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1 Introduction.

The �nite element method is a fundamental tool for the solution of partial

di�erential equations. While the classical h-version approximates the solu-

tion on re�ned grids with a �xed piecewise polynomial degree, the p-version

uses increasing piecewise polynomial degree on a �xed grid. The combina-

tion of both results in the hp-version, featuring (for correctly chosen grids)

an exponential convergence of the form E := ku � uhkH1 � C exp(�
N�)

[3] instead of just an algebraic one of the form ku�uhkH1 � CN�� achieved

by the h-version [4], see also Figures 1, 2, and Tables 1, 2.

In this paper we consider the Laplace equation

��u= f in 
;

u= g on @
;
(1)

which yields after discretisation a symmetric positive de�nite sti�ness ma-

trix. Depending on the choice of the �nite elements, the sti�ness matrix

either is sparse or consists of dense blocks of small dimensions which them-

selves are sparsely distributed over the matrix.

We will use the CG-algorithm to solve the linear equations. This method

can be accelerated by application of a preconditioner. Depending on the

sparsity pattern of the matrix various preconditioners promise good results.

In this paper we want to compare some of them.

2 Design Decisions.

We consider discretisations based on cubes. For assigning the basis functions

to the vertices, edges, and faces, we use the 3D serendipity space [2]. This

space exceeds the space Pp of polynomials up to a given degree p by 3p+ 3
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3 STIFFNESS MATRIX.

degrees of freedom [5], i. e. is just insigni�cantly larger since both spaces are

of order O(p3).
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Figure 1: Uniform grid (see Figure 4): H1-error E depending on the number of

degrees of freedom. Using logE � logN and logE � N1=3 scale. p: polynomial

degree, h: grid width. u(x) = sin(�x1) sin(�x2) sin(�x3).

h p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

1/3 2.497 3.377 4.189 5.551 6.276 7.083 7.850 8.842 9.775

1/4 2.275 3.213 4.030 5.257 6.095 6.978 7.871 8.815 9.838

1/5 2.168 3.131 4.000 5.148 6.042 6.963 7.915 8.851 9.861

1/6 2.112 3.089 3.993 5.097 6.022 6.966 7.942 8.876 {

1/7 2.080 3.064 3.992 5.068 6.013 6.972 7.957 8.523 {

1/8 2.060 3.048 3.993 5.051 6.009 6.976 7.956 { {

1/9 2.047 3.037 3.994 5.039 6.006 6.980 7.807 { {

Table 1: Uniform grid (Figure 4): experimental order of convergence. Showing �

where E = Ch�. u(x) = sin(�x1) sin(�x2) sin(�x3).

In this work we assume that the elements are oriented parallel to the

coordinate axes. Hence local adaption has to be achieved by non-conforming

re�nement (Figures 5 and 6). Although this yields a sparse sti�ness matrix,

it also results in preconditioning problems which are dealt with in section 5.

According to [10][8], we decompose the degrees of freedom (dofs) into

inner dofs and boundary dofs, where the latter consist of face, edge, and

vertex dofs.

3 Sti�ness Matrix.

Since the elements' edges are parallel to the coordinate axes, the local sti�-

ness matrices are sparse. Consequently, the global matrix is also sparse [5].
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� � u(x) = jxj�1=3 � � u(x) = jxj1=3

p u(x) = jxj�1=3 u(x) = jxj1=3

4 0.270 0.271

5 0.243 0.250

6 0.232 0.239

7 0.228 0.234

8 0.227 0.233

9 0.227 0.232

10 0.231 0.233

11 0.228 0.234

Figure 2: Geometric grid (Fig-

ure 6): H1-error E depending on

the number of degrees of freedom.

Using logE �N1=5 scale.

Table 2: Geometric grid (Fig-

ure 6): experimental order of con-

vergence. Showing � where E =

C exp(�
N�).

Hence it can be stored in the compressed column format [6, Ch. 4].

If the elements are not parallel to the axes, the local matrices are dense

so that it makes sense to store the sti�ness matrix as a sparse structure

consisting of dense blocks where blocks of adjacent elements overlap. The

matrix and its preconditioners will strongly depend on the considered �nite

element method, particularly on the used grid.

