=—KVp, in Qp 3.

V.i=0, in Qp. (3.2)

The steady state Stokes equations, together with the continuity equations, describe the
flow in the pure fluid region Qp:

—V-(uVid)= f—Vp in Qp (3.3)

V.i=0, inQF. (3.4

Here i = (u,v) and p stand for the velocity vector and the pressure, respectively. Ad-
dtionally, i and K denote the viscosity and the permeability tensor of the porous medium
respectively.

In this chapter, we consider the case where the velocities in the fluid and porous regions
have comparable magnitudes. The pressure gradient in the porous region is much larger
than in the free fluid part. Most of the flow through the porous medium is perpendicular
to the interface between the pure fluid region and the porous medium. In this case,
according to [70], the following interface conditions apply:

{ﬁF'nHFFP_{ﬁP'nHFFP =0, (3.5)
ip - tlr,, =0, (3.6)
pP|Fpp(porous) =C, 3.7)

where the indices r and p denote the quantities on the fluid and porous side of the inter-
face I'rp. Moreover, C is an unknown constant, whereas t and n are the unit tangential
and normal vectors respectively. To have a comparable velocity field in Qp and Qp,
the pressure gradient in Qp should be much larger than in Qp. Although p|r,, is not a
constant and depends on the flow in Qp, its variation is negligible in comparison to the
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pressure variation in Qp. In our case, C is determined from the pressure in the fluid part
of the domain.

The boundary conditions on different parts of the boundary domain dQ = (dQr UJdQp)\
I'rp are chosen in the way that the problem is well posed. Specific choice of bound-
ary conditions related to simulation of filtration problems will be discussed shortly in
Section 3.4.

Targeted applications: As discussed in the previous chapters as well, our main focus
is to discuss the filtration related processes. The developed algorithm targets mainly
the industrial filtration problems, when the fine scale features of the geometry impose a
challenge to the numerical methods. As an example, we revisit the new generation filter
element as illustrated in Figure 3.1. The filter is composed of three layers of filtering
media: the first one is a perforated highly efficient filtering medium, the second layer is
a coarse supporting mesh, and the third layer is a lower efficiency/higher permeability

filtering medium.

Figure 3.1: Left: A real industrial filter with multiple porous media layers. Right: An
example of a perforated filter medium.

It is worthwhile to note that the developed algorithm is not restricted to the application
of industrial filters only. Generally, the algorithm can be applied to any problem where

e the porous media is highly heterogeneous on the fine scale;
o the geometry is very complex on the fine scale

Goals and structure: The original MSFV method was developed for the simulation of
flows in porous media. The main goal of this chapter is to extend the (iterative)MSFV
approach for solving the coupled Stokes-Darcy system for the plain and porous media.
The proposed algorithm can also be considered as a domain decomposition approach,
which unlike most papers in this area, is applied to the momentum equations only. The
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pressure equation, on the other hand, is solved in the full domain. More precisely,
the domain is decomposed into the fluid/plain and porous domains. The momentum
equations are solved independently for the Stokes and Darcy system on the decomposed
domains, while the pressure equation is solved in the full domain. This approach is
particularly suitable for problems where the flow is perpendicular to the porous media
and for cases where it is better to consider the pressure changes in the full domain.

The remainder of the chapter is organized as follows. The next section shortly presents
the building blocks of our algorithm. These are the single grid algorithms for the Stokes
and the Darcy problems discretized on a staggered grid described in Subections 3.2.2
and 3.2.3. The MSFV and iMSFV methods for the Darcy problem are described in
Subection 3.2.4. Section 3.3 presents the multiscale finite volume algorithm for the
coupled Stokes-Darcy system. In Section 3.4, results from the numerical simulations
are presented to validate the approach and to study its performance. Finally, some
conclusions are drawn.

3.2 Single grid discretizations and algorithms for the inde-
pendent Stokes and Darcy problem

3.2.1 Grid and grid notations

Consider a rectangular domain

Q={(x,N0<x<L;;0<y<L}, Q=QUJQ.

A uniform staggered [38] Cartesian grid of size h = % = % is introduced in Q

G_)I) = {X[,jlxi,j = (X,‘,yj), i= 0, l,...Nl;j = O, 1,...N2}

where N
XOZO,XIZE,XHI:xi-l-h,i:l,Z,...,N,—l,xN]:L,;
h .
yo =0,y =5 Vit =yj+h, j=12,....Na—1,yn, =Ly
Furthermore,
u h . .
(0] ={Xi+%.jxi+%.j=(Xi+§,yj),l=—],0,...,N1—];j=—],0,...,N2—]},

_ h, . .
COV= {xi7j+%|xi?j+% = (Xi,yj+§), 1= —1,07...7N1 — 1, ]= —1’0’___’N2— 1},

where
x05 =0, Xyl =x;+0.5h,i=0,1,...,N; — L;xy, = Ly;

Yos =0, yj‘+% =yj+0.5h, j=0,1,...,Nosyn, = L.
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Figure 3.2: 2D blocks for pressure and velocities

The generalization to 3D is straightforward, and so is the usage of a non-uniform Carte-
sian grid. The discrete pressure is assigned to the centre of each cell, whereas the
discrete velocities are specified on the faces, as illustrated in Figure 3.2 (cf. [38] for
more details). The control volumes (CVs) assigned to the pressure (black line on Figure
3.2) will be called pressure CVs. It is assumed that the domain € is a union of pressure
CVs,ie., Ly = (N; — 1)h, L, = (N, — 1)h. With some modifications, the extension of
the presented algorithm to cell centered grid is also possible.

Furthermore, assume that a part of the domain Q is occupied by the porous media, such
that

Q=QrUQp.

It is assumed that Q7 and Qp, are unions of pressure CVs. Next, we denote the pressure
and velocity components of the grid in the fluid domain by

OF =QrNaP, ®f =QrNd", op =QrNd".
Analogously, we denote the respective grids in the porous domain by
@p=QpN&*, ap=QpNa*, dp=QpNd"

Since the fluid and the porous domains are resolved with pressure CVs, wh Nof = 0.
However, there are some nodes from the velocity grids which belong to both, the fluid
and the porous velocity grids. These are the nodes residing on the interface between the
plain and the porous media: @y N @p € I'rp, Op N @p € T'pp.

3.2.2 The Stokes problem

The 2D steady state Stokes equations (3.3) and (3.4) are discretized on Q by the finite
volume method (cf. [38]). The discretization is similar to the discretization discussed in
Chapter 1 for the Navier-Stokes-Brinkmann equations. The only difference is that the
pressure correction equation (3.13) is discretized on @7, while the momentum equations
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(3.10) are discretized on @z and @y. Since the discretization directly follows from
Chapter 1 and [38], we skip the discretization details, and write the discretized Stokes

system in the form:

Dii+Gp = f, on @p x @, (3.8)
Divii =0on ©F. (3.9
Here, i = (ui+%.j,vi_j+%),i = —1,0,...,Ny,j = —1,0,...,N>. Recall that the velocity

component u;, 1 ; is defined on @y, while the velocity component v; it is defined on
@} The discrete pressure is defined on @ . The same notations for the discrete and
continuous pressure and velocities are used here. The components of the discrete pres-
sure gradient are defined on @y and @y, respectively. The discretization of the gradient
operator is denoted by G. The operator corresponding to the discretized viscous term in
the momentum equation is denoted by D. Div denotes the discrete divergence operator.
The boundary condition diescretization is included in the above operators.

There exists a variety of velocity-pressure decoupling approaches for the iterative so-
lution of the Stokes system of equations (cf. [15, 34, 84] and the references therein).
Here, we consider the SIMPLE algorithm [38, 75], which is one of the many decoupling
methods. We will present it in the form given by [37, 75], as this formulation can later
be easily coupled with the Darcy equation in the porous region.

Suppose that the pressure, p*, is known after k—th iteration, then the velocity can be
predicted using this pressure:

Dii* = (f — Gp*), on Qp. (3.10)
In fact, it is desired that the momentum equation is exactly satisfied, i.e.
Dl = (f —GpF!) on Qp. (3.11)
Subtracting Equation (3.10) from Equation (3.11), we have

8ii=D"'GSpon QF, (3.12)

k

where 8ii = i*t! —ii*, 8 p = pFt! — pk. By taking the divergence of Equation (3.12) and

1

employing the continuity equation for #**!, we end up with a Poisson-type equation for

the pressure correction
DivAGép = —Divii* (3.13)

In the original SIMPLE algorithm, A = (diag{D})™". After the Poisson equation for

the pressure correction is solved, the pressure and the velocity components are updated:

P =p+8p onQp (3.14)
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B =@ +AGSp  on Qp. (3.15)

Each iteration of the SIMPLE-type decoupling method includes the following steps

e Compute velocity predictions, u*,v* from Equation (3.10);

e Compute 0 p from Equation (3.13);

e Update pressure and velocities according to Equations (3.14) and (3.15).
Note that iterating over velocity and pressure is typical for such decoupling methods
(cf. [38]).
3.2.3 The Darcy problem

The discrete pressure on the porous domain is assigned to the cell centers and the com-
ponents of the Darcy velocity are assigned to the center of the faces, as it was done in
Subsection 3.2.2.

