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Abstract

In this paper we revisit one of the most important scalarization techniques used in
multiobjective programming, the e-constraint method. We summarize the method and
present some criticism, namely the lack of results on properly efficient solutions and
computational difficulties. We present two modifications that address this criticism.
The improved e-constraint method we propose combines both modifications.
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Introduction

1.1 Basics

Multiobjective programming is a part of mathematical programming dealing with deci-
sion problems characterized by multiple and conflicting objective functions that are to be
optimized over a feasible set of decisions. Such problems, referred to as multiobjective

programs (MOPs), are commonly encountered in many areas of human activity including

engineering, management, and others.

More precisely, let R” and R? be FEuclidean vector spaces referred to as the decision

space and the objective space. Let X C R” be a non-emtpy and compact feasible set
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and let f be a vector-valued objective function f : R®™ — RP composed of p real-valued
continuous objective functions, f = (f1,..., fp), where fi, : R” - Rfor k=1,...,p. A
multiobjective program (MOP) is given by

subject to z € X.

We usually assume that the set X is given implicitly in the form of constraints, i.e.,
X ={z CR":gj(zx) <0,j =1,....Lhj(z) =0,j =1,...,m}. We define the set of
all attainable points or objective vectors for all feasible solutions x € X in the objective
space, Y := f(X) C RP.

The symbol “min” in the MOP is generally understood as finding optimal or preferred
outcomes in Y and their pre-images in X, where the preference between the criterion
vectors results from a binary relation defined on Y. The following notation is used to
define binary relations on RP. For y,y’ € RP

e y <y denotes y, <y, forall k =1,...,p,
e y <y denotes y, <y forall k=1,...,p,
e and y < ¢/ denotes y < o/ but y # ¥/.

The so-called Pareto concept of optimality is based on these binary relations and can
be defined as in Definition 1. Let RY := {y € R? : y = 0}.

Definition 1 Consider the MOP. A point x € X 1is called
1. a weakly efficient solution if there is no x' € X such that f(x') < f(z);
2. an efficient solution if there is no ' € X such that f(z') < f(x);

3. a strictly efficient solution if there is no x’ € X, x' # x, such that f(z') < f(x).

We denote the sets of weakly efficient solutions, efficient solutions, and strictly efficient
solutions by X, g, Xp, Xsp, respectively. We call their images weakly nondominated (weak
Pareto) points and nondominated (Pareto) points, respectively. The latter are denoted
by Yun, Yn. Note that strictly efficient solutions correspond to unique efficient solutions,
and therefore they do not have a counterpart in the objective space.

Additionally, Geoffrion (1968) (among many others) defines properly efficient solutions.

Definition 2 A feasible solution x € X is said to be a properly efficient solution of the
MOP if it is efficient and if there exists a scalar M > 0 such that for all i,1 < i < p,
and each ¥’ € X satisfying fi(x') < fi(z), there exists at least one j,1 < j < p, such that

fia') > fi(x) and (fi(z) — fi(2"))/(f3(2) — fi(x)) < M.



The set of all properly efficient solutions and properly nondominated outcomes (in the
sense of Geoffrion) are denoted by X, and Y,n.

The traditional approach to solving MOPs is by scalarization which involves formulat-
ing an MOP-related single objective program (SOP) by means of a real-valued scalarizing
function typically being a function of the objective functions of the MOP, auxiliary scalar
or vector variables, and/or scalar or vector parameters. Sometimes the feasible set of the
MOP is additionally restricted by new constraint functions related to the objective func-
tions of the MOP and/or the new variables introduced. For a survey on scalarizing (and
non-scalarizing) techniques, the reader is referred to Ehrgott and Wiecek (2004).

In the following section we review a well-known scalarization technique, the so-called e-
constraint method, and list related theoretical results. This method has some practical and
theoretical drawbacks which are discussed in Section 1.3. In the two subsequent sections
we propose two modifications of the e-constraint method as “measures of remedy” with
respect to the main two drawbacks of the e-constraint method. In Section 4 a combination
of the modifications proposed in Section 2 and Section 3 is presented as the improved e-
constraint method. We present some conclusions in Section 5.