The sti�ness matrix is composed of local sti�ness matrices Ak corre-

sponding to the k-th element,

A =
X

k

NkAkN
T
k : (2)

The matrix Nk maps local dofs into global dofs and hence consist only of 1's

and 0's where there is just one 1 per column. Of course, Nk is not stored as

dense matrix, but for each local dof just its global index is stored.

We will consider preconditioning techniques for these two di�erent stor-

age techniques.

4 Preconditioners.

The p- and hp-version constitutes a major improvement of the �nite ele-

ment method compared to the h-version. Yet the performance of the itera-

tive solver can be improved signi�cantly by using a preconditioner|for the

possible acceleration measured in CPU time see e. g. Figure 10.

Preconditioning is based on the fact that the number of iterations needed
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4 PRECONDITIONERS.

for solving

Ax = b

depends on the condition number �(A) = �max=�min. For acceleration, the

modi�ed equation

B�1Ax = B�1b

is solved [12], where we demand �(B�1A) � �(A). Clearly, the gain

achieved by improving the condition number �(B�1A) should surpass the

additional computational e�ort needed for applying B�1.

Since the sti�ness matrix can either be stored as sparse matrix or as

block matrix, there are several possible preconditioners. In the sequel we

consider the following combinations:

sparse matrix:

(1) without preconditioner

(2) with diagonal scaling [14, x4.6.3]
(3) with SSOR(!) preconditioning where ! = 1 [13, x7.6] [5]
(4) with incomplete Cholesky decomposition [9, x2.2]

block matrix:

(5) without preconditioner

(6) with static condensation [2]

(7) with static condensation and diagonal scaling

(8) with partial orthogonalization [10]

(9) with two-level domain decomposition [10]

The preconditioners based on the sparse matrix are well-known. For the

others (5)-(9) we want to add some notes on the implementation. The data

vectors v are stored globally, but for multiplication by A, we temporarily

use local vectors NT
k v, corresponding to the k-th element. Thus the matrix

A is stored in dense blocks Ak according to (2).

4.1 Static Condensation.

The inner dofs are not coupled with dofs of any other element. Additionally,

an element of polynomial degree p has O(p3) inner dofs and just O(p2)
boundary dofs. Hence, for high degrees p it is desirable to locally eliminate

inner dofs, so that the only dofs that have to be eliminated globally by the

CG-method are the remaining boundary dofs. This preconditioner is called

static condensation.

It has the advantage that it is well �tted for parallelization [1]. But as

can be seen in Table 3, for the current polynomial degrees of p = 1; : : : ; 15,

the number of inner dofs does not yet dominate the number of all dofs so

that this preconditioner is less eÆcient than expected.
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4.2 Partial Orthogonalization.

4.2 Partial Orthogonalization.

Partial orthogonalization requires the elimination of the inner dofs in ad-

vance, i. e. static condensation has to be applied �rst. Then the face func-

tions, edge functions, and vertex functions are partially orthogonalized suc-

cessively [10].

Therefore, all face functions, edge functions, and vertex functions need

to be tied together to blocks corresponding to the faces, edges, and vertices.

Since the sti�ness matrix initially is decomposed into blocks per element,

we need to reorder all degrees of freedom for applying the partial orthogo-

nalization. This reordering and the partial orthogonalization are quite time

consuming, but yet it yields a very eÆcient preconditioner, see Figures 7 {

10.

4.3 Two-level Domain Decomposition.

Although partial orthogonalization performs very well (the condition num-

ber is reduced from about 106 to less than 100), its condition number shows

a strange peak for polynomial degrees between 3 and 6, see Figure 3a. These

peaks can be cut o� by application of an additional preconditioner to the

partially orthogonalized sti�ness matrix (3b). According to Figure 3, the

condition number seems to depend polynomially on p and logarithmicly on

h.

As example, we choose the two-level domain decomposition precondi-

tioner, preconditioning each block by diagonal scaling. Since these blocks

usually are singular, we have to make sure that we perform all computations

in the complements of the sub-matrices' kernels [10].