The Darcy equation (3.1) is discretized as follows:

ii=—KGp on ®p X Op. (3.16)
The discretized continuity equation looks as follows:
Gii=f on wp. (3.17)

Substituting the discretised Darcy velocities in Equation (3.16) into the discretised con-
tinuity Equation (3.17), we arrive at the standard five point discretisation of the pressure
equation on cell centered grid in the porous region:

DivKGp = f, on @F. (3.18)

Note and recall that the boundary conditions are incorporated in the discrete operators.
Usually the Dirichlet boundary conditions (i.e., prescribed pressure), lead to a first order
discretization for the velocity on the Dirichlet part of the boundary. For a second order
discretization for the velocity, see [50].

3.2.4 AniMSFYV method for the Darcy problem

Grids and grid notations

The MSFV (and the iMSFV) method employs two sets of coarse grids, namely a primal
and a dual coarse grids, in addition to the underlying fine grid [59], as illustrated in
Figure 3.3. As discussed above, a uniform staggered fine grid of size 4 is used for Q.
For this section, let us assume that the whole domain Q is porous. The local auxilliary
problems are solved separately on each block of the dual coarse grid, where the govern-
ing equations are discretized on an underlying fine grid. The solutions of the auxilliary
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Primal coarse cell

Ey

Dual coarse cel

Figure 3.3: Part of the computational domain Q with coarse(solid lines) and primal
grid(dotted lines); bold lines are one coarse block E; and one dual block El’/

problems are used within the framework of the MSFV method to build a coarse grid
discrete sytsem on the primal coarse grid.

Let us consider a set of non-overlapping primal coarse blocks E = {E;,[ = 1,...,Ng},
which spans over Q, where Np denotes the number of the primal (basic) coarse blocks.
We have

Q=Ui-1 N El-

E; denotes a primal coarse block. & and 7] denote all edges and vertices of E; respec-
tively. The centre node is denoted by x; . The dual grid is constructed by connecting the
centres of primal coarse blocks, resulting in a grid that is staggered to the primal coarse
grid. Analogously, the union of the dual coarse blocks Ej, cover the full domain Q

Q - UI’ZI.N;)E///

where Nj, is the total number of dual coarse blocks. Likewise, &”y, ¥y and x; denote
the edges, vertices and center of E 1//-

A MSFYV method for the scalar elliptic problem

Here, we shortly describe the MSFV method, earlier developed for the flow in porous
media (cf. [59, 71]). Let us consider a scalar elliptic problem in Q:

Vii=f onQ (3.19)
i=—-AVp on Q (3.20)
i-n=g on 0Qy 3.21)
i=g on 0Qp 3.22)

where A = K varies on the fine grid and thus resolves the fine scale heterogeneities.
dQy is the Neumann boundary, where as dQp is the Dirichlet boundary of dQ, where
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Figure 3.4: The figure shows one primal coarse block (solid line) with its four dual
blocks(dashed line). The fine scale fluxes are approximated on the dual block bound-
aries via the basis function. The superposition of the basis functions, further restricted
on the primal coarse block gives an approximation of the fluxes across the coarse block
boundaries. The fine scale information is incorporated in the fluxes.

dQ = JdQNUIQp. The goal is to obtain a solution without having to solve a global
fine scale problem. Moreover, it should account for the fine scale heterogeneities of
the coefficient K. The basic idea is to decompose the global problem into several local
problems. For understanding the algorithm, it is worthwhile to note that the interior of
each primal coarse cell includes exactly one corner node belonging to four dual cells in
2D. Additionally, the strict interior and the boundary of a dual block, E/, are denoted by
E' and OE' respectively. The set £’ consists of the four dual blocks that overlap with
the primal block E;.

The idea of the MSFV method is to capture the fine scale/grid influences on the solution
via basis and correction functions. This information is further brought to the coarse scale
through the global stifness matrix and the right hand side. The fine scale information
is brought to the coarse scale via the computation of the basis functions in the form of
fluxes across the boundaries, as illustrated in Figure 3.4.

Four auxilliary basis functions, ¢/’, are assigned to each center x; of the primal coarse
cell. Here xy € ¥} are the centers of the four dual coarse blocks which have x; as a
common vertex. The basis functions are the solutions of the following local problems:

V-(A-V¢/)=0 inE (3.23)
(V-OA(V-)9] =0  on & p\(¥'yUIQ) (3.24)
(x)=1  forx (3.25)

(P,ll (x)=0 forx, € V' \ {xi}, (3.26)

20/ n=0  ondQy (3.27)

o/ =0 ondQp (3.28)
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The sum of these four auxilliary basis function is the basis function ¢, after restricting

o= Z (Pl/'

I’GEI’]

it on the primal coarse cell is

In a similar manner, the four correction functions are computed to incorporate the source

term and the boundary conditions.

V-A-Vy)=f inEyna’ (3.29)
(V-OALV-Oy =f  on&p\(¥V'1UIQ) (3.30)
v =0 on?', (3.31)

Ayl n=g  onoQy, (3.32)

v =g,  ondQp. (3.33)

The sum of the four correction functions is assigned to the primal coarse cell /: y; =
Yrep, l//f’. The global fine scale solution p is approximated by p’, which is a function
of coarse pressure values at the centers of the primal coarse blocks, p;

Np

p =Y (ho+%w), (3.34)

=1

where #; denotes the operator that restricts y; to its corresponding primal coarse cell /.
A linear system is built to find the coarse pressure values. After substituting equation
(3.34) into (3.20), we get

Np
— [ V-(A-Vp)av = /E V- AV <Z(ﬁz¢1 + lm)) dv. (3.35)

E =1

Applying the Gauss theorem for each primal coarse block, the following linear system
is derived
Api=b;, [=1,2,...,Np (3.36)

where A = {ay },k=1,...,Ng,l = 1,...,Np is the global stiffness matrix, correspond-
ing to the pressure values in the coarse primal blocks, and having at most nine nonzero
entries per row. The entries of the matrix are defined as follows:

i = /g’ (—). -V(Pk) -ndsS. (3.37)

Obviously, ay; # 0 only if & N support{y; } # 0, i.e., for fixed [, x, € ¥y, xp € ¥}. The
right hand side is defined in a similar way:

Np

= —AV . .
by k;/ﬁ( AV ndS-l—/Elde (3.38)

Further details for the MSFV method, particularly for elliptic problems, can be found
in [59, 71].
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iMSFYV method for the scalar elliptic problem

In the above described MSFV algorithm, the approximate solution p, satisfies the same
equation as the exact discrete solution p in the interior of the coarse cells, i.e. on E'N®P.
However, on the interfaces between dual coarse cells, where the localization conditions
are impossed, p satisfies (V-t)A(V -t)p’ = f, while p satisfies V- (AVp) = f. The
discrepancy occurs due to the ommited normal derivatives in the localization of prob-
lems for (1),” and \//,”. In order to improve the accuracy of the computed approximate
solution p’, an iterative version of the MSFV method, namely the iMSFV was proposed
(cf. [45]). For the iMSFV method, the basis functions are computed in the same way
as above, however the correction functions are updated at every (n—th) iteration of the
iMSFV method. This implies that after every n—th iteration, the localization condition
in (3.30) is replaced with another localisation condition, which contains information
about the current fine grid iterate of the solution:

(V-OAV-O)y = f—(V-n)A(V-n)p". (3.39)

Essentially at every n—th iMSFV iteration, the correction functions are recomputed
using the localization condition in Equation (3.39), instead of (3.30).

3.3 AniMSFYV method for the Stokes-Darcy problem

In this section, we discuss an iterative procedure for the coupled Stokes-Darcy problem
for the case when the coefficients and/or the geometrical features vary on the fine scale.

