TY - RPRT A1 - Heinrich, S. T1 - Quantum Summation with an Application to Integration N2 - We study summation of sequences and integration in the quantum model of computation. We develop quantum algorithms for computing the mean of sequences which satisfy a \(p\)-summability condition and for integration of functions from Lebesgue spaces \(L_p([0,1]^d)\) and analyze their convergence rates. We also prove lower bounds which show that the proposed algorithms are, in many cases, optimal within the setting of quantum computing. This extends recent results of Brassard, Høyer, Mosca, and Tapp (2000) on computing the mean for bounded sequences and complements results of Novak (2001) on integration of functions from Hölder classes. T3 - Interner Bericht des Fachbereich Informatik - 312 Y1 - 2001 UR - https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4944 UR - https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-49444 ER -