1.2 The e-constraint Method

Chankong and Haimes (1983) propose the e-constraint method. It is based on a scalar-
ization where one of the objective functions is minimized while all the other objective
functions are bounded from above by means of additional constraints.

min fi(z)
subject to fi(z) < & i#k (P-_,)
x € X,

where € g = (€1,-- -,k 1,Ek41,---,6p). € RPLand k € {1,...,p}. We shall denote the
feasible set of the e-constraint problem P. , by

Xp={r e X: fi(z) <ei#k}

Throughout this article, we assume that e_j is always chosen such that P._, (or its
modifactions) are feasible, i.e. X # 0.

Below we state the two main theorems about the e-constraint method, see Chankong
and Haimes (1983): Optimal solutions of P._,
solutions of P._, are stictly efficient and efficient solutions of the MOP can be characterized

are weakly-efficient and unique optimal

using the e-constraint method.

Theorem 1 For any e_;, € RP~! the following statements hold.

o [fx € X is an optimal solution of P: ,, then & € Xy .



o If & € X is a unique optimal solution of P._,, then & € X,E.

Theorem 2 A solution & € X is efficient if and only if it is an optimal solution of P;_,
for every k =1,...,p, where g; = fi(&) fori=1,...,p, i # k.

Thus, given a feasible solution of the MOP, checking this solution for efficiency can
be done by checking for uniqueness of the solution in P, , for some % or by solving p
single-objective optimization problems P. , . k=1,...,p.

1.3 Criticism

The results stated in the previous section clearly show the main advantage of the e-
constraint problem: Every efficient solution can be found as optimal solution of some
Pe_j. This result is independent of the structure of X, i.e., it is also true for nonconvex and
discrete optimization problems. This fact is very important, as it distinguishes the method
from the weighted sum method of minimizing a convex combination of the objectives of
the MOP: The latter is restricted to convex MOPs.

Multiobjective programming is a field of optimization driven by applications. In many
real world decision making situations there is a need to consider multiple conflicting ob-
jectives. The bibliography by White (1990), and Chapters 20 — 23 in Figueira et al. (2004)
provide ample evidence of this fact. Consequently, there is a need for efficient and effec-
tive techniques to solve multiobjective programmes in many areas. If a solution method
is based on scalarization it is usually necessary to solve the scalarized problem repeatedly.
It is therefore important to ask whether it can be solved with acceptable computational
effort.

Ehrgott and Ryan (2002) report on a bicriteria set partitioning model in airline crew
scheduling. They show that the problem F;_,
despite the use of sophisticated methods to solve single objective set partitioning prob-

cannot be solved within acceptable time,

lems. They mention that the addition of one e-constraint (a knapsack type cutting plane)
destroys the polyhedral structure of X and renders the efficient set partitioning techniques
ineffective. Moreover, the results indicate that the bounds on objective values “misleads”
the column generation subproblem into generating columns that appear beneficial, but
result in a large number of iterations with little progress towards an optimal integer solu-
tion.

Another issue is related to properly efficient solutions. In practical situations, decision
makers are usually interested in properly efficient solutions rather than just efficient ones.
These solutions are characterized by finite trade-offs (or rates of substitution) between the
objectives, i.e., an increase in one objective can be compensated by a finite decrease in
another one. While all optimal solutions of a weighted sum problem with positive weights
are always properly efficient (Geoffrion, 1968), the traditional e-constraint method does
not provide results on proper efficiency of optimal solutions. There are, however, results



that relate proper efficiency to stability of P, and Karush-Kuhn-Tucker conditions for
P.,, see (Miettinen, 1999, pp 89-91) and references therein.

In Section 2 we address the second issue: By inclusion of slack variables that measure
the gap between objective values f;(x) and bounds ¢;, i # k, we obtain statements on
proper efficiency in a natural way. In Section 3 we present a modification that overcomes
the computational difficulties associated with the e-constraint method by relaxing the
constraints f;(z) < ¢; and a penalty function type approach.

2 Modification for Proper Efficiency

A first modification of the e-constraint method utilizes nonnegative slack variables s;,7 # k,
which are added to the e-constraints. The objective function equals the sum of the k"
objective function and the negative weighted sum of the slack variables. The scalarized
problem P can be formulated as

min fj(z) — Z AiSi

subject to fi(z) +s; < & i#k <P;:k)
s = 0 1 75 k
x € X,
where e_ = (e1,...,6k—1,Ek41,---,6p)° € RPLand \; > 0,i # k, are nonnegative

weights.