3.3.1 Velocity-pressure decoupling algorithm

As mentioned above, Stokes system is usually solved via some iterative velocity-pressure
decoupling procedure [41, 84]. Although the flow in the porous region is governed by
a scalar linear elliptic equation, it has to be solved at each outer iteration due to the
coupling conditions on the interface with the free fluid region. The starting point of
the algorithm is the SIMPLE-based decoupling algorithm for the Stokes system and a
special form of the Darcy problem in the porous medium. For convenience, let us recall
the decoupling procedure for the Stokes equations from Subsection 3.2.2.

Let us assume that the pressure pf is known after the k—th iteration. The velocity in
the fluid can then be predicted by using p*. This in only possible if the velocity on the
interface between plain and porous media is also taken from the k — ¢/ iteration:

Dii* = (f — GpY), on Q. (3.40)
In fact, we want the momentum equation to be exactly satisfied:

D" = (f — Gp*™) on Q. (3.41)
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Subtracting equation (3.40) from equation (3.41), we have the velocity correction
0ii=AGdop on Qp, (3.42)
where A = D7!, §ii = "' —#* and 8p = pFt — pt.

Similarly, we write the equations in the porous region. Considering the Darcy equation,
we have
i =—AGp* on Qp, (3.43)

= —AGp! on Qp (3.44)

where A = K. By subtractiing equation (3.44) from equation (3.43), we get 8ii =
AGOp on Qp. Recall that the the problem is divergence free in both, the plain and

the porous media, domains. This means that Divii**!

= 0. After applying the diver-
gence operator to the momentum equations in the fluid, as well as in the porous regions,

we get the following pressure correction equation on Q.
DivAGép = Divii*, x € o (3.45)

At each iteration of our decoupling algorithm, we have to solve the momentum equa-
tions (3.40) in the fluid region, a trivial form of momentum equations (3.43) in the
porous region, and a global pressure correction equation (3.45) in the whole domain.
The pressure correction equation (3.45) is solved by the direct application of the iMSFV,
as described above. In order to apply iMSFV to Equation (3.40), the computations for
the basis functions is modified. They have to be recomputed at each decoupling iteration
due to the constantly changing velocity on the plain-porous interface.

For the Stokes-Darcy problem, 2 = D~!in Qr and A = K = (k1,kz2)7 in Qp.

3.3.2 Computation of the basis and correction functions

The algorithm discussed in Subsection 3.3.1 employs the iMSFV method to compute
the intermediate velocities #* and the pressure correction 6 p for each time step. The
computation of the basis and correction functions for § p follows from Subsection 3.2.4.
However, the computation of basis and correction function differs for the velocities.

For the Stokes-Darcy problem, the coarse blocks E; and Ej, can be characterized in three
ways. The dual blocks can be purely fluid or purely porous or a mixture of fluid and
porous fine grid cells. In Section 3.2.4, the computation of the basis and correction
function for dual blocks that are either fully in the fluid or porous region was decribed.

For the dual blocks containing mixed porous and fluid regions, the computation of the
basis and correction function differs such that equations (3.23) and (3.29) are replaced
with

V-(u-Vo/)=0 inEyNQ (3.46)
V-(u-vy)=f inEyNQy (3.47)
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and the additional condition is posed

¢1, =0 inEpNQp (3.48)
vyl =i inEynQp (3.49)

Figure 3.5 illustrates one of the four basis/correction function computed for a dual block
with fluid and porous regions.

Figure 3.5: Basis and Correction function computed on a dual cell consisting of fluid
and porous regions.

3.4 Numerical results and Validation

A 2D rectangular domain Q = Qp U Qp is considered. The Stokes-Darcy equations
are discretized on an underlying fine grid of size 200 x 200 cells with a coarse grid of
8 x 8 blocks, corresponding to an upscaling factor of 25 x 25. The results from the
iMSFV method for the Stokes Darcy problem are compared with the fine scale reference

solutions.

Boundary Conditions

The flow domains considered in the current work are of different geometric character-
istics. The governing equations are solved subject to the following boundary conditions
which are mainly employed in filtration problems. At the inlet of the free flow region, a
velocity profile is specified. On the impermeable boundaries of the free flow region, no
slip wall velocity boundary conditions is imposed. Finally at the outlet of the composite
flow domain, zero pressure has been imposed as an exit condition for the flow domain.
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3.4.1 Channel Filter

As a first example, we consider a simple geometry of a filter. The filter is parallelepiped
{(x,y) : =1 <x<1, —1<y< 1 with the single porous layer {(x,y) : —0.95 <x <
0.05, —1 <y < 1. The following problem parameters are specified: U;, = 1, u = 0.01,
and isotropic permeability K = 1.0-10~%. We compare values of the pressure drop
between the inlet (x = —1) and the outlet (x = 1) of the filter. Note that the considered
flow is essentially one dimensional. Results obtained from the developed algorithm are
compared with the fine scale reference solution, and both result in a pressure drop of
98.863. Figure 3.6 and 3.7 show the pressure and velocity profiles.

Figure 3.6: Figure shows solution for pressure for Channel Filter. Left: Fine scale
reference solution; Right: Computed via Stokes-Darcy iMSFV Method
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Figure 3.7: Figure shows solution for Velocity for Channel Filter. Left: Fine scale
reference solution; Right: Computed via Stokes-Darcy iMSFV Method

3.4.2 Combi Filter

The next example is chosen to be a filter of simple channel geometry as shown in Fig-
ure 3.8 (a) but with the more realistic (industrial) combination of filtering layers, il-
lustrated in Figure 3.8 (b). When the filter element is designed in a way that there is
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enough space between the inlet(bottom) and the porous layer, and between the porous
layer and the outlet(top), the pressure drop is caused practically from the porous layers
only. Therefore, we study this filter in a simplified geometry. The filter is parallelepiped
{(x,y) : 0 <x<2,0<y<?2 with two filtering porous layers, as shown in Figure 3.8
(b). Additionally, the first porous layer (0.7 < x < 0.8, 0 < 2) has 3 holes punctured
within it, as shown in Figure 3.8 (b), where each hole is a cube: 1 x 1 fine grid cell.
In Figure 3.9 and 3.10, the pressure and velocity profiles computed from the numerical

(a) (b)

Figure 3.8: (a) A real industrial filter with multiple porous media layers. (b) Channel
filter with the multiple porous layers. A simplified channel filter of the industrial filter
to understand real processes.

algorithm are presented. The computed results are compared with the fine scale refer-
ence solutions, and it can be seen that they both compare really well. Both solutions
result in the same pressure drop of 119.335. Moreover, it is worthwhile to note that the
reconstructed fine scale velocities through the holes of the porous layer match closely
to the fine scale solution too.

3.5 Conclusions

The iMSFV method is extended to solve the coupled Stokes-Darcy problem employing
the SIMPLE method for decoupling velocity and pressure. The iMSFV method is used
to solve the momentum equations and the pressure correction equation in the SIMPLE
algorithm. The basis and correction functions used for the momentum equations are
modifed as discussed. The algorithm was validated by using two geometries, a channel
filter and a combi channel filter, where the results were match against fine scale solu-
tions. In both examples considered, the pressure and velocity solutions are in excellent
agreement with the fine scale reference simulations.
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Figure 3.9: Figure shows solution for Pressure for Combi Channel Filter. Top: Fine
scale reference solution; Bottom: Computed via Stokes-Darcy iMSFV Method
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Figure 3.10: Figure shows solution for Velocity for Channel Filter. Left: Fine scale
reference solution; Right: Computed via Stokes-Darcy iMSFV Method






Chapter 4

On numerical approaches for
filtration efficiency simulation

4.1 Introduction

This chapter concerns the modeling and computer simulation of filtrating solid particles
from the fluid. As it is known, the main criteria for determining the performance of a
filter element could be listed as the following:

e pressure drop - flow rate ratio;

e dirt storage capacity;

o the size of the biggest penetrating particle;

e increasing blockage effect of captured particles.

The first criterion is closely related to the energy efficiency of the filter element (e.g. the
choice of the pump to be used), while the second and the third criteria are more related
to the so called filtration efficiency, or filter efficiency, i.e. the speed with which the
particles of a given size are filtered out of the fluid, or the frequency of replacing the
filter element (i.e. the lifetime of a filter element). In the previous chapters, the simu-
lation approaches assisting the engineers in the design of filter elements with optimized
pressure drop - flow rate ratio was discussed. The current chapter concerns the filter
efficiency modelling and simulation.

The filtration efficiency of the manufactured filter elements is evaluated on the basis of
certain international standards (see Section 4.2 for details). For this purpose each man-
ufacturer has a certified Lab, where tests with the sample filter elements are performed.