Instead, diagonal scaling of the complete partially orthogonalized sti�-

ness matrix probably would give a similar result with less computational

cost, but we did not test that alternative.

4.4 Stopping Criterion.

For a fair comparison of these preconditioners the stopping criterion of the

CG-method should not depend on the preconditioners. Thus we should not

use the usual criterion kx� xnkB�1A < " but instead kx� xnk2 < ", which

is guaranteed by

(B�1rj ; rj)
1=2

kxjk2
<

�min(B
�1A)

�max(B�1)1=2
"

1 + "
;

where rj := b�Axj [5, Lemma 4.3].
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4 PRECONDITIONERS.
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Figure 3: Uniform grid (Figure 4): condition number as function of the grid width

h and of the polynomial degree p. Using log�� log p scale and �� logh scale.
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5 Non-conforming Re�nement.

Since non-conforming re�nement usually destroys the continuity of the ansatz

space,we have to eliminate explicitly those dofs which otherwise would result

in jumps of the trial functions [1][7][5].

This elimination corresponds to a matrix P 2 R
m�n where m > n, so

that we have to solve the problem

P TAP ~x = P T b

instead of

Ax = b;

where x = P ~x.

By appending columns consisting of zeros, i. e. de�ning �P := (P 0 ) 2
R
n�n and �x := ( ~x 0 )T 2 R

n we obtain the same result when considering

�P TA �P �x = �P T b:

Note that this is more easily implemented since �P TA �P has the same dimen-

sion as A.

Usually, the matrix �P TA �P is not computed explicitly, but the action

is obtained by applying �P , A, and �P T successively. Therefore it is nearly

impossible to �nd a preconditioner for �P TA �P whereas it is quite easy �nding

one for A.

As a remedy, we can consider the following preconditioned matrices:

B�1A: This corresponds to a non-continuous ansatz space, but the correct

preconditioner.

B�1 �P TA �P : This corresponds to a continuous ansatz space, but the incor-

rect preconditioner, since B is a preconditioner for A, but not for
�P TA �P .

~B�1 �P TA �P : Here, ~B means the preconditioner for �P TA �P , so that this cor-

responds to a continuous ansatz space and the correct preconditioner.

But we have mentioned before that the computation of ~B may be

highly ineÆcient if not even impossible.

As can be seen in Figure 8, there is no fundamental loss of quality of the

preconditioner considering just the approximate preconditioner instead of

the exact one. The only exception of that is formed by the incomplete Cho-

lesky decomposition, which is absolutely inadequate for that case. There-

fore, as simpli�ed preconditioner we use the form B�1 �P TA �P . Note that

this problem does not occur for static condensation [5].

7



6 NUMERICAL TESTS.

6 Numerical Tests.

We solve the Laplace equation (1) where we use the following values for the

solution u and the domain 
.

Model Problem 1.


 = (0; 1)3;

u(x) = sin(�x1) sin(�x2) sin(�x3); x = (x1; x2; x3) 2 R
3 :

We use a uniform grid (Figure 4) of grid widths h = 1
2
; : : : ; 1

10
and constant

polynomial degrees p = 1; : : : ; 13.

Model Problem 2.


 = (�1; 1)3 n [0; 1)3;

u(x) = jxj�1=3 and u(x) = jxj1=3:

The grid (Figure 6) is geometrically, non-conformingly re�ned near the point

(0,0,0). The polynomial degree of the �nest element is 1 and on the elements

on the next coarser level the degree is (recursively) increased by 1 [4].

6.1 Comparison of the Preconditioners.

In Figures 7 and 8 we compare the eÆciency of the various preconditioners

by plotting the condition number of the preconditioned problem against the

condition number of the unpreconditioned problem for model problem 1 and

2 respectively. In Figure 7 we recognize that except for partial orthogonal-

ization the preconditioners' eÆciencies are nearly independent of whether

the dofs are induced by decreasing the grid width h or by increasing the

polynomial degree p. And we �nd that each preconditioner has a similar

eÆciency both for the geometric and the uniform grids (see regression line

in Figure 8).As we have mentioned before, for the geometric grid the incom-

plete Cholesky decomposition is not practicable when using the simpli�ed

preconditioner explained in section 5.