As shown in the following, these slack variables provide information about proper
efficiency of a solution. Thus, this first modification can be seen as a measure of remedy
for one of the major drawbacks of the e-constraint method. A first difference to the
e-constraint method is that the e-constraints are always active at optimality.

Lemma 1 Let X\ 2 0. Then PX  has an optimal solution (i,8) such that fi(&) + 5 = &
for alli # k. If A > 0 then every optimal solution of Pgtk satisfies fi(x) + 8; = &; for all
Proof:

Assume that (Z, 8) is an optimal solution of P , but there is some j € {1,...,p} \ {k}
such that f;(2) 4+ §; < ¢j. Then for § = ¢; — f;(Z) > 0 define

i _{s for i € {1,...,p}\ {j, k}

;=
‘ $i+6 fori=j.
(,3) is feasible for P . Since §; > §;, we have

Fel@) = T Nidi < fr(@) =) Aidi.

ik ik



That means (%, 5) yields a better objective function value for P2 than (&,3) (if A; > 0)
or the same as (,35) (if A; = 0). O

Before we start analyzing this modification theoretically, we want to gain some insight
into the way this method works. Looking at the special case of p = 2 and exploiting Lemma,
1 provides the tools for a visualization in the objective space. Consider an optimal solution
(Z,31) € R* x R for a problem P ,.

)

f2 (;()’

<>

£, (%) € 3

Figure 1: The modified e-constraint method for a bicriteria example.

Note that the feasible set of P  (in z variables) equals a subset of the feasible set of
the BOP, namely X5. For a given feasible solution (z, 51), let

V= fg(f) — A5

denote the objective function value associated with (Z, 51). The level set of v = fo(x)—A151
can be interpreted as a line in the s;-fo-space with slope —\; passing through (31, f2(Z)).
Let © = fo(2) — A181 denote the optimal objective function value of P . By Lemma
1, the e-constraints hold with equality at optimality, so §; = &1 — f1(%).
If 1 =0, we have f1(Z) =¢; and fa(Z) = 0.
Let us now assume that §; # 0. Substituting §; into the objective function of P., gives
L B
f1(Z) —e1
The scalar weight A\; equals the negative slope of the line through (f1(z), f2(#)) and
(e1,0). For a visualization see Figure 1. The feasible set of the MOP is reduced by
the additional e-constraint forcing fi(x) < e1. Then, a line with slope —\; is parallely
translated towards the origin until it supports the restricted Pareto set. The point of
support is the nondominated point f(z).

Depending on the choice of the weight vectors different results for P, can be derived.
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Let us first consider weight vectors A = 0. We will show that we obtain weakly
efficient solutions. We present an example which shows that optimal solutions of P;:k are
not always efficient or in other words, a stronger result for A 2 0 cannot be derived. Note
that, of course, P ., with A = 0 corresponds to the original e-constraint problem.

Proposition 1 Let (&,8) be an optimal solution of PE‘tk with A 2 0. Then & is a weakly
efficient solution of the MOP.

Proof:
Let (&, 3) be an optimal solution of P with A 2 0. Assume that there is 2 € X such
that f(z) < f(&). Then

ie., (z,83) is feasible for P and fi(z) < fr(#). This implies
Fel@) = Xisi < (@) = ) Nids,
ik ik
a contradiction to the optimality of (&,3) for P . O

Optimal solutions of P, are indeed not necessarily efficient, even if X # 0, as the
next example shows.

Example 1 Consider the following set of attainable objective vectors Y of a discrete

MOP:
Y ={(16,1,2)",(1,5,4)7,(1,5,5)", (17,3, 1) }.

Suppose k = 1, X = (Ao, A3)T = (1,0)T and e_; = (10,10). Note that Yy = Y. Let
z(y) denote the optimal objective function value of P;_k fory e Y. Then

z((16,1,2)7) = 16-9 = 7
2((1,5,4)7) = 1-5 = —4
2((1,5,57) = 1-5 = -4
(17,3, 1)) = 171—-7 = 10.

So, both (1,5,4)T and (1,5,5)1 yield optimal objective values of PX . However, (1,5, 5"
1s only weakly nondominated.

Proposition 2 Let (&, 8) be an optimal solution of P;:k with X\ 2 0. If & is unique then
Z 15 a strictly efficient solution of the MOP.