These measurements are expensive, and the industry is constantly on the lookout for
simulation tools or methods which could partly replace them. A mathematical model
that could be used for computer simulations of filter efficiency is discussed in Section
4.3. In an ideal scenario, a virtual filter element design is desired, where the computer
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simulation would assist in atleast recognizing those filter element designs which do
not meet the requirements, as specified by the user. This would save the time, efforts
and costs of a designing and manufacturing a prototype. Moreover, no Lab tests for
efficiency would be required. Within the scope of this chapter, we discuss how modeling
and simulation can help to reduce the number of the Lab measurements, or in a broader
sense, assist the virtual filter element design.

The selection of the correct filtering medium is essential for filtration efficiency. Other
components like the shape/design of filter housing, shape and size of the pleats etc. also
severly impact filter efficiency. Performing measurements on test filters with a given
flat filering medium can help to evaluate the efficiency of the medium in ideal condi-
tions, but this is not enough to evaluate the performance of real filters with complicated
geometries. An approach on how to use measurements on the flat media in order to
reduce the number of efficiency tests with real filters, is presented in Section 4.4. The
idea is to perform measurements on the flat filtering medium for different flow rates
and particle concentrations, and to use the results for creating lookup tables. The tables
basically correlate the flow velocity and the upstream concentration of particles to the
capturing (deposition) rate of the filtering medium. Next, these tables are used in com-
puter simulations performed for complicated geometries, taking advantage from the fact
that numerical simulations provide information for the velocity and the concentrations

at any desired location within the filter element.

The filtration process is an intrinsic multiscale process, where the phenomena occuring
at microscale (particles and pores) are coupled to the phenomena occuring at macroscale
(flow and pressure within the filter element). For certain contaminants, the impact
of the filtering medium within the filter housing, along with the coupled micro-meso-
macro scale simulations are needed to get a better understanding of the filtration pro-
cesses. This in turn directly assists in the design of efficient filters. Two multiscale
approaches are considered in Section 4.5. One of them suggests an algorithm for cou-
pling macro scale and microscale simulation whereas the second one is a part of the
concept for the virtual filter element design. In the latter, microscale simulations (at
particles and pores/fibres level) are performed in order to determine the particles cap-
turing rate (needed in the look up tables). This approach provides an option to evaluate
the filter efficiency without manufacturing the filter medium and the filtering element.

In the last Section 4.6, results from the numerical simulations for validating some test
case are presented. Moreover, examples of real transmission oil filters are considered
and validated against measured data.
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4.2 International Standards tests for evaluation of filter effi-
ciency

Multipass test: One of the very informative tests is the so called Multipass test, ISO
16899, [89]. As illustrated in Figure 4.1, a filter element is connected to a reservoir,
and the liquid from the reservoir is circulated through the filter element with a constant
system flow rate. Initially the liquid in the reservoir is clean, but starting at time t = 0,
it is continuosly contaminated with a certain amount of specified certified dust. The
contaminant from the injection system is injected into the reservoir at a specified injec-
tion flow rate Qg;y. Circulation of the fluid in the filter test system is done using the
system flow rate Q. Usually Q >> Qg ;rs. At the downstream end of the filter element,
liquid is removed with flow rate Qy;,s, ensuring that the volume in the filter test system
is always constant. The measurements are performed until the filter element is (almost
completely) clogged, which is monitored by the increasing pressure. This test is widely
used in air, water and oil filtration.

In the case of transmission oil filtration (that is our primary ineterst), another test is
considered to be more informative for this specific application, namely, Transmission
Filter Effectiveness Method (TFEM).

TFEM: This is a relatively new approach used for evaluating the filter with respect
to fluid cleanliness [33]. This procedure is more appropriate for the low contaminated
transmission oil bacause it focuses on the fluid cleanliness as opposed to evaluating the
clogging time (as it was done in the Multipass test).

The experimental setup for TFEM comprises of the filter test system but without the
injection system, as illustrated in Figure 4.1. The filter element in the test system can be
connected either to the pressure or to the suction side of a pump. A circulation system is
used to provide mixing and pressure to the particle counters. To begin with, the test fluid
is cleaned to an appropriate background level with a cleanup filter. When particle counts
are sufficiently low, the fluid in the reservoir is contaminated with a specified test dust
(e.g. Arizona, ISO medium test dust) to a given concentration C9. and thoroughly mixed
during the fluid stabilization period. The test filter is installed and flow is established
with a flowrate Q. Particle counter record and document the for a prescribed period of
time.

There are different ways in which the particle counts are documented. Following, we
present two most commonly used ways in which the particle counts are documented.
Variant 1 is mosre useful in the simulation of Multipass tests, whereas Variant 2 is more
suitable for the TFEM simulations.
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. i~ Injection system (®)

Figure 4.1: Experimental setup for the Transmission Filter Effectivness Method

Variant 1 - particle counters for upstream and downstream concentration

The first variant is when the particle counts within the filter test system are measured
in front and behind the filtering medium, i.e. particle counters 'B’ and *C’ are used.
Counts are graphed after specified time intervals and a trend is evident where the fluid
cleanliness begins to improve. It will be seen in the following subsections how this
information is interpreted in determing the deposition rate «.

Variant 2 - particle counter inside the tank

The particle concentration (number/ml) is a measure of particle counts inside the tank,
denoted by C7. This implies that only the counts obtained from particle counter *A’, as
shown in Figure 4.1, is used. Counts are typically graphed every one/ten minutes and a
trend is evident where the fluid cleanliness begins to improve. The cleanliness curves for
particular particle sizes are derived from these experiments as shown in Figure 4.2. The
cleaning curves serve as an indicator for the cleanliness level reached by the filtering

medium.

4.3 Model Equations

The Navier-Stokes-Brinkmann system of equations, (4.1) and (4.2), for the fluid trans-
port in plain and porous media, together with the Convection Diffusion-Reaction equa-
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Figure 4.2: Cleanliness curves for different flow rates using Variant 2 for documenting
the particle concentrations. Courtesy IBS Filtran

tion (4.3) for particle transport are put together into a single system modeling fluid and
particle transport in Q

i e R I e I
P — V.- (AVa)+ (pi,V)i+ K i=f—Vp (4.1
V.i=0 (4.2)
9 4 (@, V) —D/AC! =M =1, 8 4.3)

The notations for the Navier-Stokes-Brinkmann system are consistent with Chapter 1.
Additionally, in Equation (4.3), C stands for the concentration of particles. C(x,y,z,t)
is the unknown function in a spatial domain Q over a time interval 7 € (0, T]. The initial
condition is a given function C%(x,y,z), i.e. C(x,y,z,0) = C%(x,y,z). Further on, i is the
velocity, D is the diffusivity coefficient, and aa—nfj the rate of deposition. M” stands for
the captured particles within the filtering medium. Particles are cumalitively grouped
into 8 particle sizes, where J = 1,...,8. It is also worthwhile to note that aa—nfj =0 for
Q\Qp.

Boundary Conditions

The equations are equipped with the following boundary conditions

e inflow velocity and concentration, ﬁin,Cijn at the inlet is prescribed. Also g—fl’ =0;

e outflow b.c. at the outlet: p = pyy, %—an —0;

. J
e 1i=0, ‘99% = 0 elsewhere.



78 4. NUMERICAL APPROACHES ON FILTER EFFICIENCY
SIMULATION

Assumptions

Due to the complex nature of the dynamical problem, our model and simulations are
based on certain assumptions.

1. The system flow rate is constant throughout time (same as the prescribed initial
flow rate).

2. In Equation (4.3), convection dominates and the diffusion term is negligible.
3. All particles are considered to be spherical and have the same density.

4. No agglomeration or breaking of particles is considered. This implies that the 8
concentration equations are independent of each other.

5. Gravitational and sedimentation effects are ignored in the model.

Taking into account assumption (1) and (2), that the particles are driven with the flow
velocities that are computed by employing the numerical algorithm developed in Chap-
ter 1, we decouple the Navier-Stokes-Brinkmann system and the convection diffusion
reaction equations and treat them consecutively, except for cases when the deposited
particles change the permeability and recomputing the flow is needed. Assumption (3)
and (4) allow us to treat different sizes of contaminant particles in parallel. Currently
we are working with eight sizes, what is consistent with the measurement data, which
are provided from the Lab measurements.

Summarizing the role of Equation (4.3), it models the mass balance. In this chapter, we
pay special attention towards the term describing the deposition of particles, i.e. aa—AfJ.
This term, by far, is the most important for filtration processes.