For the preconditioners' performance the CPU time needed for applying

the CG-method up to the chosen stopping criterion is even more crucial

than the condition numbers (Figures 9 and 10).

If the sti�ness matrix is sparse, a storing convention re
ecting this aspect

is more eÆcient than storing it as block matrix (Figures 9 and 10). Hence

we compare the preconditioners Diagonal Scaling, SSOR(1), and Incomplete

Cholesky, which are based on a sparse structure, against the unprecondi-

tioned problem where the matrix is also stored in a sparse structure. In

contrary, the other preconditioners are compared against a matrix stored as

8



6.1 Comparison of the Preconditioners.

x

y

z

Figure 4: Uniform grid. Domain


 = (0; 1)3.

x

y

z

Figure 5: Geometric grid with non-

conforming re�nement. Domain


 = (0; 1)3.

x

y

z

Figure 6: Geometric grid with non-

conforming re�nement. Domain


 = (�1; 1)3 n [0; 1)3.

pmax N NB

2 341 341

3 906 906

4 1909 1909

5 3545 3545

6 6058 6009

7 9741 9496

8 14936 14201

9 22034 20319

10 31475 28045

11 43748 37574

12 59391 49101

13 78991 62821

14 103184 78929

15 132655 97620

Table 3: Geometric grid (Figure 6):

Number of all dofs N and of all

boundary dofs NB.
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6 NUMERICAL TESTS.

Diagonal Scaling SSOR(1)
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a b

Diagonal Scaling 0.558 2.775

SSOR(1) 0.448 0.948

Incomplete Cholesky Decomposition 0.444 0.669

Static Condensation 0.588 4.901

Static Cond. with Diagonal Scaling 0.425 4.567

Partial Orthogonalization 0.151 10.670

Two-Level Domain Decomposition 0.225 4.410

Figure 7: EÆciency of the preconditioner for the uniform grid (Figure 4): The

condition number of the preconditioned problem against the condition number of

the unpreconditioned problem.
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6.1 Comparison of the Preconditioners.
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6 NUMERICAL TESTS.

dense blocks (although in our examples the sti�ness matrix always is sparse

and hence could be stored in a sparse structure).

There is a signi�cant di�erence between the uniform and the geometric

grid. For the uniform grid, mainly diagonal scaling and static condensation

reduce the needed CPU time, and for very large problems we could also

expect an improvement with partial orthogonalization and two-level domain

decomposition. For the geometric grid, partial orthogonalization and two-

level domain decomposition clearly give the best result, followed by diagonal

scaling.

Only for large problems partial orthogonalization and two-level domain

decomposition excel the unpreconditioned problem based on a sparse struc-

ture of the matrix. So, if the sti�ness matrix is sparse, for a medium sized

problem a matrix stored in a sparse structure, preconditioned with the easily

implemented diagonal scaling is preferred for these examples.

6.2 Convergence.

Next, we plot the H1-error E vs. the number of degrees of freedom N (Fig-

ures 1 and 2) and compute the resulting orders of convergence (Tables 1

and 2). Note that for a uniform grid the order of convergence (the � in

E = Ch�) should coincide with the polynomial degree p [11]. For a geo-

metric grid, a dependency of the form E � C exp(�
N�) with � > 1
5
is

expected [3].

Eventually, for model problem 2 we plot the H1-error against the CPU

time t (Figure 11) and choose such a scale that an exponential dependency

of the kind E = C exp(�
t�) should approximately result in a straight line.
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Figure 9: Uniform grid (Figure 4): Performance of the preconditioners: CPU time

for solving the preconditioned system compared to the CPU time for solving the

unpreconditioned system using a block/sparse matrix. The CPU time is measured

in seconds.
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Figure 10: Geometric grid (Figure 6): Performance of the preconditioners: CPU

time for solving the preconditioned system compared to the CPU time for solving the

unpreconditioned system using a block/sparse matrix. The CPU time is measured

in seconds.
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CPU time of various parts of the program.
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