Proof:

Assume that z is such that fix(z) < fr(2),k = 1,...,p. Then (z,38) is also a feasible
solution of P . Since the objective function value of (z,3) is not worse than that of
(%, 8), uniqueness of & implies that x = 7. O

Propositions 1 and 2 and Example 1 show that the results of the original e-constraint
method cannot be strengthened by including slack variables s; if A > 0 is allowed: Optimal
solutions of the e-constraint problem are only weakly efficient in general. However, optimal
solutions of the modified e-constraint problem with positive weights are always efficient.

Theorem 3 Let (z,5) be an optimal solution of Pj_k with A\ > 0. Then & is an efficient
solution of the MOP.

Proof:

Assume, that (,3) is feasible for P2 , but there is z € X such that f(z) < f(%) or, in
other words, fi(z) < fi(Z),i = 1,...,p, with strict inequality for at least one i. In the
following, we distinguish two cases depending on where the strict inequality holds.

Case 1: fr(z) < fix(Z). Then (z, ) is feasible for P . Furthermore,
Felm) =D N < fr(@) — Y Nisi
itk itk
contradicts that (z,35) is optimal for P .

Case 2: fr(z) = fr(&). Then fj(x) < f;(z) for at least one j € {1,...,p}\ {k}. Thus for
some 0; > 0 (z,s) with

Si._{ 5 for i€ {1,....p}\ {j.k}

- §j+5j fori:j

is feasible for Pg':k. Furthermore, (z, s) yields a better objective function value than

(z,3):

fe(@) =Y Xisi = ful@) = D Nidi — \i(35 +65)

ik i#5,k
ik
= fu(®) =) N
ik



Below we state an easy to check sufficient condition for identifying properly efficient
solutions among the solutions of P;:k with positive weights.

Theorem 4 If (#,5) is an optimal solution of P —with A\ > 0 and § > 0 then & is a
properly efficient solution of the MOP.

Proof:
Let (&,5) be an optimal solution of P, and § > 0.

From Theorem 3 we know that & is efficient. Since, at optimality, the e-constraints
hold with equality, we can rewrite the objective function as

P
Fe(®) =Y Xilei — fi®) = D Nfil@) — ) e,
i#k i=1 i#k
where we define \; := 1. Since the term ), 2k A;€; is constant, we can interpret I as
optimal solution of a weighted sum problem with weight coefficients strictly greater than
zero, which has a restricted feasible set, namely the feasible set X§ of P~ .+ By Geoffrion’s
theorem (Geoffrion, 1968) & is properly efficient for the MOP with feasible set X}.

Since § > 0, properly efficient solution & of this restricted MOP is also a properly
efficient solution of the MOP. U

So far results about optimal solutions of P . have been stated. We will now analyze
how (weakly / properly) efficient solutions can be obtained by appropriate choices of
parameters.

It follows directly from the e-constraint method that weakly efficient solutions can be
obtained with A = 0.

Lemma 2 Let & be efficient. Then there existe, § and A = 0 such that (&, 8) is an optimal
solution of P, for all k € {1,...,p}.

This results follows immediately from Theorem 2 choosing € = f(2),8 = 0 and \ = 0.
Next, we will show that any properly efficient solution can be obtained as an optimal
solution of P~ with positive weights.

Theorem 5 Let & be properly efficient. Then, for every k € {1,...,p} there are e, §, and
A > 0, such that (%, 8) is an optimal solution of P;:k.

Proof:

Let # € X, and k € {1,...,p}. Define ¢; := f;(&) for i # k. Thus, we can choose § = 0.
Suppose there is no z € X and no i # k such that f;(x) < f;(#). Consider any feasible

solution for P, ie., any « € Xj. Then for all i # k we have f;(x) = f;(Z) and, since

& € Xg, fr(x) > fr(z). Consequently, (z,s) does not yield a better objective function
value for P for any choice of A > 0.