Under the assumption that the amount of the deposited particles is small compared to the
pore space of the filtering medium, the amount of the deposited particles is considered
to be proportional to the concentration of particles [19]:

o’
ot

where o’ (constant of propotionality) is the particles’ deposition rate. Combining the

=o’/C’, (4.4)

two equations, we get:

ac

-+ (i1,vC!) = D'AC! = —alC’ 4.5)

Such a model fits very well to (almost all) particle sizes and regimes of the TFEM
(cf. [33]). TFEM was discussed already in Section 4.2, where the particle deposition
compared to the pore space is minimal. This is mostly true for the initial stages of
filtration.
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Another model used to account for partially loaded filters, or possible clogging, reads

as follows [19]:
om’ M
e 1+— )/ 4.
Y o ( +MO>C, (4.6)

In this case, the deposition rate increases with increased deposited mass. This is a
typical characteristic of the highly efficienct filtering media. The simulations using this
model are not completed and therefore they are not discussed in this thesis. They will
be reported elsewhere.

It should be noted that the complete clogging is rear in transmission oil filtration (un-
like air filtration). However, in transmission oil filtration, there is another phenomena,
known as the saturation of the efficiency, which requires for the modification of the
model. One speaks about this phenoment in the contect of TFEM, when a certain per-
centage of the contaminant in the reservoir is cleaned by the filter element to the extent
that further circulation of the oil through the filter element does not lead to further clean-
liness of the oil, i.e. the process of filtration stagnates. To account for this, the following

J
‘%:a’(l—%)d, 4.7)

model is suggested:

Obviously, at initial stages of filtration with very low loadings of the filter, the param-
eter My dominates, and the model reduces to Equation (4.4). Moreover, at time ¢t = 0,
deposited mass M (0) = 0. My has some prescribed value M,,,,, where M,,,, is the max-
imum mass that the filter medium can retain. As time elapses, M approaches My which
reduces the right hand side of equation (4.7) to zero. This implies that no more capturing
would occur after this time.

For the rest of the discussion in the following subsections, we will drop the superscript
7 for the simplicity of notations.

4.3.1 Analytical solution in the case of constant o

This case is the most studied in the literature. Lets consider regimes where diffusion is
negligible, and the time variation of the concentration is solely governed by the deposi-
tion rate. This case leads to a simplification of equation (4.3) (cf. [19]):

oC oM
ox - or “48)

This equation, together with Equation (4.4) allow for analytical solution which is given
by:

Clx) = Coe " (4.9)
M(x,t) = atCoe ™ (4.10)
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Here C is a constant contaminant concentration in front of the filter, and it is assumed
that the filter is initially clean, i.e. M(0) = 0. Moreover, it is assumed that the flow across
the filter is in x direction dominates, and therefore we consider the one dimensional form

in equation (4.8).

The model and its analytical solutions include parameter &, which might be an un-
known. In the following sections, we will try to discuss parameter identification meth-
ods to determine its value.

4.4 Parameter identification methods for o

In this section, several ways for identifying the deposition rate « is discussed. One of
the ideas for its identification is via Lab measurements for a simple test filter with flat
surface of the filtering medium for a range of velocities for «*. In the following subsec-
tions 4.4.1 and 4.4.2, two different approaches are discussed for each of the documented
measurements discussed in 4.2. Alternatively, another idea is proposed in the next sec-
tion where the expensive Lab measurements are replaced by microscale simulations.
Thereafter, the aim is to use the identified parameter o(«) in simulations for arbitrary
filter elements.

4.4.1 o computed from measurements in Section 4.2 - Variant 1

This case will be studied under the assumption that the inflow concentration changes
relatively slowly, and the steady state versions of the concentration equation (4.8) can
be used for each time interval between the measurements. In this case of two measure-
ments, counting the upstream and downstream number of particles (Particle counters B
and C in Figure 4.1), one can immediately calculate the 8 ratio, where

ﬁ(t) o Cupsrream(t)

_ . “4.11)
Cdownsr ream (t )

It is assumed that Ciy, fiow = Cupstream (t) = Cup changes slowly in time, in the case when
the simplest equation for the deposition rate (4.4) is used. From the analytical solution
(4.9), we get

Cdownsrream (t) = Cdown = Cupe%x- (4 12)
Substituting the definition of the beta ratio (4.11) into the equations, we get
ux
o= glnﬁ. (4.13)

where d denoted the thickness of the filtering medium.
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4.4.2 o computed from measurements in Section 4.2 - Variant 2

Measurements described in Section 4.2 in Variant 2 is the basis of determining ¢ in
this subsection. A number of measurements are provided by the IBS Filtran Laboratory
on a selected flat filtering media, performed at different flow rates, and with different
durations as shown in Figure 4.2. The tests are performed for regimes at which the filter
medium is still far from clogging. Based on these measurements, we create the lookup
tables, that correlate the fluid velocity and particle concentrations in front of the filtering
medium to its deposition rate.

Let us now explain how the Lab measurements are used to identify the particles’ de-
position rate a. A standard concical filter housing is used for this purpose. After the
discretization of the flow domain for the conical filter 4.8 (left), only the upstream layer
of fluid voxels are considering, i.e. the fluid layer in front of the filtering medium. Let
us consider a simple case when the surface area of the filtering medium is 100mm? and
each voxel volume is 1mm?>. This means that 100 such voxels in front of the filtering
medium are considered. Our derivations are based on certain simplifications:

e ( is different from zero only in the first layer of the filtering medium, accounting
only for first layer surface filtration. Our problem is then reduced to determining
100 values of « at each time moment. Note that different values for different cells
are considered to account for the possible variation of the velocity and particle
concentrations in front of the filter medium.

e The transport processes along the filtering medium are negligible compared to the
transport processes across the filtering medium.

e The downstraem cocentration at time ¢ is equal to the upstream concentration at
time (7 + Ar)

e There is a perfect mixing in front of the filtering medium.

Under all the above assumptions, 100 one dimensional equations are considered for
each of the J particle size. The diffusive term is neglected in these equations, so that
they look as follows:

%—f+(ﬁ,vc)+ac:o

C(t+Ar)—C(t) _C(t+Ar)—C(r)
At T h

+aC(t)=0

Here At stands for the time interval. Recall that the local velocity in front of the re-

spective porous voxel is considered. Using equation (4.14) along with the measurement

results from section 4.2, & can be computed as follows:

(h+ Atu*)(C(t) — C(t + Ar))
hAtC(t)

at,y,z) = (4.14)
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The above equation is used to create look up table, which correlates the upstream ve-
locity u*, and particle concentration C(z), to the local deposition rate. For simplicity
of notations, we assumed the flow to be in the x— direction, and the filtering medium
is aligned with the (y,z) plane. The concentration of particles at each time moment is
known from the measurements, and can be used to calculate ¢ from the equation above
(in the simulations, at a given time moment, C(t) is already calculated, and it is used to-
gether with velocity and o to compute C(7 + Ar)). In general, a series of measurements
are needed, each performed for a different prescribed inflow velocity. It is only then
that we can create comprehensive look up tables accounting for the dependence of o on
different velocities.

The above treatment of the local deposition rate is the basis for the TFEM simulations
discussed in Section 4.6. For the computation of velocity and particle concentrations,
model equations (4.3) and (4.1) are used.

Weighted Interpolation search for varying upstream velocities

In the above discussions, we saw that the correlation tables were created for a specified

range of velocities. Let us denote the velocities for which lookuptables are created by

1

1 ,u? . etc. Equation (4.14) can be written in a simplified abstract form

u
a = nCu+mn). 4.15)

where ¥, and 9 are denoted as the derivative and intercept coefficients for the respec-
tive lookup table. The exact form of ¥, and » comes from 4.14. Here, we try to the
address the case when the lookup table is unavailable for a specified inflow velocity
ui,. In this respect, there could be cases where u;, differs from the ones for which there
are available lookup tables. On the other hand, owing to the complex geometry of the
filter element or shape of the filtering medium, there could be an uneven distribution
of velocity and particle concentrations, as illustrated in Figure 4.3. It is unrealistic to
assume that measurements would be available for every velocity to be used. For this
purpose, we look for some sort of least square methods, approximation techniques,
interpolation/extrapolation techniques etc. In particular, we borrow ideas from interpo-
lation techniques and employ a weighted interpolation and search algorithm, as shown
Algorithm in 2 based on upstream velocity u,,. Currently this is accounted for by com-
puting local values of « for each voxel(discretization element).

4.5 Multiscale approach for virtual filter element design

In this section, we first make a scale distinction, where the macroscopic equations in-
clude the flow and transport equations (4.1) and (4.3). The microscopic equations (cf.
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OXZ: y=54.000000 V], mm/s
65

Figure 4.3: Case when there is an uneven distribution of upstream velocities.

Algorithm 2: Interpolation search algorithm for an unprescribed upstream veloc-
ity for computing the depostion rate «.
1. Given uy)

: ) 1 2
. Pick out u;,,,, uy,, s.t. u;,, <uyp < Uy
. Compute weighted coefficient @ = "11“’—_;’;”
Lt~ *lut

. Chose ¥{ and 7} from lookuptable based on u} ,
. Chose ¥} and 75 from lookuptable based on u?
. Compute o' = uupyll + }/21, a’ = uup}/f + }’22
a=o0' + (1 -o)a?

N B WD

[68], [77]) include the Stokes equations with periodic conditions for modeling the flow

pAi+f = Vp (4.16)
Vi = 0 4.17)

and a form of stochastic ordinary differential equations for decribing the motion and
deposition of particles

QE (%)

dx
2~ & 4.1
7 o (4.19)

Here t, X, iy, m, Q, E, ii, u denote the time, particle position, particle velocity, parti-

cle mass, particle charge, electric field, fluid velocity, and fluid viscosity respectively.

Additionally, dW (z) is the 3D probability measure, where <dV_l7i(t),dV_l7i(t)> = §;;dt.

Y =67mp [.Lfin, where p is the fluid density, R is the particle radius respectively. Lastly,
2 _ 2kpTy

0° = = =" is the fluctuation dissipiation theorem where kp is the Boltzmann constant

and T is the ambient temperature.

It has already been discussed that the processes at different scales are not entirely in-
dependent. The microscale geometry changes due to deposited particles, which further
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impacts the macroscale parameters such as permeability and deposition rate. On the
other hand, macroscopic velocity influences the micro solution as the ratio between ve-
locity and other forces acting on particles change. Following, we propose two ideas of
how the coupling micro and macro models is possible.

4.5.1 Micro-meso-macro scale simulations

In the first case, we discuss the coupling of micro- and macro- scale simulations in a
relatively straight forward approach. Firstly, the velocity, pressure and particle concen-
trations are solved using the fractional time step discretization method within the com-
plete filter element, using Equations (4.1) and (4.3). Note that the time discretization is
done at a coarser scale. The macroscopic velocity solution (for some selected voxels) at
coarser time moments is then downscaled and extrapolated, which is used as a boundary
condition for the microscale cell problem. Such cell problems are solved consecutively
only at selected locations of the filtering medium. Within one time step, macro scale
and micro scale equations are consecutively solved, with a proper exchange of informa-
tion in between these semi-steps. On the micro scale, the particles are deposited, the
local filter efficiency and permeability is computed. The macro scale parameters, i.e.
permeability K and depostion rate ¢ are consecutively upscaled from the subproblems
solved on micro scale problems.

The macroscopic solution at each time step are to be downscaled to provide input ve-
locity and particles distribution for the micro scale simulations. The changes in the
microstructure have to be monitored in selected locations of the filter media in order to
provide proper information for the upscaling procedure.

A sketch of one time step of the coupling procedure is as follows.

1. At the selected locations, as shown in Figure 4.4 of the filtering porous media,
local Stokes problems, as well as stochastic ODEs describing the movement and
deposition of particles, are solved;

2. Based on a consecutive upscaling procedure, these results are used to update per-
meability and the absorption rate in the selected locations in a piece of resolved

microstructure;

3. A proper interpolation procedure is used to calculate proper permeability and
absorption rate in the full porous medium;

4. The updated permeability and absorption rate are used to perform a semi time
step with the macroscopic algorithm;

5. The velocities and the concentration of particles are downscaled in order to pro-
vide input for the micro scale computations at the next time step.
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However, the costs for such an algorithm are assessed in advance. It is noted that there
is a need to incorporate two time scales within the model. Moreover, the micro simu-
lations would be possible only on selected locations, which would require some apriori
information on the selection of macro scale voxels for which micro problems need to be
solver. Additionally, the algorithm comes with a cost of post processing interpolations
of upscaled parameters. In the following subsection, we reformulate the approach in
another way to reduce the aforementioned difficulties.

Filtering medium

Magnified piece
of filtering
medium

Figure 4.4: Downscaling of local velocity and particle concentrations to be done for
selected locations of the filtering medium.

Figure 4.5: Left: Downscaled meso scale velocities and particle concentration to be
used as input into micro scale simulations. Right: On the micro scale, particles are
deposited, the local filter efficiency and permeability is computed.

4.5.2 Virtual Element Filter Design- Coupled Micro Macro Simulations

In Section 4.4, it was observed that expensive measurements are needed for determin-
ing the parameters. In this subsection, we propose an alternate approach where the
microscale simulations are used to determine the coefficients for the macroscopic equa-
tions. This approach significantly reduces the efforts in acquiring measurements data,
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Figure 4.6: The permeability found in selected locations of the porous medium from
microscaleis to be inserted back into the macro scale equations.

and in turn significantly reduces the costs and the time for new designs. Moreover, this
approach provides an option to evaluate the filter efficiency without manufacturing the
filter medium and the filtering element.

In the previous subsection, we saw that at each time moment, the microscale simulation
provided detailed information about the amount (concentration) of free particles and of
the deposited particles. The deposition rate « is then determined. Instead of exchanging
the information at every time moment, it is proposed to save the information provided
by the Micro scale simulation apriori before starting the macro scale simulations. This
is done in the following way. A virtual filter medium is designed, as illustrated in
Figure 4.7(a) using the GeoDict software. Flow is computed using equation (4.16) and
the particle transport and deposition is computed using equation (4.18). Lookup table
curves, similar to those derived from discussions in Section 4.4 result from the micro
scale simulations. The micro algorithm is run several times for different flow rates and
information is processed into correlation tables, as illustrated in Figure 4.7(b). The
macro scale simulations can use the lookup tables to determine the deposition rate for
equation (4.3).

Note that the data provided by the measurements can be replaced by micro simulations
for a virtually designed filter medium. The same velocity interpolation approach can be
further employed within the algorithm as discussed in subsection 4.4.2.



4.6. Numerical Results 87

10*  Concentration curve for virtual porous media (Geodict)

X
4
6pm Concentration curve from micro simulalions‘
35
3
25
15
1
0.5
0 L L L L .
0

10 20 30 40 50 60
Time (min)

Concentration (#/ml)
N

Figure 4.7: (a) Example of a virtual filtering medium generated by Geodict Software.
(b) Concentration curve from micro simulations pertaining to the respective filtering
medium.

4.6 Numerical Results

In this section, the particular results from experiments and simulations regarding various
aspects will be provided. We try to validate the simulation results against analytical
solution and experiments.

In the numerical setup, we first describe the physical and numerical parameters used.
The inflow velocity, corresponding to different flowrates for different problems are spec-
ified at the inlet. For the simple parallelepiped filter, size of the inflow is 50mm?. We
chose this filter for the particular reason that analysis and validation of the algorithm
becomes a relatively simpler task due to its simple geometry where creeping flow along
inclined walls etc. are neglected. In the second geometry, we closely match the ex-
perimental setup with a conical filter housing as shown in Figure 4.8. Here, the size
of inflow is the same size of the filtering medium using in the experimental setup, i.e.
248¢m? and the domain is discretized into 185 x 73 x 185 cells.

For all the examples considered in this section, the filtering media has the following
properties: the density distribution of fibres is considered to be uniform and an average
porosity of 0.932 and the solid volume fraction Of 0.068 is calculated for the clean
filtering medium. Permeability is assumed to be 8.41758¢ — 005mm? /mm. Moreover,
the density of oil is taken to be 8.386000e — 007kg/mm?.
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Figure 4.8: Left: Channel Filter Housing. Right: Conical Filter Housing. Inlet, outlet
and the filtering medium is marked with colors blue, green and yellow respectively.

4.6.1 Channel Filter using synthetic data

We first test our algorithm using synthetically generated data for the Channel Filter
using complete set of measurements, i.e. upstream and downstream particle counts
are available as discussed in Section 4.4.1. This includes the balance equation in the
tank, i.e. multipass including injection of dirt particles at a specified injection flow rate.
Firstly, results in 4.9 are presented for the Channel filter, Figure 4.8 (left). We compare
the simulation results with the synthetic data, labeled as ’Analytical solution’ in Figure
4.9. In the Figure, we provide plots corresponding to different time steps. Comparing
these plots, we see that the solution converges for smaller time steps.