Let us therefore assume that there is x € X and i # k such that fj(z) < fi(Z). Since
% € X, there exists M > 0 such that for all ¢ and all z € X with f;(x) < fi(Z) there is at
least one j with f;(x) > f;(2) such that (f;(2) — fi(x))/(f;(x) — f;(2)) < M. Moreover,
if we only consider points z feasible for PI .+ 1.6, points z € Xp, in the definition of
proper efficiency it follows that there is only one j, namely j = k, such that f;j(z) >
fi(@) and (fi(z) — fi(z))/(fj(z) — f;(2)) < M. Thus, since z € X, there is M > 0
such that for all ¢ and all x € X; with fj(x) < f;(2) it holds that fy(x) > fi(Z) and
(i) — @)/ (i) — @) = 1/M.
Define weights \; := 1/M (p — 1). Note that A > 0. We claim that (Z, §) is optimal for
.- Suppose there exists a feasible (=, s) with

)= D disi < fil@) D N = fu(#). (1)

i#k i#k

p+

E_

Furthermore, we assume without loss of generality that (x,s) is optimal for P;Ck, ie.,

filz) +s;=¢; = fi(@) i#Ek.

Substituting s;, i # k, in (1) yields

i) <Z)\i(fi(f)—fi(l'))- (2)

itk

Inequality (2) is a contradiction as we will show in the following. By the choice of the
weights and the consideration above, for any x € X; and any index i with f;(z) < fi(2),
it holds that

Ji(2)
fi(z)

1 N 1€

ME o) S o1 i) -

i # k.
Consequently, the inequality
NA(E) - 1) £ 5 (fle) - (@)
is valid for any x € X}, and any index i # k. Summing over all 7 # k yields

D OAilfi(@) = fi(@) < fr(@) = fr(@).
ik
and the contradiction is obvious. O

The following example shows that z € Xz \ X, cannot necessarily be obtained with
positive weights.
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Example 2 Letp=2 and X = {x € R? : (1 —1)*+ (z2 — 1)® < 1} with f(z) = x. Then
(1,0) and (0,1) are efficient, but not properly efficient.
The scalarization

min xo — As

subject toz1+s < 1
z € X

is equivalent to (has the same optimal solution x as)
min{zy — A(1 —z1) : (x1 — 1)? + (2 — 1)? = 1}.

It is easy to see that for obtaining the point (1,0), the weight parameter X has to equal
zero.
Note, however, that in order to obtain (1,0), we may also consider

minz; — As
subject to zo+s < 0
z € X.

It is clear that 1 = 1,29 = 0,8 = 0 is the unique solution of this problem for any A > 0.

Insertion of slack variables provides information enabling statements about proper
efficiency. Nevertheless, numerical difficulties are not addressed in P .+ the structure-
destroying character of the e-constraints is not affected by the addition of slack variables.
In the following section the e-constraints are allowed to be violated thus resulting in

numerical improvement.

3 Modification to Improve Computational Performance

As we have mentioned in Section 1, the problem P._, may be extremely hard to solve
in practice, in particular for discrete multiobjective problems. In order to address this
problem, we “relax” the constraints f;(xz) < &; by allowing them to be violated and
penalizing any violation in the objective function. Thus, we consider the following problem

min fi.(x) + Z [iSi
itk
subject to fi(z) —s; < & i#k <PE__k)
s; > 0 1#k
r € X,

11
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Figure 2: Feasible set and objective function of P_ .

where p; > 0,1 # k. The feasible set of P__
the MOP. Note that if (&, $) is an optimal solution, then we may w.l.o.g. assume §; =
max{0,e; — fi(%)}.
In Figure 2 P,
value €1. The dotted line shows the objective function of P~

in z variables is X, the feasible set of

is illustrated for a bicriteria problem. The vertical line marks the
, as a function of component
y1 of nondominated points Y. The idea of the method is that, by penalizing violations
of the constraint fi(z) < &1, a minimum of the objective of P, is attained with the
e-constraint active when p is chosen appropriately.

We obtain the following results:

Proposition 3 Let (&,8) be an optimal solution of P.

. with i 2 0. Then & is a weakly
efficient solution of the MOP.

Proof:

Suppose Z is not weakly efficient. Then there is some x € X such that f;(z) < fi(%),i =
L,...,p. Then (z,3) is feasible for P._ with an objective value that is smaller than that
of (i, 3). O

Under additional assumptions we get stronger results.

Proposition 4 If & is unique in an optimal solution of P, with p > 0, then T is a
strictly efficient solution of the MOP.