Upstream concentration curves for 11/min flowrate
3500

Analytical solution
Computed with dt = 60s
Computed with dt =30s

3450

= 34001

3350

3300

3250

Upstream Concentration (g/ml
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3100 L L L " ,
0 5 10 15 20 25
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Figure 4.9: Upstream concentration curves for channel filter for flowrate 1 I/min.

4.6.2 Conical Filter using synthetic data

In this section, we present simulation results for the case of conical filter for different
flow rates and for different time steps as shown in Figure 4.10.
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Figure 4.10: Multipass upstream concentration curves for flowrates 8 and 25 1/min

4.6.3 Conical filter using experimental data

Results using ¢« computed from approach in Subsection 4.4.1

The results in Figure 4.11 correspond to the case where constant deposition of the con-
taminant is considered, as discussed in Section 4.4.1. The deposition rate is computed
using Equation (4.13) with model used for initial stages of filtration, i.e using Equation
(4.4). We observe that the deposition rate computed from the analytical solution is in
accordance with the measurements.

Next, we compare the two models, i.e. Equations (4.4) and (4.7) respectively. When

x 10 Concentration curve computed from constant deposition rate

Measurement TFEM pressure side
Computed: analytical solution for deposition rate
O Measured analytical curve
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Figure 4.11: Using deposition rate & computed from analytical solution 4.13 for flow
rate 8/ /min.

a is computed using Equation 4.4, it is observed that there is complete cleaning, ie.
concentration goes to zero. This may be true for the initial stages of filtration for a
completely clean filtering medium. In reality, as time elapses, deposition is directly
related to the mass of already captured particles and the capacity of the filter itself,
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as modeled by Equation (4.7). Moreover, one observes the ’saturation of efficiency’
phenomena.In this sense, M can be interpreted as the limiting capacity of the filtering
media. The results shown in Figure 4.12 compares the concentration curves vs time
using both model equations for deposition rate. Equation (4.7) is tested for two cases,
i.e. My = {C;, , where 0 < ¢ < 1. In the first case, we assume that there is no limiting
capacity on the filter, implying that the filtering medium has the capacity to capture all
that comes in, i.e. M_0 = Cj,. In the second case ¢ = 0.9, implying My = 0.9C;,,.

4
x 10 Concentration curves compared

Model 1
Model 2
O Model 2 with limit

Concentration (g/ml)

0 10 20 30 40 50 60
Time (min)

Figure 4.12: Comparing concentration curves for different models for flow rate
251 /min.

Results using oo computed from approach in Subsection 4.4.2

In this section, we also specify the components of the algorithm that are used in the
computations while illustrating results. A comparison between the measurement data
and simulations is shown in Figure 4.13 using & computed from Equation (4.14) in Sec-
tion 4.4.2. Note that « is determined for different flow rates. The solid lines represent
measurement data on a flat sheet housing that is used to create correlation tables within
the algorithm. The measurement curves correspond to a selected filtering medium. An-
other representation of the results can be seen on the efficiency curves shown in Figure
4.13 (right). The efficiency of the filter is estimated using the particle concentrations
described on the curve, which further serves as an indicator towards the performance
and lifetime of the filter.

In Figure 4.13, results were compared with measurements for which data was available,
i.e. for 8, 25 and 40l/min flowrates. What happens for the cases when the velocity of
fluid within the filter is different from the ones for which measurement data is available?
For this purpose, we employ the interpolation Algorithm 2. We test the interpolation
algorithm for flow rate 151/min, for which the results are shown in Figure 4.14.

It is observed from Figure 4.14 that velocity interpolations is not only useful when the
system flow rate is different from the measurement data, but also when the velocity in
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Figure 4.13: Obtained concentration and efficiency curves matched against measure-
ments for flowrates 8, 25 and 40 1/min.
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Figure 4.14: Obtained cleanliness and efficiency curve for 15 I/min using velocity inter-
polation.
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front of the filtering media is not uniform. The varying velocities can be accounted for
using such a form of velocity interpolation.

Next, we do a simple test for different time steps of the algorithm. For the first case,
we take a total time interval of one hour, with a one minute/60 seconds time step. The
second case, we again take a total time interval of one hour but with 30 second time
stepping. The results obtained are shown in Figure 4.15.

x 10" Concentration curves from different time steps

35 1001
Flow rate: 8 I/min, dt = 60s
| Flow rate: 25 I/min, dt = 60s 90
3ri Flow rate: 40 I/min, dt = 60s
Flow rate: 8 I/min, dt = 30s 80 L
O Flow rate: 25 /min, dt = 30s
254 O Flow rate: 40 Umin, dt = 30s 70k
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Figure 4.15: Obtained concentration and efficiency curves for different flow rates for
different time steps.

4.6.4 A real industrial filter

In this subsection, we compare results with measurements on a real industrial filter,
called the FCVT Filter used as an automotive oil filter, as shown in Figure 4.16. For
these simulations, correlation tables created for the Flat sheet housing for the Conical
Filter showed in the previous section for flowrates 8 1/min, 25 I/min and 40 1/min were
employed, to mainly cover for the variation (complete range) of upstream velocities of
the filtering medium. The simulation results meet our goal of employ the pre-created
lookup tables for flat sheet media and use it for arbitrary filter element simulations.

Algorithm 1 is used to solve the Navier-Stokes-Brinkmann system for the fcvt filter.
Figure 4.17 shows the computed velocity profiles. We observe that there is a non uni-
form distribution of velocity profile and the flow is more concentrated in regions behind
the outlet of the filter. Such variations are typical in real filters, depending on the com-
plexity of the filter housing, the complex shapes in which the filtering medium could
appear, or due to the spatial location of the inlet/s and outlet/s of the filter itself. Fig-
ures 4.18, 4.19, and 4.20 show the raw data in the form of particle counts for different
particle sizes for a given system inflow flowrate 8 1/min. Results from simulations are
matched against the measurement data and it is observed that the simulations mimick
the real process reasonably well.
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Figure 4.16: Filter housing of the fcvt filter.

QOYZ: x=100.000000V|,mm/s

OXZ: y=18.000000 |V],mmss 150 T 140

150

100 100

50 50

Figure 4.17: Velocity profiles computed using Algorithm 1. Left: Velocity magnitude
in the layer in front of the filtering medium. Right: Velocity magnitude in the Y-Z cross
section of the filter. It shows the varying velocities with the filter.

Lastly, we perform simulations for different inflow flowrates and observe the behaviour
of the filter in terms of filtration efficiency. These results are further compared with
measurements and we again see good correlation with measurement results. Table 4.1
compares the measured and simulated overall efficiencies reached for a one hour time
interval for the fcvt filter housing geometry. For consistency, this was done for different
flowrates. Moreover, Figure 4.21 shows a graphical display of the efficiency profiles for
different particle sizes for different flowrates. Simulation results are compared with the

measurements.

4.7 Summary

A coupled model for fluid flow and particle transport is introduced. The velocity field of
the flow equations based on Algorithm 1 was used to solve the Convection Diffussion
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Figure 4.18: Concentration curves matched against raw measurement date for fcvt filter
for different particle sizes, with system flow rate 8 I/min
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Figure 4.19: Concentration curves matched against raw measurement date for fcvt filter
for different particle sizes, with system flow rate 8 1/min

Reaction equation for particle transport. Determination of the deposition rate was done
by employing various methods. In the first approach, analytical solution of a one dimen-
sional convection-reaction equation is employed, along with Lab measurements. In the
second approach, the deposition rate is solely determined from given set/s of measure-
ments. In both cases, the derived deposition rate was employed in the model equations
and results were compared against measurements. It was observed that the methods
employed worked well under the prescribed assumptions. An alternative approach for
determining the deposition rate is proposed based on micro scale simulations. The re-
sults show excellent correlations for the tests using the flat sheet sheet medium within
a Conical Filter housing. Results show that using interpolation for different infront ve-
locity and particle concentrations for determining the deposition rate also worked well.
Moreover, it is shown that the algorithm can be successfully employed for arbitary filter
elements to determine its filtration efficiency.
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Figure 4.20: Concentration curves matched against raw measurement date for fcvt filter
with for different particle sizes, with system flow rate 8 1/min

Table 4.1: Particle reduction efficiencies for different flowrates
Particle Size | 10 14 20 30 40 50 60

8 I/min measured (%) | 7.40 14.70 28.00 648 764 844 85.00
8 I/min simulated (%) | 8.88 169 31.6 6799 81.5 87.57 90.52
25 1/min measured (%) | 13 249 454 819 90.8 96.5 99

25 I/min simulated (%) | 16.4 293 496 862 93.6 956 96.58

Current work in progress

The problem under consideration is highly complex. On the contaminant level, the dust
particles suspended in the fluid can be of different quantities, sizes, shapes, densities
and are randomly distrubuted within the fluid. From the side of the filtering media,
in reality, it is packed with a non uniform distribution of fibres, resulting in nonuni-
formity in the loading of particles. The complex shape of the filtering media and the
filter housing imposes additional complexities, whereby deposition, sedimentation, and
gravitational effects start to play role. Additionally, effects like washing away, breaking
and agglomeration of particles are prevalent in almost all applications. On the other
hand, the problem is constantly changing over time, in the sense that the micro geome-
try is never constant. With the capturing, deposition and transport of particles, the micro
geometry is varying, which has a direct impact of the defining parameters of the con-
stituent equations, such as permeability, deposition rate, porosity etc. Even though the
dynamic aspect was not the main topic of our research, it still opened up new aspects
of research. Next immediate plans are to look into the effect of changing permeability
and the redistribution of flow in correlation with the non uniform deposition of particles
within the filtering medium. We expect an overall increase of pressure over time. Sev-
eral aspects become important in this line of research, e.g. what is the best possible way
to recompute permeability for clean/partially loaded/clogged filtering medium? How to
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Figure 4.21: Efficiency profiles for different particle sizes for flowrates 8 I/min and 25
I/min (measured and computed).

incorportae the sedimentation and gravitational effects into the model? How to account
for the different time scales for the different processes happening on each scale? Our
current ongoing work addresses part of these questions but is excluded from this thesis
as it is still not completed. However, its worthwhile to note that this work opens new
dimensions for future research on this topic.



Chapter 5

Summary

This thesis provided a general framework to overcome the computational limitations
and to incorporate multiscale models for filtration related problems. With the aid of
the model and algorithms considered, an accurate filter simulation tool was developed,
incorporating the several scale models to enable the design of filters and optimize the
filter performance.

Chapter 1 discusses a single grid version of the flow algorithm for the Navier-Stokes-
Brinkmann equations. We observe that the simulation of such an algorithm imposed
serious restrictions on the computational size (and solving time) of the problem. In this
regard, a parallel algorithm is developed.

The flow algorithm (single grid and the parallel version) is incorporated in a software
simulation tool called Suction Filter Simulation (SuFiS). This is currently in use at IBS
Filtran, and is reported to help in the design of oil filters, optimal shape design for the fil-
ter housing and achieving optimal pressure drop - flow rate ratio. With continuous use,
it is observed that the CFD simulations assisting this design does not always require
very high accuracy for the flow velocity within a filter element, as long as the pressure
drop over the complete filter element is properly computed. Keeping this in mind, a nu-
merical upscaling subgrid method is developed in Chapter 2 as a computational method
for achieving the desired accurate pressure drop for the Navier-Stokes-Brinkmann prob-
lem. It is mainly employed for cases where the coarse computational grid is unable to
accurately account for the complicated geometry and/or the filter media.

Alternatively, for the cases where the geometrical features are at different scales, var-
ious approaches for multiscale problems can be adopted to provide an increase in the
efficiency of the flow algorithms. In this respect, the iterative Multiscale Finite Vol-
ume (iIMSFV) Method, earlier introduced in [59, 45], for solving equations describing
flow in heterogeneous porous media, is extended to solve equations describing coupled
flow in plain and porous media. This is the work presented in Chapter 3. The Steady
state Stokes equations govern the flow in the plain domain, while the Darcy problem is
considered for the porous domain. However, the extension to the unsteady case, and/or



to the Brinkman equation in the porous media, is relatively straightforward. As future
work, we would like to adopt this algorithm for the Navier-Stokes-Brinkmann equations

on non uniform collocated grids.

We notice that the flow algorithms contribute essentially to the design of filters with
improved performance. However, prediction of the efficiency and lifetime of the filter
require detailed knowledge not only of the flow field transport but also the capturing of
impurities through the filter. For this purpose, several other challenging problems are
solved to further improve its design: (1) modeling transport and capturing of the dirt
particles by the filtering media; (2) parameter identification methods for parameteres in
the particle transport model; (3) dependence of flow velocity on particle capturing and
filtration efficiency. Within the work of this thesis in Chapter 4, we address each of these
issues, with special attention to the usage of correct parameters and to the validation of
the algorithm.

The essential contributions of this thesis are as follows:

e A parallel algorithm for the Navier-Stokes-Brinkmann equations, based on a data
decomposition approach using MPI implementation is developed.

e Parallelization of the linear solver (BiCGSTAB) using threaded OpenMP ap-
proach.

e A numerical upscaling subgrid algorithm for the Navier-Stokes-Brinkmann equa-
tions, with a strong emphasis on verifying the accuracy of the upscaled coeffi-
cients.

e Extension of the iMSFV method for solving a coupled Stokes-Darcy system.

e A numerical algorithm for the coupled flow and transport problem, namely the
coupling of the Navier-Stokes-Brinkmann equations and the Convection-Diffusion-
Reaction equation. A larger work in this regard was spent on identifying param-
eters for the model equations.

5.1 Concluding remarks

In a nutshell, the thesis touched upon essential topics for modeling and solving flow in
porous media, ranging from applications such as automotive oil filters to petroleum oil
reservoir simulations. All methods developed could be used, with some easy modifica-
tions, for many different applications. It should be noted that the developed implemen-
tation of the parallel algorithm, subgrid algorithm and micro-macro coupled efficiency
algorithm is successfully in use with one of the industrial partners of the Fraunhofer
ITWM.



List of notations

Below, some of the used notations are listed. They are subdivided into the two groups
—namely, notations, which are common throughout the whole manuscript, and notations

specific for every chapter.

Common notations

o O
S

TE R TST Db D
ORI

F &

Qb"'é’w

Q
hﬁ

computational domain

porous part of the computational domain
fluid part of the computational domain
solid part of the computational domain

external boundary of Q
QUIQ
fluid pressure

right hand side of Navier-Stokes-Brinkmann equation

time

permeability

viscosity of the fluid

time level

k1 _ 4k

Inlet velcoity

Inlet pressure

Outlet pressure

unit tensor

discrete diffusion operator
discrete gradient operator
discrete divergence operator



Notations used in Chapter 1,2,4

LM zmas
N

S D
~.
k)
~—

Iy 2 ™ 3 %QQ g =LE

S 5

(x.y,2)
discrete convective operator
discrete Brinkmann operator

Number of finite volumes in computational domain, {1, ..

index indicating discretization in space

finite volume, where n € 1,...,N

set consisting of all neighbouring finite volumes of E),
coordinates of E

grid size of E, in each direction, h = (h*, 1’ h?)
volume of E,

(u*, ', u*) - fluid velocity
approximate velocity
pressure correction, pft! — p
message startup time

k

AN}

Preconditioner of the discretization matrix under consideration

number of data items sent between 2 processors
time required to send one element of data

cost of broadcasting data items between 2 processors
number of processes

coarse scale velocity vector

coarse scale pressure vector



Notations used in Chapters 3

TS, O O §y SR Y
v ERR

S

Dij

(xy)

unit normal vector

unit tangential vector

continuous velocity vector, i = (u,v)
staggered grid for pressure

staggered grid for velocity component u
staggered grid for velocity component v
intermediate velocity in the SIMPLE algorithm
velocity correction for the SIMPLE algorithm
pressure correction for the SIMPLE algorithm
fine scale pressure values

coarse scale pressure values

Number of primal coarse blocks

Number of dual coarse blocks

A block of the primal coarse grid

A block of the dual coarse grid

Interior of £

Interior of E’

Edges of E

Edges of E’

Vertices of E

Vertices of E’

basis function

correction function

Set of all dual cells belonging to E



List of acronyms

NSB Navier-Stokes-Brinkmann

MSFV Muliscale Finite Volume

iIMSFV iterative Multiscale Finite Volume
MsFEM Multiscale Finite Element Method

FV Finite Volume

FRM Fictitious Regions Method
CvV Control Volume

SuFiS Suction Filter Simulation

TFEM Transmission Filter Effectiveness Method
REV Representative Elementary Volume
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