Proof:

12



Assume that z is such that fx(z) < fx(Z),k=1,...,p. Then (z, §) is a feasible solution of
P__, . Since the objective function value of (, 8) is not worse than that of (#, 8), uniqueness

of Z implies that x = . O

We remark that a result similar to Theorem 3 is not possible. Even if ;4 > 0 an optimal

solution of P may be just weakly efficient, but not efficient.

k

Example 3 Consider an MOP with X = {(z1,22) : 77+ 23 < 1} +R2 and f(z) = z. Let
e1 > 1. Then (&1,%2,581) = (£1,0,0) is an optimal solution of P__, fm_” alll1 <z <ep. If
Z1 > 1 this solution is weakly efficient, but not efficient. This result is independent of the
choice of .

The example shows that the problem here is the possible existence of weakly efficient
solutions that satisfy the constraints f;(xz) < ;,i # k. If, however, all &; are chosen in
such a way that no merely weakly efficient solution satisfies the e-constraints, an optimal
solution of P, with > 0 will yield an efficient solution of the MOP.

Also, if > 0, and in addition P._, has an optimal solution (#, 8) with § > 0 we even
obtain proper efficiency of Z.

Theorem 6 If (%,8) is an optimal solution of P, with p > 0 and § > 0 then T is a
properly efficient solution of the MOP.

Proof:
Observe that because p > 0 and § > 0 we know that §; = fi(2) —&; > 0,7 # k.

We first show that Z is efficient. Assume there is # € X such that f(z) < f(2). Then
with s defined by s; := max{0, f;(z) — ¢;} we have that s < §. But from f(z) < f(2)
either fr(z) < fi(%) or s;(x) < s;(2) for some i # k, contradicting optimality of (z, §).

Furthermore, §; = &; — f;(Z), which we can substitute in the objective function of P ..
This implies that Z is an optimal solution of the problem

min fy(z) + Y pilfi(z) — &)
ith
subject to fi(z) > & i#k
r € X.

Thus 7z is the optimal solution of a weighted sum problem with positive weights (and
additional constraints). By Geoffrion’s theorem (see Geoffrion (1968)) % is properly ef-
ficient for the MOP with added constraints f;(x) > &;,i # k. However, since none of
these constraints are active at the optimal solution Z, the condition of Definition 2 are
also satisfied for the MOP, and Z is a properly efficient solution of the MOP. 1

We now turn to the problem of showing that (properly) efficient solutions of the MOP
are optimal solutions of P__, for appropriate choices of k, ¢, and p.

13



Lemma 3 Let & be efficient. Then there exist e, 2 0 and § such that (£, 8) is an optimal
solution of P for all k € {1,...,p}.

The lemma follows immediately from Theorem 2 by choosing ¢ = f(%), § = 0 and
w;=o00 foralli=1,... p.

A more careful analysis shows that for properly efficient solutions, we can do without
the infinite penalties.

Theorem 7 Let & be a properly efficient solution of the MOP. Then, for every k &€
{1,...,p} there are €, 5, u* with puf < oo for all i # k such that (&,5) is an optimal
solution of P._, for all p € RP=L, 1 2> pk.

Proof:
We choose ¢; := fi(%),i =1,...,p. Thus, we can choose § = 0. Let k € {1,...,p}. Because
% is properly efficient there is M > 0 such that for all z € X with fx(x) < fx(z*) there is
i # k such that fi(z*) < fi(z) and (fu(z*) — fr(z))/(fi(z) — fi(z¥)) < M.

We define p* by pk := max(M,0) for all i # k.

Let z € X and s be such that s; = max{0, fi(z) —e;} = max{0, fi(x) — fi(z*)} i#k,

i.e., the smallest possible value it can take. We need to show that

Fel@) + ) pasi > fu(®) + > pidi = ful#). (3)
itk itk
First, we prove that we can assume x € Xp in (3). Otherwise there is 2’ € Xp with
f(") < f(z) (note that due to our assumptions the MOP is externally stable (Sawaragi
et al., 1985) so that existence of 2’ is guaranteed) and s’ with s, = max{0, f;(z’) — &;}.
Since 8" = s we get that fi(2') + 32,4 s < fr(x) + 32, 4 pisi for any p 2 0.
Now let © € Xp. We consider the case fx(z) > fr(z). Then

Fel@) +> pisi > fo(®) +0 = fr(®) + > pufs;
iz i7k

for any p > 0.
Now consider the case fi(x) < fr(Z) and let I(x) :={i # k : fi(x) > f;(Z)}. As both
% and x are efficient, I(z) # (. Furthermore, we can assume s; = 0 for all i € I(z),i # k.

14



Let ¢/ € I(x). Then
fk($)+z,ui8i > fk($)+ZMf5i

itk i+k
fr(@) — fi(@)
> fk: (x) + Z -~ Si
2 i)~ 5@
fe(@) = fr(x)
2 @)+ fu(@) — fo(@)"
_ Ji(®) — fu(z) _f(a
= fk(fE) + le(-f) — fz’(-'i) (fz (.’E) fz (93))
= fr@) = fr(@) + ) pidi
itk
This follows from z; > ¥, the definition of 11¥, nonnegativity of all terms, s; = fi(x)— f;(%)
for i € I(xz) and § = 0. O

We can also see, that for z € Xg \ X, finite values of y are not sufficient.

Example 4 Letp =2 and X = {x € R?: (1 —1)? + (22 — 1)? < 1} with f(x) = z. Then
(1,0) and (0,1) are efficient, but not properly efficient. The scalarization

min xy + §s
subject toxz1 —s < 0
r € X

is equivalent to (has the same optimal solution x as)
min{xy + pry : (1 — 1)? + (2 — 1) = 1}.

1

It is easy to see that the unique optimal solution is given by x1 =1 — /1 — yTES | and it is
necessary that p — oo to get x1 — 0.
Note, however, that in order to obtain (0,1), we can also consider
minzy + ps
subject to xg —s < 1
z € X.
It is clear that x1 = 0,29 = 1,8 = 0 is an optimal solution of this problem for any

0<p<oo.

Since constraints on objective values are relaxed in a manner similar to penalty function
methods in nonlinear programming, the computational effort to solve P is less than that
to solve P._,. Ehrgott and Ryan (2002) report on the success of this appproach in their
application when solving large bicriteria set partitioning problems arising in airline crew
scheduling,.
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4 The Improved e-constraint Method

Let us now consider a combination of the two modifications from Section 2 and 3, that is,

min fi(z) ) Nist+ Y pisy
itk itk
subject to f;(z) + s —s;

IN
o

N
>~

(peom)

»
—+

»

|

AVARN(
)

o~
K
o

where \;, p; > 0,1 # k.
Given a feasible solution (z,s%,s7) € R? x RP™! x RP~! of P&, the slack and surplus

variables sj and s, , i # k, might be changed simultaneously by an amount «; € R,
st =st4+oa; i#k (4)

s; =8 +o; 1#k (5)

without affecting the feasibility of the i*" e-constraint, i # k. We want to investigate how
large «; can be chosen without affecting the overall feasibility of the solution. For sake of
simplicity, we restrict our consideration to one i € {1,...,p}.

When changing the slack and surplus variables as in (4) and (5), the objective function
value is changed by (u; — A\j)a;. If 1y — A; < 0, o; can be chosen arbitrarily large without
;." or s, ,
objective function value decreases arbitrarily and therefore P;f;”b is unbounded.

Let us therefore consider the case when p; — A; > 0. Then, «; can be chosen to be

affecting the nonnegativity restriction on s respectively. As a consequence, the

a; == —min{s}, s}

to improve the objective function value without violating the nonnegativity constraints.
+

In this case, s or s; equals zero after the update.
If u; — A\; = 0, changing sj or s; does not affect the objective function value.

Thus, we get the following lemma.

Lemma 4 1. If there is an i # k such that p; — \; <0, Pacfznb s unbounded.

2. If u— X >0, then there is always an optimal solution of chf';”b such that 32‘8; =0,
i # k, or in other words, there is a partition IUI of {1,...,p}\{k} such that s} =0
forallieT and s; =0 for alli € I.

+

Z. =
shall from now on assume that © — A > 0.

Analogously to Sections 2 and 3, we obtain the following results most of which follow
directly from results of the preceeding sections.

Note that since s s; = 0if fij(x) = ¢; this partition is not necessarily unique. We
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Proposition 5 Let (\,p) = 0. If (,5%,87) is an optimal solution of chi’:"”b then T is a
weakly efficient solution of the MOP.

The result follows from Section 2, Proposition 1 or Section 3, Proposition 3, respec-
tively.
With the additional assumption of uniqueness of the solution, Z is even strictly efficient.

Proposition 6 Let (A\,u) = 0. Let (2,5%,87) be an optimal solution of Pecf;”b. If & is
unique then I is a strictly efficient solution of the MOP.

In Section 2 positive weight vectors yield efficient solutions. Despite the lack of an
analogon in Section 3, a similar result can again be obtained for P;f;"b.

Theorem 8 Let A >0 and p > 0. Let (£,87,387) be an optimal solution of chf’,;”b. Then
Z is an efficient solution of the MOP.

Proof:
Suppose & ¢ Xp. Then there is x € X with f(x) < f(Z) and at least one index j €

{1,...,p} such that f;(z) < f;(2).

Case 1: j = k. Then (%, 5%, 37) is feasible for P;f;”b and yields a better objective function

3

value which contradicts the optimality of Z.
Case 2: j # k. Several subcases can occur:

Subcase 2.1: f;(z) < f;j(Z) <¢;
Then the contradiction follows from Section 2, Theorem 3.

Subcase 2.2: ¢; < fj(x) < f;(&)
Note that §; > 0. There is § > 0 such that f;(z) +0 = f;(2). It follows that
fi(@) —(8; —0) = f;(2) — 8; <egj. Since § = f;(2) — fi(z) < f;(2) —¢; = 3,
we can define

5. — 46 fori=j,

s; = !
! {S’,L_ for i # j

and (z,8%,s7) is feasible for P;i’:lb and yields a better objective function value
than (z,8%,57).

Subcase 2.3: f;(z) <ej < f;(%)
Since Z is optimal, we assume without loss of generality that §j+ =0and §; > 0.
Define

+ _{ Ei_fi(x) fori:j,

s =
§f for i # j

2
2
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and

e 0 fori=yj,
C ) & fori#j

2

This definition of (x,s*, s™) yields a better objective function value which con-
tradicts the optimality of (Z,8%,87). O

The proof shows that in fact not necessarily all A; and p; have to be positive. & will

also be efficient if A\; > 0 for all j such that f;(2) <e; and p; > 0 otherwise.

Theorem 9 Let A > 0 and p > 0. If (£,57,57) is an optimal solution of P;f:”‘b and if
there is a partition I UT of {1,...,p} \ {k} such that & > 0 fori € I and 37 > 0 for
i € I, then & is a properly efficient solution of the MOP.

Proof:
That Z is efficient follows from Theorem 8. Because (A, 1) > 0 we know that

At Ei—fi(.f) iE{
0 i€l
N fi(.@)—é“i iEj
0 el
Therefore the objective value of ng;”b is
Fe@) DN (fild) — &) + > il fi(@) — &)
i€l i€l
and z is in fact an optimal solution of the weighted sum problem

min fy(x) + Z Aifi(z) + Z i fi(x)

il iel
subject to fi(z) < g i€l (6)
r € X.

By Geoffrion’s theorem we have that Z is a properly efficient solution of the MOP ming¢ x

(fi(x),..., fp(x)) with additional constraints (6) and (7). Since none of these constraints
are active at the optimal solution z, it is also properly Pareto optimal for the original
MOP. o

Lemma 5 Let & be an efficient solution of the MOP. Then there exist A 2 0, u = 0, &
and §, § such that (,8%,57) is an optimal solution of 7™ for all k = {1,...,p}.
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The result follows immediately from the analogous results of Sections 2 and 3.

Theorem 10 Let z be properly efficient for the MOP. Then for every k € {1,...,p} there
exist X > 0, u > 0 with p; < oo for all i, € and 87, §~ such that (#,87,87) is an optimal
solution of Pscf’k"b.

The theorem follows immediately from Section 2, Theorem 5 and Section 3, Theorem

5 Conclusion

In this paper we have proposed modifications of the well-known e-constraint scalarization
technique for multiobjective programming. With these modifications we are able to prove
results on proper efficiency of optimal solutions. Additionally, the new formulation can
have advantages in computational performance, in particular for multiobjective integer
programming problems.

In the following table we summarize the results obtained for the improved e-constraint
method with scalarization P;,jmb.

Paramters Implication for & Result
and conditions

(A, ) =0 T € XuE Proposition 5

(A, )20 T € X,p Proposition 6
and Z unique

(A, ) >0 e Xg Theorem 8

(A, pu) >0 & e Xy Theorem 9

and st 4+5- >0

Type of solution Optimality of for chlfmb Result

t e Xg 3 (e,5%,87) so that Lemma 5
(&,5,57) optimal Vk
&€ Xpp Vk 3 (e,87,57) Theorem 10

so that (#,5",57) optimal
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